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PREFACE

The commen theme of the monographs in the present
collection 1s the study of nonlinear periodic notlons
in dissipative systems. In the relatively simple caszeg
of one degree of freedom the basic egquaticn Tor free\
oscillations iz of the form Oy

Bl '.\' ’
{1 X + plx,x}x + ql{x) =0 .xw

L 3
~

where dots Indicate time derivatives. Ths dls 1patLve
middle term may arise from friction in ay Wéchan¢cal
gystem or from rezistance in an electrical circult.

Such systems may well assume spontamebuQIy oscliliations -
very different from those occurrilg) in the usual (1¢near)
harmonic oscilliastors. A well—knbﬁn instance is glven

by the equation of van der Eﬁl

(2} X+ #(x 2 . 1)x‘+ X = 0.

Nonlinear conﬂenvative csclllators have oeen in-
veatigated malinly iQ\connection_witn celestial mechanics,
and the 1nformation avellable for them is therefore
rather extensives It is known, for exampls, that the
tragectorleﬁlére extremals of a variational problem,
so that oﬁg“may bring to bear upon the problem Morse's
technique for the dlscovery of closed geeodesics on
manxfdlda. Nothing of the sort iz at hand for the
di%s{pative type, making progress rather slow. A re-
newal of interest in this fisld has taken place in the
last thirty years due mainly to van der Pol and the

v



vi PREFACE

followers of Liapounorf In the USSR who have known how
to make extensive application of the classical dia-
coverles of Poincaré, Liapounoff, and g. p. Birkhofs,

in thig contection see notably N, Minorsky, Introduction

to _Nonlivear Mechanics (pavig Taylor Model Basin Report,
——===atillear Mechanics

algo lgsued by Edwards Bros., 1947), and a. A. Andronow
and C, B, Chaikin, Theory of Oscillationg (PrincetoQ\
University Press, lg4g),

Three of the monographs that follow, those\by
Dilirerto, Rauch, ang Brownell, deal with noniihear non-
conservative ogcillators, Dillberte takes"ubka numberp
of genersl questions comnected with Poipg@éé’s early
work on differentig] fquations, Rgucy Olscusses a

Brownel1 Investigates thafdeéillatory solutions of g
large clags of differenée—differential eduationg
arising for instancaaiﬁ control problems. Equations of
this nature are obtalned in physiecal Systems with
Fatarded respongqé’to a disturbance. The effect is
generejlyparas%€1031 and makes 1tg Study all the more

where e{t) ig referred to as the forcigg term. The
interesting Caze, from the standpoint of oscillations
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is when e(t) 1s periodlc, =ay of period T. One will

look for oscilllations of the same perdicd T (harmonic
rescnance ) or of pericd kT{k > 1; subharmonic resonarce).
Noteworthy work has been done on these questions of

late by Cartwright and Littlewood and by Norman Ievinson.
Migs Cartwright's contribution is based upcn a set of
lectures on forced oscillatlons given at Princeton In
the spring of 1949, and deals with the general equat;gg
{%). The =same tople is dealt with In the paper by
Wendel, but his mode of attack is generally dlstiﬁ&ﬁ‘
from that of Miss Cartwrlight. In their paper. Langenhop
and Farnell consider a special forced osc111atfbn
problem and by new methods, applicable tgwﬁﬁﬁer problems
as well; they succeed in "locallzing” pefiodic aolutions
in certain reglons of the phase p]anﬁ\\;Finally Wasow,

in his paper, discusses the periodi& solutions in a
gystem degenerating when a certain small paramster ¢
tends to zero, and this hasv&enhections with the

problem dealt with by Ming?g}twright and by Wendel.

~\> 8. Lefschet:z

Y
Princeton_Universibﬁ\
May 1949 ‘
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I. ON SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

By Stephen P. Diliberto'

§1. Introduction. N

New results concerning the followiggiihree
problems are established: I. The redushkion, by linear
transformations, of systems of firg?Qgﬁder linear
differentlal equatlions with variqp%e“coefficients to
diagoral or triangular form (thédrems 1, 2, 3).
II. Geometric criterls for gﬁébility of' pericdic
solutions (closed trajectpﬁiés) of systems of first
order nonlinear differanﬁiél equations (theoreuws 4, 5,
6). IIT. Bounds on.ffe number of pericdic solutions
of a aystem of fiqu”érder differentisal squations with
polyromial functlens {theorems 7).

Theorems}?“and 7 are used as tools for developing
a direct t;@hﬁﬁent of the main results on the {general-
ired) qpéﬁa&teristic exponent (Liapounoff) [M.L.],
[O.P.:?'I;.

»\jtgfhe connecting link between the results presented

izhéorollary 1.1 which shows that twe dimenslonal
variational eguations are integrable by quadratures.

1. Princeton University and the University of Call-
fornia. The author's thesls, "Reduction Theorems for
Systems of Ordinary Differential Equatlons®, Princeton
University 1947, done under partial sponsorship of
0.N.R., NR oks-ok2, constitutes about half of the results

of thisg paper.

1



2 3. P. DILIBERTO

References to the biblliography are indicated by [ ].

We acknowledge our indebtedness to Professor
Lefschetz for the generrus amounts of time he has spent
discussing these problems with us, his mathematical
criticisms, and his constant encouragemant .

§2. Notations.

We shall use both caps and small letters to N\
denote vectors, but otherwise standard notation fox A ¢
matrices, vector differcntial equations, vector Lo;mﬂ

and inner products, .”3
We recall some old notations and dsJ091arcd formal
properties: 1et B = (b J) then BY and B ?hnd respect -
lvely for the j-th column and i-th row of B {Thus they
are vectors), et B= A C and let {\5é the identity
matrlx; we then have the following Jroperties
(p,) B = ac; By = AC“”’
(F,) b

. -] ”.7:.'
15 = (A0 .:~I‘~

an

-1 Ly - -
5) I° =A-AJ’ A(A‘);I.:AA‘:A.’A

i3

A\l\i “ady = (a; (AT )

§5. Reduction to‘Trianrulaf Form.
Cur firé%‘result varallels a well-known theorem
on.constanﬁ}matrices.

Thearem 1, Iet
('I} '"\::\ W

3 dt
whe; the matrix A = (aij} and the a; are real and
continucus for all t. There exists an orthogonal
matrix B = (bij), defined for all t, with b i continu-
ously differentisble, such that if x = B -y then x will
gatisfy the differential equation

= A{t) ¥
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-1 -1 dB

Ci{tix ; =8B 'AB -B at

™
[T Le
r'-|:>q
il

where C Ls triangular (L.e. ©;5 () = 0 if 1<j)
Furthermore :if the &, ; are bounded so are the 3
This sharpens & result of Perron's [0.P.1], which
stated that a reduction to a triangular array of co-
efficiernts could be accomslished by means of a matrixs
B for which B and ]E’:_1 are bounded. For applicafions,
Perron had arn important side condition to the effect
that for any €>0 there is a B (producing the desired

reduction) such that .3“

"
© _ \J
’j‘ Trace (B ! g%-) dt { e
AY;

o X\
¥or theorem 1, one clearly has FBJt; IB™'| = 1 and
trace B SE =0 (this last foilowq by differentiating
BB | = I and observing that, B B').(C)

Froof of theorem 1 “Using the Gram-Schmidt
orthogonalizatlon.proq@es we Qhall construct BJ i.e.,
the colums of B. ¢ ;%8 y ,...,¥" be any base of
qolubionﬂ for (1} We shall define, by Induction,

vectors p',B! w,.,b ,B® ¢ let b'= y' and put
B'= b’ /!Fb ¢*;' Assume b ,B’ 1::1{_1,]31{_1 alresdy
defined d,set
&
“Q k-1 .
’\..\;. bk = yl{ - JZ_1{3.rk . B‘))BJ s Bk - bk/[ !bk

{2Y Perron used his result in order to study stability
questions [0.P.2]. Theorem 1 affords notlceable almpli-
fication of Perron's work and some sharpening of his

rezults.



i 3. P. DILIBERTO

Qur construction of B is now completed and 1t is
clear that B is orthogonal; furthermore observe tiat
the first s of the yi are linearly dependsent on the
first s of the Bj‘, and conversely, the coefficients

being {obviously) contimiously differentiable. Thus

. i, .
Zu E' BJ ’ Bi = Z fi{yJ
J=1 J=voo 7Y

Using this fact and that y° is a solution of (1)

yields _ ; O
¢) =~ 37 (and- &
C 2\
r- df ¥
- (Lf [ - ] - Ty
J AT 3
I Lerar
- - Tir - SN ar !
2*— g (B 7 = g}.}qﬁ gt~ Gpg(B B
N
Since B is orthogonal (E&;1 ) AR and so
. ~ ar, D
L T et
i r df. .\h
= - s _ir e -1 L9
i Z_ dt N gI“S(B ‘B )

=1 3=1
Thus oy ;= 0 1f i)j&h;e\cause then 1ds and (BL.B%)=0 by
construction. \\
Ta prove tha,t ifr IB.lJKM the ciJ are bounded it is

s\/

suf'ficient x‘z\Qwshow that _(Tt_'l are bounded. Consgider
N\
{N . 1 1
for exarr)@e' b_]-1. Since bj1 = yj/l {v || we have
A\ :
3 dy
O . n q
p / 'IST 1
U TR
} -_— »
Iyt H TN =1 %y

L
n pa .
Pt . Vi

r=1 g=1 9 1413



I. ORDINARY DIFFERENTTAL EQUATIONS >
Thus,
‘ it 1 < M(n + n?)

While the proof of theorem 1 isg strictly algebralc,
the ideas lesding to our proof of it are based on the
geometry involved in the followlng result.

Corollary 1.t. Let xi=ui(t} be a soluticn of

dx N\
1
(2) T o= Kylxx,) s (E=1,2) 8
\)
Then the variational equationg of this svs‘fé?n,
ag 2 aX N
(3} = = 1 7))
. d j=1 X4 {.w’ W=1,2)
_ k{t) ‘\.}
\\.,‘
are Integrable by guadratures. \‘

Using X to denote the vector {X1, X, ¥, 1X! its
length, and » (t) the radius of‘ cu:wature of the given
solution, two linearly mﬂep‘endent solutions are
(=set K = k\t) everywhere)

\ 2
and
2@ .
¥t fdiv X dt
5.&%31/ 1 p Eﬁ!— - curl XI e © ar
o3 | %! P
\\i x, itawv X ar
/ - e
By 1X12
t faiv % dt
¢ =X - %m—Curl}(; ° dr
2 ef 1%12 )
t ..
X1 iodlv Xar
+ — €
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Since the variational equations (%)} arc the first
approximation of the equations {z) relative to a
rectangular coordinate system ( §1, §2) wnose oricin
moves along the trajectory with velocity X (the [, axlis
remaining paraliel to the x; axis) 1t i9 more natural
to use instead of the § coardinates an » coordinate
system with one axlis moving so as to remaln tangent to
the glven trajectory and the other axiz perpendicular
te the trajectory. This change of coordlinates L1a{\
expressible directly in terms of the X, and the & (T)
{(i.e. may be given explicitly), and when the txanaf
formation has been effected the new sttem Qf Jdifferen-
tial equations has a triangular array of, coeff1CLent
Such systems are Integrable, and providéé a8 general
solution of the original -equations {} “e. eguationaz (k) }.

Excluding, temporarily, tha\method of arriving at
1t, our result may {(in the geqeral case of n eguations)
be given the following geomgperic formulation: "I &
set of trajectories near a.piven_traiectqzy have, at &
given time, their represemtatlve polnts in & byperplane
perpendicular §9-tQ§E trejectory then at any later time
the corresponding:representaiive points willl, in the
first @pproximaf\bn, lie in & hyperplane perpsndicular
to the glven tralectorv.“

Thlg\prlnciple hag certalnly been known for at
least As) hundred years. We have found several writers
in q%f}Erential geometry and also Birkhoff [G.B.1,
’EP%$5:58 and M. Morse [M.], p.108 who know and use it.

\Ihe extent to which they have may be outlined as
follows: (1) The principle i3 easily verified when
the given trajectory is a straight line aleng which the
velocity 1lg unity. {2) Topologically the sets of
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trajectorlies nelghboring any two given trajectorles is
the game and thus & mapping exists which carries any
trajectory and its nelghboring trajectories into the
straight line, constant-velocity trajectory -- the
mapping belng defined only for a finite time Interval.
Qur reduction by-passes the heavy machinery for such
a procedure since it deals with the equatlons only
after they are already linear and as a result the
reduction is given explicitly and defined for all time®
Proof of corollary t.1. Iet'xi=ui(t),'i=1mg\'

O
axy : <”§sw
d_f'— = Xi{X1 ,XQ) » 1=1;2”‘,\'Z’.. ’
Using the subseript "u”, L.e. {),, to détote that the

arguments are "evaluated at ui(t)"_ﬂetﬁhy write the

be a solutioun of

varietional equations gi\v
6. [ 23N ¢
= 1
s ( )= =y P2 ({_ )
at 4 £
¢ 2
2 Aax(O)Y &

1
Using |1X!|1 adthe norm of X = (X,,X,), and defining
an auxiligﬂ§§variable 1 by

No/

N\ -1 1 X'[ - XQ
BN T¢ , T= TTi;T|
~O 2 Ky

O

a simple computation shows that = satisfles the
differential equation
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oL OX,
HRTGE x, e xR, e -

3
¢ 0 s HXNT S s TR o

These equations may be Integrated dircetly, and
recalling that the curvature I = :, of the given {\
solution, curl X, and div X have the expresuunw\

' 5. 0K ax ;\j}
p M X1 dt XE EYia
dt Q“
X, & Q’%{
2 1
curl X = o—= - L divX— P 3
3, 3%, ax\ .,

We may write a pair of inde ende :}OIULLOHS as
Y

1xI1, O
?'-'_-| = ’TT (o) ”XH- o\ Nt
U(O) ‘:\:‘“
ng - ° N Q:::‘
N\
~ X, Ay
S TR S o) +
".\(s‘}
\¥;

+ .
o H~ -2 X fdiv X
+??2(0” !X“!\xf'g(“é)é- [1Z)] [U_p.LL - curl Xle uat]

A\ [1X]1 I aty X). dt
7‘3, 2 <7 "

gséoaing 1;1 =1, ;f';(o) = 0, g;;(o) =1, and applying
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T will give the solutiong of the variational egquatlons
in (&),

Corollary 1.2. The variational eguations of a
Hamiltonian gsystem with two degrees of freedom are
integrable by quadratures.

Proof of corcliary 1.2: Conslder the system

da, & , by 0E (r=1,2) .
de = ap, dt 3 dy, O
)
Then it is known [W.Ip.51h that by means of thelenergy
integral H(p,,p,,d,,d,) = const., and if 3HFN, this
aystem can bhe reduced to a system of one:{bgg degree of
freedom: o

oW
dg, 3K Py _ NOBk
da, = 3D, dg, L 84,

Consequently corollary 1.}",’;"évpplies to the variational
squations of this 1&tta€ é&stem. Since the initisl
reduction was base@,qﬁ> aH/ap1 # 0, the conclusion will,
in general, be va}}a‘bnly locally.

Corollarjrﬁéj. Lot x=x(t,c,,...,0, ) be for sach
L CIPRRRT (31 scme domain and all t & solution,
analytic {%@g ¢y, of the equation

=) ,\‘::‘(ﬁ:_l' = XL(X.l,-.'.-,Xn)J {1 = 1,2,...,0)
& 4
wﬁére the X

4 are holomorphic in thelr arguments, and the
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solution is such that the rank of Lhe Jacobiar mat rix
{c fixed)

” 3 ( X1,...._,_an H

t,c - cn}

i1s k+?. Then there exlats an orthogonal transformat ion

U = (ui ) with ui. continiously dlfferenflable T given
explicitly in terms of x(t, <, ..,ckj, such ;Qg;_kgg
variational equationg @
oA
d KN
(&) Hi___' Vi‘ 3 v=(vi') » Vi:"—'%{\"—
dt J J ""‘EXJ [t’c )
T
R
of the original system transform ungagr ¢ — Ug to
‘_R_\_‘“‘Q———‘
5 A
(7) gt = Wa; %a(3D,VN% {0}

Ne/

and A k+1 square and triangﬁlar

Pgoof of' corolla;y 1 3: Construct the first k+i

columns U of U by usiﬁp the Gram Schmidt process on
the vectors gf . g (i=1,2,...,k). 1et yt (1=k+2,

) be any n ifferentiable normal orthogonal
vectors in the~g§fhogonal complement of the space of

the firgt k+\ U 's {such are eazily constructed from

3
the g% ,/\ac > and the generalized normals to the
curve i(H). Using the fact that X B e

2 N\ j_

so}gﬁion& of the variationsl equations [3.L.],p.s52,
\3§pfproof now parallels that of theorem 1.,
One result implicitly contained in the corollaries
V.1 and 1.3 and their pProofs is: "The solution of a
g¥stem of n 1lipear first order differential eguations
igg_which k solutions are known can be reduced to s

System of n-k equations Blus @ guadrature. If desired

the reduction can be gccomplished by an orthogonal
transformatlon.
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ey, First Dlsgonalization Thecrem.

The method of proving theorem 1 ylelds devices
which establish
Theorem 2: Let

(8) T - Ay

where the 843 are real and continuous for all t. 'I‘he:r:g
exlats a non-singular B=(b1j} with bij continuousiy, \
differentiable and uniformly bounded, such that 1£\)
x=B"'y then O

\
¥ 4 s ~.
<

(9) . a-E— = C‘x .”"'\{.’

where C is diagonal [cij =g, 14j )\@ rthermore the cy 5
are bhounded if the 43 are boundef_i'.:}\

This improves the reductlomjof theorem 3 at the
expenge of admittling the posvs‘i’bility that the elements
of B! become umbounded, a.f)ifl':}aises the question as to
when B | of theorem 2 vg’il‘i'ha.ve bourded elements (e.g.
IBI>8 >0). If one d;;obped the requirement that B,
1tself, be bounded\ﬁh‘é” existence of the reductions would
be trivial. Na.;ﬂé‘ly, since G=B(AB—§-%—} we would merely
have to choose’:fB’: such that g%:AB and C would be dlagonal
-- 1in f‘act:;\i&i:antically Zero.

PHO}fWOf theorem 2: Llet yT', e ,'yn be any base
of sg%iﬁiions of (8) and define B = yd/] IyJ1l. Pro-
cgbtbry before

K dng as

§ _ a1 apd_ GBY
Y =B (ABY- 3%) ' .
1 iaydy L oxd, A 1o 1y
_ 1 Ay ]+ og |13
iy dt ] dt Liydpy %

- 37'BY & 1og I1¥9I]
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Thus,

d 1 -1 i d_ .
cijz (Gt log I1 ¥y711) (B] -BY)= ﬁij ar tog 11 vyl

=0 for i+ j

Paralleling corollary 1.2 of theorem ! we havo
using theorem 2:

Corollary 2.1: If in corgllary 1.3 of' theorem\s
we remove the requirement that U™! be bounded them A
can be made diasgonal. ~<\

Proof of corollarv 2.1: Construct the, flrst
k+1 eolumns of U from at s g%— a3 in theorem 2 and
the last n-k-1 as in corcllary i 3. Thefﬁerlflcaulon

that this transformation is of the dﬁalred kind is

Immediate. K7y
‘Hf\“
§5, Natural Bass. O
We define the natursl baqe iy} (I=1,2,...,1n) of

solutions of a system of 1inear differential equations
to be a base suchthat y Io) =1t i.e., the "i-th unit
vector. \

We shall nﬂk€>repeated use of the following
obvious lemmas. M

%

Lemmsa 1.\ iét Jx { ard {u { be the respective

3

natursg] basé& Tor the adjoint systems
W a\Z

dzon a Ny
@.§ »

x% =0 1>] ; ug = 0 i<j

Lemma cmma 2. let iy ii be am 1y base of %E y and
fxt } thg‘natural base of the reduced system (via

theorem 1) & ~— = X where iy =0 if i>j. Then there
exist constants dir and d;r such that
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Bi~zid' r . B! i_zd* r
x= ir ¥ ? y= ir *

§6. Liapounoff's Charecteristic Exponents.

These exponents are associated with equations

(10) %{- A(t)y

where it is assumed that the ay s (t) are continuous and™\
uniformly bounded. We shall recall all def‘lnitions \B.Dd
two elementary propositions. We shall, however,, Qse
Ferron's definition of characteristic exponent IO F.2]
since proposition II (below) is not true forp charactﬁr—
istile exponents as first defined by Llapoma\:ff‘ -—- a8
Liapounoff himself shows by an example (M L.], p.236.

The characteristic exponent » @:;’,\X(y) of v, a
golution of (10}, is defined by MNN\J

» = 1im L Teathy(t)1
t>e0 foal

Iet A ( A < ..< Ay NP all the different values
that A may asgume f‘or\ﬂlfferent y {all anlutions of
(1), of course). ]§’ti &, be the mumber of  linearly

independent y fordwhich A (7) = 7\1; let ; e; be the
nunber of 1lneazcly independent solution y for whlch
(y) = '*Ihen €, 1s called the multiplicity of ?t

Two 1mpor‘t\ ot results are [O.F. 21

<

Pmposition I: If lay (£)C, then for any

Sokué?oh of {10) Ix (731 nC
Propozltion I1: k
2 €= n
i=
k

Recall:mg' that 1f M (¥ A (y9), then for bFo
A {a.yk + by AT J) (This and similar statements

which are exercises in 1im will not be proved here )
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we see that there 1s always a bases y',...,y" for which
all the A{y} are equal. For the opposite situatlon we
define a maximal base y1,...., y® to be one auch that,
ir l1,...., M are the characteristic exponents of (1),

then this base shall have exaetly ej solut lons for which

.S = X\.
(v} '\J

The principal results on characteristic exponenta
are contained in the Following three theorema for
which we give new proofs:

Theorem A: LQL_IyiE be any base of solutbaﬁﬁ’gg
{(10) with aij(t) continuous and uniformly bou;ﬁgd; then

I t n N
Zh(yi) > 1Tim 1+ f adH(T) dr
1=1 T toymt o %;%~~$i'

We shall first prove two lemmagh)

lemma 5. If = By where B-fd B™' are bounded,,
then A\
M) = (y)a)
Proof': o

%

I Qe
A = N (DAL T .
(u)_ .UBy)Smf.x hE};binJ)g mi% X .\_(binJ_}
O
gl(yj) g\&ty)

Similarly y=Bild will 1mpiy My)CA(u), proving the

lemma, ("
N\
1le ‘4. IF B i . -
_Jgg&;ﬁ i B is orthogonal and biJ(t) con

tinuogs?y differentiable, then
~O°
9, Trace A = Trace (BH1ABLB‘1QEJ

dt

Proof: For constant matrices the trace. is
Invariant under glmilarities; hence for t fixed

Trace A'= Trace B_iAB, and by differentiating B  'B= I
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__1 d_B)
at

Proof of theorem A: Use the given hase Iyii to
effect the reduction of theorem 1 and let Exli he the

base of the reduced system.
By Lemma 2, of sectlon 5, and lemma 3 ahove

we will find Trace (B = 0.

1
MDY = A 0T ay )
k=1
Ko 1, C oK\
Now among all the x (k=1,...1) x~ is the only oOue
with an i-th component which is S
< N\
i ‘Focll( a sz
Xj = . £ "‘.

= —_— t 2 "
Thus .\(3-*1) > A(ij} = 1lim %fo ci.l(;r*)éf , and go

using lLemma A
ol . n o t &Y t n
S oarhn s T L[ e (raa®Tm L) oy(nar
=1 1=1 0 O o 1=1
= 1 t n ’:":x:‘
= 1im E,[o 2 aiif{:& ek
i=1 N\
Theorem B: Let'@;ii and Ezi{ be respactlve bases
of \
gy _ \ dz _
(1) 3% —Ay,\ (1‘|)A i zZA
< .
where Al y ﬁ'\“‘ Ay ) and A(z }_ ..oz A2
Then ;"\‘

Q\“b } o+ Mz Y > o, (i=1,2,...,10)
\,Prool of Theorem B: First of all it is sufficient

to\;}'o\re 1t when Ey I and izt are hoth maximal bases

{with ?\(y y £ ... A(y™) and Az D e A (8. For
lst I¥*) and [z ii be any other basee ordered as toh ;then
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by definition of mxinal bases \(yijz Myt) and Al
2\{; } for a?.ll i. Hence \(y Y o+ A(z ) > 0 Impliss
MY + MED) D o,

We shall now prove the theorem for a maximal base
of {11} arnd some base of (11 )A' Let Iyli be a maximal
bage of (11} and R(yT) <o K }x(yn). Consiruct B au
in Theorem 1, l1.€., put ¥y = Bx. In addition put
z=ubB '. Then O

N\ ¢
= -ug N\
N\

91&
ot

{12) = = (0x ., (12)A

By Temma 3 1t 1s sufflcient to prove our sta‘t\eﬁggés for
{12) and (IQ)A. By construction the nattll:fa\lgbase__ of
(12) is also a maximal base. Letting {ze{and {u"{ be
the natural bases of (12) and (12)A f@spectively, we
asgert that \s
(13) Mxh) « Mty D oY
To prove inequality (1 3) @bsewe that

a) Mx') 2D o auly » audy

t g L
Jes ~ite
i O 1YY 1 _ o il
b} Xy & {:j}\ ;ouy =e
Hence, \\

]

Cax
ﬁ)li

1 /b —
\(x)+)\ Zﬁﬁgfcii+lim—
o

\”.
Z'ﬁ\im fcii nmtf G412 @

o *"ﬁie are not done yet since for the natural base
fu™we do not necessarily have Au') > ... > Au™) or
even that it is maximal ’

However let Eu | be a maximal base of (1?}A
where MOT) > . 2\(‘311) Then

wk n
G o= 50 £, , f._. const.
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Construct a new maximal base Iﬁii as follows: 1lst
i{u } be the lowest index 1 of the ul which make up
o Subtract off the approprlate miltiple of ! from
every %l of lower index =0 that no ui contains u Let
1(a™"") be the lowest index 1 of the ut occurring in
the just modifled T ot ror a1l 1 { n-1, etec. The new
pase is still meximal.

We assert that for the Eu } it 1s true that
(1h) h(x Yo )Cﬁi )y 2 0.
Since the ui are llnear combinations of the uJ eadh\
has a lowest indexed uJ occurring in it. Thus,‘ﬁince

uf = 0, 1f 1)) .?f N

~ . “‘\\'
(15) (@) p
Suppose that 1Jj; then g?bJ

AL+t ) ) +\(xi‘)’>«?\(u'3) Mxd)y 0

For i=n it is always true tha$ 1}3, hence (14) 1is
proved for n. Supposge that 3% holds for i, n-1,--.s
n-(k-1}. We shall show, +that it holds also for n-k.
If 1n the desired 1neqhallty

\nk) 2 Mu

we have n-k) j wb are done (ube the same argument as for
i=n). If,~on,the other hand, n-k{j, since each of the
I previo&%~steps has used up & different j in (15}, 1t
follg §%that at least one of them, say 1, satisfies 1<n-k.
Lﬁ\gr 3 be the corresponding . (Thus 11om-k ),

Thoe (276 Mut 2 a(ur) and 1¢{ n-k and

MRy S X(Xn'k) Q.R(U )+ Ax l) 2 0.

Theorem C: In.theorem BA(y Y+a(z } = 0 1f anﬂ

1 1 o b s
only if 1im ¢ / Zail(t )t exists and equals jz; (yh)

t—oeoe s} =1
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= i

and - 3 Mzh)
i=1

Proof of theorem C: This will follow readlly
from the proofs of theorems A and B. We asgert that
the additional hypothesis implies that

Mxl) = MxD) = -agul

) = -a\(ui}.

Observe that these assertiaons prove the thecorem.
Going back to the proof of theorem A, 1t 1z >
clear that we now have (by the hypothesis and th€Nlast

four lines of that proof) that O
R .t A
1 1 T 1 S
MY = My =Tim L f ¢, (s)dr = 1im —Z} ¢..(7)ar
i £ en t!} i1 t—-*oo'tg, i1
or else v
n .on \
S_MyY) > 1tm [0 a0
1=1 t—e o = A

Hence by simllar ar'gumer}t‘s::“
Muhy = ah) < - d [Feys(riar
i te " o
and My )¢ o) tmply M 2. 20U, That
Q"

the Juii are a maxi;tgcl\base Tollows from this last
Inequality and tha\\yé = 0 1f 1{3.

The "onl}('i:t"' part of theorem C follows froem an
example [O.:B\‘a.], p.75k.

§7. A Thé‘é\i;ém of Poincard

A8\& further application of Itheorems 1 and 2
{Egp{}tiiéing our results on characteristic eXponents }
we\ Have a slight extension of an old theorem of
Poincaré {3.L.], p.113,

Corollary 2.e2: The variaticnal eguations cf

dx
(1€) i _XI(X.!,...,X {L=1,2,...,n)

it =

X1 of class CT, based on a solution Xy = ui(t) which iz

)
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bounded and appreaches no gingular point, have at least

ong scolution whose chargeteristic exponsnt is zZero.

Poincard's theorem asserted the existence of a
zero exponent for the case of ui(t) pericdlc.

Proof of corellary 2.2: DBy lemma 3, last sectlen,
two linear systems which are related by a bounded trans-

formation with bounded Inveirse will have the same set of
characteristic exponentz. Hence it will be sufficient
to prove this corollary for the reduced form of the QO
variational equatlions as glven by corollary'1.3.,\ﬁhese

equations have the form 'if
w W W\ 2
11 12 """ {fa
_@.. = L] W = 4] w ,’\
at ) 22 N ’

-
I

where W1I= %ﬁlogiFu(t)1!, (ufﬁj"being the solutlon on

which the variationsl equaf{ﬁns were based). Con-
sequently one solutlon of% this equation is 7= Hult) |,
Po=... =T=0, Theingrm I{# 1], of this solutlon is
simply flu(t)il. \?he:hypothesis implies that there

exist positive canstants ¢, and e, such that
&~
O ode,<IHa(e) g ey -

Angd so0 F&@}hthe characteristic exponent of this sclution

is zerﬁ; namely
) At e 1 1 1
a \ Y () = 1im fu(t <F E‘ log CE =

\ 3

and
N(g) > 1 lim Llog e, =0
t—-h

§8. Second Diaponalization Theorem
We shall now answer a questlon raised by theorem
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2: when can a reduction to diagonal form be effceted
by a transformation B, for which both B ard B! are
bounded?

If A, the matrix of coefflcients, iz censtant s
sufficient condition for such a reduction is that aiil
the characteristic roots of A be distinct. In that
case (A constant, distinet characteristic rootz) the
equation has n linearly independent golutions yi(

:]::L.K
-+,1) such that
.\:\’
d 1 .
Coge My G
(7 2im L logi iyl = 11m L[t —QE——E—ngd% = M
t —o0 t — o0 o) liy LF A

~\
««,01) are the distinotSeharacteriastic
roots of A. Not only do the mean valies (17) oxigt --

they even exist uniformly, tnat 18 ¥or each 1

d i A\

TEAtal

e, (?T ) _hi)dﬁ“=°m
¥ N

where'hi(i=1,2,.

(1.e. is bounded). When-BHe elements of A are periodic
with common period, Epsnkiof (17) always exist; and if
there are n solution§ for which they are different then
& reduction by m@iﬁﬁ of theorem 2 can be effected so
that B 1ig boqpﬁéd. In the case of periocdic co-
efﬂicients,xg@éo} condition (18) is automatically satis-
fled. "\‘

THedbrem 3 asserts that conditions (17) and (18)
are aqfficient for the desired reduction. They are in
g ﬁéﬁﬁbn&ble Sense necessary, as shall be pointed out
at the end of this section.

Theorem 3. Let

(19) oy

where the aij are real, continuous, ard bounded

for a1 ¢

=
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Assume:
(H1) The svetem has n different characteristic

gxponents )\1,..., )‘n‘

(He) For a maximal base Eyii
t d i
(20) 1im 1 f gl V1l gt extsts
E=® o gty

(H5) For each y of the maximal base and its

characteristi¢ exponent A 5 RO N
~A
(21) fo C&_‘q—-—-——-)\)dt‘—oﬁ)
I!YLII M\\

Then thers exists a (nen-singular) matedX B defined for

all t, B and B~ " having bounded elem&l‘cs, guch that if
\s

N\Y

x=B" 'y then
(22) & - R

where (N} is the dia;zonal”:’mé.trj_x of the elements Aj-

Proof of theoz’eﬁr z. the assumption that the 8y .{t)
are bounded 1mp11é~e\ (see proposition 1, ssction 6}
that for auy so,lu‘tion vy of

'.\
(19 ) ONEY . =
:.\;.\ at = Ay ; A= (aij(t) .

Ay, :Ls.\bounded Let Iyi} be a base of solutions for
whieh’ Ny KM (TE) M (¥ (guaranteed to exist by
ﬁﬁe‘ hypothesis) Clearly any such ba}\sig ig maximal.
Note that (21) implies |l¥ !!—\fﬁ‘(t)e' 1” where
0<aig_¢’i_<_bi for some constants a, and by, for i=1,2,...,
n,

Tze the given bhase Iyi} to effect the reduction of
the glven system (15} -- by means of theorem 1 -= to
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triangular form

(23} %% =0Cx; C= (cij(tJ); cij(tJ =0 1)j.

By lemma 2, section 5, we have that 1f Ixif ia the
natural base of (23) then || yi Il = 1] xt If. Con-
sequently the problem has been reduced to verifying
the theorem for a gystem with a triangular array of
coefflclents and for which the natural base is alad ™
maximal, Ko\
We now use theorem 2 and the natural basq'\.to"

effect a further reduction to g aystem AN\

@ og 1 1xtg

gy__. . - . _
dt““DV) D= (d--), dij_ﬁij’ﬂt

1]
- _ N :
Observe that if it is true that By ;.Xhe lnverge of this
last transformation, is bounded‘t-}:a are done, for we will
have reduced the problem to @:.,éj?"stem whose matrix of
coefliclents is diagonal and Yor which the hypothesis
a&pplies. This case 1g t‘:;-igx}'ial.

We clalm that B rMs bounded. Singe b, . are
bounided we need mereg‘l} show that {B|, the determinant of
B, is bounded abo%\éero; and since B is triangular it
13 sufficient 't.;ia:,show that for any 1 bii2k>0. (Recall

3
N\

that if x- ji{..ﬁhe matural bage then_,_bifx]_j:” iy,

o~
It '{1\1‘1/1 be general enough to do this forn = 2:
J;.’\ dx1 b
AN _ = &th + XE
<\:../ dt
o0 ex,
dt

where a, b, ¢, are boundeqd. The netural base is
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ggadt
x = (e ., 0)

;tadt /t o ~Ledt fldt iLaat
X = (e Jo b e ev dr, & © )

Now Hj lm'DliFm ||xif1=¥’*i(t)e’\i t,— 0<a {1& <b;. Clearly
1%—k T li= 1. Also [1x"f 1=y 5 (8)e? Ve Implies

{ cdt ~ A T ~
e ¢ (t)e wnerey <b2; and we must show that , 2\

¥>6 > 0 \;\
O
We shall do this by contradiction. Fo%ﬁ%}npli—
fication define (N
v
N

1
K= 1.u.b.| B (L) ], flxkﬁﬂe by hypothesis;
t, T ¥ (7) ¢ V

o\

1

"N\/

“ pogitive by hypothesis;

T (L) = 1.Q\b.1c(t I< M, finite by
hypothesils

We ﬁ'ﬁ'@} then write
\

t
N . At eiZf . _M:ftht £
\lwa xS Ce e ~ + k' {e N

.
[
If 1Lmif'— lim s ¢ = o then for any é— there 1s
o

%Y1 /2

at, such that e é . Choose
o
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;
- A.
. 2 o
¢ < min{b,, ———ﬂ——)
[

b, MA
By > max (1, (-Z) "
ty
I "Pit)de
and determine t. so that e © { £ . Chooss
b, 1/ ©
fp=ty 4 log (55 \\
o) Oy
e r &t t =t and we fivst fing s unpper
QBO 1 I "\.} I
: . Y
bound for its size at t = t,. Clearly 7
. Pt L "4
e O _ & o) 1 {_é_ e\tj{&\J}
b, M/ 0"
M A\
2 by
& olog () (e 2B
BO \‘/

Hence, we may estimate 15\‘6\9 round bracket term in (24) as
o\

N \’g -

- . R -t
-x, T vt O\ ~AL 1 At 2
: A
e 22 f:fi\ﬁg_ & 2lbg/o & ”/t ekt}
t\\&\./ 1
- A, -t )
o [ AEE oty o, L TMETE
Cxoley e ]+ {
t'\ml
g b2 .l/A
N -
< bE"% MtQ t1} e b - A log (T) €
PO *X = xe X
RN\
“\i../
;€ £ €

Tinis we have, for (24):
L9 At
8,6 ° 2 1R (e 22 12 4 kP

t -
= e)Q e /1 + ere/)\d

LWt a kgt

27
2
8., ﬁllxlls’_e—ee e
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which is & contradiction. This completes the proof.
Our original argument for the last part of the above
proof was quite involved and the above details follow
a suggestiecn of E. W. Barankin.

This theorem is a first result on a problem
sised indirectly by Liapounoff [M.L.), pp.2hl-zhz.
The stimuluz for results in this direction 1s due to
the fact that they glve immediately strong stability
theorems -- which theorems for the case of varlable O\
cosfficients now hings on the assumption that the \
integral of the trace ls bounded (automatlcally\ex—
cluding the constant coefficlent stable casech This
raises the question as to when H, and H5"?f;the pre-
ceeding theorem are true, ani we conjegbure that this
will be the cage if the a. J(t) satmfganalagouq Cor-
ditions, i.e. if there exist const&pts “13 such that

t%zﬁn E./t aij(f) ar = ni;’izahd

- R
jo (aij{t-) - g5 :_ o(1) .

Second, thi @follarv is directed towards a
generalization QR t e classical representations for
golutions of sg@tems of linear differential equations.
with eithen'&anstant or periodic coefficlents which may
be stat@%rihe g-th component, X, of any solution x of

e
R
N
TXY
$

O

the egﬁation
P
@ dx = Ax: A = (a..) ; a., constant(periodic
\; at E ( lJ) H lJ (p }
mey be written when all the characterigtic roots are

distinet n
Ko = g; “ig & Qis constant (periodic )
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This theorem iIs not true far almost peeeindie
coefficients, as this sxample due to Cameron ISTRO
dy . P e(ty= ST L0 L., L
At = @{t )3 * ¥ (L) L e in “{\

J.’L\FA(T J'] T
Fo= ¥t} = y(o) &©
1 A
Y= Aly) = 1im v /et = o, LA
[ 0
o\, Y
Hence, if the desired repregentation were firg RN
e Q7
& would have to be almost per;ndlé 3 in

particular, bounded. But this is not, I.he cage wlince
it

o ¢(r)dr takes on arbitrarily la{f p()%lti‘u’@ values.
In theorem 3 this type of behavmq‘ 1s eliminated by Hy.
It 1s clear that, aLtho‘ugh one would like to
exchange hypotheses H and H for conditions on ai]
theorem 4 ig best possiblc—} ~1nsof‘ar= as heving weaker
conditions on HX 11 1* onecerned. This follows from
Cameron's example. "\

The role of t\he, ‘wiform condition® H, in theorem
5 was to show, at 8 crlitical polnt, that the matrix
of solutions m" % special linear system of differcntial
equations héd a determinant bounded away from zero.
By virtx"\of‘ lemma L, section &, and the relation

{\ ttraceA

|X|\—:ce fcﬁh_’a‘x([SLJ p.53) it is clear
'ﬁat H can be given a modified. statement 1n termsg of
the trace of coefficients. we consider such a "mixed"
hypothestis objectionable,

Given

- S

than as t- clearly
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Jus

tm ¢ lim x { Timx < Tim v .

|

The crux of the argument in the proof of theorem 3 is
the following: to show that ir
gtfdt
¢ = ¢e'° ; 1f] £ const.,

then 1im ¢ = ¢ implies lim x = 0 (this elementary
exercige 1is apparently a new stability result).
AN
§9.Two Stability Theorems. O
The following resulis are auggested by{coréllary

/N

1.1, in particular by equations %:

Theorem k. A pericdic solution gg.

'\s
2 i AN\
{ 5} = = Xi(x-| ng'):{‘j(l=1 ;2)

A X
N

is gtable if at each Qgig@;iﬁflg in a region where the
curvature, H, of the orthogcnal trajectories 1s
negative; or equival§n$1y if at each point (on the

# 3 ]
glven trajectory) ggg"derivative of the first approX-
imation of the no?mal distance from near by solutlong

(to the given’t¥ajectory) is negative.

From ;@Bﬁé results it is clear that & stable
periodiq&§6iution, satisfylng the given corditions,
plays.%mong its neighboring trajectories a role
8, iagous to that of a "regular” maximum point of a
bl étion of & single variable. The test in the latter
case glven by & non-zero second derivative, 1s replaced
in the former by the curvature of the orthogonal

trajectories.
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Proof of theorem . Our object ty 1y ciraitraet
gimple ¢losed curves Ingide and outalidoe i e
trajectory which are very clogse to It arnd el Lhat in
the anmuiar region o constructed the boundisy virctopg

(of the Flow) 8re, 88 a conszequence of Lhe hypothaesis,
directed irward. This would prove tho Lhieoaor.

At a point p of the glven periodic yalution C, lset

L be a segment perpendicular to C and paranet s zed
(linearly) by a varisble u which 1y zero on A
incresses in the direction obtaired by rotapfﬁﬁ>the
tangent to ¢ (at P} g9o® counterclockwise;uziét e {u)
= @ be the angle, meAsured counterc]ockwiss, from a

vector of the flow (on L} to the dipecbfbn of" irncreasing

u. We wish to calculate de, u = g, ‘Iﬁ willl be con-

d
venlent to use the abreviagions;x7\”
) R
xi(u) = xi+(—1)1Xi+1(xj;§éﬁu; xi(oj = X
O =X @Y 10 - X=X, (305 %y)
X(2) = (X, (w), X)) iox(o) = x = (x,X,)
O
XL = (*{é{ 1)
Now 7 L xw)
& = 8lu’ = cog™! [ih——ﬂ-—ﬁ_h_&J ; 8 (0) = go°
2 X X ]
AN\¢ L
O A P L PR
~"O. o _‘__"‘“"‘"———-____.___' = - b
SO o WINS du AT a7\ v=0

(5 1) (lrxcu)righ(xL.xtu))—qu-xgu)Jga+rX(u)
du - u=o °

FiXLII-liX(u)JFQ

IIXH"E(XL. E‘u X(u}D

U=0

U=0Q
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a [ X ,
[ﬁ X{u)] = iﬁ{T X+ ax Xyo " oax, ot Fx X
=0 ! 2

and finally

: 9% ax
de) (1x1 178 (ﬂxe » ( 1 2)
= ||X}| ==X - XX |97 + 777
du /gy éxe 1 172 8X2 0X ,
ay
ik - )
* o Xz) N\

1 A
&\

We wish to compare this with the curva.ture\”ﬁ(ﬁ)
of the trajectory through that point. If s J\s~ SETre

length . &
SN
Hp) = 115 =N
N
d°x ax, -% Y1 fd an 2
X e S N T -
a2 Hgel! 52 (dt RS )dt
29
c B ST

Eveluating this shoWs \”\

h ax
- g 5 Y )

‘,\.
Choosing the’\p‘boper sign shows that

O 3 ax
H{pd = [1X}] (x -X,000)
‘?* d‘_i: 23t o
O aX rax 420X
r\‘./ = |1Xl1 2 2 - XX 1 2 X2 1 )
\/ 18x 27 ax ax2 ax,,

hence for the orthogonal trajectories (replace X5 by

i .
{-1) Xi+1'j the curvature HO(p} is
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-3 /.2 9K, XK
HD(p) = HXH i (X1 f)_X: - X1IX:-. 1 .“_':‘:_1_. + 5.\_\:
R JX1
+ X2 ,}X1
We now wish to evaluatc the £fraot, appreximat ion
to the rate orf "normal appreach”.  Thia | Chenly
dﬂe
ar 49 defined in §3 . &N\
Oy
de 09X DRV NN
2 - _ -3 __(i 1 _%_:-J_ \\
Tt [”X” Jo VXTI + SR TRV
s 2 p AXLO aX:?_)j' -2,
- { Zoar XTGBT 2 )xe,
TN ax. | -
= e 2 /ax1 ./A_\j e 1 2,
= [X1 - X1X2 N o + X2 5§—-[rrx.r °
2 ESNS 2 1
Thusg Summing uvp we hagéfthe relaticnshins
du Q’.‘.‘“
2 de - : -1 { de
T Nl Hy = 1ixip 7 (48
dat (2 du |, ’ o ' du |
~U§5 =0

L
From these we ha;é that if cne orf the quantitites

5 Ve N4 ]
at - » Hys (EE%)) 18 negative on g periodic sclution
¢ U=0

'
(closed§tfﬁjectory} then so are the remaining two. To
bProvestheorem 4 we then need only show that gg <o
n\’v

O u=o o
®8ch point of the eclosed trajectory implies stability.

" The geometry of the cordition %g <0 is clear and
to complete the argument we define, for g closed, simple,
twice differentiable (Jordan) curve, a §-parallel i3
be the locus of eng points of a1l normals of length
On one side of the ecurye. For & -parallels we need

'ﬁhe.easily proved lemma - if € is & simple closed CQ(JOPﬂ&ﬂ
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curve and Gy the corresponding 3 -parallel then ilherg
exists a §, such that if 3¢ § ., then C; 1s also simple.
Further if, using the natural gorrespondence hetween
the curves, Cz(t) is the point correspeonding to C(t)
then at these pointg the two curves have parallel
tangents.

Proof of the lemma: 1let C-x.=xi(s) i=1,2 he a
gimple analytic cloged curve with s the arc length

(\X'i)g + (X'E) y= 1, 0{s{1). Then one 3 parallel
Cs 1is glven by .\"\
A\
¥ N/
x1(s) = X1(S} - Sxé(s) (”&
xa(s) = x,(3) + 3x{(s) R
The corresponding tangents are \;
= Y "
o, T . J‘t\s} x ' (s)-8x,"(s)
xé(s) 5‘,;x5‘(s} = x,'(8)+ 3x1"(3)
3)

Since these tangents are.b?”nonrzero length, a vanishing
eross product will mean_fhey are parallel:

» * \ " _ ‘i (l
xR - XK, = \<§3§x1 + KX} )= 3 dq[ (x) )-L
Thus ¢ and cagja%e parallel for any sufficlently amall é.
x'\'":

\Q
éﬁppoqe C5 is not simple for all gufficiently

qmalll’ . Then there exlists a 2equence 51 and a double
weaupnce Sa b { where a, and b are on C and such that

the normals at ay and by of length &, have a common end

point, and where lim!5iI=0. Since C 1z compact there

exists a subsequence !3&1 of iai} which converges to a

370 wlll have no eusps if & 1= gmell enough since
#8170 (x,)°

M ea

*x 1 # 1 o " l_ o
(xp )%+ {x, )" =1+ 3(Px, X, 2X, X, )
. 11

1
4+ o0 for small d since X, .X. (i=1,2) are

finite.
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single 1imit point,say, a. 1ot ibi[ e fhe sequence

of the ibil correspondings to the Ei. T Lim bi is
also a, for dlst (E},E&) <@ Sj which Wocoannn
arbitrarily small.

Iat 81,31 be the parameter valuce plving @, and

by regpectively. The common end polnt condition glves
the relations N\

3 ‘rﬁv‘.
x1(Si) -5ix2'(si} = X1{Hl) —olxmkﬂfi>

' = . I U
xg(si) +31X1(31) = x?{u.) +“ux forrg }

These may be arranged N

x,084) - %,(3;)

b5 (xa(31) - xj(ey)]
R4
) E:‘s‘ifgx

N/

XQ{Si) - xg(s.

1 t{a3,) - x{(si}}

1 1

Squaring both sides, adding)“dividing by (s - 55 )°

(+0) and taking the 1imik'gives
2\ w2 v oo
A fg) v (x)) }

(K™
And 30 finite qu;§ature implies 1im 5i 4+ 0 ~- g contra-
diction comple¥ing proof of the lemma.

Cop@iﬁér a point £{t) on C where %%1 (o. Then
\J u=o
the twO\vectors at the end of the two normels (one on
839335106 of C) have projections -- parallel to the
Tahgent of C -- which lie on this segment if the segment
T's smmll enough, sa&y less than 8 (t). Tne same property

is true for any §{ #({t). It 1s obvious that this iz &

continuous point function on C(t) and since & (t)+ 0 it
has & winimum, say ao>0 on C{t). It follows that if C
is any d-parallel to C with 5(80 then the flrw vectors
at points of € are dirscted ilnto the annulus bounded bY
G§and C_5- Hence once a trajectory gets within 50

of the orbit C its distance from the orbit decreaserg
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monotonically. Q.E.D.

Theorem 4 does not generalize directly. For one
thing orthogonal surfaces will not In general exist.
Secondly, when they do.there ls an indeterminacy in the
case K>0, as to whether the surface normal (given by
differentlal equation) and the surface are on the same
8ids of the tangent plane; hence stability or
instability will be determined only by some a.-:lc’L:Ltioﬂa}i

hypothesis --
Thegrem 5: A given periodic solution, i.e;\gs*l’osed
trejectory, of O
Ax. d N
(26) DY =X =mgr L (1,230

at i m§y
along which X0 will be stable (unstabley 1f‘ elther (a)
ST x.=§: e _ <0 (o) along the trajeetory or else (b)
\\
there exists a trajectory which fo‘r Lo (~90) ig

sayuptotic Lo the given one. “,5

If' " represents the £irst approximation to the
normal distance of near Iﬁztraiectories to the given
closed trajectory thedgendition KO and stablility
(instability) ;g_a%§i€a1ent to

Hcod >0

x'\."‘
The pmof of theorem 5 is omitted in as much as
no ideas\ not alrealy in the proof of thecrem &, enter,
,»;l'n three dimensions a different type of clircumstance
w\Yi .
cg{narise. This is covered by
Theorem 6: let P be a periedic selution of

ke

1L a

I
|

i=1,2,3

along which K<0. Then thers exist two linear manifolds
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M, ggg_Mg, of solutions, throwsh F seeh that o M,
trajectories are ﬁt&le_(@EXﬂ&iQLiﬁ_LH )
while In M, trajectories are Mhstable Cuemplonic Lo p
asg t—s - o00),

The idea of the Prool will bus v oo Lu that
uged in discussing the saddic polnt ip el point
theory™ in the two dimensicong] case.  Mheggemy o, 5, &
extend to n-dlmensions and the rosults theo conplete
an aralogue to eritical polnt theory 'Ullilu‘:wmiif}.

Results comnecti T the number ar dirferent typéNor
Tf ¥Ry
periodic solutlions can be obtalined Lo ive aﬁ}almlogue
£y . L \
of critical point theory in the large.( ):”w

§$16. A Problem of Hilbert, ’m$"

The gquadrature oceurring in (M\¥usgeits Lhat Lhe
class of the periodic soclutions opﬁ»ﬁich the gip: of
div X i{s fixed may well have inbéﬁésting kroperties.
This is so and in ract definif@ strongly stable
(unstab]e) periodic solutigﬁé {claged trajectories)

85 ones on which diyv X ooy X0}, we are able to
give the fipst results on the second half of Hilbert's
sixteenth problem.(fz

Theorem 7: .qde
=S=RIem Q%?—

(27) ax o\
af_'z Xi(x'l ,Xg): ii=];2J

where Xy g§§~§olxnomiale of degree at most n. If aill

the ex &dic solutions of (27) are either strongly
stablﬁfk strongly unstable the tots] number of
beripdic golutions is Jess than.%—( n-2) n-3)+ 1.

e \

_“\:_‘—-——*—________-——__

\§' The only kmown results in this direction are those
of N. Ievinzon (N.L.}p.731, where a related result is
Eiven for I=3. The proof orf Theorem 7 and the n-
dimensiong] resulta will be bublishegd elsewhere.

5+ Problems der Topologie algebraischer Kurven und
Flaechen {H.]pp.223~22u.
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If in addition they are nested and surround Jjugt one

ginenlar peint this estimate can be sharpenped to

[ _'1 ( [] is the integer part of) -— and thils is best
nOSQible. This last stabement 1s valid if &l the

periodic golutions form at most two nests.

It appears very difficult to obtain estimates on
general perledic solutions. Preliminary study indicates
that the estimate [1-14] will be valld for certain
spaclal equabtions (;.e. restrictions are placed o1t She
form of the differsntial equation rather than.the\type
of veriodic solution) in particular for equations of
ven der Pol type (zee the remarks of [3. Ihip 1933,

Proof of theorem 7. The idea qﬂ§¢he proof will

be to establish that there are at leaqt:as many closed

div X = 3%,

finite branches of 3§
X -—0

as there are pericdlc soluLions of the aspecified types.
Lest }Cii be the szet of such golutions; then if Ri is
the region bheunded by Gi

O= ﬁ (XX, jigg?ée)dtu - if) X,8%, —X1dx2=Hdiv X dx,d%,
Cy N Ty Ry

N
L >

Since div X¥6?gn Gy and jl div ¥=0 there must exlst a
7. 1

7\
“egioﬁ§b¢i on which div X has a sign opposite to its
sign'on the boundarv. Ti ig separated from C by &
\\dlosed finite branch of div X=0. ( Y; need not "a

pricri" he comnected =0 div X may have many e¢losed
finite branches inside Cl, we merely note that there
ig at least one.) This closed branch is a closed

curve, but not necessarily a aimple one.
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Calllng such & branch B1 we clalm Lheoo are ge
many Bi a3 Ci . Namely, let Cj be some peviodie
solution and ¢. s ene. , O be those periodfie

1, ik
IR )
solutions inside Ci’ but with no Ci conbaltiad in a Cm

J
where Cm ig in Ci' Clearly

ff{iiv X=20 QO
k

, Oy
=t tj O
N k
By the previous reasoning we may fingd a 5# in R, %: Rij
which is associated with no other ¢ \ Thus W niuah now
determine the Jmaximum number of claéed finite disjoint
branches which div X=0 may have"\Thiq is %{ﬂ-’J(n*3J+T
[C.]p.56. This estimate ig cle&rly & poor one slince
we have avoided any menzionrof the relative positions
of the C;+ Thus for example 1f mo C's are nested there
nmust be at least one branch {not Necessarily finite)

separating all the §fbble solutions from the unztable

ones. \\"'
. When 811 the peériodic solutionsz sre nested (C )
Comnvnnnn.. )Ck ‘We may improve the estimste. FlrbL it

follows froﬁbc13331cal results [S.L.]p.181 that if C,
is stabfé\then.c 1s unstable, C3 stable, ete. (on-

qequeﬁtiy it must be true that CE)B%)CQJB .., for
evsry point on.C st be separated from every point
0 Ci+1 and C; .. Thus we have BPBD. . ... . When an

nested the meximum mmber of these 1is [gk] This
estimate 1g Sven irue if there are gxactly two nests
--1i.8, ir

1t is true that B;B3 ..... and BQDBL -----
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For the case of nested ovals the estimate 1=
gagily seen to be the best possible from the exampls

dx L 25,2
g =Y "% ‘TT-(X w3 -1%)
1=1

1 .
dy = -x -y T (P47 -1%)
dt 1=1

which has as strong periodic solutions the circles
%2+ yz - 12 -- and no others.

Hurewicz has polnted out that theorems L, 5@End 6
wili undoubtedly follow from classlcal results“én'
{generalized) characteristlc exponents, 1. ag" are
wesksr results; but, In distinetion to t@e characteriq—
tic exponents, they give a direct stabllity critserion.

\‘
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II. OSCILIATION OF A THIRD ORDER NONLINEAR AUTONOMOUS
SYSTEM

By lawrence Lee Rauch

N ’
A\
NS ©
\/

Preface

Much of the wodern engineering intereaﬁhfn the
theory of nonlinear cscillations stems quﬁ‘a desire to
avold urwantasd oseillations in physicald sfétems. The
classical interest in the mathematic8l™theory of oscil-
lating gystems as such which beganfhifh the work of Van
der Fol never carried far downzfﬁté the ranks of prac-
ticing engineers. This probsﬁij resulted from the fact
that most useful 0301llat1no bystems are emgll and
apparently the cheapest anﬂ easiest way to lnvestlgate
the solution for anyog§ven.system i3 by an analog
method, namely, bﬁ\@uildlng the system itself and
operating it. m{;

In recepf}ﬁears a new situatlion has confronted the
practicing,eﬁgineer in the form of very expensive and
complex éé@fces‘ whose actlions as a function of tims
must heﬁcontrolled without the aid of c¢onstant and de-
t8J38d human supervision. This has resulted in numerous
ap lications of particular nonlinear operators on

* Princeton University and the University of Michigan.
1. Alrcraft, guided missiles, and automatic chemical
procesg plants are examples of Important classes.

3%
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functions of timeewithout an appreclation of the more
general aspects of nonlinear operaiar theory.

In practical cases 1t 1s not always clear whether
or not a proposed nonlinear operator iz unstable in the
gense that the function of time resulting frow tLhe
operator may not always be sufficienlly econlrclled by
the Impressed function of tims. Inability o seltle
this stability question by thecry has resulled in VeI
expensive experimentation sometimes accompanisd by'iﬁsa
of 1life. Without an understanding of the thoopyz\éven
extensive experimentation cannot infallibly,ei}mfnate
the possibility that the output function pf”ﬁ rnorirear
operator may become uncontrolled as a ygéﬁlt of cartain
impressed functiens. \%

One dmportant example inveluibg the sbove considera
tions occurs in what are called:?ﬁlbsed-loop control
systems" where 1t is desired t@;méke the output of =
device behave in a specifigdfmanner.

*
" ®
Oy

oy

Ny

< oft): resulting
A{? behavior
\\ .
A\ device o] — <&« £(t):
& specified
O behavior
h(t) X0 c N%
)\ controller =< g(t)=f(t)-o(t)

2. Transmission of intelligence by radio carnmot be
accomplished without the use of such nonlinear operators
a8 amplitude modulation, frequency modulation, pulse-
Pozition modulation, ete.
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In the diagram, the output 0(t) from the device depends
on the input hi{t} to the device in a mermer prescribed
by the nonlinear operator D

o(t) = Dih{t)]

It 1is desired tc make 0{t) as nearly equal to fi{t)

g3 possible. To this ept the difference g(t)y 1is
operated on by c in the controller and applied to
the input of the device ' A\

nit) = Clg(t)] - - A

The total result 18 NV
0(t) = DICIF{t) - ClL)ls

If D has an inverse and G 18 1inear)

(07 + C)HIO(E)T = CIF(ERY

1f D' + ¢ has an inverse 'ﬁ\

0(t) = (D + c;» {G[f(t)]}

In many practical sysﬂ:eenl’*‘ffd exists and € 1= linear,
but trouble occurs in_attemptlng to take the 1nverse of
pt 4. It can oeeur that even if f(t) =0 1the
closed-loop contfa} syqtem will generate an 0(t) which
does not apnroach zerp or for that matter which does not
even remaln_less in absolute value than a small constant
for % suﬂ?iciently large.
Iﬁ}fne ianguage of differential equations thils

amouﬁts in many cases to an n-th order nonlinear

Pdlnary gystem with a single forcing funcilon (%)
Qﬁd golution. 0(t). When f{t} = 0 ws have an
autonomous system whose only stable solution must be an
uniqus stable singular point near the origin if the
closed-loop control system 13 to be succesaful. Thus
a better understanding of the qualitative nature of
golutions of nonlinear autonomous gystems 18 {mportant
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In understanding the stabllity of control systems. In-
the-large properties of solutions of second nrrier nonline
systems3 are rather well urderstood, but much less is
known about higher order nonlinear Sygtems.

Techniques are well developed to handle strietly
linear systems  where 1imit cycles and similer phenomens
cannot exist and stability is determined entiruly by the
gingular points. N\

I wish to express my sincere appreclatlon o
Professor 8. Lefschetz for his Interest and enéSﬁrage-
ment since first introducing me to the field 6f nonlinear
differential equations. Also T wish to thank Drs. A. B.
Farnell, C. E. Langenhop, end LeRoy As(MacColl who were
kind enough to read the first draf't_ahd point ocut
Instances of obscurity in the prqgéhﬁation and a number

of typographical errors. N

INTRODUCTION, S SUMMARY

This paper dezls wfﬁﬁ"the in-the-large properties
of the solution of a,thifd order system of nonlinesr
ordinary different;&i‘equatiOﬂs. As in Van der Pol's
work the system delses from a vacuum-tube cipcult. The
gystem is g genéralization of the well-knswn Van der Pol
and Liénard ByStems to the third order in contrast to
the generai}éation.of Levinson and Smith which remains
withiq:{ﬁé framework of the second order where questlonr
of gggbility are more sasily handled.

%gi See Andronow and Chaikin, Theory of Oscillations,
Princeton University Press, 19kyg,

4. See Bode, Network Analysis and Feedback Amplifier
Design, D. van Nostrand Company, 19ks.
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Tn the circuit the vacuum tube 13 sgsumed to
introduce a general nonlinsar characteristic determing
the snode current as a functicn of the grid voltage only
(exemplified by the pentode type of vacuum tube)}. This
ig shown to be ssgentially diffsrent from the circuit
considered by Friedrichs where the vacuum tube 18
aszumed to determine the anode current as & function
of the weighted sum of the grid and anode voltages
(exemplifled by the tricde type of vacuum tube). Ind\
both cages it 1s assumed that there 1s no grid cggrgnt.

The differentisl system consldered in.thiﬁxpaper,
when represented as & gingle third-order eqqgﬁ;éﬁ, takes

the form ¢ <
w7
K+ (ky + kjg(x))i + kag'(x)ig + A +x =0
A \J
W

where g(x) depends on the nonkynear characteristic of
the vacuum tube and the constartycircuit parameters and
k., ky, and k5-depend on t@efbonstant cireuit parameters.
When kj =k = © and kef;;i the equation becomes
K“j:g(x)i +4 X=20
L 3}

which is the equaklon investigated by A. Lifnard [il.
It includes agubxspecial cage Van der Pol's eguation [2]
"</

L >
> N 4

¢ . .
N\ ¥ +u(X2 -1}k +x=20.
Howetsf\it does not include the general equation for:
roYexhtion osclllations
N/ ¥ o+ g(x,X)X + h{x) =0

investigated by Tevinson and Smith [3].
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We prove the fallowing
Theorem: The differential equation

R E (e + kg (x))% + ket (052 4 (s

(23 o+ x = 0
will have a periocdic solution if
k ki, k
2 o )
1.} g(o) < - & + N
ol Lic? k
3 e 3
A
2.)  fAx)y<c (e
B 1 k ."\"\
-k, o\
) 1 >es L2 BIEINNS
1 TR X Ay
k. -k k. RS
+ 9,7 A eTE + I%_'_g\:\;k —%l{- T
1 {\ 1 2%3
3 AY;
+ Z2 }-I- kb___,___ \s
k.l - k? )
273 AN
where we define \&ik“
_ (k) -k k, )% a8 ok, X
f{x) = m, [ ; k2 2" *mo+ 1| x - m1'k1 Kok J g(x)dx
1%% »,\\ 1{11{5 o
\J
and m, > o may b& ehosen arbltrarily.

In the‘laﬁter part of the paper we conslder the case
when certaip\&f the

paramsters are functions of the
variable a\;\A specigl

case leads to the more general
secondﬁQﬁﬂer equation
W\

N X+ g{x)x + hix) = 0
,..\* 7

The paper 1is arranged as follows : In Part I the
}%kuum tube circult is presented and its mathematical
description formilated, fThe difference between this
circuit and the circult of Friedrichs [4) 1s pointed out
in the Appendix.
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In Part II three physically aignificant variables
are chowsen and a system of three first order equations
is cbtained in terms of these variables, thereby defining
a phase space. The difference between this differential
gystem and that of Friedrlcha is also pointed out in
the Appendix. New physlcally dimensionless variables
are introduced for convenience and a single third order
equation 1s obtained in terms of one of these variable§<

Ir. Part IIT the uniqueness and type of the slngu-
lar point in terms of the physical parameters 13"\:}
established. zlf

In Part IV & closed three dimensional Fegion which
13 topologically equivalent to a solld tonﬁé’is defined
in the phase space. The vector field 1s'sﬁown.to point
irward at all points of the bOUﬂdargg§ffthe region with
sultable restrictions upon the physical parameters. An
additlonal step proves that thg:ﬁaihs of the vector
field circulate around insiqgfthe torus. The singular
point 1iss oubslide the torﬁﬁs' A surface of section of
the torus is & simply goﬁhbcted two dimensional closed
reglon. A cont inuppsimepping of any point back into
the reglon is defihed by following the correspording path
around the torpslﬂntil it intersects the surface of
section aga'n;>‘An application of Brouwer's fixed point
theorsm [5iiestablishes the existence of a fixed point
of the fapping. Therefore oONS of the paths is closed
aftgxfﬁhe revolutlon around the roruz. This corresponds

& aperiodic solution.

Tn Part ¥V it 13 shown that with two singular
exceptions any path putside the torus aventually enters
it; that is, all osclllatory solutions must 1lie inside
the torus. It is poinled out that the periodlc solution
of Part IV is not necessarily stable under the proved
Lopolopy - An example is given.ehowing an unstable periodic
golution, a stable pericdic golution whose periad requires
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any desired number of revoiutions around tp Ltarus,
and a stable non-periedic solutlion.

In Part VI a method is establivhed ror tlacing
upper bounds upcn the Instantaneous values ol Lhe
variables when the system 1g oacillat i,

In Part VIT it ig polnted out that the t:xistence
proof 8till holds when certain of the physical parameters
are permitted to be suitable restrictid Functions'éf

the variables. O

£\
\/
\

PART I. THE VACUUM TUBE CIRCUIT ™

7

Qg
The eircuit unger conglderation ¢ the well-known

RC multiviprator with two additiqnéx reactive elements.
A capacitance C, 1is placed b§t@éen the ancde and
cathode of the tube and an IngdwStance 1 is placed in
geries with the rlate loaq\feéistance R as shown in
Flgure 1. 1In practice i;&ié well known that this
eireult will oscillate-ifen the paramcters are properly
adjusted. we shallf%ollow the conventlon that the

/N

current in the qi{?ﬁit 1s in the direction of electron
flow. N

N\

The eleqﬁbﬁn currents Iin the four brariches of the
clreuit aygiié, oo 11, and 1 with directions as

1nﬁica?a§>ﬁy the arrows, The voltage on the anode of
the ggbe with respect to the cathode 1s & and the
gg;%&ge on the grid ig e, Tne box directly below the
“ube T indicates that the sign of the voltege across
r 1is changed before it 1s applied to the grid as 88
This must be done in order to create an unstable
condition which will lsag to oseillation. In practice
thls phase reversai may be provided by a8 second vacuum
tube arranged to cberate only over the linear part

of its range when the cireuit 13 os¢lillating.
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ic i Ji
L o,

FIG. 1 e
O
The only nonlinear element in the cireiit is the
vacuum tube which determines the anode cukant i,
as a continuous single-valued functigf?gg the grid

S°

w4

volta
oltage eg

(1-1) 1, =2leg) o\

L >
N/

For an sctual tube the non;iﬁéér function way appear &3
in Figure 2. The opera{iné point transconductance gy
2\

i3 defined by e &\J
i} B\ ¥
(1-2} gm—¢(03>0-
We assume \<& :
i} oy -
(1-3) {0 = © and oy (eg) 2 0 -

It w112§§g~observed that sccording to Figure 2 the
anodé:ﬁﬁrrent ia may be either positive or negative
1n Wecordance with the grid voltage eg . In actual
practice vacuum tubsg can have only positive anode
current. The justification for the assumption of
positive and negative anode current is that it sim-
plifies the presentatlon. An actual tube may be mads

to have a characteristic as in Figure 2 by cormecting &
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conatant voltage source 1ip serles with i srld, a
constant current gource hetween the Aty cathode,
and a constant voltage source In sertey wiik Lhe anode
and then calling thig whole affaip the "vacimgn

Iy

FIG. » N\

tube" considered in this papern§3The operation of the
¢ireuit 1g ip no way affectgg Sﬁ this procedure.

We define ‘§§“
(1-4a) o= 9y $ie,) (o
8 g
—_ m i
86
O
{(1-4b) I;\\= inf e ) > -
SO - ee &
\& - 8-
(ko) g = 1 - 1
\{}" :
QO

iiﬁ&iil_only be necessary 4o &3sume the existence of
{0).- - However gt other times we ghg1j agsume that
P'(eg) exiats Everywhere .
_ The following relatlons between the variables are
obtained by tonsldering the various junctions and
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vranches of the circult.

(1-5} i, = ‘F(eg)
1-6 = i
{ ) ey r
(1-7) 1, = 11+l
t 1,
(1-8) & ﬁ-j & at
2
(1-5) e = -L1i, -=R S
= L L A o
t o R\,
(1-10) e = —f Aot - or o
i Ao
)
...'\”\“
oART TI.  THE DIFFERENTIAL,SYSTEM
\\

The system of equations j1—5) to {1-10) may be
reduced to a system of three~first —order diffaerential
equations in three of thahphysical variables. The
1mportant question 1s Wthh three variables ghall be
chosen. (Of courssg %bé natural physical variables are
not the only choibéx) gome choices will reault in
phase apaces in.which the geomebry of the vector field
makes 1t very Hirficuls to construct the stable reglon
necegsa. ~¢@ prove the existence of a periodic golution.
By & CQ‘ {nation of physical reasoning and geometrical
EXPQ?imentation the variables i, &, and 1y were chosen.
«@\;3 we wanb to eliminste i, ©p 2%d 1e

substituting (1 ) and (1-7} in {(1-5) gives

(2-1) e (rt) =31, + i+ i
Differentlatling (1-8) and gubstituting for is from

{2-1) we have

(2-2) s = - lelrt) -1 - 1)
2
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Differentiating (1-10) and substituting for a f'rom
{(2-2) gilves

. : €,

- = L 1) - | == 1 -1
) - g [so(r) ( © g L}
Solving {1-9) for iL’

. 1 (\
(2-4) i, = -t (e Ri, ) R
¢\
o\
Equatlons (z2-2), (o =3), and (2-4) topebWer form

our system of three first ordep dif‘f‘erenti\di‘ equations
defining the phase Space In i, e, an&‘i

(2-58) i = I_’Cl; [ {ri) -( *—)

{2-5D) € = - [e(rl) ;:§;1 iy

ns

(2~5¢c) L = - TE {e +\R;l*}

These three va{iables have the physical dimensions
of current, Wﬂt% Jand current respectively. To avoid
awkward expressio 8 In the calculations to follow we

Introduce phy&ic’ally dimensionless varlables x, y, and z
defined by \w

{2~6a) \ 1 st
(e~ Gbi. € = Rl .y

QB,C) IL= Tz,

We also define

(e-7) ¢ {rl) = T f(x)
Note that

{2-8) -1 ¢ Tlx) <1, flo) = 0, and xf(x) 2 0
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and
(2-9) £1(0) = rgy

gubatituting (-6} and (p-7) in (2-5) resulty in the
physically dimensionless system

(2-108) X - [ex) - [ e -
R )

[F(x) - x - 2] A

‘"\

(z-10D) ¥ %5#

2
2
T

{2-10¢) z [y + 2} - G\

)
7
»

To express (2-10) as & single third\éfder differen-
tial equation we eliminate 7, ¥, 2, %Fﬁ 7 in the

$

usual way. The final result. is <\:\

. O .
LCEI“X + [RI’C2 + L(1 + —012—',:;\),' Lf"(X)] - Lf"(X)f{Q

{2-11) N “'C
. + [I‘ + Ré’\\ 6?')‘ Bf_'(X)] X o+ JGIX: 0

\\
From (1-6) and{{2-6a)
\<
(2“12 :“": =
) C\?> eg rIx

‘;ﬁfa order to better understand the operation of the
Eirﬁﬁit of Figure 1 conslder the following specisl cases
Q}:"fe-n): 1.) L=0, 2.) C, =0, 3,) L=C, =0,
.Y R=o0, and 5.) R~ ¢, = 0. The first case is &
second order equation of the type studied by Lifnard.
The second case 18 & second order equation with the
coefficient of the highest derivative vanishing for
certain values of the dependent veriable. The solutlon
of the equation must terminate at the time the co-
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efficient vanishes. The differentia? tatlon does not
in itself contain sufficient Information te daterming

the dizcontinuity. Recourse must, be nmuie Lo the
rhysical problem by application of the Mardelobam Jump
conditions [6] to find a new starting polnl Por Lhe
solution of the differential equation after the discon-
tinmuity. The third case is gimilar to the seennd except

that the equation 1g of the first ordep. Phe: ‘ourth case
1s simllar to the full eguation (7-11) excopt that the
coefficient of the first derivative 1is cunstgﬁé?> The
last peae ig 3lmilar to the ggcond case exgpbf that the
coefficient of the f'lrst derivative is pgés?ant.

g
PART ITI7T. THE SINGULAR\POINT
o\
’Nf\“
From {2-10) any singulgf»@hints muat be zolutions
of the system NN
(3-1a) f{x) - 1%§ijx-z=0
" C,
A\ N
(3-1b) (\J T - X -z =
\5’ {x) x z 0
(3-1¢) O Y +2=20¢
¢

Subtracting&fé—la) from (3-1b) provides the result x = 0.
Substituflhg thig 1p (3-10) and recalling that £(0) = o
giveq;%\= 0. Then from (3-1¢) 1t follows that ¥ = 0.
Th%r?fore the system (2-10) hasg Just one singuler point
&5ﬁ”it 1s located at the origin of the phage space
coordinateg X, ¥, Z.

In order to gtudy this singular point we

"linearize" the system {2-10) at the origin by the
substitution
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(3-2) P{xy=F"{o)x = Bl

The second equality is due to {2-9). The "linegrized"
gyatem is then

. C
{3-3a) X = E%T' ((gmr -1 - —Eg) X - z}
2 | 1
(3-3b) ¥ = g L(gr - 1)X - 2]
2 0 O
. A
(3-3c) 7 o= - % v + 2] . ”"\\“L\
O

Ny

The "linearized" version of (2-11) 1s

&"\\
mél‘x + [RI’CQ + L c + ) f;&

(3~4) + [r + R(1 + ﬁ) Rgm

wl

The cubic eguation sat,isi‘:ied by the characteristic

o .

roots )“I ; Ay, and Aj» "Vof the matrix of the right
member of {3-3) is
A
33 [ LK_ R J A"
L
2 ts‘»' 2
,\)

{3-5) \" C,
Q' S cy 1
R c G2 BN R

ANLIC, T TG ic, 1Co
AN
Thg:}irackets before \°, A, and 1 are respectively
Cy
Em ‘T R
5-bg AL =X + A, = = e — =
( ) 2 1 KE 3 _C2 1’02 L
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c,
R 6 + —-"—)
1 c]

+A4, = L )

(37661 Ay =40, 4 a) ax,a, L, * IR i

1

1
(3-60) A=Ay = - ircc, -

the first being the trace of the matrix of (3-5} and the
last belng the determinant of the matrix of (3-3).

The solution of (3-%) 13 of course O
) At ljt,~.
(3-7) X = ¢1e + ¢?e' - ¢§e A
i .,.\ s
LE A #A, £ Ay # AL “i“%
n\‘

It is known from the rhyaileal problem of Figure 1
that the circult breaks into oscilgation for Bp > GO0
and does not do so for 8 < G, Tﬁat la, the szingular
polnt is stable for g, <@ and\unstable for g > G.

We shall now prove thig and; 8130 obtain the value of @
in terme of the clrcuit parameters

By (3-6¢)} A A 0 “Niy real and negative. Hence
there is always at lea t one real and negative root.

Let 1t be AL Tngrefore the singular point must be
one of JUSt four structurally gtable 7] types:

"\' stable
{3-8a) 4 ( o, A2< 0, 0
[3~8Q&§?}< 0, AE = u + iv,}\5 =u - 1v, udo, v>o
AN
MS“; unstable
(5-8¢) Mo, = u 4 gy, Ay =u-iv, u>o0, v>o
(3~8d) hl < 0, 32 >.0: Aj > 0.

The stable conditions may be cglled respectively a
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statle node and a stable node-focus. The unstable
econditions may be called respectively a focal saddle
point ard a nodal saddle point.

It is clear that the transition from stability to
inaetebility must take place in the presence of the focal
cordition by passing from condition (3-8b) to (3-8¢).
Otherwise A, and ?\5 would have to vanish at the
tpamsition peint in pasgsing from condition (3-8a} to (3-84).
Thig 1s lmpossible since X1R2X5 {0 in view of (5—60)?\
The transition case 1 = O, although important &s dise
tinguishing between the stable and unstable foca]'.'\c}s,s“e's,
iz not physically interesting because it 1s & stable node-
center and this does not have gtructural stahiifty.

We now show that the transition congla‘itibn u =0
can only occur when v

(3-9) BA, Ay - D
i ‘..:\"

N

substituting frem (3-61, M

*

) 2 a0y a2a, a2a, a2 = o
(3-10) 2NNy +M N M AT Shy HA R AN AR

After factoring this heeomes
P |

™ |
W,

C )
o Oy MR, HRg) =0

P,
The solutiopghdre of COUrse

(3-11) {A

®) 'y
(5*12&1)’:%“ Ay =T
(5_\1:2\}?5' b= M
(g-yze) ' = -2
i Ay = 3

That iz, (3-9) implles at jeast one of (3-12) and any
one of (3-12) implies (3-9). We recall that X1 is real
ard negative while }, and N, are eitherj both real
and of the same sign or €1se complex conjugates. The
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cordition {3-12¢) is equivalent Lo u = 0 T {3-8), the
transitlion between stabllity and Inatabiiicy.,  Condition
{z-12a8) arnd (3-12b) fall under condition {5-#) where

the negative damping 1s greater than critical. Now the
negative damplng increases with Poy S0 that {4-172¢)
corresponds to a smaller value of £y bhan {%-17a8) or

{z-12h),
Expressing (3-9) in terma of the clrcutl N\

parameters by means of (3-6) we have A
W
- O

g 1 + c Ch"i "
Rl i 1 1A R( ‘5) o

2 rC, T x“>M1

+ I’C_L_ = O v

LI o\

Rewriting this as a quadraticoiin =

/
s M

2 1. 2 f.N'¢C RGC ]
- = + = ,}.4 _2v+ T2 g
Em [R EVQJ & ) I iy

(3-1%) oy 2
Ll m}>9§ N BCh 1+ G} « L s 5%)= 0
.\EE.; L Ir ¢, e ;
The roots areik
¢/
O RC C
-_ >\ - R § _a)
(> 15)5“§m SR Y AT oAl ot 7,
‘\\..l
) . RC, a2 c,
S e STy L %
W\“, 2R 2L, RrC1

N\

Clearly one root is real and positive and the other must
be 8iso since the constaent term of {(3-14%) 1s positive.
The smaller root must be the transition condition
u= 0 of (3-12¢) and the larger root must be (3-12a)
or (3-12b). Thils can be seen by noting that (3-12¢)
mist occur for some value of g . For when gy = 0 {no
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energy iuput) the real parts of 12 and »; are non-
positive and by (3-68) when g, 18 gufficiently large
positive the real parts of Ay and 35 are positive.
Note that h and A5 are continuous functions of g

Thus the condition that the singular point be
unatable 18

C
- _ L =2 i -2
(z~16) gm>G_2R ST +P(.‘!+C)

] 1 ] ?EE_ 2 i C2 '\:\.
(ER 2L RPC1 TN

and the conditlon that it be gtable 18

{(3-17) gy < G ~AV

In the limiting casge when %—-‘ o0 e have

.fp”
_ - 1 1 PN 24
{3-18) G_”R + 3 (1-!‘- C}) .

For g, = 0 { vacuum tube not acting)the singular
point will be a atable ngﬁe or & stable nods-focusg
depending upon_whethe (the circuit is more or 1ess then
critically danmmped Em becomes positive the
damping decreases\ﬁntll 1+ preaches zero at the transition
node-center. Further incresse in By leads to a
focal qaddle\point and then finally to & nodal saddle
point. \~

Sritical damping occurs when the discrimipant of
the¢ é@bic (3-5} vanishes.

\\3 In the remainder of our work we asgume thab (3-16)
holds. '

For later uge 1t is jmportant to obtain informa-
tion about the principal direction of the negative real

root A, . The particular golution of (3-h)
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)\11;
(3-15) X =8
is & straight line through the origin of the phage space
and in the principal direction of A.. Substituting

1
this solutlon in (3-3a) and (3-3¢) glves

#

G 1
{3-20) -4 [gmr —(1 + (-f) ~ Pce'\1_] X
L N\
(3-21) 3§ = - (__1 + gl,)_z .{i.\f’

which reduces the matter of the prineipal direc{n‘}%ﬁ' of

A ) to the problem of determining A ) AN
N
If we write (3-20) and (3-21) \\v
N\
(3-22) = ax O
(3-23) =-gz {0
| %
where OV
(3-24) @ NS )
B C N 0 %y
oy
"2 = 79 --:--
{5-25) g 1+ B

then the direction\@@'sines of the prineipal direction
of X are P

i o\
N\
(3-26) X -] ,
O7 #1418
O
:“s:::‘ Y o= .,_.__-__ci.ﬁ_._..____ R
“\)’s./ 1 4+ a2(1+32)
Z = ol
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PART IV. EXISTENCE OF A PERTODIC SOLUTION

In this chapter we shall prove ths

Theorem: The system

{2-10a} x = = [ f(x) -1+ e X - z}
PCp CI
. 1 N\
(z-10b) ¥ = RO [f{x) - x - z]
: O
.¢\ N
{2-10¢) z = - % [y + 2!l ,Q\..}

R
repregsenting the circuit of Figure 1 has\g{péfiodic
solution if \/

N RC..2  C
1)F>_1_+¥'2‘ 'L‘I-!-C—Q’—’ ‘L""-"-?_)"'ch
m < 2R 2. *r c, 1P 2R 2L \T
wherg:é%f'= £1(9)
2) Ple) <o m AN
S {M\\
“«Kunere v (r1) = IF(x)
¢ (x) 5 2.4
3)E—>£__ B,Ij f'{x +9.f+-0+_6__
L RCE(‘Q(XE X RC,, rC, T rCy
s"\‘. — -
\\..l
where WG.QSsume £1(0) > o exists, xf(x) > 95 and f(x)
Contiﬁu@us and single valued. Although nothing can be
diec

said &bout the in-the-small stabllity of the perio
Solution it will.he seen that there is & gort of in-the-
large stability.

The first step in proving the existence of a
Periodic solution is to define & closed region in the
Phase space topologlcally equivalent to a solid torus
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In such & mammer that the path passing through any
point on the boundary surface enters the Interior.
That is, the vector with components (x, y, z) def'lned
by (2-10) points into the interior at every point of the
boundary surface. Thus any path beginning inside the
~ torus would remain within it. The construction of the
torus tskes place 1n three steps. First, we define Lo
coned with vertices at the origin which form the igtéral
boundariss, Second, we define g ¢losed surfacg,\'aiﬁ*c?und
the origin which forms the outer redial boundary¥ Third,
we define a cylinder which forms the inner r@é’i‘al
‘boundary, eliminating the slngular point aj&"f;he origin.
1. 1lateral Bourdaries \4 |
Consider two right circular cqz;eé':with the line
J=2.X=0 asa common axis and-wifh the origin as a
common vertex as in Figure 3 (thé X -axis points vertically
upward from the plane of the paper). The convex sides
face each other serogs thev'pi'zéne ¥ +2=0, the

N

¥tz
o | 7 Vo S

//20
¥rz=
/
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generators making an angle & with this plane, The
closed reglon lylng between the two cones will be used
in forming the torus. We were led to conslder thilsg
reglon because (2-10c) represents a sort of attraction
ort any path acting toward the plane ¥y + z = 0.

The distance of any point (x, ¥, 2z} from the
plane ¥ + 2z = 0 1s

N
(1"_1) /€ = L.t 2 A ¢
afn oA\
2 :.‘g\\""'
The distance of any polnt from the origin is'\a\“
A é
l’{:"
(h-2) P Ay e O
Therefore the eguation of the conesﬁ?éJ
;t\“
(4-3) Tz & o smb-a
|742) f:, :~
where ; >% > o gives the upper left cone and

?r e
-7 <8 { o gives thellower right cone. For the
bPregent we 1limit o ﬁéeﬁvea to the upper left cone. The
component of theaVector field

N C,
(2-10a) A{{w‘z I;C—[f(x) - (1 + Fo X - z]
A& ol 1
N 1
(2_101)‘);:; ¥y = - ’RC [f{x) - x - z]
Ny e
~O .
(é\qﬁc) 7 = - E—[y + z]
which is normal to the conlcal surface (4-3 and pointing
toward the plane y + 2z =0 1is
N, = -¢

c
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Now by (4-3)
{4~3) £ = arcsin L%
4l
30
2 A N
(4-5} N=———1—-—~—_[—-———(xx+w+zzJ—y—;\]
° Yo - Eag ’

O
We need to establish corditions under which NGO .

Substituting for the derivatives in {i<?}'by use
of (2-10) we have {44

AN\
(b-6)7 2 - 292 y. Y
43

From (k-2 ang (3A3)" 1t follows that

{
2N/ ]f 23
) 3 - a7 _ X

Ve \ud an py & ;2-‘

{b-7) ‘tg' =

*.S\ a _p|/ 2 X2
50y - —Ele e
AV, Ve
where the 2igns
when the relatio

to Subzatitute fo

before the radlieals mugt be opposite
03 are ugeq simultaneously. Using these
T ¥ and 3 ip (4-6) ang making the
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gubatitution x = ¢pw, we have

0g” _ 1= Tré
2 -2 N, RC (pw)
& 22
* RC f{pw)} w
+;5V2— a(T_ag)(%_RC ) N\
(4-5) A\
_p(aa . T-aQ\W ;p({:a— o 2 Yl a2
rC, © RC,/ €, ~ R 2N\
VT YE R v
2 .'\\.;
a, Pa Voo ) w?
i &,
i (\@RC, {’C’a: rC,

where w” §_1~a2 . The only ﬁerﬂlwhich is Independent
of w and does not vaniQh for some value of w 1s
the third line of thesLight member. If we want N o0

o that the vector iﬁbint into the reglon 1t 1s eaqily
geern that thig qoﬁétant term must be positive. That 1is
We must have « Q)

\/

(h-10) ».
&> &

On the~$thcr hand R can be made sufficiently large 80

thail, > o for any particular a in

(hk41) o < a? < %

R
S0 il remains to determine a lower bound for i
insure T > 0.
If p 1is sufficiently large the terms in the rirst
line willplay no role in determining tha lower bound

to
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%. When p» i3 gmall these terms will serve to ralse
the lower bound and so we shall obtain an edtimate for
the lower bound with p small. For any aet or values
of the parameters R, r, Ci, Ce there is a best value
of & which wil1 permit a greatest range for L
while N. > 0.  1Inorder to be able to write down
explicit conditions we shall arbltrarily choose O
a = ) at thig point. Then to obtaln an.estinmp;ijge

choose the value °of W 1n each cage which makes /the”
N/

term least pogitive or mogt negative, having pn&yiously
|

Selected the negative 2lgns where possible.,fﬂhe'result

is \\\\ !
2oy s [52E %) r O
~5e €L |8 g L N
28 N<\V
- L (hi . ﬁ_){i sl L7}
R02 4 2 ;%ﬂ<m 1
(EOIN E S W) o
- oy R02
-(1,—81_ + 2 + .ii—%)—i-—
SN
8‘§3r01
x&hﬁ .
where 1y 1§< Fined by 7 = py | We recall that oy
(2~7) ™
O
(}*'1§){'\‘:v fng'rjl (Isl"q }
Y I
/ 3
Therefore by (2-9)
{LL-'IJ-I-) aup —f_(_l?__) > g 7
‘G’(_‘r[g'oe ) Z m
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where equality holdas only if the incremental trans-
conductance 1a never greater than the working-point
transconductance. Let us assume, as represented by the
dotted line In Figure 2, that the supremum of all in-
cremerital transconductancesg is g times the working-
point transconductance. Then

(b-15} sup -E%E*) = s gr where 8 ) 1 . o
—a§p§n =
o AN
Then for Nc > 0, 8o that the vectors polint 1p§p\the
region, a sufficient condition is “;”§
- Ry b6 9.7 , 5.0 . 2.%°0
{4-16) 17 RC, © it * ol t I, T
= - L “obvi difi-
When a = 5 we want N, < 0. Bypobvicus mo
catlons in the argument the same cShditlon (k-16) 1s
cbtained. ,‘»3

")

2. Quter Radial Boundary “}i”
Consider the familyf@f.closed surfaces about the

origin A

2

(2-17)  p CRgsf\iic (Ry + rx)° + Lz
where the valuel of p determines & particular surface of
the family. «Eor ary p this surface serves to limit
the regl Between the two lateral boundary cones. We
shall Shﬁﬁ that if p i3 sufficlently large then the
part efs ‘the surface used, the part lylng between the
WQ\iateral boundary cones, has the property that the
vector field of (2-10) at every point polnts toward the
Interior. We were led to the surface (%-17) by energy
considerations in the circult of Figure 1. The parameter
P is proportional to the energy stored in the cir-

Cuit at any time t.
A 1.a.3.c. that the vector at any point of the
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surface (4-17) points toward the Interior 1ig
{4-18) p<o.

(b-19) B~ C Ry . Cl(RY + IX) (Ry + 12) 4+ Las
Substituting ror the derivatives from {2-10), we have

2 2
(4-20) B - RByP(x) - m® - Rz A
Therefore the condition (4-18} that the vectors Qpif&
toward the interigrn amounts to s W

77NN
< %

(4=21)  mx? 4 Re? ) Ryf(x) 0

A stronger condition insuring thig 1, Bdnce fE{XJ< 1,
AN

¢ —

(h-22) % 4 R2 ) R |y, o

This inequaiity 14 satisfied pyiall polnts lying out-

glde the two paraboloids ~;w

(L-03) rx2 Rz® = R Yﬁi

With vertices at thg.@}igin.and axes along the y-axis.
The region ogfﬁﬁde the paraboloids wheps p<eo

leaves the Yy axig \ike 45 while the region between the

two laterg] bpu@héry cores leaves the yraxis iike y.

hecessary to chonge b large

two lateps} boundary cones ls outside
So that p < ¢ and the vectors
8t all pointg,
hed a staple bounded c¢loged

Its thickness becomes zerpo
1t does contain the singuiar point

pofﬁp‘towand the interiop

We have now establig
region in the phase space .
at the origin, bug
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%z, Inner Hadial Boundary

Before wo can use the Brouwer fixed polint theorem
to establish the exlistence of a pericdic =zelution in
the stable reglon we must remove the known fixed point
at the origin. Otherwise, as will be seen, the results
of our labor will be merely to establish the exlstence of
the fixed point at the origin.

There 13 no posslbility of establishing the
inner radial boundary by defining a closed surfaca;\
about the origin at all points of which the vecfdr ’
field points outward. For since * < 0 inN3-8)
there are always two paths approaching tbﬁkarigin.
At the origin they are tangent to the €iralght line
in the principal directlon of A ,.  However it appears
that we should be able to construct&é’cylinder around
the straight line through the or%éih in the principal
direction of A, such that sufficiently near the origin
the vector field at each palﬁt of the cylinder polnts
away from the interior. "Mhen if the principal direction
lies outside of the aoiid angle beiween the lateral
boundary cones thgééylinder will serve to put a hole
through the qtablé region in such a manner that a
nelighborhood ofKthe origin is removed and the remaining
region is stﬁl stable and now topologleally equivalent

to a toruQ\
We 'irst prove that the principal direction of A,

Q"

§~outside the solid angle between the lateral ]
+ 1

boundary cones. Since by the assumptlion & = = 3

T .
the generator of the cones makes an angle of g-w1th

the 1line ¥y=12z, x=0 1t is only necessary to shaow
that the angle between the principal direction of X1

X
8nd the 1ine y = 2z, x = 0 is less than 5 - Now the
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direction cosines of the Yine y = 4

> X =0 ure
{h-24) X=9

1

)

s Y= T 4= -
7% e

We recal] from (3-26) that the direction

cosines of Lthe
brincipal direction of 2\1 are

(3-26) ¥ = B ———

Y1 o4 Q'e(Hf'QJ

Therefore the cosine b op tlgg angle between them 1s

(b-25) b= 1_ T—i&@\
Ve 7 + & {T+ Be)

where frop (3-24) and {3-25}

(3-24) 4

~\T G
T - \-{—g-pch
a2 g
(5-25}ﬁ= Mia
Th{} Prove p 3 L

wWe must establish an
estlmat&\’or A

To thig &nd let yg write the cubic
(3~ 5}\in the forp
\}: 3 C
) = [LCgI"])\ + [RCQ.I‘ + L(1 + 513-)— Lgmr]hg
(L-26)

C
*IP+ Ry, 2 - R 'Y i
. C, E T T
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where ?\] , ’\.J., and ?\3 are golubtlons of S( X)) =

Now
(4-27) s(- B =- . 3
- g~ o
By (8-16) § ) o so that
(L-zg) (— =) (o
o
independently of =P Now by (3-16) when &= G, A »\15
the only rcal root. In this case. 3(2) < 0 mea q':"
A CA.. Bince A, 1is a continuous function ofy the co-
efficients of the cubic we conclude from ( —Eé ‘that
ot _R . ’"}
(l" 2}‘) L < 4\1 - \\\\‘
RN
et o (& 1. ‘\\?
R7C,r OV 2 roC
e 2 » S
L RN \ 1
(4-30) s
Q Rr 1.
) ,(}\ L c,
N
N\
Now W\
{-31) :::);r—(1+ 9_%)) s}
\’2\ \ &
N,

1

for by (316 - 2
N C RrC RrC Wy
S\ 2 -yyfr_ . > T
0 1+ gE)> e VéR )
i R
ard the right member is positive If T 0 G

agzured by {4-16),
Therefore by (4-30) it is sufficlent for

(4-33) s (- o
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that R3C
r ,
(4-3%) Ko—2 5 i B
L
Multiplying by = gives the condition
kRre,
(4-35) k(-0E > -
2 &N\
Now by (4-16) . Oy
7N\ ¢
(14—36) E > 2__1 ‘~‘§”/
L 7 ke N
70>
30 the largest valye of k& isg detel’mi;{@,}} by
N
1 \\
(4-37) Kli-k) = L AW
9'7 u, Nt
This gives k = 0.876 aq {‘f'}
(4-38) S(- CLT68) vy
3
from which 1t fo170ys thay "
. , &< R
(4 39) \T < m@.&?@ I
This fogether wi@—)\(}#xegr} gives
MR

X2 <X < - 0.7 B
£
O
RO
APDIFANE this to (3-24) ana (3-25), using (4-16),
glives ‘.:}

(h~i+&}§\ @ 3y sp
éi;eh}i B Corpy

stituting thege conditiors in (4-25) glves finally
(4-kz) b > 0.60 |
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It megwiine Lo conotruct the cylinder and prove
tpat at ali polutn ot the surface gufficlently close
te the orig'u “he vector fleld points outward. By a
linear Lriar:'rmabion of X, ¥, and z into Qys dpo
and q, toe "rlneapized® system {x-%) can be brought
into LIJ)e nevyl Torn
(4-b38) n, - N q -0
{L-43h) a, -u,q, vq5 = 0 .

, : &)
{h=h=c) i +vg, - u2q5 = 0 .' \}\ 4

Here the . -axis is along the principal dire%tion of

A and the .- ard Qg -axes are detemin\ed by A,
and A . Ther 1, Y =0 u:z)\
5+ Whern A, and 13 are real h\iz ’ 2

and u, = A,. When A and A, are c@mplex conjugates

2 3 2 %
then u, = u, = v as in (3-8). sThe “condition (3-16)
gives Ky »
{h-bl o

) u, > 0, uQ,};,O

0f course the linear *;K'é;nsformation depends on the

Parameters in {(3-3 ,'\&}
The nonlipea¥ system (2-10) csn be written

(s~ksa) x =x§-;\é—gf(rgm- - g?_)x - z]+ rCE{f(x) rg, X)

.
(1#‘}4.5]3) Q\w.z_ _1 [(r,gm_ 1}x - z ] —RC f(x - rgmx

<
{h"’hﬁ:@.a‘ Z = - %[}r + Z] .

If we now apply the same linear trensformation to the

nonlinear system (4%-45) then we have

{b-uga) é1 - Ay q = ¢,3{x)

(b-Lgn) a, - u,q, T v = ¢, S(x)

(h-46¢) a, v va, - Uyl =c S(x}
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where

(4-k7) 8(x) =

L. L. RAUCH

fix)y - rg.X .

By (2-8) and (2-9) we have

{4-48) 3(0) =
T™his means that -S-j((ﬂ

Iet the equation
{4-Lg) 0 <K

S8'(0) = o A\
approaches zerc with ga\.
7'\
of the cylinder be W
2 o N
=4, + az - AN

L ¥
N

The normal component of the vector fisla of (2-10),

that 1s of (4-46), wil
and only if K > o,

1 be in theyeldtward direction if
R

_ E _ . :‘,’:

Substituting for the depiééfives from (4-46)gives

- K _ 2 N
(4-51) 5= u1q€~+

Since §§§l

.-
Ua3  + (00, + cyq,)8(x)

——Qﬁﬁ with x, near the origin K >0

and we can always take
of the cyli:r\‘l’d"éi‘ inside

X small enough so that the part
the lateral bourdary cores 1s

sufficiqnél& near the origin,
\E@gm the inner radisl boundary 1s established.
"\

TN,
&

~EY The Mapping

\\ We have now egta
containing ng #lnguler
valent to a golig toru
appears in Figupe 4,
almply Commected twe g

blished a stable ¢losed region
polnts and topologically agui-
8. The cross section for x = o
The gection S1 ls & closged
tmensional reglon. We shall show
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that the paths form a continuous mapplng of S1 into
itself. That is, a8ll of the paths inside the torus
elrculate around it without "getting lost". We havs
alrcady established In the preceding sections of this
Part that no path can leave the torus.

== Yi-g-2a4 2

a I-2a*

.\\s,l
<& FIG. &

Cgééiaer that path through sny point of 8,. By
{

} C
@ 5o g (1 )a
™Y =] _

“Qﬁé% path will travel in the posltlve x-direction for
& finite distance since z is negative and has a

negative upper bound in S,. For the same reason the
path cannot return to 3, from the poaitl

However the path does in face cross x = 0 or at least

approaches arbitrarily clege to X = ¢. In order to
see this, multiply (e-10a) by r and {2-100) by R

and add to obtain

73

ve x-directlon.
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(4-52) o+ Ry = - Loy

Integration from g point ({0, Yoo zOJ in s
tO to a point (x, ¥, 2) at time t Elves

; at time

,
(4-53) ™+ Ry -y,) = - Tt X dt
Q

Since x and ¥ are hounded the integral in thearlght
member is bounded 80 that iIf x dpes not become

SN
negative 1t must become {although not neCesaayiﬁy

time. Now since the path cannot returnxﬁfﬁitrarily
close to 8, for x> o it must apprdeth arbitartly
close to S,. However this means MNGctually resches
S2 In a finite length of time s;?§é by (2-10a) x

Proceed from 3, to S, with” x ¢ o,

3 We remark that
(4~53) does not prevent ~x* From momentarily becoming

large from time tq t1n8” This woulg not interfere
with the mapplng. mmpe mapping of S1 into 81 thus

established ig cq@tinuous since the right memper of
(2-10) 15 contimioug and

the stable c%SSed Tegion

travel. Ihe famous rixeg polnt theorem of Brouwer

connegbed reglon Into itgele has 8t least one fixed
pg;pt: Therefore the mapping of S1 into itgelf hag
<§§~1east one fixed point. This means thepe is at

east one path which is closed on itself after clr-
culating around the torus once. That is, our

System (2-10) Possesses at least one periodic
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a periodic solutlon shows that we require only of

f(x) that £'{0) exlst and be within proper bounds

and that f(x) be continuous and bounded above and
below. Thus the right member of {2-10) may not satisfy
the Lipschitz condition for certain values of X. in
this case the contimous mapping of 3, into itself

may ot be one-one, but this doss not affect the Brouwer
fixed polnt theorem and the existence of a pericdic{\

solutlon. :ii\'
'S\l
5. Parameters of the Third Order Equation A
NN
It can be seen that the equation <;§~
- / C, S .. e
LCQPX + {302r + L {1+ 5 - LX) x- Ir"(x)x
\ 1 :0;\\«

{4-5%)

AN
+I’+R(l+ 6_1_ —{:iBIiJ(x}x»r C?x:O

L N
™Y

has only three ‘ndependemﬁ“parameters by writing It In
th

e form ”\
*&g(x ]x+kg(x)x + glx)x + X =0,

(4-55) k1i'+ [ke\:$

a3 In the Intrcﬂuction_, Sumary, where

(k-56a) g(xowm rC, + R(Cy + Cp) - RC,f'(x)

|

(k- 56b}5§“ k - %
A\ ic.r

\iségé) k, = RC,Cor - =

]

1 IC1CEr

(k-564a) k

These serve to determine only three conbinations of the

physical parameters such &8

(h=-57) R =%
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k= Kk

1
U
5 3
- 4 k
(4-59) T, = 3
ky - k2k3

while two other comblnations may be defined arbltrarlly
as

(4~60). Y2 =m A

] ‘] L

C1 O
. {gég
(h-61) R = m, . ~<>

na

A~
The condition (3-16) for spontaneo{g%scillations
{unstable singulap polnt) becomes \\{>

_ k ¥k
(4-62) glo) < - 5=5 &L{% -~
50 kS ky
We note that N
N
™
k, &k k.
(4-63) mrem e
1 e k1k5
K .
Dk -k
(4-6L) £ s\}é ___*__( ! 2%s)
‘.\(s‘} 123
"¢ "
(k-65) ’{",%J =~ 1 . 3
PR3 £ m k. -k k
O ' 1 2*3
Thereff{%'
\‘(::} ’ o
o L
@66)_ Tix) =[m17.2__3_,__ +omoe 1]x
: 1k5
- k.- k k x
173 o

where i{x)
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bounded above and below.

Now zince f'(0} = Bl the condition {4-16)
insuring the exlstence of the lateral boundary surfaces
(and therefors of the stable reglion) becomes

PR _._K‘_k_ﬁi gup f{ x) + 9.7 k1 - k2k5
1 -o(x<00 * 1 '
(h=67) % 3 ‘ N\
RN . N SIS
m, k1 - K2k3 k1 - k2 5&}

A

The relations (L-62), (4-66), and{(4-67) glve
rise to the thecrem stated 1in the Ihtweduction
':2\\00~
>

A\ N\

PART V. OTHER IN-THE-LARGH PROPERTIES OF SOLUTIONS

Summary .

Tt 1s difficult ‘Yo say anything apout the
stability in-the- amgll of the periodlc solutions or
whether there iasa unlque periodic aotution. However
we can prove that after & long enough time any gselution
cannot be tdn 'far from the periodic gsolutiong whose
existen@@“We have proved in Part IV. That is, evVery
path ‘ﬁenLLally epters the stable reglon of the solid
tOPﬁa or else approaches the origin. If (3-16) is
”3&DiSfled that is we have conditlon (3- -gc) or (3-8d)
there can be only two paths which approach the origlin
(1f a Lipschitz condition 1s satisfied). These are the
two paths which in the n1inearized" case approach the
singular point at the origin from opposite directions
along the principal axis correspording to the real
negative characteristic root A,

As a matter of fact we prove considerably more.
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With the exception of the slngular patha approaching
the origin the path through any point must croas to the
other side of the plane ¥ + 2 =0, Of course Lhis
means that the paths must oscillate back and forth
from one aide of the plane to the other indefinttely
or umtll they approach the origin. Thus the paths
certainly enter the region between the latersl boun@qry
cones.

Let us plok & polnt to the left of the plahdy
Y+ 2=0 1in Figure 3 ard aasume that the patﬁ}through
1t does not cross the plane. Thus by {2-15}@’)}‘;2 < 0.
Now elther there oxists p <1 such thgﬁ;i' -
(5-1) :-;L {? N

7
W

8%t 81l times after some particuléf time or elge

(5-2) Eradb R SR,
-5 - Ry

at least some of the timé'éfter any time, Let us

assume (5-1) ig trugm};Then the point must 1ie to the

right of the planﬁédé%ermined by the initial point and

the slope O

S

(5-3) - N - p
xt\“"" Z
Ny
and to the left of the plane ¥+2z =9,
planeagintersect in a line pe
&”{iq;te value of 7y, 88y v, .

These two
rallel to the X-axis with
(& 0 Now the point must move
Bo the rignt (5 < 0) as long as it is to the lef't of
the plane y + 3 = ¢ The peth mugt approach some iine
rarailel to the X-axis and in the pPlane y + 2z = 0. Wop
1r it dees not do this fo
certainly do gq for y =
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{5_]4') Z -— 0

and z approaches jome constant, =8y Z,- In the limit

we have, hy (e-10&),

. . . 7
(5-5) X =, f(x) 14—01 x -z,

Since fz(x) {1 it 1is clear that x < 0 for x large
- .n\

and positive and x » 0 for X large and negative. ™
So the path cannot go to infinity in the x—dir{éétion.
Moreover 1t cannot oscillate in the X"dil‘eciiid‘ﬂ' since

n of X.

. 3

(5-5) defines x as & single-valued functAo
Therefore x must approach a 1imit and b’y}\f'fw-ﬁ) x
approaches a limit which mast be 26T\

o\

(5-6) x — 0. \"
In the 1imit we have, bY¥ (ETI.QB’):,
(5-7) 5= - g Bt - x - 5]

2l

Therefors ¥ appro{&&IES e 1imit which muat be

(5-8) "§Ql—» 0

since we ha\ae}éflready oted that y approaches & 1imit.
As 8 resu‘liﬁ.\c;\f {(5-47, (5-6), and (5-8) the phase
‘161ocip§§bproaches zero. Therefore the path must he
appy\d?:bhin{% the unique singular polnt at the origin.
"\ 8t111 assuming that the path does not cross to
ﬁ’e right of the plane 7 + 27 o 1et us consider

the only remsining alternatlve, nemely, thet (572)

holds at least some of the tlme after any time. It is
o for 1f the path does

z{ ¢ then the previous
ath approaches

only necessary to conslder 2 4
not move into the region wherse
argument can be applled to show that the P



80 L. L. RAUCH

the origin. Moreover it follows that ¢ becomes
negative without limit and ¥ becomes positive
without limit.

Substituting in (5-2) from {(2-10b) and {e-10c)
brovides the result

L £ix) ~x - 5 1
(5_9) = 2 > = »
v+ z 2 3 )
R°C, N\
and since ¥ + 2 > 0 we must have KoY
z A
{5-10) f{x) -x - 3 {o. A\ >

Since =z becomes arbitrarily large negati%é” and
fg(x) <{ 1 this mesns that N4

.Qw

1T o\
% 3

(5-11) HXZ D1 - €

where v, 1s arbitarily small,péﬁitive. We recaiil
that by our assumption (5-139Ms true gt least some
of the time after any time@”‘

Now during at 1eg~\st’“some of the time that (5-;7)
is true

e
(5-12) ‘%>1 T 5
where ¢, 1g @ﬁbﬁtarily small positive. This cap be
Seen by r%agi ing that (5-11) reqﬁires that the path
is not oiba'certain side of the plane X+ (1 - €, )z=0
8t 1e§§t Some tlme after any time. In case (5-11) holds
&Ll ©F the tims 11 g clear that (5-12) must noig some
of\the time, 1n case (5-11) dees not hold at some

5-12} mist he true,

Substituting for the derivatives in (5-12) by
means of {2~10a) and (2~1oc) gives
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C
f{x) —6 + 2) -
L _ C1/ X~z

s y + 7

20 -91 -—eg)o,

The derorirator ls non-negatlive. However since-E% >0
then after a long enough time 2 will become so layge
and negative that as a regult of (5-11) the numeratsr
will be repgative. Thus & contradiction 1s est§b§}éﬁed.
This means that if the path does not cross the plane
y + z = 0 1t must approach the origin. ﬁjéiﬁilar
argumert glves the same reault 1if we staﬁb\from the
right side of the plane y + 2 = 0. \

Ornece the path is between.thg(ﬁho 1ateral boundary

cones 1t will come in untll it:igﬁinside the outer

radial boundary. N
Tt iz easy to sce thet the stable galid torus

is not encugh topology +5%say anything about uniqueness
of pericdic solutiog&{or in-the-small atabillity.
Choose a toroidal<é®5rdinate gyatem with varlables T,
8, ¢ where rNLs the distence from the circular center
line, 8 igiﬁﬁé angle along the center 11?3, and ¢

g g =3 and

ia the angﬁb“around the center line. Iet
‘;’ = ‘Qi»': whars 1] > W, If 'E‘ = = ' WS have &
1f

s ab}é:periodic solution along the center line.

t
%&%53 — p and @ = nw we have an unstable periodlc
“Solution on the center line and a gtable periodic
which regulres I
period. If % 1
he torus is not

solution on the torus T =1
revelntions before completing one
irrational the stable solution ob t
periodic.
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PART VI. UPPER LIMIT ON MAGNITUDE OF OBCILLATICNS

In this Part we shall polnt out how the value
of the parameter p 1n the equation (4-17) of the
outer radial boundary can be determined, Then in any
particular case bounds can be established upon the
variables x, y, and z ang therefore on the physical
variahles i, e, and iL' A

The paraboloids of (b~22) wil] intersec;<ﬁhe
lateral boundary cones in c¢losed curves passing through
the origin. The outer radia] boundary ofafk317) will
Intersect the lateral boundary cones ipf&iosed curves
around the origin. 1t 1s necegsary o determine D
In (¥-17) just large enough so ththbh each lateral
boundary cone the cloged curve fﬁbﬁ'the intersection of
(3~17) just containg the closéd:éﬁrve from the inter-
section of (4-22), N

~
<N

Consider for the qaﬁéﬁt the upper left cone.
Construct a coordinate 8ystem on the cone by

&

(6~1) x = V5 - a2 gin 9

N\
.‘::.’ 1 - 8.2 g
(6-2) Iy =08 TZ - cos g4+ &
.~\:. - 2
(6-3) § Z =py] 5 £ cos 8 =

™ ." ﬁ
wqé}é P ia the distance
"8t the ortgin and
X=0 and the Plane
question and the line
of the intersection of th

from the vertex of the cone
8 13 the angle between the Plane
determined by the point in

J =2, X =0, The equation
© parabolold is
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2 Ra
V1—a =
R 5 coa 6 + v

ri1 ~&af2 )sin28+§{1 -a® )cosze*Ra 1 -a

(6-4) = z

cos B +&a@—

2

The equatlon of the 1ntersection of the outer radial
boundary 1is

2 g "N\
2 =(C, R+C, R® +L)—~—-cos 28+(C, RC+C,R 2_1,)a¥1 aecos )

P Ko \
, 7 o
(6-5) * C1r'2(1—ag)sinde + 2C,Rra 29‘ g1n.8,
1-a° 2“:\‘\‘02 a? 18°
+EC1R1’——;/% sinecose+(CR+CB)§-+T.

2 :,\\J

W

7

It 1s necessary to determine p gust large enough S0
that & Q)
(6-6) >??

I

for all e. Then t@e sta.ble region will be expliclitly
‘determined snd t e\ﬁpper pounds on the absolute value
of the varlablea .can be determined.
\
PART V‘I\I NONLINEAR CIRCUIT PARAMETERS
\w

’N?rl%n deriving the system (2° 10)

oi‘\ ?19-11‘6‘ . 1t was not necessary to differentlate
rectly any term containing the paremeters Cqs C

R, or L. This means that the system (2-10) holds
without change in form when the parameters are functions
of the respective variables, namely, G, (x), Ce{y)’
R(z), and L(z). We then write

)y from the circult

2!
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it

. ; Ce(}')) ,
(7"1&) X I’Ce(y} [f(XJ - (1 + C,l{XE x - &]

1 - v
{(7-1b) y= Wﬁ (f{x) ~ x ~ 2]
(7-1¢) z = - Rz} [y + z)

L{z)
N

The proof of the existence of g period}c:\:gﬁllltion
glven in Part IV will stil] go through pm\gi‘d\ed C,{x),
Cal¥)s R(z), ang L{z) are bounded abg“\{é“"and below
by positive constants in such a mmggj\i:hat the in-
equalities (3-14) gng (k-16) are satisfied,

In the case of the ocuter ra;d\ia’l boundary it is
necessary to replace (4-17) by almbre complicated
Expresslon which ig proportione¥ to the energy stored
in the cireult gt any time ot Tin terms of the variabis

Fslon (s-20) wil: remairn

circuit bParsmeters, The, *é‘xﬁre
unchanged in foym, ItJ“i% clear that the nEw expression

One ca}sé of zpec
ParenetoflNC, = ¢ (x)
variah\\}é'f In this cage

1al Interest ig when only the
is e nonlinear funet lon of the

eqlgat,\szon
oy )
\mg?«e) Leor&+ [Reg, 4 g, - La'(x)1¥ - Lq"(x)%2

+[r+R - Re'{x}]% + 5—(—;—‘7*;- a.
1
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I we def'ine

(7-3) rlx)=r + R - Ra'{x)
- — X

(7-513 hi{x) 01(X)

then (-»! hecomes

(7-5) Kyx + (K, + KBE(X})X + KBgT(X)%E + g(x)i + hix)=0.

N\
As polinfed oul in the Intreduction, Summary the t«\,
special caseg for k1 = K3 = o argd k2 =1 {L = Q\anﬁ
RrC, = 1 in (7-2)) “(n}s
i m'\‘\‘
(7-6} ¥ o4 oglx)x + h(x) = AS)
w\,/

. O
is the woll-known generalizatlon g{i@iénard‘s equation
to the case of a ronlinear spriigveonstant.

1
™
&

APPENDIX: DIFFERENTIAL agé@ﬁm OF FRIEDRICHS

Friedrichs [43~ has considered the oseillations of
the cireuit QhOWﬂx¢ﬂ Figure 5. Unlike the circult
conaidered in &hjs diqsertatlon.it 1g assumed that the
ancde current‘la of the vacuuil tube 1z a funetion of a
welghted average of the grid and anode voltages

N/

() *Q§> = @( e F

Wiéfe the amplification factor ¥ i
In eddition to this we have the fol
from the circuit

(2) &

g finite and positive.
lowing relations

1

- Ih 1a - M iL

{3) e

it

M ia + lg iL
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(4) g = T
tiC
(5) eg = f ha'dt
(6) Ip+ip+1y=0.

This is a third order system and we wish to obtaloma
slngle third order equation in some variable whlch ia
physically equivalent %o the variable x (whiﬁh 1a

AARAA

proportional ta the grid voltage e )
{2-11) in Raut II
in this cﬁée would have to be the argument e_ + Eﬁ

n
of thébﬁ@nlinear funetlon. This 1s called the effective
gf?? svoltage. We define

) vee 4 &

& s

of eguation
The physically equlvalent variable

and eliminate €s Trom the eguations (1) through (6}

This gives, in place of (1) amd (2),
(g) 1

{9) a - - - : :
(v eg) = - I g - M i .
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We elimlvnt o 41 warlables except v and obtain

10y (1,1, - MOt (V)T 4 (L1, - Mt (v) + LOIY
s e F_" ! .ul" a g 4 g

s 01T e TR ¢ [T o (v) 15

I
TR =T uy

RIS (w157

1 L I’u’l2 -
b [ (L L, - M gv) o+ EE» - (M ',ﬁ:—)?‘(v)]v £V = O
: g {

Thia single third-order equation is quite diff‘e;j.eiritr"\
from equatior (7711 y of Part I1T. ~\ bt
. N\

Note ihat if the anode current 1ig Iy made &

\/
funeticn off e, only, 88 in this dlsssl pation, bY

7

letting p — = " the eqt tion (10) QE ¥riedrichs

becomes ’\\
1 )
L. CI¥ + [& - M Q)W + v =0
= s 1

which is no longer of tha}i:};a;ird order. .That 18, if the

c-;r’cﬁ:it is assumed 1o we of the

tube irn Friedrichs'
then the system

nentode Lipe, as in{th‘ls dissertation,
N
reduces to one of‘\ﬁle second order.
“J
é\n'
i , )
1] A.&drard, Frude des Oscillations entretenmes,

Revhe Générsle de 11electrecite, vol. 2%, PDP- 501~
.,\‘}gﬂc’:; 1928,
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IT7. NLON-LINEAR DELAY DIFFERENTIAL EQUATIONS*

By F. H. Brownsll 3rd

Introduction

This paper concerns the oseillatory behavior &f

the autonomous delay differential equation ¢\
N\ -
n_r i PR e
L) T a1y e Dity, ., x0T (n),
W =0p=C |5 P ‘€44
; AN
coLx(t-bLY =0 v

where Q{y,,...) is usually a powenxséfies in the y, with
zero and first degree coefficiepﬁ%}ébsent.

First we give a review’gfwthe gsgentially linear
theory of the equation 1.1g§*yﬁere the behavier at
infinity of solutions ofjéﬁé linear part of 1.1) is
characterized by the.z?rgs of the auxiliary exponentlal
pelynomial, and thafgblutions are represented by 8
laplace transform)’ Using the same representation for
the inhomogeniﬁué equation, we can apply 8o iteration
process, ip{ﬁhé case where these ZeT03 have negablve
real pa t?g’to show that the solution of 1.t) itaself
decaﬁ%<§ﬁ%@n&ntially ag t— o for gqufficiently amall

inittal conditions.
-‘*—w}—-—._—__

) i
N iy paper constituted the guthor's dlssertatx}.rg,rsl
for the Ph.D. at Princeton University, 1949, 8N n
prepared while he held an Atomic ENGTEY Comui.§81L0
predoctoral fellowship for 1948-15L9.

89
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Next we consider 1.1) as the zeros  of the
auxiliary polynomial cross to the right of the Imaginary
axls under parametric varistion of the ak,p. Here we
give up in characterizing the general solution of 1.1)
for the initial condition problem, and instead look

for speclal periodic golutions, which thus impoges

boundary conditions and allows 1.1) to be transformed

into an integral equation. Using the linear thoor§>
criterion for the existence of periodic solut idrg’ of
the linear part of 1.1), we now use the methéds of
Schmidt [17]* to prove the existence of peripdic

solutions of 1.1) and give asympiotic ﬂQmﬁulae for the
frequency and amplitude. TPhe resultsNare collected
in & sumary at the end. \;

T2\
The writer here wishes to &ckrowledge his in-
debtedness to Pror. 9. Iefschéty),

who suggested the
topic,

and to Prof. D. . Bdgﬁéin for several suggestions
widening the scope of thevresults.

N *

A \CHAPTER
£ I

AN

(O
For integé{}n_z 1 we consider the equation

. r M %
12) 35T A )(t-bp) = g(t)

k=0 pegl/<s over regl t > 0,

-—a t

) o Such that ¢ © g(t)

€ Lagﬁg ). A generalization of 1.2) studied by Pytt
[2”2:]:;' [301 ils .

O n .08 ()
O = Ogh (60X F(h) = g(t)

where F, (h) =0 ror h{o, m

_ N
whers We\aTe glven some real o

x(h) 18 a complex function of

*
Zee the bibliography &t the end,
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bounded variatlon on every finite interval such that

h shlu | ¢ +eu for some 3 >0, and where

Iebesque—Stleltjes integrals are meant tn 1.3).
We always requlie gome >0 such that

L) F(h) = 8% o for olhdb, olkln, and 8y o 1.

¥ (b) = -1 forh >0,
7 e |
so /% M) (y-n) aF (h) = x5, A
olh <\m

ig & second conditlion which 1s acmet imes imposed
We now wish to define a solution of, 1 5} for
certain admissible initial conditions.
Definition 1:1) SO
let L be the greatest lower gggﬁg
such that F (h) = F (y) for all h >y, k=015
L= +wobeing allowed. IL L.) \o,, then g complex valued

funetion ¢(t) is said to ) ‘an admissible initlal
t(’L!i-_t

cordition for 1.3)_if ¢ (% = 0forty0or
Wexictq absolgtelg continuous QVEr every Linite
wof[g\m fork-ou---,nh@_@iifﬂ?—
any real e -8 we Yhave

of all real ¥
vyl

1.6) 0 (1)e AV 1,(-1,0) and 20 (1) € 1, (-1,0)
o if 1.5) fails.

for ¥ =X ‘a ...,n-1, and includl k
pdition 18

~%¢1F0 then an admissible initial O
denoted B

gollection of n complex constants

@m(o’)i, k=0,1, ... 070

¢ 1f I o and 117) Bolas:

It should be remarked tha
d by the preceding

then 1.6) 1s automatically gatisfie
condition on $(t).
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Definition 1:2)

A_complex valusd function X{t} on (-, ) 1a_said
to he a solution of 1.3) for an admissible initial
comdition (1), or 1607y} ir - o, ir

o) x(e) = #(0) for £<o, or x)(0%) = 40 (o) 4

0{k{n1 if L = o;

b} x(k)(t) exists absolutely continuous over everg {d

T
finite subinterval of ("L, +2) for g 50,1,
n-1. O
e) x(n)(t) exists satiefying 1.3) almost_evedywherc in
t > o. <;7
Theorem 1,3 ) N

If condition 1.4) ig satisi'ié‘ﬁ, then for any

aduissible initial condition @{1; ) there exists a
unique solutien x(t) of egggﬁioﬁ 1.3)
Morsover if conditida{‘ij) 13 satisfled, and if
t) i3 contlnuous them k1) £) exists continuous ard

gatisgfies squation 1‘:’5"1 in 811 t > 0.

+\J
&\ Proof

In squatfon 1.3) transpose 3131 terms in the

Integrals swdhthat mdb to the right side, yielding by
condition/asd) with b0
\Y

L Oy, 2
.j':; k=0
Q¥EF the interval (g o<, =12, .., etc., whers
\Eﬁ(t) 1s determlineg by induetion on m from preceding
intervals and the Initial condition #(t). Also we have

En(t)E Ly ( (m~1)b,mb) by induction; for the four

menotons component s of Fk(h} generate bounded Borel
measures on (0,0 Y, x{k)

(t') is Borel measurable gand
Lebesque Integrabie over -Lgt'g(mﬂ Jb by condition 1.6)
and Induction from preced

ing Intervals, ang we can
apply the Fubins theorem,

®,0 X(k)(t) = gp,lt)
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Thua we hayve olr deslred induction result, since
gquation 1.7) nbviously satlsfies a uniform Lipschitz
eonpdition, by mo Aifying the classical Plecard umniqueness
thecrem to allow ftrll(t,) to be merely integrable instead
of continuniii.

Aleo if 1.5) holds and g(t) 1s contimcus, then
s0 13 gm{t); nenee x(n} ) exists continuous in >0
by 1.7). N

Q.E.D. A
)
N7
We rewark that a rather wide variety of‘ co‘ntlnulty
k
corditicrs cther than those chosen could have heen
impoged in the definiticn of an admiq‘ub}:e\lmt.ial

conditicon, and corresponding contlnuj\'g} regults obtained

for a solution x{t) \‘
Temma 1:%) ”. "
If condition 1. had “ds ‘apd x(t) is 8 golution

of equation 1.3%) for an adtissible initial condition,

then for k=0, 1,. Mm,
) c,T

.4\\ ty and | f ) ey1as = O )

\
W

|21y

K \~ Piool
\e‘fe given g(t)(;‘"bt € L,(0,00) in equation 1.3}

50 bg E‘khwarz -
e( {d01+1 )T.

™ 1.-—-

Ym(t)idt ¢ mVT eauotdt\ ¢ #J**“””’
Thus by the argument of B. M. Wr'lght [71, the
P.182, which can sasily be generallzed from equation
1.2} to equation 1.3} bY uging condibion 1.4) with
b0, we get the desired result 1.8).

Q. E. D.

orem %),
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With a)tto and ap -8 for the 8 of equation 1.3),
we now let 8 = ¢ + 1w angd

j= o] . 0
D(s) = Znsk/e_ShdF (h), G(s) =./8(tie_8tdt’

1.9) _@)+nz1?i_._(__l_z sk L -shy R (h))
) =J+1 /

=0 s9*'p(s
fls) = + O¢ - 7\
-0 - N
o1 <R (k) s(t+h) g, | e
D(Shc—zo 0 h525 e .t'fdpk(h)

Now if we take the laplace tra.nsf‘a{m of’ equation
1.3) at « ) max G A ), then by integrating by parts

and using 1.8) we get j e~ dt\yj . Also f(a)

is amalytic ine) max {e - exce})t for poles at the
zerog of D(s), since s ?, ']has k 1-J%0, and by

condition 1.4} i f‘ollows eas*ily that o= (inf‘ of e zuch
that ad>P-gand [D(s [2 D aver R(s) > @)+ . Thus
by contour shifting we ‘have the f'ollowing theorem, where

[ denctes 1,1i.m.
A~)rxi

\\
Theorem 1:5}3{:7
If comiition 1. 4) is_satisfisd and i¢ #(t) ig an
admﬂl*lbie Initial condition, then the unigus solnkbton
Lo&\equat 01 1.%3) kas for all o max (e -8, woy)
thai; For all resl t

'"\ )
a .
\1.10) x{t) = 2——; /_- f (e+ 10 ) 019y, .

1t should be rémarkeq that at least for L <+
an alternate proof of 1.5) can be given by defining
x(t) by 1.9) and 1.10) ang showing conditions &), b)
ard ¢) of definition 1 :2) are satisfied, (see Bellwan
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[10) for a special case). B3imilar results have also
been obtained by still different methods, [6], [L].
Much early work, [1] through {5] in general, has alsc
peen done on this subject under initial order assumptions
on x{t) lize 1.8); Schmidt (3] glves a particularly
good bibliography.

Irn the following theorem mj 1s the multiplicity
of 8 zerc z. of D(s), Ng 1s the cardinal of the set «f >
ZEeros ?sjf of D{=s) such that 55 = “j +th has @ }K
for the given « > -8, and M= n-1 if condition 1“.«5)
holds, » = n ctherwlse. Algo the ijq appe:ilqiﬁg"are
complex constants depending on ¢(t) but nofifen a, }'qu1 (a)
{5 a positive real number independent of\H(t), and

"0 - Y,
r.(s) = £(s) —_/_L (t)e Stat, \\
k_ X
= q — (
By (=) foled JZO SJ+1 ¢ J
Theorem 1:6) .'{":‘

If condition 1. h)“holds, if ¢(t) is admissible,

AL 0 D> ap max( w—ﬂ){tﬂ\ith D(s) + 0 for s =a+ 1o, and

Af Ve is fiinﬁi—“{f_@\:.[ D1 )[= 0(1—1-[11 for large lsl
with R(s Z“,‘\then for t > 0 and k = 0,1,...,0~1

.."\"' m. -1 R4
xnpg.;"x ZN“ ( 5 bs qt%e I+ Ra (8),

r

T11) W& J=1 azo
\1"‘\::1{%{)“3) _ fi:- ﬁa+1m kfk(a+1w )e da:, and
\O) o .
1.12) I LA 5] at
< My (a) {Zﬂ1l¢(”(o')! pa ré(”mledtlje.
B j=0 jFo T

In case condition 1.5) holds a8 well as 1.b then

for any a) ﬂ wwwlms = Ol gTm)
for Jarge Va1 with R(s) > .




96 F. H. BROWNELL

Proof
First 1.11) with k=0 follows at once from 1.10)
by usging []'j%"s')I = O{T]ng)to shif't contoura, since x(t)

= xX{t)-¢{t} over t > 0 and since £(s) is analytic In
the right places as was used in theorem 1:5).
To ver:.fy this analyticity 1t is merely necessary
to show /L [ grﬁ“{ s(t+hlgy 4 F (h) analytic lm\
R(s) = Lx> -3 . HBI‘S |¢ }(t)e_s(t*'h)'dt g \“\
-h

7
&\
Y
N/
=]

hy o (k en) = 1y /2 o\ efen

o™ ” gt )" ( exgegi h) -1 ) - AlsoR { g

o . e\

5: L——li 2l lh, so if «) - %ﬁ Wwe have
S5 al-an o

AN 18 (b} [YF e 1d B )l = K e

2ch
on t _ “’ = -1 ;
}1 he contxary if B § .5 R LT 4 5% ar?
{
4 R ICEN (35 }/ e "*Ma F (n)] =

M( ') <‘+m- Thus f‘o;{u; R{#) 2 & > =B, we lave
Mo(a') { +t and {*,\

o L e

{0y 11
ibﬁL PAITSY dt’ 2 M lar).

£

Nt

By thc—\bauchy integral ard the Fubini theorem we thus
get\the deQired analyticity.
\\ Now/ o (et 1

= a+1m f«<l 0, so thus

ot iwt 0 1if t>0 ot . N
55 w = 1= iwt
S d -1 if t<o and T /I‘O[s)e dw

Voo iw

« lag
g—T— [f1(3) € "de aver t > 0. Alaso (a+iw)kfk(a+ 1w

€L, (~-®, ) overv for {n-t and 0 > o> max (wo,~ﬁ),
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k
since 1.1%) halds ﬁ%g) €L, (- ®,0), G(s) 18 bounded ,

alnce

L 1T e
_ﬁ(_“l_}..w_}—( P k‘/lle " dFk'{h)) —LJ._LO—_}_]{S}RE
o

SjHD[S) ST T SJH 4
LS RIS 0 wliia g _
_otag o) \{_ IR /L o~ F, (h)€ LE{-Q:,O:).’\L1(-C¢, e},

Dat k= el

and since & ¢ i+1 1f the QS(j}(O_} term in £, (3) has ngis
yet been subiracted out. Thus by the standard thegren
on derivalives and Fourler transforms [5]), we sae\th.‘at
1.11) holds for k = 1, and aimilarly for k *'2‘,5,-. yn-t.
Now to get 1.12}, putting # (s) = f (Gi (5) =

£(s) -[_1 4 (t)e Ptat - %‘i(%% - E‘_ 5»}""1 sﬁ” )

=

for ¥k = 0,1,...,0n~1 W& 3€€ thatd 5.11 the coefgiclent
functions of ¢t /(0" ) in the expresq_ion for s ) (8)
ave actualiy inLl, (% ﬁL ouérw except for the term

S"(K)(O Y= oo PN K‘1(0 , which can be drepped

) L wt
\Q\dt' / g™ g = o for a3 0 Over
LoF a+iv

sk+1

for 1.12) sincec s,

t % 0. For th& rest of skaﬂk(s) we have with K(t,h) =

_foirn
i 11‘\5\%« ‘that

O
LK) g2 (teh) b
5\§£ (t gt d B (b) =

&y’ .
B _at._'
=/L(/'Lmt,h) ¢(k)(t—h)dFK(h)J o WV At
O o

and is actually in

by 1.13) and the Fublnl theorem,
t¢ B over oce<h Y

Loi~o50) overw . For since e™

¢>-_B,
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/L[ /"Lx(t,h) M“(t—hde i) a‘“t[2 at ¢
mg/ /L/ K(em) 2 b [¢l e | 0 oy o2 batiar, (n) [am, (a1 )|

[ZL i¢(k){t)[ dt] (fo thldFk(h)rXé A FdFk{h'}l)

N\
by Schwarz and the Fubini theorem. Thus the Planche\rel
theorem end D(s) € Ly(~ ®©) for k { n-1 yieldsx X, 12)
from 1.14) and the former L bound on the gﬁ '-v(t) }
coefficlents. . ~.§‘

w4

Q. E. D.
e\
Now / I dr. (h}i 1= monot'\one ine> -8 and

3
w

bounded by / ’m‘dF (h]' gc ther«é always exists a

unique &, < 4t0and > -p suc%i*fha.t 1 =/:_ Oéh[an(h)j

N b
or a, = -~ f8; it is ¢l 'ar that %, = -8 1f condition
1.5) holds. Tt sho\iﬁ JNowW be remarked that any real
a > %y has Ng finit

and lD yi= ‘"’(T'?l aslsf— o
over@(s) 2% so “that theorem 1 6) may be applied if
% <o N
Theo{eﬁ 1:6) shows that 1f 2(t) = 0, so that we

can take\}x = ~§ » ard if conditions 1. 4} and 1.5) hold
then the behavior of a solution x(t)

»
of equation 1.3)
aS\t;-* ©  is completely determined by the location of
the zeros of D(g ). This has been considered by Langer
and others, [t1] through [16], when the Fk(h) are

step functions with & finlte number of Jumps.
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We will need the following corcllary for our
later results.

Corollary 1:7)

If conditions 1.%) and 1.5) hold and 1f g(t) =
then in order that there exist a non-constant x({t)

8 continuouad n? gerivative satisfyling equation 1.3

all real t, and such that x(t + gir-) x{t) for scme
v, 2 0, N\

W1th
y for

Wi

w
a

D{im wo) = 0 Tor some integer m # 0 is negfssary
S\
N

and gufficlent. b
Also Dlil2m+1) wo)= 0 for integer m ¥s\Iikewlse

for x(t+ -gg Y= - x{%). \\
Proof
x(t) = LI on () =8 iﬁ?m+1} L obviously

vields the sufficlency. Conver°e]y 1f x {t} is the
given non-congtant, periodiq~solution then.x {(t}) ia an
admissible ¢(t) 1f L ¢ +®l8 that 1.6) is satistied,
and hence Xg {t) is the ﬁﬁique golutlion of theorem 1
for ¢lt) = X {t) onm&‘L 0l. Thus 1.11) with e = —%3
{ 0, 80 Ry Cb) gé t—*bby 1.12), yields D{lmw ) = 0

O
from x (T + %%&’? x,{(t) obvicusly, and similarly
D(nemﬂ Yo )R from Xo(t + ) o= - xo{t)

Howg\«(ér if L=+ %, thén 1.6) falls and x_(t)
is not \imissible. However, deflning for intsger N > 0©

Bk h)_ZFh+(3‘|)g-£N)—F((j—1.}g-EN_\
\ k't NO k ""’O )
for Oghg_%; I, Fk N(h) = 0 for ko, and

fe] )

Fie n(h) = F (v for h) %’; X,
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2T
we see by R (07) = 0 that, /% ¥jar, (m)1¢
Jo 4

/]dF h)! < 400 and Fk N(h) has its four component
feasures on {aQ, %5 W) to be abzolutely convergent sums
of the F‘ (h+ (j- 1)5;—- N} measures, and uniformly con-
vergent over all Borel gubsets. Thus since £\
xo(t + %-E) xo(t), we see that xo(tj satisfies A
equation®1.5) with F, ,(h) replacing P, (h) and D
= % N { +%0 and nence DN(imeO 0 asg befm‘.’é

@ 2w
Now > E’SNeBhi aF (b +(j-1 )'GJE,NQ'i’

I

=)
1‘3w—N
Ce / IdF'k_(h) | < / {dF& f—’o as N—w
2 27 {
o7\
o AWV
80 that it is clear that I N(S — D= )]&Tn

uniformly over R(s) > -8 and TS|2 1. Bubt by condition
1.5), I-Tn (a) is boundéﬁ away from 0 for R{g)> -8

and lal large, sc DN{&HJNW) 0 implies that e 1s
bounded a3 N- o5, ,{ Mhus there must exist an integer
mt # 0 such tha‘t\mN = m' for infinitely many N, and
hence DN -—»B(s) vields D{im’w }) = 0 as degired.
Slmil\arly D{i(2m?+1 )mO) 0 follows from

\0 V= -x (t)
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e now want to uss theorem 1:5) to study a
glipht generalization of equation 1.1), the squation

I
1 .15) ) pyam oy | s
D)5 gy e | e )

0,

whee the nonlinsar part [P(x)](t) 1= of the following
type.
!I'B"pt':? iy N\
1.15) A
. - - A\ '
P10 = @ (xPT ), k)1 P (), R )
« \J/

where the blz are real constants with olb<b, (‘h§
ard Q¥

I

1,...} iz a power series In (r+1} Bomplex

variakbles which lacks zero and first ceglée terme and
which corwverges absolutely and unlfofhhﬁ over [v [(.0

W
For some p) 0. 2\ \
Typs i1} X
»":’
ptc
1ATY (PO ] Z{\Ji\[{u {x(‘cl}{t “hy N dé;}‘,.”,'pn(h‘,.._,hn)
. .+ o
such that ‘:_-,n‘ h
\g it D (W o i
- B ‘)/, fmf" (B nfn 1056331: '-:pn(hﬂ'"hn)[{ + W
D.I+---+13 zn :o\wl Q ]
'® X
\‘.'
O

foz, the s » 0, where p,» 0 and the $'s are complex
vadyed, compictely additive, bounded set functions over
Borel subsets of the u fold product space of olnl+oe
which also have zero variation on the product odh, <b by
[0,0) for the remaining n-1 variables for =1,2,. 0000
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Type ITT)

(P{(x}1(t} 1s given by 1.16) again, but whers now
Q(y1 s---1 18 & real valued function of {r+1n veal
variables with continuous second order partiale over
17; < » for some » >0, and such that Q(0,...,0) vanighes
as well as all first order partials at the origin.

It 1s clear that type II) and type ITI) areBoth
generallzations of type I, but in different r‘l?e\ciimm
s0 that 1t is difficult to unite them. O

A ¢(t) 1s said to be an admissible mitla] COT-
dition for equation 1, 15 if Igﬁ t}i .(X‘OD -L' <t<o,
¥ =0,1,...,n~1 and ${t) otherwise sati%i“ies definition
1:1) with L' replacing L, ard if Bk (Y 1s real valued
for type III). Here L' is deflnebs to give zero variation
to the d's 1f any n L' ang to Ble F's 1f nDLY, just
as L was for the Flg alone ..

A solution x{t) for ‘1“15 on 0<t§t 1s defined by
1:2) with equation 1. 15') replacing 1.3} in ¢), and with
the additional restrxctlon x4 (¢ t)1<pr and x(t) real
for type I1I), s \ﬁhat [P{x)]{t) can be defined.

It is clea;\ny the obvious local Lipsehitz con-
ditlon for typss 1), II), amg ITI, using b > o for
type II), Ahet the argiument of theorem 1:3) can be
extenﬂe{ to squation 1.15). Hence any solution for an
admlsm\Ble #(t) must e unigue, ard also must exist
loeally Over t > 0. This allows extension to all t > 0

\f‘. ‘The X{ )(t) remain bounded by P
Now for any ¢> 0 put

€83 sup &
Pzl = ‘°°<t<t+oo x{k}(t}eg (t+it[}|
k’=0 Tyeso,nn-1 !
. k
if xt ) (t} exists for almost all real t for such k.
It is 2lear by rearranging absolutely convergent sums
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or using the mean value theorem that for t>0 and ol B

1.18)

|10 3100 =P (2 ) TCo N <o, F o =2, | TCH, Il 1, 1] Y620
if [1x,1l, and |1x,1lq < &7 for either type I), II),
or ITE). .

For use in the following theorem for a glven
admissible #(t) definme x (t) inductively by 1.9} Cand
1.10) from g (t), where g (t) = 0 and g, (t) €)*[PXN(t)

N

for m 2 0. N
We also need the condition ‘O
1.16) D(s) «# ¢ foréﬁ{s)}o.
D>
Theorem 1:8) N\

If cornditions 1.4), 5), and 1.19) hold for
equation 1.15), then there QXlStS some PT,O<P ¢ p,euch
that for any admissiblg gaﬂ{t} with |81l Lr, we heve

(t) existent as def‘lned ‘above for m » 0 and x(t) =
ljm x (t) exists f‘or weal t_as the unique solution of
M go ¢ Z\J

1.15) over t > CL\\

Moreov;az;‘,;ﬂﬁ [DSUP 04{(5]}( 0 and —-I al | has
X\w -t
20) M T1xoxyl |y =0 and = ixly e

over.’b),o k = 0,1, ..,n1,with|ixi| < +m0.
2

m\J
\

N/ This theorem follows from 1.12) and 1.18)
@ = -xgnd) respectively, since R_;st}z x, (t) for git)

= 0 from N A =0 by 1.19}. The method is the usual
technique of successlve approximations (lemma 2:7)-
For thls yields equatlom 1. 10} for x(t) with g{t)

= 1lim g (%) =-[P(x3)](t) ao that x(t) is a sclutlon
mM— o m

with
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of equation 1.%3) by theorem 115} for this git), ard
hence of 1.15).

This theorem is due to Bellman (1¢], who nroves
a speclal case with n = 1. By a result or Wrishit, [#]
taken together with T.20) it followy that the zoiutlon
Z(%} of eguation 1.15) under ocur conditions can bo
represented by an azymptotic series like 1.11), excapk
that sums of the s. DeCur as exponents as well as yhe
original zeros of D(s). Tt seems that theorem )CB) Ls
of soms importance in applied mathematics, juaﬁ?fﬁing
the use of condition 1.19} to prevent unﬁes@f%d
osclllations in the design of control cig?ﬁité.

A
CHAPTER 11 (‘C

We would now 1ike to detﬁﬁmine the behavior atw
of solutiong of 1.1} or 1:3f§'for the initial eondition
problem in case conditiodf1;19) falls. Here in the
linear case by 1.11) wé\see that x(t) is a sum of
ogcillations growing Yin amplitude exponentially in
general . Clearly\ﬁhe gltuation will be radically
altered in.the3ﬁ@ﬁ—1inear Case, since the non-linear
terms will pr@ﬁéminate 83 the amplitude increases; if
the non—liﬁgar terms are properly chosen, we may hope
that the\AEDLitude of oseillatse, will gtabilize at a
consggﬁt value, Thus it is reasonable to look for
pe&éoﬁic solutions £to 1.15), which thus imposes boundary
corditions ang allows conversion to an integral equation.
These integral &quations allow one to atudy the growth
of non-zerq Periodiec solutions of 1,15} as the zeros
of D,(8) cross the lmaginary axis as 4 varies, the F's
and §'s now depending on the barameter 5 .
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The method of attack is first to extend the theory
of non-linear integral eguatlons developed by Schmidt
(171, and others [18], [19], [20]} to cover genaral
matrix valued kernels. Then in the next chapter we
return to apply these results to sgquation 1.15). This
extension 1s almost trivial, but it seemsdesirable to
write out the detalls for the sake of completeness.

We start with a few well known lemmas on bounded
linsar operators. Flrat if T is a linear open&ﬁQr

oi a Banach space X, we defins [IT]]| = Sh? 1}@ %)
as the opsrator norm of T, and say that T¢ is bounded
1f [1T11< + o0, [28]. .jg,\

ANY;
Temma 2:1) ' .g}

o\
If B and A are twe bounded\linear operators on

a Banach space X, 1f A is on@;foiona from X onto X,

and if |1A-B}I< 1_1 f then A | and B™' are bounded
HA WO

ad
¢

linsar operators on Xwaﬁﬂ'
2.1y BT = AT IGY 1B
N =1
"iz.“ Proof
By Baﬁach [28], p.%1, A belng one-to-one and

=1
bounded h@kes A7 voundsd. Also |1(A-BA 1 ¢
[ A Blk [TAT'11 ¢ 1 1s given, so with operator norm
confergence V = [(A-B)AT 1% exists as a bounded
) Ie=1

1linear operator on X, and thus € = AT (14V) can ve
defined.
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2:2) BC = [A-(A-B)IC = (I4V) - (A-B)A™ (Tay) —
I + V - V = I!
2.3) CB = A" (LaV)[A-(A-B)] = 1 , ATVA - AT Ly (A-B)

I+ A VA - A7 ya

it

I

now follow from V = (A-B)A™' (Ly) - (I+V)(A-B)A "\
thus B = ¢ €xists as a bounded linear operatqhy
£\

Q. E. D. ‘g\”
5 ll} (AI_T)__,.] _ 1_ I = +] T 1‘11 A"\ ".
_ “a S P for pOIIN) an
=1 o\
R IEPYAY & ik B -
2.5) {(MNE-T) X ,'Q‘;
INEW & DRLNT SN (2 -3~~§U"Tn{(;xOI—T) IR
=1 Y
Ay ~":”~1“ -1
for } 3 1IN H(J\O'Ijgi*i 117" are obvious

speclal cases of 2.4 1, wﬁ;ﬁ"a = % (ROI-T) in the latter.
N o

Q
If X ig g seggréble Hilbert space, !¢pf a
complete orthonorital base fop X, we define N(T) =
% N\
L2 HRBIANIPI2 g e paee norm of T as in
P 9o

(25). Wex,;q‘é}é‘ that always ||p|| {N(T).

N

O
Lemm%“g}gj
~OIE NT) ¢ *®, then T is compact.
\ )

Proor
X being separabie 1s lsomorphic to L,[0,1], the
1somorphiam taking T inte an Integrail operator with

1ts kernel 1n L2([0,1] x [0,1]) for which the regult
iz well known,, (24],

Q. E. D.
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To intreduce integral operators we consider a
non-negatlive measure s over a measure space S which is
a countable union of finite k measure sets, and ap
measurable subset R of 3. Let L'; (CH,R} denote the
get of funetions x(t) from R to Cn’ n dimengional
unitary space, such that each complex component function

Xi(t) is in L'; (R). Clearly the definition
N
n " N
(x,9) = >_ ]x (t) ¥y yi(t) dp(t) makes L, (C BRI )=
=1 R ] o\
Hilbert space. :"3’«.

Now 1f K{t,7 ) isannbyn complex\ma‘trix
valued function over 2 x 3, each conmponent KiJ(t ,T)
belng a yp meszursble complex f’unctipel on 3 x 3, we
can define the operators K and K by

2.6) K(x / (ty7) x(E fiv-(f} and

&N

K" (x)] (t)=!K B 5%( de{r) fort €8,
‘R

~

where K {u,v} denctes {[’Ihe adjoint matrix of K(u,v),
provided the vect \}ntegrandq in 2.6) have their
compeonents in L‘;:(R) over v for almost all t € 5.

In our application S = (-, %), R= [0,x] or
{0,2v], ancé[’\p ‘wlll be ordinary lebesque measure.

Lenmaeabs

Ifl Lty € 1A¥ (5x8), and if LY(8) 1s

qwa‘,rable then K and K are boundsd linear operators
on L“(C 7R) into itself, and actually imto LL(C,.S)
as well with finlte base nerm

I'\)|—‘

b2 [
2.7) NK) = K'Y = 15/ fimy 06,012 (man ()]
i, R R
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Proof

The first statements are obvious by the Schwars
inequality. Since L" (R) may be consldered a subupace
of L“(S), it as well as L” C »R} 18 separalbile. Thus

letting 41 be & complete orthonomnal set, by Lhe
Bessel equality we have

N
1 - f/|KiJ(t )% (T)p(t) o
R\
n = I N\ o
© FA[E I frgen i) as
- L IKGI? - 5 | (K(g )9'5.?)}[2 = [N(K)1°
= b D,a=1 AP
Q. E. Dy

N/

1
TR Y
AL

We slways assume he:éaf‘fer that Lg(sj is separakble.

s'.
.3

Lemms 2.!4}

if X (t ‘T)gé\d ,] t,7) are_pe measurahle
and essentiallv B&\I}ded in absolute value by M, <+ o

on 3 x 3, 1f MR} < +e, and if T 15 & bounded linear

operator on ’L“(C R) into itsslf then

3\]{%(“ = LKy 100, v, = (g

T
268
N lgs L (0] = Ky, U7
\3 ds D 270, ]

J"-,r) s and

define K(t,T) as 8 M measurable matrix function

satisfyving on 8 x §

2.9) [5Kij(ts")]§ nas (RY] || F(M, 2 almost everywhers.
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Also &3 an operator on Lg (Cn,R) into itself we have

2.10) 5& = K T eﬁ
Proof

By the Fubini thesorem, we know that except for
r€ 3¢ of #(3') = 0 we have E5,r EL‘( o:R) with
1]ng L1 Uv ne{R) , and hence Vi,r _E L”(C »R) with A

fly. ;I TITI 1Igj,,ll- Thus 2.8) defines 3 1}“*’
&z 8 p» measurable function of t € 3 for almrnst, alls€ B,
and 2.9} is satisfied. By using the assumgt{iosj. that
L§ (8) is separable, we get an orthogonal{expansion
for g5, r of' the form 85,7 fj,p(f? 51513, from which
1t 1 . - . T \

is easy to szee that 5K13(t’ T) = \U=‘1 f,],p( Y h ,p(t)

convergent almost everywhers on{ SX 5 12 actually B#

=1

"'0
N

measurable there.

Clearly from 2.8) &{]?Z:é.&?), 51{ iz a8 bounded
linear cperator from L"JL (Cv R} into itself according
to 2.6). Thus using, “t\h\z f‘act that any bounded linear
operator on H;.lbex\t&\space poszesses a unique adjolnt,
which conlcideq with K af 2.6) for kernel operators,
we have by 2. 8)~, 2. 93, and the Fubini theorem that

,\“.
\jx[xs\),_

“\"T'\a o 1[[2 /yi(t} (Kt 00y g 3] f*p(i’)dw\(t]] (7 )u(7)

Z.13) n
‘.l
: ,]— / [(T(SJ 1-],1K [\ } ")y {rl

= % {;(gj‘, T GE g }dp{r))
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i *
=2 / ffT (1K ¥, K00 mix s ()i )
R R

i,J:‘] N
(KT LK @) - (1, K(x)), K ()
(I{ T K(x), )
for all x and y ELS (C.,R). Thus 51(: KT K forne.10).
. .\:\’
Q. E. D. :’\ "

N/
%
.

In the following theorem 7 denote’sj«é. vector
v/
parameter, y = (71,..., k) with 'rp real"‘:}rr complex and

BTN =V”112+“-*”k’§- O

7\
\‘
Theorem 2:5)
IT K, 7,%) 15 & matrlx kel’nel qatlsf‘mng the

conditions of lemma o 4) fnr i) [ b with ¢ R)< + o,

1f Ky (C SB) im oger'a.tor norm continuous with

respect to v over IM W<t and 1PA= 1 1o not in the

point spectrum or g o’ Lhen there exigts a bp_measurable

mabrix kermel V. t\\ A, ) with, for some finite M,
and & 3o,

s\.’
2.12) 1:"({:]- (t,7x, v < M, almpst everywhere on 8 x 8

for |8§T1< pand [vlI{p; also 1f X denotes the Banach
space Lpg {C,» 8) of essentially bounded vector funetions

ovew 3, then 85 operators both on X ag well ag U;(CHJRJ
have N

2130 ¥, =" oa - Ky )7 - 1.
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2 jr./P 5 2
3ince [N(Ky}] = Jr /g 12_ [Kij(t,f,y)f dp { 7)dp ()

S n M1p (R)]2 we have Kﬁ,to be compact by lemmss 2:2)
gnd 2:3). Thus by the Rlesz theory [21], (28], the
gpectrum « (KO} of KO is & pure polnt spectrum except
pogslbly forr= 0, and for any %> 0 contains only a
finlte number of points A in the plane such that

| N128. Also 1K |IKNGK,) < nMis(R), 30 O 1S Wi
iz given by 2.4) as an operator on.L (C R) for

A= Me (RY + 1.

1 3
congtruct a polygomal arc LO from ﬁj te hi; consisting

of at most two line segments, such'pﬁﬁﬁ [A] > 1 and
Mg € (K,) for all} L. Now bypays), (A 1K) is
operator norm continuouq in A€ LBE—G'KD)], which includes
Lo’ and nence | {AF - K, ) L 45 bounded over the com-
pact set L, say by M ( +:a Then we can chooss &
finite sset \2, 35,...,~1ﬁ’ with Ay = A s such that
Mp- n+11< ,TQIK H}%H) and A\ € L, forp=1,2,
,N-1. RN

How by 2% 8} and 2.9) we can define the polntwise

bounded kern@l V{t T ’ho o) on 3 x S so that by 2.10)

2.1k ¢ ¥ K, (T 1K)n)p-l*i =f(?_1;}ﬂ
1}‘%0 + (*1'50)\0:0__10\.0

R); we see from 2.14)

Since we are given M =1 ¢ a(Kb)mﬁéfthus can

at X = R as opgrators on L (Cpo

Ehat ) holds by use of 2. h) low by using thls

same lemma 2:4), we extend V{(t,7, A, 0)s successively

from A, to A, to all A such that 1Ay & and
p
1A- 3|§_ HEK, I1M +1)'1 for § equal to some AP’ and

guch that the form 2.10)} takes is
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1
0 VB ot ( "B (Kovﬁ ot ? Ko‘vﬁ,o + K,

2.15) + K {(Vﬁ,o + Z *f— )DKS_EI(.B I—KO)"T]}RO

=1

S
= VB)0+ {V,Bi'o + I} 1121(7\

n -1.n
YK (BT - K
Again from this last form and 2. 5), 1t 1s clear by .
Induction that V)\ =Xx({ AT -K } - I and 2.13) hpldq
for the stated ) and fory = O the convergence,., ILC}UII("
ment for 2.5) being satisfieq by \

\
g
"

(L g + 1) 7T mo.g@g.w 1y

1
< KT (FIK_ 7| A

\ 4
For the final extension of Y{t T ,A, 4) to the
> and v gtated in the theoren‘r gince |[QAT - KOJ~1 M

1= bounded 1n some complex .r}aighborhood off A =1, we
tan choose p >0 such that‘ for fome r,
TIKT*K oifr -KQ 1r§r< 1 for |x-1| <o and

T2l o where all ¢he operators denoted here are on
B

L,(C,R). Then WEFIrally define V(t,7,\, 7) in the
obvious way 0, that 2.10) takes the form

O 1 . ) .

JBo * 3 [ DKW, o, o, KOJ]

q *Va0lR K Y j

Yy (KK ) -1

X, Y- 1

+6K3-KZJ OJ{(’P\I—KOJ ‘Z [(x K, )OIK,) H
((fo )v oH(K,

—=1. - n
= v}w + M(AI K,) 1 HZZ] {(KT-KO) ("I“Ko) 1]
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By comparing this last form with 2.1) after taking

A= XI~K andB J\I—KT,weseethat

Vy v }.(AI - K ) - T for the stated » and ¥ , alnce the
)

convergence inequality is satisfied. Thus 2.13} has
been shown over Lg (C,,R), and 2.12) follows from 2.9)
at each induetion stage 2.14), 2.15), and _2.16).

Tt remeins to verify 2.13} with the operators
being interpreted as on X into X. First 2.13) is bg.r \

gefinition always eguivalent to Y
AN

2.17) SOMNE - K (T + INPES = (T + V_Mg(jg‘:l"’_ K.),
or, ‘T}\,’Y_- K,‘, = V%:'VK?’ = K'Yv)\,»y"

But the operator formilae 2.17‘1§\Eorrespond in the
obvious way to kermel formulae an:Szx 3, the indicated
interrations being over R C5 as’ “izual. These kermel
formilae obvigusly hold forvt‘he V{t, 7, A ,0) definition
preceding =2.14), and can és&sily be vemfied for those in
the induction stages 243%) and 2.16) by formally
mimlcking the manipula:tlon in 2.2) and 2.3). The kernel
formilae belng Dro\ed 2.17) follow as operator formulae
ocn X as well %S\.J"E(Cn’ ), and thus so does the equi-
valent 2.1§)t\’...’

N\
\w«
&

\\: “If in theorem 2:5)we now allowk =1 to be 1n the

point spectrum of K  on L" C ,R), denote by ¢ and ¥
of K and K a.t A= 1, so that actually

Q. E. B,

the eigenvectors

(t) and ¢ (1) are deflned throughout s bye=K (¢)
and.;: Ko{v} from 2.6); hence ¢ and ¥ are both in X.
Also define ¥ (t)¢ (T) to be the matrix kernel whose
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flr

i} component 1s v}fi(t} .J( ). It 3nould be noted that
by the uniqueness of the 1nverse,vij(t,f, 1,%) is real
valued on S x R 1if Ki (t,7, %) 1g 20, and that we can
ard will take r.oj(t) and &i(t) to be real valued on 3
ir Kij(t,?,o) i3 so on 8 x 3.

Theorem 2:6)

If K{t,r, satlsfles all the conditions of &
theorem 2:5), except that now we allow}= 1 to b€V
the point spectrum of K over L‘E' (C,,R), then Ky and
K, have an equal, finlte number m of orthonerna 1
elgenvectors, iiori and {'pr at A= 7, Méreover, if
E(t, 7, %) 1s defineq by
———>=l 22 et ined by

m \
2-18)  EB(t,7,4) = K(t,t, v) , S ONtt) BT
T B P

over S x 8 and ||+ {n, then 'a:Ir;Jost everywhere here

AN 1

W1 (631 < M tnw (RyR, 1€:(7) < M. [nu(R))Z
2.19) "&’“

1By (6 ,1r)!\<~.3m1 + m(M,)® ny (R).

Alsor= 1 ig n'o’t""in the point gpectrum of Eo over L;[CH,RJ
\’\“ Proof

S\"Q’C”é N(KO} = N(K;) { +mby 2.7}, we have that KO
and Kf;i;are compact, and thyg by the Riesz theory, [e1],
thqf:\subSpaces of LZ(CH,R) Spamned by the eigenvectors
© ko and K; respectively atM = 1 are finite dimensional.
By Bansach, [28], page 15k and the reflexivity of Hilbert
Bpace, these dimensiop mimbers are equal Thus fpﬁ"l
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and jgf, 1 < v { m, can be chosen as orthonormal bLases.
Now 2.15) 1s obvious from¥= K. (¢) and

¢ =K (¢) with [lel| = 1 = |{¥][, from the Schwarz

inequallty ,end from the definition 2.18).

To prove the final statement, suppose on the

contrary we have some 1 L‘u(Cn,R) flull = 1, =such
that EO(U) = u. Then by def‘lrutlon, with Ch = (u,prﬂ),
m &
2.20) K {u) = E_( 2__0 ¥ = u->_ o &N
° o PP T NS et
Wow 1f each c_= 0, then this equation shows K~Lu) = u
80 that u 1s an elgenvector of KD at A= 1, ~anﬁ hence
u= ,_ e, # by the definition of E.f'-":‘i- mHowever,
thisP¥leids the contradiction 1 = llu| NS Z|

p:‘
On the other hand if CJ% 0 for uomeﬁ) = j, then from
2.20) we have > ¢ ¥ = u - K (Q3 and thus the contra-

=1 P p »
diction o ¢ ¢s = Z Cp'p‘% v) = (u, ) (K i ¥) =0
from K; (.¥) = i ¥. Heﬁdé such u cannot exist, and so
A= 1 is not in ths{ja\oint spectrum of E_.

1,’,: Q. E. D.

N
The Fi*edholm theory results afforded by theorems
7\

2:5) andh\246) now permit us to carry through the

SchmidtM theory for matrix valued kernels, and thus to
aLtBak equation 1.15). The all important polntwise
bQUnd 2.12) presumably should be derivable from the
argument of Carleman [22] In reaching his equation 13),
Dage 201, suitably modified to take care of matrix
valued kernels [23]. However, the proof via 2.1) and
lemma 2:4) seems simpler.
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To start the Schmidt theory we give a genceal
Implicit funetion lemms, due to Hildebrandt and Graves
{207,

Temma 2:7)

If L ls a set and ¥ o Banach space, and if Tely)
is a function over (€ Land y € Y into Y such that for
all Y € L there exlsts some realp,, 0 pk such that

SO\
2.210 11 Ty (y) - Tply )l LRy -yl e

whensver |[lyl| and | Iy 1I<8, and 1if for thig™aame
positive 8 we have, P belng the zero of {44

2.22) 8D 3—1_—5;_ HTg( )1 over f\E,L'
0\¢l

then there exists s unigue functiéfdf(;‘ } over I, into
¥ such that {I£(% )] <& ang P\ 4

2.,23) POE) = T (5%,
Moreover, £({ ) = nlim}l::?{“e ) comvergent in Y norm.
—_— — G -_—

Q
i "‘,\ Proof
Iet g ($)%\0 and g, (%) = Te(g, . (1)), so that
n po n { -
gn(g) = T% (8 X )We note from 2.22) that

2:2k) LA = [z (@) < (; #e (B

N
As an ziﬁi\fict}onphygothesis asaume ng{ Ot ¢

< f.jg.ﬂi')[l —1—(*‘1& Pe - for v {p ¢ n, whien is obvious
i{"\:nl‘-—-' 1. By 2.21)

2.25 - )=
) Hgnﬁ(?) gt |= HT (g $)ITe (g, (I
Seeligntog ()¢ (v e, (5311,

Since 2.24) gng the induction hypothesis insure that
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£.21) yields. Thus f!gn+7(§)lf <
< Plo (o] + llgﬁﬁj £y - gnfi)ff yields

2.25) ilg (0] girngH(?_u )=

111
= g, ()] A=

1_py
verifying the induction hypothesis. N\
Now from 2.25) we see that by 2.24) O\

AR _‘F\“\
2.27) Hep () = gy R0 + o +ens m Mg, €11

n i 5 +¥7)
<P (1 %) A
and {g (%)} 1s a Cauchy sequence. Y QslMig complete,
there exists £(¥) € ¥ so that lim piF{r)-g (DI = o
n3 A"

at sach {€ L. Thus by 2. 26) ;‘3' n
NI 50 P10 g, wur—? ] =

= urg, (5)11(15%) ™" <8, and hence
2.28) T (£(8) gm(r [1<p 1 IT(E) = g 611

Thus Te(f({)) nﬁ?\&ogm](g) £(¢) as desired.

Alzo for un;queness if {Ih{c}t] <& and
§(h( )) = h(t): then by 2.21) iff(t)-h(§}llé_%llf(f)'h(lef
80 that fg ({) aince p( 1.
{§\ Q. E. D.

AN

PR

W\S>For the rest of this chapter we will assume for
simplicity that S is the real line (- @, +%) and that
arbitrary translates of g measursble sets are g
measurable. Letting X = Iﬁo(cnjs) as usual, we

define ¥ as the set of u € X such that the norm

_ mEx ,es3 sup pP. We assums that each
Miul = 5, Ees™ Pivg o <

{Pj(u,T)] (t) ig defined according to type I, .1I, or
ITIT as in 1.15), with convergence uniformly over



118 F. H. BROWNELL

Myl B, for |l lulli<s and with the second partials
continuous in ¥4 and ¥ for type I11, except that the

I component functiong u, {t),.. .,LL[lft) replace x(t),

x{ ) ux ™ e, Then 1f C(t,r , 4 )
satisfies the conditions for theorem 216}, for ||v] < ?,
we define the non~-linear Qperator B'v on X, into X by

n N\
2-29) [By(u)l (t) = S CLitE T IR (u, ) 1 (e ).
.]"—-1 J J :;\t\’
NS

From 1.18) ror all real t witheo 0 we have D
2300 THB ()= ) 110 [ ur oy (I Prieriary)

for ]I . -and Ihutttig ;— P, Hju]ﬂ‘g%" . In the
theorsms f‘ollowing We assume Kij(t, ’?\3 Y ) real valued
on 3 x B ang yift) 50 on 8§ if thEo\Pfh are of type III.

Theorem 2:8) D

If Ky satisfies the cQitfitions of theoren 2:5) over
Hvti¢ Py then for some pd;é’itive 3, Py e?.__ng_pj any
Y& with ruym<p5 and f’F?iI(F’E implies the exigtence

f 8 uniqus y ¢ X wig{gl Huallics < ;‘—p satiafying in X
¢ '\‘,' __-__-______‘—_H_"__"__

2.31) 7 =\ K () - B_(u)

’\:“: Proof
By theddem 2:5) ye can find a positive p,< B such
that v, %“'exists satisfying 2.21) apng 2.13) for

i1vi Jgj}pg 30 that 2.31) 14 equlvalent in x tg
PR

2\3§) u=y+V],7(y) + G (u),
where €, - B,},+V1,,}, B,.
Now as an x operator norm, Hiv, I <np (R,
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by 2.12), so from 2.30) we have for [f{|ull{ and
[t 5o
2.33) 111G (u") - € ()i

(v + nu(R)Mg)M3(llTu'|1f + (el ) iaf-uall .

How we can choose & ) 0 =0 that &< ;7,0 and

(1+n,u(R)M2 § = and then p5>0 gc that i
§> &1 +n4(P)M_) 3 Nhlch implies for {l{y!l! |<P N\
P , \\
AR DR TR ANCOIATS S

But Ty{u) =¥ + \T1 ,},(y) + G,Y(u thus satlshes
3
the conditions of lemma 2:7), S0 2.32 k &m hence 2.31)
has the deaired solution.

Q. E. D. \”
y ,\‘
Theorem 2:9)}
If K, only satisfies ’Che conditions of theorem
2:6) pver ||, F1< -” Lthem for some pomtlve 8,75, and

:PB with §< —P there QXlsts a function f(¥,2,5«+-sZp, 7 )
intg X over complﬁx\z (real for P's of type II1) and
¥ € Xuitn [1Ipl[R<r,, lapi<oy end [1711<7, guch Ehat:
:1) I f’Q]} “such ¥, 250 and Y the m equations 2.35)

below are xs&t'iqfled then u = £(¥,2{5---5%y ,¥) satisfles

2.31) 11\3&3:112 = {u, ,e) for p=1,2,...,1.
P I
2’*) If for such y and ¥ we have u € X3 satisfying
2 Y in X, and 1If z, = (u,p } have Iz [ <ﬂ then

1
(F2Zqseenszg, ¥ ) a0 Fo2ys-eoslpy 7 satlsf’y equations
5)

(}' + \\71 ,.},(Y),r 1 p& \b),rqﬂ)

+ (H,Y(f(y,z“...,zm,T}),r,sd) = 'zP



120 F. H. BROWNEIL

f‘or'_ﬁr= 1,2,..0, 'm, where E, 1is defineq by 214y, I'i'>l

Y
ia the resulting VA v Of theorem 2:5) ip E}, replaces
A
K? s and H7 = B?* WI,YB?‘
Proot
First from 2.18) we gee 2.31) 15 equivalent $q
a
2.36) y-3 w=u—E{u)-B(uJ
= P D ¥ ¥ 7\

with 2, = (u,pqo), which in tupm is equivalent, £y,

o}
2.37) Y o+ W, +(¥) - Z1 z ,ipw + W, a((p PAH (u) =y
: p= AR

Now K., 8atisfleg exactlng‘ﬁilar conditions to
G, of 2.32}, 30 for given arbltrary Zp &quation 2,37)
can be solved exactly 1ike ,2;,”3‘2), £(y,z, seeesZp, oy )
belng the solution, But faking the Inner product in

L (C,,R) of 2.37) WItho ¥ yields 2:35), S0 the theorem
1 proveq, ~N

trivia: soluﬁ“:ic';n of 2,35},

The. 8o lowing lemms considerably simplifies the
computatisn 18CeS9aYy 10 solve the W equatlions 2.35),

k.
o'p" T ¥, r""‘",o(r‘”:"rw at

least over t € R,

(pl" + HT,O(pw)’ rﬁ) = ﬂap,l"
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Proof
(x - Eo}p¢ = —Ko(pw)~ D¢ = - p¢ by 2.18),
s0 by 2.13) b+ Wy (¢) = (T - Eo}“T(pm = 7
For the second equation to be proved we put
= (f - EO)_1(u) for any u € L”(nn,R),
v -K (v} =v - E E:j{v ﬁ@p¢ = A\
L)\
=1 + E: (v, @) ¥ . N\
2.39) = PP
_ _ _\,’s:‘
(W) = = (V) + (v V), ) i\
= —(v,p¢) + (v,p¢ - Kg.tpﬁ))
- - - (u, SN
= ~(v,pe) = (u',B;. Wy olpe )

thus results from {pﬂ*! orthonprmality, ¥ = K; (¥ ) and
2.13). Thus - ¥ = pf * W - (p¢ ) a8 elements of the
Hilbert gpace Ly (C SR, which gives the result.

Ah E. D.

We see that ﬁheorem 2:9) reduces the original
integral equatiom.g 31) to the m complex scalar equations
2.35), which‘qpen can be solved by standard implicit
function héwrems These secalar equations are called
the brans@bequations, following Schmidt and Iglisch

171,;{¢8], [161. 1In case the B, are defined by P's
of &ypPé I or IT, then it is obviously possible to speak
about the terms of B, (u) having a specifled formal’
degree in u. Thus we may then define
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]

Y — : ~ 5 ., P 'y
Tw(y,z1,...,zm,'}) =y 4+ w,,?(” piT ’,"ijz.' 1-1'\‘1 ;{(py/‘
qw(y,z1,...,zm,?) = q degree ;E;?Tms of ¥ -'?;1""’7‘111
InH, 27wy,
v—-'lh h h
2.ho) n{¥:¥) = coefficient of (=,)" (z.) 9...(sz m
in fhlw’
(V) = (hV(OJ),pw ) for h, = o. N

Here b, 2 0, b =(n_,n, soeohp) Is e maltiple ek with
l=h wmn « .0, Dys 50 that h_ fs the\form1
degres of y 1in n', end k = (n, TR PPN

With thesgs def‘initions it can bemg\)r\éved, by uzing
the technique of the ma jorant analoggu;::iy to Schmidt
[171, that actually for Prg of .tggig\\f or II

)
" "

sreyZ o, 7 ) = \)

1 m o\

N

L 4

7] h‘l .}}:‘ hm
=201 (z) AN (ze) ™ wiy,m)
v=1 |hi=» nN h
nor{m’\?‘or sufficiently small | fylil,
f1vi) ana izpi. \ﬁléo the branech equations 2.35) now
become, for v =&;O,
. 7N Y/ _ h
2.h2) { (2 )hT m
pﬁiwa-_g lhjzﬂ U AR
:n\:.
\L P=1,..., m.

11‘}\9 L's here are known as the Schmidt I numbers.
Ws\qibfe that 1W(3T,Z1 »ee0Zps ¥) can always be defined

/2.40%) regardless of By, and that in general for F's
of type ITI by using the Teylor eXpanslon form of the
mean value theorem we can define ,w and thus y L for

< a4 if the P's have g th order continuous partisls

2.41) {y.z

h
convergent in ¥
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in a neighborhood about the origlu. Actually if for
type ITT P's we only required first order differen-
tiabillity, then in place of 1.18)} we would have

2.43) 1 [POx)1(E) = [P(x,00(t) £
AL AR (IER P IERN

where 5 (p,2')— 0 83 p and pls 0+ with a similar
sltevation of 2.39). This conditlon would still be
enough to get theorem 2:9), since lemma 2:7) is spd
spplicable, but not enough for theorem 1:8) due &
replacing e 2% 4pn . 18) by s -ot :’5

This terminates the generalization o(\the results
of 3chmidt which we needed here to attaplvour problem.

PN\
CHAPTER II1, \‘

L >
N/

We now wish to construofxthe connectlon between
the results of chapter 1I,% ehiefly theorem 2:9), and
our original non- 11near“delay differential equation 1.15},
and then to solve thgaﬁhezmh equations 2. 35) under the
resulting special Eéﬁﬁitionq

Firat we nobe that for arbitrarv. osjtiye w by

making the traﬁsformatlon uj(t} = @it §E3;1 x(5)

= (J K we can write 1.1%) in the vector form

N

N

(ty 5, J<m

1
/ » 4 = — LU
\\ dt o J+1
%.1) du, (%) 1 o h
n = -5t / uk+1(t—wh)d F (h)t -
=0 . .
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conditions 1.4) ang 1.5) being sssumeqd satisfled from
now on., Here {Pn(u,wJ}(t) is define_-d from the
[P(x)] () of 1.15) by replactng x”””(t-bp) by
us(t=¢b) 1n 1,16}, ang x(J‘”(t~th by uj(t-uby) in
1.17},

Since we are looking for periodie sclutions we
have x{t + %,I ) =x(t), or thus the boundary confl{tions

5.2} ult + 27 ) = y(ey, A
We also sometimes impoge the gstronger Condiﬁ.tjf;f)‘
3:3)  ult aw) = - oyryy |

Following Coursnt apng Hilbert, | 5.1;.}[,"1).30&, we
gee that G,(t -~ T} for 7> 0 i3 the Greé}ﬁ' function for
the operator g%ﬂ + 0y and the bouzj.dé.}’y condition 3.2),
where N

_ ex -~ ot \‘
Gg{t) = h%({mg?ﬁ}.f forodt ¢ox

7k Go it + 27y - G,(fj" 1= the extension glsewhere.

Slmllariy rop % and“gb'é' bourdary condition 3.3} we
have H(t -r) {he Greén function, where
O
3.5) H(t) = ;—\ggv’o C 8 <7, H{t + 7) =-H(t) olsenbere
Thus we easily see that 3.2} and the vector
equation 3'.Jx)";'é.'re equivalent to y ¢ Lg (Chs{-,0)) and
over -et gl Lon

NUIREVACICEES M)+ s g ar
Q ©
,\‘:'{" J (n,
IN6)

\} 1 4ot /90
- DI Gy (t-wh-1)aF, (n)
url(t) =d/ kr_-.O + Ogh dr,
G- E 6 (6 1p_(u, w) ()
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by using the Fubin! theorem and 3.2) in order to shift
the lag - wh from the unknown vector function u into
the @, kernel. Here both 3.1) and 3.6) need

I1luill {p for [Pn(u,w}](t) to be defined.

Similarly 1f Pn(u} is odd, Pn(—u,w) = —Pn(u,wj,
%3.1) and the boundary condition 3.3} are equlvalent to
u £ Lm(Cn,i-oo,OO) and on (-, 40}

uy(t) = ‘a/o H(t-rhuy, (7) a7, § <n, N

3.7) H(t-7) [P (w,@)ir) +  OY
un(t} = = %3 / o ‘.“'}‘: dr
o ) /H(twﬁnifr)d F, (h
0 h \/

M

o Yy
How in 3.6 or 3.7) We assune tﬁat F‘k(h} = Fk(h n )
13 a real valued function of a real parameter » such
that over |g! (b andog,h“
3.8) | dFn,m) -4 ij;h,’n) b < Int-n] a4 § ()
where ¢(h) is monot@ﬁa\ tnereasing over och, ¢ (0) = 0,
¢ (+ o) < +oo. By taking w' = 0, 3.8) shows the
measure [dF, 1{,"1’1"}] to be dominated over {0,%) by the
measure bdﬁ\\h + |dF, (h,0}] for all » such that
{7 | g ’§w
ifow put the two dimensional parameter (w-w ,n }=7
£ Q\r"\ﬂome @ > by 0, and let K, be the operator
d\ﬁlned as the 11near part of the integral operator in
3.6) or 3.7). From 3.8) and dominated convergence 1n
2.7}, we see that with R = [0,7] or [0,27]

lim N(K. - &,) = 0. Hence |IK -K_,1] (K -K ,)
Tyt=vllao ¥ ¥ Yy

shows that X, satisfles the conditions of theorems 2:8)
-or 2:9) over |7}l { b. Thus if we also assume that
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[Pn(u’w)](t) = [Pn(u,w,n)](t) is a functlen of » sueh
that for type IIT the secord partials of Q are
continuous in ¥y and p and for I op TI the power gseries
eonvergence holds uniformly over I'n1 {b, then 2.30)
follows and theorems 2:8) or 2:9) apply to equaliorns
3.6} and 3.7}, Since ¥ =0, 1f 2:8) applies we have
the uniqus solution u = 0; 1f 2:9) applies woe merely
have to solve the m complex gcalar equations ?ﬁ?i; to
get the solution. '\

It should be noted that the Schmidt prdesdure
used here appears to be the only way of,&ﬁtaéking 1.15)
for perfodic solutions. At £ipst OUSCWFht think
Poincare's method of smail parameterg ﬁould apply,
[26], pages 33, 11%, 194, Howeverythere the solution
1s analytic in the initial caq@iﬁion& at a time s
whereas we havé seen the general solution of 1.15) to
deperd upon a #(t) over thg?ﬁﬁole Interval tD-L’<t<tO.
Also we actually need thé;general Fredhoim theory
developed in theorem“?:”). For since the Ko in 3.4)
and 3.7) turn out noed to be normal, the spectral
resolution ig nmt<;§éilab1e. Also since the kermel
matrices do not “sommute, the original Fredholm formulae
for the resgl?ént kernel do not apply, and we seem
forced tg{f@l& on the peneral Riesz theory, [21],

T@ning to the so%gtion of equation 2.35), we
defing '\ (s) = 5= gk e"ShdFk(h,n} as in 1.9) and

\. k=0 O§ hH

{'s‘g}mﬁze for simplicity hercafter that
3.9) Do1e,) = o, Do(ipﬁﬁ) £ 0 for Integer » £ * 1

in case of 3.6) or condition 3,2), apd that
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5.10) D {1 w ) =0, DBy (i(ev + 1)a ) # o for

integer v # 0, -1

in cage of %.7) or condlitlon z5.3).
We here can allow D, (1@} = 0 for any other real
w if %.9) or 3.10) still hold and indeed this can

happen, usually with {} irrationsl, for amy number
of real @ by proper cholce of Fk(h,o} as has been.~"\
experimentally investigated by Blumberg and Ming@ékﬁ,
[32]. "'
Under these conditions we now have the f@llOWIHg
lemms, ~\\
Temms %:1) \
M = 1 ig 1n the polnt spectruﬁQBf K, with m = 2,

and ¢ ., . ¥, 1¢ R 2* can be taken as follows

. -1
"‘-= i ¢ J7 $.=- L k‘] lwhdF h
o= ed Y, .é‘;“( L)/ (B, 0),
5.1 ¥ite) = Rletts, “1, ey = feete, i,
RFOE ﬁf‘[e%“tc (A 2¢J(t) =Aette 41,
n o
where ¢, = (7 EZx‘ $.|2) f%o = (1'2: I¢-}2)_1/2 for %.6),
N J c =1 Y

Proof
The first conclusion comes from t
of the linsar part of 3. 6) or 3.7 with the linear part
of 1.15) and 3.2) or 3.3), snd by using conditlens

5.9) or %.10) with corollary 1:7)-

he equivalence
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computation of the krown 3inusoidal solutions of the
equivalent linegp differentig) equationg, the edjoint
one for both 3,6) ang 5-7) being

32) ¥ ()= - %{¢1_1(t)-+ L /¥ (tewhap,  (n,0),

1 0<h
With ¥ (t) 5 0 ag definition. O

2.35) becomes 8imply two équations in z_, Z5,% , and
T with y = g, Actually there 13 g fui?t}her simpli-
fieation 3ince 1.15) gn 3.1) 13 sutg 8mous. For then

e

1f u(t) 15 5 vector solution of 3.4‘:),\and the appropriate
bourdarry condition, go tg s Ut NEOr any resi 8 where

gult) = uWt-0). HNow 1t 13 eastly veririeqg from 3.11),

glnce (gu, ¢ ) = {u,_aw ) by using the boundary
conditions 3.2 op 3.5 that

3.13) (g, ) = ¢ 1:1,@“9) €03 8 + (u,,¥#) gin ¢

Solutions, gg Wet }vill do from neow on, (u’e‘o) 1s resl

K/
Z‘s (u) 'pJ (u,iip)
a0 that 8 = I A f— ———2_.__) —_ = (.
' BLC tan (3,77 vields Zy ={u,,¢)

Thug wii}h\ = Z, and after dividing by z to rsmove the
triv.i&I;’z = 0 solutien noted befors, 2.35) reduces to

N
N L ey z By (£00,2,0,7)), ¢

0= oLy ole,m) . L (H-y(f‘(o,z,o,?)),z °)

Where now Z,%, and 1 gpe to be real, 4 = (“’"“’T 7).
>
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In order to get a theorem on the solution of 3.14},
we greatly strengthen.3 8) by agsuming for simplleity
dFk(h 7Y e= gk(h 7) dF {h), F {h) to he of bounded
Jjgi&tion_on [0,:), and gk(h 7), 5— gk(h 7y, and
a2 %
be Borel measurable over h and bounded absolutely by
£(n) for 171¢ b such that / £(h)aF(n)1 { + o .

0

(h,n) to exist continucus in » at all h and to

n(u, , 1 ) we require if it is of type III:
that the third or less order partials of Q(yi,n) &)
¥4 must possess first partlials in % which are simul-
tandously continuous in y; and 7 over Iyif§ Ao b,
Ifr Pnﬁu, w,n ) is of type I or 1I, we require in 1.17)
that

Also for P

w\/
o o 9. N\
N da‘ (h',i,...,h )7]'1)
lpl-2 Dys oo PRlY n
1% ' /o / <
pi ~dg. ~(h1, ..,hn,‘n)

for |2 amd [n'! { b~9\Thua in either case we always have

5150 111B, (u,w,ar\'\) “F_(a,e, m)ITIIat=n] [11al 112,
Under these asqumptlons, and with L' defined as

the sup Dvaﬁ\}nlﬁb of that in the definition of

admissib e‘ﬁ(t) for equation 1.15), we now have the

followifigh theoren.
Theoram 3:2)

"‘if L' ig finlte and if the Jacoblan J # 0, where

N/

3.16) J =L, 4l @ ,0),Ly o 8950

'
o]
0)11:1 ’0,@( 1,0):

- [}
2L2,0(1’
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then there exist S0me positive s, and p_ fuch Lhat fop
any real 3, |q] <P, there exist Z2(n) and o (y) yaiqus

real valued solutiong of 143 Inifzi¢ Roaxd fe- “ f(.oj.
=800 solutlons of 3.14) 1n :
Furthermore, defining z¢ 1) and @ ( T) hy

3.17)
z(y).= J_'1A"? 3 I\
1 i 1 T
A= E‘L!,-O,n(w1 »0), L, L0 0oy 101 L, L0, e ’OJ;?ILJ{,:G,‘LWT,O}
- A\
L2 . -1 & ‘\../.
o (5) =4 +J Ban, N\
| N 2
B = olp 0le,00 L fe o) 1,004 00,4 (o)

We have ag » - g that
@) - &(n) = g(42) and z(n) ~3{n) = o(n?),
Froof ()Y
I) First we need to ghow thgj;;kthe Firet order Schmidt
L numbers PoSsess continuox;éf‘first partial derivatives
In @ and % apout (9,0), 80" that 3.16) ang 5.17) have
meaning. First frcmi,g\ho), iL (@ ,71= (1V(”,’?J,i‘oj

& ) _ T,0
and \v(w,ny o - (I\\m’m’v} 1(1‘& J+ or thus
1v{e,q) - m,n(T:V.f:é,‘,ﬂ'}) = (TL! O(w,n) - 1)1'# +

N\
+ 2141,0(“’,-'? )xé\ik But the equivalent differentigl
AL
equatiolﬁsia'f'e known to be

\ g 1 '
;k‘f ) w '|Vj+1(t) = (TU - Tjilpj {(t) +202'#j(t),
3.1\?)’“ e N J<n,
]vﬂ{t) + %kzo / Vk+.’(t“thdFk(h,’?J =
B och
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with the appropriate boundary condition 3.2) or 3.3),

whers we also reduire

5.19) 0 = (,v, ,#) and .o

== [1v,2 e ).

Now we know 1v(w,'q,t) = —Tﬁ(t

)~ DN, L ($)1(8)

to be the unlque solution of 3.18) and 3.19), s0
T
1V +(t) and hence 1v.(t) by 3.18) are continuous, 2\

&nd thus ,v'(t) € Lg(Cn,[O,EW]}

Henece term by, tarm

differentiation of the Fourier series for UJ(t)'iﬁ\
valid, and hence by taking Fourier coefficlengs: o
%.18) and using 3.11)} the uniqueness of the, soiution

shows

{ “5\\

3.20) (V. (t) = &, gln t 4+ B cos bt

J

But submtituting 3.20) in.} 1@} now shows that
o, gnd B, are rational fuﬂctions'of w

o(n

J cos (un)aF, (n,1), and / \ 5in(eh)dF, (h,7) and

linear in ¢ and ¢ witﬁ‘an.added constant. Thus

1 2

finally qubqt1tut1ng X} 5.19) determines 1“ “IIW,O(w’n}

anrl 20 = 2L1
L cos wh)dEk{h 7}, and

oh 0 h
< S 4
Srnge 1Ik ) and glk(T) are always continuous
in v ffbm theorvem 2:6) and 2:5) proofs, so that there
aEQ\ﬁD seros in the denominators of these ratloral
fapétions, this gives our result from the assumed

differentiability and L' < + *®

Q. E. D.

(1)

(w %ﬁbas rational ;Emctionq of w ,

in(wh)aF, (h,7).
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In In order to solve 3:14) we first peed Some
Lipschitz corditions 1in order to apply lemma 2:7).
T
First consider the integralfef(}l (t-7-wth) —G] (t-1 —wh)|as
o

for fW"'ﬁﬁfﬁ b, I@-";lg b, and oh<L'. Thig ig
bounded by 27 {{u'~olLt ip R AP » and 1f not

by Jw'-alh(y +21"T_:‘;731—r) < lot-w|L1 (4 +1':§‘-’r_9? ), N

since fol-wlh ig the length of the + Interval ov,aslff\'
which t -7~ gy ard t -7 - wh apg Separated by{é} )
multiple of ar and T‘_‘;ﬁgr 18 a bourd f‘ox:':G‘T;‘s(y) when
1o separation oececurg, A similar sstimatecshoids For
H(t -7 - wh), 80 that for elthep 3.6 o'r"?é.?J we have
by L' < +% ang 3.8)

3:21) 1HEy, (u) ~ Eofu)l)] = I HIEG) K ()1 ) ¢
I (o) 4 AT om,

For a1l {17V ] ang {1y ¢ B Thus by 2.13) ag x

oberators, 2.1) shews thatifor g by and ||y](¢ b,

we have <\

2B Ny - W (o Lot=al) m,.
Now for u &Y define pa{t) = u(t 4 h) for real

h, and |jy| lg :;ﬁg(ﬁ' I !hu-uf I f). We see as in
I

2.30)
Y
IJ!Bq&ﬁ}uj - B, (Wil ¢

AR M3|Hur|l(§2§g,ruu-(m,_wmu| 1<
w\,,t
NS ) Hatly Jut-opps
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g0 that by L' { +wand 3.15)

3.23) 1B () - B(w)lli
CMul Tl T wt-al Tulty +lat=al lufil]),

and hence by 3.22) a similar result holds for
H,=5B,+ “‘I,TBT .

Now In the proof of theorem 2:9), we see that A
£(0,2,0,%) is always defined as the solution of 2.5})

or 2.36) even 1f 2.35) falls, so “f\">
f =E4f)—2f/+B4f) i
Fow |] Ep{u} [y < M Iul]] and ]!B {f 1Ed <

M PP, 7)1} simllarly to the 3. 21} argument
Thus by 1.18) we have
3.2k} fHif(o,z,0, Mg < lz] 1) ¢!J MI!1f[II§M lzt,

gince by 2.26) in lemma 2:7), WLth gl {§) = =z and
Pr = l— in theorems 2:8) and 2 §, we have

z.25) |11£(0,z2,0, T)rrrganr V1 dzl = Mg fal.

Now again from 24 3?3 for f, we see

£(0,2,07) + ZiyW + W, A9 = Hy (£0,2, 0,%))
for |z! and t|1|[\§ma11 and thus by 3. 22), 3.2%),
5.24), 2.30), and’3.25) we have the bootstrap inequality

"\l
f(\Qyz’ 0,v)+z' ¥ W, L (¥)]
~'—f{o,z,o ¥y - Hf+ W, 1,(1-#”
O - “lﬂ.ﬂ(f(o,z',o,w)J—H,,(fio,z,o,v))w <
\.
3.26)

<pmiemgenl] « ool

oo W pcen R
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s e |l

« [fw, aBAL) W By(r W
{_M.; (lzt] + 12137 (To'-w|+]qt—41)
M (ztetz fflzee

for lz'l, |zj,

Iy lh ang |1y sufficiently ama]li}ﬂms
Oy
since fifzr ¢ IS ST EE ZJF’+' LY H{E? )
< Millz'-z] + (Jw'-w] 4 f”"’ﬂ)(fz J~+\f§7lJ],
by choosing |z1] 4 lz] € —M" and uubs&\turlng back

Into 3.26) with the trlangle 1neq&Q$;t\ we et
‘“f L,o,41) - f{o,z,0 7}‘“1
3.27)

Clilzt-zl + (127 A IZI}(!w‘ o +ln' 1)) Mg
Putting this back into 3:95ﬁ we have

¢

Y

o8 fo,z',0, 'r’}“{z'E VW, LG9

—f(o,z,o;Q(f,} 2(F+ Wy ()

< (Izts1al )ig:bz'-zi+(tz'mzr}(rwf—w|+rn'—nl)J M,

fFor dztl ~fel, 11411, ana [ (v sufficlently small.
Q*g Q- E. D, (IT)

{;I} Ag additiona] notation define BT-— end order

operator terms cnly in By

Thus B} = By By has 1ike
2.30) and 3.23)

by the three times differentiability
assumption,



IIT. DIFFERENCE-DIFFERENTIAL EQUATIONS 125

-

e oy = oty J < Qe M=l il

il BE}’ r{u) - B,‘.y(u]m i H!H!HE? I{“ u ”d!w'—w[ +)

3.29)

\ +llulll 9™
for il , HIu']fl clIld .’Hulli gufficiently small We
also cefine H.}, Z + W1 ,7]3.)” H', = Hy - H'r and note
that L, o(w, ) = (Hy ({7 (7)), %) for V(Y) = W, Ajf\b
oy 2.40). .:\..\,

Also we see that [P (u,®,7)](t) 1n Byis now()"
always given by 1.17) with Py o+ ot b, = 2 'r‘eqardless
of the original type of P (u,@,7) in B,}, ) Qnd“ henece

f’n(=4 +v,e,m) = Po(u,e, 1)+ Pn(V,"’;’{) + Clu,v,9,7)

:.\\.,
N'Lt-h S f_...°° /.OC URE%'E;éK;;k!{t'”hk']"
[C;d.;’;m“t') = 1Gelerén '0"'O.,i;’:‘q;?;-unk)uk,(t-wher} oy, Gy
.x"‘ﬁ\

\\o
where p, = © excep::\f’or {=kand k', B = s P 1o
Thus we see that,wmh Falu, v) defined from [Clu,v,w,m))Y)

exactly as, w@h H»{ from [P (w,@,1)1(c), we have

ll

H,,{ 7) u)+H7v)+F(UV

B u,v) = F (v u)l
31 <Y
\'\bHF (ut,v) - F, (1, CoyH < Hatull BT Mg

EE o (u,v) - F7(u il £
<1wt-d wwmIWHdHMWINH@+
+ lat=al Nall el

exactly like 2.70) and 3.23).
Q. E. D.(III)



] 0(0’1,0) = 1 and eLT o(‘"POJ = 0 from 2.38) we
» L)
have the equivalent pgir or equations, p = 1 gr 2,
t I
-anT,O,’-'(w'I’O) = (w-_o% )pL‘J,O,“" (mT,oj 4+ 7 I}LE’,O{wl’Oh
+ LR (w,n) + RA¥,n.2) 4

i T * (_:]
o P N\

)

¢\

where o-
| D

pfy (@5 7) =pL1,o{”’")hpL1,0£”1’OJ'?pL?,O*&&ﬁ’oj_

2

3.32) o le,n,z) 4 2 pRu (@,

' £ &

e plr,0,u(®50), O

o = J— ' - - -, ‘ ?
pRolwm,2) = z@gpno,Ho,fn,pgg\,
T e 'h\\.
pﬁj(m,?}’zj = E(H?(f‘(o,z,o,y)):—‘:ﬂ},},{z Tv("r)),}.,w) » and

pRules ) = 1 e,y - plevo(“),0) =

=(ﬁ¢pﬂﬂ)*ﬁ%ﬁvm)h
\\

Now f‘(o,z,o’,?:‘};f zZ yw(7) &+ H?(f‘(o,z,O,?’}) from

2.37), so B\

3.35) pR3{f!’..%?!oLZJ = (F.},(]v,l{,y(f‘}% %ﬁ-_y{HT(f}};p*")

A\ S
from 3,3 ).\Z,Also ginece || H.Y(u)lfd <M ull? as ror

¢,
P

3.2L) g “pince A u) ) <Mlag? from 2.30) we get
from 3,’\} )

3....\315\:.1{1131:{5(“",?,2) Tpfs(@,n,2)) ¢ lo'-wl [212 My o
Ryjusing 3.31, 3:27), 3.22) por Vi) = - f‘ i 7(1'“’
o 4)2325), and the equivaiens o 3.23) for H, ard
Hay, Simila.rly From 3.33)

3:35) IR (e, m, 51y _ P 12)] at-z) (g r)4z) ) RER
by taking care op the ;-factor first for the obvious
caweL{zrgI | .

8 3 ' L 2lal, ana 1p this fails then
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fz} < alz'-z) and |z'l { 2]1z'-z] which again makes the
result chvioua. Lixkewlse from 3.27) and 3.29) we have

1
3.36) rDRQ(W:naZ’J - pRe('—"')r:Z}i g

(lz*i+lzld¥z'-2] + :
2 Mw

+ (Tz'+1z1)" | -l . )
Also by the mean value theorem with Known dlf‘ferentiab%%ity

~~ ’

’ - = L\
-pR‘l (w 3"1) pRi (“’-:7?} - P : \.."

- (w'-m][pL;,o,“’(w"’ﬂ) o140, ok 1v°)]

3.37)

/

with |w'-©] { |e'-e@]. Again by 3.22) and" :}.23)

3.38) izt Rh(w‘ 1) -z Rl;.{m: 1) < \\~
izl fwi-niM + 1z'-71 | Rh(w\’m <

¢ EUIR PP ra-'qn ) 1z'—z|] ’

Now putting pR( SMLE ) e R + pRE + + ZpRh
we have 3.32) to be equlvaleht to
-1 -
©-w =B g1 Q } o (4,0} R(w,7,2)
-1 w,,",2)
Lo, 0{&?\0 R( 17
3.39) &
z n,&.J\J‘l—E]OLSt“ 0)d \R(w,n,2) +
»
N L @003 N R(e,1,2)
R\ 1,0, .
singef e are given J ¢ 0. Thus § = (- ,Z}, ¥ belng

\ .
sudlidean two space and Tn(y) = right hand side of

3.39) gives the proper form for lemma 2:7), Alsoc
pl1 ,o(@, M was shown to have continuous rirst partials
in part T}, so by 3.37) and 3.3%) through 5.58)135
well, Ty(y) satisfies conditlon 2.21) withe,= >

tnl, le—w | and {z| ¢ & for some §) 0. Also at & = o,

for
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pRQ = pR'j = szL\ = 0 g0 that

5-&“0) pR{w])n:O} = DH-l{w] M) o= DLT O(“’?,??J -

>

(w.,0).

4] 0,7 i

!
1, 0(@y50) - o
But with 3> ¢ fixed, by 3.40) ang the known d1irferen-
tiability of pL1 ,O(w,nj we can find 8> ¢, P BN
guch tha:, FiFg (8)] ] < ;—5 fiop Iﬂj < P, and r}njis:l\ce
corndition 2.22) ig gatisfied. e \

Thus with P =3 we have ourp desir’i;'d}‘ﬁ"ﬂlque
solutionw (1) ang Z{1) to 3.1k}, and Jagn ¥ @]+
fztn)] < ol m from 2.26) as usual, “%Jt by the
assumed twice differentiability in yoor F (h,7), the
part I) proof shows LT'.O(n-J 1) S have continuous
Secord partials ip o and 7, @€ that we have
R e (fene ), DM Thus by 5.35), 5560,
and 3,38) NY

o\
’v

2R,z 1 G R IRRCTILE

Por sufficiently srpa\“l“\l Iw—ﬁ;f, 7] and |gzj. But this
combined with l@(w\i;.éwTa + lz{my Cngm, 3.39), and
3.17) thus yiald}w(w ~{ ) = 0(7%) ang 2fn ) - z(n) =
0(112J asg degfgﬁéﬁ.

thanw,& ), then Polu,e,7) 15 oag and hence pLe,O( ,
= 83" Thus J = 5 gng theorem 3:2) is of no use. In
OXIeT t0 take care Of this situation we have the
}ollowing torollary,

We make 2ll the &asumptiong bPreceding theorem

3:2) and in addition aggume the second order derivatives
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in Q{yi,n) or second order terms in 1.17) vanish
identically for Il { b; also we assume Q(y,;,n) 1z four
ir place of three times differentlable iy it Pn(u,w,n)
is of type IIT.
Then in %.16) and 3.17) rveplacs L, (@ ,0) by
e gt 1 XY
pL5 0{01,OJ to define J' and B' and let w ' (n) =+
3

BT{JT)—1~.1 arud ET(‘H) = \!A(J }_111 Under our a“sumptmps\

we then have the following.

N

&)

s./.,

4
Nws

Corollary 3:3)
If Tt ¢ 40 and if JT 4 ¢, then there exfsfﬁ SORE

positive py and A, such that for any real s\'ai*i"sfying
|71 <PJJC&A(JT . uz 0 there exists a unique real
valued solution x{n) and »(»} of EIRED’ &\‘r 0z < Py
{or in -p5<7.§_0 and ]“""1( \ ]
Furthclmore asy—0, @(7} ¢ fe?:t{n) = D(ﬂj/i) and

2 - 15 ()1 = otz o8

Pro’o‘f’

Here we meresly nge‘& to mimiec theorem 3
noting that in place\\f 5} we now have 7. 1})-r by
replacing i u1°‘ ; ||un1J apd silmilarly for 2.30)
3.2%), 3.26) arﬁ% 22) by adding cue to the exponert

:2), first

of Lhe obvw_qmy actor,
I_.ettj\‘L ﬁ,t ~ the third order terms In B,,and
BT = B B, , we get 3.29 ,}'1 from 3.29) by replacing the
expgl‘smi 2 by 3 similarly.
Also letting Cf(u,v,w,)
terms in P ¥ {u + v,», 1) and definlng E,
(JT(U v, w,n) we now gel in place of 3.31)

be the sum of the croa2s
{u,v) from



1k F. H. BROWNELL

HT U.+V:} - HT(U) - H-ffb') = F,I,(U_,\.FJ - H.I{'V',U:],

3.31 )THIFT (u,v) - F’Jr (u,v)l) ¢

€Mt =i (et e i Y g,
e (v - 8 vy ¢

< ler=al (e oy, ey R
nteal il ey

KA
(llfui” L My O

Also 3.14) is now €Quivalent to thu\;ﬁ1z, p=1
or 2
’ 1 , K

' pL1,O,ﬂ(1’D} ={e- 1)pLT 0&\1,0} . 27 ol
3.32)

+pR.| (w N ) +

0 W,l.-O]'

P 2{ \’{oz) +
+ f(&' 1,2) A &2 RT( 7y
o 3 4 b

with pRJr - ;— (HI‘,(I‘( 0,z, 0 ﬂ

h
pfs = L ilie) - )

Az vJ, @}, and
i\

Thus putting
R, + gt I i
) p 1 p'le + _R +(l' H 2
Wwe see,tspm gt £ 0 that 1 P
T 3.32)7 ig equivalent to
\'4? W T
{\m TTTBOD T L eyt "Ry -

NI T»OMJT')‘;H*(«».?,V&)

o (Jf) T

Pl o, ul ﬂo)fJTJﬂERT(N,n,WJ

e O,cﬁ“’wOJfJfJ”’TRf(w,v}lﬁ) N
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Now from the preceding inequalities aj before
we have strong enough Lipschitz conditions on the re-
sidual terms in 5.39)+ go that for 0 { a3, {o-w i}
and [1]{ 3 condition 2.21) holds with o, = & ;

hence any sclution of 3.3%9) f 1s necessarily unigus in
thig neighberhocd. Also 2.22) cobviously holds for
emall f41. but ginee we required> ¢ we must review A
lemma 2:7). In constructing the solution there we

note from 2.26) that we only nsed consider and'“ D
gsuch that § O

%

Vierals s a2 o pm (o)l Inm 1;@ 3%40).

But since gA(J))7 > 0 is given and sincemt}le residual
terms in 5.39)" are 0(3/2), 1t is cleg®'that this
means for sufficilently small 7 t.he\cmmponent of
Tyl u‘1,a} for ein 3.35)' 1is alwéys non-negative for
guche and <« . Thus the const‘;jtl’c:tion in lemma 2:7)
gives the desired unique sa},'k?}@ion.

Ny

g\ E. D.

We note in 3\}§' that 1f we had replaced z by
Va0, we wagld gimilarly get a unique solution
in TPy <z 0:? “Also all the residual terms In 3.32)
are actuall{r’ o(z L*) except for pr ard it would be

4

2 A
8lso if PE(U, @w,n) had £ifth instead of fourth order
Cliffel‘en iability and the fourth order terms vanish.

e\'la‘tter holds necessarily for 3.7) where Pn(u,f-*’,’ﬂ
mist be odd. If the residual terms are o(z ), then
we zee that win) - &l(») = ox") and
[ 2 _ ‘F--! 2 2

7L} ] [2°(n)1° = o{(»°).

Also we remark that if P{x,?) in the original
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differential €quation 1.15) 1g odd, Lhern bonh .00 and
3.7) apply. Thus by theorem 2:45) and corolinry 3:3),
i 3.9) is satlisfied, s sufficlently smsi] soiuition of
1.15) and the bourdary condition 3.2) alse catiafies 3.3),

Tt sheould be noted that ir Pn(u,m,ﬂ) s of type
I or II, then the form 2. 42y op equations 2.2%) hag
each pIh(ﬂ,ﬂ} analytic in bothw ang " by an argumert
similar to part T) of the theoren 3:2) proor. TN
place of 3.20) hera we would zet [meo(y}]i(tj.bazbé
a finite Fourier sum with angular frequencics 4)'s
creele Also 1t 13 casy to obtain bounda fgr”%be
absolute value sumsg of the right sides of{ﬁﬁhaj over
all complex 4 and » and all reslw neax O,3o,w?. Thus
1f we had beepn able to exterd these boinds to complex
©, by an application of the Monteﬁ:%heorem and Lhs
2tandard implicit function theopehfof complex variables
We could have eliminated the lepéfhy proof’ of
theorem 3:3), “;i”

The non vanighing off%ﬁe Jacobian is an
important restriction H0\the solution of our problem,
since it requires thdt) not both the second order L
umbers, or the tbfﬁé order 1n 3:3), vanish at the
origin. PFor th;én%eason the Sechmidt technigue iz not
applicable tg:%ﬁﬁations which become linear at s = 0,
83 for example Van dep Pol's squation.

We mdW have the following result for the form of
the sg\zgtion £00,2,0,7) with z - z{n), v = (2(n)-w ,n),
and-whe re X9(t) denotes the corresponding solution of

V18] and Za(t) 1ty Pipst Fourier component for the
. o '
perlg.ﬂ —_— .

wim)

x
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Corollary 3:4)
In theorem 3:2) and corollary 3:3) we have for
all real t and |9l <£J1L

5.42)  Ixg(t) - £,(0) 1< "M for 3:2),

Ixﬂ(t} - 1§_n9 M for 3:3).
1
Also with a = —— fo .6) and 2, V;,fbr 2.7 3,
'\[ - IR _ N\
J 14-m,|1-...+f~"1 ] re
)bt (1),

5-%}:‘6?3(1:) = z(n)(

1 +w1w{n)+...+(w1w{.q))n X

Proof ,%\
First from the integral squatlon J¢ 63 or 3.7), the
n th dsrivative of xﬂ(t) is comt1nuoga\;n reai b, and
tyus the Fourisr series for X,(t ) Q&ﬁ~be differentiated
term by term. Thus 5 b3) follows,lrom
u.ly,t) = xn“ -1} Uﬁn) \ 3~11}, apd from
COmthan z = (ulv), ‘w) and‘o = {u{% w}, these
inmner products belng omer [0 o] or {D f] for 3.6} or 3.7},

Now for 3.42) xgn%,\flrst note from 3.20) that with

1€'(“(ﬂ) i,t) ami ‘Yﬂ +he first Fourier componemQ
of 1‘v"J(w(n} 1 a)am . (n, ) we nave ,¥.(e(n),?, A
=1VJ( wln},n,t ThLS by the tntegral dELLﬁJtlon gf

Fourier Qt?xficlentq for [0,2w] we have

s.u) ({S0) - 200y viatn), il =

N
N\

SO = i - 2l et il
< 2 Muln) -zlndy vie(n),a
But 3.28) shows [flu{?} - (%), V(e Yl € M!z(n)l

for 3:2), and 3.28)  mekes it {M lz(*r 317 for 3.33),
and from 3%:2) results lz{n}! = o{|n]) while
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.
lz(n)] = 0{i%12) from 3:3). Thus we getl w40
obviously from 3. .44y,
Q.- E D.
Let us denote ny }‘?,](t) the result 11 1y, T.h3)

we replace z(ﬂ) ande( ) by 2(4) ang @(n) 1

L3P ) wag
u96d, o2 by 71 (1) ang 8l(y) ip 3i3) was used. Wo qee

by 3:4) that Xy (t) may pe considered the - . praér
approximation to 3(t) over o(t¢ 27 ag g —»"‘6\'

[T = N>
If we actuall,y CArry out the computat Lc’mr out ined
in part I) of the theor

€m 3:2) proor, we, Oaﬁ easily

—+

verify the following formulae. ,m\‘
f=1 ‘o &, .o S 3t
h'](‘d) = t (i“’)J kc1l{/k » (’-’-’J. \w—-— L__ I, {w} (—10?1}‘] ]
k:i s a() J 1
gle,n)= h {(w) 4+ 11‘1 w) iwhdF‘ {h,s)
’ n+1 k+1 _/ L

3.45)

R(w} = |y tog. . +{;..; )h 1 (1‘1-1)}"1'

jal
et b ’

Ha,y) = 1+V(@{-Rw}m) ,
1
@,n} “@I w n}], 2 1 Ol:w =og[ ‘l‘H(W, v:]]f

where "al iz dsf‘ined 8% In 3.43) and the rest as in 3.11).
'\"

L , Cy a

1].-’1'{@’\,}?{{&170) =@]:g{(l’1,OJ [ 'a_ﬁ,Dfl (j.(.n?] )]T,'= B

N JCe 3 i
\*"9 150,7191,0) = [m [ Ty Dolle 0], g l ;

3 0g)
2

181,04920) = ﬁ'm{ s D {lw)] 1 [ ,

L, 0) = o] "2 J

241,0,al,0) = 1&lw@;,0) [ 'f_”T"Do(l“'”uﬂ";
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By means of 2.38) and 3.46) we can now compute
J, A, and B and hence f.n(t}. This 18 carried cut for
a few simple examples.

example I )

0= x"(tYy +a, XL} + (‘l+r7;)ao OX(t) +

1,0
+ (1+9})an .lx(t-b) + Px(t-b)}} N\

with £(y) odd, four times differentlable, and ! (pl’\a 0.
We use 3.7) here and get for «, satisfying 3. 10)\” ”

~

7' “
AN\ N
O
PAN
Ao jrf“'(:’f)[cp)h (2ql+a = sin(uﬁ])sin%b}
515 (8, 0o+ (o o |- (8 o 2, b c03 s\¢=~ )con (@B

A
O

A =(c—22 A & 20, 05“%‘1 w09 (#,09N o2, 11 007 (#70))
RPN ,

-
|)(u,:,12{1+:u! 32 - 3h~ Nain (v h:l(Eu +ay b sin @,b)

Ed nr h h"
gt oo 2rfree,) m{\ [,, a sin (@ b)}
ERRTRCRTI IR S) 0:0 !
QS
o\‘
N\
We caﬁg\verlw thab £111(0)t 0, and &, A8, s
> - (a\ A2(1-£)b, and a, ﬁé 0 are suff;clent to make

JT 7%”‘0‘* If we had taken = O, these equations
S\yli;y so that Nr(ﬂ) -u1 s

3 (t)-—/\[( Bf,,,(o} 0,1 ) cos (e,t)e
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exauple IT)

¢ =x"(t) + aq’ox‘(t) + (1+1)} f(x'(t*b)}+ao,0x[t)

with f{y) satisfying the same conditlons az in example 1),
Agaln using 3.7) we get for @, satlsfying 3.10)

N
£ 1(0) (e, ), 5\
R Cotuw? r 2N
P . 1 w bay | 81’1(2&1005(“yb]+a1,au_qkbeg)' s
834 (1 (a0 2y W
: wi l“)‘.
e s ’\\
.1 By 1 _ S0 AT o &
AT = - = -8 oty a Tk
(.cllce)E‘}ﬁ.frrl(GJ(‘u?{_ao’OE) r [ )."'Ni:%ﬂ
. N\
B=o0 g0 that af{n: =8, 9.\
¢*{
o EI.I 1 ’.."\
Tty - t.u",] (_ n -—-é-—-— ) 203 (% 1) NS
(w2051 (o) O

™

It should be noted 1g§£ﬁese examples that the

same final expression fg{ Xy (t) could also be obtained
by following the methqty'of Duffing and Hemel [27] in

& Formal way, quééér, due to the presence of the time
delay terms it spgﬁs diffieult to sxtend thelr method

of justificati@h}jas the existing solution of a vari-
ational propigﬁr to our case.

N/
.'\
\
ad
R\
o 83 -
g

N
\xﬁﬁr main result here that appears to be new deals

with Ll equation

Summary of Results

1.15) 0 = x(nJ(t) + Znﬂx(kj(tm}dl? (h,m) =+
k=5 k

+ [P(x,n)] (t)
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Defining Dn{s) as the auxiliary exponential polynomial
for the linear part of this, we assume D (1w,) = 0
and the rest of 3.5) or 3.10) 1s gatisfied for some

@, > 0., The sehmidt technique of nom-linsar integral
equations extaended in theorem 2:9} can then be applied
to 1.15) with periodle voundary conditions. Qur

preaults are then given in theorem 3:2) and corollary

3:3) and F:4), which show the existence of and give

asymptotic formulas as 1 0 for a non zero periodic’

solution.xn(t) of 1.15), which 1s unigque up to gp:ﬁ%ﬁi-

trary phags congtant, xﬂ(t + 8) belng the genepéﬁ form.
N

A
w4

o
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1V. FORCED OSCTILIATICNS IN NONLINEAR SYSTEMS

By M. L. Coertwright

N
FORWARD R
¢\
O
The following pages contain the substan@é@of a
short course of informal lesctures to Profég?@r Iefschetz's
seminar on differential egquations and wele originally
written with a view to private eirculs{hon in mimeo-
graphed form. Time did not allow nﬁ:%o revise ag
carefully as I should have liked/ahd the informal
character of the course 1is rq{iécged in many places
where the treatment is over;@éﬁﬁensed and unsolved
problems are discussed 1p~§‘somawhat cagual manner.

A\

Part 1. Genéﬁgi'Topological Background

§1.1 IntfoBuction. The following lectures are
based on.w0rk:(§5me of it unpubtished) which T have done
in collabova¥fon with Prof. J. E. Littlewood on ordin-
ary nonligéé% differential equations of the sscond
order.{ﬁA typical equation is van der Pol's equation
Wi&?gﬁgrcing term,

(1) ¥ -k(1-x°)% + x = bk A cos(At+a),

Written under the suspices of the Office of Neval
Research, Contract No. Néori-i05, NROW3-9k2.

149
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ancther ig

{2} :‘»C'+1{_}'{+J{+CX3=bl{,\COS(;\t+rr},

where dots denote differentiation with. rcspect to t
which T shall call the time. Both these equations
belong to the general form,said by levinson to be

'dissipative for large displacements,‘ viz ~
(3) X+ T00% + glx) = pet), Oy

O
where the forcing term p{t) has periad %5%”%he damping
F{x) > 1 for (x] > a, ard the restoring(ﬁbch Z{x)
gatisries géil 2 1 for [x| > a. Th@sé?%quations can be
hormalized in different ways by PUbLing x! = x +3,, b1
=v,b + 8.+ Different forms arglonvenient for diff-
srent purposes. P\%

Qur interest in such gguationa wes aroused by a
memorandum issued by tha.ﬁéﬁio Section of the Depart-
ment of Scientifie and Industria] Ressarch in 1936
appsaling to pure mathenaticiang for agsistance in
determining the poE§ible steady states (or stable
oseillationg) iﬁ\aértain types of circuit, and their
ffequencieS,.a@d also how the latterp varied with the
Parameters qﬁ“%he system. There wag considerable
Smphasis.ob the frequency in some of the references
giveq\ “in subsequent correéspondence, and compara-
tiyagy little on the amplitude, and thig has, I think,
iﬂiiuenced Cur outliook, meking us prefar to deal with

e X,t plane in which the time ig explicit, rather than
the phase plane (x,7) where ¥=3X. The problem of
determining periodic Solutions is net gaay to solve
satisfactorily by numerical methods, nor do rnumerical
results show how solutiong vary with parameters unless
& very large Number are obtaineqd.
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We have spent most of our time on equation (1)
which1 may seem extremely special. The reason is that
van der Pol® suggested that, if k is large, (1)
corresporsls to a physical system which he investigated
experimenitally with van der Mark”’. The sxperimental

results showed steble ocscillatlons of periods (En—l)gf

ard &%E for certain values of the parameters. Actually

equation (1) does not correspond to this particular
phyeical system because the latter needs a very un- N\

symmetrical monlinesar function for its r-epresentatipn<
{ o

as var der Pol explainsd in a letter. With the g
symmestrical function 1 - x° in equation (1), itfpéy be

obzerved that if we put t' =1t + (2n+1)% &mi?ﬂ = - X,

the equation is unchanged, so that, if a selﬁtion is

periodic,odd multiples of gX“:with n +'L waves above

X =0andn + % gimilar waves below' ‘& 0 seem more
probable than even multiples. Tha stable czcillations
with period (zn+1)8T are in faaf Iike this, but not all
the unstable oscillﬁtions. ,zﬁféeemed that equabion {1)
was the simplest type of ediation likely to have two
stable periodic oscil{g@ionﬂ with periods prime to one
another, and so we téabked 1t on the grounds that 1t
is best to tackle)s Peally difficult problem firat in
its sinplest foy@;" Once done much of the work carries
over vo more.géﬁeral equations with very little
alteration\iﬁfhese lectures arve malnly concerned with
the genexal beckground and nearly lipear ogcillations,
exceptih Part 9.
N

T WM. 1. Cartwright and J. E. Littlewood,

Journal of Iomdon Math. Soc. 20 (19%5) 180-189.
5. "B. van der Pol, Proc. Imst. Radio Eng. 22

(193%) 1051-1086.
B. van der Pol and J. van der Mark, Nature.

z,
(1927) %63-36).
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1.2. Existence arg Unlguenecss. 1t Yg known frop
the genersal theory that If plt), ard le) are
and g(x) satisfies a Lipschite cond It ior
of x and t consldered, thare i a soluting x{t,xo,yo}
of (3) for whieh x(o,xo,yo) = X, and J'{(O,x(.),yo} = Yy
The usual uniquenssg result requires Nx) to satisfy
a Lipschity condition, but thls is not necessary and
x(t,xo,yo) is uniquely determined by the akbove chdi-
tions. ¥For if not, leg X(t,xo,yo) be a,notl'ler”so.lution
f.‘or which X0, ,y,) = Xor X(0,x,y,) = Y ...Q’\Wr}te

\v/

continuoug
“or the values

x=y,X=Y,and1et \
O
(L) b= max (Y - y), O«KQ’E {a.
. QS

Then there exists 5 g Such that fewlany « ¢ i

N

Hence ,\f‘:;"
(6) R A S DT
A o
LA

and from (3) O

N

N7 X

Y-y 2277 rixjax /" fixax - /[ tex) - g,

%. X o . Xo O

X t
/f(x)dxl + /18 - gtxil as
X o

QK(X-X)+tK(X-x)
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By (&) '
[Y"YFQK(1+a}pa§_2Kpa<%p

for 0 ¢ ¢t (a = min “’ﬁlf} shich contradicts (4) for a
gufficlently small « . By repeating the process, we can
cover any imterval 0 { t £ a, in which the conditions
{4} and (5) hold.

A slight medification shows that the solutions
vary con.tir_la.lousljy‘ with (xo,yo). : N\

O\

§1.3. The Topological Transformatlon. Lebsus*
consider the solutions of (3} in three dimensiofnﬂ
X, ¥, §; since p{t) has period {T, the equatlon Stself
is the same at £t = 0 and t = 2;, and so Wwe bbtaln from
the solutions of (3) a transformation TNOFf the point
P (x,,¥,) in the plane t = 0 info t & /point P (x,7,)
in the plane t = 2}:{. We may slsg c;msider 1t &3 &
transformaticn of the x,y plane, 1nto itself and write
P, = T(PO), P, = T(P,) and sa. on. It follows from the
remarks of §1.2 that T 1is (jq1} and contimuous, and it
1s also orientation predeyving, that is to say 1f P
describes a certaiy, sérfinuous cloged curve C counter
clockwise, then P \i\ll describe the correspording
cuIrve C = T(C}‘Founter clockwise. For the trans-
for’mat‘lou is g4he result of a continuous deformstion with

t from on ;S}f:ine to another.

If, ‘p\f = 0, the equation (3) 1s the same for
all t, \and so we may choose the period 2x/x as we please.
IthEI’e is & psriodic solution x = x(t),y = y(t} it can
be represented in the x,y plans by a slmple closed
eurve I' (or in some cases a single point). If we take
the perlod of I' as the period determining the trans-
formation, every point of T is fixed. In three
dimensions all the solutions with initial values
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Xo:¥o on L wind up a eylinder on I a3 basc. I p(t) ig
not identiecally o, a dolution of (3) when represented in
the x,v plane may cross itself, and aluo gince plt)
varies with t, a set of solutiong corresponding to a
closed curve I' in the X,¥ plane will wing up a surfacs
which is rot cylindrical. FPFor even If its scotiong by
t=0and t = %\: are the same, the sections between
will vary with . O
Oy

1.4%. Fixed Polnts ang Periodie Solufhons.
A solution of (3) with peried %\-’—’" obvious}y’.’;‘cbrr‘espondﬂ
b0 a fixed point P such that p - T(P).,7/A" solution with
least perioq 2§Eg m>» 1, correspondgNte a point with
period m such that P = T(p) ang RPT (P) for
m' = 1,2, ., m-1. There gre a{ﬁays m polnts
P, T(P) ... 797 (p) correspondidg to each solution with

least period m at times t =gy 27, . (m-1 ng?r-

most of them correspoq@z';{:losely to standard types of
gingular point Ffor e,qua%ions of order 1,

Let P with (egordinates (x,,¥,) be a fixed point,
and suppoge thz?.f\\tlﬁe polnt (x,¥) near (xo,yOJ goes into
the point (xtf{pv). 1¢ the functions £, g, p, in (3)
satisfy certéixn additionsl conditlons, it is pogaible
to exprgié,\ﬁ;",y' in the form

. ‘,§w’

ad - = - —
'"\”:.X X, = a(x Xy) + by Yol + olr)

N 7'y, = elx - X,) + d(y - ¥o) + o(r),

where p° = (x - XO)Q + (y - yo)Q, and ad - he # 0.
The types of flxed point can then be determined to
Some extent by means of the roots , 1+ p o OF the
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echaracterlstlic equationt+

a -p, Db

c , d -p

However I shall confine myself here toc the maln topo-
logical features comnected with the simplest classes of
igolated fixed point, and leave the discussion of
analytic detalls and all finer points.

(1) Stable polnts. These are polnts P such that

o = T(P ) and if P 1s sufficlently near F_, theh

™(P) — P 83 N — . In the most usual @ases 1f ¢
iz a suff*cjently small circle with centrekP s T(CYy C C,
and go the vector P, T(P) points into the interlor of €,
and a8 P desceribes C counter clockwiqs&ﬂt rotates through
an angle 2r counterclockwlse. We bherefore say that it
haz index +1. This 1s trus whethéf P moves towards PO
more or less radlally as in_the.case of nodes, or
winding spiral fashlon.aq 1nrthe cages of foci, In the
theory of singular pointd but it should be remembered
that P moves by Ju.mps {P{P}, T (P}, and so on, not
contimousgly alo &Qeurve

I shall show lster that In the general case
through each pOint P sufficiently near P_ there 1s a
slmple close@yéurve C such that T(C) € C Any stable
ogcillat ﬁ?with period om% corresponds to a atable

A
fixed p01n$ under T

\y: . .

Figure 1.

N

. Ses W. Tevinson, Annalg of Math., U5
{1941 723-737.
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(2) Direct cols or saddie points. These are
fixed points P0 which have two paira of special in-
varlant directions or continuafy1 and Yo+ The pair vy
separate points P near PO which move away from P0 in
cpposgite directions under T and the pair v, soparate
points P near PO which move away from Po in oppoaite
directions under T°' the inverse of T. Points on the
continua ¥, Move towards P, under T, but a11 otherg
eventually move away under TV for n sufficlently Marge.
Slmilarly points Ol 4, mWove towards Po undoy,gxit but

all others mave’ away under
T Thissbybe of point
has inde#xhumber -1, for
the Ve’ct’r:;r P, T(P) rotates

A clgg@ﬁise as it describes
i&x\\\\ (’Ah a“}ﬁé]l cirele courter

:klockwise.

Flgure 2. Ny

(3} Com leﬁe"’ unstable points. We need only

say that these ﬁ§~§tab1e under the inverse of T, They
have index nmmber +1, as the vector PT(P) turns counter

¢lockwlse as P describes
a small cirele counter
clockwise.

~\J Figure 3,
\ 3

(4) Inverse cols or zaddle olnts. Behaviour
near these ig similar to that described for saddle
polints except that the figure is rotated through an

angle # , each branch of vy, goes Into the opposite onf
and similarly each branch of v > Eoeg into the
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opposite one. The upper right hand set between 4,
andfv1 goes into the bottom left and vice-versa. Since
vectors all cross over P0 approximately, the dlrections
of the vectors are roughly similar to these in Fig. 1,
and so the Index number is +1. Undsr 7% an inverse col
becomes a direct col with index number -1.

O\
.\:\’
- ( O3
Q&
’::\\‘:
Figure h. o)
{5) Ceptres. These aréxtransitional between the

splral forms of {1) and (5} %s in the theory of
singular points. They@re rather special points; 1t is
difficult to distinguibh centres from stable or com-
pletely unsteble p&}nts 1n anpslytical work, and diffi-
cult to describe! the behavicur near a centre correctly
and precisel wl A11 that concerns us now is that a
centre hasydfidex +1 and may therefore be included with
stable Qékﬁ{th completely unstable points in counting

iﬁdeg&ﬁﬁmbers.
“\“(6)  Multiple points. These may be formed by
poifits of types (1) end (2) or types (2) end (3)

coslescing, in which case the index number is 0, and
other muitiple points of index + p, where p iz an
Integer greater than 1 slso exist. There may also be
fixed points which are 1imit points of fixed points,
other points whose index numbers cemmot be so easily
determined even if 1t can be defined.

and
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§1.5. The Existence of One Flxed P, int. There
are varlous results known showing that thereo cxlsts a
constant K such that for every point P, TMP) lieg ip
the cirele x° + ¥e { K2 for n > no(xo,yo). We ghall
prove a result of this t¥pe in the next part and
from this it follows as we shall gee later that there is
& simply comnected domsin D bounded by a continuous
curve C containing (xo,yo) such that T(D)YC T. It €hen
follows Prom the Brouwer Tixed point theorem thgt\D
containg at least one fixed point? o\

§1.6. _The Maximum Invariant get S.fﬁkéince
TD) €D and T 1s (1,1) 1(5) C 2(D) and@e on. Horoe
™(D) — 3 & closed connected set sucﬁi%hat T{3) = 3.
Its complement 13 g domain and 1t w;}l be shown that if
the polnt at 1nfinity 1s added tor ‘i plane, C(8) is
3imply connected. 3 containg ali‘fixed pointa,
perlodic points, and algo a1l 0ther recurrent points.
A polnt P 1s recurrent ir £9F every 5 > 0, T9(P) 1ies in
& ¢ircle of centre P anq:fddius § for an infinity of n.
Certain types of recurvent polnt correspond to uniformiy
almost periodie 5okt 1ons’ which mey in a certain sense

Py

be stable. \(\”

§1.7. Q‘Finite Number of Fixed Points. If

there sre 931? & finite rvumber of fixed points or
periodic.gp}ﬁts in 8, we can say something about the
relat?Qigbetween.the numbers of the Aifferent types.
For Weytan draw a cirele round each point fixed under
ng:m 21,80 small that No two intersect, and then join
¢h circle to another by parallel segments of gtraight
lines in such 5 WAy a8 to form a simple closed contour
C' containing all the points fixed under ™. Now C the
{fgntier of D is deformed into €', the vector P, T(P)
362 R. Courant and H. Robbins, What is

Nhthematics? {Oxford 1943y,
See §8.4,
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varies continuously and does not vanlsh. Hence the
index number of €' is the same as the index rumber of C.
But it is also the sum of the index numbers of the gmall
cireles. For the angle through which the vector turns
on a line joining any two circles is equal and oppozsite
to the angle turned through as P describes the parallel
line in the reverse direction. Hence writlng S s D,

m

Um’ I for the numbers of stable polmts, direct cols,
completely unstable points and inverse cols respectlﬁely,

we have ¢\, \
- = of O
Sm + Um + Im Dm_ index mumber

If fixed voints of any other types oceur they mat of
course be included in S m or I ig tﬁélr Index
mumbers are +1, and in D if their {Eﬁex numbers are -1,
and counted p times if the index is + P-

In the most usual case T(C) 1ies in the interior
of D, in which case the lndex Humber of C 1s +1, for the
vector hehaves 1n & manneﬁ \similar to the case of a
gtable point. Hence 1E.the mrst usual standard cases

we have

%3%)&1+Im'-D =T
although MBI ether exceptional cases ectually occur in
the case Q{ differential equations of type (3).

P

T,
NG

Part 2. Forced Oscillations In Nonlinear gystems

®)
4 \ Y4
\\3
A pemeral snalytical theorem on boundedness
§2.1. The formulation of the theoreum. In
Part 1 we discussed certain topologleal results agsocl-

ated with the equatlion

(1) % + £k + glx) = pit), pit) of period T



Flgure s,
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where f, g, p satisfy certain other corditlons, and
mentioned the squation

(2) % - k(1 - x2)k + x = bk cos(dt +a),

which is especially interesting both for k large and for
k small. Writing v = X, we stated that there is a con-
stant K such that for every x., ¥, the solutlon.of {1), ~
for which x = %, ¥ = ¥, at t 0 sat1Qfles x2 4 y ( K
for t tol{x s Vg }, provided of course that [, g, p\
zatiafy quitable conditions. TFurther we stated, that
from this certain topological results which 1mp1y the
exlstence of a periodle solution can be deduéed Some
general bounding theorem seems essential £6r further
progresa, and for the study of equatidﬁ“( ) a quantita-~
tive result involving k is naeded:, hk therefors consider
equation (1) in the modified fg:m

&Y

{3) % 4k £(x, k) % + glryk) = k plt,k),

where p(t,k) 13 now ngh'necessarily perlodic. TFor this
is an unnecessary ﬁégtriction.in the main theorem which
follows. As befone it will be assumed that f{x,k},
p(t,k) are conxlnuous functiona of x and & respectively,
and that glzyk) satisfies a Lipschitz cordition in x for
all valugd\eonsidered, so that (3) has & unigue solution
x(t, 3@35Yo) for which x = X, ¥ =7, at t = 0 and this
30 ﬁt@dn varies continuously with Xy» ¥or We denote by
B a Mositive constant independent of X, ¥,» t and k,
not necessarily the same in each place unless a guffix
18 attached, but B, s By v remsin the same throughout.
Although f, g, p may depend on k, they will satisfy
bounding conditions independent of k, and therefore we

usually write £{x), g(x), p(t).
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Theorsm 1. Hypothesas
(1) f(x)2b1>0f‘or Ixf21§£gf‘;;—b2
alwaya,
(80O sgnx 3 by 0 ror 1n) Y 1,

l8(x)1 { 4(¢) where v 18 Independent or k
for [xi {t.

t
R N S LRS- T Y A < B
e

~
Concluaion For'eveg{ X5s Yo the solution of ('j\)\.f‘_o:
which x = Xy X =y = Yoat t = o satisf‘_i_s.\"“~

121 <B, (%] < Blics AR
\v

where B ig Independent of X.o» V.. oo ’t: >t (x_, ¥l
_—— == " o K oD o
. The result can be improved,;ﬁr that 1f
XS+ y§ < R, t, depends Only\om R, but I shall not
attempt to include thig

It should pe obsel’v@dj;that (1) £(x) does not
s for }1,’::'1"5 doesa, some additional econ-
dition such ag & Lipschitz condition 18 necegsary for
uniqueness, (o) P(EN1s not hecessarlly periodic, but
fpdt 1s boung B0 that Positive and negative values
of p(t) average dbout the Same, (3) various normallza
tions are ng’gible by putting x1 = X 4 Bys
t' = a,t AB5, and we have chogen [x! <1 as the
critica,l";atrip, (4) some partg of the proof have tg be
Separdbed for i large ang i Small. 1In ths conclusion

I}'FJ\"“{'B is the Slgnificant part for % when k 1g small,
\'&gd; [%] < Bk when 1s large,

- N/
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£
() };-Y+k/ dx+4g(x)dt

t
=k /T p(t)dt.

Here-and in what follows x = x(t, Xy Yo J 1a the solution
of (3) such that x{O,XO,yO.J =X and X(O Xr Ty ) = ‘o\
and X = x(T, Xy yO), ¥ = x(T, X yo)

Writing

X t \
P = [0 ptmex,  py(e) = [ p(ee, O

4) becomes )
(&) omes N\

(1) :‘{uY-»kF(x)-i-[P gRdat = k p, (t).

lemmg 1.  |x| i_g_rﬂ;grga’d;é’rg@1 for all large t.

Suppose X 2 1 Fo&N “) T, then by hypothesis (1)

)2 0 and by (LB b, > 0, and so using (4') and
(111) we have \)

¢ N
»

b3 'T)o\ﬁf g(xdt-kpl(t)—x+Y—kF( X}
Vs Sk

N

{Bk-x+1Y.

A\t —> o, the left hand side tends to infinity, end
50 % must terd to - but then x — - o5 which gives &
contradiction. Hence x 1s not greater than i for

t > T, and similarly x is not less than -1.

§2.3.  The strip Ix| < 1. lemm 2. If
Ixi on an are PQ,
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(5) 12l < 13p1 + B, (k+1),

and more generally if [x| bD on an arc PQ,

(6} fin < IXPI + B](bo)(k+1j.

taken to deseribe PQ 1s less than or equal to Ef—‘\For
1f not, since X = Xp = / x dt, O\
O
N/

and since -1 ¢ xp € X {1 this givesxg‘%\éntradiction.
Similarly % 1g not leas than (k41 }\C}n any arc lasting
& time longer then E%T 2. D

Let P, be the lagt point: ,b’é}ore Q at which
X1 <% + 1 op p itselr whicheVer is the latest. Then
the time from P, to Q 1s atimogt 2, and X has the same
gign as JEQ on FQ. Supr;?:é”“%hat %y > 0 s0 that x is
increasing, and use {5 }with T and t Carresponding to
P1 and @ respectivglgg\\ This gives

o N £
(13~ % < BFix) o é lgl at + k 1p (51,
',}J

Slnce by hypsthesis (1) £(x) 2 = by and x > X, F(x)
> - bj(iz\\iz.; 27 2b,. By (i1) |g <7 (1), and by (111)

R

S t T
) Ip, (£)) = ~ dt [ { B.
Q" ’ AR

Further t-p ¢ 2, and so combining these with (7}, we
have

X < iP? + Bk + (t-T)y (1) £ kP1 + Blk+1}.
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since :iQ >0, ch > 0, thls 1s the required result if
1
P, = P, and If P, is not P, iP { k+1, and so
1
{ B{k+1) which includes (5).
Ir SEQ {0, X< 0on PR, and since x 1s decreasing,
we obtaln the corresponding result for —iQ when we
replace (7) by

t
(1) kg« Fp Kk F(x) + /T lgl at + klp (0)1 N

because

F(x) = - fx f{x)ax { by(X- X)\g‘«%ﬁ'

X

The result for [x| { b, folléhﬁ by precisely
gimilar methods. {

f “
4 Q)

Figure 6.
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§2.4, Above x = 1, Lemma 3. If the arc QR 1ies

above X = 1 and beging and ends on x = 1, the greatest
helpght h gatisfies

R
{8) h < 8 + B, .

We integrate from € to H, the polint at which
X=Dh, 2 =0, and using (4) we have N

. - /\h /t & t\: t d
Xy = 0=x. - &k f{x)dx - gix)dt + k{\j? p dt
H Q 1 - « NS YT
N

Cxg -k b (h-1) + Bk, \{.\0\"
in virtue of hypotheses (1), (11)p¢di1), Hence
- 8 AN
h-1 ¢ kD, B

<N
L g

which is equivalent te 8y

Lemme L.  1If QR 13 gihare above x = 1 beginning and
ending on x = 1,’§héﬁ the time r taken to deseribe QR
18 less than_BB{ \\+ k),

N

\\O
" “: t
9) %=~k [r(x)ax - 4gdt vk '4pdt
’§m'
A\

R Xg= fox dt { Blkg + k)r- b,

B(iQ + k) which ig the required result.

§2.5.  The use or the energy equation. The next
lemmn,,

which is in many Tespects the kermel of the proof s

2
15. Hence



IV. FORCED OSCILIATICONS IN NONLINEAR SYSTEMS 167
gependa on the energy equatlon

(10) %2 - Y 4ok / /g(x

t
. / p(t)% dt.
Iy

This 1s obtained from (3) by multiplying by 2% and
integrating.

In lemmas 1, 3 and & we used the fact f(x 20\
for x > 1, but we only used £{x) 2 b, > 0 1n lenma, 3 to
obtain the special quantitative result (8). Insthe next
lemms £(x) > b, » 0 is vital in ordsr to onain a
decrease of energy on an are above X = 3 With suffi-
clently large energy, that is to say f‘,@v sufficiently
large &Q when xg = 1. \\

¢‘ "

lemma 5.  If QR i3 an arc above Y= 1 begimning and
gnding on x = 1, then for glv B > 1 there exlsts
B, 2 B such that if XQ > BE(T{H }

N

xl% ¢ ig\,tlf?,é]k J’fQ.

Suppose thaf, ~1le > k. The energy equation for GR

TT_E "\/
N % .
{11) XQ_&E::—Qk F(x) %%t + 2k /p(t)X dt.
R’§.$ /T (x) -
A\
:' -4

t
=k ]-‘f( %% at > k b, [Piz dt, and let
t \T T, then using Cauchy's 1nequality and lemma 4,
We obtain from (11)
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(12) ig-ié<—2J+Bk/'i-n
e L 1/e
{~2J4+8B krl/c' (/[‘[ it )
<-2J0. B‘_.'H/""gé/f"'i g

!
I
ra

;s ( . v b, ('fi;;g)i/e) |

where B5 depends on BB' We may suppose that B ;>\BB
Then the :rig,ht hand side of [1fJ is loasg t"m~ ;
-Jd - B51{ XQ whenever J B k AQ, angd f,. ‘f\hj"s 1y troe
the requireq result Tollows. \

On the other hand ir J < B k % 4 im grating
rom Q until % - (1/2)xQ Or X = B l—u ever comes first,
We have x increa‘sing, and sg

\\
t -
[Pp(th dt = f Dt )dx < B.(Bg-1)
Hence by {11) ‘.sff‘*“
2N t
%2 - :‘:é: - ok >é F(x)%% dt + & / p{t)% dt
Ve b

-)[ BX)dx > -2 J-% p. By-B

PN
?«'
\.
\§ z—eB ka kB+B, —Bz—w/pr,

pI;ov’ided that %, > B, (k+1), where B, depends on B and
\@g. It follows that %2 v o1/2 xé, and that means
x> 1/2 xQ, 30 that x reacheg By first. But then

Bg
J 2k b, / X dx 2k b, (1) X szB Xgr

which ig g contradictlon,if‘ Bg 1s chosen sufriciently
large. Hence J > %k B2 XQ and the result holds.
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§2.6. Proof of the theorem for k > 1. By
lemma ' we know that every solution enters the strip
x| €1 at some time t > 0; if it remains in the strip,
we have [x] (k¥ + 1 at some point within time less than
cr equal to 2 and so the result follows from lemma 2
with the |x| (1. If the solution emerges from the
strip at @ returns to it at R, and next emerges again
at 3, (see Fig. 2) then_lx | € ]XQI - 2Bk, provided

O\

that ]X f ) dh({+1) For by lenma 2 with R= P and
3= Q, I ¢ ]x + B {k+1) g_Ifo + 2 Bk, and SO

. 2 . o .ng

I%g 1% (Il + 2 Bk) o\

Qe
= Ixgl + & Bk %] 3O B k°.
RV,

By lemms 5 [#p]%  I12]] - 8 Bk Lﬁ'\l;’g (%1%, and so

b= e
xgl® %G1 - 8 Bk 1xQ1‘»th|le+uB Kk?

L] i~ :"’ = . 2]
< ixar -y Bllg gl + b BZk® < (lxgl - eB,k)

+8J

. . K™
or IXQI > By {k+1) > 2 B, k.

Hence the(ﬁéiue of |%| decreases by 2 B,k each time
1t emerges uniiﬁ er < By(ks1), and so any solution
Cmerging {k@MIthe strip at Q does so with lx §-Bh k+1},
pravi JJ%‘\lil E > % (xo,fo), Bat if er1 é-Bh (k+1}, then
the maxlmum height or depth reached on the succeeding arc
°J§§1“6 the gtrip is less than B by lemmz 3 (8). Hence
x| < B for ¢t > t Returming to lemma 2 and putting
b, = BT’ we have Ixr { B, (k+1) + B,k = Bk which completes
the proof .

§2.7. The case k < t. If k {1, the result of
lemma 2 1g inadequate because the reduction In energy
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N
N Pigure 7.
2D
LAY

obtalned hy e

- \m) . 1 a1=1=1 th,at
comparatlgggy small., At the Same time we shal .
the ene;g&Jadded ©0 any arc PQ ingide the strip is o
Very Jdeékfe, but 1n order to have the change of the

z

3 on the are QR above x = 1 is now

It foliows from (11) that

1
gl ¢ ‘Z; y(1)}dx = 24 (7).
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- =1
IFfF G > o, since g <-b, for x { -1, / g dx
3 ._bl
b
{ - b5(bh—1 }, and 3o there is a bL} such that

/_1gdx=-G,

b
.b5
and simlilarly it G { o, / g dx = - G for some bg,and
; X
A
{13) mAX (bh’ b5} £ By \E’\ e

%
L
N, Y
27
%

In both cases by putting x =« 13{' +3, and ,cgo\aéing

«, ant 4, 30 ag to include the extra 11:1}5.@;' al 1in

(-1, 1) we can make O
1
{(14) J/:1 gla,x' + 3, )dx =i,0i.,}
N .
It follows from (13 }\g}ga‘t this normalization will
only add a constant B to.the existing B's.

lemma 6. If the arc{PQ lies in Ix| <1 and bexing and

ends on x = t, angg'g@j}
A\
,'s\.. -1

(15) NG f g(x)ax = 0,

L)

.,
themn p w4
- O
o) I .
'“\:w X 4 x; + 4B .k |XP| + 4B k.

C 1
/
for B, sufficiently lerpe and ]Jﬂ{P' , By

Suppose flrst that |%| I I%pl at some polnt P,
In PQ. Then by lemme 2 with P = P,,we have
X Loz
f QF < 5 IXPT + 2]31, and 3o
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2 .1 .2 . 2 -2
XQ 4 y Xp + 2 B, IXP| + k4 B] < xp

provided that Xp > Bg.

Ir x| > é- IJ'(PI on PQ, we may suppose without
real loss of generelity that % 2 0, 80 that x ig
Increasing and then the energy eguation glves

Y
t ] N
5;5—5;;_—.~2k‘/ £ at -2 f rdx o« % a
T . e ':f-\“ ..
'S
- « \J/
L2k, /idx+kfpdx N
(&
XN
<2k b, (kp + 2B, + B) \M

W B (IEp) + 1) N

sufficiently large wh’i;;:’:h is the result required.

N

for B1

¢~'§
\

$2.8. The height™ Although (8) 1s valid for k
small, 1t is inadequate, and we need '
Y

Lemme 7. If theéare GR lies above x = | and begins and
endsg on x = 1,.%0e greatest height h satisfies
<
A0 h< 1 s B (X, + k)2,
O 5(%q
’\\“

»B}r (9) x < %, + Bk on QH, and by lemms % the
N Q
:G\uge;taken 13 less than B

£ t
h-1=/T idtng (kg + Bt  Bi(hg + k).

3(XQ + k). Hence

$2.9 Procf of the theorenm for k ¢ 1,
8¢ that (15) holds.

Changes . (1),

Normalize
In virtue or (13) this only
b2 and therefore only the precise B
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obtained in the conclusion. As hefore we reduce the
proof to the consideration of a solution which emerges
from the strip ix| {1 at Q with JiQ large and after
returning to 1t at R emerges again at 3. By lemma 6
with R= P, 5 = @, we have

.2 %) .
Xg < Xp o+ hBl k IXRI + 3Bk,

for |Xpl > By If IXRI §_B by lemma 2, !x | §_B + eB
and so we have a solutlon.emerglng at R w1th B3 < B\
If |kgl > By, by lemma 5 O

2
L

AR . N 7, N\
lkg1® < %5 - 8B; k I£5] + ¥ B, &k IKQTLW 4 Bk
Y- . s 2
) 4B1 k !fo + b BKZS“K (xQ 2 B/k)
and 8o Ixs! < ix - 2 Bk, proviied that li | > B, (k+1,.
Hence 1XQ1 decreases at each subsequent p01nt where the
solution emerges from the sgpip until {xal < By,
= max (B g B, (k+1)). But oW the maximum height is
less than B,, by lemma 7. Nand the result follows from
lévmg o, O
\Q\

Part =. T@pologlcal Conseguences of Theorem 1

§3.1. Qﬂe now return to the case of 1 (3) in
which p tX\gés period 2x/n, and consider the topological
Conqeqhgnbés of theorem 1. As we sald the solution of
1 (Zzyﬁﬁa therefore the solution of 2 (3) with k =1
and\PI%) having period er/A) gives rise to & (1,1)
continuous orientation-preserving transformstion T .
Theorem 1 asserts that for every Xy Vo X (6X 57, H and
1x(x, X52¥,)| are less than B where B 1s 1ndependent of
Xoo ¥y for t > to(xo,yo). In particular
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Ix |

Y0 = Ixten Ax v 01 <

i

x(en /A,x Ly, )1 < B

for n > no(xo,yo), and this means in the notation of
1.3 that there 1s a B such that THP) lies in x2 4 2
<{B for all x o'¥, end all n > n (xo,y J. We shall now
prove g f‘unds.mental reault baqed on & more gmneral
hypothesis suitable for later applications, and then
deduce from the fundamental result properticg ci‘f an
invariant set and the existence of a fixed R 1nt in 1t.
Theorem 2. let T be a (1,1) continuous tr'anki ormation
of the plane into itselr, and let D b:s\a. fixed domain
and D a domain containing D, bounded 131 a clozed Jordan
curve J. Buppose that if P is & podit of D, every TYP)
dles in D for all n > n {P) ,\

’I‘hen there is a c‘.oma.in A dependly;__ orx D having
the following broperties:

(1) Ails bounded b},{ a cloged Jordan curve
(11 A containm D
(111)  ™A) 16 \contained in A& .,

O

&

§3.2. We~ need a compactness result

Lemma 8. gppose that the hypotheses of theorem 2
hold, -and’ Tet n{P) be the first n > 1 Lor which T™(P)
lies JA\DO. Then there is an N such that n(P) { N
for &L P in D,

1“\ Corresponding to each P in § there is an n(?)
Méh that TH(P)(PJ lies in D,, and since D, is an open
et there 1s an open circie ‘Y{P} with centr'“ P a poinf
of B such that TP)(, (py) 1109 1p, D,. The set of
¢lreles v (P) form an open covering of the closed set 'Ds
and so by the Heline-Borel- ~Lebesgue theorem we can
extract a finite covering ¥ (P TP o He -+~(P,}. Then N,
the meximm of P ) for py=1,2 ... m gatisgfieg the



IV. PFORCED OSCILLATIONS IN WONLINFAR SYSTEMS 175
ragult. For every P of D lies in some a};(P# i, and =o
T P) lies In D, for some n < (P,) { H.

§35.%. We also need a lemma on comnesctivity
based on the use of the Jordan curve theorem and other
allied results.

lemns S. If D, and D, are the interior domalns of
two ¢loged Jordan curves J, and Iy, and if D.. D, 1s
not null, then the frontler b of the unbounded component
U of the complement of J, + J, is a cloged Jordan curhe ¥

whose ipterior domain A contains D, and D,, and L LS,
-

contained 1In J + J, ' C

There are three possibilities, elther (J )“ CD,,
or {2} D1DD2, or {3) nelther (1) nor (2) {& true in
case (1} = J_» D= D and the result 128, pbvious;
simllarly in c;se (2) 1 =dJ,, 0= 1.,\'In the remaining
case there ars points of D in D bx‘hypothems and
also points cutside, but D doeg ‘not contain D Hence

there are points of J both Lnside J and outﬂde it.

For if there were no pomts Orf J' outside D the pelints

of D, ocutside D, could be™ joined to mfimty w1thout

. meeting J,, and if th“esge were no points of J, In B, » Dy
would ke mcluded &D It is emay to s=e that r is

contained 1in J '+ JE’ apd 1f 1t is a closed Jordan

curve, the 1ntei=lor domain & of T pmust contain D + D2.

It thcref‘ore \r-emalns to prove

Lemza 1Q\\ Let J, and J, be two simple ¢losed gurves
such that I, conta ng pointf' in the interior and in
ths\cxterlor domain of J Then the frontiesr I of the
un ounded component U of' the complement of J, + J, 1z a
closed Jordan curve.

The following proof is due to Mr. Floyd. For
this lemma only we use small letters to demote points,
or mappings.

We definc a map f of U into J,, and prov

e that
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it is g homeomorphiam of 1 onto JT. Suppuoe that xer
and x e J1. Then define f(x) = x. SUprese next that
Xxel', but x does not belong to JT 80 that x bolongs to
Je‘ Then there i3 g unique sub-gre Ax ot Je’ containlng
X ag an Interior polnt, whose interiop bointa are points
of 1'but not of J1 » 8nd whose end pointg a, b are polinty
aof J1. Then J1 + Ax 13 a theta curve {a curve conslating
of three arag Intersecting oniy in their ong pointay.
Hence Jy o+ A, divides the plane intu three c‘.om:;isr{s, the
b0 bounded domains being disjoint rrop [ Leb R,
dencte the complementary domain of [ - A, J.n;,tg‘i\éh ia
bounded and has A, on 1tg fronticr, so thab R . U = o.
Let BX be the arc of J] which is on the’ﬁ‘\f'ontier of’ Rx
Then we can define f on Ax as a homeqmorph lam of A, on

to B, which keeps the end points oy o Tixed, and the
definition is complete. -

Flgure 8,

We next show that to every x of J1 corresponds a
point £77(x) of 1 » Ifxe J, and xel' thiag is obvious.
If x e J1 » but x doeg not belong to I' we can constrict
an apre CX from x to Infinity which maets J, only at x.
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Let ¥ be the first point of the arc which intersects T.
Then the domain Ry defined as before containg the part
of Gx from x to ¥y, and hence x 1s the image of some
point of AY urder [,

In order to see that £ 18 (1,1), we suppose that
irxy, XEEI‘ and f(x1) = f(xej. If zel and x does
not belong to J1, then f{x) does not belong to I' . Hence
if f(xI}e I, x, =X%,. Suppose then that f(x1) does not
belong to I, then.;ﬂ&}c1 and Ax, are dlsjoint, except Q4
posaibly for their end points. We have f(x Y a froﬁ(ier
point of both R X and BRx, and not an end pOint qﬁ Ax,
or AXE’ 80 that Ry, and Rx have common p01nt3. But this
1s impossible. For if ﬁoints of Ry, belong\to Ry, they
can be joined to the point at Infinity bipan arc only
meeting 4, in Ax,, and so not meet1ng«¢ither Ax, or Bx, .

Finally we obgerve that T is égn inuous. For the
arcs Ax are countable 1n rmmber,y and only & Finite
mmber of the sets Rx cam_exceed a given positive
nmuber ¢ 1n diameter. o

§3.4. From lemma é’WG deduce at once

Lemma 11. et T be a\¢1, continuous transformation
of the plane on to\itself and D a domain bounded by a
closed Jordan cufye J. If D. T{(D) # 0, then the
frontier Py of the umbounded component Uy of the com-

Dlg@@ﬁ_.Of { + ... 4+ N (J) is a closed Jordan
Surve Wh@%E 1n£crior domain Ay contains D + T{D} +
v+ T {DJ

Jf N - 1, putting D, = D, D, = T(D) we obtain the
P$§U1t from lemma 9. Suppose that the result holds for
N -1, and put D, =244, Dy - PN(p). Then J, =Ty,
and J, TN(J) are c¢losed Jordan curves, and 51nﬁe
AN_1 Cont&ins D+ T{D)Y + ... + TN 1(D) the unbounded

component of the complement of 'y, + TN{J) will be the

unbounded component Uy of the complement of



178 M. L. CARTWRIGHT

J+ ™I + L., 4 TN(J‘). Since D +T(D) + 0, we hagve

TNhi(D) . TN{D) + 0, and since_\N_] containg TN_1(D),

this Implies Ay -TN(D) 4+ 0. Hence the conditions of

lemma 9 gre satisfied, and the frontier I‘N of UN Ils &

simple closed eurve whose Interior domain eontaing

8-y &nd TN(D), and thererore b , (D) + ... + ™(py.
§3.5. Proof of Thegrem 2, First of al11 DO and

T(DO) have points in commnon. If not, whenever

Tn(P) ¢ Do’ THH(P) doesa not, which gives g copt:fadic-

tion for any fixed p ang n > n(P). Since Do T(D)

have the get DO . T(Doj in common we can apply lemma 11,

Let N'be the number defined in lempmy &_{Men for all

Pe D, TP) e D, for some n ¢ ¥ amg “ES'\"'is contained

IR D, and s0 inyy . wop pN(p) _ TN (P ) (1 ( P p)

where TN (p) ¢ D) and n(p) » INsb that

pli-n(P '(D,) 15 containeg inAN._.{\:."' Hence T(B), and so,

1
L

T+ D) +ad:0 4 oN2(py,y p)
are contl\?.ined in_\N_1 M 50 since TN(ﬁ) lies 1in
=10 THI) Lies Y-y 8nd 5o T ) 11es indy .,
and therefore A '\E"AI\I-T‘ 1t 13 now easy to verify that
A =QN-1 Sati:@!ﬁ‘?‘es 811 the tonciusions of theorem 2.

6. fhE max lmum lnvarisnt set, V,rious conse-

X/
qQuences f‘,o\itflow from theorem 2.

Theoi%’\"}:’ 1f the hypotheses of theorem 2 hold, then

@
IT ™35 < s
=)
1s & closed comnecten S6t such that T(8) = s, Further
the complement of 3 iz g 81mply connected domatn if the
point, at illf'l_rl]'_t}{ Iz included in it.

Since A containg T{A) which contains T9(A) and so
on, and all thege 5ets are closed ang commected, S 1s
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g clozed comnscted set, and obviously P(S) = 3. Further
if ¢ i any clozed Jordan curve in the complement of 8,
then C lies in the exterior domaln Dén) of Tn(r‘) for
zome n, and zince the exterior domaln of a closed
Jordan curve 1ls simply connected 1f the point at in-
finity iz included, C can be deformed into & point in
Dén) which 1z obviously contalned In the complement of
3. Hence the complement of 5 isa simply commected dc{nain.

A Fixed Point Theorem. The foliowlng result wow
R\
Thearem L, If the hypotheses of theorem 2 thEi, there
is a fixed point in S and ' has index numbéRM: 1.

By theorem »(3ii) the Brouwer f‘ixefi;.\point theorem
can row be applied to the 2-cell A, and\so A containe a
fived point, but by the definition“Qf":.\So 1f there is a
fixed polnt in 1 it must lie Ind&) Further since for
sach point P of X T(P) lles ' D (which 1s in A) for
n n. (), no point of T 1g:fixed. Hence for every
point P on” the vector P;"'*I"(P) has positive length, and
30 a8 P describes I" th&wector turns continuously. By
mapplng A (1,1) ang Gal‘}tinuously on the unit circle 1t
can be shown that }*}e vector turns through a total
angle +1. ‘\:"’

§3.7.a5Properties of solutions. From these
theorems w';e\:hmw deduce the following with the help of
the re‘m.iarﬁcs made In 3.t

follows easgily

T‘m@-ﬁl— 5. If the hypotheses of theorem 1 hold, and
Mp“’a] has period 2x/\, then there 1s at least one
golution of ‘241 (3) (or 1.1(3)) with period 2z/A.
Further if the number of golutions with peried emzfa 13

——r

finite, the corregponding points setisfy 1.7 (1)
This follows immediately from theorems 1, 3 and e
§3.8. Since by theorems 2 and 3 () tends to

S and T(A) 1s contained in A. for everyd p O 6VeIy
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colution of 1.1 (3) for which (x 2V Yl in D nas
(Xn,yn} Within a distance § of S foron > Ny whers K,
dependa only on D. By ths weiz known x Irtu,r'c-# theorem
methods ir |XI<B, IJ (B1 !x(tx ne Yy <B

% (t, an,y I € B,), whcre B, is Indononcernt of ok, XV

For o { ¢ ( 2x/h, and so &11 solutions bengd nilformly to
S. A similar Quentitative reoyult For ».1(3) in terms of .
k requires fome gort of uniformity ir Thecrsm 1, 2\
It sheuld be observed that, sclutlong dg not
converge uniformly to Dy- For solutions start ’th\ in

N
D MaY emerge after an arbitrarily long tlm(—:{.‘ 4

O\ Figure g,
’\\w

This Jﬁa; P& seen by considering an invariant get 3
001\31 sting of g cirele with g stable point, snd a col
at, oppoute ends of g dismeter, ang an unstable noint at
its centre, Thep D, can be taken to pe a thin rectangle
containing this diameter in its interior. Fer all P
ELcent the eol and unstable point which are fixed ‘n

Do terd? to the gtable point which is fixes in D But a
Polnt P near ije unstable point on the ratius to the col
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srds to ths eo1, and se TP) ie on the redius near the
col for all large n. Henee for a point @ sufficiently
nesr P T{Q) 1s near T™P), and if TNQ) is near the col,
it will obvicusly emergs from Do before reentering and
tending to the stable point.

As we observed in §2.1 the methoda of theorem 1
can be lmproved sgo as to give uniformlity with respect

tO (XO"‘;D)' : £\
§3.5. Damping and Area. Suppose now thab)
'\
X, = x{2x/x, X Ty ), 3, = 3(211-/); }E‘é, 3"‘,:_)
~\
have continucus Jerivatives with I’PSpF‘Cu to Xgs Vg

This will be the case if P, g in 1.8%) have continuous
¢erivatives of the second ordersand p has a contimious

N\

derivative of the firast order

Theorem &. IF in the squa 'ﬁ"J_OI‘ 1.1(3) ¥ and g have
contimious derlvabtives oft t = Firgt two orders, and p(t)

has & continuous derivftive of the first order under the
trarsformation T 49,u11§9d by the eguation, then any
sufficiently f:mall\}irea 8%, 2y, £088 into an ares

%

@ enh
OF -/ roat
:.\" o
\~\ € + e 0%, 64
O\

%Q;H 0asdx , sy, —O.
S‘%TM Ir r> b, > 0 for all x, then under T sach
ill__f_&;__f&ll small a“ed 5%, 6y, goes into gn ares lesg
then ¢ 8 X, 8y,, and so all finite areas tend tao O

wder T as n — . Ip psrticular S has zero grea,
8 caanol contain a simple closed curvs.
After time t the area 8x, iy, occuples an aresd

J(t) x, dy, aporoximately, whcre
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3 Ny
Jt) = £, &
Oxo r?yo
a3y
8XO &yo

Now since the derivatives gre contimicus we can change
the order or differentiation,

g _ | ax_ gz .
at axo Byo

Ay
on ayo

But % = v, anpqg T=%= TEYy - glx) - D
independernt of Xo’ T Héﬁbe
.‘5,‘

LY
J

f%;f;;= -(}f‘\h(J n{%— *(f"(x)y + g'(x)) %

) o
N\
and similarly}ﬁé} For All determinants With two rows
the zame vanPsh, angd aq
) '
x;\'wi
\NY dJ = - T{x)T,
o q
AN at
SO
Ig@ﬁg?ating from o to er/\, we have
\/
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§3.10, Recurrent Pointe. The points of 3 may be
divided into two clagses (a) wandera'ing points (b)
recurrent points. IF there 1s a nelghborhood U(P) of a
point P such that T™(P) does not lie in U(P) for
n> L thenr P ls a wandering point. Qtherwise P ig

recurrent. A fixed polnt, and a pericdiz point are
recurrent polinta.

Iet P ke a recurrent peint. Consider the set A
E=5_ THP), wherc n runs through all integers from
- to +2. Then overy point of K is r*ecurrent.'\ih,\
most cases E' also consists of recurrent points, WA
minimal recurrent set M 1s a closed set of re'é{i'r“*rent
polnte which has no proper closed subset fo\fécu:r’rent
bointa. If P ia Tixed or periodic, M i3 finite. In all
other cages M ig infinite. It may, 'o;\\nfa.y not, be
locally cornmectad. It iz known tha‘r\é'ets which are not
locally conmnseted exist, and also, I think, that locally
comnected sete correspond to amfomly almost perlodic
sclutions, and cannot occur,’when S hag zero area. It 1s
an Interesting unsolvedupl:bblem whether any recurrent
set gther than I‘ixed’gr;\per'iodic points can cccur for
transformations corfesponding to equations 1.1 (3)
satisfying the cofiditions of theorem 6 Corollary.
Levinson has gl\hen an example of an 3 of zerc arca
containing a:\recurmert set which is not periodic, but his
t“a.nsf’orma\ or does not necessarlly make all amall areas
rediuce bv. a factor less than J ( 1 ag in the corollary
Ofih\e@\mm £,

Faxt &, Pogitive Damping

§k.1. We now return to the discussion of the
€Guation (3) of §2.1 from an anlytlcal polnt of view.

It is known' that the solutions of §2.1 (3) for

_—

7. Bes M. T tlewood
7- Set M. L. Cartwright and J. E. L1t% ,
Jbarnal of the London Math. Soc. 20 (1945) 180-189, also
- Levinson, Annals of Math. 50 (1949), 126-153.
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f and g may include Stable and unstaple solutions or
different periods, combined with in lrrepular type of
rgeurrent solution; and it 13 casy to construet
functions £ ang g for which the cquations have bath
periodic ang aluost psriodic golutions. 71p fact irf
L S AL T S 25 8= %, ple)

= %—cos t, the equation wiljl gatisfy ocur cerdiftions ang

equations for which f < 0 for soms X, anmd so, @¥bhough
We cannot hope to prove any very precise rapﬁit without
further hypotheses, We may expect some shéfﬁer results
20 >0 for a1l x, Theorem 8, beldw, although it
5ays little about ths solutions, stremplhens thig
conjecturee. Sharper regults are An'fact obtainsble for
r 2_b1 > o, although in order tpfgﬁtain a single stable
periodie solution to which 211 vthers converge we have
to make additional assumptioﬁa about g as weil.

N

§$4.2. In the nexﬁftheorem P need not be periodie,
and the resylt ig mersly e quantitative improvement of
theorem 1, e\J

\C\
Theorem 7. I8 "the hypotheses of theorem 1 hold, and iFf

£20, >o§gg'2i1_lxgn_c1k21, then
O

(B, F L/ :

§L | (){}~p1a=C~E /O‘gdt-v-O(E),
wherg:the conatant Implied in the 0 ig a B,

N\
(?E:’ If £' apq p exist and |£'] ¢ B, Ip'l <B, EQ@Q_
Iki(Bg_ngfi=p+0(l1;.‘. "
Proof of Theorem 7, Tetr (t) = / f(x)at, then r D> b1t
0

8.  The theorems op this section and their proofs
are taken from M. L. Cartwright ang J. E. Littlewood,
Annals of Maths, 38 {1947 bye-4ol,
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for t » 6. By theorem 1 (x| { B and so Ig(x)] { ¥(B) = B.
Further there exists a P for t > to such that !}iPF {1,
For if not, Ix| cannot remain less than B. Changing the
origin so that t = 0 at P, and multiplying by eX”, we
obtain the eguation in the form

£ x e = (kp - g).
Integrating we have N\
k b okr(t O
Iz 71 { 1%pl + Bk /o K7 (tgg, \3\“
But ' = f, and &f "Sofort > o, so '\\,“
‘ .\'\"\,
t v
kf . kT _._.. 's
/o <7 at /O e T
\\
+ Kr AN
1_ k7 =i .,
5 f e £ adt kb R
1 ‘o
Hence x| {1 + B/b, = B. ,;,.Tﬁe rest of the theorem
Follows from the integpdbed equation 2.2(4").
Proof of the Corellar§:® Put u — £% - p/k so that
i:-ku—g,amﬁg—kfu+h where h = —fg+f'5:2
- Pk = 0(1). Por'h = ¥ + £1%% - plk.  Now
P\
37 f kr kr
Gi'lue” )=he ,
N
and spay”
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Henee X = 0(1) and the result fallows,

§h.3, We next add hypotheses on g and Introduce
the idea of Comvergence. Any two solutions x.o(uy, £(t)

are said to converge if X {(t} - X Jt) — o cmd
(t) 8(t)~—+ Das £t — e,

Theorem 8. Supbosge that the hypotheses of theorsm 7
hold, and that p(t) hag period 2x/,. Suppese further
that g(o) = o0, g' > b, > 0 for all x and [r"'{x),f

< Glg) for |xi ¢, wherff_ G is irdependent o_I;.\k..~ Then

all solutions for which ’3\“'
e B N
I ' 2 .
(1) !XI QEO, |X! g_}]ro f } &LO
comverge p e\
T'Es, provided that I
.\‘
{2) ER ) ()s’k..b]bh.
Cor. 1. All golutions corwerge for k > k
Gor. 2. IF p(t) ia period*c, there ex_ﬁsta a perigdic
olution X* to Whlch\éll solutions satisfying (1) and
{2} convergs. N\
Proof of theorem 2. Consider any two solutions

X, (t) Xg(t) Sf} §2 1 (3), and let z = ¥o T Xy,
= g{x, >\ g(x Yo AF = F(xy) - P(x,), where

F‘(x} = \/‘ M{x)dx as usual. Then substituting in the
equai;ion amd subtracting, we have
N\

"'\"./
}\35 2.“}{6%{‘%?"2}4-*%8'2.“0.

Multiply by z and integrate. Thig gives
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i
1,42 » 3 F .
(b} o= 5(2 —zo)+k’Az—-z-zJJO
t t
- K AE—-z-zdt+!-‘&Zﬂ*-12—152
s}

N\

The integrated terms are 0(1) as t — o, {the consi;’&pt

implied 1s Bc® but this is irrelevent). Substit@iﬂg
for ¥ from (3), we have ,mg
A D
- [AF 2 qt = : 4 (\aF
k J -z -z dt =k J{kdt&/z -z)
\\
PN &
A g AF _ 1 24{AF <3
+ 7y -z}—ﬂ——z zd’r—gk( = Z
O\V o]
t A\
Lk | AR Az 2NY
. z 2 N
o N
Hence, as t —» 03, G0
e & \J
"] aF ég\ a - A 2
S5 A S 4.7y 2B t = 0(17}.
5) [ e z_ A at (= ) 2= d (1
2N/
>
let x = x_ ;5,“; z = x,. By Taylor's theorem

..i"\‘__&‘_g. }-C e
,QL‘\ z ) =5 (g'x+ 2) g'{x})
"’\:./
- g‘g‘{g(x + 2} - g(x) - zg'(x + z}}= x g"(x +d2)
Z,
- —}Z(E ;—(—z)2 g'(x +z - d¢'z),

whers 0 ( g < 1, 0 ¢ g' < 1. Since [g"l < Gle,)
for IXI ‘_:E o and le ‘:(. 50.- I-ﬁl ﬁno, !él i 2‘!0“
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we have

dﬁt_ (—453) <2n, Glg,).

Since AF‘/_z =f(x +a8"z) > b1’ 0 ¢" <1, amg
A glz > b, (bscause g! 2 b,), the part of the integrand
bracketed in {5) 1g greater than or equal to k b, by
-2y G(Eo) 2 0 I1f (2) holds. Hence (5) gives
. N
/Ot 22 a4t = 0{1) as t — oo, Slnce 2z = 0{1),.‘1\1;
follows that z — 9, ard since % = o(1), th%aggives
Z — 0. Hence the solutions satisfying ({\}vand (2)
corverge in the sense defined. 1t may hap‘peh that nop
solutions or only one gsatisfy (1) and ‘é\é\}'\[
Proof of the cerollaries. Corollarg 1Jfollows
lmediately from theorem 1 ang thga%éﬁ 2 by taking
EO, "o Sufficiently large, and‘tﬁéﬁ'koz 21, G{EO)/(b1b4)-
For corollary 2 we Supposg that p(t) hag period
27/X , and write X, }En fovn:fﬁhe values of x(t,%,,7,!
at t = 2nz/y . x(t,xo,yogyéﬁd *{(t+ 2p ,x_y_ ) comverge
and that meang S
'{'“,\M . .
n - Xnﬁk\u_’ © *n T Xpp O

%

for all p as B wm, et {(X,Y) be a 1imit point of
*ns Xpe . TEBR'X = X(t,%,Y) has period QA” , and all
solution{ﬁiinverge to it.

O\

ANEL. Some ofF the best krnown cases of positive
e\
%mping are associated with hysteresis phenomena which
&y perhaps pe Tepresented by an equation of the form

{1) X+ Px,%)% + B(X,%) = p(t),

although it ig ot clear bPrecisely how the functions
£ and g should be defined. In this form the proof of
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lemms 2 1n theorem 1 redquires a slight medification, but
the result of that theorem remains true provided that
f{x,x) and g{x,x} satisfies hypotheses (1) and (ii},
and the same 1z true of theorem 7. Theorem 8 however
depends on properties of F(x)} = .%X f{x)dt which does
not exist and the result 1s not true' for equation (1)
in general. Hysteresia occurs in problems of ferroreso-
nance® and subharmonics have also been observed In such
problems when the damping depends only on x, but g" 1is
very large. The equatiocn 3 o\:§

£\
% Ny

2y -

€ Gos 5t{<”&

S
also has three subharmonie solubtions for E}(e o and
k < k,{(¢), and many other equations gﬁbd-similar type
have subharmonic solutions. The medificd form of
lemme 2 of theorem 1 to cover egdéafion (1) is as

W=

'X.+-‘_{}'(+x(1-e+%ex

follows: et 1iQI = |xpl + ?@fﬁ > 1. We have to prove
u < B. We may suppose Q the~first point aft=r P at
which IiQI = l&kpl + u. 'lét7Q1 be the last point before
Q at which [k| = Tipfgf§% u. Then in QQ |%| lies

between |xp| + %—u g@d‘]iPl + 11, and go 1t is of con-
stant sign, say, pPositive. Then X at a point of Q,Q

1s algebralcaldy®at most
O

"\W
- A%+ gl + Ip) {B (I&pl + u) + B=a, say.

/%S Sec M. T. Usrtwright and J. E. Littlewood,

Aneflsor Math., 48 (1947) 490-hok-
2., See W. H. Surber, Jr., A study of ferroresonant

and subharmonic osclillatlieons, Thesis for the degroes of
electrical engineer (Princcton 1948). .
5. See M. L. Cartwright and J. E. Littlewood,

Annals of Math., 48 (1947) koo et. seq. The term

a53§1 has bheen omitted From some of the calculations

of the orier of k.
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The time from Q1 to @ i3 at least l— ufe, and

1

Q : L
*Q T xg = é ;}dtz(J;&PJ+;_JL1)9—a—.
1

Since - 1 gx% 4 Xq < 1, we have

(pl o+ 3 wu CB(Iip! + u) + B, N
and whatever the value of Xp, this Implies u < B
e\

Part 5. Nearly Linear Qscillat lons :”}5

$5.1.  In this part T proposs to“&é\\}"-‘;ew the
methods for nearly linear caclllationd\\/That is to say
cases in which certain periodic or most pericdic
solutions of 1.1 {(3) and 2,1(3) are’(ﬁear-ly equal to
golutions of g linear equaltion ;oﬁe’xr 4 fairly long time.
The equation 2.1(3) itself i’a:ye’é.rly linsar for
Ix] <K, tyi <K if 1t caaf{é‘é"written in the form

TN,
\
¢

.

(1) if+l{}°{+w23<<=p(t)+ego {x,%,¢),

e
where k > 0, igx}rall and positive and

Y3
N\

{2) O
O lel < B
O
for all\'%éver the range of X, ¥ and ¢ considered. The

cons?:\afljt B 1is independent of « here and also in what
fcri\];@v&s. We shall SUPpose, as is usually the case, that
p(\t) 1s of the form

oo
(3) pit) = n;pn o8 (\pt +a,),

(B

whers Ay 2 0 because we assumed that

l/t p(t)dt

O
in theorem 1. Further we may obvicusly suppose that k
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and wg are gither 0 or not ¢(e). For if one of them
iz o(e), the corresponding term can be absorbed into ».
Thig sti1ll leaves the possibility that k amd w® may
depend on .

§5.2, The case « + O. Suppoze first that
w+ 0fe}, In this case 1t is best to normalize by putting
wt = tt 8o that @ = 1. Suppose that when this has been

4

done we obtaln the equation

Oy
. . ] N\ ¥
() X+ kx 1+ x=0p(t) +eo(x,x,6), O
N
whers \:...:\"’“
{5) jel < B for Ixl <B, |Y|,x§\\3-
’..:\"
The correspornding linear equatiémdis
(6) 5{'+kii+x=p(t)t,:.t~’:‘
which has s solutior{»‘ééf\ the form
\\\‘l
{7) X = a1a::f§ cos st + 8,8 Kt gin ut +
\\ ,
’T:%% g (1—%2} cos (A bra) + K sin (A, bray)
"(: E o
O n
’\\‘/ =1 (? _.’\ El) + kz

progj@éﬁ that k and x, - 1 are not both 0.

“NYIf k> o (and so by our hypotheses not o{e)),
and 1f the partial derivatives of ¢ are bounded by B's,
the conditions of theorem & hold. For in the notation

of theorem 8, we have

P2k -¢B)> -k, g'21 "¢B lg"t (B¢,
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80 that b, zg—k, b, 2;—and G <{e¢B g0 that h.3(2) hoids.
Hence nl1 gsolutions tonverge to a solution Which 1g
given approximately by (7) with a, = a, = 0.

If k =0, it TMay be observed that by adding
0fe ) to w? before Starndardization we can avoid the cage
in whieh Ap =1 exactly, but _i_f:}\n T 1 12 small the
Solution given by (7) may go outside the range in (5}
unlesgs Py 18 also small, 1 this case the golution g
Dot nearly linear, and so we shall not consider ihe MIn

AN
other cases where kK = 0 by putting ~..§\\“~’
O
Cos (At 4+ a ) P
X = E pn __________1’_1___2_ n + X1, “\ 3
1 ~A { &
n \:“\\

form (&
O
{8) Xy + X =¢d (XT,xl,t,’eif’)‘,Q
N
where .?:"'
QY
(9) e
) .\\. % .
@(X,X,t,e) =.<po(:}§{x,p_} + § @ (_X,X,E) co3 (a\nt +anj!
75 N/ =1 n
N
x¢\’s.'
aI’]_d ;~\:.
’\\m'

N\
(10) ARy B pop Ixl <B, iy! < B.
\' §5.3, The case w? = o. Before proceed ing
f‘urther, it is worthwhile considering the case w= 0

which we passed over. fThe solution of the corregponding
Hnear SQuation for ¢ = g viz.

{n) X+ kx = p(t)
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ig of the form

@
-kt
(2} x=a+be +n§=1 pI'1 cos ”‘nt +aI‘l)=X(t,a,b)
whére a and b are arbltrary constants. Putting

= X{t,a,b) + €x,

in 5.1(1) which is now of the form O\
{(3) ¥+ k= p(t) + & ¢ (X:}E:G)J
we have ,'i'j

(b) % o+ kx =o(XX,e) + cp,l VXV&X
\\
The first approximation of (%) 1s\V

1

*)
N
3
<N

{5) X, = A+ Be Kt , o (a,Q"l‘g“;if’Q

whers A and B are arbit{:f;xw constants, and e, contalnsg

t only in the form "{{f}, cos (At +a,) SO that ¢, 1s
bounded as t --— oghbut x, iz not unless ¢ (&,0) = 0,
which cannot occ(ii;"'in equations derived from 2.1(3)
unless a takas\a, apecial value or g(x} ls linear

over some ré.nge if ¢(a,0) + 0 for a near &, , 1t 1s
clear frzo?n (5} that the solution tends to move away from
the sohtlon obtained by puttinga =a,, b =B=10, and
30 &ren if there 1s a periodic solution of 2. 1(3) 1t
cannot be stable unless perhaps the perlod tends to
Infinity as e — 0. For this reason we exclude this
case, also the one with ¢= 0 and k = 0 From considera-
tlon. If k)0 and ¢ (a,0)=0, the result is similar to that
In §5.2.

§5.h. In virtue of the preceding remarks, the
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main problems comnected with the equation PL103) in it
nearly linear Forms can be reduced to tho Consideration:
of the. equation S.2(8) namely

(1) X+x=ca (x,%,0,c),
where ¢ (x,y,t,f) and its firgt and scceory) derivatives
are bounded by mumbers independent of ¢, and £\

. . L <O
¢ (xX,%,t,¢) = itl’nfx,x,e) con (xnt 1..—,21,)\,‘.
=0 « N\

In most special cases the series ror ¢ ordgN\contains a
Flnite number of terms. N

The main problem in the modern Phiysical theory of
Oscillationg ig to determine what ﬁ?%és of vaeillation
are likely to occur in g system,eibﬁer by varying the
parameters of the system,or by &he application of some
Jerk or shock. This ig equiv’é“lent to determining solu-
tlons, usualily bperlodic prgimost periodic solutions,
which have seme kind of Etébility Tor small displacements.
The unstable perlodicdor almost periodic solutions ars
of interest to th ~§ﬂ§e mathematician, partly as a means
of determining e existence of staple solutions. These
qualitative reiﬁi%s Are vsually determined by the tirst
and second n&rﬁs in the arproximation, or rather by
detefminiéé§ﬁow the first gpproximation varies. The
highe?ﬁ.SbPOXimationﬂ are of minor interest, but are
someﬁimgs PeQuired in order to obtain the Prequency of
pQ%idéic Solutions aCcurately. In al] cases we require
81 approximatien valld over a very long time, and 3o the
Polncard methog is of little value unlsss combined with
other devicesy,

In &3timating the values of the various methods
available 1t may be useful to consider, (1) whether a
method 1g convenisnt bractically, (2) to what extent it
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*s gecurate, and how sasy It is to justify it, {(3)
whether 1t 1s adequate for dealing with all the caszes
which arise. Undsr (3) we may consider methods in
relation to the following important casss of the
equation 5.2(8): {(a)+d independent of t, (no forced
oscillation); (b) A near a certain integer or rational
fractioq;\n = nk1, and concéitions such that there iz a
periodic sclution, (this may be described as the resonant
case with synchronization); (e} the non-resonant case, In
which no:.p is near any significant rational fractlon
and the solutionn 1= n:t perlodic, but is a perturbation
about & solution of the form b cos (t +a); (d) transi—
tion phonomera between (b} and (c¢). The cases may be
illustrated by van der Pol's squation Ln_th§~form

¥ + X =e{1 - Xx°)% + pe ACOS {’@\\ﬁal
Case {a) occurs 1f p = Q, cass ib}xoccurs if A= 1 = 0le },
provided that » is sufficien¢£§'iarge, ard also when
N- 3= 0(e) and pe 1s notgéﬁall. The latbter case i3
¢alled the cagze of subhaﬁmoﬁic resonance, and the
integer z has a speciai?éignificance because the only
non-linear term i the third degree. Case (c) ocours
with % not near 1 er 7z ard then the solution 1= 2
perturbaticn a@oht the solntion with p = 0, and case (d)
ocours on ¢y “borders of (b) and (¢). In cases {a) and
{(b) we hé§g the advantage of a c¢lear aim viz. exact
pGPlodi@ity, in case (c) of a slight deviation from the

i A\ ¥
bebtey known case. {(a).

§5.5 Problems of Approximation. There are two
problems of approximstion which may be worth mentioning.
The first is that if the criginal equation 1.1(3) oT
2.1(3) contains several smsll terms 1t is usual to
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norwalize so that there ig only one smail Jarameber to
conslder. Thig brocess neariy always cuts out at leagt
one special cage which needg 3eparate conslderation,
For ingtance Mandelsgtam and Papalex1? In their work on
Fubharmonic regonance stardardize ipn & way which 1g
roughly equivalent +o making

2

Px}X =¢ (o 4 X+ oy x7)x

N
which excludeg any even function {x) such ase.tj\; XE}
which oceurg In van der Polrg equation, and.aiﬁo all
Other Functiong with very Mmall odd termg ih%f(x)-

The other problem is that of tﬁe.Eééétment of ¢
when it 1g not regular. The nen Iinear funct:ion may
have discontinuous derivativeg of gome' order. It will
be clear frop what-follows that ;c§ﬁs the Fourier co-
efficients of »(X,X,t,¢) where X3/X are the £:rst
approximations which are mostgimportant. In physical
broblems harmonicg higher.hﬁgh the third are often
negligible ang even the ;ﬁifd 13 small, ang 80 1t 1ia
Sometimes assumsd thatfit.will be sufficient to use a
cubic polynomial asxéﬁ‘approximation for ». But this is
Hot necessarily tﬁé>éése SXCept for fixed values of the
Parameterg, FQ%;? Ay be strictly linear from x = - 1 to

terms fFor j@%v}epresentation Outside thig range. For
instancelgfi) in 1.1(3)-may be of the form shown, where
BC is a\¥traight 11ne.

0\: \

NN

O

9. L. Mendelstanm and N. Papalexi, Zeltschrift fur
Fhysik, 7% {1532) 223-04g
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§5.64, Fourier Beries. The most obvious method
in cases (a) and (b) 1s to try substitution of & Fourier
geries. If there 13 a periocdic sclution, it certainly
can be represented as a Fourler seriss, and if the
serles contains one or two dominating terms it is fairly

#asy to estimate thelr amplitudes. There is gsomething
to be sald for using a complex Fourier series

E a e Q4
ne=-
O\
which makes combination of terms arising from mulbipll—

catlon fairly easy, but even so 1t 1z easy to overlook
certain combinations. ..%

The method gives necessary conditioﬁﬁ}for certain
types of periodic solution and is valp&@le in the pre-
limineyy stages. Other methods are.Qééded for the dis-
cussion of stability, and the methbd falls to give any
information if the Fourier series converges so slowly
that mary terms sre of compavable magnitude; for then
very many product terms have to be considered. Even
with two terms of compaseble magnitude in the Fourier
series the estimetion{df the higher approximations
rapldly becomes labo¥ious by thils, and, I think, by any
other msthod. N

§5.7 \gge method of Lindstedt was used by
Appleton.a. Greaves'®. It can be ussd to obtain a
pePlOdic~solution.in.case {a), but needs modification in
Ca&éﬁibj and for non-periodic solutions. The method
tonsists in arranging the approximation so that each
term of order e™, n= 1, 2 ..., consists of a periodic

70. K. V. Appleton and W. M. H. Greaves, Phil.
Mag. 45 (1923) h01pE1h For justification and dlscuision
of stability see W, M. H. Greaves, Proc. Roy. Soc e
103 (1923) 516-504, and Proc. Cambridge Phil. Soc.

(1923}, 16-23.
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function of t independent of €. In case {a) the peried

2 2 S
is of the form 2/, wherec 0° = 1 tewl el oy L,

and so by changing the variable t, we can obtaip the
equation 5.4(1) in the form

¥

.s 2 &
X + x(1 teu 4 oeTon 4 e )

=t "\01(}(,}'() + €
ON
with a solution of period 27 exactly. Eouating Cstf?-
cients of «™ we have 5 Firat approximation ¥ £y =0
with solution x = a sin (t + a). By a changa of origin,
We make «¢ = 0, substitute x = g sin t + ax and squate
coefficients so that S

X, +x, = -¢ asint 4+ p)g gin 1, a cos t).

Here the valuss of g and w1 arc chosan g0 that no term
in =in t or cos t occurs Oﬁ the right hand side thus
eliminating secular termé,

The method can £3sily be justified in this case
by the use oIC‘a°Q1ca theorems, and seems quite well
guited to obtalnihg higher approximations of periodic
solutionsg. It does not touch the question of stability
or general QualLtatlve reaults.

Ty case (b} the period, If it exists, must be a
multlblé;of the perlod 2x/y of ¢(x,y,t,¢} in t. The
method has been spplied to this case, but it is less

Qﬂ? "to Justify it here. The method of Poincard gives
a solutlon In the form of series in power of ¢ provided
that the initial values of x and X are Fixed, and of
course that @ is analytic in all the variables. Bub the
initial values of x and % which give rise to & perlodic
solutlon vary with ¢, and so the series obtalned by
Lindstedt's method may be only an asymptotic series.
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§5.8. The remaining methods are applicable more
generally and are suitable for qualitative results, but
in gome cases they do net go beyond determining roughly
how the first approximation varies over a falrly long
time. They are based on the fact, which is evident,
that over any limited time a solution of 5.4(1) which ia3
bounded 1s of the form

(1) x = b1 sin t + b2 cog &,
where bl, b2 vary alowly, which 13 egulvalent to '\:\~
{2} x = b sin (t +a), NS ©

o (\axv
(3) x = b sin @, S 7,
where b, « vary slowly and 6 1is nearly AS)
Appleton11 and van der Pol12 ugedy(1) and assumed
on physical grounds that b, b, ave(Hmll and that
by, b, are negligible compared w%ﬁhfcertain terms in
b, bg. They glve no purely'gﬂthematical justification.
But Mandelstam and Papalexil?zdsed by b, as parameters,
adding the condition  ~3V
AN
b

(%) 0 =1 813.@‘ b, cos t.

i

By this means %86t equations for b, and b, are obtained,
and 1f 5.4(1)1s of the form 5.1{1) so that ¢ has period

27.'/} s We ;{Qb}é

T Cy71. E.V. Appleton, Phil. Mag. 47 (192%) 609-619.
\z"'m. B. von der Pol, Phll. Msg. 3 (1927) 65-80.

™ 13, See.A. A. Andronov ard C. E'1C€aék%n’

wheory of Oscillstions,edited and translated by

8. Lefachety, (Pringetén.19h9), also L. Mandelgstam, and

N. Papalexl, A. Andronov, 5. Chaikin and A. Witt,

Tech. Phys. of U.S.S.R. 2 (1935){in French) 81-13k.
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1 e{po(b1, By) + 4 (b, b, 1)

o
[

{(3)

bg t)

b, = e{x olDys by) o+ x, (b,

where w1, X, &re represented by Fourier series having
terms of the form cos (n + mMA) 4, sin ( 1+ mx) t, but
no constant teym, In casge {a) x deoeg not oceur, and
Putting ¢t = 1 In (5) we obtain €quations with 8.ghort
period 2re of the type considered by Fatou1”‘

N

DY
db, -y L1 %{3
Yol B v oy, b N

(6) o\
ab v
-2 _ > oLt
aer  Folbys by) 4 X1 (b, )
¢

Fatou showeq that for everygT;"the solution of (6)
differs from the solutionyﬁ?

TN,
NS

db w
—L <Y b, b )
d{’\&.} [ | 2
(7) A
~~”ab2
AS &Tb'xo(bv B, )
“\‘.

O
for t %§¢f < ts + T by less than Be, and so (5) is fairly
accumately represented ovep & time of length T/e 1f we

QN )
PUSK, =X, = 0. Tnig tipe 14 long snough to establish

4

3t of the Properties requireq with some trouble; but

1t 18 worth while to consider the reason for Fatou's
result. oOve

' 1% P Fatow; Bull. de la Soc, Math. de France
56 (1928} 98-139.
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passes through the same negative range as it does
positive, and since b, and b, have not had time to vary
much the effect cancels out over any complete period,
and the average effect over any falrly long time ig
negiigivle. The method 1s alsc applicable in cases (b)),
{c), (&), although Fotou's result is only applicable
in caze (b} and sometimes by speclal arrangement in {c).
It is easy to see that in the infterior of any one
perlod 2xe the effect of %1 and X, in (6) is not negli\
gible compared with WO, xO and so the expresaions QEQgin-
ed for X only represent the average behaviour wigh
accuracy of order 0{¢) and not the varistion thgéhghout
the period. The method only gives limited i@fofmation
In (b) and (4) as to the form of the solufﬁén.

There is much to be said for puE%%ng x=b gin (t+«)
instead of (1) because this only igqéives the suh-
sitution of one term, and glves ghmesult In terms
of amplitude and phase which arg'physically important,
but it iz perhaps a little meke tiresome to obtain the
equation for b and «. Cf'.

§5.9. Krylof{{é;d Bogoliul:roi‘.‘fn-5 lean heavily on
the methods of Poiﬁhare and Liapounov. They use the
form 5.8(3) an@(@ﬁﬁain.equations for g and g corregponding
to 5.8(5); by{g'further transformation

~G
N

b=".;'| +Eu(b1: 913 t), 9=e] _%‘] V(b-|:en|; )s
théy Jremove the terms eu and e v/wa corresponding to
¥, and x_, so that they obtain equations $.8(7) for

b1’9 ; in place of b and . In this form 5.8(7) give

15, N. Kryloff and N. Bogeliuboff, Introduction
fo Nonlinear Mechanics, trans. by S. I:ef‘achetz,h
Arnsls of Maths. Studies, No. 11, (Princeton 19k3).
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£glve the true approximation of order ¢ throughout any one
period. Most of the theoretical work or Kryloff amd

mors characterigtic roots of certain equationsg ig not
26ro,to show that stable op unstable, periodic op
almost periodic, solutions exigt. Their theory appsars
to be very complete, since it only fails in exceptional
cases where the characteristic roots of certain equ@?imm
are zero, but in fact it le not always simple to verify
for g given equation that the exceptional caseig)
confined to 1solateqd values of 8 parametep upﬂgr con-
slderation. So far as we Know the excepti€ral case may
oceur for every value of g rarameter ipdal interval.
Further some of the general theorems \gusted are hard to
recognize or trace in the literatupésfand consequent 1y
1t 1s hard to form any precise gsbifte of the error

§5.10. The method,éf bartwright and Littlewood
depends on difference eqéations, and uses less of the
general theory. It y{il be applied to a 8pecial case
In the next rart ,Cuit 1z very gemerally applicable,
and egsy to justi??, and consequently it is easy to dee
what error is‘%ﬁvblved at each stage, but the formal
calculationg<may S&em longer, and less mechanical than
some of tH&\“Wethods of 5.8 and 5.9,

::>“

PRIt 6, Neary Linear Resonance.

'“i"’ﬁé;l. in this part T Propose to discuss one
particular type of hearly linear differential equatiog
in detail by the method of Cartwright and Littiewood'S.
I choose van gep Pol's equation with forcing term in the
form

16, See M. 1. Cartwright, Proc. Cambridge Phil.
S0C. k5 (1949) bgs5-501,
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(1) ¥ - k(1 - x°)% + x = pk ) cos (At + a),

where k ia small, and A near 1 bescause this id a case
which shows a conslderable variety of pherncmsna without
too heavy formal caleculations. There are other inter-
eating cases of resonance, for instance subharmonic

rescnance in (1) withd = 3, and resonance wlith nonlinesr

restoring force a3 in an equation of the Torm ~
. . 3 .\:\

(2) X + KX + X + kex” = pk h» cos (At + «), PR,

g W

where k 1s small and A near 1. Subharmonic'?ééahance in
(1) in 1ts most Interesting form appears w{}ﬁ pk = p!
not small, and the formal calculatlons bpcdme lengthy
beeause two trigonometrical terms ofgﬁ?drly egua]l magni-
tude have to be cubed and then re@dééd to linear functlions.
In (2) there is no stable osci}létion.for p = 0, and so
less varied phencmena may be,éxﬁécted17.

§6.2. A fundameni®dl lemms. The justification of
all the approximationéf%hich we shall use is effected by
means of the follgwing lemma which in 1ts turn depends

directly on the msthod of guccessive approximations.
A X

Lemma. Let Péx)y,t.k) be a conbinuous function of t with
contiﬂuouS{ﬁEftial derivatives with respect to x and ¥,
and suppose that

N\

0N Plx,y,t,k). <M+ IxI + Iyl

for 1xi < a, Iyl (s, [tI {3m k<K, Mbelag
independent of x,y,t,k. Then the solution of the
eduation

17. 8as K. 0. Friedrichs and J. J. Stoker, )
Quarteriy Journal of Apvlied Mathematics, 1 {19L43) 97115
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(2) X+x= F(x,x,t,k)

for which x = 0, X = 0 at t = 0 satisfies

Ixl < § me?t - )
(3)
%1 < EomePt -,

N\
Rrovided that k <k, M(e®" - 1) ¢ 2q, o SEES
'.u\
Proof. Since F  is continuous in t, and has pagtial
derlvatives with respect to x ard y, a unigyg\%olution
exlsts near x = 0, X = 0, and continues pbteiist as long
- g a
as |x| and X! remain less than or equa“l}\to a. Writing
X=y, 7= x4 ¥, we have N
(1) X1 07 <M 200X+ 191
80 long as x| ( g, Iv) gg;;;IrtJ < 3,

Since x(0) = (o) =\, 1t ig €asy to show by
applying the method ofmsuccessive approximation' ® to the

A

eguation 0 = F1(u,t{k§, where IF1I <M+ 2 [uf, that

\}
x4yl ¢ %‘M(eet - 1),

3

N
1

So if M(eif?}w ) < 2a, we have (3).

Q>w
S$6.3.  The Approximations.  We have shown 1n

thgp?ém ! that all solutions of 6.1(1) are bounded by
s\constant B Independent of k for ik {1 as t— = and
1t 1s easy to Show by the method of lemma 1 of part 2
that they cross ths axig x = o an Infinity of times.
Hence for the Purpose of discussing any king of periodic
Or aimost perlodic 8olution or steady state solution,

18.  8ee Kamge, Differentialgleichungen recler
Funktionen, (Leipzig 1930) o3,
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and behavlour of solutions starting near such solutions,
1t will be sufficlent to consider a sclution of (1)
for which x = 0, X =D » 0 when t = 0, b being Indepen-
dent of k for k < 1. Ilet

{1} x=bsint+k§1,
then£1=é1=oatt=oand

N

(2) ¥, + & =D Acos (At + @) + b cos t(1 - b° g t)

N\
« \/
+ k‘p(ET) 511 t,k,b) .=¢’1(t)p:baﬂ;h)"(”"\.
. \:..,>‘
+ k¢1(E1J£1’t:k:b): _ N\
N

where ¢, 13 a polynomisl In £, E hg,ving ne constant
term., It 1s easy to see that for e'\ferfy g and b there
exist constants M, = M, {p,b),, 1, = N, (a,b) such that for
all t ard k {1, R\

W
s.,”
$

3

{3) \‘
rﬁnm,t k,b)) (N (gD + lanl)s
1l <&, 11l {a.
Ke

'S X
It r 011Q?(8\1mediately from the lemms that

2
Y

G e < Emd

6
provided that k<k,(p,b). For, choosing a=M, (p,b}{e" " -1),
N,(a,b) is fixed and then for k < k (p,b), kN {1 0
that 6.2(1) holds. Combining {1) and (&) we 1'13‘79 a
First approximation

. . 1 aw
571y, 16,1 E M -,
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{5) X=bsint+o(k},:fc=bcost+0(k)
let X = X(t,b,a) be the golution of

£+ x = v, (t,0,b,0)

=D A CO3 o Cos A t - p N sina sin ) t

V-

+ b(1 —fTbg) cost+:Tb3 cos 3 t f\
. . .:\
for which X(0) = X(0) = 0, so that S\
DA i} \§
(6). X(t) 2 cos & (cos t cog A $§1 3
+ 9—5—— gin « (gin\ % -\g\'éln )
Ay \,,
b D
+§(1-Eb)tsin1‘:§~'2f— (cos t - cog 3%).

Lot £ = X(t) + ke, () so tg@t

Ne

{(7) bs:Ln t““ec X(t) + k° £, (t)

18 a solution of Q\]'ﬁ By (2) £, satisfies an
equation of thg m
..\w
‘.\No}
'\;MEQ + 52 =¥ (t) + k @2(52; Eg:t:k):
,\w

where {\ :Ls a polynomial in Ee’ée with ne constant
terQ.C‘
<>~' 3ince X as well 48 g, =atisfies (L), we have
ol <M, (p,b
ool CBy(ab,pd(lg, 0 4 16 1)

fOI’ !EEI g a"J régj i a-: rt[ §_ 5??3 aI'ld k < ko(pr)‘
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Hence by the lemma of 6.2

(8) 1g 1 < M) - 1), TE 1 < M5,

provided that k <k, where k N, { 1. Combining this
with {7}, we may wrlte

b sint + k X(t) + o(k%),

b
i

(9)

bocos t + k X(8) + oDy, O
(NS

provided that b = 0(1) for 0 { t { 37, the céhSfants in

the 0's belng independent of k. This holdg“for allX,

provided that k < k, {A,p,b).

b
i

\/
()
§6.L. The Difference Equat:r.o\ﬂs From 6.3{5) 1t

follows that the solution crosses X = 0 again with
T=Db'"D>oat t=2r+Kknr, where 71 { M independent
of ¥. Hence we have a solution of 6.1(1) with

(1) al =’.‘e&’\1— pa{h - 1) + KAv

\\w |
instead of « , guph that x = 0, £ =Db' > 0at t =0,
and we can rapéat the process. The golutions therefore
set up a (1\,1} transformation of the point (b, ) on to
the DOln‘t\Tb‘ «'). This transformation 18 only of
lPteI‘eS‘t to us for b > 0, bt » 0, 0 L@ { er; for the
0358&1 in which b or b' is negative can be obtained
fPom thess by a change of approximately »in e OF a', and
since the functions involved have perlod 2m 1n cand e,
the transformations repeat themselves outside the strip
0 <« { 2o, 1In fact we could regard (b, @) as polar
coordinates, but the curves which we usSe later scem &
little simpler with @ and b as rectangular coordinates.
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Since x = g gt t =27, kr, 6.3(5)(6) ang {7) give

o}
I

b sin (27 4 ko *E X274 kr) 4 oo(®)

=bkr+L‘{‘§-&2—9-9§¥’— {cos kv~ ¢og (ex{ A -1) + ler}}
-1

+ kE}}\Sln & ;Sin (E‘ﬂ' (/\_‘r) + [{Ar) - Aﬂin k'rf + O(kgj’

2
J\ -7 {\
80 that \:}
Nes
b7 =~ plcos o %,\Jg’
A5~ >
O
D\ sin Qw*_ O(k).
A =1 '\\"
K
By (1) we have 2 :J
(2) - M*H *sosa -cos 2r{d -1
:r\k N -1}

v
N\ 23

- RSS%_{& 3in 2w {, 1) + o(k).
w (/\g<\~'1)

So far we have ohg‘)‘t used the fact that is near T, &Tld

the remiit hQ\ldS for all .y, provided that k > k,
How 1f ) {s\rfear T, (2) reduces to

R i a .
(3) '\s“‘"'-?— 2p - D * 0k} + o(a “1),p = T ’
=A(b,w olk) + o(a - 1)
Simila.rly by using 6.3 () with x = pr at t = 0, we

have
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b'=b + k }.((27:-+ kr) + O(LCE)

- B Gog o
—p o4 BA I COSE gim 24 (A ~1) + #b (1 _%be)

Ae -
+ o(k%),
go that
bt - N
D - D803 % gip 2r(x-1) + Br - Fo?y v ok
T Ak r {(A°- 1) t:\“\.
"6 \
ard for x near 1 ‘Q’}S

‘ - ¢"5j\'\.
() BEZP o pocog a v b(1 - FBE) 4 okl o0 - 1)

AN
=B(b,a) + 0(k) + 0 AN~
§6.5. Stable Non—periodi@ﬁolutions. From
6.4{3) and (4) we can make y.g?i‘ious deductions, almost
lmmedistely. For instange™if p is small, and b 1s

hear 2, b does not chg.néé mich, and 1f b - 2 is large

X®
compared with p, b t\eﬁa’s to return to 2, while o' -«
1s approximately £(n - 1). Hence there ts a stable
oscillation whieh/of the form

I

x&i“} sin t + o{p) + O(k} + 0(r - 1)
overabie interval 0 { X {3
an Mereasing phase.

Again if A - 1 is small, but large compared with
kK, the difference a! - « varles much more rapidly than
b and so if b starts near 2, « varies through the range
0 { ad 27 in o(1/(x - 1)) steps approximately, pat
during this time b only varies by o(k/( A~ 1)) which is

™

Tt 1s not periodic and has
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smll. PFurther, of these steps, those for which

cos e { 0 approximately halance those for which

Cos @ » 0 ( s0 far as the term p cog a) la concerned,
and so we again have a tendency to return to b = p.

N 1r 3T 2Tr

|

e
Flg. 10. -ThéQburve.B = 0 With two curves 4 = g,
4, = 0 for g faifly large value of p. The limit dycles
Ci and ¢ COrreshond to 4 EMELAE reapectively, and
S_‘

milarls the(dingular polnts 4y and u, are at the
intersection@yer B« o with A = 0 and Ay, = 0

respect ively.”
A

\
\’ % . 6 . _Periodic Solut long. The sclutions of

6413 of period 2u/3 ave given approximately by the
intersections of the curves'?
A(b,a)
B (b) CK}

I

a;
G.

19. For a discussion of the general form of' the
Solutions, gee M. T.. Cartwright, Journsi of Inst. of

Elec. Enx, 95 11T (19k8) 88-g64.
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and that 1is i

_ sln «
b= 59

b{(f b° - 1) = p cos @

Squaring and adding, we have

b2

(hp %+ (F1° - 1)%) = p° QO
O

which determines the amplitudes of all periodic s@}lutions

for given p,>,k. TFor p2 b2 ;—? there 1s only ox@éb,

for p2 < é—-.?— there may be three roots. This'\ma’,gr f)e seen

by putting b2 = z and drawing the curves' \\)

P~
(1) 2(hp® + (f 2 - 1)%) ={FF

N

e —

i tal
Fig. 11. Tt should be observed that the horlzon
scale is very much larger than the vertlcal. The line

2 = 2 meety the stability ellipse st the point E
vwhere p = -
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in the z, , plane. The points where the tangents gre
vertical are given by

hp2+%22‘Z+T=O,

and there

2
Z
5 (1 - O

WD
"
"
k]

which has only one root zZ == for p° = g—?— corr.e\éfjc\nding

to p? = 312— The curves have a double point at™p = ¢
N

ir %- 22 - 5 . 1 = 0 which has two positive, roots

z =4 and X, The rcot %corresponds to“”s;\ real value of

b such that pe = ;—? For p2 £ ;—g thg;curve breaks up

Into an oval ang 5 curve going tg'o\jfzﬁ’inity in both

directiong, \/

w
L D
N/

$6.7. Stability. TiSmer to discuss the

5tability of solutiong ofvBeriod 27/), we put b = b, + ¢,

.3

=“c\~\h3, ! Ta, + 8", where

"
(1) A(bo”&o\‘}:]j(bo’ (:o) = 0
&nd suppose that ¢ and 8 ape Small. At first we suppose
that terms 6frthe form o(k) ang O(\-1) are small com-

pared withe and 8, Then 1t follows from 6.%(3) and (%)
that A\

NS

b‘=bn+c', o

"\
w\",/
NJet = Ac + Bg + 0(1{2) + 0{k{d-1)) + 0(1{(!8[ + Iﬁ!)g):
(=) , ,
B' = Ce + Dg + O(ke} + O(kix-1)) + o(k(fcl + Iﬁl)):

where A =t 4 gy - Ebg), B= -mp sina_ - -2.pb 7k,
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C = 2pme/by, D=1-7k(p/b,) cos a =1 + 7k(1 - [ vE).

It follows that approximate stabillty depends on the
rootg 1t + ka , U+ k,ug of the equation

(3) A-x,B =0.
C , D - x
N\
An elementary calculation gives .
2 N
S\
CS 11 A8
1.2 1 b 2,2 A0
=71 - gbyry by - bkp Ty
~&
#2 3
o\

The vectors of the transformatlon {q,‘ﬁ) s (0,8}
Point approximately along the cumes which- are solutlons
of N

b gy
(5} __E‘=B(b,a], "jt_= (b:a):

0'0

s
Q«

and so by the classiga\‘i theory? the perledic solutlons
cannct be stable uixi\ess the real parts of both p, andyu,
are negative, This means that for stability
¢/

6 2% 3ot o2 52 > 0.
(6) b.(_,)})eandlsbo b0+‘|+p>

N\
Further *t is possible to establish the existence of
eX&GtIy periodic solutions of 6.1(1) by the use of index
hbers and fixed point theory, except in certain eritl-
tal cases where the index number of the app“oxms,tlon is
0. More dslicate topological arguments eatablish that

20, S8es 5. [efschetz, Lectures on Differential .
Equations (Ammals of Matn. Atudies, No. 1% (1946) 125713
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there 1s only one periodic golution with the appropriate
stability pronerties Corresponding to ecach root of (1),
The existence of pertodic solution can also be establish-
ed by putting bt = b, ' =« in 6.4(3) and (4) am
uging the implicit function theorem.

Part 7. Some Problems of Nearly Lirear Resonance
§7.1. In the precedi

Nng part I cbtained very
precise difference equations determining the behavdour
of solutions or )

commection with nearly linear resonante which are not
completely solved. mhe Pirst problém 1s whether the
results would pe chenged in ang\meriked respect 1Ff the
nonlinear function x2-1 weyeﬂféplaced by & more general
Funetion f(x) changing sigpifrom positive to negative

and back again ag x runsifrom -ooto 4oq in particular
If the function (x) Asvnearly congtant from - 1 +§ to
1 =8 where & s sp&dl ama positive. For this 1s the
type orf function;ﬁﬁich 19 likely to ocecur in radlo

problems, but drar as I know the problem has not been
tackled. N

Flgure 12,
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The remaining problems fall into three main
clagsad:

{(a)}) The problem of determining the behaviour of
the selutions of the correspording differential equations

D.nlCL

2) R,

For the tranzsformations given by 6.4(3) and (4) conslst
of small steps of length 0(k) along the solutions of (&%
the end point of the step being within o(k?) + ok (3=t )
of the sclution through the initial point of the atep

{b) The problem of determining how far the
transformstions given by the difference equat’mns
followz tho differential equations (2) when\repeated
Indefinitely. O

{e) The problem of determinl "’hfecisely the
behaviour of the soiutions of (1} CarreSponding to
polnts on a closed limit cycle, of ( .

(d) The problem of DI‘@»SGhtlTJg the rather compll-
cated results in a reasona.flly intelligible form. :

These problems arqi of course interrelated.

b{e) is & sotulion of {(z2).

Fig. 13, The curve b =
P is the point (b a), and P' the point (b',a').

§7.2. Problem (a). As we have slready Scenl the

slngulnrities of (2) and thelr forms &re falrly easy to
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determine, ang the results can be dlaplayerd by means of
the curves 6.6{(1) and the lnequaliticn 6.7(&) written
in the form

W ade, B -8, 2

It will be observed that there are np table perigdic
solutions for , > P5(P), and 1t 1s not difficult to
98¢ that in such cages If b and & are ugeq as polar
coordinates there must be a clogeq 1imit cyc%q:with an
unstable point Inside it, By the classica1~thebrw'this
limit eycie camnot disappear by a change,oﬁ\barameter
wless 1t pagses through a Singularity,Q§ 7.1(2). It
1s fairly easy21 to see that for largdyfixeq values of
P the limit ecyele shrinks as - L\decreases to the
Fingular point on.b2 = 2, For Q:iéég small,it passes
through the singulap point COI'I;é‘Sponding te & point on
the upper part of the elliggé"’
3. ,._ 8 %Jfl )
(2) 75 (z 5};0* L= = o,

of the saddle gyint t¥be inside the ellipse (2). The
curve throughitne point where z = o meety the ellipse
determinqg:the largest value or P for which this
phenoménbﬂ CeCUrs, but it 13 not known what the smallest
valueg\ts, The €ycle certainly pasgeg through a singular
Qgi?i'COPPGSPODGing to a point on the upper part of the
fﬁlipse for some p? > %gE but the Phenomenon of 1imit
cycles Shrinking to 5 pPoint oceurs rop all p2>T, ag may
be seen py Investigating the nelghborhood of the upstabls
Polnts for whicen b? 13 Just less than ». There is no

21. Bee M. L. Cartwright, Journal of
E%%- 253 ITT (1948), where reforences to eariier work
Will he found.
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obvious method of determining when a limit cycle disap-
pears by passing through a saddle point, but this is the
only possible transition from one to the other of the
better known types.

§7.3, Critical Limit Cycles. If the closged
1imit cycle with (b, @) as polar coordinates encloges the
origin, it appsars, when b and e are used as rectangular

coordinates, as a curve from ¢ = - ®wto o = + &3, and I\
the phase « increases with t; other limit cycles on,

which « oscillates appear as closed curves.(3ee Eig 30

C and ¢,). There 1s no obvious method of detefhinlng

the values of p and p for which the tran31tlon.occurs,

but we may cbtaln some lnformation by wrlt}ng 7.1(2) in

2

the form (epb-psma) p003a+b(1“Lb). Tt
A

fellows that 4

(1) [,b° - bp sin «ly = fb uv}Tb}da

’.
B

If C is'a closed limit cyqlé:kfhe left hand side of (1)
returns to its initial \[a‘tué: and 80
\

{2) /b \hb)da—o

Hence 1f¢lis‘é%111 1ncreasing, b takes values above and
below 2. \gn:the case of the critical Iimit cycle
throughth = @ = 0 the right hand side of (1) first
in%FGaﬁes from 0 to a positive value for which b = 2
tnﬁp}ﬁhile b > 2 decreases until b = 2 where 1t 1is
negative; it then increases to ¢ as 1t descends to b= 0
with « =», (For it may be seen by snspection of the

curves B (b,a) = 0, A (b, «) = 0 that it has only one
Hence the left hand glde is ©

X

|

and

maximum in each peried).
for some b > 2, while the curve
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Alb,a) = 0 (which 15 p - l; ain o)
must 8till meet B(b,e) = 0 in 5 gingle unstahle point
which is therefore below b =2, Heree for a critical
€yele 2o p { by,

b, Stability orf Limit Cveles, Since 7,3(2)
necessarily holds fop a 1limit cycle there ig at mogt one
limit eycle éncloaing the origin., For considering'b and
« 83 rectangular toordinates, there 1s one and wily one
solution through any given point (b, a). Bu;iif one
Hmit cyele is apoye the other ror ggmgfcf;%xT, S&y, the
positions must bhe reversed for some athe™ ¢ = «,, say,

which contradictsg the uniqueness DEOPerty.

argument fails becauge b taies o different values

bT > b2 S8y for the same aauéiﬁ (2) may be wiritten in
the form \\

N3
«ly

%2 2 oo
/ (% - ba((l - IT; (bf + bgj)d a= 0

%
\C\

Severalland resgsompe & K, M or p varies. TIf so, the
OQQﬁ?{%ing 1s approscheq spir@l-fashion_by solutions
oubside 1t, ard the inner ring ig aporoached by solutions
tnside 1%, we cap only settle problem (b) (Sec §7.5)
With regard to Limit cycles which are strongly stable,
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§7.5 Problem (b). 30 far ag the singular points
of 7.1{e} and periodic solutioms of 7.1(1) are concerned,
we have a falrly complete solution. For at the critical
pointa of index 0 & glight change in parameters may
cause the singular point to appsar or disappsear, and
we must therefore allow a labtitudé corresponding to
the error terms in which the corresponding periodic
solution may appear or dilsappear.

In 6.5 we sketched an argument showing that, 1f p
i3 small or (» - 1)/k large, the solutitns clearly mave
towards b = 2 and stay near it with « increasing ) o,
and in this case we may describe the limit cxaie G as
strongly stable. In order to deal with ﬁmib ‘cycles in
general we have to define strong stabilidyviore pre-
cisely by means of what may be described as quasi-
Liapouncv corrdinates. The genera}fﬁﬁéorems of Liapouncy
show that near C the equations Tfi(é) can be written In
the form™° AN

TR Y
NN
™
4

E=1,9= - a1, g;ﬁéing a meal constant.

This depends on,thé\}act that B and A are analytic. The
Following method., can.be applied whenever B and A have
continuous parﬁlal derivatives of the first three orders.
First we may &ransform to coordinates ¢ and 1, where 3
is the ars‘of C meagured from Soue fixed polnt, and 7

1s the Tength along the normal. The transformation 18
obvrwusly {1,1) for all polnts gufficlently near ¢, and

btain

thodes
22. Bee N. Kryloff and . Bogoliuboff, Me
de la mecanique non-lineaires appliquees & 1’etude gﬁa
ogcilliations stationalres. Monograph in Russian E}
Summry 1n Fremoh (Kiev 1934) Ukrainske sked. DAUL.,

Inst. mech., Report 8.
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) E=P8) +nQ(E,m), ;- 2((P,(5) 4 % (6 m)

where P1, Q1’ P2, Q2 have continuous derivatives of the
firat two orders, and periocd L Ing, L being the time
taken to desecribe (. By a change of scale of t, we may
obvlously Suppose that I, = oo, Further since B ang A
are not both ¢ on C, P(k) 4 0a8nd t ig uniquely defined
83 8 continuons function of £, and putting &1 = t; W
obtaln the equation 1n the form L\
O
= iy () + QUK )
¢'<

-~ N
Let L LT PAEAE = &) then C 188814 to be

2
Strongly stable 1f & > 0, and strogggx‘unstable ir
AR

2 < 0. The second case may be hanq}ed In the same way

&8 the first by changing the sig@iﬁf t. Ifa) o0, we
put -

- :/jé“ (P,l + alde!
5 2

7 =7neE,
{"’x\
which makes \ég“
';l‘" J
FT=F - (P . a,

N\
and, drogs@ng the brimes, we obtain from (1)

ad
NS

@) O E=1, '='-an+n2Cg&,nL

\\ %
) 3

whers Q2 has periog 27 in £, The transformation is
valid in s certain neighborhood D of C, snd that is for
lal < 5, where 18 sufficiently smaij. In D the
difference eqQuations €.4(3} gng 6.4(h) may, by the same
transformation ag that used to obtain (2), be written
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(3) &, = &+ ak + K5 P (E,n) + K(a - VIR, (E,7)

ny = (1 - wka) + xkat QUE,n) + KB G (E,0)

y k(= 1) GyLE,n),

where ]E?‘1 , FQ, 61 s 'G2 have period 2» In ¢, and they and
their derivatives are bounded for k¥ { 1, In 1| { 1.
For simplicity we shall concentrate on the case in which
A- 1t = ok}, and then we can drop FE,GQ, and by@
change of factor x In k use the transformetlom~{3) in

the form .\§~

Q"

(4) & = & + k& + k¥ P (&7) O

o\

W

(5) m =9 (1 - k&) + kn® Qe MR G (ks ),
where ¥, Q,, G,, and thei’r'.;ﬂjér;iva.tives are bounded for
el <35, 0 Ck <1, 'a- <1 and have period 2.
§7.6. The folYtowing theorem, although stated In
terms of the speclel difference equations obtalned from
7.1(2), holds géherally for all difference equations
which can b?".};ééuced to the Form 7.5(4) and (5) by means
of & smal ::E\é;fameter and thelr correspondlng dlfferen-
tlal e@l‘tiétions.
’ cloged

" Theoden. Suppose that C 1s & strongly gtahls
Un¥t cycle for the equations 7.1(2), and let T be the
HQQMZ-_;EH (5). Then there 1s & neighborhocd
D of C depending only om 7.1(2) such thet 1£ T, 138
¢losed curve deformsble into C in D, Tn(I‘o) tends to &
unlque simple closed curve I as n — 0, provided that

k< LCo' Further each polnt of I' 1ies wilthin Bk of C and
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2

dr , dln arc bounded by B's on 1.
dg d52 e ==
Proof. We shall consider £, as Cartesian coordinates,

80 that C is the axig 7 = 0, and the transTormat ion hag
peried 27 in g. Suppesge first that I‘ is the line

N =g (E) = 0 and that it lies in the domain where

7. 5(&) and (5) hold. Thepn 1‘ = ™I) is a curve

7 (E} with reriod 27 on Wthh N

(1) 2, <pg (1 - ka) 4 Blksl + k%) ¢ g = a\
provided that 8 {3 (B 1: k < k {8, B, a) ,In thesze cir-
cumstances I‘ lies completelj,r below L énd therefore,
gince T ig {1 1), T 5 lies below P and 50 ocn.  Similarly
1f‘I" is g = -3, I" lies above I"xé?nd below 1‘ Hence
Ty tends to an 1’nva.:m:a,nt closed qe I' with permd e,
and r! = ™) tends to an ulvarwant ¢losed get I'' with
pemod 27 1ying below I, It Ms easy to see from 7.5(5)
that o] will pe reduced by the transformation so long
as it is not 2{k})., Hence both I' and 1t lie within

Bk of ¢, 1t remalnf \t}J show that T and pt are curves
with bounded deru{&ﬁlve% and then that they coinecide

§7.7. I.Bhp derivatives of I'. Iet y n(E) denvte

generally tl’}e value of' y torresponding to E o the
curve I \aazcrg the value orf obtained from an arbitrary
value E\by T,. Then

AN

N)\' Mg - Q7041 A8
e 2 n a5,

and by 7.5(k) and (s)
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(LB )
(2) B, o8, * . T 3%,
da
=1 o)+ 0By 72,
TL
2
Mo ey e K(a(q%) ey %)
(3) dg dE, 9E Iy d?n
N
o f 9GO0, d“’n) L
+ kK En‘Pa o dEn “;}\
. N\
dn 7 A 5 )
= (1 - ka) =2+ olkn) + o(k%) + g7 Lolem) + o))
dEIl it ’\,}
' ~ a1y
Combining (1), (2), and (3), and suppgsing that i,
= 0{k ), we have ,\
d o\ - dy o
741 (1 + 0(1{'2} + 0{kﬁ)) o211 ~ ka) a—r_'g + 0(k B +0{k")
d'E.m-l \“u g
ao that \\
+8 )
£ \\.l dn
(%) ;‘:\ a-ﬂil- = o(kd).
Q5 fnet
¢/

Since ?95\"\9, (%) holds for all n, ard 80 Ty tends tt; a
curve T §\Lt’n a derivative g—g—' o(ks) for small kK and §.

vﬁ\le higher derivatives can D& treated in the same
w ‘-;\;’;FOI‘ 7.5{(L) is practically 2 translation while
%5) ig practically a sllght reduction in fnl, 80 that
the vector from {t,%) to (51,’41) points along the axls
= 0 makipg an angle whose tengent 18 nearly -(1-kaln
With it. Similar results obviously hold for the

derivatives of IV.
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Figupe 1k,
K
37.8 Uniqueness() Suppose that g, ' are distinet
values of 5 eorregponding to the same value ¢ = fgonl
and ! respecti\{e‘j;i. Lot £ 4, & pt+ De the values of £
corresponding &% ‘fR on T and ' ' respectively under the
inverse of ,T\,iand let 7pr 1p be the values of 5
correspo: tofsony and ! ang 7p1 the value of 7
corresggéhding to §p, on pr.
D

N/
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Since there 1s only one value £p corresponding to
bothip and EP,,by 7.5(4), we have

(1) 0=ty - Ep, + K2 (R (Epmp) - F(Epsap)

+ Fy(bps1p) - P(Eprp))

aF,
EP —EP, + k° ((.nP —1']'?) T (EP:"?P)
aF O
+ (fP - EP') ‘6';_ (s;n:ﬂﬁ)) 3 ‘\\
where 1 § < 13 <npsr &  tp <t p ¢ p1» 80O ,t}.}g!-t'S
3 m\\t
N \

(2)  (6n -5 p)(1 + 0(KZ)) = 0 (¥ (= g))-

A
A
By 7.5(5) we have ANV
{3) AR =Tg " qé = (nP.\'{fr‘q';.:}“)(l - ka)

Fa » D
+ k(’?% Qgiﬁ}ﬂrp) - "Iin QQ(EP',‘?P' ))
L -
+ &) Eporp) - & Epr nP.))
:.’\,) '
We can treat:»ﬁ'l'};differences of neQ.g(E,’r) and G, a3 We

Lreated tl\e\i'iff‘erence for ¥, in (1) and (2). Also
since Ij\!?;has o derivative of order o{ks) we have

oi,‘

\}”
(h) ‘1? - 1 = - 1+q|—n|
P TpP=Tp T 7p P p!

da' 1 - 1 .
=np - np+ (&p " Ekpr) a8 gp &' <Ep

=Ap + o(kd} ¢y -EPI)-
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Hence (2), (3) ang (k) give

&f{= AP (1 - ka + o(ks) + o(kEJ)

for & {5 (a s B < k (8, a). Hence the maximum distanes
between F and ' is reduced by the transformation which
1s Incompatible with the fact that theéy are invariant,
ard so I’ = 1, N\
oS

§7.% Problem {c). The theorem of 7.6 RBdUCBS
the problem of solutions asgociated with a strongly
gtable 1imit eycle of 7.1(2) to the dJscuaaion_o* golu-
tlons with initial valuss op g simple c1§3ed curve T, or
transformations of I' into itself, and ﬁhérefore of the
it circle inte itgeir, This typePef transformation
has besn much discussed, ang 810¢8 "1t involves the
theory of rotation numbars wgzﬁ@étpone it until part 8.

“’
\

§7.1 Problem gdL ’3 We next consider the problem
of repreqenting the complicated phenomena displayed by
the solutions of 7. 143) The curves in 6.6 Filg. 11 show

the periodie solut{pns adequately, and for limit cycles
we may plotk

\) 1 T
(1) N 7= 1lim T f b2 at
S T oo o}
’§...
againsb.p on the same Tigure, 1f the limit cycle
shlunks to a bolnt, z obvicusly tends to the value of
b™N\at the point. If the 1imit ¢ycle does not shrink to
& point, but vanishes becanse 1t passes through a
singular point, it ig &8y to see that just before this
happens B and A aps both small together. This means
that both b and « are small, and so the point lingers
hear that part of the limlt eycle. Tt geems certain
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that the 1imit in (1) tends in this case also to the
value of bz at the singular point, but no formal proof
of this has been given. Further 1t would seem 1likely
that as p tende to 0 the average of b° decreases mone -
tonically until the 1limit cycle disappears, but this has
not bsen proved. Again there are varlous reasons for
supposing that the time taken to describe the limit
cycle increases monotonically as p decreases, and that
except when the limit cycle shrinks to a polnt, the Q)
time inereases to +% monctonically as p decreases tg\
the values at which synchronization takes place, I;lu.t
this has not heen proved. A\ ‘

Part 8. Rotatlon Numbers

§8.1. There are a number of problems connccted
with the apolication of rotation nu:qqk@rs to the trans-
formations comnected with the thegxy’of forced oscilla-
tions both in the case of the silgple closed curves which
we discussed in the precedingf}ﬁeirt, and also for the
general theory of the frontﬁiér of the invariant set 3
of Part 3. The idea of\a rotation mumber is due to
Poincard®?, but the {Qliowing proof is due to Den,]os,r

§8.2. Let e be the angular coordinate of a point
on the unit c’xcle, and 8 — ©,(6) 2 cont inuous (1, )
ovder pressfwing transformation T such that 0 £ 9, (0
< em Then since order is preserved ¥, {8) = 8 (8 = 9
hag Eel’sod ex, and since 1t is continuous and period1c
it \B‘bounded. Hence it attains its lower and upper
bounds m_, M such that

m < e (8) -8 M, whereoil\ﬂn—mn<2r.

25. H. Poincard, Deuvres, 1 (1928) 145,
2k. A. Denjoy, Journal de Math. (9) 1 (1932),
5235-3?’)_ T
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For fixed n and large N =

M+38, 04 s{n - 1, we
have

m, e,u.n(eo) - B(,u -TJn(a)o = % (e(#‘T n (90))

- S{H—T)n(eo) < Mn: (s = 1,2,...1r),

m £ 8.(e,) - -1 (8 KMtk = 1,2, gy, LA
and 3o ¢
N N/
: O
™y + sm, ¢ Oy 8, g_rMn + le:

2
AL
Hence

$ 3
The extromes differ by less than 27/n, and so
n—® we have%?

»
N W

making

£

{1) \I{m\%"— = lim %’l = 2%,
?ﬁl\l}o ;—h Lemp ¢ T for every n >0,
~

m\J
&@ 390 We may wpite

% = ernp "'_Bn, LEI = 23'1'19 + TnJ

We adhers to tpe traditional notation in spite
quite differently in parts 6 and 7. Through-
Tt ¢ 13 the rotation numper,

25,
of using ,
out thig pa
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where § > 0, Yn > 0, Bp + 7, { 2r.

Since 0 §_e1 (0) (er, 0K 6, (0) < 2m, and so
o p<1. If p =0, we have - B §0§11,andsince
91(0) ia continuoua, eT(eJ - 6 =0 for some 9§ and 80
the transformation T has a flxed point. If » > 0, it 1s
easy to see from (1) that there is no fixed point.

If p = p/q, an irpeducible fraction,

mq = 2 -8 q < 27p §. Mq = 297D + Tq: \'\\
and so @ (e) - 8= 2rp for gome 6 = 8., 8ay, wh‘ich means
that 6 1*:! fixed under T9. Further if q’ 1&& poaltive
i"iteger lesg than g, no polnt is fixed under Tq for 1lts
rotation numver is the fractional part.ef pq'/q which is

positive, \ v

.
o W

§8.3. It is well known tha.t {f T has one point
fixed, then every point 1is fiXed or tends to a fixed
point under T as n — %, “Fhis is easily seen by taking
the fixed point as orig{h and drawing the curves
¥ =¢6,(0) and y = 8¢ gnvthe same figure. The values
B (9): 8,(8}, o (ej on the 8 axis can be constructed by
stepﬂ from the psints Py, Py, P, on the curve 9, (o)
cormﬁponﬂinﬁ"bo the points 8, 0,(8), 8,(8) ... Tespec-
tively, .' §

o

4
a \Y2

Q U 7S

b} g o Ja EL g—

“ 1
Flgure 16. 0, A and B are fixed points, and 0
Tépresents the same point as 9.
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Similarly if one point 1s Pixed undeor ‘I‘q, Lion every
point is fixed under Tq, or Lerds to a flxed point under
™4 4 n—s o,

§8.4. I, is irrationsl, theve are ne fixed
points under T pop Ay q, and there are twe distinet
types of tranaformation. Either for every 8 en( eo),
n=1,2, ... takes values necar Cvery value to modpdua
27, or thisg i3 net 30. In the rirest case thore iy a
continuous increasing funetion o) such tha’t\’s:?'(%} = O,
ef{27) = 0, ang if f.oT(e} = s'r(e1) 901[8) = w,(‘%xj“"i 2x For
all 8, 3o that the transformation is reguded to a pure
translation (¥

€ 7
s,o/

(_5.' = ¥ i Eﬂ'p.

We put ¢ equal to the f‘ractig“ﬁ'@‘i Dart of np when
= 9.(0). This definos #08) Ffor all points 6 = 6, (0),
and since 6,(0) takes xiaj;ﬁés near every value, and order
ls preserved, ¢is defthed at the remaining polnts oy
continuity. {mg

In the sec’@\ﬁd"'case 6,{0) does not taks values in
certain inter}fa};s, arnd no such funetiosn ¢ exista.

. 2 £/ “ .
Denjoy 6 showéd that irp dﬁ_?_ is of bounded variation, the
AN de
2econd c.gzﬁ:é.\cannot oceur.,

N\

E@_j_ Returning to the casze orf Part 7 where we
ha@ﬁ cloged limit cyele C for the differential cqua-
©96ns 7.1(2) in b ang ®, We suppose that it is strongly
stable, fThen by transforming to the coordinatcs {(§,7)
We showed that theve was a unique curve I' with continu-

Oug derivatives of the flrst two orders which remained

26. Bee Denjoy, loc. cit.
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invariant under the transformation. The difference
equaticrs on I was reduced to the form

2= i+ k' + k'°F, (§,0),

where F, has periocd 1 inf , and 1s bounded as k' tends
to 0, k being a meltiple of the orlginal k. Hence the
tranzformstion has a rotation numher A
.\:\'

N
N/

p= X' o+ o(k'?)

R 7% R
conigidersd as a transformation of 6 = 2« op the unilt

circle. Covicusiy 1f s i3 a rational frgebiom EL,sinse
q, > 1, the derominator 4y is greater thaﬁ
'<Qw
N
oo 0O

In this case thers i3 a valugféf ¢ for which the trans-
formation (and therefors ﬁﬁé’éofrespondimg b andae) has
least period P > Nk'1,"mhéfe N is a positive mumber
independent of k, am@”%ll golutions of the difference
equations correspoﬁﬁiﬁg to points on I have period P,
or tend to solutighs having this perlod.

Krylof iéﬁé Bogoliubof‘f27 claim to have proved in
gimilar aﬁéé that p is continucus and satisfics a
Lipschit@condition, and therefore passes through both
ratngﬁi and irrationsl values. I am unable to see that
tléﬁiﬁﬁve proved more than that gatisfies a Lipschitz
confition as k— 0. They further seem to assume that

oliuboff, Méthodes de la
eg a 1l'étude des

sraph in Russian with

: . nauk.

27, N. Kryloff and K. Bo
mecanique mon-linéaires appllgu
oacillations stationnaires, Mono
summary in French (Klev, 193%4) Ukrainska Akad
Ingt. mech. Report &.
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for rational values the fixed polnts ape op one of the
gtandard types ang therefore, I any barameter 1ig
changed by a sufficlently small amount, the fixed point
8t111 exists so that p 15 congtant in certaln interyals,
It seems difficult to rfeconcile this with the continuity
of p. On the other hand ir p varies contimiously and ig
ot constant 1n any interval, we might, in virtue of
§8.3, expect a line of Tixed points. But then the two
&quations in b angd « mist define an arnalytic Function
and I' ig an analytic curve, go that another~qy§éiion
ariges,is 1 analytic? Ao

If p is irrational, since the tranﬁf%f%ationﬂ in
b,e are analytie, and p hag continuopéxﬁerivatives, we

Sueh that b = b(y), o= a(;) b period o« 1nt  Hence

the solution of the original.éhuation can be expressed
in the form?8 K\

e AL
(1) 5

There 1y an exbensive theory of almost periodic func-
tions ang ﬁfahsformations,ag, and the type in (1) is a
Very spedlel type of almost periodicity. Birkhorr’°

has shéwn that the necessary and sufficlent condition

2B. "See Kryloff ang Bogoliuboff, loc. cit.
29. See G.'A. Hedlund, Amer. Journal of Math.
66 (1941) 605-620.
30. G. D. Birkhore Dynamical Svstems
{New Yori 1927) 199-p00 ’
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§8.6. The remaining cases 1n which the limit
eyele C ia not strongly steble present a more general
problem. We do not know that the curve T exists, but
in some cases it is possible to show that an Invarlant
set exists which 1s the frontler of a domain, in this
case the problem 1ls simllar to that of the invariant
get 8 of Theorem 3 in 3.6.

Map the exterior domain of Son {z| > 1 by a
transformation %Z. Thia 13 possible becauss C(5) ia
simply commected, and we can meke the polnt at influodty
correspond to itself. Then F(S8) corresponds to ;:\

{z] = 1 in such & way that to each accesslible zpégint
correspords one and only one point on [z =\L Further
the prime ends’' of C(8) correspond (1, h cyellc
order to points on [z = 1, each primgiend goes into &
prime end urder T in such a way that\'r zT 2z 1s
{1,1) and continuous for |z| 21 APt not for Jzf < 1)
We can now define the rotationfﬁmﬁber of r, and if 1t
is 0 or a rational fraction‘;i)fq., we get points on
lz] = 1 fixed under T or T3, and this means prime ends
fixed under T or T®. Fref. Littlewood and I are in
process of investl Qiﬁg in what circumstances a fixed
prime end implies(a fixed point, and how far a fixed
point on F(3) 3¢ compatible with a positive rotation
number; but t’he general theory of irrational rotation
numbers f\q this case has hardly been investlgated.
There iﬁ much general theory for varlous types of
Sp&ces, ‘some requlre an area preserving transformation,
sore/ a semi-locally comnected set. Most investigatlons
do not seem to use that T 1s (1,1} and continuous
outside the invariant set which is always the case
with transformations derived from this type of
differential equation. Is it possible to have the most
general type of fronmtier with an irrational pf Can the
3T G- Caratbeodory, Math. Ammalen 73 (1913).

™\
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most peculiar types of non-wanderlng point, occur for
the type or Lransformation asscclated with +these
differentia? €quations. The cramples of Levingon,
Cartwright ang Littlewood Suggest thal this ig g0, but
the rotation mumbers are not known For theae examples.

Fart g, The Singular Casze.

§9.1. We return Now Lo the case in which ths
nonlinear terms arve not small, and in particulasMo
the equation OV

7
'\
Y
N/
\
~

(1) 5%+kf(x}5c+g(x)=kp(t) N

O
with k largs. Thig Is sometimes cglled the singular
case’? because dividing by k and,QaKing K — o, we
obtain the degenerate equation £ “

N

(2) £(X)X =oh(t).

This has g solution offthe form

Q
X t
(3) F(X) - p(x = £xX)dx = (t)dt = P(t)
Q5~ 'éo x)dx _é j*;

N\

o

such that x‘%}xo at t = 0, but 1t ig not possible to
aggign a@(&éibitrary value of X at t = ¢. 0On the othsr
hand thgré 2y be more than one value of X for which

(53{§§1ds, t ang X, being given.
.\ W )
\\' §9.2. Suppose forsimplicity that, 1in addition

—_—

32. Compare W, Levinson, Annals of Math. where
further references gre given: The following very brief
sketch makes vse of material by J. G. Wendel (in this
volume ), particulariy in Cormection with the condition )
for a stable golution with period 2wx/y when f(x) and p(t
change 81gn more than twice.
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to the hypotheses of thecorem 1, f(x) and p(t) only
vanish for a finite number of valuss of x and t
respectively at which they change sign, and that

x)/x 2_b5 for all x. Then the curve

X
¥ o= _/‘f(x)dx = F(X)

o}
has only s finite number of maxima and minima,
v = ﬁ1, 52, . ng, say, at x =%, @, ... a5, QY
Between these valuss of x the funciion F(x) 1s monopgn;c,
and F(x) tends to +occor -, ag X tends to +ocOP W
regpectively. Consider 9,1(%) in the form :”1

g 2
.....\"

(1) F(X) = P(t) + C.

[

%
w/

Since P(t) iz bourded, and p(t) perlégic; so 1s P{t).
For fixed t (1) has at least one Peot X (t,C), and not
more than om+1. Then we may w;dte

X, (5,0) o {X,(8,C) §a ovv Lapy Koy (850
m\
where X_(t,C) may bé{ﬁonrex1stent for an even number of

&djac@nt pairs of.(yalues of s. FP(t) +C varies from

Py to P, as ¢ vabies from 0 to 2x/x, and 8o X (%, C) takes
values Oﬂ.thQN%thk parts of the y = F(X) 1n Fig. 17 for
the apnroﬁiiate values of t. As t varies P{t)} increases
or decreages, returning to its initial values after
tlme‘??/h but during thls process two ad jacent. roots
SuchVag X, and X, or X, and X, 1n the figure may
coalesce and disappear, s that the correspondlng
solution of the degenerate equation 9. 1(2) does not

exist over the whole period, while Xg and X, suddenly

appear.
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Xy X5 X5, ..., which 11e in the
intervals whepe P lnereases, aige Increase with ¢, but
the Solutions Xé(t,CJ, Xﬁ(t;C}, *v+, Which lie in the
intervalg where F decreasey, decrease with t, and of
Courge vice verss when Pit) decreaseg,
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s
= TR ’ =
sy /W
£ e
%\ . |
N/ Y
=y o . ':\5\'
(5 Z . & N/
\_/xa 7
¥
G C
cb{l v L 3
R\

"
P
X AN

(t,C) correspond to
They have perilod
haded reglons.

Figure 18. The curves X = Xg
the thick segments in Figure 17.
2a/Ain T F(x) decreasgqin the s

)
$9.3. The ixl\t%grated equation of 9.1(t} 1s

X - X t
(1) % ,+\:E"(\x) - F(XO) + l% f g(x)dt = P(t}.
k & (o]

By theo:qe'ﬁ\;,, |x] < B, Ix|] { B, and further it follows
from trhis that [%] ¢ B at some peint in each iz?terval of
15%\6ﬁ;5- Choose as origin a polnt at which |x1 {B

o that 1k | (B in (1). Then (1) can be written

{ 1
(@) £, p(x) - P(t) - O = o)

for 0 { t ¢ B, and in particuar for 0 {t £ Bafx.
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There are four important tases to bhe conzlidered
{1) I1x] < B, and If (x)] > B, in a subinterva
(i1} |2} > Bjk in g sub*nterval.
(iii} |x - a I < &, where a. Ccorresponds to g
maximam or mlnlmum of F{x), and & 18 & smail poaitbive
number,

(iv) Subintervals not covered by (1) (ii) op (111}
§9.4, In case (1) put

(1) X = X (5,0) 4 x, \ >

then <;'

I, + x) -F(XS}——-X?f‘(X +ex Ao (8 < 1,

4

~

~

‘

and so putting X, = XS(O,C) inw'})(1) we have
N
«\:\“ 7
X %) = o).

Since || Z-Be’ we: hﬁ(?

N\

(O
\
(2) “:3:\ X, = oh

in g aublnta{yal of type (i).

(E?Eﬁ dividing the original squation by k,
we have<§

<>,.
g
Ee

. . x
=y f(Xs * X % +E_k_:__ pit),
and =o, if x ig sufficiently large, the term £ P(X +x, )x
outwelghs ¢x/k ang L(t), and se x ang » have the qF’mc

or the opposite glgns according asm TE, o+ x,) is nsga-
tive or poslitive. Hence the soclution glven by (1) and
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(2} is very stable If £ > B, and very unstable if
£ <{-B,. In rlact if X  belongs to sn interval in
which £ > B, S0, X = X_s(t,c] + 0{1/k) from the point
where 1! { B until X (t,C) meets a maximum or minimum
and ceassa to exist. The term L1Z Iot g(x)dt In ¢.3(1)
makss the constant ¢ gradually decrsage iIF Ig(Xs ¥t over
a period is positive, and increase if the integral ls

negative.
N
§6.5. Az regards case (ii) the interval can«\.
only iast a time B/k. For if not, x goes out ofy ‘tﬁhe“
strip |x] < B, \,.‘}‘
If |x -a ! {8 where &5 is a maximug Q¥ minimum
) B, = ¢ whbre ¢ may be as small ab(ie please

b“ maklng 5 sufficiently swmall, and so\by g.1(1}

7
&

¥ = kp(t) + olek) :+‘:0(x1)

s N

«3
& .’.,

Since p{t) hasz only a fini te 'numbew of maxima and minima,

this pives ¥ O kB, if the 1ﬁtc1‘f\gal lagts a sufficiently
lorg times, greator thaQ\B5, say, and so |X] > kB, and
* moves outside [xgd v, g Withll’l a time B for
gufficiently smald,
§5 ,. \’T"{E have already shown that solutions tend

to move Wms X1, 5 X ang away from XQ, Xh’ e .
To flnj, }}hg time of trans {tion from an interval of type

(1), EO Yn interval of typs (1i) or vice verse, We
Sﬁm{)qt that £{x) 2 B ond that 8 and D are pogltive
constants sad Lhat dL CTEa5ES Fromd k to D a8 t
incresscs from 0 to t1. Theri, if D 1g gufficliently

lar 1
“arge, since x > D,
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X= -~k flx)x - g(x} - k p(t)

g_kBEJ‘HkBg—;—kBE;&,
and so integrating we have
=y
] 1 1
[ log X-L { - 2% B, ..

N
Hence )
O
log D - log &k  ~ Le B, #)
R¥4
and \%
”}J
log k& &4
b, {2 28X K% 0r k> 1.
1 kBa‘ﬁ”X )

The intervals in which % 13~ﬁ§gat1ve of f{x) { - B, may
be treated in a aimilay manne T,

N
S
$

§$3.7. We now &ssemble these results. So far as
any stable soluti nfié concerned we may lgnore
X%, xk, +++» &ndidefine g degenerate solution of
9:1(1) to be @(@Slution of 9.1(2) for which X lles in an
interval wpgﬁe’f{x) > 0, and if 5{28_1(to,c} = 0, we take
the value X = Xés-; or X = X23+1 for t - t, according as
P(t) ;§§$hcreasing or decreasing.’® fThe solution then
movquféund & circuit consisting approximately of parts
of:fﬁé eurves x = X, ., Jolned by arcs on which X! > Bk,
In sueh & way that

t
é g(x)dt

32. The case in which P{t) has & maximum or
minimm needs further dlscussion.
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terda to 0 as t — w. For a solutlon of period 2a/x,
1t follows from the original equatlon that

o
g(x)dt = 0,

S0

ard therefore for the approximate solution

ﬁmg(xmt = o. &
o <§>5
O
A\
S
N
{2;v
\
P
&
”<Q§
=
O
5@
/(}t
\O






V. SINGUIAR PERTURBATIONS OF A VAN DER POL EQUATION1

By James G. Wendel

Freface

The elassical perturbation theory dating back ~
to the work of Liapounoff {$] and Poincare [t2] deads
with systems of differential equations of the (@mﬁﬁr)
form % = £(x,t; ¢ ), where € iz a smell paramej:éa} and

flx,t; € ) is corntinuous at ¢ = 0. Mors re@%ﬁﬁly,
\ging from the

interest hos focussed on the problems arde
assumption that one or more of the camponents of  1s
unbounded a2z ¢ tends to zero. The‘iP}’iﬂCipal difficulty

encountered in this new class Qf"%r-oblems ig that

formaily, the system X = f(}(’,.t:;v'o} may be degenerate,

which is to say that one qf{‘more of the initial

corditions imposed on t‘hé:,‘per-turbed equation must be

relinquished. Py

For example,{i% the work of Friedrichs and Wesow

(41, the system SmAer consideration is

(1) ‘\‘Xj =f1{x1,,,..,xn), i= 1,2,..-,11"!
Q> -
N €X,= fﬂ(x1,...,xn),

which {stomes, when ¢ = 0,

...\".
} X fi(xi,...,xn}

xg})nt’
0 = (%5 )

i

3
7
Juh

oKy

1. A dissertation, submitted to the California 'InstituEe
of Technology inopé,rftial fulfillment of the rqulreminm
for the degree of Doctor of Philosophy, Jun® 158,

pl’elimimry report has appear-ed in Pull.Amer. M'_QE—"
Vol. 5h(1048),p.A356. I wish to thank Profedsor 7.

Bohnenblust for invaluable encouragement and guldance
throughout the course of the woTk.

2h3
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In the study of the relationship between solutions of
(1) and of (2) cognizance must be taken of the fact
that in (1) the Initisl values x?, xe,.. ,xg are
independent, whereas the last equation of (2) imposes
the restriction £(x7,...,x2) = o.
The results of Friedrichs and Wesow pertain to
the approximstion to solutions of {1) by solutions of
(2} in those cases where the solutions of (2) arelcon-
timious. Volk {13] discusses a similar problam in
which the right members depend explicitly on(h: “The
so-called relaxation sselllation problemsy in which the
¢ = ¢ system has discontinuous solutions\have been
treated by Flanders and Stoker [3], who' discuss the
van der Pol eguation ex + (xE - 1)x\+ X = 0 for ¢
small, and more recently by IaSai}e {14] who studies
the general case e X + f(x)x Aex = 0,
Systems in which the right members depend
explicitly on the indepen&ent variable and in which
the degensrate system has discontinuous solutions
have been discussed by Minorsky [11], Cartwright and
Littlewood [11, arf)levinson [5], [6}. Cartwright and
Littlewood anmgurice resultg pertaining to the equation
€% + (x2-1):’.+~' = bXcos (At +e) where b, ,A are
positive cqpstants Independent of ¢ ; ¢ 1g taken to
be sma, I“End bogitive, the latter belng only an
appare“t restriction 83 1a seen by replacing t by -t
in.thé equation. They find that the value b, = 5 1a
\E~critlcal value for the paramster b: if b>b then,

It €is small encugh, there is a single periodie sclution,
which has period £%/i , and which is stable in the

sense that as t—w any other solution tends to the
periedlec one. IF b(b then the behaviour 1s very
compllicated even for ¢ smail: both stable and ungtable
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perlcdic solutions of least period %? n appear, and In
addition to these "subharmonics", solutions of the type
called "dlscontinuous recurrent® are found. And there
lg, finally, a single periodic solution of perlod 27 /) ,
which 1z unstable. .levinsen [6] makes g study of
similar phenomena in the case of the equation

¢X + % oogn((xl - 1) +ex = b sin t, 0{b<( b - i

The case of h > b, is not discussed.

Thesge equations are each of the Van der P@ﬁ}
type €X + F(x)X + eg(x) = e{t), and in each casé the
difficulties which arise are due te the fact that the
"dampling factor" f{x) can change sign. EQQ golutions
of the degenerate equation F(y)¥ = e(tNhave discon-
tinuities, in general, and the sitanﬁon 83 regards
unigueness and stability of periodig solutions is fap
more complex than in the case when_f(x) lg of fixed
slgn, as has been shown by CaTtwright-LittleWOOd[ej
and Levingon [8]. \

We propose then tonétudy the equation eX + f{x)x
+ €2(x) = a(t) and iEQ{degenerate form £{y)y = e(t),
where f{x) is not.néqﬁired to be of fixed sign. In
part T (§§1 and 29, solutions of the degenerate equation
having certaip{désirable properties are defined and
shown to exiﬁt'uniquely; tmportant features of thesse
solution igﬁé discussed. In part II {§§3-7) we discuss
the perﬁ\rbed equation; §3 sets forth elementary
boundednﬂss properties of Its golutions and establishes
thg:existence of a periodic solution under appropriate
conditions on the functions e, £, g. In §4 we prove
lemmas needed to establish the convergence theorem of
§5; this theorem states conditions under which &
folution of ¢X + f(x)k + eg(x) = e(t) tends, as €¢— 0,
to a gsolution of f{y)y = e(t); the theorem iz pre-
Sumably a consequence of a result armounced by Levinson
[5] but i3 included here for completeness. In §6 we
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8tate and prove the Global Stability Theorem, on the
behavior of solutions of the perturbed cquation asg

t — o, It will be shown that the cordition b » bo

is necessary and sufficient that for the equations of
Cartwright-Littlewood and Levinson the hypotheses of
the Global Stability Theorem be satisfied. At the
present we are unsblse te prove (or disprove) that s
periodic solution of our equation muast be stablelBr
even unique; the theorem In §6 is our besti apgggximation
to the results anmnounced in {1] for the speeNal equation
¥ 4 (x2-1 )X + €X = bA oz (ALt + a),h :‘)I:};E fl .
However, in §7 we prove by means of a,m%thod due to
Levinson [71, a result In the same diﬁéction, that our
equation possesses a2 waximum invg(iant finite domain of
Zero aresa. ‘

&
o\

N N

I. The Degerpréﬁe Eruation

§1. Introduction. A

ol
L.

As irndicated inaﬁﬁe preface we wish to obtain
Information about #4e golutions of
(1} eX + £(x)3 3 eglx) = e(t), > 0, ¢ small,
from a gtudy gf € eguation
(@) fy)peert).
The chieﬂ<gase of interest 1s that in which f{x) can

chang ;sign.
.fﬁ’"suppose that e, £, and g are continuous, and
t@gﬁ&f and g zatisfy g Lipschite condition; then for
“8hy Initial values o io’ t, (1) has a unique solution
{t) such that x(to) = X, i(to) = io‘ Under relatively
mild additionsl assumptions we can guarantee that no
solution goes tg infinity in g finite time; hence every
solution is continuable for all t, t 2 t,. The most
important extys condition is that /-Xf(u)du zhall be
unbounded above and below as x varify from - to + oo
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We write thiz condltion In the nor,m§lized form

lim F(x)agn x = + o, where F(x) = . Tu)du.
fx o

Cn the other hand, 1f f{x) has zerces the
equation (2} may pogsess no solutions for some initial
values, and certain of its solutions may remain bounded,
vet continuable only for values of t in a restricted

interval ahout t . Nevertheless sguation (2) In its
integrated form

(3) F(y) =F(xg) + B(t) - E(t,) O
whers E(t) = tJe{u}cﬂlu hag solutlons vy = ¥(t) quch.\tha't:
}*(_to} = X, 0P all values Kot to ; thesze somt;ons are
continuable (although perhaps not unlquelyl{or all t)t
because of the bhehaviour of F(x) at 1nf‘1nltjy

In the aimplest case, when hac*\t,solated rercea,
we can select from among the solutloﬁqé of {3} a gpeclal
class of functions y(t) which appg@ximate the solutions
of (1) for small positive €. ,:Wg% putline in the pars-
graphs to follow the heuristdc consideratlons which
motivats the definition Qf" these "degenerate solutions”

Let (1) be trang i‘*ormcd into ap equivalent palr
of first-crder equa}t\}\on by the substitubion w = €x + F{x).
Then \

(lpa) ex = w - F(X)
"\,\(m W= elt) - eg(x). . '

The solut, }ms of (1) may now be thought of as trajectories
(x(t) ww,} in the x,w plane. The curve I' i w = F(x)
playx an important role in the study of the trajectories;
fﬂl\b}f (ba), 3if (x(t), wi{t)) lies above T then
{t) > o, whiie if (x(%),w(t)) lies below I then

£)<0. Tndeed, for smll ¢, if w(t) - F(x(t)) 1s not
"Very" smsll then %(t) is large. Bquation (b} shows
that w is probably bounded, as ¢ —> 0.
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Since F(x) hag i1solated 2eroey, F(x) 1g vlece-
wise strictly monctene, let F+ denote the ger of valueg
of x at which Flx) 1s increasing, F. the lsolateq Polints
at which F(x) has extrema, F_ the remalning pointsg, In
Figure 1, Xy X, and x5 are in FO; the open Intervyal
(X], x2) is in F+; the open Interval (xg, XBJ be longs
to F_. Horizental inflectiona) tangents, such ag at
X, are not excluded. A\

It seems bPlaugible that the set of poir@s’(x,w}
near to I' with X-coordinates ip F+ shouldw§é~%‘strongly
stable region rop solutions of {(1). For aWPposze that
at a2 certain time & trajectory point ;gfﬁﬁ P (Figure 1).

'

L &
A\

N FIG. 1

A&
Then, s¥nce 1t lies above I’ » 1t has a large positive
hoq;ﬁbntal velocity, ang hence tends to move rapidly

towards 1 s decreasing the magnitude of Xx. Of course,
&lther trajectory My c¢ross U';  but once near to it
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ghould be nearly impossible for g trajectory to leave,
go long az x (t) remains in F+.

By a similar argument 1t appears that the region
near F owith x in F_ will be highly unstable. Any slight
Initial tendency to leave I' ig Quickly reinforced;
trajectory points such as those at R and & are expected
to "Jjump" horizomtally to the first accesslble in-
creasing branchof T . ~

Assuming that the term eg(x) may be neglected We

integrate (4b) and obtain ',<‘~>
(5] Wo- W, = EB{t) - E(to). A

Then 1f' €x is small we combioe (4a) and (5% to obtain
the equation 'mﬂg'

(6) F(x) = F(x,) + E(t) - BI£y) = w

p §

whers we have also assumed that €%//35 small.

The second equation of (&) gHould be a good
approximation to the actual metion defined by (a,b),
since only the term eg(x) bﬁgzbeen neglected. The
first egquation of (6) wili’be a reascnable approximation
if ex 1g small, whichi“bf'the stability argument above,
should be the case’35>long as x(t) stays In F . Thus,
wherever (6) is.appilicable, the true solution x(t)
ghould lie near’%b an appropriate solution of (3}.

Let u;:ﬁbilow the approximate mogion of a trajectory
beginning &6'P (x,,,w,) in Figure 2.°  Since P,

s Well(gbbve I' the initial velocity 1s positive and
largelV Hence there i3 an almost instantansous hori-
Z{ntia\l Jjump to PO: (XO’ wo}, which we may think of as

=. No significance attaches to the fact that [' has
been drawn for different F(x) in Figures 1 and 2, nor
Lo the fact that all of the action takes place in the
flrst quadrant.
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8 preliminary adjustment of Initial conditionsg.

Suppose fi??ﬁtihat e(t} is such that the funetiorn

W= F(x) + E(t90"E(t,) varies betwoen the levels
W, and W, . ?hgn the solution trajectory moves along

r betweeﬁ}?o and .3 wWe expect that x(t) is closely
approxima®ed by that solution ¥(t) of the equation
Fiy) %ﬁtfﬁo) + EB(t) - E(t,), which 11es between.xo and
x1.~9\

\ Suppose ingtesd that w increaseg gteadily from

4 to Wy. Then until w 1g near to Ws, X(t) is near
to the solution ¥(t) of F(y) = F(xo) + E(t) - E(to}
lying between x, and Xs. Then ag w continues to rise
the trajectory is carried to g level considerably above

I' and thus x(t) acquires g very large positive veloelty
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The trajectory point then jumps to the next increasing
branch of' I'sayto the vicinity of P,*: now ag w rises
to the level W, x{t) is approxmated by the zolution
y{(t) of F(y} = F(x,} + E(t) - E(tOJ which moves from
x,* to Xy

At PB’ w lg 8till rising; there 1s ancther Jump
to the right to the position PB*' The rest of the
motlon is now amooth, from x_* to Xy. The sltuation .
would not be different 1f I' had the form of the dqtted
curve T . with & maximum polnt P3 at the same hej\ght
a3 P3'

If now w falls steadily from w, to W then the
trajectory moves smoothly from Phto P,;s alo\ag r, jumps
to P5* and returns smoothly to P The corresponding
solution yit) of (3) moves from Xh to\\x5, Jumps to
Xs¥, then moves to X, - Of courseg }f T is changed
to TI'., the number and locatic:n of jumps on the
downward cycle 1s altered. N

The case where extremafof F(x) and E(t) colncide
presents special diffiguit’ies and will have to be
¢xcluded - cf. theydefinition of "regular solutions”
in the next sectio‘lx\“ For suppose that w rises from
W to Wo s then fa.les to L Then x(t)} might simply
mova to x,, afd“return to Xy But we cannot exclude
the possibil'\ty that the trajectory moves into F_,
fonOWiD\%&" smoothly to a point such as @, and then
Suddenlv. Jumping to right or left. Such motions
Sh@uid actually exist, on grounds of continuity.
by wlight changes of initlal value X, we can raise or
lower W, to positions such as w, orw, . obtalning
qu&litatively different approximate solutions.

The foregoing dlscussion suggests that the true
Sclutions x(t) of (1) are approximated by "degenerate

~

For
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solutlons" y(t) whose essential festures are (1) y(t)
satisfies F(y) = F(x ) + E(t) - E(t ) ; (i1) y(t)
lies in,F+; (111) y(t) i3 continuous when y(t) € F+,
¥(t) jumps to the right or left from FO according as
F(y(t)) is a maximum or a minimum. We proceed now
to the precise definition of degenerate solutlons and
the derivation of their sallent properties.

O\
§2. Degenerste Bolutions.

Let £(x) be contimuous _for all x, with %solatpd

zeroesg, 1f any. Ilet F(x) = (u}du, lim F(x) ggn x =
Txf-—q»«(

+ oy . Dealgnate by F the set of x at‘which F is

inereasing and by FO the izolated points at which F

has extrema. Let e(t) be continueps), E(t) sfpte(u)du.
< O

For each x In F,_ we deﬁinésa mumber x by the
following rules: /
if x 1s In F , ¥'= ,x
if F has g maxlmum'at X, then X iz the least
number y of F such, that ¥ > % and F{y) F{x):
if F has a mihimum at x, then.x is the greatest
nunber y of F Saeh that y { x and F(y) = F(x). The
pairs X5 x2 &hd X5 X5 in Figure 2 illustrate the
definition.‘ It iz easy to see by referring to the
figure that irx g E<C x" then F(§ ) { F(x), and 1 x
>k >\ then F(§) > F{x). Furthermore, if ¢ 1s in
'F.\so that & 1is defined, then x CE¥ ¢ x° implies
\Fx%” ) < F(x), while x > £°> x" implies F(£) > F(x).
Let t be arbltrary and y(t) a function defined
for all t Z t, such that
(1) F(y(t)) = Fly(t,)) + B(t) - E(t,);
(1i) yv{(t) is in.F; :
(1i1) y(t - 0) exists and y(t - 0)= y(t) for
all t > t_;
(1v) y(t+0) exists and y(t+0)= y(t) for all
t 2t
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Such & function y(t) will be calied a degenerate .
golution. To emphasize its dependence on initial values
t, and y(to) = x, we shall sometimes write y(t;xo)

r yit; xo, to).

From the deflnltion of the * - operation 1t is
clear that x = x if and only if x 1s in F+. Therefore,
uging (111) and (iv), y(t) is contlinucous when and only
when ¥(t) is in F . We note further that the wvalues b"f'\
t for which y(t) ia in F, are isolated. These rematls
combined with the implicit function theorem immadiately
¥ield the existence-unlqueness theorem for dggenerate
solutions, w’\' 0
We merely state the result:

e AN
Theorsem 2.1. Let X, lie in F é_@_i t be arbitrary.
Then there exists one and only one’dégenerate golution

¥y(t) such that y(t ) =x_. o

~
LN
%

%

Hence if y(t) and Y(t) areltwo degenerate solutions

with initial times t Ad T and 1f y(t Y( ) for
some value b, 2 PEX t R ) then y(t) = ¥(t) f‘or all
t > t, Even ore 15 true and easily proved:

IM% ‘E y{t) and Y(t) are two degenerate
solutions gfiah that F(y(t)) = P(Y(t)) and if Y(t,) lies
in the c)}obéd interval between y(t,) gnd y(t,+0) then
F(t) »Wt) for all t > t,

w\ w4

\ We row prove a theorem concerning the monotoniclty
of y(t) as a function of yit,)-

Theorem 2.5. If y(t,) y ¥(t ) and F(y(ty))

2F(Y(5,)) then t » t_ impltes y(t] > ¥(b
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Proof: If the theorem i3 false then.by theorems

2.1 and 2.2 there is a t, ) t, such that y(t,) > Y(t
y(t,+0) < T{t,+0}, and Y +y (t 1%0).
Therefore either ¥(t,) {( ¥ t1+o) 4 Y(t1+0) or
v(t,+0) yC¥(E) <yt

Becauqe of the equation F{y(t)} - F(¥Y(t)) =
(y(t Yy - F(Y( )} 2 0 these are both impeossible.
For 1f Tit, ) < ¥ t +0} ¢ Y(t +0) then, since ¥( (t,+ oNE F,
we have :y( 40} = y(b +0)" Therefore Y(t,) < v t \+0)”
<¥(e))” Honee F(y(t,)) = Fiy(t,+0)™) C R (YN =
contradiction. Or the other huﬁd, if t @j ( Yt
<yt ) then y(t, ) <Yt )  y(t,) and a].SO vt )'
1 £, y*.  Hence F(y(t IR F{Y(t, )), aN qg;tradiction.
Combining this result with Lem@a 2.2 we have

Lemms 2.4. IFf ylt_+0) > Y(tb‘ and F{y(t )) =
P(¥(t,)} then t > €, *mplieq y(t S T(t

Suppose now phat E{tl,~a periodic with least
rericd p . It iz clearvﬁhét there may exist degenerate
solutions which are not‘périodie Supnpose for example
that in Figure o w nglllateh between the levels W
and w.; then a oihtlon starting at R will never return
to R. However Mfhis solution is periodic from the
moment 1t rea&hes the branch P P ard this cccurs
within & pékiod We show Lhat thls phenomenon is
geners, 1\

“Fheorem 2. 5. If E(t +p) = E(t) then t Z_to + D
.YP__m lieq y{t +p ) = y(t), for all degenerate solutions
yit)

Proof: For 211 ¢ we have E(a) > B(t) > E(b),
where either t (& { b ty#p ort, (b <adt, +p
We give the proof only for the First cage, the secoud
being analogous.

Clearly, t > a impiies y (t) { yla + 0). For
otherwise t, > a exists such that y{t + 0} > y{a+0)
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> ¥{t;): since y(a+0) € F_ then y( b ) > ¥ a+0)
P (t } whence F( y(t 1) > Fly(a)), contradicting
E(t,) gE(a)

Stmilarly € > b implies y(t) 2 y(b + o).
et v{t +p) = ¥(t). Then Fly(t)) = F{Y(t))amd
Y(a) = y(a +p) { y(a + 0). Then by Lemma 2.4, t > a

implies y{t} > ¥(t). Then in particular ¥(b) > Y(b).
But y(b +p ) > y(b+0). Therefore, y(b) 2 Y(b} > y{b+o >
Then by Lemma 2.2, t > b implies y(t) = Y(t), whiok %&
to say: y{(t) = y(t +2). x} ‘

The monotonicity theorem may be stated ,:Ln«a
gtronger form when the degenerate Qolutmn{al’e
pericdic.

Theorem 2.6. If y(t) and Y(t)sare periodic with

perlod p and y(t ;thrge_nx@wY(t)g_nggt
Z to ‘ ::'.‘

Proof: If F(y ), F‘(th )) then by Thecrem
2.3, y(t) D> Y(t fer e.ll & > t the pericdicity and
theorem of uniqueness pz?eclude equality

If F{y(t 1) < F{S(t )} and the theorem is false
then b, > t_ exlats\\Such that y(t,) < ¥(t,). But F(y(t,))
- F(Y(t 1) = (y(t )y - P(Y(t,)) ( 0 Hence by Theorem

2.3 applied witb initlal tims t1, we have y(t) { Y(t)
for al1 ¢ >~\t But y(t + M) > Yt o t P ) for all
n, & contxaiction

B

_.@E;&Q.;é_:l}_"Degenerate Solutions

We noted in §1 that if a degenerate solutlion y(t)
8ppears In F  at a time when E(t) has an extremal value
then that degenerate solution could not be expected to
mirror the behavior of solutions of the perturbed
€Quation, It 1is thersfore necessary to sxclude degenerate
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gsolutions of this type.

To make the description as glmple a= possible
we add the requlirement that e{t) have isolated Zeroes,
o that E{t) is plecewlge gtrictly monotone. (For the
present we are not assuming that E(t) is pericdic.)

A degenerate solution y(t) will be called regular
cn the interval (to,t0+ T) provided that all of the
nunbers y(to}, y(t0 + T) and y{(8) are in F+, where\g
1y any value of t in (t ,t +T') at which E(t) hassan
extremal value; of course there are at most a. finite
mumber of points 8 in the interval. My

The initial value %, y(t }owiil Jo=2 called a
regular initial condition. With t and\T fixed the
eguation F(y(8)) = F{x ) + E{8) - E t } shows that the
get of regular 1n1t1a1 corditions x\ is a non-enpty
open set, We denote by I a closed interval 81l of
whose polnts are regular initial cornditiona.

In proving the convergsnse theorem of §5 we
shall need two results concerning regular degenerate
golutions. These are ;A

.\
Theorem 2. \ et X, be in I ard y(~ o’ X5) 1o By

Then there exists 8 unigue function = (x}, defined and
sontinuous o, with « (x Xo) = 7 and y(r(x);x)y(r,; X,
Furthermorgxr(x is monotone on I.

.Légmg 2.8. Iet u {1t <{v be an interval such that

svergngegenerate solution ¥{t; x), x In I, is in F_ for
;@Chlx one value of t interior to [u, v]. Let E(t)

Ee increasing for u <t {v. Then nlne numbers

~olx Cx, < <xgg+mmmmamxg
are Iin 18 ;g_gggx_ggg finite; the open intervals(xlax5)aﬂ
{xg, Xg) 1lle in F.i X5 and x. are in F; F(Xh) > F(X6}5

and for x in T, X, < ¥lu; x) < %, and X, L ylvix) < Xg-
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Thecrem 2.7 15 important because 1t enables ug
to 1solate the values of t at whieh ¥it; X,) 1s in F
uniformly with respect to Xy 1f the muerval I over
which X, varies 1s chosen sufficiently smmlil. This
can be seen as follows.

Suppose that y(t; %5} 13 regular for t, <t ( t,

3

+T, and 1s in F at successive times T1s Voo n-
Then by ‘I‘heorem 2.7 there exlst continuocus functions | A
T (x) defined on I with fj(x] = fj, and y(rJ{x), x} <—.
y(rJ, X, Y in F‘ By app13 Ing the Theorem again we see
converqeljy that if y(r; x) 413 in F0 then 7 =:Ml(‘x ) for
some j. : O
Since the functions r.(x) are continuisﬁ’s we can
select numbers u. and v. ao that if T ig small enough
then ey T (x ) < Vs the total length\\ﬂ‘ the intervals
(L v) iq as small a3 we wish, and E(\t 1s monotone for
< t < vie For t in the 1nterval [u » V5 1 each
y(t,x) ha.s one and only one value in F s a.nd the point
of F, 1s independent of x. v,For t in the closed interval
v j-1» W3] no solution E(t ‘x) is in F,

IIl order to estab\iish thege I’esults we Introduce
an auxiligry functlmﬁx G(w; y), defined for all real
wWand for all y iAF .» in terms of which we can write
8 more explicit I‘orfmula for the regular degencrate
golutions, Q ,1(: a sort of inverse function to P, and
1s der ine§§b5r

A\ G(F(y); ¥) =7 ;

FEF), Glwsy)
Tw< ry), owy)

vy T

minfx|x>y,w = F(x)] ;
mex (x{x{y,w = F(x}|

I
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W
iy
-Fiy]
R
R
! ! I /AN \ x
G{w‘;}r} G(\.u;;)r) }/ v Gf\-"';{)‘]
5 :-’:: :’
RIS, 3

Figure 3 1llustrate bhe definition of G. We chaerve

that F{G{w; v)) = q}’or all y, and that G(w; y) is a

atrictly increaa;pg function of w for each y. Further—

mores, if ¥, an& y2 are two numbers lying in the same

component Qﬁ\P theﬂ.for all w we have G{w; %) = Glw; ¥, )

Finally”\¢r w > F(y) then G(w ~ 0; ¥) = G{w; ¥),

G(w +*Ia, ¥) = Glw;y); ifw < F(y) then G(w -0; y) =

G &,y] 5 Glw + 037) = G(w; v).
/ If we write w(t) for F(xo) + E{t) ~ E(tO)

we 386
at once that the following lemms holds:

Lemms 2.9, ir y(t } is in_F and B(t) has no
extrome values in the interval t ( t ( t, then
vt} = &{w(t); ¥(£,)) for all t, t, {t g L,
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Lemma 2.9 yields an algorithm fop the computation
of regular dsgenerate solutions. For if E(t)} has
suecesaive extrems at times 9 82, ey en then 811
of the numbers y(8.1) are in F + Hence y(t) = G(w(t);
¥(t,)) when by {t < 0, ¥(t ) = Hw(t); y(81}} when
8, <t < 8,3 and 0 on. In partiecular, if I 13 a
c;osed Irterval all of whose points X, are regular
initial conditions then as X, varies over I sach of O\
the munbera y(ej ; XGJ varies over a closed inter}rg.:l\.
lying in F,. O

froof’ of Theorem 2.7. Since ¥(r of Xy 7, E.F and
y(t; XO} is regular we know that E(t) doe% :(;ot have a

maximum or minimm at time To' Hence Pop some Js
8 (7, < 84 lotting B =t _. T]txl.e{};by the formla
above we have R

FOT58) = GF(x) + B(r)B(E )5 y(8; 5 x)) 1f

9 (7« iy But y(ej ; x) and y(ej ; x,) e In the

same component of F_. Henb,é’ we may replace the last x

in the preceeding equathon by x, and obtaih
2\

yir; x) \&m B(T) -~ (5,05 ¥(8; 5 %))
Since

v, '.\(,\J =~ G(P(x,) + E(7,) - Blt,); (855 x,))
it wily e\sffuc tent to show that the equation

’E‘(z{‘ + Bl ) = F(x ) + B(7, )

\ a
ha< “Continious monotone solution® = 7(x) with 7 (x,)
= inly true in

T('] and @, {r 1 < 6. IRE Thiz is certainly

e
& n Glﬂ’htor’hood vV of Xo’ since E(r ) 1s not an extrem
alue and F(x) is monotone and continuous on I, If

n
*2 18 the upper hound of v and lies interior to I the

- E{r ).
"{x; - ©) exists and F(x,) + E(7(x,-0))= Flxy) + E(7q
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Then.y(r(xe—o); XQJ ig in FO, 80 that E(t) iz not
extremsl at t = f(xE—O) and Bn {r V{8, Se1°
Defining 7(x2) = T(XE—O) we may contlnue the solutlon
beyond %X, and hence to the upper bound of I. Similarly
at the lower bound.

) Before proving Lemma 2.8 we need to discuss the
continuity of y(t; x) as a function of x. We have:

4

lemms 2.10. If y(t-x ) 18 a regular degensrate
golution and y(t1, %, ) is in F then y(t,; x) %@

continuous functlon.of X at X = x,. ~
Proof': Let e < t, < GJ+T Thenng
Y(t1, X) = G(F(x} + E(t ? RS H
y J’ XJX\"
by Ietma 2.9. As in the prev1oué\proof we may replace
the last x by x_ . Then QO
y(t1,x -0 = G(F {gpiUJ + BE)) - E(t);
3{.@ 5 %))
<\G(F-(xo) « B(t,} - E(s, ) I 0;
0T T(855x,))

:~j\\ = G(F(x_ME(t,) - E(t ) ; y(855 x,))
.‘\”'/w = vty x,)
since y(tt; x ) is in_F+ whence y(tT; xo)* = y(tT; xo).
ngﬁbof of lemma 2.8, (See Figure 4).
\:§i> Let I be the closed interval of x! Cx L x'', Let

o T XY, Ky = y(us x'), 2, = yv; x1), Xg = y(v;X

3
Then by Theorem 2.3
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N
o

RFIG. 4.
X, {ylu; x} < X5 and X, < y(\;";&’x’} < xg for x in'T.
BY hypothesis for each x t@;{:i;é’is s unigue r(x) with
u<{r{x) < v and v(T (x); j&&«m F . Theorem 2.7
gusrantess that the poillt in F, is independent of x;
denote 1t by x TI@;], by lemma 2.9

5
Xy = GF(Y) + B(u) - E(t,) 5 y(w x'1))
X = xg(ﬁ’.fﬁlr) + B(T (xt")) - E(to); y(u; x'1)).

But G(w; :\zis an inecreasing function of w and

E(r (X'ut"}\) > E{u) since E was assumed increasing on
[U',y\lzi“Therefore x. < X3 gimilarly Xg < Koo and
Infiged x,; < X,. Let x, be the greatest number of F,
less than x;. F(xg) < F(X5J, and therefore we may
thooge X), between x, and X5 80 that F(x,) > Fxg).
Pinally take x, equal to the greatest number in F,
less thap X,, or - if there is none, and take xg
“qual to the least number in F, greater than xg, OF

*®.  The open intervals (X, X, ) and (XB’ X5J
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clearly 1is in F+; the closed interval [xg, Xi] lies
in F+ by the continuity of y{u; x), lemma 2.10.

Hence {Xi’ XS) is in F,; slmilarly (x6, Xg) 1les in F..
Thus all the conditions in the conclusion of the lenms
are fulfilled,

II. The Perturbed Fouation
O\
§3. Elementary Properties of Zolutions. A
We conslder the equation \J)

A

(1) &%+ £OO% + ¢g(x) = e(8),0 < ¢ < 1, wider the
agsumpt lons D ’

{a) f(x), g(x), e(t) are continubﬁs\and £{x}, gix)
satisfy a Lipschitz condition in a’n;(';bouzlded interval;
hence (1) has a unique solution Kér".\given initial

4

values X ;&D .
(b} le(t)i< e A
(¢) B(t) = f e(u)iugihas finite oseillation, E,.
(d) F(x) = ﬂ}xf(‘ﬁg}ﬂu; » 1im F{x) sgn x = +.
L | % |-+00

{(e) There ex%gt}positive constants a., a such

el 20 B3
that the inequgli\sﬁes flx) > a, lg(x)!, F(x)agn x > o,
g{x) sgn x Z.\aﬁ“hold when {x| » a,.

It win requently be convenlent to replsce (1)
by the Qi}ivalent pair of first order differential
equaiz;s'{hs

(D" e #(t) = w(t) - F(x(t)) .
A . |
w{t) = e(t) ~ e g(x(t)).

The first four theorems of thia section pressnt
bourdedness properties of solutions of (1}. The methods
employed and results obbtained are very simllar to those
of Cartwright and Littlewood [2). Our hypothesis (e)
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i somewhat less restrictive on the funection g{x); in
[2] it is required that g(x) ZO(xJ for large x,

Theorem 3.1.
for any sciution x(t} the 1nequa11ty fex(t)] Qexof + A
holds for all t >

Procf:  If ]ex () < et ) 4 22" por al1 ¢ >t
we are throuesh. If not, t, and t e“«xist guch that o
Pex{t, ) = Jex r + za]] amd t, < t { t, lmplies OV
| k(T > le + 2a21 . Ausumlnp for def‘mitene\;s} K
x'{tTJ >0 th= ae re?ablom become

b, <5<ty impltes €X(t) ) ek, (NWea)]

N7\

80 that Nt

1 N
€5 - ex F(x :Fu}=Ew)-EﬁJ
2 1{1 + B Q)S\ 1 2 t i

« - e 72 atx(e)a,
) St I
Whers X, = x(t ),‘ ;gi = x(t;).
Then us 111«1’\( (3) and (&) and. ¢ {1, we obtain
0C e xe < j&);o + 2321 - Flxg) + F(x,) + By

N
T
¥ h,i‘f— le{x)dx, since E A

\’Hen
-1
X
. - - f£x)jdx
°< % < lec 1+ 98.01 + By o+ é’azfxg [lg(x}] - 2a; £(x)
1 -1

-1
L Ixl Y a, then oy le(x)] - &, £(x) Malx)i-ea, £0x).
ThePePOI‘P no matter what the values of x,and X,,
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. -1 1 1
o< ek, { led | + 2a] 4—E0-+532f [ ta(x)]

-1

-2a, f(x) | dx = l_é}'{OI + A.

The preoof is similar if :s'c(tT} < o.

Theorem %.2. For each solution x{t)} and =ach t1
there is a &, > t, guch that Ix(t )1 < a, . &N\

Progf: If x(t,) » a, for every t, > ti\z}h}n by
— H I ”\

integrating (1) we obtain M
t I’N"
F(x,) - Fix,) + ¢f 2g(x)dt = E(t ™ E(t, )
R W
t.] \:::}\
:'.\\fe(ié‘ - %y
Hence t ,\
'F(XQJ +ff E(X)dtf §~A', a congtant depending

t'l Ky )
‘5

on the Initial canditign ', by Theorem 3.1, But if x ) &
then F(x) and g xl\"Prave the same sign, by (e). Hence

If gix} at |

Theref’ore fbt} - 5' < & constant, for every

constant .,

t, 2 b4 “\‘ As this is ruled out the thecrem is proved.
Simi{ 1y irt, > t, implies x(t,) < -a, .
\/ Theorem 3.3. For each pair of constants B and C
there exists a constant D independent of e such that,
if Ix(t )| { B and | € i(to}[ <Cthent ) t  imlies

| x(t)] < D.
LProof: First consider the case B (_ It
) < a, for all ¢t ) t, we may take D = If x(t)

8-
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hag values preater than a, x{t) must take on the value
a, at, =ay, t o= t-T and again, by Theorem 3.2, at
o=t . At an Intermediate value t, x(t) has a

3

meximum valus x, and J.{(te)= 0. Integrating (1)

from t.l to t-_c_j we obtaln
Flx,) - Fla,) = E{te} - E(t,) + e:.'c1 -[teg(det.
b -
Therefors F{x,) < F(a + B+ t:Tc I + A {F( (a,) \
+E +C s A, 2ince g > a ) 0 when x ) a, Thergfore
F‘(xp_) and cansequently X, js bounded above by a oohstant
depending only on B and C. Similarly, if x(t} takes
values less than -a, x(t) 1s bounded below . \
Now take B > 8, and let t_ {t<( ) Nmply x(t)

2 8,, let x(ty) = X, Then \,
tT
Flz;) = F(x_ ) + E(t, E(t,) +,.} -*{ g(x)dt,
Cmax | IF(x)] | {fo g_B; + By 420 + A

- 8nd agaln x, is bounded by® constant independent of the

initial conditicns. The ease x(t) = -a, is analogous.

N
€ 3

The thecorem wl’n\:h follows gives ultimate bounds

@3 t= & ) for ax a‘rbitrar-y solution x(t) and ite
lerivative, A

Theor'er‘lxﬁ\l& There exist congtemts B, and C, such
that E.E@m&\emtion x(t) satisfies [x(t) < Bys
lex(t ,,\.f§_ C, for all large t. .

\}ézg_gil: [x(t) must take on arbitrarily small
values Since x(t) is bounded. Let t, be such that y
IX(t1) 1 <1 then, applying Theorem 5.1, t 2ty implies
lex(8)1<1 4+ A= . By Theorem 3.2., t, > t, exlsts

Now apply Theorem 3. 3 , with

l/\O

Such thgt Ix(1
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B=a, C= Co’ writirg B, for the assoeiated constant
D. We have ix(tg)i < I [é}'{(tp_)[ < C,; hence t > ts
lmplies |x(%)] gBO, [ € (L) | < CO.

The boundedness rroperties proved in the above
thearems show that if e(t) is periodic of pericd p
then (1) has a veriodic solution of psriod . This
Tollows from a remarkabie theorem due to Mrgoers [10].

Thecrem 3.5. (Magsera). let fix,7,t) her é}_n-
blouous, periodic in t of period p, amd satfefihine a
Lipschitz condition in x,y. If no solution9f “the

system &N
(5) ¥ = ffxsy;t) ’:
¥ = e(x,7,t) \,

tends te infinity in a finlte timeN\and ir (5) has a

solution (x(t)), y(t)) which 1 Bburded ror t 2ty

then (5) has a periodie solubdeh of periad p.

Theorem 3.6, If s(t\ 15 periodic of period p,
then (1) has a periodic solution of period D.

Proof: We app Lt Wheoremn 3.5 to the system (2}.
By theorems 3.1 ang(s.s every solution is bounded For
t 2 t, and hence.ifp\ solution goes to infinity in a
finlte time. \ ce (2} and therefors {1) has &
solution of'.~pier’=iod T.
N

§%. DBeh@wior g5 € ~ 0.
‘QI’H" this section we tollect some lemmss which we
shadl‘need for the proof of the principal theorems. In
,@dj@,'{tion to assumptions (a) - (e) we require that o and
\F have Isolated zerves; we use the notation of §2. The
funetion w(t) was defined by (2} of §3.
To save writing ws state here a hypothesis which
1s common to all of the lemmas to follow: B, C are
arbitrary positive constants; 0 < ¢ ¢ 1; L, 1s
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arbltrary srd x(t) 1s an arbitrary solution of (1) for
which [x(t_ )1 { B, | €x{t,) < C. Any other constant
whose existence 13 agserted 1z understood to be
deperdernt on B and C, but not on the particular zolution
x(t), nor on any other quantity unless explicitly stated.

Lemma 4.1. There exlsts & constant G such that
Cze (wit) —E(t))geGTf‘_oytogtito+T. O\

Proof: Let D ke the rumber in the conclusiph)ef
Theorewr 3.3, and put G = max| [g(x)| 1 fxl < ]"IE\. )
Integrating the second equation of {(2) betweeﬂ ‘any two
limita 1n {t(], tO + T] yields the result. \

Lemma_b.2. There exists a constAMH such that if

o Sty (i, and 1R(E) e "% for alht, t (Se<t,, then
]W(tg) - w(t 13 {He= ,\
Proof: let H = 2D(e_ + G) " By Theorem 3.3,

x(t)} < D. Then 2D ) lx(t P& x(e, )] ) (ot €72,

8o that (&, - t1) é oD e 17’?’ Then

el L 0
Wty J-w(t,) = ;ée( Jat- ef g(x(t})dt
) t\,’\ g &
whence ) P
lW(tEJ ’\ C[ ) < QDe‘l/Q (eo + EG’) g He .

Th“‘\nexb lemma mekes rigorous the argument glven
In §1 gg\etability of the Ieglon F,. We obta?r/lgonw
a weak ’bmrd on x{t), namely, } < 0 e ). But
tm‘w 18 enough to guarantes t hat ( ( w(t)) 1s close

i ault
bol' s wit) -~ Fix(t)) = ex(t) { OL¢ ). This resu
w1il be strenpthensd 1in §5.
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whers J > 1, then for all t, t, {t< t,, we have
50601 ¢ (HE 4+ gy e /2,

Proof: Tt 13 sufficient to prove that

k()] < (H 4 Ty e T1/2

Let 15(t,)[ = (B + 3)¢7' /2 wien H')O Let '3t
be & rumber such that 1X(t") = Je 1/2 R < t2
fmplies [X(t)| > Je 1/2, -

Ir x(t ) > 0 then %(t') )} > 0 and we have by Eémma
L.2 and the def’lnition of F_, He /2 > wi £y )'* M ")
=¢X(t)-ex(t'}+F‘x(t2)-F 1) 2 &
SeR(L) = (HT 4 g - gy e 1/2 H-e‘/2<
Simllarly 1f ;':(t )y < 0. \

Lemmg h.b. If x(t ) € P, 1£4¢ 172672 and 1f
I%(t)1 C (1 4 Hye1/2 then pwft)wm—y(t))r { (2sm)e! /2

Henee H > H'.

I_’g?_g_l_l__t,tc)(_tg_tontT \‘
Proof': By Lemms 4.1. 1x(t - E( Y- w(t )
+ Bt ) [CGF.  But Wit AN eX(t ) P(x o) and F(y(t))

zEﬁJ-tho}—E(O} ﬂwmﬁm&,!w&)-FQ{))
< EOT w Jex(t )| < (25 /2

The Conyergepge theorem of §5 reste essentially
on lemmas b, Qfﬁ Y. For combininm the resaltu off
these lemmas We have [F(x(t)) - F(y /LJ;
g0 that x(t1~and y{t) ars close together :

The\pext four lemmas will be uged to egtablish the
global\efability theorem of §6. The commen hypothegis
of the first thres lemmas, that t, > t, exists such
th&b x( (£, <1, is introduced to enqure that we are

x\ﬁbf dealing with a golution which has Just come from
Infinity,

Lenms Lemma L,.5, Suppose that numbers w, and W, exigt

such that the equation F(x} = w has exactly one SOIUtlop
fw {w {wW,. There exists ®o 2uch that, If «( e,
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e, <ty <ty are such thet [X(t,}| {1 & amd w, < w(t,)
{ w, then r"{t H <A + Hye™ t/e &nd x(t L)Einﬁ.

+
Proof': Choosze €, less t‘?e;;} 1 and small enough so

that 1f € € and w, - (1+H)¢ ww, + (14H) ]/2

then F(x) = w has exactly one solution x = e(w)., The

golutlon ¢ (w) iz a continuons function of w and Is in

F+ glnce F{x) 2gn x—w as [x|—w. ~
I ()1 < (€72 then [R(x(t, )) - wle i

< (1+H) e /2 and w, ~ (1+H)e¢ /2§ x(t gw '61\ )2

1
Then x(t,} iz a solutlon, perforce the unique oné“ of

F(x) = F(x(t,)). Hence x(th) €F,. \
We now show that [X(t,) > ( 1+H 17(2 is impossible.
SUUDOSE* for definitensss that X(t ) > (1+H 1/2. Then
o exists such that t, < t, < ty, a’m:ix L) = /2 wnile
it { ty Implies th&t ®( >e Y¥. Then by Leuma
LL.E; wit,) - w( 1< HE1[2. Hence w, ~H91/2( wit,)
<W + He /2, Thenw1 _“fﬁ T/2<F(x <W +
1+H /e, Therefore, X{t € F.. By Lemma b,z., if
b <t < by tmplies x(gN € F then ix (£,)1 € (1+H)e T/,
Hence, X(L) migst leaw‘-:«\F at, say, © = t? t, < t by,
wEh x(t,) L€ "W ¢ 6,) < (14H)¢ 2" app}y;ng
Lemma 4.3 onee agaul But fw(t 5) - w{t, ) ¢ He by
Lemena 4, ’her’ef‘ore by the argument uaed above For x(
we c:mclude\that x(t } EF, .8 contradiction. T_his

complete&he proof.

t.)

\h—:mma 4.6, Suppoge that pumbers V, and X, exigt
—“Qh' that F(x) > V, whenever X 2 X, If t, > t,
€xists such that fX ) o<1, and Lf ls 2L, 1z SUCh
Ql%lwt5)_gn1,thenx ) ¢ x, - PO mdede(t,_
Sonstant . 1ies

Proof Choose ¢ 80 amall that € { ¢, Lop

V1 CF(x -e!/g and so that, 1F € é_ ¢ then X, gX
. '| o
Implies v. + (14H) e /2 ¢ Flx)
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Then If x(t,) > X, we have F(x Yo v, (*+H)61/2
D wit é) o (1a)e /2y ty) AN Thefefor’e x(ty5)
< - ¢/ by the definition of' the functicn w(t)
Since r:n((t1 I = 1 and ¢ <1, there exiasts 98 betar.reen__1‘/2
t, and 5 such that J"({tEJ - -e71/2 while %(t) { - «
for all t, <t { t,
Then by Lemma 4.2, w(t,) < w( v He V3¢ W,
sge 172 Hence F(X(te}} = w(t,) + eV <y os (DR,
Therefore x{t,;) < %, But t, <t ( t, imp? 1efc~\?‘<~ <0,
and so. x(t )\< x{ t ) 'Y X, co*n leting the pr@o}f‘
In tl“e same way we Can prove 4 ’«
Lemma 4.7, If V, and X, are cuch\f\hat Y < v,
Whenever x <%y then, »AN( t. ) <1 oand
b5 2ty exists such thet w(t,) > Fudhe (k) > x,
for all smalle ., \3
lemma k.g, If x{t). ard - ‘{ ) are two solutions
of (1 )s,nd if‘t §t<t 1mﬁlrcux {t) <x (t) while
x(t,) = x (t?) uhenw (t ’} <w(t ) 426G, -t,).
Proof: (t,) (& (¥% bl) the unlthne_u of gsoiutions
of (1}, Theref‘ore \“\w V< ow( t b,
since (x" {t 3\)\ F(x(u 1) and w(t) = F(x(t)) + ex(t).
But, _ A
v:r@) Wlty) = Elty) - B(t_) - e{ Toglx(t))et
¢ 2
- .,\\\’W (50 - w(e) = B(6)) - Bt - ‘éﬂgfx’(tndt'
Qe 2
The;r wit ) - w (t Vo= w( - W i g{x{t))
&y 0 o) = WL, - w (t1)+e{ (g (x(
SeGTEINar > e [ (g(x(t)

“e(x (t)yde > -zé G(t, -t ).
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§5. The Convergence Theorem.

The principal resultes of this section are
egzentlally special cases of a theorem ammounced by
levingon [5]; we are able to state a little more, in
that the corvergencoe here 1s uniform in & specified
range of initial conditloms.

Throughout the section tO and T are fixed,

t, 6 < t, + T3 1 lg a closed interval in F, such O\
that X, in I yields regular degenerate solutionsi\
cf. definiticn in §2. We are assuming 1X I < By

The aclutlon of (1) with parameter € and imtlal
values x  and X at time t, is written J{ftho, X,5¢);
the corresponding degenerate solution I§¥(t; x, ). The
conwvergences theorem is concermed witk{ vvhe t:ﬂuth of the
squatlion ‘\\.

im x(t; X, 5{0; € )‘ ;‘S"(fti xy)

o/

£~

In the sequel we suppress th“e “symbol "e - o ", writing
flmply "2im" ‘.;.'

The pr’oof‘ of thg c;ﬁnvergence theorem rests on the
next three lemmas. \Lemms. 5.1 amounts to the convergence
theorem in the “péc\ial case where y{t; X ) has no Jumps ;
lema 5.2 Gmcusaes the convergence 1ln the caze where
F(t; X, ) hag a ‘single jump and ylelds convergence at a
time 311?’;1“%13 after the jump as a consequence of con~
vergeneeunt o time slightly before the jump. The full
theordm then follows by induchion, using slternately
1’emmas 5.1 and 5.2, with lemma 5.3 to connect them.

Lemna 2.7 and the remarks which follow 1t show
that the discontinuities of y(t; x) can actually be
lzolated as specified in the hypotheses of lewmd 5.2
and Theorem 5.4,



272 J. G. WENDEL

Lemma 5.1, Let t, and t be fixed mumbers guch
that w(t; X, ) 1a inF foralxolgI, t1 gt<t2.
Suppoge that 1im x{t PXs X ; €) = y(tT, xo} uniformiy

for x, In 1, (% | g (1+H)¢ /2 apq tnat, ir !

%ol < By U2 hen 1t 5 x L 5 s 6 )1 ¢ (1amye /2
Then 1im x(t;xo,%o;t ) o= y(t; X} uniformiy for

Xo oI, (k1 Gamye /2y (g g t,, and

I%(ty; Xos X5 e )]  (14H) ¢ -/ uniformly for ald 'Ey_u;l_l_

Proof: Let ¥, = min ;"(t'x lt {t gt € Ii,
Vo = max | y(t; x) f b, {t< tE, x, €1 1O

By hypothesisg ¥ and ¥, lle in thewame com-
ponent of F+. 2t y' {y'') be the lef‘t\éright) hand
boundary point of the component, or\N\ee’ (+e0 ) if the
component ls unboundeqd below {abwe}}«
< 1 € < 2 2, ’béx\bhosen So that ¢ ¢

implies Ke
(1) F(v”J > Fly,) + (pel)e /2
(2) ) < OFly)) - vy e 1/

(3} }T’(X(t1;xoixo,t)<};"

\
(These are vacuqsc&l%r satisfied 1f y' and y'' are
infinite.) Thén <t < t, implies x(t; Xy X 5e ;./2+
- For by Lemma ;3 with J = 1 +H &( (83 < (1+2H)«
az long as,'\zc(t) remging in F - If x(t) leaves F+ at t =

t' the (‘t' Y =3 or yrr. If x{t') = ¥' then

0>x({\ > (T+2H)¢_1/2 Then w{t'}}F t';x ¥}

- (:{-t-H' 7 by Iemma h.4; therefope w(t') > F(:y -
\@}H F(y") = F{x(t")) and so X(t’) >0, w.’nlch is

a contradiction Simllarly 1rf x(E') =y,
Thersfore t, (¢ t, implies x(t)e F_which 1in
turn Implies [x( !:)I < 1+2H}eh1/2. Then lw(t) -
t})l (1+25)¢" /2. Honoe by Lemma 4.4 NEICICTE I
( | i 3{1+H)e 1/2. Therefore age-+ 0 F{x(t; Xo’Xo" ))



V. OSINGUIAR PERTURBATIONS 273

tends to Fiy(t; XO)) uniformly in t and Xy

Since F{x) has s unigue contirnuous 1inverss in
the range y' < x { y'', which is a fortiori uniformly
eontinuousz, we conelude that x(t; Koy }}O;e } tends uni-
formly to y{(t; xo).

The last part of the lemma follows from the fact
that if t' ¢ t { t'' implles (LY Dt /2 then t"!

t1 ¢ 2De 172, fogether with Lemm b.3. O

Lemma 5.2. Let t;, t, be such that the ¢l gé-d\
interval [t,, ty ] contalins no exhremal points Q_ E{t)
and such that f_o; each x, in I there is a gailgu_e

y in (b, ts } such that y(t (x~)\, x? is In
Foo I 1%(5)1C ( 1+H IRt I%, 1< e 71, and 3f

0
Um x{t ; Xo’ XO, €)= y(t1; %) un’lf\orml_y for x, in
I an3 |5< C(1+H) e ¢ then llm x{t3, Xy Xo’ £ ) = By
¥tas x)) 1 ___I_lj_f'OI’ITllX for all x5 m I and (x| < {(1+H)e
anl fx(t 1 (1+H) e '1/9'_\,’};

PPOO‘" Assume forldefiniteness that E(t) 13

tneveasing in t, ¢ t & €, Then yit,(x, )3 x,) is a

fixed maximum of Fik), for all x.€ Is by Theorem 2.7.
Let namberx\ ~o¢ x, < X (x < %), < %5 {xg <
Xq <XQ<5( (\+oo bedeterminedasinlaem.aEBKEF
h flnitu,:t <X<X CF,;5 X5 X, € F. x9€FO if
finite; \y < x < XJ l+; X, g y{t1,‘ xo) gxy' F(Xh)
> F(x )‘\x { yit 53 X)) ¢ Xg-

\Let eo be chosen so that, if e ¢, then

JFxy) - (2 v ) 1P > F(x, )

} X <X( nl,;XO}XJ <X5

) F(X b= (4% + 2H) 1/)>Fxh}>F(X6) /e
)

)

H{X ) -{2 + H) 11/2>F(X5)+(1 +J+H)E1
F(X)+(£+H 1/2<FXJ
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The proof proceeds in the following eleven steps.

(a}t(t(t 1mplmwx{t,x,x;i)>x
0

For otherwiqe ty > t must exist such that x{t ) = X,

) < 0. Then w(t_ ) < P(x 1 = F(XTJ while w(t,)
ZF(:y- (tn5 %)) = (2 +H)e‘/2§F(x -(2+HJ /8
> F(x,) by Lemma 4.4; F( (x) Dw (t,) > F(x.) is impgasible

[b)ua(t ) D> F(y (t5, x,)) _1(?; H)e 1/2 2\:3{;{?) -
(2 + H) > Flx L) + (1 + LH) . ;\”3 -

(c} Therefore x(t}), in F at t = 1, must leave
before t = ty. For by ausumotlon 1% i;\}! <1+ H)eﬂ/g-
Hence 1f t, { t ¢ bty impliss x(t) & K then ix i<

{1 + 2H) e," 2, by lemms u.3 with»b'— © s H. Bub thon
VOF(E0) + (1 4 2H)e Wa\(px Wi o+ oH)e /2

comradicthg (b}, .

(d} Let x(t) leave. F+ at t =u, . Then by (a),
x(u1)—x5,0§f{u §{1+2H)E1/ Then F(x(u,))
=F(x)<w(u g‘ % :.([_*_QH 1/2 < X)+
(1 +1+H) 1/2 <F{3{\) - (2 + He 1/25w By tb).

T 172 L
Algo F(y ,x}ﬁ\\> W(u ) =(2 + H) e >_F{x5) -
(2 + H)e 1/2 e to > ¢ > u, Implies P(y(t))
> Fly(u, 3} wal hame ty >t U, lmplies w(t) > F(y(t))
- (24 H}J” P FGE)) (2 v By e T2 pex Y -
(b 4 g};\\)e"/g > Fx,)

(e) Hence u, <t ¢ by implies x(t) > x5, For

{tﬁe’*w e u, > u, exmts suc,h that x{ L) = Xs }'{(UQJ < 0.
Then w( ( F{x{u.)) = F(xy ) < B¢ con'tradicting (d).

(fJ There exists U U with u, { uy < Us < tys
guch that
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w{u, ) F(x5) + {1 + 2H) 1/2

wu,) = Flag) + (1 + 4H) e 112

(t < a rolies wiu, ) {w(t) {w(u5). This follows
J.I‘OIH {da) dm the contlnuify of wi{t).

{#) Therefore there exists u,, u, <u, < Us
such that [x(u, )}l < « 1/‘. For w(u5) - w(u5) =
and the statomens ollows from Lemma b.2

(h) &, {t < ts implies x(t) < Xy The pmm&\
of this iz & repetltlon of the argument in (a}, us:lrng

inequality (5) im place of (1), ~.‘

K75
(1) mexce xg < xlw,) < g For bR, x()
2 Xz By (g), 1F(x(uy)) -~ w uh 1 (e {\,‘which {mplies

Flx{uy, )y 2 wing) - t/2 S oW ‘/Ks F(x + eHe‘/Q.

“o

But Xg < x < xg implies F(x ) < F"i??s)

(3w, <t <ty inrph,e@x6<x(t ) { xg and

therefore x(t) € F, . For N (h): ) < g if ug
exlzts such that x(ué)e}%, x(ug) ( 0 uy, < ug < b
then w(u,) ¢ Flx{ugdi™= Fxg)- But w, > U, and 50 BY
{d), wiu,} > F¢ Xh) > F{x,) which gives a contradiction.
BE IX [ <
Hence [w(t

V) - F( (t%)f

{k) Thestore u, {t <t 1mp1A
(14H) 1/?«113 Temma 4.3 with J =
F(X(tB)) §§”'(1 + Hye /2, implying IF{ (ts ”
< +"2H} v/ by Lemma b4.k. Therefore X(tEJ—f Fitg

8q *\“"O uniformly for x, € I

4 in
The proof 1s similar if E{t) 18 decreasing

the ¢losed interval [ty t5]'
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lemms, 5.3. Cormditiong a3 In lemma 5.0, let t!+
be such that y(t; XOJ is 1n F+ for t5 {t < tys X, in I,
Then €  exists Such that if ¢ ¢ then 1%t ) <
(1 + Hye "1/2

Proof: This is g corollary to Lemma 5.2. For
with U, of (g) above we have [k(uk)i < 6‘1/2, m, <t ¢ t3
implies x(t) ¢ F+. By arguments similar to those ;n
(a) above we can guarantee that t5 <t( ty Tmp11de
X(t) €F ifeis smel) enough. Then Lemma L.B;@}ﬁh
J =1 ylelds the reguit. O

N/

Theorem 5.k, (The Convergence Theoren)s Tet I;
- %4 2 -
t, < t, < t, < ... ¢ t, g.to + T be sggékthat if x  1is
In T then tn <t < t2r+1 implies y{sa X,) € F_, the

¢losed interval It2r+1, topenld conbaihg no extrema of

7

E(t), and guch that fop each r tﬁ&fé exiats & unique

T e L M

By = ti(x.) such that YLK, 1s in F, with t,_ .

® . -1/2
C% Cores ¥=0, 1,2, W g %l < O+ e/

N

then 1im x(t; X, io; € o= y(t; X.) uniformly for x € I,

Bor Lt <--tE‘r°+13 §29<f%(t2r+1)‘ O wme /7

Proof: The\§kéorem 1s evidentiy true for r = 0
by Lemms 5.1, W8 assume that it holds for v and show
that it must‘ﬁﬁén hold for r 4+ 1,

We gfﬁ;éssuming that fi(t2r+1)l CH(1 4+ H)‘_1/2
and limis&t2r+12 = Y(t2r+1; X,) unif???;y in X,. Then
by Lerama 5.2, fx(tem” < {1 + Hye and x(t, )

terdly uniformly o Tt nip). Then by Lemms 5.1 again,

) 3 .
b, <t < t2r+5 implie? x{t)e y(t) unifol’m}?fgﬂ t
and x_. By Lemma 5.3, !x{t2r+5)f < {1 + Hye . This
completes the broof.
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Theorem 5.5. Let x, be in F_and y(t; x,) be
regular. Let 1% < O+ B)e /2.7 I q(x) is comtin-

o

uous then
L.O+'_]_1 tO+T
e [ Al Ky % e N8 =] alylem)at.
t—
t(} tD

Proof’: x{t;e }— y(t) except at the values of LI\
for whieh y(t) € F‘ by TFheorem 5.4 applied to the\s\.
case I = X By Theorem 3.5 x(Lb;e } 1= umf‘orfmly\
bounded., Hence the result. A\

M. Cartwright has suggested a method bjgr witich we
can also get convergence of the velocity }%\to the
degenerate velocity y. We must add FO\wthe hypotheses
one, £, ¢ the condition that theyug‘s}e first deriva-
tives which are bounded on closgdjihtewalﬂ-

R

Theorem 5.6. let Xg ~1_3@ s regular Initial con-
dition and [t;, t.] a clo qed intervel in which f(y(t x,))
2% > 0, with t, >pQ Then lim X(t; X, %5 ¢ H e
=¥t %) uxllfor'ml Son [t,, ] for iXOI (1 +

Proof : 3igee y(t; x,) i contimious when in F,

and £ ig contlmnus we can choose + so small that t,

27 )t and! B¥ch that £(y(t; x)) > 2/3 for ty - o $

t< te + \r By the converge:nce theoremn we may choosF:‘r

* o 904 smathhat if t(e and £, — 27 {t L+ 8
thﬁnf' (t; x5 x 3¢ )) 2 1/36-

) Since by Theorem 3.3 [x(t}| < s

of time of length > T the inequality 1X(t

b6 satisfied for some t.

-21’
Applying this remark to the intervals [Ehat s
ty =71 and [t, + 1, t, +27 ] we conclud®

2
elther |%(t)1 ¢ 2Df throughout [t; ~7s b2 w7

in any interval
b



278 J. G. WENDEL

or 1x(t')] a maximum and X(t') = 0 must oceur for some
t! interlor to that interval. If X(E') = O the
differential equation yields £(z(t')) X(E') + eg(x(t1)
= & ('), and hence |x( (t 3 <3/ (eo + G). Thus in
either case we find that on Lhe interval {t?—7, t2+7]
x(t} is bounded by a constant independent ofe ; Tor
simplicity we write this result j£{t)]| < M.

By a similar argument, [%(t)] < gM for sd® t

in the closed intervals [t -7, t1], [tp, t x? 1.
Then on [t,, t,1 we have either 13(t} < k always,
orX(t) = O for some t. Differentlarlon w&e1dq

¢X 4 PXX + TUXIED 4 egl(x)k = &\
50 that, when X = 0, “M

= { &(t) - £Pr(x)%? - e g (m% /f(X)

which ig uniformly bounded by a~QghstanW irdeperdent of

€ N\

Therefore for t, < tép “we huve

flx(t)) z(t) - e(.t}~— —eX(t) -~ eg(x(t)) = O(e }.
But e(t) = F{y(t)) ?{t} and £{x(t}) > 1/35 | Thercfore
i(t) tends to §(§2~
complete, \Q\”

N\

'%’/

iiformly as e— 0, and the proof is

oo

§86. The glgbal Stabi ILQE_Tﬁeume.

If,“iﬁ addition to the basie hypotheses.e(t) is
pﬂrlodag,of period p then by theorem 3.5 the differen-
tial\equation

*

NV ) €% 4 of(x ] X +eg{x) = e(t)

\@ag'at least one periodic zolution x(t) of pericd p .
If also e(t) has msun valus zero then Integrating (1)
over & period shows that the mean value of g(x(t)) is
Z6ro. Since E{t) i3 also rericdic there are perilodic

degenerate solution, by theorem 2.5. If also g(x) is
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gtrictly inereasing functlon of x then by Theorem 2.6
there 13 at most one pericdic degenerate solution F(t)
quch that p(v(t)) has mean value zero. We might hope
to uze such a degenerate solution to prediet the
1acation of the periodic solutions of {13}.

Let m{x ) = /'{"o+p syt x,,t,))at, whers

-
o

t ) is pesriodic. By studying the relatlon A\

FACTEE S
Ietwesn g[xo} and the curve I w = F(x) we can make R
some plavsible  puesuses aboub stabllity of perlod?c\’\ »
solutions of (1). A\
Te ses this we Integrate the equatlon ~< n
wit) = 2(t) - eg(x(t)) o\

over a perlod and use g(XO) as an appronmation to the

mean value of a(x(t)). We obtain \s\

w(t +'p) - w(t Y= -e _g-{x i‘»'x
If E(XO) ia not zero then w tj :bs not periodic. Indeed,
the change in w has onposlte‘elgﬂ to g{XO)

Az argued in $1 the “tr'&*ector}’ (x(t), w(t)) tends
to remain near to T . ‘Therei ore we expect that x(t,+P )
ls different from }\} although, to be surs , the

increasing

9ince we are on an

differerce 4= Jﬂma.qma!l
1 be the ssuE

- branch of T ‘rh’e\ st ign of the difference wil
as the Sirvn«o} w(t_ +p) - Wbyl

Poy ample Olf 7(x > 0 we expect w(t, + p) <
wit )i§nd x(t, + p) < x{t = x, . Using x(t, ! p)téila
terdaivial condition X, we expect that B(%, ) La 8%
pos¥ive although slightly smaller thand Blx, ) v Etnay
TOW repeat the argument, and £ind that over the nex

beriod, ty +p kot + 2p,WE should agalin expect &

decreaqe ip w and Ln .
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Let us repeat this process n times, writing W,
and x for the valuss of w and x at to+np. Asn
becomes very large one of two thinga can happen:
elther w, drifts into such & position that thnj is
almost zZere, or there is g sudden jump in the values
of é{xn) from large and positive to large and negative.
In the first cage we would expect that a gtable
Pesition had been atteined; gsince the glgn of W;}T
Wy is opposite to that of g(xn). In the.gggpnd case
thers are again two Posgibilities: 5 drifg) o equi-
Eibrium (g(xn) Very small) or g Jump t?<?§;egion.where

g(xnj 1s again positive.

%

¢4
Which of these alternatives e&@ﬁ} will evidently

depend on the geometry of I, O
N

,
N
AN\
\

FIG. 5,
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In Figure 5 we have drawp I' for the funetion
x

flx) = x° -1, F(x) = 3 ~ X. The extrema of F(x)
peeur at X = 1, and F(1) = ~F(-1) = 2/3. Iet gix)
=x and e(t) b cost, If b > 2/3 then clearly there
1s a degenerate solution y(t) symmetrieal to the
orlgin and for that solution gl(y(t)) = y(t) has mean
value zsro. Solutions starting above or below that one
will ¢inply drift down or up inte the equilibrium Q
posltion, ard we expect that (1) will have & period'i\ct\
solutien which is at least approximately stable, O

On the other hand, if b { 2/3 there is r%o‘ ]
degenerate solution of mean value zero. A, ST\Dlution
oscillating initially near to ¥ between t‘ﬁ% levels
A, and B will have g(x) positive and{@ll consequent 1y
drift dowmward. After a great many peériods it finds
1taelf oscillating between A, and\By, with glx) still
positive. The dowrmard trend epnbinues; the trajectory
mist soon have a point consifiérably below T , causing
a large negative horizontal'velocity. Within a very
few periods then the .-a"c{l"ution jumps to the left, and
Tegstabhlishes oscill@ﬁ.i’on between the levels A, and By -
Bub now g(x) 1s neg}tive, and hence w rises. After
mAny periods we '\’é'r"e in the position A3B§.- there 1 & 1
sudden jump gpydss the gap, and g(x) is again positive!
The tmjeo{%o}%% drifts downwards once again to ABy,
Jurps t@}flﬂ\EBe, rises to A;Bs, jumps once mOTE, and 30 on.
Theﬂs.uﬁh"c{monic solutions found by Cartwright and
Lif¢lbwood exhibit this type of behavior.

e
In Figure 6 we have a case intermediste o thes
Qse that and

o

Sxtremes; of course here we do Dot Supp .
. + t1
g have symmetryy properties. The equilibrium Dos-

" ts
15 markeq A B5. A solution starting in .AoBo drifard .
slowly dowrmard to A,B,, jumps to AgBe’ drifts upw



AsBs, Jumps to AB, andffanally drifts dowrward into.
the region of oquiliprium,  p however, the form of I
1s slightly changadsgsay to the dotted ecurve T, then
) solution.stargi at AOBO Call rnever resch sguiliibrium,
but must cyclpfa&ound forever. The solution in A,B,
can hOWeveyzgfift down to the equilibrium positicn
A.B_. g{*

FNshould be Temarked that the appearance of
smalYbumps ™ on T does not alter thess consideratiocns
wa{f%f “xample the dotteq F2

7 We are, however, not able to follow thig process
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gaccesaful only in the simplest case, when the equi-
1ibrium posltion 12 accessible from above and from
below without intermediate jumps in the sign of g(x).
We retain the hypotheses of §§ 3, & on the differential
squation (1) and add

{2) E(t) is periodic with period p;
{3} g{x) i3 strletly monotons inecreasing; 2\

(4) There exist numbers x, t such that Ko
(a) (x,t) are regular initlal conditighg} -

L 3

(9) P(x) = P(x) implies x = X; N

(o) [}“‘p o(y(t;E,ENat = 0L Y
t

A sufficient condition for tl}?\g‘é‘\}ldypothe%ﬂ to be
sat1sfled 1s that f(x) 1s an everhfuhction, g(x)} an
odd funetion, e(t) is even and,gj.‘;"inean value zero, and
mx E(t) ls larger than the',gﬁéatest maxlmum of [F(x)}]
We may then take X to be ship solution x of the equation
Flx) = max E(t) and © t{fé time at which E attains 1ts
maximu.  These com{ﬁ:i?ions are Fulfilled In the
Cartwright—l_-ittlewoo\ equation if and only if
b ) a/s. 2

Hypotheshd (ih) gusrantees that y(t; %, B
periodic 't"]}z:’period p. For by (i) of §2, F(y(t)) =
Fly(e +~?\’)} = F(X) and therefors y(t) = y(T + Pl

”\:'T‘E.?Pootheses (5) and (kc), together with The?_rem
2.8 imply that for a given t, at most ome such X
exists,

There evidently exists & num
%, = %I <A then F(x) = F(x,) lmplies X = g2
{Xo’ t) 1s regular.

t) 1s

ber A such that If
and
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Theorem_@_l (Global Stabllity Theorem) let
¢ be given 8 { A . There exlsts ¢ o Such that, for

any flxed ¢ e o’ 21d for any golutlon x(t) with any
given initial conditions whatsoever, there exists an
inteager m such that n >m implies

Ix(t +mp) - x1 ¢ 8
iXt-l-Ilp'S +H)!-1/2

N\
Proof: Deline X, = X - /4% , X, = X 4 1;&5
W, = F(x - 3/k3 ), W, = PF(x + 3/hd); v, = F(. “1/28 ),

Vo =F(x +1/235).

Then w, (w { w, implies P(x) = W haq but one
solution. If ¥, % then V. < F(x); \1‘f‘\x > x then
V2 > F{x).

Let g, ft"D (y(t; %, t )§£

g, <0< 8, by Theorem 2.6, anﬁ (3) {kc) above. Iet
g denote the smaller of -1{2 €, and 1/2 g,

1,2. Then

Iet X3 (t) be the salutlons of the differential

squation such that x {tJ X35 X, (t) . let & be
chosen so small that} ir e e 0? then
t+p \\
(5) /E BUENE) )t (-
\\J

%

1-:_+ﬁ<“
RO ety tna > o

;\}}
(I F(x) =V, > 2 ep
\,’ V2 - F'(Xg) V2 epG
V1 W, €« DG
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F(x) - (1 + H)ye /2 tmplies x (¥ +3

F{x) + (1 + H}e 1/2 implies x > X -¥.

{5) 1s possible by Theorem 5.5 applied to qi{x) = glx).
A consequence of (6) 1s that V, - v, > b pG.
let € ¢ be fixed, x{t) & solution of the
differ'ential GCluation By Theorem 3.: we may BSSUE .
t)i { B, | ex(t <c,311t>t,thust1>toh
exists such that Ix vl ( 1. \'\
It 1s suf’f‘ﬁcient to prove that an integer m

exighs such that for all n ) m the 1nequalltyy

B o
(8) w, {w(¥ +mp) (W,
holds. For then applying
(1 +H) e 1}2\ whence

- +];[)¢J Cw(E + @) <
1/2 >w(t+np)2w

Temma 4.5 We sgonclude that

|%(t + np)l
F(X(t + np))
P{x(t + np)) + (1, + H

and so0 by (7}, x—i(xta-np)(}‘:*a

_ To prove (8) weg"‘Q\bserve pipst that for any o if
Wit + mp) (Y, therbe Lomms 4.6, x(T + 1P) ) € % Let
X(6) = x, (t - np)‘ < (t) 1s a solution with t, =T«
K*(t ) = ;,;1 ., X~(t = 0, by the perlodicity of e(t)
and the Queness of soluTions

ehw (t,) =X (to) + P(x (tol}j F(x, ) >V1>
ve ‘.RG> wit + np) + 2 epG. Stnoe x (T + op) = %

£ ’"“1'113) we conclude by using ]_.emma 4.8 that & + 70

Hence g(x(t))

M [/\ e
ot
+
ju]
+
g
3
—
e
]
74
b
o+
I
M
L'"

(t V). Therefore
E+p . £ . o

g(x(t + np)ds <{ g(x" (6 + mp))dE < 78
t £
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Lap
But w(f + (n + 1)p) - w(t + np) = - Ej g(x{t+mp))ds,
t

g0 that w{f + (n+t)p) - W(t + np) ve g, and w(t +(n+ip)
- w(t + np) {spG <V, -V,. Therefore wit + {n+ 1)p)
<V, + w (£ + npy - v, < V,. Thus we have proved

(9) w(t + np) <V, implies eg + w(¥ + np) C wi{t +(n+1)p)
_<_v2. N\

In anelogous fashion we can prove P\

(10) w(t + np) _>_V2 implies - eg + w(t ﬁ;ffl’p’.‘)
N K7\
>w(t + (n+ VD)V, NO)
Finally, since [w(f + (n + 1)p) -/t + np)l < epG
and epg <.min (we - VD » V‘] - ws.l )\We have

1 \/

(1) v, < w(t + mp) SV2 Qimplies W, {w(t + (n+ 1P Wy
Since w, {V, {V, W™ Van easy dnduction completes
the proof Of (B). <\

Applying Weotem 6.1 to the periodic solutlons

-

whose existengd was demonstrated in Theorem 3.6 we havs

Theg{'féa?l'é.e. If & is small enough the pegricdic
solutioli&:gl}i satisfy Ix{%t) - x| {3 _
wﬁ} e, f, and g are differentiable and £(x) > 0
we\’ﬁﬁy apply Theorem 5.6 to conclude that the periodic
\\a‘lutions also satisfy
I%(t) - ¥(¥) 1 (7

for ¢« <€{#) and that an arbitrary sclution x(t)
satisfies
1%(E + np) - () | <

for all large n.
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§7. The Maximum Invariant Finite Domaln.
We define a transformation T of the x - X plans
into itself by T(xo, x )= (x,, 'X1J where

!

X, = x(to +Ps Xy, X to; € )

5:1 = }'((to + D5 Xy 5(0; T )s
x{t) belng a sclution of the differential eguation with
parameter ¢ and initlal corditions as indicated. £\

Since the eguation has a pericdic solution @hgre
are points in the plane left Ilnvarlant by T. It\'i\é'
the purpose of this section to show that under the
conditions of Theorem 6.1, if ¢ is small enough, then
T posgesses a maximum invariant finite dt)‘r;\ﬂin D of zero
area, and that under iterations of T all ’pointa tend to D.
Following Levinson [7] we corgider the affect of
T on an element of area dx.dX, e have T(dx d% ) =
dx,dx, = J{ (X, xo)dxodxo the Jacohian J belng 81“'91'1

2 ,’.3;
N B8xy 3}(1
o) d §x
J(KO’;RQ‘T’":: o o
p.\ 6X1 3}11
O dx, 9%,

We\easﬂy find by the usual method:
_ t o*P e dt.)
J.(%'O’XO} = exp( - € 1 _{ Fix(t; OJX toJ )}

\ Q
3

O

Theorem 7.1. Let the conditions of _41_8_02,_._-6‘116(‘*
f € €
be satisfied. There exists an €, such that ; s
then T has a wpaximum finite invarient domain ot xe
0
area, toward which all points tend under iterations ol
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Proof: Take t =%, £ <t <t +p. Let Is be
the Interval %, - x| {5, whered 13 small enough
3o that the y(t;x) are regular and sc that their
discontinuities can be uniformly laolated, as in
Theorem 2.7; write ms for the total length of the
Intervals [uj, vj] {cf. remarks following Theorem 2.7,

Let T3 be a set of pointa t lying in closed
intervals (of the form . <t < toy,, OF Theorem\ j.h)
ingulated away from the discontinuities of yit; (X9
such that the measure of the excluded points 'iis} g emg ,

%
.

and such that T51DT52 if e, < 5. N
Tet #,(x ) = jTaf(y{t; Xo01))at axgpit 9

= min ¢, (x,) for X, € Ip . Thfe:r\\ﬂ’a(xo} ZPA(XOJ

2 9> 0 let f= -min f(x) fop@il .

Choose & small enough 5o SHat mg < g% ;
choose ¢, so small that Thegréﬁ} 6.1 holds for e < € s
and the chosen value of 5’..};"~Choose ¢, < t, so that
if e ¢, then throug}:}ouﬁ Ty x(t; Xos Kos B3 6 ) will
lie close to y(t; x st) -~ In particular, so that if
lxgl < (1 + H)e “{%”Ehen

N\

T‘sf(x(t; X,\Xo, tie))at /e [Paf(y(t;xo,g)dt
o\
2 /2%,
%
Then J[Et PEX(6))at Y 1/2e wafmy ) 1/4g) o,
Y . 2

O
utPormly in Iz, X1 <8, 1%,) ¢ (1+8)¢™ /2. Donoting

this region in the (xo,:?co) blane by R we have, for any

solution In Rat ¢ = %, J < exp (-1/uk"] ¢y ), and DC R
by Theorsm 6.1, Hence

area of D ¢( f{J < (exp{—T/L}k"quA}J - (area of D),

and hence the ares of D is zero.
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gince all solutions ultimately appear in R and
eince all limlt points of TM(x, %) ere in D the proof
is completes.
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vI. THE EXISTENCE OF FORCED PERIODIC SOLUTIONS OF
SECOND ORDER DIFFERENTIAL EQUATIONS NEAR CERTAIN
RQUTLIBRIUM POINTS OF THE UNFORCED EQUATION

By C. E. Iangenhop and A. B. Farnell#

1. Introduction O

.\:\'
In this paper we discuas firgt the equat.io\f}

(1) ¥ o+ 8X + X + %—x2=%kcos w L, a)pg"k>0,
Sdmilar

in zeome detail to make our method clear. &
be easily established for a more
Y

results can then
zereral egquatlon K¢
(2) ¥ oL P(x)k + plx) = ke
with suitably restricted &, I, A g
out consider x as a real vg.p{é’ble and t as time.
Eeuation (1 )(With‘a};‘éij_ghtly qifferent standardizer

tion of form) has beemthe subject of some investigation
by D. R. Hartree, M L. Cortwright gnd others, and
according to MigduDartwright was originally DTOPos
cocnnection wi,t%i;ia 1oud -speaker 11 which subharwonice
wers obsew\éﬁz g Tn an article on the diff‘erent‘%al
analyz :”1’%;&1’131:’661 uses the equation {1} as an ilius=
tratiqﬁ'l\o}: setting up the analyzel for calculating
sal;@{’ong of differential equations, but 0o re?ults
APe“given there except for & rigure or tWo showing the

ty¥pe of curves obtainsd.

We shall through-

ed in

. . ado,
¥ T Tows State College end the Univer'glfﬁydgg 20%12‘1;2 °
respectively. Thls paper wWas prepared WM )

contract at Princeton {niveralty. L3he-
1. D. R. Hart;felef E@m____ﬁ@.&?f—t—e— yol. 22(1938); PP+
36k,

291



293 C. E. JANGENHOFP AND A. B. FARNELL
In the numerical werk it was necessary to con-
slder negative values of x beyond the range in which

the differential eguation corresponds tc the phyzical
problem in order to obtain subharmonic soiutions.

iside from this practical objection, there are certain
interesting results derivable from this equation, and
in view of the fact that the method we apply to it can
be used to some extent in more general caseg, 1t geems
to be of sufficient interest. N

The general equation {(2) with f(x} a congtawnt
includes Duffing's equation and arises in cqnééﬁ%ion
with psndulum problems, electrical circuits pontaining
iron corg inductances and the hunting ofnﬁﬁﬁchronous
electrical machinerye. .~$§

2. Preliminar%a@f
R
The existence of a perisdic solution of (1)

(or(2}) is proved in the fQ}idwing classlecal way: with
equation (1) (or (2)) and:ihe period n of the right-hand
glde there isg associatgéfé topologieal mapping T of
the (x,y) plane (y =%) into itsels obtained by replacing
Loyt + p in.apyi531ution of the equation. Under ths
transformationkf<fhere is a closed two-cell (convex
region), referwed to in the sequel as A . which is
mapped iq@gi%tself, and by Brouwer's fixed point
theorem/M*has & fixed point in A and hence (1) (or {2})
has a(’p riodic solution of pericd p.

U<l* For a more detailed expositlon of this part of
“tﬁe'argument the reader is referred in particular to
a paper by Levinson® or a popular presentation by
Cartwrighth.

2. Friledrlchs and Stoker, Quart. Applied Math., wol.l
(1943),pp.g7-115,

5. levinson, Amnals of Math., vol. k5 {1944},pp. 723~
7

Y

37.
- Cartwright, Research, vol. 1 {1548),pp.601-606.
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The thecorem concerning {2) which we prove is
joeal in character, the A regions belng in general
smaller thern in previous applicaticn of Brouwer's
theorem, and 1t applies to many new cases not pre-
yiously covered by other authors. The particular case
(1) discussed here in detall is evidence of this fact.

Al (o

¢\J
’\\ FIG. 1

L D

o N/

The cl63ed convex reglon which we ©
e A formed DY two

btain 18

bounded [y simple closed curv
3Tﬂ1¥t§s§§1ﬁarcs between polnts A and B as in Pig.
(thesdllrve may or may not have & cont 1nuous tangent
T\D6ints A and B). If the vector [X, ¥ at all
pdints of the boundary is directed at all times toward
the interior of such & region then it 1s clearl the

1

the
region would be mapped 1nto 15e1s wnder T- Foza:ngent
regions that we obtain the rector Field MY o
n we prove the

to the boundary and 1in thisg connectio
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following Lemma and Theorem.
Lemmns: If

x=f{x, 7, t)
{3)

[

¥ =gx, ¥, t),
where £ and g are analytic and satisfy the cornditicons

f(o,o,to) = ¢ >0

g(oio:to) = O, O\
O\
-and §C*V
(&) g(x,0,t)<o, O(x(x, /$}to,

then there exists a t )t , such that yétj(o for
b <t<t,, where Ix(t), y{t)] iz the 3dUtion of (3)

which passes through (0,0) at t = %g

The condition that f arg’ é\be arglytic is
sufflcient to inzure the uniquaneqs of zolutions of
(3}. The function £(x ,y,b) being analytic iIs certainly
continous and since ff@go ty) =020 there is a cir-
cular region iun the, {x,y Dl&ne with 10,0) as center

and radius p, O<p{g>x » 2uch that for pointg in thisa
region (Fig.z2) \Q\

L )

(5) x Afx,y,t) > o, t{t <ty 6 <t
y ,\;w [T - a
&
O
o

D(4,0) F

Fig, »
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s ;_:(xo \o t)] be the solution of

Tet

I
L)' T C ¥

(z) which ool rhrourh (KO } at t = t Pick now
£, 'L(}gt"{_\_t.‘-, such Lhat the traJtctorw [X(O a,t),

(0, 0,hY] rewalns ir the circular reg ion during the
inlzrval t {i,/+ w Binee X{X Vg t), 7{x5:9, ,t) are

'1)

~ubiruonzs functlon? of X ard ¥, there m a neighbor=

hf“.cd SF the origin such ’mat if {X ,vo) i1s in this
ty] likewlise

In partl- A

neirkborhood, thew [%{X 2347 Lt u(x Yo
remains 1w Lhe circular repion for t (t(t"
cuiar this is true For polnts (2,0} Wh&ﬂ 8,0 1s N .
sufficient s srall. R\
Now 0 Chers iz
fox tog {t,, there 1s a tg,to<t2§_t"
0. Bt 5 (8,0,1,)<0 (8>C) since
veetor £izld of (3) along DF and DE 1o\ F*
the half -set }1‘0 pEF and for ]
$x(8,0,8), 3,0 t)]
Thusg

ro t ot cuch that ¥(0,0,& }<0
such that y(‘o 0,t,)
by (4%\&nd( 5) the
o points

toward the interior of
sufficiently small the L;aJecwW

mst remain inside the cmcle»%hr IRCICHE
l¥(C,0,t,) - (8, o,t2 Y ove 0
We pave then a eontfadictmn gince for 9
sufficiently small .ﬁé‘\must pe able to make {y(0,0,tp)
There 18 then a

b F(‘SaO,tEH a3 cﬁill as we pleass.
and the

t,>t, such thg(c £(0,0,t) <O for RGOS
Lemma is pmﬂe‘d,
Theobem I: Letd consisting of tHC apalytical

undar
arcs, ﬂ’C\B and AC, B ag shown in Fig. 1, be rl'gglg_,__@-—y

chtol
Q‘%\%f:c'——on\fex reglon. Suppose that the veloclby VERR==
) = [P0y, 1), Qx,y,)]s ¥R pgnd Q8
followila

anslvbic and of period p it gatisfies tHe

conditions at points of A

ct
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{a) at A it 1s zerc at discrete times ard otherwlse
tangent QQ_EQQ_QEQ_AC1B as shown;

{(b) at B it 1s tangent at all times LQ_EQQ_QEQ_ACEB
as shown;

{c) at C, it is tangent to the arc AC.B at discrete
times and otherwlse points inward;
(d) at all other points it is directed inward at gl

times. 7
B S N\
Then the closed region bounded by A 1s mapped 1ndd

itself under T. <\">

Let ¥ be the open region bounded by~4;u We

‘~

show first that any solution of \
S

X = P(x,¥,t)
(6) ,
¥ = Q(x,¥,t) N

starting-at any point on 4 at‘t§;’to remains in ¥ for
a ghort time Interval after’tzﬁ tys say t <tdt,.
Glearly we need only exanifie ‘the behavior of the
solutions passing thropgﬁzthe points A, B, and C,
where the field of (6)%s tangent to A , and then only
at the instants the tangency cceurs.
Let L be @hy’of the points A, B, or C, and suppose
that the veq?g; {P,Q) at t=t, is tangent to A at L
hut not ZeTes
Then'since the arc to which the vector is tangent
1s aq@%ﬁfﬁcal, a nelghborhood of the arc can be mappsd
cogfgrmally on the (x1,y1} plane so that L goes into
Mpgé‘origin, the arc into the X, -axis and the interlor
\Of ¥ in the neighborhood in question goes below the
xy-axls. The system (6) is then transformed into
= ?1 = f(x1,y1,t)
¥y o= elx,,7,,t)
where the system {7) satisfies the conditions of the
Lemma. Tfe conclusion of the lemma then clearly
impiies that the solution of {6) which passes through
Lat t = t, remaing in ¥for an interval togﬁgﬁT.
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We have utill to consider the point A at times
when the fis1d (6) 1s zero there. Suppose thls to he
the case when t = t_ . It 18 not zero then for t (et
for some L' ) t, sinee by hypothesis the vector is
zero cniy at discrete times. Now plck any &' 1t
so that trajecltories starting at t = &, very near A
canmot pass through C) or B during the interval
to<tgt' ' Now if the trajectory passing through A
at t = t, is outaide of T at t = t'', then because of Q.
continuity, trajectories starting at polnts of A very’)
near A at t = T, muat alsoc be outside ¥ by & = F'l'.\
Thiz canrot happen, since DY condition (d) andbhe
cholce of ©'', Ln order for any neardy traie\ct’ory to
get outzlds ¥ py t = £ 1t mugt pass shreugh A.
By the time this trajectory reaches Asthe yeetor (P,Q)
will be tangent to Aand dif‘f'erent;f’}eéfn rero and will
remain different From zero for thé"r'est of the interval
b, <t (%', Thus by the p;‘t?;f::l’ous case this nearby
trajectory must remain in 7‘9" for this interval. This
contradiction then comp‘l'et‘:’és the proof that & tzajector’y
pasging through any gtﬁht of A at t = to 45 in ¥ for a
short time intervz?.i\\ﬁo S ENTE

It is clempwthen that under the t
the region ‘l_f.i:gv\mapped into itself, for i
then TP m\“P,IE ¥ since trajectories Ets-l’ti
on A &'t = t,, cannot egcape from ¥

ransform&tion T
pr € ¥,
ng in‘_‘l' or
That ¥ 13
homeoméi}phic to a two-cell is cle C
THOS, Brouwer's theorem applles and T has & f1xed point
in'¥  gorresponding to & periodlc golution of (6)» .
In the sequel we make considerable 196 of aysten

of the type

8 . ) _
" o y= oy xS _y ,y=01s
with & > 0. The one singularl point &t X =7 2
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a stable node or focus depending on whether a ) 2 or
a2 (i.e. the damping in the differential equation
¥ +ak + x =7 1is greater than critical or less than

The nature of the solutions in theze two
cages la shown in Figures % and &,

critieal).

a2 “

FIG.
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Tn the case a2 a path satisfying (8) crosses the

¢-axis an infinlte mumber of times. The distance from
g to successive crogsings decreaies geometrically 50

that in Figure &
() SB = \AS. .
In fact » = exp [ -w(u_ag) T 51, so that o N 1 For

ar0.

proceeds directly to S. The point analogous to B :ag'
1s then coincident with 8 sn‘:: in this case also W8 have
(9) holding with N = 0. The case A= 1 (1.e,..:;§ =20)
will be treated separately.- \

We note here two other proper*tieg\gf the path
Figures 7 and & which w& uge in thehs{é@el: (1) On
those parts of the peths which lignamtirely gbove the
h {ie entirely pelow the
nflection {dgy/dxz =0

{2) For all points of
g AB in Fig. L

x-axis or on those parts whic

x-axls there are no poinmts Off

is possible only at ( 7“:‘63;)'

an arc lying below the &=axis or above &
)

we have \\‘,.
(10) xp < XL¥B -

<N
X

¥ 50 that in egch of the half-

2N .
This is truepgihce X =
monohonic fFunction of ©

planes, }%ﬂ;\iihd 540 ,X i3 a
along Eﬁ‘.};&th- pgain the nod® of Fig. 3 18 10
QXCep‘B;ign in thls respect only here *g = “8 =% .

\”\o‘ “The regions & which We obtain later are formed
by plecing together such arcs &
L, i.e. the analytical arcs AC,B and AC,B in Figure 1
are solutions of linearl gystems guch a8 (.8)- The
properties {13 and{2) diacuaged above are su
make the reglon pounded by these apcs convex &8s

in Theorem L.

g in

e these 1D Figured 3 and

Fricient to
pequired

N\

In the case ay2 a path which croggses the x-axiga .,
[A
ove
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3. The exlstence of a reglon A for ().

We replace the equation (1) by the ayotem
{11} X = Y, § = -ay =-x = %xﬁ + %—k ool ow t
To cobtain a pleture of the vector ffleld in Iha (X,¥)
phase plane we Iintroduce the two parsholss
P, (X,¥) = -ay -x - ,1—)cm' + koo \

D;_.(XJJ = 84y -x - LXQ - ;}k = Og:\:\'

i

Tt will soon become evident that, for cur géghod to
apply, we must assume k < 1. (This 1nqu§§§ Lthat

pe( »¥) = 0 crosses the x-axis. ) Thi&‘tocetheL with a)q,
k>0 will be assumed throughout unléss¥otherwise
apecifieqd. \'

Conslderation of (11) leaég to the achenatic
picture of the vector field shown in Fig. 5 where the
double vectors at represenﬁ&tive poelnts indicate the
extreme pogssibilities for'tbe fielqd. Note that at
any point the x- component of the vector 1s independent
of t 2o that inter'mé?iiate positions of the field
vectors (y+ 0)Are in the angle less than 16£0° formed
by the doubleMvectors of Fig. 5.

¢/

:.\'“.’ Y

S AN

AN
~\J
) 4
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Figure 5 gives an indication of some sort of
¢ireulation about the gegment IG and in fact the reglon
A whilch we obtain containg this segment. To find the
region & we replace (11) by a system having a vector
field which dlverges more from the origin {at least
in the vicinity of the origin) than (11} does at any
time. This is accomplished by increasing y for y>0
and decreasing ¥ for y(o. Thus consider the system. O\

y = -ay x zh° T 2K 7403
Note that we have the following relations,\ii@ttwéen the
¥'s of system (11) and system (12)¢ D
(15) -57—11 = 'S.,‘S" -y - %‘XE + -12—]:( Q08 w}: :a,‘y’ - & %{{_, y>0’
with equality only at x = 0 and.t:};ém/“’ R

‘51@,:"., X |xI<hs ¥<¢,

(1) §,> -ay x - g0
with equality only at x“—_‘:;ivh ard t = (en+1)7/e, so that
the solutions of (11 L"inﬁersect the paths of (12} as
indicated by the afipws in Figure 6.

&

Y

2 _

7 4

XESH

xt\’“'
N\ i

N/

Ex0)

o ra
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From {(13) we see that above the x-axis the
arrows 81l polnt towaed the concave side of the arces
they crgas, while below, because of (14} they do this
only in the strip [xl<h, poszsinly st times pointing
toward the convex side at polrnts where |x[>h. Flgure
6 deplcts the case a2, but the case a)? is zimilar.

The paths of Flg. & can be obtained from Fig. &
by shifting the two half-planes y)0 and y<{0 sc thab 3
is placed at (;;{,D) for y>0 and at (—;—_,h2 - rh,Ol )
for v€o. If we can show there are Solutinnszaﬁ‘\“{\i 2
gituated such a=z l‘."11l\flg?|fi?J and N1N2N5 the I’o,of:jg:g‘;ﬁ“ﬁ\ wiil
be eatablizhed, belng indeed bourided bj;'.%qeze arcs
and the segments M,N, and M;N, pvoz-‘:i;d?’?} that at all
times the vectors of (71) polnt up addrg M, and
down along M5N5 " \\\J

We can in fact show thatNihere are solutions of
(12}, one akove and one belpw:,~""wh]'_ch Join as in Fig. 1
and theze in general boun,cg{’é? sralisr regmlon than
MMM N M, . In arﬁk,é.;se the sclution for ¥<¢0
which we use muat ]_i"g in the strin !x[i’n 2y that at all
points of thiz af,Q"’ﬁ'le vector Tield of (11) pointe
toward the conca\'\ewside {or is Targent as 1T mast be
at points of~~§:£1é ¥x-axls). This then requirss (for

Fig. 1) '::;'
(15) vV hix,<xpl+h.

D\ . . .
If this can be satisfied, ther by (13), (14} and the
’;Qribpérty of the paths discussed in commsction with ('0),
\the vectorzwill peint =23 desired.
We have from (g)
X ~8= A8 —x,)
(16) B A

@ —XA=?\{:>{B - o)

the sclution of which is {recall that A { 1 =zo that &
golution exists)
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. A
N
. = & -a
xg = —

Using (39) and putting 8= %k, o= - %12 - %k we get the

BRI TP I - PR
followlryg LWG inequalllies to detsrming h:

z](h} = h° ~2(1-A)h o+ (1+ 1)K <o
z,(n) = ah?-z(1-an o+ (14ME <o, \
O

oW 21(0) ZE(O) ayrd z1(h) —zg(h} = (x—§ﬁ£?>d
otnee N(1. Thus the tWd roots of 21(h) = Qmiié
(h) = 0 if th@é\kre real,

»y satisfied

L

i

hetween The two voots of Zg
and conzequently the two inequalities &
1ying beiween the RO TOOLS of

for wvalues of 1
(ﬁil’@i 1 be antisfied

z, (L} = 0. That iz to 58¥s
1f \

S
Kkl? A

s W

L1§\J 1'_‘\- [(1'1)9 'sﬁ:i+
- W)
+ [(1*3)‘ﬂ(1+x}krf
N\

. P\
which is a real iﬁ@e&val if

(13) k S\La_:\df ¢ 1
PSSR
@iﬁh“k satisfying {
Sat%ﬁfylng (18) the solubloms of
" éﬁﬁ B with coordinates given b¥ (17) are W
Sarcs with the desired properties. Tney form & simple
closed curve {indicated by the gotted curve of Fig- 5)
and (14}, tHE celooity vecter (%,5)
1tions of Theoret 1-
y of pefiod

19) and with & choice of b
(12} passing through
o} analytical

on which, DY (13)
of {11) satisfies a1l the cand
Hence there 18 8 periodlc aolution of (1
owfw in the region bounded py these 8TC3:

in the casg & = p, we neve A= 1. Eouatlons (i)
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are then Inconsistent unless a — B = 0. This however
implies h = 0 and the construction of a A replon by
this wmethod falls in this case.

L. Reglon of divergence.

An exsmination of Fig. 5 also reveals that some
solutions of (1) dlverge from the orlgin of the*phase
plane rather than remsin in s nelighborhood cﬁi@}@
origin as do those in 4 . 71t iz possiblo(ty Fing
quite & large region which serves to boqulgélutions
of (1) away from the origin and this 1aﬁéer’region
gives rise to further Interesting resﬁi%s far {1).

We first find a line with regative slope rassing
through X with respect to wh;@ﬁ>the vectors of
system (11) will be ag 1ndicgtéd in Fig. 7.

_

gl
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We have
. ) e .
AR é ay X Xt Ek

so that
T 2 Lix- - $ o
Fo/x €8 F(xxXg) (xxg)/¥, ¥ > o
Along the 1line ¥ = m(x—xK) we must have then
&11/£ % rg, —(x—xG\/emz m, X% AR
Tp obtain an m for the interval XKg_ X _<_ X or the N\
= ixe?
trterval X < Ry we set X = X 83 the extreme requr:\xfe\.
ment. This leads, in poth cases b0 O
1 \ ol
m, o= - %—!a . (8% + B4 4 k)2 ] JO
as the best cholce of m, 1.8 the smallest\PDSSible
value of m for X ( XK and the 1argest possible value
(X‘XK) for

of m for Xy {x {Xg The line }T='\¥“1
%{ ¥ gwill then form part of the‘boundary of the
region of divergenceé.
To the right of ¥ < ﬁGJ
go that in this region N\M
SV IIRCE “‘\
From R, 1n Fig. ’(\then W

-a to R, on the parabola 0, (x,¥5) =
12 +1-k<0 to the right of the parabols

-X + 5k3/3>0 (y<o),

e coubinue with a lipe of slope

Sinﬂe\“a;y-—x_.

Py (X;Y)‘iﬂ, in this reglon

YH j£ 2 0 1

the arabo &
H&me we may proceed erom Ry O Ry on A‘Dp\re
( LYY = T ,:'-;rc with & norlzontal iine- o
. ere W& cake as

p(xiﬂ ‘—kweha\re'gﬂg L and B

2

g x-axis
part of the boundary joining R, L0 R, on o
the Eolution of the system
-y, ¥7° 5 k

which passes through RB'
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Various poseibilities teyorai o

+ ot

indicated by the dotted curve 1o 20
purposes it is sufficlent to btes- olis
¥ 2 o.

This then establlishenr the: e -
that solutiong of (11) enice havli oo
boundary necesgsarily remain 1ot
the Lemms can be used at polats: o
which the vector ficld of (11) 15 e -

FANHRLL

K. are

Yo oour
f‘.f
R Car

4
romch
f i

,3{1_;,
tntat

the same manmer as it was wuae! Troord 'N,\“” a
Theorem I. Thigs reslon we ot b ,‘-,’-:\\-.;3: : surdary
by T \ -
\\\ J
5« Existence and locatl. . To \JEEE E
solutions. A4
In Bection z we ha“\ iﬁf’;--’:::. R
pericdic solution of «}“tr: i
(as poilnted out to Lu*stj' {1
ble to prove the e{i:-;te:ﬁf- R
Indeeq ]_et\'}' bt
in Fip. 7 Wf{?lg’% R S T
parabols pq"‘if YY) = 0. W e
T@@II Theree 1o o007 o0 J:-[]}
of 0d 27/y In fhe qroociee 0y
(a)z@mﬁ B, __ ¢ S S - o Lhe
A&or Tiels 73, b .. 1 ).

Qs/ 1
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R O

FIG. &N

In fact the Yg@tor POP1 whers Po 38 any point
on the curve # newer takes a direction in the first
quadrant and peﬁge as Py describes &, ?;?1 must return
to its origi@@f'position.without having made a full
turn. Pomdr P, 1s any poimt on W, P will 1lie below
Py Sinngéi 511 polnts of the 1ine oy § < o (UV 11es

A y = 0). Furthermore ir P 1s any point

aboyeld; (X,¥
{ﬁ\,tﬁat part of T below UV, P, cammot lie 1n the

p¥inded region ® so P, must 1ie below or to the left
of P . This proves our aggertion.

(b) The transformation T bas c1xed points 1n ®-4-

gince A is mapped 1nto ;tself under T 1ts
the vector field

boundary hae index + 1 relative to
PP, - Property (b) follows then from (a) since A
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lies wholly in &

{c) To a fixed point W of T In® -A there corresponds
& periodic solution 10f (1), which 1les wholly Ind -4,

That W Corresponda to a periodic solutinn 1s
obvious. Clearly 7 cannot penetrate & for if 1t qig
1t could not again leave 4, and ag ghown in Sectioen &4
if 1t leaves ® | which €8N oceur only along T ,. then
1t must remain outside of ® . Since y 14 pepdodic

N

7

1t must therefore 1ie entirely in® - A . AN

Property (¢} completes the proof oi“.gﬁé' theoremn.

Remwarks. I. If T hag s finite ngnytfer:: ot fixed
polnts in® | tpen one of the periogies solutions fs
unstable. For since the index or ‘I” {& zero and that
of A 13 4 1, one of the fixed poi:h‘t\é in®-A wmust have
Negatlve index, \s

II. ALl perfodie solutidns or (1) must 1de 1n
® . As polnted out earlvi‘ga’:é.“no Periodic solution can
L1 partly in € and pagtdy out. Als0 1o periodic
solution cen enciyeie & 3 1nce the vector field of (11)
always points domnguggﬁ on the x-axis cutside & s and
for the same rea\'{&;i"there can be no periocdic solution
outgide ¥ whi'c':h:',lies partly sbove the X-axis and

cutside ‘I’ xt‘:}‘hi‘ch lies entirely sbove the x-axis or
entire;}(.l\a’elow, slnce in the Pormer region y ¢ 0 ard
1n the\Tatter reglon ¥ =y ¢ o.

:"\Z"'
\”\ W €. The geners] theorem.

The foregoing treatment or Equation (1) is an
inter-esting Special case of the following
Theorem 177 The differential equation

(2) o P(x0% + g(x) = ke(t),
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where T(x) and g(x) are analytic, and e(t)} iz analytlc,

periodic, and fe(t)l < 1, posgesses, for ¥ sufficlently
small, & periodic golution in the neighborhood of
polnts X = X, % = o for which g{x,) = 0 g'(x,) > 0,

£(x,) * 0. The period of this golution 1g the same &8
that of e{t).
We establish the theorem for the case f(x 0.

The caze f(x ) < 0 follows on replacing t by -b ®in 2y 0
First we make the change of variable X = X, + B 0

and replace (2) by the system . O

(20} é = ¥, ﬁ = - f(xo +E8)y - g(x +$ )(iwke{

Since £(x o +E) i3 continuous, there 15 an J‘.I;terval, say

1€ ] < C, inwhich £(x, +z ) > a > 0. JEE(X, )2 > kgl(xy),

we may take a such that a? J Ltg‘(xQ )\~ In the linear
systems introduced below, this leads to systems which
have nodal singular points. I8 f(x y2 ( bg'(x,)s 1t
smaller in which caze the

may be necessary to choose N
Conglder then

systems will have focal singular' points.

the system “,\
(21) £ =y, 3, S8y g (x )+ RE) ¢ kelt)

where RE ) =g} (g jE -g(x, £ ), a0 It is easlly
gsen that Whélq“ |£1 C C, y20§ Yo for ¥ 2 4] [y denctes
ag bef‘ore\yu f sygtem (m)] Moreover, glince g(x) 1s
3I1a4.5rt1,c:, we have for < c,

~O IR(E )| <bé

Q¥

As in our previous work,
by certain extreme values and we &re
gystems of the type

é:y, y.—_--a}?‘gi(

wo replace R(E) + e(t)
lead to linear

x JE +7

v/g (X = 0. In

which have a singular polit atf =
owing extreme system

particular we conslder the foll
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obtained from (21):

§o= Ay g (x, )k m{z{(}fﬁ(f} LRSI D
(22) £ = ¥,

o= -ay R (x K o+ mlr< (§) -k, ¥ <o,
where h { T, N

The discusszion again follows thre feneral tines
developed for the special case. We iave g solutiéz"l} of
(z2) for v > 0 which starts at moint A on the .;‘f\}*a;_'xis
and proceeds to point B on the P o-axis (= zes ,tjr T 1.
Then we take the solution of (z2) for ¥ <\\3war)1r*h roes
from B to A. These two arcs make Lo th&»cm 20 curve

A . As before \
x, = —%~ A3 X AP - de
iy 1 <) E B 4 . ’
zl\
where now Y 1
M= exp | oma(ugisl)-a?) 9,0 < a g'(%,)s
=0, & 8 \w (xg)
and ~‘.'~;
8 = '@‘(E + )/t (x X0
'Hfﬁ
a = {\Sﬁrs\n RS - k)/etd
@ 1El<h

Inip‘?{;\m{" the requirement that %g < h leads to the
InequadMy -
AT

L ¥

(e;q?i" mex R(£) -~ Amin R(¢) LBO-Mg (x)) - k(1)
QY i 1€ 1<h

Since max R(§) ¢ bh®, - min RE ) < ph®, this inequality
I£1<n € 1<h
certainly holds 1if
BR* (14X ) Ch(1-M)gi(x,) - k(14 ).



Y. FORCED PERIODIC SOLUTIONS 311

F M —
OT:K f (ay ;;‘(< }€ Jub( 1+\\ , this ipequality 1s
sptiafled Tor an 1ﬁfcrwal to the right of
3

1=yt - 2

. (-9, - 1 [(1-0)2ar(x)F - Eb(1+A) 2
shit+ ] ’°
mig plves Lhe 4
ig gives Lhe ampallest value of &k for which the above

d N
escribed constructlon ja possible. {Requiring that

A> -5 leads 1o the same inequality.)

Wi -
fith a, h, and K property chosen.the“e are thens \
N

t:: izi;?ifnf of (22) which form the curve A satls fving
Gditions of Theorem I more Spﬁcifically the
bt © ’i fre velocity vector (x,¥ of (2{ :
= c & are 1lsolated and of the LYP&S deﬂcrlbed
The region.bounded by W5 therefore

nrder the tranhf@rmatlon.T and there
is regiop corraspomdlng to

polots wher

in that theoren.
mapped into itself
is then a Pixed point in th
a pericdic soiuticn of (2} QN
urder itlpointq where (X é b thers 1
by this reasonlng put such & point would
likewise be fixed undﬁi}T, gince T i1g one-on€. if this
ﬁb&nt in the reglon.then.clear1y the
which 1t correspords 1g unstable.
ian to that uzed in aaetions 4 and
y the equatbion (1) can
as of the general

"

q & fixed point

1z the only fixed
pericdic EDlUtlgﬂ Lo
Reaﬂoniéé>§im1
5 pn the é@ﬁnn.of divergence fo
be dqﬂd fb advantage 1ﬂ.part1cular caed
eﬂhatlpn (2.
\ Ve theorem
it always to be very gmall,
15 determined by the form ©

g{x). TFor instance the lineal
¥+ a8k + X _ k cos @ b a 20,

ate solution (period sxjw ) TP
nt be. Ul theorem aonfirms

gnt seem £O restrict

sc the 8128 of k
£(x) and

of this sechion mi
put of couUr
£ the punetions =
equatict

possesses a perilo
matter how large K Mg
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rather than denies this. It chould be roted that

(see (23) ) the reatriction on k in Lhls Came becomes

0 Ch(1x) - {1+

4

since here R({) = 0. This can be satizfisd
how large k be taken #ince h may beo taken ao
we please ( £{0+¢ ) = g > 0 for all L.

LY

ne matter
large as



VIl. ON WHE CONSTRUCTION OF FPERIQCDIC
SOLUTIONS OF SINGUIAR PERTURBATION PROBLEMS

By Wolfgang Waaow1

Introduction SO0

The classical perturbation theory is conce?néé
with differential equations which, whon solved\for the
highest derivative, depend continuoualy o é’small
parametel e .2 More recently, perturbatiaﬁ.problems for
differential equations in which the,Q;ghest derivative
is muitiplied by & positive power. 6 the parameter have
been studied by several authorstt'ﬁollowing the termin-
ology introduced in [1] suchjﬁefturbation problems will
be called sipgular. ’C:ﬁ.

I M. Volk has developed in (51, (6], [71 & con”
venient formal schqmé:by means of which the gxistence
ard construction\@f“éingular perturbations satlsfying
car be studied in wany cages.

The method Pa‘particularly well adapted to the con-
ngular perturbations. This is

But Volk's proof of
a serious error,
pendix, In view of

prescribed condlflons

structiop§§r“periodic al
the prpﬁiém digcussed by Volk.
the gailldity of his method contalns

N
which will be pointed out in the 8P
Dis error, Volk's results can be considered proved

only in the case that the varlat

1. Department of Mathemabics, Swe

2. The results presented in this paper were
arch conducted under the

obtained in the course of rese
sponsorship of the Office of Naval Resesrch, contract
no. Néori-105, Task order 3 identification.nnmbef

NRok3-ghe.
313

1onal equations have
rthmore College.
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Constant coefficients.,

The aim of the prescnl paper iy 1., ‘nvestigate
with the help of Volk's scheme, probloems whose vapig-
tional equations do not necesdarlly have coustant ceo-
efficients. Thig will be done by combining ideas of
Volk with methods similar tp those wsed inp [4]). That
paper ig €ssentially based orn the general auymptotic
theory of linear differentiagl eduat ione anolvingN?
large paramster (see, €.8., Turrittin, f31%. @his
theory has not yet been developed in suFfjci§ﬂ$>geneP&Hﬁ
for gsystems or differentisl equations. Foyiéaia reason
the present paper desis with a singie eqdation of the
n-th order rather than with a system of it order
€quations gs in the Papers by Volk aﬂd}in [1]. This is,
of course, more a dirference in fiorml than in substance.

Our problem alse differs;fﬁgéeveral respects from
the one discugseqd in 17, It0YS more genersl in that
the drop in the order of th@:differential equation when e
1s replaceq by zero mayuhé}e be greater than one, and
also, because our prggéhﬁ method yields a practical
schewe for the congfuction of the perturbation. As in
[4] the result wi{?fbe seen to depend ezsentlially on
the size of the\dPop in the order of the differential
cquation. Q’fRe other hand, we have to agsums here
that the diRferventis) equation depends analytically on
the unkQéﬁﬁ'function and its derivatives, whereas in [1]
Onlykﬁﬁé exigtence of two continuous derivatives was

requ@red.
Part 1. Non—autonomous c8cilliations
1. Statement of the problem. The differential

cduation in whose periedic golutions we are interested
1s of the form
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3, I

(1.1) &< i.%: F(X, g—%, cees ;lnt%; t; e)
In this differential equation t is a real variable,
¢ ig o amall real parameter, k a positive integer, and
mm. The right member is regular analytic in all its
arguments and real for real arguments. More precisely:
The functlion F(zo,z1 PP M1 ¢) is regular in all
arguments in an open domain D of the (z,,2, yeenszgitis €S
gpace containing the whole t-axis, an interval !Ei'\§\e 0?
where Eo> 0, and Intervals of the z,(vr= 0,1,...,{@ te
be specified later. We assume that the funci%ic};} F is
periodic in t with a period T which is indgpendent of «
and of the z,. "‘\

In this part we study the nﬂ%cw case, L.8.,
F mist actually depend on t. The mobe difficult
autonomous case in which F 1s agsimed tp be independent
of t is the subject of part II “

If ¢ is replaced by Ze¥o 1n the wpull differential

gquation®™ (1.1), the npeduted differential equabion”

RS m
£ ydx g___
(1 :2) © =~ Q@ H-E-: LR dtm, t,O)

is Obt&ined,.ﬂ‘lb'ée order is at most m.
Whera'%“f possible we ghall use capltal letters to
deﬂignﬂ«t\\?i};nctions depending on ¢, and 10WET case
1913‘59‘1;}; for quantities independent of e. Accordingly .,
W8~\ﬁ§e denoted the solutlons of (1.2} by X arxi those
OF (1.1) by X.
Without loss of generality We e

bility that the right pand side of (1.2
zero; for in that casé cancellation of & power

to &
both sides of (1.1) would reduce the problem o

i
similar one with 2 _Smaller value of k and 8

xclude the possi-
) is {dentically
of ¢ on
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member which does not vanish ldentically for e= G,
or to a problem in which the n-th derivative of X deoes
no longer disaeppear when ¢ is replaced by zero.

Our perturbation method is based on the asaumption
that we know a pericdie solution x = u{t) with period
T of the reduced equation (1.2). This Punction u{t})
wlll be referred to ag the "basge golution". It is
aszsumed to pogsess continmuous derlvatives of all grders,
We mention this because rerturbation problems with
discontinuous base solutions have alzo besn Qﬁﬁdied
recently (ef'. s.g., N. levinson, [2]). Wq.bhﬁe to
require, of course, thst all points h

2,=u"M(t), =0, (=0, 8N7..m)
\}
of the (ZO’Zl"' ,zm,t,e} space }ie in D.
Our aim is to fing periedic solutions U(t,¢) of

N

(1.1) such that N\

Lim J(E, ¢) = u(t)
E;—\d
+8J
N\
We shall show bhat such solutions exist, if the varia-
tional equatidn belonging to u(t) satisfies certain
conditionsi /
LQt,the periodic funection p; (£}, (i=0,1,..,m) be
def’inéd\by
) a
~O
\\’ pi(t) = ——?ITF(U,U‘,...,u(m);t;oj s (1=01,...,m)
* au

Assumption A: The function Dy (t) 4=z different from
zero for all t.

This assumption is similar to inequality (4) of
(1], but it is less restrictive, since the latter
Inequality corresponds to the special case m=n1n - 1.
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Assumption A lmplies,in particular, that the order of
the reduced equation is not less than m.

We shall bave to distinguish between the "full
varistional equation"

&

k d
(1.3) € =
ac™

|

i
=

[

—+
A

= b at

.

and the "reduced variationsl equation”

g aly @
(1.4) 0= 7 pi{t) = AN
i=0 at ;\’\. -
By virtue of Assumption A equation (1.%), \i\rl?én"solved
for @—fr‘"; nas analytic periodic coeff‘icient}.\'
dt v/
Definition: In the non-autenomous CAE8E the base
soluticn u(t) is called degenerateflf one of the

characteristic exponents of the edrregponding red

7

uced

variational equabion 18 Zero.LN

Asgumption B: The base solidtion is not degensrete.

It is clear that."t‘hi's condition 13 equivalent to
the requirement that &he reduced variational equation
havs ne non-trivi ﬁf"éoluti.on of period T.

The diffegsntlal equation (1.1} 18, of course, not
the moat geneiéi”diff‘erential equation for which
glnguiar ‘;@:}’fi‘lrbation problems can be formuf‘Lated. In
particuday, 1t could be gencralized by permitting the
r;r*cseﬁée of terms involving ordera of diff_erentlatlon
tft*&fe\SIl m and n. It seemd doubtful, whether the re?ults
© ;the present paper remain valld when these additional

terms are nonlinear. If they 8I€ linear, the differsn”

tial equation can bg written in the form
: P = aj(e, L2
(1.12) & dtn+% RS A
. F(X@'& s dfn—)g';t;e);
- S at™
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where the k v are positive Intopers, and the fhanctions
a,it, ) are regular analytic at e=o0 without vanishing
there ldentically in t. The methods of' Lhe present
baper can be extended to differential cquationy of the
form (1.12). In the interest of & more reudable
presentation we shall limit our invest Tgalions to the
equation {1.1) except for the remark that our con-
clusions remain literally unchanged, if the expopents k,
in (1.1a) satisfy the Inequalities A
R

k gnm—v s (vn1,2,..'.:.1*’m1)

A\ 3

If these inequalities are not satwersl Lhe analog of
lenma 3.1 below wiil be gubject to mualf‘ cations which
affect the result of the argumepdy

~x
2 N

§2. The Formal Procadh'_f-e If we define Y(t) by

*

(2.1) mwa - Y(5)

) &
\

zyuation (1.1) baeQ\ﬂes

N\
(2'2) Y(n) (U+Y,U'+Y’...._,U(m‘]+ Y{m};t;e)“eku(n)
.,\)

e SXpaI@:\the right side in powsrs of ¥,Y',... ,Y(mJ,E
combm\@d' and obtain

{\Qé‘,%) Kl o5 py (0¥ ) 4 Lagn)
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and H is a convergent power series im ¥,¥',....¥ m)
combined, which contalns no termg of lower than gecond
degree. The coefficients of this power geries are
krown functions of t with period T.
In order to find a perlodlic solution of {2.3) we
write, tentatively,

‘CO r
(2.4) Y=73_ ¢ ¥,
r=1 O\

and insert this serles in (2.3), aifferentiating ;O
termwise without regard to convergence. Then W& )
rearrange the resulting power geries Tormally with

respect to e. But in contrast to the us}}s@&.pmcedure

we preserve the factor K in the left mowber, so that

we obtain, upon formal identificat},gﬁ»bf‘ the coefficients
of 1like powers of e on poth sidessl the squallty,
the infinlte sequence of diff.femﬁtial equationd

)

(zo5) oKl - imzo p ST < By s (T 2]
here H, 1s & polﬁ@m?ial in the quantities Y{; ),
(v=0,1,...,m) wibh no value of ¢ greater than r-1
occurring, i;‘xuic:énsequence of the fact that the power
series B pQI:l‘gEiins o terms of tower than the second
degree, (\n particular; H=a{t).
u‘.s'?l‘hﬁ:is property of Hp peymita U3 t . o)

Yr“‘@?;r; golving the linear differential equatlonz a.
\f}br succeaslve valuss of v, At each stage H, 18
rnown function of € and €.

Thig formal scheme 15 analogous tp the one used
by Volk in [51-

Tt should be euphasized that
power series, since the aplubions ©

Fach equatlon {2.5); peing & 1ine

o determine all

(2.4} 18 not &
£ (2.5) depend on €
ar non-homogeneous
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differential equation with coefflcients of period O
possesses a periodic solution for all those values of e
for which zero is not a characteristic exponent of the
full variational equation. This periodic aolution 1sg
unlque for given value of . Since, by assunption
B, the reduced varlational equation does nat. have zere
as characteristia €xpenent, it seems plausible to
expect that - under appropriate conditions - cactr <N
gquation {2.5) has g periodic solution tcndingakga
¢ = 0, to a periodic solution of the correspinding
reduced egquation obtained by setting e = 0o gnﬁ{ﬁ.b).

In the next section it will be showWirthat this
is actually the case. In §4 the serieéwiz.h) will then
be shown to converge and to represg&@;a solution of (1.1)
with period T. RS

§3. lemmas On Linear Differential Equations

We shall need soms fa&fs concerning the asymptotic
character of the solutiefi® of the full variational
squation. These factd mre an immediate application of
- the classical asympfotic theory of differential equations
Involving a parameter (see [3) ard [4]). In order to
gtate them iqubﬁvenient Form we introduce the following
abbreviatiqng;

Definitioﬁ§§.1
&f\ enever the special mature of a function is

irre{éﬁant, the letter E will be uged as a generic

§%$bl for functions of t and ¢ which are bournded,
together with their n-1 first derivatives with reapect
tot, for @ { t {8, and for ¢ in some closed interval

I that includes ¢ =o as interlor or endpoint. Whenever
necessary, a ,8 and I will be specified in subsequent
applications of this symbol. Occaslonally, the letter

E will designate a function of ¢ alone, indspendent of t.
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1) The symbol [F(t)] will be used to denote &
function of the form

(3.1) [F(t)] = £{t) +¢°B, D0

Whenever necesaaly, the value of 5 will be specified.
ational equation posgessges &
(pe=l 200 ,n),with the

4

Lemma 3.1. The full vari
fundamental system V, =Y, (t,e€)
agymptotic re'presentation

Oy
~
o e @t )47 g 1,2, 000,00

7%

< 3

(z.7a)

= n-ml, (On
(3.2b) IV, _pem) 4 o)Xl
AY;
In these expressions &>

V) VysesesVy 1g an arbitrary f‘undg.tﬁe}itétl gystem of the
reduced variational equatlon, ’:z\,.

To- _ ::‘v )
2)ﬂ= 1& k/(n m}l ~~s:;

NS

..<
%) The number § ©of (\?4"’,’\1) is equal TO k/(n-m) in (3.28)

and equal to k 1R .2b).

The interval I(bi.f‘:de_finition 3,1 may here be any

interval Con{aining ¢= 0 af endpoint ,bub 14 should be
’ m I’epresented agymptoti-

noted tha{b;\,é' Pundamental syste

callyq §‘\(3¢2) ror positive ¢ ig not necessarily sci:
N "O S

fal{fé}%énted for negative e The interval al 1 B

a¥bitrary. '
¢ - na-
5)@ (L) = { «.ou(—r yr, where ¢t} 8re the n-m determt
v ]
tions of
n-m
Sgn(ék)pm(t)

6}y = (L) 13 2 fFunetion whose precise form is
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irrelevant for our purpose, except for the Fact that it
1s indefinitely differentiable and different from zero
for all 4.

A proof of a theorem containing this lemma as s
gpecial case m3y, e.g., be found in {z1].

In order to avoid the complications that would be
Introduced by the occurrence of pure lmaglnary exponsnts
in (3.2a) we introduce g third - and last - restr;ﬂ@ive
Gondition,

Assumption ¢. At least for one of the two poﬁﬁfhle
signs ofe all n-m determinations ar 7 k) (t)

3gq1(e m
have non-vanishing real parts.

In the sequel the letter I will be reserved for

cloged Intervals of the £-axis CODT&lhlﬁg the point
€=0 and such f n- mz > has

hat no value or sgn(e m( £)
non-vanishing part for ¢ ip IQW

Lemma 3.2. In the differegtial equation

LN

(33) L s ez | g, e
1=g{
~\
let assumption ¢ h\wé Satisfied, and let G(t,¢) be con-
tinuous for a( t}ﬁ ard for e in an interval I con-
talning e=q &3 an endpoint, then there exists a

partfcularnqglution Z=W of (3.3) for which in al t_éﬁ
\‘
>\w’

(B.hlg ' g ¢ max [G(t,e)], (j=0,1,...,m)
RO
tals) Eg(j‘m)

¢ max IG{t,e)|, (j=mel,...,n-1)

where ¢ 1s independent of G(t,e) and of e, and

max {G(t, e}l is the maximm of JG(t,e)| in ol t {8,
for ¢ in I.

Proof: 1Iet the funetions V, be arranged in such a way
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that ,for ¢ in I,

{3.6) Re(® ) > Re(®;) 2 ... 2 Rele, )
and let p be the largest integer such that Re{@p} > 0.

By assumption C all & with » > p have negative real
parta., If we denote by V, the solutions of the linear

algebraic system A

(5-7) ZVSJ_.l }’-\?V = an » (j='| ,2,;---,1'1) .“i\\.."
4

.

then 1t follows from well-known theorems tl}'f?"}‘a\ 3

‘.\\\’
t ~ . '\
(5.8) W=/ P v (6 7, (r)e S0lr s )dm
8 1= - 7\
t n ~ \ \‘
+ _/ 2 Vj_{t)vj_(f)i"}.c r,e)dr
o I=p+1 A

N
<N

-
ol

ig a solution of (%.3) .‘sz’gtraightforward ecalculation

shows that Q
o
e T
— a7\
(3.9)V, = o~
PR

Ir the;~é§;;;essions (5.9) as well a8 he asymptot1e

fo.m‘iﬁs (3.2) are ingerted in (3.8), WS find
G70) o
W tm1) fﬁ ea@i(t) & ))E(t,é)E(T,E)G(fMdT
1=1

S e

+d~(m—’] )ft n-m G’(q’i(t)-q’(f))E(t’e)E(f,eJG(f:ﬁ) ar
a i=p+i

/ti . E(t,e)E(r,e}G(f,e}dr

+
' 1=n-m41
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In order to estimate these integrals and thelr deriva-
tives, let E(t,r,¢) be a function uniformly bounded for t
and 7 in the closed interval bounded by o« and 8, and
for ¢in I. We then note that for any integral of the
f'orm

e ! E{t,7,¢) G (r,e)dr
N\
with 1 { p we have the cstimate A
{
(@, (6)-2;: (7)) O
< E(t,7,e)G{r,¢ )d7 QAo
8 N
. t aRe(q»i(t)—q»j,&i{x
<& c, max |G(t, )] f & ) ¢ Reg,(r)ar
B
A\
- oRe(; (478 (7))] "
=0 ¢, max 1G{t, )] & x\ s
{c-1201max 1G(t, )] '.
N\ E(t,T ¢)

for t ard = in

where c1 is the max.ir{L{m of W

(2,8} and ¢ in T« '\{ﬁflalogous estimaics hold for such
integrals extended from «to t, when p{i{n-m. Using these
estimates the(iriequalities (3.4) and (3.5) are an
inmediate ,qénéequence of formula (3.10) and the squallities
obtaine's\(ﬁj’ differentiating it repeatedly.

R\
Iﬁmthg. '5.5. If the assumptions A, B and C are satisfied
%a\rh if the function G(t,e) of lemma 3.2 has the period
T in t, then there exists a numher €,20, independent of
G(t,e) such that for e I{¢; and in I the differen-
tial equation (%.3) has a unique pericdic gclution
Z(t,¢) of period T. This solution satisfies the relation

5.11) 1w 280t 6 = 20005y, (5=0,1,...,m), einl

€0
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where z(t) iz the unique solution of period T of the

reduced differentisl equation
= (1)

{3.12) 0= pi(t)z + G{t,0}
=0

The convergence is uniform for all t. If a Pundamental
system of the full variational equation is kmown, Z(t,¢)
can be found by quadratures and ratlonal operatloms.

Proof: In the argument that follows let I be chosen 80
that e =0 i3 &n endpoint of I. If intervals I containing
e=0 as Interior point are possible (we recall thes Pemark
following agssumption C), then the reasoning carl e

applied to each of the two subintervals of. {\bounded by

e=0 geparately. Let

(3.13) W= Z-z

2 N

The function W satisfies the di‘f*f‘erential equation

(3.14) ﬁpiw - Q(t,€)
\1—0
where \\\'
..",,: k_
(3.15) 2, ) = oty e) - 61,00 - 2L
Ko

{ &
Qt,e) ha\\rhe period T. Observe that

’o

{3<€f§~\/' 1im Q(t,e) = 0, for einm I
/ &0

uniformly for all t. .
(3.14), then the general solution. W W

. W
(3.77) w=253 C, V, +W

y=1

lution of
W _ be a particular 80
Let b

11 he glven by
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where G, are arbitrary constanta :lepeaizng: -0 oo This
golution W will have the period T, 1D rour oniy i the
Cy are determined In such o way bhat bhe oot Tong

s () L ()
(3.18) 2 ¢, (v,,(“)(mT)-vl, Hlld ] ) W (o

r=1
(}1:0,1,--.,11"1] /.\
A ¢
hold for some particular - arsi beaee 0 o o M-

Let ua take ae "J (‘ S RS ] B [\’:};} Lo
which lemma 3.2 can be apnlicl. 1o asoghs - this lemma
We take B=a+T. Let A he Lhe et \L\:\&V “hie ieft
members in the linear alpsiralc :=j:\\§x\-:r_ PeLoo b oand Ay
the determinant obtalned by it g}h..{ Creoo=thgolum by

~N\

the right members. In theoe! L!Q.B,t,r"n‘ froower Lrprorh now

the asymptotic EXpresslions (&"“‘J . '1;‘;-';:.' ST ZE_‘;[!}Q‘Jali'

ties {(3.4) and (5.5) to ,{‘:‘”
If the determjna‘.k\k _\ 19 capande iowion copract 1O
the minors of the f{r'“it n-m columpu:, it o. ..o that the

o OI‘lglnatirEgSI%m the last - rowe foer 7 rodld
higher order of ‘magnitude than ali th .- o, A short

calculation ﬁia@ws that this term tu o0 e o
*\

'\s l
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(3.19)
v? (a+T) . ‘,; {a+T) ',E“[ﬁ!) P pﬁ_m{ﬁ]
B_ ul '
ey t(aﬂ‘} t’ ot m+l 1 o+
o ’\.r-m ¢, {a+T} T (uﬂrT)wP”{G} ""’n-m(“}
‘9?-1 (a+T} .o pg-]-(ch} p].;:: (o} .- ”2::11(“} O

A\

V, fasT) - ¥y (a) -oe Vg {a+T) - Vy ;(&J,}

~

%
VL EsT) - V] lad e AN .g.' fa) [Ix)

{m-1) o Amm1) (m-1\ tm-13
v'l {«+T) - ¥, {a) ...'\."m?\ﬁk&'l‘) -V (&)

’Q't .
where x ‘g a constant differeyt from 2610 This
afthe same tims an asymptotic

exnression is therefore
determinants ooourring

cxpression for A, proyidsd the two
ir it are not ze¥og {Thzs they are not; the first one,
nEeTmonce determinant all cof whose
columme are diﬁf‘;é‘f'ent, t+he gecond because of agsumption
B. This shgmig.‘that, for € in I and el éel’ the |
differfenﬁé@:’equation (z.14) has & uniqué SDlthiOI'l Tn'fl'lth
period“ﬁ'x\ provided e, is & gufficierntly gmall Pomtwe
Il]J@é&;;éepending only on the varlational equation.

N\ )~ The argument for the calculation of the i, follt‘)ws
ths zame nattern, except that here the formally leadling
tsrm of tilese geterminants mway possibly yanish. For

. J1R) we uss ths gstimates (3.h)
1g rule wWe find, finally

Feecguze it i3 a Me

the right members oft (3
and (3.5). Using Cramer
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(z.20)
— ~¢{%GI+T)
/ & Ewax [Qit,e)l L v=1,2,... .1
C, = s VB mex [Qlt,z)] s PEDHT ... L,
E max [GQ(t,e)l s PEUSTHT ... L0
N\
If thege results, as well as (z.2) ars ingerbod iik{3.17}
A
the periodic solutlion W iz seen to ke of the fo;é\f‘
O .
_ B oo{E (L) (asT)) N s ()
(Z.21} W= i J_€ ’ ! Eo4o F QR E ' E
7>,
r=] el

+ max |'=r,{t,eJ[E+u"J .\\\,
\\:

WD satlafles the inequalities (4 4) and {35.5) with G{t,e)
replaced by Qlt,e). I follows that W and its Cirst m
derivatives tend to ZEr:, es ea()_n I, uniflormiy In
every closed subinterval 0f%x< t <a+ T. For thz m-th
derivative the pointsz Q?and a+T might posaibly be
exceptional. But gitled o is arb! trary and W has ths
period T, thia impgle. that W(J) tends to zero uniformly
for ail t, fon§Z0,1,...,m. This compietes the proof of
lemma, 5.5. 's;w’

'\*iodlc goluilon z of (%.12) satiafles an
1nequa¢4by of ths form

AN

\> - rz(_”| ey, max [G(t,0)] , (i=0,1,...,m)

where ¢, ls a constant indeperdent of G(t,0). The
expression& E occurring in (3.21) are independent of
G{t,e}. Thiz shows reacdlly that the foliowing corollary
1s true.
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Undar the assumptions and with the notations

Corollrrs
of lemws <, 3 there exists a constant ¢, independant of
t,e ,vamt G{h,e) such that

e e max 1G(E, €))L, (r=0,1,..,m)

for all &, and for all ¢ in I for which [ef ¢ €

§4. The Corwergence Proof

lemma =.: applicd successively ito the differential 2\
gouat i (0.5) for r=1,2,... shows that, if there 1o an,

inteival 1 of ¢ in which condition C is satisfled, t@fﬁ
there sxiste for every e in I with fe] (e, & perior’m ic
|

solution Y terding to a finite 1imit Logethe:' @ith iis

first m ..\&.:’i\rativcs, ag e—~ 0. All these scr}ﬁhons

gatialy the inequalities \
4

7 o

PRI )

.

N e S

e In I and fel §51 (ef. ~t~hg prccu}l‘m‘ coraliaryl.
rcuman’uq we have to investigate

(o.b) when the Y, are

fa
Te complete our a

the convergence of the S\er’*“’

these perigdic fung iQIﬁb

We begin DIACO structing 2

o power series dominating
Y‘ ); tie) ocourring I {?."Z-).

the power serieg H(Y ¥,
Let"‘?v} (V“O;k)‘---:m) E"‘
viea H \merges for

pe numbers such that the

YO ¢, e
be the coefficient of the term in
m?
that seriss which contains Y )
is soms constant such that

iH! Ch

to the power k. If h



330 WOILFGANG WASOW
in the domadin defined by {(4.2) and for all t, then it 1is
well known that

n
,k’ < ke m k
m 52 ]}

(%.3) Aelt) .k
If we replace each coefficient of the serlos for B by
the corresponding right member of (k. 3), we obtain a new
power series, which dominates H; 1t 1is 1nd{Deud*nt of t
and converges in the domain defined by {4.2). ATsd, it
CODt&LDS no term of lower than second degrec. Liot

H(Y Y',...,Y(m}, € ) be the funetion dcrlncd‘hg;tﬁis
series. ”f“%

Now we Introduce a formal serieg { ¥

o< T
(h.h4) > a€ xﬁbJ

—1 ¢ &

r= \\ r
with the 8, ag yet undetermlned, and renlace svery Y*y);

. Alter

=
hils scriss

ot

{»=0,1,...,m} in the serles f@r H by
recrdering with respect to sbowers of ¢, there restlts a
formal bower geries ip e ip which the cocfficiort = o

"is a polynomial 1n}the a.. These formal opeLatLorS
are analogous tod 'QOSe by means of which the functions
Hr in (2.5) werd, obtaired from Hin (2.3). From Lhe
properties oi\H 1t fol“owa, in paPthhldP that er
contalns nﬁ\“a wWith a subscript greater than r-1

IE\LE als0 seen that if the a_ ars choser so as to

satlsiy\ or any = > 1 the in;qaallbﬂes

u\. _
~\. . J=0,1,...,m
%&35} ’ YiJJ[ §_ar, for r=1j2,...,s—1

all £, ein I, |ef §e1

then the Inequality

——
I
[a3%

p—

IH I <o,
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Follows.
In crder to find values of &, satlsfying (k.5)
for all g and suitable for our purpose we chose &,
arbitrarily, but so that (4.5} isg satlsfied Tor s=2 and

determine 8, T > 1, successively from the equaticns

(h,7) 2, = ¢, (a

r (r=2,3,...]

18y eae sl

1 r-1)s

where ¢ 1g the constant occurring in {%.1). Iest us ~
asgume for the purpose of mathematical induction that
the inegualities (4.3) are true for a given g, Thbﬁ
{L.6) 1s true and, uasing (4.1),we have 4 O

_[Yé”‘

Hence, (4.5) is true for all r. 7.\
In order to establish the uni‘fﬁrm convergencs of
the serieg (0.4) and its mrma.l’}’“éfivatives up to order m
1t suffices, in visw of (k, 5~) *tn prove the convergence
f oszeries {(4.%) with the, a‘ ‘defined b}, (h.7).
To do this we note that, in consequence of the
cefinition OfP , thks\ce Ades (4.4) could be conatructed
- once a, Is cbos%\h Z vy inserting (b.4} for & ir the

equstion QO

ol

(L.8) :\::;c’}ﬂ(g,g,...,g;e)+ea1 -£E=20

&
and qat.'E}‘mg the cosfficients of all powers of e equal to
ZETHY *0n the other hand, (4.8) 1s setiafied by ¢ =§ = 0,
ﬂd “Che partial derivative of the left member of (b.8)

with respect to ¢ doss not vanish at e = £E=0; 1In
fact, 1t is equal to -1 there. From the implicit
function theorem for amalytic functions It Follows then
that (4.8) defines ¢ as a regular analytic function of ¢
in the neighborhood of ¢ =0. (. 4], con™
must therelfcrs represent this function,
with ¢ 3 > 0.

The geries

atructed above,
anc, thus, it converges for le] e

5)’
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The Foregoing convergonce proo’ iz a varialinsn of
the reasoning in Volk [51].

Hext, we must prove that the serios (b)) snbilelies
the differcntial equation (2.3). To toat ey wi omeiti-

ply the r-th equation (2.5) by € and sum nveq
view of the uniform convergence with rospeel To Lonf the

termwise derivatives of (2.4} up Lo ord

abovs, the right hand zide of the resulting cgueljon is
for Cixed € g unifermly convergsunt seriey, an! theNsame
&t therefeore be true of the left hand s:de
X o0 r Y(n)

— r=1 ¢ g

cfined, the series on the rlght narghe I

. Bucause of the way

WE TS
represents the Munction on the richt hg
S0 it romzins only to be shown that SN
‘rom the unif-rm
> ? ;TY{mJ. by mcans of dJ‘a pWJ obvicLs molitiea-
tion of bn, standard proof uust fying ceremize difforens
tiation of a comer et serie:, If the resulting series
comvorees uniformly "c
Before we proceed ™o surmarize our eauibs Ir the
form of & theorem chE forrulato assumption © In a more
immeciately GLfo\gtlb manrsr,  Ih ia
i COhx1t Qn C iz smatlzficd fPor pogiti
for negativel g, if n-m is odd, ard alze il n
and at q&\ game time % la sver and (‘1){n-m)
negatluﬂx In that cass ocur results cocncernling the
conpg:gence of Y(t,e) are true for approach to ¢ =0
Far’either side. We then call the differentlial
eqlation (1.1) parametricallsw rooular,

Iiv zcon that

o
©
T

az w=1l as

2) If n-m is even and k iz 0dd, conditlon © i3
zatisflad for pomitive e only, if (-1}{n_m)/2pm(t) i
positive. In this case the different el souation (1.1)
will be called parametiricglly nalfregular from the
right. Similarly, If n-m s ever, k !z odd and
(~1)(mmm)/2 1 (E) I8 negative, condition G is satisfied
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for nsgalive e only. We then eall the differential
equation (1.7) parametrically halfregular Zrom the lefl.

)(n m)je (t)

5) If n-m iz even, k 1s even and (-

1s nozitive, condition £ 1z never gatisfied. This i
the naramclrically lrrogular c826.
Thaorem 1.

(a) If conditions A and B are satisfiec and ths

Aiffepential equation (1.1) iz not pd:ranu:crlcalﬁ} Q|

vepilar, there existg a cloged interval I contairifm’
pelint e =0, sych that for sveTy e inl this Glfﬁiﬁ’e_ll-

nosgesgog a perlodic golution T (3, &) of

which s,
for whicll '..,.\‘

1w 83, 0 =t ) F0, 1)
e $$L
un®formly in t. ,«,

If the diff erential Ugaa:\; noig parametrically
reguiar, e=0 1 an nferl@r‘ pg_]_n__ _‘f I; if it 1s balf
z from the r-”‘ht{o* 1sTt, 0 ls
I‘j_gli endpoint of ”rs'“pectluuh

(B) If & lum ntd,l system of the &
gguatlion 1s L_c_*;rgL convergsnt geried 'eprescptat lon

for U{t,e) e;}n be fourd by quadraturss. Thig gerdies is

of the Igé
” ey

LOT Ultse) = ult) o+ S Y(t,e) e
\3 =1

wherse the functicns

and have the period T in t. ‘ .
Remavk i: Applying lemia z.% to the gifferential
m [p.%) For =1 W& SEE that to within terms of

in € the functlon
order higher than one in €,

the left o

full variational

=T L

v (t, } are continuous for e ir L
B are

Ult,e) equals
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u(t) + ey, (t)

whe e y1{t) ig the periedic sclution of

0= p,y{i) + alt)
=

o]

Remark 2: Nothing has been proved here corcerning Lhe
parametric ilrregular case. Simple examples (sec Voldd\
[5], pP. 573) show that the statements of our theqr'm
do not always exterd to that case. \\ K4
Remark 3: Our theorem does not lmply that *he Gpkua—
tives of U(t, e¢) of order higher than m COPJSYUS to ths
corresponding derivatives of u{t}, asc-%o\in I.

A
Part 17. Autonomous Ostfiations

X 3
N\

§5. The. Procbhlem. The NQn Bégencrch Condition
In this part the reault& B Part I will be extended
to the differential QQUatrﬁﬁ

I -\
oy L, &L 2
at™ Ko at
which differs fadw’(1.1) only in that t does ot oceis

explicitly in'ﬁﬁé right memrer,

In thq«ﬁreqent preblem every solution X(t,e) of
3.1) 01(§* “Tise to infinitly many solutions of the
torm X(t¢t1,e} where t, ig an arbitrary constant. If
ory &f'these solutionq has the period T, all of them
do. The same is trus for the solutions of tho re-

(

duced equation

(5.2} 0= Fi{x, @
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It follows that if there 13 one periodic solution
Ult,e) of (5.1) tending wniformly to a given periodic
solution uw({t}) of (5.2} there are infinitely many others
with this vroperty, e.g., all Functions U(t+et1,eJ. It
ia theref'ore possible and desirable to impose an addi-
tlomal condition on the periodic solution te be found.
We find 1t convenlent to reguire that

(5.3) U(0,¢) = u{0)
KoY
In the present problem the base perlod T is ;:\
def'ined by the period of the given base solut“i@r{?‘,u(t)
and not by the differential equstion itself (Ft is
therefore plausible that the speclal caseg 40t J=constant
will give rise to a perturbation problenl of a somewhat
exceptlonal character, since the perx@é T ig undefined.
If the derivative aF(z " 3By 5.){1?31 doeg not vanish
for z, =u, By dg=e . =E G, e=0, he impliclt function
theo:ﬂem guarantess then the existence of a congtant real
solution of (5.1) tending 50, 'u(t) ag e —» 0. Except for
this one remark we 1eave\this cage aside and stipulate
that u{t) Iz net a o?\q‘stant
Finally, sined u{ts+t, ) s, for all t,. & periodic
sclution of' (5. 2;, ‘ang since u({t} 1s not a constant, no
logs of genersihty 1g involved, 1f we sssume that
{5.4) &f\ ut(o) # 0
~.\' "o
\;m addition to the conditions mentloned the base
solution will have to satlsfy assumptions A and B of
Part I. However, condition B differs from the analo-
gous condition in Part I, because the cancept of
degeneracy must hers be defined differently.
In fact, the reduced variational equation
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poszesges in v=u'{t) a non-trivial pericdic aolulion,
This implies that one of 1ts characteristic exponents
is zero.

Definition: In the autonomous case the basce solution
uf{t) iz called degenerate, if the corregponding reduced
variational solution has zero as a multiple root.

Iema 5.1. Let v.{t), {(j=1,2,...,m), be a fundomental
gystem of solutlons of the reduced variational equalden
correspording to the base solution u(t). Then u *l ig
degenerate, if and only if the rank of tho matyla ”

A\ 3
(5.5} D
ut(o) v1{TJ-v1(O} vg(T)-VE(O} 2O v (T)-v _(0)
"(0) vI(TI=vI(0) VIT)-vI(QN=.. v!(T)-vi(0)
(m)  (@-1) (m-1)  (medi(met) (m=1) (m1)
u (0) v1(T)—v1(0) ve('a4ve(oj . vm(T)—vm(O)
N\

ig less than m. )
Proof: It is cleé%‘that the rank of the matrix (5.5)
does not depend Gﬂ the cholece of the fundamental system
vilt), WithoQy Qoss of gensrality we may therefore
asaume thaﬁ\~

O (1-1

(5.6}<1* v.(0) =8, , (i,3=1,2,...,m)
"'\; ol

whete (8.,) = I is the identity matrix. To abbreviate
the notatign_we write A for the matrix with the
element v§1_1)(T) at the intersection of the j-th
column and the i-th row. Since u'(t) is a solution of
the reduced variational equation, we can write

\ ™
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m .
at(t) = > U(J}(O)vj(t)

=0

and the periodicity of ul(t) expresses itself by the

ralation
(5.7) (A-1)d = O

whers 4 i3 the column vector with components u'{ey, £\
u"(O),...,u(m}(o). If and only if the rank of the A
matrix (5.5) is less than m, there exists a vectgﬁ?,

linearly independent of d, such that PN ~

— - R4
(5.8) (A-I)e =14 )
AN
ThaNQe}ations (5.7) and

where X is a scalar constent.
Jent’ to the statement

(5.8) taken together are equiva
tnat the matrix A has one 8838

e.g., H. Weyl, Math. Analxsfe’édes Reumproblems , p-92}).

The characteristlc rootsher A are the characteristic
roots of the reduce@,({ariat’ional squation.
multiple charactexié‘t;ic root of that dif’ferential

equation, then garo 1s & M acteristic exponent

1tiple char
and viee venddy

“mltiple root (888,

If one is &

Qta_l_‘_gll;m;{;,\fhe ¢alues 0 and T m3F pe replaced in (5.5}
by « .%’&YEHT, where a 1s arbltrary. .
Bﬂ%—‘@:‘ As in {11 1t could be shown that u({t) is non

%‘ﬁ@ﬂer‘ate, if and only if all golutions x(t) differ
£¥om periodicity by terms of the first order, provided

the point t=0 is adjusted =0 that x{0)=ult)

6. The Formal Procedure. The periodic golutions
l i s
of (5.1}, if they exiagt, will bhave a period that depend

i €
on e. In order Lo operate with & constant period W
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introduce a new Iindependent variable s by the trans-
formation

(6.1) t=3(1+Q)

where € is a function of ¢ to be determlined later. This
transforatmion changes the differential equation (5.1)
into 'Y

O -
(6.2) <&M L (PR, x {nm“,...,x@&wm m

Here the dash Indicates differentiatlon wlfh reapect to

If we define Y(s) b \\
\J
(6.3) X(8) = u(s) +Yg\=s~3~
and expand the right member Qf T6 2) 1n powers of
Y, ¥!, Y(m) Q,e, combing@% We obtain, in analogy to
(2.5} N
."‘<\

(6.4) m .\(
yin) o . Py (MY M a(s e snls B (Y, Y7, ..., v)5 550

=0 £ )

t\t,)‘..t

where O

\so/

n .
(6:5) N bs) = - 37 dpytennt i)

AN

a\b “the power series H contalns no terms of less than
‘ond degree. We try agaln to find for Y a series of

the form (2.4) and, similarly, for @ a series of the

form

(6.6) a=2_".Tg
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subgtitution inte (6.%) and comparigon of coefflclents
leads agaln to an Infinite sequence of differential -
equationg, which here will have the form

k S (1)
(6.7) e ¥, = ini(s)Yr + bisin, + Hy
=0

H, being & polynomisl in fo"), ﬂa, {p =0,1,...,0, a=1,2,
LLr=1). O\

gince in the autonomous case the reduced variés’
tional equation has zero as & characterlistlc e:xggneﬂt,
the non-homogenuous equations belonging to Pbe?‘:reduced
variational equationm will, In general, ngj"\'tiave a
periodic solutlom. The periodlc golubicons - if any -
of (6.7) must therefore in general pq\,expected to
But we 3hall ’sl}p'w in the next
(6.7} do con-

an appropriate

diverge, as ¢ — 0. \
gection, that the periodic solutions of

verge, ase — 0, provided ﬂ?j;i?*' chosen in
manner as & function of €4

fferential Equatlons

. More Lemmes « on Dinear Di
: £ the form

Consider & differential equation ©

"’.‘.n m
1) Ek?\gm’? > pi(S)Z(“ i b(s)r + G(s,€)
R, o
Whel‘e"é\\i;,pi(s} apd bfs) have the aane meaning a.srtie:3
befqg‘fé’ in this part, and G(s,€) hag the same propzi :
”\3‘; “n §3. The letter T denotes & function of ¢ WhiC

Wwill be determined later. Together with (7.1) we

consider the reduced equatlon

0= S ﬁi(s}z(i) 4 b(s)yr G(s,0)
=0

(7.2)

in which v 18 & paremeter 1ndependent of € -
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Lemma 7.1: If gssumptions A and B are satisfied in the
autonomousg case, there exists a unique value of ¥ for
which the differential equation {7.2) pogsesses pericdic
golutions of perlod T. .There ia exactly one such
golution z(a}, for which

{7.3) z(0) = A
If a fundamental system of the reduced variatiggéi>'
equation is known, the periodic solution z(s) ¢en be
found by quadratures and raticnal oparatlcnSQ‘
Proof: let v J(s), {j=1,2,...,m) be a fQNGamental
system of the reduced variational equatlon with t
replaced by the letter s. But instegb‘of characterizing
the fundamental system by the 1nit\a1 condlitions (5.6)
we now assume that D

(7.4} vilshsgu'(s)

without committing onf“elves as to the cholce of the
remaining m-1 Solﬁﬁ}ons VJ( ).

Denote by 2 Xs) some particular splution of the
differentlal\éﬁuatlon

\‘,z < (O (i)
(7.5) N 0 =2_ Pz, + bls)
o i=0
aQé}”y z, some particular solution of
S gt
(7.6) 0 = b;Z, + G{g,0}
i=0

Then any sclution of (7.2) is of the form

It

(7.7) 7 = - cjvj(s) + vz (8) + zg(s}
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whe the ¢- i:

: re the cJ are arbitrary constants. A solution z{s)}
will have the perled T, if and enly if the equations

Z(i)(T) - z(i)(o) = 0, (1=0,1,...,m71)

are satisfied, 1.e., if

{ a (1) (1) i
7.8) %—____; cs(vy (?) - v} (0)) +1’{z$ Y7y - Zgi)'L\O)J
N '\:\.
- zél)(o) - zéi)(T); (i=0,‘|’“:}¢~g§_1 ;

s
< R

For arbitrary ¥ i1t will, In general, not“QﬁSi'possible to
determine the m-1 constants Sgs« -0y so-as to satisfy

+he m linear conditions (7.8). Bgtzibﬁ‘ we conaider the
equations (7.8) as & linesar algeb?a"ic gystem for the M

a solu.t’i‘ori’will be shown to

we obb First that the rask of

’ eft members in. (7.8)

£ the particular golu-
gl=su'{sl.

variables C,, .+ «s2Cpy T
exist. To prove this,
the coefficient matrix ‘@ﬁ"t'he 1
does not depend on LB choice ©
?fyj,,\ 1et us therefore take 2z, (

tion z1(s) of (
(7.5), as can be

This is, in fagbina solution of
readily vexifipd with the help of formla (6.5). The
matrix of‘:.{he’left mexbers of (7.8) DECOWES then

$)
D) = v {0} canerecy v (1) - v (0) Tu'(0)
1}y (m-1) (m=1 (m-1) {m)
- VQ(OJ ........ v (T} - vm(o) Tu (0)
T view of our cholce of v, (8) 1n (7.u) this matrix
differs From (5.5) only bY the absence of & colum of
and by the

zaros, by the ractor T 1n the last colunn,
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pogltion of this column. It follows, that the vanlshing
of the determinant of the matrix (7.9) would lmply that
the matrix (5.5) has rank m-1 at most, in contradiction
to lemma 5.1 and assumptlon B. Hence, the ayatem (7.8)
has & unigue golutlon. The moat general gclutieon with
period T of the differential equation {7.2) is then
obtained by choosing ¢, arbitrarily. Becauzc of (5.4}
there 13 a unigque valus of c, such that the rcecasulting
periodic golution satisfies (7 3.

mma 7.2: Let z(s) be a prescribed quUtlDDx@F (T 2)
with perlod T, and assume that condltions Aj B ani C
are satlsfied, then there exists a numbedie "> ¢ anda
unigque function I of € alone, such tnaﬁ\for [e| <€ ;
and ¢ 1In I the differential equatjq\ (7.1) has a unigue
pericdle golution Z(s,e) of perlqﬁfT gatlafying the
Initial condition AN/

N/

(7.10) z(ehe) = z(0)

For this solution <>

©
(7.11)  lim 3 j\’\(s ) = 2035y, for j=0,1,....m,
€0
;‘}' and ¢ in I,
e

N\
unifog@}y for all s. Tor the corresponding gquantity T

ol
S
S

w12 ) lim D = vy for ¢ in I

o
\/ £—0

/7

If a fundamental system of the full varlational equation
1s known, Z and T' can be found by guadratures and
rational opsrations.

Corollary: The statement of the corollary to lemma 3.3
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remaing true In the autonomous case, and, in additlon,

the inequallty

Ir] ¢ ¢ max 1G{s,¢)]

holds.
Proot: It will be gufficient to emphasize those

features of this proof which are different from the
proof of the anglogous lemd %,3, The difference « O\

N

 §
QY
(3.13) W= 4z Ke)

A\, 7
of two =solutions of (7.1} and (7.2), r?{;@etively,
. \. \\
Y,

gsatiafies

\J

m K7 N

(7.13) Joy(m) = 5 pi(s)w{i..)\m(sm + Q(s,€)
j_=o :.‘i‘}

where ‘.:'3;;3%

(7.1%) Ny =T -7

AN

(\J
The general golution of {7.13) has the form

by
4

7 o
(7.15) ’\i:;\‘) W= Z_T-Cv v, +AW1 +W2
4 V==

'S
Wheié\ﬁﬁ 15 a partlcular golution of

'

s..\’f; n (l)
r\”ET."l-S) ‘kw,i(n) =gpi(s)‘ﬂ1 + b(9)

) 2
4

and W, one of (3.18)-

n 80 that
- We observe that W, he chose

can

(7-17) 1

thig W& need only
tisfie .5). To 88¢
where &y gatis g (7
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apply lemma 3.2 to the differential equation

n m 1
Lz = Sy S ) - ()
ds i=0p gst

obtained by subtracting (7.5) from (7.16).
W will be periocdic with peried T, if and only irf
C, and A can be determined so that

Y
() (n) {u) {29
{(7.18) E 1 C,(V, (asT) - V, () + A (W (e+T) - Weee ) )
r= '“:.\..;,
(1) ) ”;\\"’
=W{e) - W, (a+T) , ('u=of”1.}.’§.,n—1}

To these equations we add condition '(%‘}"F’o), i.e,,
Il ‘x:\\\"

{7.19) > C,V, (0) + AW AQY = -W,(0).
p =z AN -

L >
N/

The asymptotic values of thb C and A can now be found
by the same method as 1n. t‘he Proof of lemma 5.3 The
only non-trivial diffen—me ls that the second of the
two determinants 1n-(\3 19) has to be replaced by

0 Ve(a+TJ ‘;\“?2'?“) vm(u+T) —Vm{a} £y {ce4T) = Z.l(crj
0 v,;(itgi'g‘j\“'— TAE) . vaedT) vile)  zl(esD) - Al{a)
..... L U R U TR USVUO SO
,\,, EHH) (m-1) (m 1) (m-1)  (w1) (m-1)
\,: volasD) - LA m @rT) ~v () 2y (adT) - 2 {w)
v, (e} vy{o) ... v{0) z, (o)
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This doterminent "

3 nt is not zerc. For, v1(0) # 0, In
consquence of (7.4) and {5.4), and the cofactor of
v.l(O)Hdoes not vanish, because of agsumption B, the
corcliary to lemma 5.1 and our remarks following
formula (7.9).
] The resulting formulas for G, are again (%.207.
he proof of (7.11) 1is then strictly analogous to that
of {(3.11) in Part L. In addition, we find

N\

A=Emﬂx IQ{S:EH .'\:\
7'\ *

which implies (7.12). The corollary follougs’ﬁs‘in the
proof of lemma 3.3. Toi completes the préer of

lemma 7.2
7. \d

§8. The Main Theoren of Eagg\fl
of the formal scheme

Lomma 7.0 shows thet the ¥p At
explained in §6 can be sqc;%es'éively calculated 80 a3 to
The

obtain for the Y. pounded periodic punctions in I.

convergence proof is\flit'erally the same &8 {n the non-
subonomous case G i simply rreated 11ke the Y;J)
There 18

T
%Jethod of domlnating series.

11 spplying the
Tt will suffice

no polint im @epeating the srguments.
to statephe result.
o\

w:
' conditions A and B are qatisfied, end the

W) I
6}2@@.@-—&‘2 squation (5-1 ) is not parametrically
Jrregular, LHELS cxists 2 closed suterval 1 containlng
e in I thig differen”

the point ¢ =0 such that £oT gvery € = = Crmsmm
solution U, €) of

tial equation oa3e88es @periodic, 80
period T, =T{1+%) oy which

1m 083k, ) = W) (051500 =)

g—+

aniformly in ts
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IimT, =T |,

E—0

U{o,e}) = u(0)

The position of the interval I with respect to ther
polnt e=0 follows the same rules as in theorem ja, .

T T = /e 2 peee el B

W
(b) If a fundamentsal system of the f’ulluya"riation—
al equation is known, 8 convergent series ;g}p‘r"éscnta,—
N =
tlon for U(t,¢) can be found by quadratures. © Thig

L W
geries 1s of the form o)
Ut,e) = u(s) + § Y (8,6 T .
: PN ‘! P
Here A L

..\
where ‘{“‘,\
&
%0 T
g=2 Bple) e
"\l =t

W

1s a gerifegiWhich can be found by ratlional gperations.

The YP 's,:é"J have m bounded derivatives with respect Lo
8, ;gif‘e in I. They have the period T in s.

gemr"k: By collecting terms of order one with respect
t0%¢ in the foregoing result, we find, with the help

of lemma 7.2, that, to within terms of order higher
than one in ¢,

—

€.1)  Ult,e) = u(t) + eltwu'(t) + y,(t))
Te=T+w. T
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for ¢ in I. Hers @, 13 the mumber for which the
differential sdquation

=§;gp1W)y + @ b(t) + a(t)

has a solution of period T with y(o) = 0, ard 7,(t) is
that solution. In order to obtain a good approximation
from (8.1) in - say - the interval -T {t (T, the
perameter ¢ must be very small Dy comparison with 2T

e \

§9. Appendiz: A Remark Concerning Volk's Agatwle {51

aince Volk deals with systems of firat order~equations,
he is led to lnvestigate a variational sxgiem of the

form
:2\\"

n ¢*C
(9.1) L2 =u® S P, () NG o)
r=1 ':’
In thig sectioll we adopt VOIK s notation. p is the amall
parameter called € previausly, the p, (tq are functlons
ra, some of which we
assume to be negatiyé\ Tn analogy to our discussion

in §3, 1t has tg Eé*shown, that & non-homogensous
9.1) possesses & periedic

gystem COrreSpondlng to (
ropriate conditions - remains

solution.wh{gh - under app

bounded,\a\e‘ uw— 0.
In\order to do this, Volk proceeds &8 follows. Let

k ba\the algebraically gmallest of the ‘integers X,
%gzls negative), and change the veriable t into ¢,
where +#1s defined by

¢ =nft.

ystem 13 then changed into

The variational 8
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A%y u
(9-2) _'T E: ZI" (1’=1,2,...,I1}
r=1
where
k, -k —k)
{3.3) q .. =u P\ p
r I rn

The q,,, are continuous at x=0. The period of the LR
With respect to & 13 0=4T. Following Volk [5], P et

N

e .

{(9.4) Z,= %ﬂ IR (v=1,2u:;rl
S\
be the linear transformation which reduc¥s) the system
(9.2} to the canonical form \;
d}]v ~:\‘

(9.5} =1 +ea (v=1,2,...,n)

v*Tnv-113

»,'

g4 p7

Here the i, are the characterrstlc expornents of the
system (9. 9) The Tyt afe Zero or one. In particular,
=0, always, so that “b does not occur in (9.5), and

need not be defined \\The 1,are functions of g, but
Independent of &. :~Thecr are functions of 4 and 4,
with period o 1¢kﬂ

It can bé\proved that, if the coefTicients of a
system of i@nﬁar differential equaticns with periodic
coefficiﬁnts depend continuously on a parameter 4, then
the Ch&T&CterlStlc exponents as well as the matrix of
thé\@ransformatlon to canonical form are continuous
functions of #- From this theorem Volk concludes that
the quantities @, &5 Well as the elements 8 of the

pr
inverse matrix are bounded atu =0, But this conclusion

1s not valid, since that theorem presupposes that the
beriod of the coefficients does not depend on g . In the
present case that period, 6, tends, however, to
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infinity, as g — 0.
It is easy to show by the simplest examples,
that thee , are not always bounded atp=0, even if u
ig limited to ons slgn. Take, &.g., the case r=1.
Then (9.1} reduces to

az ¥
(9.6) gt =& p(t)Z , (kL 0)
and (9.2) becomes "
QN
y/ ~lz 'S
(9.7) 42 (w7 - \O
Y
D
The most general transformetion of the I mé\‘f@ k) 1s,
in this case \\
. .’\\.’
¢
(9.8) Z = “ﬂ:xi}\
whers ‘,3{::‘“
*\"'\ e
N i
/ k o ?
(9°9) j«\P(r’u yd# a .{)p('}“ )d
N
a=Clu) g )

K&

C(p) 1s an arbig‘rary function of y alone.
(9.6) and {9.7) become then,

When written

! 1 respect-
in canomca,z\fbrm D

ively, O
O

A\ 8
NN C_l%_ - Jé f ples <)ad * 7w
\'*>’,j d 5
and
Kk T
dn - e [ peat -

) is pounded, (9.9} would indeed

Agsumi that Clu
e n w=0, 1f © were &

pe a bounded function of # at
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constant with reapect to x. But thls is not the gase.
In fact, returning to the variable t we find

t T
1
(9.10) ”k(/ p(t)at - g { p(t)dt)
o= C(n) e © ©
when p{t} is not a constant, « org = %, or both, are

unbournded at u=0. The boundedness ofavr
by Volk In an essential way tc prove his equivalend of
our inequality (4.1), for he proves a sLmilar"\:}
inequality for the simpler system (9.5) andzﬁﬁén returng
to Z, by the inverse of the transformatiqﬁ”ﬁg.h). it

is clear that cur inequality (4.1), or.8dme equivalent,

18 needed to establish the convergered“of the method.
N
s
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