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Preface
N\
O

The principal aim of this volume is to place at the chsposal of the
engineer or physicist the basis of an intelligent wor]ﬂng knowledge
of a number of facts and techniques relevant to f our\ﬁelds of mathe-
matics which usually are not treated in coursegof the ““Advanced
Caleulus” type, but which are useful in varietlhfields of application.
The text includes the result of a series; cﬂ‘fre\uslons of material
originally prepared in mimeographed, f(h&m for use at the Massa-
chusetts Institute of Technology. AN

Account is taken of the fact thag.most students in the fields of
application have neither the timg hor the inclination for the study
of elaborate treatments of each of these topics from the classical
point of view. At the same time it is realized that efficient use of
facts or techniques de;mnds strongly upon a substantial under-
standing of the basi c\underlymg principles. For this reason, care
has been taken th.rméhout the text either to provide rigorous proofs,
when it is beheved that those proofs can be readily comprehended
by a wide clugs f readers, or to state the desired results as precisely
as possible. @}1 indjcate why those results might have been formally
antlclpa\sd

In ea,ch chapter, the treatment consists in showing how typical
prgb]ems may arise, in establishing those parts of the relevant

\Qheory which are of principal practical significance, and in develop-
ing techniques for analytical and numerical analysis and problem
solving,

Whereas experience gained from & course on the Advanced
Caleulus level is presumed, the treatments are almost completely
self-contained, so that the nature of this preliminary course is not
of great importance.

v



Vi PREFACE

In order to increase the usefulness of the volume as a basic or
supplementary text, and as a reference velume, an attempt has been
made to organize the material so that there is very little cssential
interdependence among the chapters, and so that considerable
flexibility exists with regard to the omission of topics within chap-
ters. In addition, a large amount of supplementary material iy
included in annotated problems which complement numerouws
exercises, of varying difficulty, which are arranged in correspondence
with successive sections of the text at the ends of the chaptog
Answers to sall problems either are ineorporated into their wlute-
ment or are listed at the end of the book. L

The first chapter deals principally with linear algebraie eQifations,
quadratic and Hermitian forms, and operations with eedtors nnd
mairices, with special emphasis on the concept_off Maracteristic
values. A brief summary of corresponding resulfsin' function space
is included for comparison, and for convenient tefeérence.  Wherens
& considerable amount of material is presen ’d} particular care was
taken here to order and even to overlap the demonstrations in such
a way that maximum flexibility in selecfion of topics is present.

The first portion of the second (Lhémjf)ter deals carcfully with the
vatiational notation and derives the*Euler equations relevant to a
large class of problems in thesedlculus of variations. More than
usual emphasis is placed onlthe significance of natural houndary
conditions. Generalized ;p'@\rdinates, Hamilton’s principle, and
Lagrange’s equations are\treated and illustrated within the frame-

the furm}llat_ion (?ﬁ gi_jﬁima] principles of more general type, and with
the‘ap.phcatlox} gfdirect and semidirect methods of the caleulus of
varations to"\,the exact and approximate solution of pructical
problems,
Th'Qj'ﬂllI‘d c.hapter combines the presentation of available
me;th\nﬁda for solving the simpler t

. aterial, the import-
4% Increased greatly with modern developments in

the field of numerica] i
. analysis, h . TR T
Integrated form. Y818, has not appeared previously in
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The concluding chapter deals with the formulation and theory
of linear ¢ntegral equations, and with exact and approximate meth-
ods for obtaining their solutions, particular emphasiz being placed
on the several equivalent interpretations of the relevant Green’s
function. Considerable supplementary material is provided in
annotated problems.

Many compromises between mathematical elegance and prac-
tical significance were found to he necessary. It is hoped that the
bresent volume will serve to ease the way of the engineer or physieist
into the more advanced areas of applicable mathematics, fof ‘which
his need is steadily inereasing, without obscuring fromshifi the
existence of certain difficulties often implied by the thaéé' “1t can
be shown,” and without failing to warn him of sextain dangers
involved in formal application of techniques bdyond the limits
inside which their validity has been well estabiished.

The author is indebted to colleagues ancstudents in various
fields for help in selecting and revising thg@tmtent and presentation,
and particularly to Professor A. A.sBennett for many valusble

criticisms and suggestions. W W
"
&Ny F. B. HizpeBraND
"\
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CHAPTER ONE

Matrices, Determinants, and Linear Equations\
O\
N\S ©
1.1. Introduction. 1In many ficlds of analysis we. ’fin’d it neces-
sary to deal with an erdered set of elements, which fitay be numbers
or functions. In particular, we may deal with a,n\Ldmary sequence

of the form ay, @, . . . , @s, or With a two-diménsional array such
as the rectangular arrangement PN
N
dy, Gy ¢ S50 %I1a
221, C2e, Q‘».“" t .y ay
aml; am?y Tty a‘mﬂ!

consisting of m rows andn columns.

When suitable 15\,5}5 of equality, addition and subtraction, and
multiplication are Associated with sets of such rectangular arrays,
the arrays are’eslled matrices, and are then designated by a special
symbolism, ¢ The laws of combination are specified in such a way
that thé\r}atrmes so defined are of frequent usefulness in both
praot;oa’l\and theoretical considerations.

/8ince matrices are perhaps most intimately associated with sets
of\linear algebraic equations, it is desirable to investigate the general
nature of the solutions of such sets of equations by elementary
methods, and hence to provide a basis for certain definitions and
investigations which follow.

1.2. Linear equations. The Gauss-Jordan reduetion.
Wo deal first with the problem of atternpting to obtain solutions of
a set of m linear equations in n unknown variables x4, z4, . . . , 2.,

of the form
1



2 MATRICES, DETERMINANTS, LINEAR EQUATIONS  [§1.2

¥y -t Qs + 0 0 4 Qe = 6y

a0ty + Gue + ¢ ¢ ¢ F Genda = Ca

....................

Bmidy + Gp2l2 + Tt + Omnln = Cp,

by direct calculation.

Under the assumption that (1)} does indeed possess a solutios,
the Gauss-Jordan reduction proceeds as follows: N

First Step. Suppose that a;, = 0. (Otherwise, 1'£_enumlmk‘.ﬁic
equations or variables so that this is s0.) Divide both “ddsot the
first equation by a1, so that the resultant equivalent mwzﬁ;iun i of
the form K7,
T (2)
Multiply both sides of (2) successively by @oyaghy . . ., @, and
subtraet the respective resultant equations frém the sccond, third,

- . , mth equations of (1), to reduce (L%0 the form

; ¢ \J
1t ams - - - —{—"a{,,x,. = ¢,
’ €™ )
@y + * RN Taan = C}, 3)
“:‘ * X

..................

' N\
Tts @ - 4 o = o,

N

Se_‘*'""d Step. i SUPI{O}E that gy, % 0. (Otherwise, renumber the
equations or :mrgb\ig{g So that this is s0.) Divide both sides of the
second equamon'\lgf(g) by @y, so that this equation takes the form

NOTE G e, = o (4)

N\
x = .

and lfsef’h.ls equation, as in the first step, to eliminate the coefficient

of 2, W0l other equations in (3), s0 that the set of equations becomes

\‘:

#H
ootans 4 bl =
fr
Tt Gagts - e o ;g p = ¢,
"
aaaxz ..I.. oo + a’;ﬂxﬂ = c';"’ . (5)
e
i
Ty 4+ - - +al 2, = ¢
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Remaining Steps. Continue the above process r times until it
terminates, that is, until r = m or until all coefficients of the z's
are zero in all equations following the rth equation. We shall speak
of these m — r equations as the residual equations.

There then exist two alternatives. First, it may happen that
one or more of the residual equations has a nonzero right-hand
member, and hence is of the form 0 = ¢ (where in fact ¢, < 0).
In this case, the assumption that a selution of (1) exists leads to a
contradiction, and hence no solution exists. The set (1) is then gaid
to be ¢nconsistent or tneompatible. RS W\

Otherwise, no contradiction exists, and the set (1) of m (equations
is reduced to an equivalent set of r equations whwh,’aiter & trans-
position, can be written in the form )

1 =v:+ et + - - - + 061,::—}33;
Tz = y: + audes1 + 0 e h T, _
O ’ (6)
................ LY....
s’ }
Tr = Yr + a'rlx'r+1 + + X, n_rbn

where the v’s and «'s are deﬁmte.constants related to the coefficients
in (1). Hence, in this case the nibst general solution of (1) expresses
each of the r variables z;, azg, .., %, a8 a definite constant plus a
definite linear combmatmn of the remalmng # — r variables, each

of which can be astnQed arbitrarily.
If » = n, & undgue'solution is obtained. Otherwise, we say that

an {n — r) foId mﬁmty of solutions exists. The numbern —r = d
may be called| the defect of the system (1). We notice that if the .
system (1)~j6consistent and r is less than m, then m — r of the
'equation.\{\'(nﬁmely, those which correspond to the residual equations)
are aghilally ignorable, since they are implied by the remaining r
eqdations.
\ ) The reduction may be illustrated by considering the four simul-
taneous equations

€1 + 222 - X3 — 227.; = —1,
2%+ Z2t+ 23— To=4,
r— 22+ 2z+ $4=5’

$1+3$2 - 2I3 - 327,; = —3

(7
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It is easily verified that after two steps in the reduction one obtains
the equivalent set

&tz = 3,
T —x3 — 14 = —2,
0=0 |
0=20 ~N

Hence the system is of defect two. If we write 3 = ¢, and 2305, 2,
1t follows that the general solution can be expressed in theAoriy

Ny

xry = 3 - €1, g2 = -2 + ¢ + €z, Tz = Cy, ;Cq(‘t!zgc-g, (81[.)

where ¢ and ¢, are arbitrary constants. This tWo-parameter
~ family of solutions ean also be written in the symibtlic form

m\/
{x!—’ Ty X3, 2:4} = {3: _2) 0; 0} + 61{“'1, hl\: 0} + CE{U; 1: (]! 1}
QY (8b)

It follows also that the third avn‘.d’if'ourth equations of (7) must
be consequences of the first twWos equations. Indeed, the third
equation is obtained by subtraeting the first from the second, and

the fourth by subtracting Qne-third of the second from five-thirds
of the first. )

The Gauss—Jordain\ﬁduction is useful in actually obtaining
numerical solutiong{of sets of linear equations,* and it hus been

presented here alsg'for the purpose of motivating certain definitions
and terminologies which follow.

-1.3. Wpﬁes. The set of equations (1) can be visualized as
a Zmea,:r: t?a%sformata'on in which the set of » numbers {x1, o2, . .

* Inplace of _eliminating z; from aff equations except the &th, in the Ath
step;\.one may eh.mmatg Z; only in these equations following the kth equation.

en the process torminates, after » steps, the rth unknewn is given explicitly
by the rth equation, The {r — 1)th unknown is then dotermined by substitu-
f1on In the {r — 1)th equation, and the solution is compleied by working back
In this way to the firat equation. The method just outlined is associnted with
feh(_a name of Gouss,  In order that the “round-of” errors be as stull as possible,
it is dcmm}_ﬂe that the 3equence of eliminations be ordered such that the coeffie
cient of x, in the equation used tq eliminate z, is as large ns possible in absolute
value, relative to the remaining coeflicients in that equation.

A modification of this method due to C ich i
; : rout {Reference 7), which is par-
;ﬁ;{iﬁi{ well adapted to the use of desk computing machines, is dearribed in an

-t
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2} is transformed into the set of m numbers {ei, €5, . . . , €.
The transformation is clearly specified by the coefficients ay;.

The rectangular array of these coefficients, usually enclosed in
square brackets, :

11 g R / 1 Y
a a L 1

a=lad=| " " " )
Am1  Ome et Bmn O

which consiste of m rows and n columns of elements, is c&fléd an
m X n-matriz when certain laws of combination, yet to be specified,
are laid down. In the symbol a;, representing a ty@iﬁ;—ml element,
the first subscript (here i) denotes the row and the/Sedond subseript
{here 7) the column occupied by the element. \\

The sets of quantities 2: ({ =1, 2, . . . n)'and g (f=1, 2,

. , m} are conventionally represented'ajs:tﬁatrices of one column
each. In order to emphasize the faghbhat a matrix consists of
only one column, it is convenient ta’iidicate it by braces, rather
than brackets, and so to write 4}«

Ty €1
S I g
X = {:?:.r}iag ; c= o} = . (10a,b)
&
) T Com

For conveni%l:m\a in writing, the elements of a one-column mafrix
are frequently arranged horizontally, the use of braces then serving
to indi?c}\bé'the transposition.

Liwe visualize (1) as stating that the matrix a transforms the
orecolumn matrix x into the one-column matrix ¢, it is natural to

Sywrite the transformation in the form
ax =c, (an

where a = |a;], x = {z:}, and ¢ = {&}.
On the other hand, the set of equations (1) car be written in the
form

Dooame =6 (E=1,2 -, ,m), (12)
k=1
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which leads to the matrix equation

n

{2 a,-kx,,} = led- (12a)
Fel

Hence, if (11) and (12a) are to be equivalent, we are led to the
definttion

ax = [apl{z] = {E a,ﬂ:;c} (33?

Formally, we merely replace the column subseript in the geneml tern
of the first factor by a new dummy indez k, and replace; the mw
subseript in the general term of the second factor by 1he same
dummy index, and sum over that index.

The definition is clearly applicable only when,,th\a number of
columns in the first factor is equal to the numberpfrows (elements)
in the second factor. Unless this condition is Qa,hsﬁed the product
is undefined. \

We notice that a; is the element in ,tl;e #th row and kth colurn
of a, and that a; is the kth elements in“the one-column matrix x.
Sinee ¢ ranges from 1 f0 m in ay;, the definition (13) states that the
product of an m X n-matrix mto an 7 X l-matrix is an m X 1-
mairix (m elements in one column). The 7th element in the product
is obtained from the {th tow of the first factor and the single column
of the second factor, bx.multiplying together the first elements,
second elements, and§0 forth, and adding these products together
algebraically. A,

Thus, for cx%ﬁlﬁle, the definition leads to the result

AU 0 1-1+0-2 1
RER l;]= 9-14+1-2}=14p
N\ ~1 2 ~1-142-2 3

, Xn are expressed ns

\1 \Now suppose that the n variables 1, .
.« + , ¥, that is, that &

ear combinations of & pew variables y,,
set of relations holds of the form

@ = 2 bage (E=1,2 - - -, n) (14)

If the original variables satisfy (12), the equations satisfied by the
new variables are obtained by introdueing {14) into (12}.  In addi-
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tion to replacing ¢ by % in (14), for this 1ntroduct10n we must
clearly replace & in (14) by a new dummy index, say I, to avoid
ambiguity of notation. The result of the substitution then takes
the form

n

Zaﬂ-k(ibﬂy;):c‘- (=12 ---,m), (16a)

k=1

or, since the order in which the finite sums are formed is 1mmaterlal
28 >y

1;1 (;eg] aikbu) %= ‘. (?’ =1, 2! T T m)\\ (1Db)

s
7%

In matrix notation, the transformation (14) talge?tthé form
x=hby Q (16)
and, eorresponding to (15a}, the introductiop\\cr} (16) into (11) gives

N\
a(by) = N (17)

But if we write A

. .,;=1,2,---m

N 7 ¥

equatlon (15b) takes tha{orm

Zﬁlyl_‘ci (£=1;23';'sm)!
E-l N/
and hence, ip\é;zé(;rdance with (12) and (13), the matrix form of the
transforr%;?één (15b) is
4 Py =c. (19)
-~ Thus it follows that the result of operating on y by b, and on the
}kroduct by a [given by the lefti-hand member of (17)], is the same

as the result of operating on y directly by the matrix p. We
accordingly define this matrix to be the product a b,

= [aullbr] = [kgl Gikbk:‘]- (20)

Recalling that the first subscript in each case is the row index
and the second the column index, we see that if the first factor has
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m rows and n columns, and the second # rows and s columns, the
index 7 in the righi-hand member may vary from I to m while the
index f in that member may vary from 1 to s. Hence, the product
of an m X n-mairiz tnlo an n X s-matriz ¢s an m X ¢-malriz.  The
element p,; in the 7th row and jih column of the produet is formed
by multiplying together corresponding elements of the ith row of
the first factor and the jth column of the second factor, and adding
the results algebraically. - ~N
Thus, for example, we have

1 0 1

1 -2 1
=[(1-1+0-1+1-2)(1-2+0-0+1-1)(1-.r§30-1+1-0)‘
(1-1—2-1+1-2)(1-2F2-0+1.1@-1~2-1+1-0)J

_[3 3 1}
1 3 =1y

) We notice that a b is defined ogly: if the number of columns in 2
18 equal to the number of rows ikh. In this case, the two matrices
are said to be conformable in-the order stated.

If a is an m X n-matri®and b an n X m-matrix, then & and b
are conformable in eithenorder, the product a b then being a square
matrix of order m anththe product b a a square matrix of order n.
YEven in the case'f)vhen a and b are square matrices of the same order
the produets a.band b a are not generally equal. For example, in
the case of !‘Jf(a square matrices of order two we have

P4

?f}&%ﬁ]’j] -bll blx] - -a]_lbu + G12621 311512 + alzb?‘?“
?

N
2 AN
7NN ¢
¢ W

[ —
~ O b
O b gt

¥ 4 e :
S 3

,':q'?l O Lbn bay _Gglbu + azba @athiz + @yobog

4 o \ e
“axid also

\ }

gn gm} an am:l — 011511+aub;2 012611+a22512
| Y2z 224 [ Qa1 Gy ‘a'llbn .+. aﬂb!? al2b21 + aubz2

'I"hus,. in mu}tipl_yif_lg b by & in such eases, we must carefully dis-

tmg,;;?h premultiplication (a b) from posimultiplication (b a).

- © sum Ofbtwo m X n-matrices [a,;] and [b,] is defined to be the
% oy + byl Further, the product of 2 number k& and a
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matrix [¢;] is defined to be the matrix [k a;], in which each element
of the original matrix is multiplied by k.
Two m X n-matrices are said to be equel if and only if corre-
sponding elements in the two matrices are equal.
From the preceding definitions, it is easily shown that, if a, b, and
¢ are each m X n-matrices, addition is commutative and associative:

a-+b=">0+4a, a+(b+e¢)=1{&-4b+tec (21)\

Also, if the relevant products are defined, multéplication of mat;siges
@

18 associative, A\
a(hc) = (ab)e, N )]
and distributive, 5 T? :
o
alb +¢c) =ab +acg, {b +¢cla =N+ ca, (23)

but, in general, nof commulative. ¢ ‘\\

It is consistent with these deﬁrﬁtionﬁ’ﬁ} divide a given matrix
into smaller submatrices, the process b,{;ih.g’ known as the partifioning
of a matrix. Thus, we may pa,rfiii;ifojn 8 square matrix a of order

three symmetrically as follows: 3"

N
A

IR R4} i 15F] by bus
| [bﬂ bm:l

where the elements of the partitioned form are the matrices

D ay a a
4 & 12 13
\:\ bu = i ’ by = [ :
A dgy Qo2 (45T

2 &

*

AN bs = [aa: daal, baz = [@as].

T’ second square matrix of order three is similarly partitioned,
the submatrices can be treated as single elements and the usual laws
of matrix multiplication and addition can be applied to the two
matrices so partitioned, as is casily verified.

More generally, if two conformable matrices in a preduct are
partitioned, necessary and sufficient conditions that this statement
apply are that to each vertical partition line separating columns r
and r + 1 in the first factor there correspond a horizontal partition
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line separating rows r and r -+ 1 in the second factor, and that no
additional horizontal partition lines be present in the sccond fuctor.

1.4. Determinants. Cramer’s rule. In this section  we
review certain properties of delerminants. Associated with any

square matrix {a;;] of order n we define the determinant | a | = | ai |,
Qur @z 0 G
tn & a
1& t = 1 .22 n ;
......... .
0. “
Ty Ang " " an N

"N

58 a number obtained as the sum of all possible produgts in each of
which there appears one and only one element from\'c’ai-.h row and
each column, each such produect being assigned & plte or minus sign
according to the following rule: Let the elements dnvolved in @ giren
product be joined in pairs by line segments%'\’:’?the total number of
such seqments sloping upward fo the righbdseven, prefix a plus sign
to the product. Otherwise, prefix & negqi?fve‘ sign.*

From this definition, the followittg properties of determinants,
which greatly simaplify their actualevatuation, are easily established:

1. If all elements of any row'or column of a square matrix are
zeros, its deferminant is zerQ)

2. The value of tl{@et’ermmant is unchanged if the rows and
columns of the matrix sre interchanged.

3. If two rows{or two columns) of a square matrix are inter-
changed, the sign wf its determinant is changed.

4, If ftll':el’gaﬁentrs of one row {or one column) of a square matrix
are mult}f@\ed by a number k, the determinant is multiplied by k.

5. I& Forresponding elements of two rows (or two columns) are
e(’llglg%\(’)r in a constant ratio, then the determinani is zero.
B If each clement in one row {or one column) is expressed as the
sum of two terms, then the determinant is equal to the sum of two

determinants, in each of which one of the two terms is deleted in
each element of that row (or column).

J—

inwlz;liﬁ:ﬁ?;fm;ﬁ the rule of signs is equivalent to the statement which

applicable inr + s? subseripts. It possesses the advantage of being readily

ar(f 204 Drovi dmé ual cases when the elements are numbera (or functions) and

th provided with GXp_hmt subscripts,  Also, with this statement of the rule
e proofs of the properties which follow are in general simplified. ’
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7. If to the elements of any row (column) are added % times the
corresponding elements of any other row (column), the determinant,
is unchanged.® _

If the row and column containing an element a; in a square
matrix a are deleted, the determinant of the remaining square array
is called the minor of ay and is denoted here by M;;. The cofactor
of a;, denoted here by Ay, is then defined by the relation

Ay = (—1)M,. (24)

Thus if the sum of the row and column indices of an elemedit is
even, the cofactor and the minor of that element arg.jdé;\ltical;
otherwise they differ in sign. « M

It is a consequence of the definition of a dete;:;ﬁ”ﬁ"ant that the
cofactor of a;; is the coefficient of ay in the expansiqgr\o_f [2|. Thisfact
leads to the important Laplace expansion formuls:

"

D n
la| =D azds or I{‘L.\= D audi,  (25a,b)
N\ k=1

k=1

%
v

for any relevant value of 7 or j. T.hi& formula. states that a determi-
nant is equal to the sum of the ?géélucts aof the elemenis of any single
row or column by their cofactor®s”

If a.; is replaced by ay ih \{(254), the result 2 a4 must aceord-
ingly be the determinaniiof a new matrix in which the elements of
the ith row are replaéedl by the corresponding elements of the rth
row, and hence must vanish if » # ¢ in virtue of Property 5. An
analogous result,follows if a; is replaced by az. in (25b), when s == j.
Thus, in additibn to (25), we have the relations

n \:\“ 7
SnGide =0 (i), Y awndn=0 (7). (26ab)
Ay E=1
~These results lead directly to Cramer’s rule for solving a set
\of % linear equations in # unknown quantities, of the form
i3
2 FipLy = C; (3 = 1! 2’ e ,ﬂ), (27)
h=1
* 1t can he shown that if we impose the condition that Properties 4 and 7
hold, and in addition impose the requirement that the determinant be unity

when the diagonal elements are unity and all other elements are zero, then these
conditions imply all other properties of determinants, and may serve as the

definition of a determinant.
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in the case whén the determinant of the matrix of coeflicients is not,

zero, .
[a;] # 0. (28)

For if we multiply both sides of (27) by Ay, where r is any integer
between 1 and », and sum the results with respect to ¢, there follows
(after an interchange of order of summation)

n " " '\\
,;1 (;=21 a!-kA:'f) Ty = s§1 ;. r=1,2 .-, ?a):\:(\zilj

e
In virtue of (25b) and {26b), the inner sum in (2% vanishes’ unless
k = rand is equal to | a | in that case. Hence (29) takés\the form

n L
lalee =2 Aee (r=1,2, - ~ao). (30)
i=1 \
O
The expansion on the right in (30) differs “from the right-hand
member of the expansion O\
[a] = 3 Aa,
(Rl

N 4

only in the fact that the colttmn {e:} replaces the column {ait of
the coefficients of z, in ag\Thus, if [a | 0, we deduce Cramer’s
rule, which can be stabe\&ﬁs follows:
When the determinqni | a | of the matriz of coefficients in a sel of
n linear algebraie EQuations in n unknowns z,, . ., y Tn £8 not zero,
that set of equa, jons has a unique solution. The crpression for any
Zy 18 the raligrofidwo delerminants, the denominaior being the determi-
nant of themitriz of coefficients, and the numerator being the determi-
nant of g matriz obtained by replacing the column, of the coefficients
of 2, &0 the coefficient matriz by the column, of the right-hand members. *
\Iﬁ the case when gll tight-hand members ¢; are zero, the equa-
tions are said to be homogeneous. TIn this case, one solmtion is
clearly the #rivial one Ti=®= ... =2,=0 The preceding
result then states that this is the only possible solution if la] =0,
80 that @ set of n linear homogeneous equations in n unknowns can-

* The proof given here shows only that if there is a salution, then it is given

by Cramer's rule. That the expressions given do ind isfy (2 b
shown by direet, substitution . F & Haceed satisly (27) ean be
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not possess @ nonirivial solution unless the determinant of the coefficien:
mairiz vanishes.

We postpone the treatment of the case when | a | = 0, as well as
the case when the number of equations differs from the number of
unknowns, until Sections 1.8 and 1.]0.

It can be shown that the product of two determinants | a;; | and
| b:; ] of the same order n ¢an be calculated by a rule completely
analogous to that corresponding to matrix multiplication:

# 7 ’\: AN
1 o | . E b{j I = ‘ kzl G.‘-;‘bk_; ’ \\ * (31)
Consequently, it follows that the deferminant of W product of two
square matrices of the same order is egual, té’ohe product of the

determinants:
lal-|b| = Iab% (32)

A sguare matrix whose determmant vanishes is called a singular
matrix. From (32} it follows thair the product of two nonsingular

mairices is also nonsingular,
It follows from the deﬁm’tmns that the determinant of the nega-

tive of a square matrix ig 7ot necessarily the negative of the determi-
nant, but that one hag the relationship
+8 )

0T -l = (=)rfal,
where » is thei'éi‘éler of the matrix a.
L.5. S iaclal matrices. In this section we define certain

matriges v‘hmh are of special importance, and investigate some of
their \operhes

.j’l‘h.ﬂ; matrix which is obtained from a = [a;] by interchunging
m‘t"g\v's and columns is called the transpose of a, and is here indicated

NJby a”:

1 a1 L1205
e e @
aT = a1z a2 w2 |, (33)
a1, Gin e

Thus the transpose of an m X n-matrix is an # X m-matrix. If the
element in row » and column s of a is @, where r may vary from 1
to m and s from 1 to », then the clement ], in row r and column s of
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a7 is given by @, = a,,, where now r may vary from 1 fo » and s
from 1 to m.

If ais an m X l-matrix and b is an I X n-matrix, then both the
products a b and b7 a” exist, the former being an m X rn-malrix,
and the latter an n X m-matrix. We show next thai the lutier
matrix is the transpose of the former. Since the clement in row r
and columu s of the product a b = ¢ is given by

i p
2 arkbh == Cpyy \

k=1 .\:\
where r may vary from 1 to m and s from 1 to n, whereas fhe ¢le-
ment ¢, in row 7 and column s of the product b7 a” is given by
! 4D

N
f N
Gy = 2 kﬂ‘kl 2 b't"a’k CaryN :\
k=

where now 7 may vary from 1 ton and s fromx'l\}é m, it follows that

b7 a” is indeed the transpose of a b. o
Thus, we have shown that the tmnspose of a b is the product of
the fransposes tn reverse order: N
(ab)? S b ar. (34)

This result will be of frequenf™usefulness.

When a is a sguare’mshrix, the matrix obtained from a by
replacing each element’Qy its cofactor and then interchanging rows
and columns is called\the adjoins of a:

\‘ Ay Axm 0 Ay
mde . | A An - - Ay -
:@d:h ST =144 (33)
‘}; Aln Aia et Ann

The acﬁmnt of a product is found to be equal to the product of the
joints in the reverse order.

The unii matriz I of order n is the square matrix having ones in
its principal diagonal and zeros elsewhere,

10 --%0

01 - -
1=|% 10 (36)

a0 --- 1
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while the zero mairiz 0 has geros for all its elements. It is readily
verifled that for any square matrix a there follow | '

al=Ja=a (87)
and a0 =20a=0. (38)
The notation of the so-called Kronecker delta,

N

i = |1 when b2 o o

is frequently useful. With this notation, the general te‘rm of the
upit matrix is merely §;; that is, we can write R ’~«:

I - (o & (40)

More generally, if all elements of 2 squg{@;mat-rix except those
in the principal diagonal are zeros, the matiix is said to be a diag-
oral matriz. A diagonal matrix can thub Ybe written in the form

4 = [d: 6. 5 \{d; 8]

where the diagonal elements, for W}nch t =7F,areds, de, ..., dn
Premultiplication of a matxix @ by d multiples the sth row of a by
d;; pestmultiplication muli;iphes the _?th column by d;. This result
follows from the calc\lgtmns

d 8 —-X]:d Sulla;] = [2 t; 5«&%5] = [dia;]

and “\"\

. a’}} law]ids 8x5) = [2 ixdd 5:«;;] = [ayd;] = [da).

&

AN
1& diagonal matrix whose diagonal elements are all equal is
called a sealar matriz. Thus, s scalar matrix must be of the form
E1 = [k 8. )
1.6, The inverse matrix. With thé notation of {39), the two
equations (25a) and (26a) can be eombined in the form

2 axdp = a8y (41a)
km] ’
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while (25b) and (26b) lead to the relation
Z @il = | a8 (41Db)
k=1

T we write temporarily

A 1 I3
oy == VTJV (12)
wnder the assumplion that [a | = 0, these equations become
) n .'\:\'
2 Gipcer; = bij, 2 Cinlly; = Oij ‘“\ (-‘1.3:1,13)
Fml k=1 N\

Hence, reviewing the definition (20) of the matix p:roducl, we
see that these equations imply the matrix equation:

[eisleees] = 1, [a;k}[ak,-].i\}. (44)
That is, the matrix a« = [e;;] has the prpp‘:er%y that
aa = &3..'=:~'I, (45]

where I is the unit matrix. It jgﬁﬁtural to define this matrix to be
the dnverse or reciprocal of a, and to write @ = 8~1.  We notice that
a singular matric does not possess an inverse.

Further, @ matriz gam have only one inverse. To prove this
statement, we assurhé\tHat the contrary is true and show that a
contradiction follows. * That is, we suppose that § = « is such that

P\% af =1
x’\.n' i .
If we premmltiply both sides of this equation by « and use {45) and
(37), thete Tollows

N (wa)d = oI or 8 = a
AN

\'éhp'i;i'adicting the assumption that § > .
. We conclude that if the square mairiz & = [a;;] 1s nonsingular,
it possesses a unigue inverse 3~ such that

ala=aat!=1], (46)
and that inverse is of the form

a7t = [a,] where oy = (A7)
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Thus, to obtain the inverse of a nonsingular square matrix
[a;], we may first replace a;; by its cofactor A; = (—1)"My;, then
interchange rows and columns and divide each element by the
determinant | ¢;;|. In the terminology of Section 1.5, the inverse
of a is the adjoint of a divided by the determinant of a:

al = Adj a. (48)
|a | -
'This equation can also be written in the useful form \
aAdja=|a|L (‘48)
[t may be noticed that equation (48a) also follows du'egtlv from
(41n), and hence is valid even when ja | = 0. "

To determine the inverse of a product of nonshgular square
matrices, we write \
ab=c ',:\\
. . e\ . _
If we premultiply both sides of this egpajslon successively by a?
and b, there follows \
I= b—l’a"l c
and hence, postmultiplying boﬁh sides of this equation by ¢! and
replacing ¢ by a b, we obtaili\the rule
(@b =bra (49)
To illustrate the ‘use of the inverse matrix, we consider again
the problem of, solv‘m}, the set of linear equations (27) under the
assumption (28)” In matrix notation we have
”\s~

A\“" ax = ¢,

al
N

and J‘l‘éiic’e, by premultiplying both gides by a~1, there follows

\\: x=a'lc (50a)
Ty Ay Az v . C1
Ty Alg A22 - Anz Cg
. 1 .
= T 50b
or i e | PR (50b)
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or

r; = —1*" (Auer + Agea + -+ ¢ + Anicn) (=1, 2, -,
lal (50

in accordance with the expanded form of Cramer’s rule.
1.7. Elementary operations. Associated with a set of R
lirear equations in n unknowns, \

o K

e
@12y + @tz + 0 4 G = 6y, O
G211 + 03972 + ¢ 0 0 4 GeaZ, = 0, RO

b (7Y (51)
.................... ~ A
Cu1®t T AmeXs + * ¢ A GupZn =\Ch
N

we consider two matrices: the m X n—m'a}\'ix of coefficients [a,;],
and the m X (n 4 1)-matrix formed by:jbining to the columns of
[a:;] the column of constants {e:}. Weirefer to the former matrix as
the coefficient matriz and to the sedond as the augmented matriz.

As was shown in Section 132 we may use the Gauss-Jordan
reduction (renumbering cerfdin equations or variables, if necessary)
0 replace (51) by an eq;g:v?:lent set of equations of the form

B\
Ey —{(Zrp1 — o — @y, oz, = Y1,
&/
Tz OV an®ey — = ¢ - — X2, n-sTn = Yy,
- \s ......................
.§~~
2 8
O Tr — Opilfyyy — Crnern = 7Yy, ; (562)
N\
\,..\{ 7 0 TH—I;
L]

[==]
li

Ym
by a process'v':hich involves, in addition to possible renumbering,
?nly the addition of equal quantities to equal quantities. Accord-
_lngly', the augmented matrix of (51) is transformed to the augmented
matrix of {52), which is of the form
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‘1 0 [ 0 -— 1 — o2 vt — @1n—r Y1 i

0 1 0 — @y — sz — Qga—r Y2

0 0 --- 1 —an1 —op *** — Gunr Yr ! (53)
g0 --- 0 0 o --- 0 Trel

-0 0 0 0 0 0 N |

and, at the same time, the coefficient matrix of (51} transforr}ls
into the result of delefing the extreme right-hand column\of the
matrix (53). O

The steps in the reduction involve only the fo]lowmg go-called
elementary operations:

1. The interchange of two rows or of two coluﬁms

2. The multiplication of the elements ofvaNfow by a number
other than zero. N

3. The addition, to the elements of a‘sow of & times the corre-
sponding elements of another row., "

We define the rank of & matrixas the order of the largest square
array in that matriz (formed by deletmg certain rows and columns)
whose determinant does not vamsﬁ It is clear that the transformed
coefficient matrix in the above case is of rank r, whereas if one or more
of the numbers .1, 7,@,,, ., Yw 1% NOt zero, the rank of the
transformed augme Bti matrlx ism r+-10 If yrpr == ...
= vm = 0, both trangformed matrices are of rank r.

It 1s next shaWw"that the ranks of the two mairices associated with
(51) are the sgmmes the ranks of the corresponding fransformed matrices,
that is, thathe rank of a mairiz is not changed by the elementary
o;pemtwn%hsted above.

Suppose that a matrix [a;] is of rank =, that is, that all determi-
n&ﬁt}; of order greater than r vanish, but at least one square array

A Of order r possesses a nonvanishing determinant. Operafion 1 is
equivalent to renumbering rows or columns, and obviously cannot
affect over-al! vanishing or nonvanishing of determinants. Simi-
larly, operation 2 can only multiply certain determinants by a non-
Zero constant.

According to Property 7 of determinants (page 11}, operation 8
does not change the value of any determinant which involves either
both or neither of the two rows concerned. 'We need show here only
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that a nonvanishing determinant of largest order 7 is not reduced
to zero, and that no nonvanishing determinant of higher order s
infroduced by this operation. To simplify the not aliol, we st pose
that the square array A of order r in the upper lefi corner of the
original matrix has a nonvanishing determinant, und consider the
following matrix;

— —

[ X
(135 S/ S T \
........... : A+
M = ) = A Co eSO
a1 R/ 1y, . NS ©
LI VFEN P
Qg1 for Qg AL
N
| B @i, |

where s > r and ¢ > r, Then, if the original iy is of rank 3
the determinant of this square matrix must yimbsh for all siueh s
and ¢. O

Now it is possible to determine con:sj,sii}s Ay Ay ..., Ay surh
that the equations WV

.\
Mgy 4 Aas + - .‘:+ Aoty = 41,

Mg + Aoy + B9 -4 Mrz = @,
”Q {H3)

O
My, +\2\%r + - + Ay, = a,,

are satisfied, sincq..the coefficient determinant A assuredly does
not vanish and Cramer’s rule applies. Hence, with these constunis
of corpbinatiqni\fé can determine a row of elements which is o linear
comblnati’ Lof the first 7 rows of (84), and which will have its first,
e]ements.}ﬂ%ntical with the first r elementgs of the last row. Lot the
last, ngm‘ér.ft of that combination he denoted by o/, In evaluating
thesdeterminant of M, we may subtract this line;.r combination U?

tlkshjrsf; 7 rows from the last row withoyt changing the value of the
determinant, to obtain the resulg

..., @y g,
) gy 25
IM | =|--.... o .
(56)
2281 1 4 Uy
0 O a’qs - ar
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But since | M | is equal, by the Laplace expansion, to the product of
{a,s — dj,) and the determinant | A | which docs not vanish, by
assumption, and since | M | = 0, it follows that aj, = a,. Flence
we see that the last row of (54) is a linear combination of the first r
rows. Since this is true for any ¢ and ¢ greater than r, the result
can be stated as follows:

If a matriz is of rank r, and a sef of r rows containing @ nonvanish-
ing determinant of order r is selected, then any other row in the matxix
18 @ linear combination of these r rows.

The same statement 1¢ easily seen to be true, by a su:mlar argu-
ment, if the word “row” is replaced by “‘column” throug]lout

’lhl.s result now shows that adding % times the gthyrew to the ith
row, where i < r, cannot reduce the rank of a. For"emher the first r
elements of the q’rh row are combinations of r'onrespondmg elements
of rows of A excluding the ith, and |A| is unbhenged, or the r X r
~ array which is obtained by deleting the #th row of A and joining the
row of the first 7 elements of the ¢th rogs }md which is unaffected, is
nonsingular, Conversely, operation 3 sannot increase the rank since
the reversed operation (which w ou]d be of the same type) would then
reduce the rank of the new matrl:x.

Sinee, by an argument ana]ogous to this one, we see that if
operationg 2 or 3 were effected also on columns, rather than rows,
the same result would fellow, we may deduce also that the elementary
operations, applied tQmwe or to columns, do not change the rank of a
matriz.

1.8. So_lva]oéhf}' of sels of linear equations. If we notice
that, in the\Gauss-Jordan reduction, no column operations are
involved,sesfecpt perhaps a renumbering of certain columns of the
coefficignt matrix, we conelude both that the augmented matrices
of (88) and (52) are of equal rank, and also that the same is true

,Qf the coefficient matrices.
’ If and only if one or more of the numbers veq1, ¥re2, « . ., ¥m
in {52) is not zero, the given set of equations possesses no solution.
But if and only if this is so, the rank of the augmented matrix is
greater than the rank of the coeflicient matrix. Thus we deduce
the following basic result:

A set of linear equations possesses a solulion if and only if fhe
rank of the augmented malrix is equal o the rank of the coefficient
matriz.
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If the two ranks are both equal to 7, and if u set of r coquations
containing a nonvanishing determinant of order r ix selected, then
all other equations are implied by these equations (since (heir
coeflicients are linear combinations of the coeflicients of the r busie
equations), and hence may be disregarded. The n — r unknowns
whose coefficients are nof involved in this determinant. can be
assigned arbitrary values, after which the remaining r unknowns
can be determined in terms of them (by Cramer’s rule or otherwig)

In particular, ¢f » = n the n unknowns are determined wahynely.
Otherwise, if # —r = ¢ > 0, the most general solutivu-fuid) ves
¢ independent arbitrary constants. . A

In the homogeneous case, when the right-hand members of (51)
are all zeros, the coefficient matrix and the augménted matrix are
automatically of equal rank, and a solution always exists. Dt
this fact is obvious, since such & set of equations is always sulisticd
by the #rivial solution zy = Tr= . =207 0. If the rank r of ,
the coefficient matrix is equal to the nimber n of unknowns, then
this is the only solution, in accordanpé with the special results of
Section 1.4. However, if r < 7 @nparticular, if the numbcer of
equations is less than the numb&r of unknowns) infinitely muany
solutions exist, the number 6f’independent arbitrary constants
mvolved being given by thedifference n — .

We notice that, in gamsequence of the linearity of the relevunc
equations, the general’solution of s nonhomogeneous set of equations
1s the sum of any anie pariicular solution of that set and the most
general solutionygf the associated homogeneous get,

A case of particular interest is that of a set of n homogeneous

ch the coefficient matrix is of rank

H

% — 1; that'1s, a set of the form

N . < .
'..\:“' kzl Iatr= 0 {f = I, 2, Cee,m) (57}

Jordan reduction avoids the neceasit i
eterminants. However, the rlasmlty Db e panting o e mber of

{ 8 obtained here g i e i
mere general consi derations, are of great, importance in
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(58), these equations arc satistied by the expressions
w; = C A (?'2112:;“') (59)

where (' is an arbitrary constant and s may take on any value from
1 to 7. Since here d = n —r = 1, and since (59) contains one
arbitrary constant, (59) must represent the most general solution
of (57) unless, for the particular value of & chosen, all cofactors 4.
happen to vanish. (This exception cannot exist for all values\of s
iftherank ofaisw — 1.) With this reservation, the result gl§tained
is equivalent to the statement that, in the case under consideratlon
the unknowns are proporitonal to the cofactors of their cocﬁcwnts in
any row of the matriz [a;]. A
1.9. Linear vector space. The pre(:eding'r@ﬁlts have inter-
esting and instructive interprefations in termsef so-called “vector
space,” which is briefly discussed in this se(,?u‘n
It is conventional to speak of a oné-delumn matrix x = {x,
@3, . . . , Ta} OF of its transpose, thedoné-row matrix x” = [2,, 2,
.y :cﬂ], as a veclor. In two»dzmens*wnal space, the elements of
the vector {#1, z:} can be conmdéred as the components of x in the
directicns of the rectangula,r wordmate (z1- and z») axes. The
square of the length of this yector is given by 12 = o2 + 2.2 = xT x.*
Also, if u and v are two yeetors in two-dimensional space, the scalar
product of u and v igdefined to be uwy + wws = u"v = v'u. It
is seen that the scal%r product u? v is the equivalent, in matrix
notation, of the “dot product” 1 - ¥ in vector analysis. We recall
that the vectof®d and v are orthogonal (perpendicular) if and only
if this scalar‘broduct vanishes. The vectors i, = {1, 0} and i, =
{0, 1} aréxthe orthogonal unsf vectors ordinarily denoted by i and j,
respectwely, in vector analyms
¢The above terminology is extended by analogy to the general
'case of n dimensions. When 1 > 3, it is impossible to visualize the
vectors geometrically. However, we use the language associated
with space of two or three dimensions, and say that an n-dimensional
coordinate system comprises » mutually orthogonal axes, that a
point has n corresponding coordinates, and that a vector has n
components along these axes. The scalar product of two vectors u

* A product of the form x7 x, which is truly a one-element matrix, is con-
ventionally trested as a scalar.
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and v is defined to be
ulv = 970 = wwy & uete b 0 b {60y
and the square of the length of & vector w is delined to e
FP=vuu=ul+u’+ - +u’ (61)

Tt is convenient to denote the sealar product by 1he ablbreviation
(“I v)’ y

N\
(4, v) =u’v = viy (62n]
' N

O\
Two vectors u and v are suid to be orthogonal if theipeseitar
product vanishes, (v, v) = 0. A zero veefor is thus (.:-:}3}'}‘.1:7311“1 to
all vectors, A vector is suid to be a unil vector if 'itf'-afh-r’a;.gth Lis
unity, so that {u, w) = 1. 1t is convenient to use t}z{\:‘lb}}u-e-\-i;lt1nyll
2= \ 132h)
us = (u, u). ':'.\\’ {
When the components of the vectors gre\campler numbers, the
definitions (60) to (62} are inconvenient) and are (‘()I]\'l‘llfil)llfl“)'
modified. 'We denote by a the matrixiobtained from any matrix a
by replacing all complex elements Iiyatheir complex conjugntes, and
call this matrix the complez congitgaie matriz.

The Hermitian scalar progiel of n vector u inta a veetor v ix then
defined as iw}

@v) =ty ?%ﬂl + e b - o, = (v, 8),  (63a)

and is, in generah, €omplex and not equal to (u, ¥). The squarc of
the absolute lewpll of a vector u with complex components is defined
t0 be the ﬁ&&ﬁ\dhantity

O\

12 Lfilg =@ = 8T u = Gy + Foy + - - - b Gaa (63D)
4
\MI,):I case the elements involved are real, they are equul to their

complex conjugates, and it is seen that (63a,b) reduce to (62x,h), us
would be required for consistency.

A set of m veetors vy, v, - 3 Vm 18 said to be Hnearly vnde-
pendent if no set of constants €1,

: - G + - .« 4 Cm (af least one of which
1s not zero) exists such that

OV T eNa - o0, = 0, (64)
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In two-dimensional space, the existenee of ¢1 and ¢; such that
V1 + CoVs = 0

would imply that the two-dimensional vectors vy and v: are scalar
multiples of each other. Hence any two vectors which are nol
madtiples of each other (parallel to a line) are linearly independent in
two-dimensional space. Further, geometrical considerations indi-
cate that any three vectors which are not parallel fo ¢ plane are
. . . . - \
linearly independent in threc-dimensional space.

To obtain an analytical eriterion for linear dependence of ' set
of vectors with real components, we suppose that ¢’s do’exist, at
least one of which is not zero, such that (64) is satisﬁ(;&’. Then,
by successively forming the scalar products of vy, W 7, ¥, into
both sides of (64), we find that the constants ¢; muust also satisfy the
equations g

evi? + (v, V) + 0 -t ey Ve) = 0,
c1(¥a, V1) + eawt + - - - .ﬂ*’:&(vm V) = 0,
cl(vm, V;) -+ 62(%,3&)”;4_ v e Wt = 0.

These eonditions clearly r€quire merely that the left-hand member
of (64) be simultaneously orthogonal $o Vi, Vs, . . ., Vm But,
according to Cramefd\rule, this set of m equations in the m con-
stants ¢; cannot poSsess a nontrivial solution unless the determinant
of the matrix ofoeflicients vanishes:

VT v (ve s (9, V)
Qoo v e
m:.\’: go (V,m, Vl) (vm’ Vz) P s va -

\T}ﬁs determinant is called the Gram determinant or Gramion of
Vi, ..., Vu 'Thus, if the vectors are linearly dependent the
Giramian must vanish., The converse ean also be shown to be true
(sce Problem 23). Hence it follows that a sef of vectors s linearly
dependent if and only if its Gramian vanishes.™

* For a veetor with comples components, this theorem is still true if the
scalar products in the definition of the Gramian are replaced by Hermitian
sealar products.
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The set of all vectors v which can be expressed in the form
V=cait e+ - - 4, {6t})

where the a’s are vectors, is called the vector space generated by the
&’s. If r and only r of the a’s are linearly independent, (he set is
said to be of rank r. When r<m, we sec that m — » of {he a's can
be expressed as linear combinations of (he r independent a’s, and\
(66) can accordingly be expressed equivalently us combingdioh
of only r linearly independent vectors, 8o that only r imll-pg;’r[?ht‘m
constants of combination are indeed avatlable in such g ey,

In a space of n dimensions, any vector v can be generd{ oy by any
vector set of rank #, in the form ¢

< S
a \ Y

V=ca;+ea+ .- 4 Callay try
7.\

where the n a’s are therefore linearly independent. For, in the »
equations which equate the # component® of the two members of
(67), the matrix of coeflicients of the vs*hag the property that no
column is a linear combination of thgzdthers, and hence the determi-

nant of the coefficient matrix cannot vanish.
To determine the constantsmore directly, we may merely form
the scalar produet of egch #nto the equal members of (67). The

3

rfasultani. set of n scalalﬁ;quaitions can always be solved for the r's,
since the determinant a1 the relevant coefficient matrix is the (i raun-

1an of the a’s, and hertee does not vanish, In particular, it follows

1) = N —-r

-space is called a
» & basis is a set, of vectors which spans
Space can be expressed as a
2 basis, Clearly, any set of
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il'__{l;O:O:"':O}} i2={0;1>0:"'50}; .'."’
in={0,0,0, e :1} (68)

1.10. Linear equations and vector space. We now apply
- the preceding considerations to a set of m homogeneous linear equa-
tions in n variables, of the form

@1 -+ 1T -+ 0 0 G1nZe = 0, "\

Go1t1 + Gaa®e + ¢ ¢ ¢+ Qean = 0, O\

.................... N

i1+ Qus®s + 0 0 A Gnln = 03”""
Each of these equations ¢an be interpreted as?rf\aquiring that the
vector X = {x1, &z, . . . , %} be orthogonalto a vecior a; = {ai,
@iz, « + . 5 O} that Is, the set of equaj;iph\s can be written in the
form o\

(ayx} =0 ¢ =3:Er2; Ce,m), (70)

where m’f;
a; = {@y, G13 * ° * , G1n), " '*; Ap = {Cmi, Oz, * " ,am}_ (713

Thus we may consider the successive elements of the sth row of
the rectangular matrix\

‘\\ @y M2 T Oy
A Gan e © 7 7 Qo
@ &=L
:,,\';’\" Bpi Gmaz " " " Opn
as comprising the components of the vector a; and the matrix
equation
~O ax =0 - (72)

3
corresponding to (69) then requires that x be orthogonal to each
veector a; in the vector space of # dimensions.

If the vectors a:;, . . ., . span that space, thiz situation is
clearly impossible unless the vector x is a zero vector. Hence, in
this case the only solution of (69) is the trivial solution z; = % =

o=, = 0

However, if the m vectorsay, . . . , a, form a set of rank r < n,

it is possible to find d = » — r linearly independent vectors, say
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Uy, Us, . . . , Uz which are orthogonal to all the a’s. “Thux, auy
vector X which is a linear combination of these vectors,

X = oW+ ety + - - - o ey, iTa

will satisfy the equation (72), and its components will satisfy {659y,

The analogy between these results and the results of Rection
1.8 suggests that the renk of the vectar setay, -+ - A is cyunl to the
rank of the matrix {ay] made up of the components af Hrese roofdes,
That this is indeed the case follows directly from the fact, estadlatfued
in Section 1.7, that if [a;;] is of rank 7, then no linear (‘um[:i’{i?tt on of
a certain set of r rows can vanish and, in addition, al™ther rows
are linear combinations of these r rows. Zs,

In order to digplay the genecral soluiion of (:31}"2}, equividently,
(52) in the form (73) when the right-hand menhors vanish, we nny
write Zopy = Chy e = Co, o L L, 20 = O3 where the (s are
arbitrary. The solution can then be w.riftéh in the vector form

Ty g A} N s
T2 azz. :}. ’ [ R
o -

. w Cron.ry —
Tt + + & - 0 LJ -s‘l)
e t 0
R 0 1

T N
iz“clear from the form of the n — 7 solution v

g . . cctors that these
vectors are indeed linearly independent,.

. To the more general case of &, nonhomogeneous set of linesr cqua-
tions, of the form (51), the requirements are that the scalar products
of x and the vectors a,, . . . » &m each take on prescribed vulues.
The most general vector x having this property is expressible as the
sum of any parficuler vector having this property (if such exist)

and an arbitrary linear combination :
of all vect i ~
gonal to all the a’s (if such exigt). ors which are ortho
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Tn the frequently oceurring case when m = n, so that we have
n cquations in % unknowns, a further interpretation is useful, Hers,
eorresponding to a given set of equations a X = ¢, We can eonsider
also the fransposed homogencous set a” x" = 0, in which the suceces-
sive components of the vector a; now become the coefficients of ; in
guccessive equations:

andy 4 angh + 00+ e, =0,
I ’ f '\
@137 + Cpaly + -+ @z, = 0,
L (604)
............... &L
3 N
Q1) + @ony + - 1 F Gany = 0 N

If we consider the coefficients in the 7th row of m({éj’as the com-
ponents of a vector a), this sct of equations takés the form

aTx =0: (@, x)=0 (& =,\1;,\‘z;' ceem). (T4a)

But also, since the elements of the vectere'a; comprise the columns
of a, the original set of equations a X & £ ¢an be written in the form

o\

1581 12 N o [137% C1
[+ 53] Qonf SN Qza 2]
PR I R PR A e e A T e
Onlf N [12°%) Bnn Cr
or O\
a¥st: v -l + - 00tz =c (75)

Thug;&f)’) possesses 1 solution if and only if ¢ is a linear combina-
tion of the vectors al.  On the other hand, (74a) states that all these
v@cﬁfﬁ‘s'are orthogonal to all solutions of (74). Hence we obtain
the following useful result:

The nonhomogencous set aX = ¢, of » equations tn n unknowns,
possesses a solution if and only if ¢ is orthogonal to all vector solutions
of the transposed homogeneous sel a’x = 0.

1.11. Characteristic-value problems. Of frequent occur-
rence in many fields is the problem of determining those values of a
constant M for which nontrivial solutions exist to the homogeneous
set of equations
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GyZy + Gt + 0 F Gl = Xy,
Gnfy + Gnfs 4 * ¢ 0 F Qn¥a = M1y 6)
Goily F BazZe + © 0 0 b GaaTa T e

Such a problem is known as a characteristic-value problem: \'nlluv_s
of ) for which nontrivial solutions exist are ealhad charachristie
values (also etgenvalues ot latent roots) of the problem vy uf the nm.tr'i‘)\
a, and corresponding vector solutions are known s the che rm"{:ﬂ shee
veclors (also eigenvectors) of the problem or of the matrira.  Adolumn

made up of the elements of a characterisiic vector i3 (:1'3;;11‘~v:1111~(1 i
modal column. ‘!

In most practical considerations in which mu:hfi@“"‘‘]"“‘H arise,
the mairix a is symmetric; that is, two elements wlieh are symmetst-
cally placed with respect to the principal dig.\;iqnal are equal:

G5 = i N ' (7)
More generally, when the coefficientgiare complex the must impuort-
ant cases are those in which symmetrically situated clements are
complex conjugates: N
= dy 77a)
Matrices having thedsymmetry property (77a) are known us
Hermitian matrices) and are considered in Section 1.16.

The dlscussi({u.of the present section is to be restricted to real

symmetric mgg@ees, for which the symmetry property (77) applics.
{notati

In matrix on, equation (76) takes the form
:\\ _
o 2X =~ AX  or fa—~aDx =0, (78)

4 0\' $
\'P"v;@lere T'is the unit matrix of order n. This homogencous problem

ossesses nontrivial solutions if and only if the determinant of the
coefficient matrix Ja — A 1] vanishes:

(G1: — A) &1s

la—a1f=| @ (E=—X ST B a0, (79)
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This condition requires that A be a root of an algebraic equation
of degree n, known as the characteristic (or secular) equation. The
7 50lutions Ay, Nz, « - - , s, which need not all be distinct, are the
characteristic numbers or latent roots of the matrix a.

Corresponding to each such value A, there exists at least one
vector solution {(modal colurnn) of (76) or (78), which is determined
within an arbitrary multiplicative constant.® Now let A and Xa be
two distinet characteristic numbers and denote corresponding char-
acteristic veetors by x; and x,, respectively, so that the equationg’\

ax; = MX, & Xz = AeXs (7\1 = 7\2) (Sﬂifw\‘,b)
are satisfied. If we postmultiply the transpose of (80a) by ig\there
follows R N
(Ax)7 % = MX1” Xy O
or, using (34), G
x;lT a’ X, = X}_le Xa. N (813)
N '
Also, by premultiplying (80b) by x:7, we obfam
nTax, = Aleffxé. (81h)

The result of subtracting (81a) frqrr};’(g"lb), and noticing that for a
symmelric matrix a” = a, is then the relation

(s WD (x1, X2) = 0, (81c)

and, since we have as&ini’ed that A1 7 Ag, it follows that (%1, x.)
= 0. Hence we hayeythe following important result:

Two characterigtip vectors of a real symmeiric mairiz, corresponding
to different chayacteristic numbers, are orthogonal,
AN (%1, X2} = 0. )

2 &

A sécﬂnd hasie result iz that the characteristic numbers of such a
ti¥ are always real. To establish this fact, we suppose that
N\ = o + 18 is a root of (79), where a and 8 are real. Then, since
the coefficients of (79) are real, A2 = & — ¢ 8 = X, must also be a
root. The elements of the two eorresponding characteristic vectors
naust then also be conjugate eomplex quantities. Thus, if we denote
* As was shown in Section 1.8, the components of this solution vector can

be expressed ss arbitrary multiples of the cofactors of the elements in a row
of the matrix & — Ml unless all those cofactors vanish.
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these vectors by X, and &y, respectively (see puge 24), we have the
iwo relations )
ax; = Mxl, af = xlil, lh.l:l‘h)

By premultiplying (83a) by 'E,7 ind postmultiplyimg the transpose of
(83b) by x,, and subtracting, we obtain the relation

(A — M} E, X)) = XTax — (a2)7x, - {84)

But now, since the product (X, x,) is a postdine quantily [see cquiag
tion (63)], it follows that A\, — Xy = 2¢ 8 must vanish, so 1}1;11 NS
must be real.  Thus we conclude that all characteristic ;;:u::bs"#-’»x.f.ff a
real symmelric matriz are real. O

If a characteristic number, say \y, of @ symmeleic matrir g fnultiple
root of multiplicity s, that is, if the lefi-hund membef Al (79 pos-
sesses the factor (A — A;)%, then o A, there r:orrfrspmu?’g\h'm arly fade-
pendent characleristic veclors.
poned until Section 1.21,

The preceding statement is not necessnrii} true for nonsynometric
matrices, as can be seen by considering the cquations
R

Proof of this iln(uj'taul. fuct ix post-
9 N\l

1+ 2 =N T,
~I — ¥y = by Lo

for which aé [ 1 1]-
\\ = -1 -1

Here the charactefistic equation is readily found to be moerely
A* = 0, so that IWS/0 is a characteristic number of multiplicity twe.
owever, w"]&(f?p" A =0, the only possible solution is given by
= O, P2 —Crorx = Cy{1, —1}. Thus, here the double root
A=10 ’cql"}esponds to only one characteristic vector.

h£§~i§ shown in the following section, it is always possible Lo

%ﬁ} e the s linearly independent vectors corresponding to a charse-
teristic number of roultiplicity s in such a way that they are ortho-
gonal &y each other, in addition to being (automatically) orthogonal
to all other characteristic vectors. Thus, if multiple roots of (79)
are counted separately, we obtain always exactly n characieristic
numbers, and we can determine g corresponding set of 7 mutually
orthogonal characteristic vectors, In virtue of the results of Sec-

ton 1.9, this set of vectors comprises a basis in n-dimensional vector
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space: that s, any vector in n-dimensional space can be expressed as
some linear combination of these n veclors.
Consider now the nonhomogeneous equation

ax—Ax =g, (85)

where a is a real symmetric matrix. This eqiation reduces to {(76) -
or (78) when ¢ = 0. If (85) has & solution, then that solution can
be expressed as a linear combination of the characteristic vectors of
a. Suppose that » orthogonal characteristic vectors are known, and
that they have each been divided by their lengths and so aré wnet

veclors. If thesc vectors are denoted by e, es, . . ., &, WNbllOows
that they satisfy the respective equations A\
. ae =M€, -, Ae= Anf{zﬂ (86)
The solution of (85) can then be assumed in thé¢ferm
n A\
79 .\l
x = ae, (O (87)

k=1 X

where the constants a. are to be determmed The introduction of
(87) into (85), and the use of (86)? then leads to the requirement

T N

21 O™ Nazey = ¢ (88)

From this equation, @ «&’s are then determined by forming the
seajar product of any Jnto both sides of (88). Remembering that

:’:\ 4 (eu ek) = Ji,
we see tha,\t;:ﬁ;}e\ #th coefficient o; must then satisfy the equation
O —Na = (0 G=12 - m. 88

anch 'r,f » 15 not @ characteristic number, the solution (87) is obtained
in the form
Y (€5, ©
X = x(,k’_) €. (89}
B — A
E=1 .
Thus & unique solution of the nonhomogeneous problem is
obtained when A is not a characteristic number. If A =X, no

solution exists unless the veclor ¢ is orthogonal fo the characleristic
vector (or vectors) eorresponding to h,. In case this condition is
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satisfied, equation (88a) shows that the corresponiling coefficient
(or coefficients) o, may be chosen arbitrarily, so that it by many
solutions then exist.

In particular, if A = 0, equation (85) reduees to the etion

ax=c,

which was studied previously. Thig equation thus has u nnigue
solution unless A = Qs a characteristic number of a, that is, unless
the equation ax = 0 hag nontrivial solutions, In (hix exeeptiong
case no solution exists unless ¢ is orthogonal to the vectore & Beh
satisfly 8x = 0, in which cage infinitely many solutiofd)evist.
This result is in accordance with the results of the prm-ml'n}g seetion,
where it was shown that the requirement for (he AN ee of
solution in the exceptional case is that ¢ he ogthingonal 1o the
vectors which satisfy the equation ar yx ~ 0, sihée"in the present
case we have considered only a symmetric matedy/for which a* - a

The existence eriterion obtained here, ifi the mor grneral case
- Whe_n A =Xy, is also obtainable from thedast result, of the preceding
, by I'epl'ac.ing abya —\Iin that result, and noticing that

It is often desirable,
from a set of « finearly inde-
pen-dent vectors u,, Uy, . .\, an orthogonal set of s linear combi-
aations of the original veetors. It is also convenient to ““ normalize”’

each is a, yng vector. ‘The following

» and it can be ex d by analogy to
obher similay problbie, tended by analogy

We first, selesbany one of the origi
. . : e o g r = H
i nginal vectors, say v, = u,, and

e s h
3&“ length 1, This is the firsy, member of the desired set:

™

The re uirem, ronal
t0 &, leads 1o the determination q ent that v, he orthugona

(e, vy) = (e, uy) — c(es, @) = 0

or
¢ = (el; uﬁ)l

th
80 that V=~ (e, uy)e,. (90b)
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Since e, is a unit vector, the familiar geometrical interpretation
of the sealar product in two or three dimensions leads us to say
that (e, us) is ‘““the scalar component of u, in the direction of ey,”
and hence that in (90b) we have “subtracted off the e.component
of 112.”

The second member, €s, of the desired set of orthogonal unit
vectors is obtained by dividing v; by its length Is:

N\
e = (90¢)
2
O
In the third step we write v3 = us — €181 — €2€s. Thesreqmre—

ment that v; be simultaneously orthogonal to e; and e4 ‘then deter-
mines values of ¢; and c¢; which are in accorddige with the
geometrical interpretation described above, and there follows

Ve = g — (61, Us)ey — (ez\,‘@)ez, (90d)

so that the “ei- and ey-components’” of W are subtracted off. The
third required vertor e; is then giveniby
_:_ }Vs

N (90e)

where [ is the length of V\
A continuation of hls process finally determines the sth member
. of the required set in the form

A/ 5—1
SN A
ej,\= T where v, = 1, — E (er, Us)€s. (913

&

{ F=1
A0

Thig\ mcthod which is often called the Schmidt orthogonalization
procedure, would fail if and only if at some stage v, = 0. But this
oild mean that u. is a linear combination of eq, €, . . . , €y,
and hence also a linear combination of uy, us, . . . , %y, in contra-
diction with the statement that the sct of u’sis linearly independent.
1.13. Quadratic forms. A homogeneous expression of second

degree, of the form

F = auz:? 4 0as%a® 4+ -+ Guna® + 26128170 + 2002123
R s TR R (92)
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is called a quadratic form In xq, &z, . . . , 2o 11 twodimensional
space the equation F = constant represents a general second-
degree curve {comic) with center at the orygin, while in three-
dimensional space the equation F = constant represeuts o gener
quadric surface with center at the origin,  Muny problems asse-
ciated with such forms are intimately refuted to prohlems a-sneinted
with sets of linear equations,
We may notice first that if we write

1aF
Yy = o oo = 2o O\
¥ 5 3, (1 l! ' » ”)I 7 \".\
O
we obtain the equations AR
ant; + 4z - - - - + Tyadn ™ i, '\\
Cip®1 + f99Xe + ¢ - 0 @apr, = 9P '
................. D )
‘..x\‘
d1,%1 + Aoy + - - - -+ a;!'j:;‘ = 4
This set of equations can be written 0’ the form
axn: y, (04)

where a = [g,]is a symmgitic'matrix.  That is, the clements satisfy
the symmetry condjti({i\’"’

o J aj" = a_’.j. LE).')]
¢
the?; ?e 'i‘;x‘]f\ilhhand, it 18 fea,sily seen that (92) is cquivalent to
" 1%"':‘2 & ¥); that 18, (92) can be written in the form
~ 'o"\
\’:.:’, F = xT ax. (g[i)
-\ ¥ L. .
1 many cases it is desirable o eXDIess Xy, 2y, . . , , ¥, s linecur

cOtnbinations of new « i '
oordi ' P .
that F is expressed as g li pates Th Ty oo, T inosueh g way
new coordin tl S & inear combination of only sguares of the
ates, the cross-product terms heing eliminuted. A

form of this 13ype 1s said to be a canondeal Jorm. Let the vector X
be expressed in terms of g’ by the equation

X=Qx, (a7}
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where Q is a square matrix of order #. The introduction of (97)
into (06) then gives -

F=(Qx)"aQx =x7Q"aQx’ (98)

or F=x"ax (99)
where the new matrix a’ is defined by the equation

a =Q7aQ. (100

Thus we see that, if F is to involve only squares of the Varl»ahleb
x;, the matrix Q in (97) must be so chosen that Q7 a Q is 3 @Esgonal
matriz; that is, so that all elements for which ¢ 5 j v amsh~

We show next that if the characteristic numbers and ctgrrespond—
ing characteristic vectors of the symmetric matrizg aldre knowrn, a
matrix Q having this property can be very ca,\ly construded
Suppose that the characteristic numbers of a'are Xy, he, . . ., Ay
repeated roots of the characteristic equatiph/being numbered sepa-
rately, and denote the corresponding mem}}rs of the orthogonalized

set of n characteristic unit vectors by e;, €z . .., e, Wethen
have the rclations N
ae, = A€, U,  ae, = A (101)

Let a matrix Q be constructed in such a way that the elements
of the unit vectors e, e;ggj}\. . , &, are the elements of the successive

columns of Q: L\
R :; €11 €11 €al
\Y; &3z Gaz €no
) = : 102
RO T D (102)
\::\,.’“ C1n  €2n T Enn

O\ .
Thenif ‘use is made of (101), it is easily seen that

e

\\}w Me1r Asfar t ' ' An€n
aQ = | New Mem T Mo (1030)
Mibln Nofan " Anaa
M 0 0
or aQ =20 0 0 (103b)
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This relation followa directly from the fact that the product of 8
into the kth column of Q is the kth column of the right-hand member
of (103a) [see Problem 24(s)). Since the vectors €, . .. ,e,are
linearly independent, it follows that | Q1 0. Thus the inverse
Q! exists, and by premultiplying the equal members of (1U3) by
Q! we obtain the result

Q'aQ =\ (184)

Hence, the matrix a is diagonalized by the indicated operitions,

the diagonal elements being merely the characteristic nuniesof a,

However, the desired diagonalization (100) was 1 I of the

form Q72 Q. Thus, the matrix Q defined by (1025408 1ot aceepts
able for present purposes unless it can be shown tHat”

Q"=Q*' o Qr Q\Z‘I. (105)
. X7,
But the typical term ¢ of the product QXQis of the form

& = 2 ’e;'&ei;r
TN
:?,nd git}ce th.e e’s are orthogmggi“ \the indicated sum ranishes unless
t = J, in which case the Sum, is unéty since the e’s are wnit reciors.
Hence there follows:“g?; =3 that is, Q"Q = (5,] = I, as is
required by (105). (Xurther, since {QI =1Q7|, there follows
from (105) the umfu%sult

2T =1; Q] = %1. (106)

It folloyy,g;fhat the matrix Q defineq by (102) does indeed have
the prop,é\\ty that the quadratie Jorm

*

.'\’:’. F=xray (107)
%‘E@dﬂc&d by the change in variables

x=Qx (108}
to the form F=xrg g
where a'

= [\ 851, that 18, to the Jorm

F =\t 4+ g
)\1$1 4 )\2{832 4 . + )\”z:‘l’ (109)

where the numbers X; are the characteristio numbers of a
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A matrix whose columns comprise the elements of n linearly
independent characteristic vectors of a given matrix a, of order =,
is called a modal matriz of a. In particular, when those n vectors
are mutually orthogonal and of unit length, it is convenient o say
that the modal matrix is normalized. Thus the matrix Q is a
normalized modal matriz of a.

We notice that if A = 0 is a p-fold root of the characteristic
equation the form (109) has only » — p nonvanishing terms. INECN
shown in Seciion 1.21 that this situation arises if and only if the

symmetric matrix a is of rankr = n — p. K, \)
The new variables z: are related to the original ones, ,jh.accord—
ance with (97) and (105}, by the equation N
¥ =Q'lx = Q7x, 3, (110)
o
and henece are of the form \

.......... el (111)

N

‘.1?:, = €n1l1 —]['-"e;ﬂx; + B + Candn

or ¥ = (e,;,\ii:@}\ G=12+"",n). (111a)

When all the characteristic numbers of & are disiinci, the normal-
ized modal mattisQ is uniquely determined except for the ordering
of the colu;n\r@t “ However, if a root is of multiplicity p, the corre-
sponding gherthogonalized unif vectors can be chosen in infinitely
many Jays, as was shown in Section 1.12.

I’(ﬂe"iemark that the modal matrix Q specified by (102) is not

he) only matrix which can be used in (108) to reduce a quadratic

fofm to a sum of squares. However, it is the only such matrix
which possesses the useful property that QT = Q. A matrix
having this property is called an orthogonal matriz.

1L.14. A numerical example. To illustrate the preceding
reduction in a specific numerical case, we consider the quadratic
form

F= 253715q -+ 34&39_2 ‘I" 414‘:32 — 24xaxs.
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8114

The corresponding matrix a is then of the form
25 i {
a=| 0 81 -1
0 —12 41

and the equations ax — A x = 0 hecome
- -0
(25 — W)z, . A
{34 — Nz, — 2, A

Y
120 4 (= Nry O (O

E 4
N\

The characteristic equation {a — M1 ] = O then takes Jhform

(25 = NN* ~ T8N + 1250) = eSS
from which the characteristic numbers are N ‘
Nowhe =23 3?.§li?
When A = ¥ = \y = 25, the eqtigtf(;ﬁ.:; ax — Ax = 0 bhecome
0’“* 0,
9z, -;'1223 = {},
‘7{9}1 + 16z,

with the general 50111%50\!1“231 =Cy 22 = Cy, 23 = }C:. In veclor
form we may write X = Ciu, + Cauy, where uy = {1, 0, 0} und
we = {0,141, AStce it happens that u, and u. are orthogonat, we
need only divide them by their lengths L =1land{;, = {to ohiain
the two C,'\T{hjbé’onal unif characteristic vectors

#

0,

B em T 00, e={0,43).
”\;I"'-" & 3“—“11_31 way, & unit characteristic vector corregponiing to
= A; = 50 is found 1o be

e = {0, §, —4}.
Hence the normalized modal m

atrix i 2y ¢an be
taken in the form Q of equation (102) can
i 0 0
e=jo ¢ 3
-..0 % -”g'
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and the new coordinates defined by (111) are then given by

’
:Cl = xl,

o 3
Ty = 4xs + Exs,
L 4
Ly = 2, — %2,

With this choice of the new coordinates, (109) states that the
quadratic form under consideration takes the form 2\

F =23z} + 2ax2 + 50z3%. ) \‘\~

In particular, it follows that the quadric surface with, the equa-
tlon 25.::12 -+ 343:22 4 413 — 24xexy; = 20 takes the .gs‘ha;ndard form
22 4 2 + 227 = 1 with the introduction of the fbw coordinates.
It is shown in Section 1.19 that fhe new x yzkaordmaie system
defined by (108) 4s also @ rectangular system wheh Q is an orthogonal
matriz and that length and angle are presgm}f by the iransformation.
Hence the quadrie surface just conmdereEi 15 an oblaie spherotd with
semiaxes of length 1, 1, /2/2. O
It may be nutlced that by the wsual method of “completing
squares,” we may, for ex&mplq, Aalso reduce the form F as follows:

F 25z + 34[a:2 %—x.‘;xa -+ ( )2$32] + (41 _ 14.4)x 2
25x,° + 34(x§~\- ras)? -+ SR

Hence, if we lntrod\ee new variables by the relations

\<& z = T,
»\X\ Ty = Z1 — TrTs,
\'\\ Ty = T,
\we\can reduce F to the form
O F o= 25200 + 34al? + S35x).

However, here the matrix Q for which x = Q x’, and which takes the
triangular form

1 0 0
Q=0 L 7|,
0 0 1

is nof an orthogonal matrix. Consequently, as is shown in Secfion
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1.19, the new z'y'z’-coordinate system is nof n rectanyilar system
in this case; that is, the new coordinate axes ure nat el ndly per-
pendicular. Nevertheless, the matrix Q dues have the property
that Q7 a Q is a diagonal matrix.

1.15. Equivalent matrices and teansformutions,  Twe
matrices a and b which can be obtained from cach ofher by« tinite
pumber of successive applications of the elementari o prrations
(Section 1.7) to rows and/or columns sre suid to be rguiradeat (l}up
not necessarily equal) matrices. N\

Tt can be shown that any such sequetice of operations "gjxs‘t.he
rows of & can be effected by premultiplying a by sotue nopsiugalar
matrix B, while corresponding operations on coluntns, ‘l"";’ll\l. ulways
be effected by postmultiplying a by a nonsingular Q. This
result 18 & consequence of the easily cst:\hliﬁluzd.&)’cﬁ' that an ele
mentary operation on rows {columns) of a may b aecomplished by
first performing that operation on the unifyfdtrix T of the sume
order, and then premultiplying (postmult-iph(ing) a by the resultant
mafrix (see Problems 18 and 19). P \%

The converse of the preceding statément is alxo irue; that is,
the matrices a and b are eqm'valent.z’farid only tf nonsingular matrices
P and Q exist such that b = P o'

Since the elementary operations do not change the rauk of &

matrix, if follows that tyuq\équiualent matrices have the same rank.
Transtormations (of the form P a Q wre classified ncrording to
restriciions imposed\on

¢d onPand Q. Thus f P=Q7 = Q. asin
the reduction Of.\ Section 1.13, the transformation is calied un orthog-
onal transformhation. If only P = QT, as is required by equation
{100), th§~i;e§\ﬂting transformation Q7 a Q is cailed o .f‘-‘i?l:‘n’-’”""w
transfc:. tion, whereas & transformation of the form Q1a@Q,
for .‘f}}m P_= QY is called a similarity transformation. This
Jerminology 8 motivated by certain geometrical considerations.
We_n?tlce that an erthogonal transformation is both a congruence and
a similarity transformation,

CQ"_‘Jumﬁlfe and undlary transformations, which are of impor-
tance in dealing with matrices of complex elements, are defined in
the following section., ,

1.16. Hermitian_ matrices. We now consider a matrix with
complex elements which satisfy the relation

O; = &;. (112)

i LD e
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Such a matyrix is hence of the special form

Qi1 iz 13 v 0 Gia
d12 Qe O Qo

h=|di @ ap -~ an| (113)
Qin G2e dan - " ° Uun

and is known as a Hermitian matrix. Thus a Hermitian matrix
has the property that fwo elemenis situated symmetrically with
respect to the principal diagonal are complex conjugates. Jo)par-
ticular, (112} requires that the elements in the prmapa.l dla,gona.l
{t = 7) be real.

We see that the complex conjugate of the matrix h obtamed by
replacing each element by its complex con]ugate«,‘and denoted by
I, is equal to the transpose of h:

b7 =& K7 (114)

The product \ )
H=2"h¥) (115)

is known as a Hermitian form., In two dimensions, the generaJ
Hermitian form is thus given hy

[: 1
n=in s ol ()
™
= andk;r: + (ze_flxz + E19F9x1) + @20F a2 {116)

Although thaélements a; and variables #; may be complex, the
values asszgw@éa"ﬁy a Hermition form are always real. To establish
this fact,\wwe recall first that the conjugate of @ product of complex
quant@iws is equal to the product of the conjugates. Thus, if H were
complex and given by (115), then its conjugate [ would be given

&)

H=x"ht=x"h"gs=(x)"x =x"hx) =H (1I7)

But # = H only if H is real, as was to be shown.

Also, we can show that the characteristic numbers of a Hermitian
matrix are real. Tor if u; is a characteristic vector corresponding
to A, we must have

hu = }\1111, (118)
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and hence also, after premultiplying both sides by 00,
fh"'hu. = }tlﬁlrul. (HQ)

But since ;" h 1y and @,7 u; are hoth read, and & 0w o BN st
also be real.

Yurther, let u; be 2 charneieristic vector cortespoinhing o8
second characteristic number ke # Ay, w0 that

B = Al THUN
1f the transposed conjugate of (118} is postmultiphierd by ue, .Qagrc
follows O

(ﬁ 0} U, = M T u., 4‘:.""

while premultiplication of (120} by @,7 leads ta tlgc«ﬁﬁ:ﬁ ton
a7k = NG . )
1 2 ! ’:..\\.
By subtracting these equations from caghywther, and using cquas
tions (34) and (114}, there follows b))

(z}‘g - }‘.1}{'11‘1' U =‘. 15'1'111: — (E ﬁj)r U

7

9

=% hu, ~ &7 hTu
{...‘\ = {3,

Hence we conclude "hat fwo characieristic veclors of a Hernufiah

ma-tr’i.:c, corresponding to different characteristic numbers,
onal in the Hermitian sense:
’\u

&

e orihoge

N (fiy, 4g) = &y" up = 0. (121)

.?hgms U; ¢an then be divided by their absolute lengths
L\'_‘\ \_/[ue, 1), to give a set of orthogonal unit vectors e, rorres
\Spond}ng to sticcessive nonrepeated toots of the churacteristic
equatmz}. COl‘f'esPonding t0 a root of multiplicity s therc exists 2
set.‘of s linearly independent characteristic vectors (see Section 3.21 ),
which can be orthogonalized and reduced to absolute length unlty,
by a procedure completely anslogous to that given in Section 1. 19,

Thus wi i ] ;
e may again obtain a set of » mutually orthogonal umb
characteristic vectors e, e,

r

' . . e sy By O r 1 . rth
being defined in the Hermitian sense. w orthogonality and len
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To solve the equation
hx —-»x=0¢, (122)
we may then assume the expansion

n

= D wey : (123)

ke

as in the real case, so that (122) takes the form

N
z ()\k - )\)akek = .'\:\'
kel :‘.§ o~
and there follows N\
(e — Nax = (&, ©)- \:
Thus, if M # A, the solution becomes v
~\J
N (8 ©) O
X = N el (124)
s AP\

in analogy with (89). If-M = Ay ’jfm golution exists unless ¢ is
such that (&, ¢) = 0, in Whuh Gase o, is arbitrary, and infinitely
many solutions exist. N\
The reduction of a Hgnmtlan farm to a sum of the canonical
form -
H = xh'slx’l EIRW AR RENE °4 (125)

may be ac¢ comphshied by a method analogous to that of Section 1.13.
Thus, ii we Wnte

\~ x=Ux, (126)
the "f\otjm H of (115) becomes
O~ H=(Tx)"hUx =7 (T hlU)x. (127)

This form will be of type (125} if and only if the product matrix
U7 hU is a diagonal matrix. As in Section 1.12, a permissible
choice of U consists in the normalized modal matrix formed by
arranging the n orthogonalized unif characteristic vectors of h as
its columns. For this matrix it can be shown that

U7 =1U1! or gt =1 (128)
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A matrix U having the

property (128) is rcalled w wnitury (or

Hermitian orthogonal) matriz, and the product U7 h U 1"{ then
called a unitary transformation of h. More generally, o4 1ransformas
tion of the form U7 h U, where U does not necessurily satisfy (128),
is called a conjunctive transformation,

L1.17. Definite forms.,
with a real symmetric matri

If the quadratic furm x7 & x. as=oviated
X &, I8 nonnegative for all real valueys of

the variables z;, and is zero only if each of those n virinbles is ero,

then that quadratic form ig

said to be positive definit- L1y then

conventional to say also that the matrix a is positive debigie
Similarly, a Hermitian matrix a is said to he positiedetinite if
the associated Hermitian form xTax iy nonnegatid\ 1or any real
or complex vector x, and vanishes only when x =405
If a real quadratic form A4 = X7 ax iy redbeible by o trans

formation of the form x =

SQuare matrix, to the sum of squares of tlhié

Qx', where B nonstngulare real
1 new varinhles, cach

with a positipe coefficient, then it is cleatthat A is n positive definite

form relative to the res) variables, 2y . |

relation x* = Q-14
vanishing of | Q |,

, Lno Bt irom the

, which is g consequence of the as<umed non-
We see thatareal vector x then corresponds

ways to a real vector ¥, and that the vectors x = 0 und x’ = 0

then correspond uniguely ("

is also positive definite velative to the original re

- N\

R N

Similarly, if arHermitian
complex transfofmation to th
coefficients A& positive, the form is

compler valugs of the vari
variables wiinish.

It then follows from the

equations (109) and (125)]
posilive defingte if and only
sponding matriy gre all

Positive definite forms
tions, and are foung top

Hence it follows in this case that A
al vuriables oy,

form is reducible by a nonsingular
€ canonical form (123), wherein all
then nonnegutive for any

ables, and is zero if a5q only if all the =

results of the preceding scctions [see
that ¢ quadratic or Hermitian form is

if the characteristi; numbers of the corre-
Positive,

are of particular importance in appliea-
0Ssess certain usefy] properties.  In par-

e
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tienlar, we show next that if at least one of the fwo real quadratic
forms
A=x"azx, B=x"bx (129a,b)

is positive defintle, then it is always possible to reduce the two forms
simultancously to linear combinations of only squares of new var-
iables, that is, to canonical forms, by a nonsingular real transforma-
tion. TFor this purpose, suppose that the form B is positive definite.
Then, by proceeding exactly as in Section 1.13, we first set Q"

x=Qy, ,(130;

where Q is the normalized modal matriz of b, defined in th@ﬁgection,
and so reduce B to the form N

B =y +pap? 4+ - - -+ Hnyn%,’\'\ {131)

where here y; is written for the sth characterigtic number of the
symmetric matrix b. Since B is positive de%‘mte, the p's are all
positive. ITence we may make the subs’mtﬁuon

= Vs (= 1 2 Ty ), (132)

and thus reduce (131) to the form' 3
= mq® + nz + gt =0T (133)
At the same time, the* s\ubshtutlon (130) reduces 4 to the form
A% Qy)aQy -y @ aQly (134)

and the subbequ&nt substitution (132) reduces this form to the
expression /™

\"\ A = nT(Q'7 a2 Q')n, (135)

A
where Q’ ;s a matrix obtained from Q by dividing each element of
the 11}11 column of Q by /i Hence, if we write

Q g=0Q72Q, (136)
equation (135) takes the form
A =n"gn - (137}

Now g is a symmetric matrix, since

gf = (QTaQ)T = QTa"Q = QTaQ =g  (138)
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Hence we may reduce (137) to eanonical form by setling
n =R g, {139)

where R is made up of the characteristic veeturs of g just as Q is
formed from those of b, and {187) is reduceed to the form

A = )\1&12 + )gagi + R + l,,{t...: (110)

where ), ig the 7th characteristic number of the matrix g. '\ Q.
At the same time, the final substitution {139} I‘l'.{h!('('.‘-i' El\HJ to
B=n"n=Ra"Ra) =a"R"Ra. O (141)

But since the matrix R ig an orthogonal matrix, there 40llws RT R =

1, and hence we have the result AN

B=m’"u=a1’+azg+ CAOT aal (142}
(N
Thus, finally, with the substitution o\

X=Qy=Q'n2Q Rq (143)
the two formsg (129a, b

forms (140) and (142), \\
If we define the diagonghmatrix

) are SiTnuItélﬁeously reduced to the eanonical

R
ml'\‘().‘ 0
m = .g.\_m2 -0 ) m = l (144}
7, 4 Vi,
NEo o ...,
it follows thas™

.”\s. _
Q=Qm (145

and (1;43}becomes
N X=QmRq. (146

\?n,me Q and R are orthogonal matrices, with determinants eoual

0 unity irf absolute valye [see equation (106)], and since eloarly
[m [ =0, it follows that the transformation (143) is indecd non-
singular,

‘ n _ dynamical problems (sec Section
2.1?) the pommvta definite form g (kinetie energy) involves the time
' 0 place of ¥, wheregg the form A (potential energy)
mvolves only x Itself. The above reductio

N s still applicuble,
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however, since x and dx/dt are transformed in the same way at
each step of the process.

Another method of accomplishing the same reduction, which is
usually more conveniently applied in practice, is presented in
Rection 1.25 (see page 77).

1.18. Discriminants and invariants. It is frequently of
importance to determine whether a guadratie or Hermitian form
which involves cross-product terms is or is not a positive deﬁmt\
form, without reducing it to a canonical form or determining the
characteristic numbers of the associated matrix. This prohlgm 18
t5 be ronsidered in the present seetion.

If we write the characteristic equation |a — )\,Il =0 of a

square matrix a in the form AN
N
ay — A Gz ot (L3 0%
22 Ga2 — N - T
: NP
fn1 G2 : :" wiline — A

= (—De — Bt 4 ﬁw—ﬂ A%+ (=16, =0, (147)

and denote the n roots of this equa,tlon as hy Ag - - - 5 As, Dumber-
ing multiple roots separately, it follows that

— Bt 4 B "‘\“ \ © 4 (—1)"8.
AR AN ) (148

By comparmg\coefﬁuents of \ in the two sides of (148), it can be
shown that ¢
.s’\\ 131=)\1+)\2+"‘+)\n,

N,

\\ B2 = Ao+ MAs+ - + Aniha,
\ 4 Bs = Athalg + * 7 ¢ + An_zhna1ha, - {149}
Ba = Ahzhy * " A

Now, for either a real symmeiric or & Hermitian matrix, we have
shown that the roois of (147) are all real. Tlence, by Descartes’
rule of signs, we see in such cases that the roots of the characteristic
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equation (147) are all positive if and only if the quaniities 3., 8,
.y Bn are all positive.
From (147) it follows that 8. is the value of |a — A I| when
X = 0; that is, 8, is the value of the determinant of a:

u = s | (150,
Further, it is easily seen that the coefficient of A»~! in the expansion
of the determinant in (147} is merely N\
(=1)*an + @z + -+ + ann); O\
that is, $: is the sum of the déagonal elements of a: O
Br=antan+ - +a,, = é‘f@* (151)

This sum is called the frace of a. A0

More generally, it can be shown that B{’z? the sum of all determi-
nants formed from square arrays of omfe‘r’i'*whose principal diagonals
lie along the principal diagonal of a., ‘Such determinants are ealled
the principal minors of a. oW

Thus it follows that « qt{ad;d;tz'c or Hermitian form is positive
definite if and only 1f these sums, relevant to the associated matriz, are
all posttive. A

In illustration, the.\qiﬁdratic form

= ]
F= 1171 + 0'223:32 ot "»133-'»332 “I’ 20122’.’122 + 2623.1:2:'65 + 20‘,13I1:€3

& (152)

in three djggga)éions, which is associated with the rea] matrix

’§“

R @11 Giz Qg
NN A =10 Gy gy ; (153)
'"\; . _ @iz dpz  dgy

18 positive definite if and only if the three conditions

-+ @y + gy > 0, (154a)

(au02s — a1?) 4 (@20035 — az?) (a11az3 — a?) > 0, (154h)

are gatisfied, log] > o tL5dc)
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Tt is readily verified by direct expansion that the determinant
of the symmelric matrix (153) can be written in the form

(auazz - a122)(auﬂaa - 6132) - (G‘auaea - 012013)2}
@11

laﬁ'i=

and also in two Turther equivalent forms obtained by cyclie permu-
tation of the subscripts. Suppose that we require only that

i > O Guttay — 612" > 0, | @i | > 0. (158a,b,e)

It then follows from (155a,b) that we must have az. > 0, and(aiso,
by referring to the above form for | ey |, we see that (165a,1,¢)
imply that anass — ai? > 0. By considering the permutation of
that form in which 1 — 2, 2— 3, 3 — 1, we then deduse similarly
that (155a,b,e) also imply the inequalities amaga.%"ags"‘ > 0 and
@ss > 0. Thus it follows that the three conditipge¥(155) imply the
three conditions (154). AY;

By considering the conditions that (152) 'thl be positive definite
when, first, only one variable differs from.zero and when, second,
only éwo variables differ from zero, \it'is easily shown that each
diagonal term a; must be positive and also that eech prineipal
minor of second order must be j~ijoéitive. Hence these conditions
imply and must be implied, by ‘either the conditions (154) or the
more convenient conditions, (155).

More gencrally, if (for any real symmetric (or Hermitian)
matrix a we define the wmth diseriminant A, to be the determinant
of the matrix D,.sobtained by deleting all elements which do not
simultaneously ]i:e\in the first m rows and columns of a, it can be
shown that,ihe” real symmetric (or Hermitian) matriz a, and the
correspon@hig ‘quadratic (or Hermitian) form, is posilive definile if
and onlgh¥f each of the n discriminants A ¢5 positive. If and only
if thiSye so, all the principal minors of a are positive.

<_To establish the sufficiency of this criterion, we need only prove
that, if D, is positive definite and Apyz = | Dayr { is positive, then
D,.yq is also positive definite. Suppose, on the contrary, that
D,y is not positive definite. Then, since | Duya | is the product
of the characteristic numbers of D,.1, it follows that an even
pumber of these characteristic numbers must be negative. Let
41 and v: be two such numbers, and denote by w, and u; corre-
sponding orthogonal unit characteristic vectors of Dnis, length
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and orthogonality being defined in the Hermitian sensc, If we
define the (m + 1)-dimensional vector

X* = et + e,

where af least one of the ¢’s does not vanish, and notice that then
Dnyiuy = vyqu, and Do uy = yau,, there follows easily

x*r D,,,.H X* = 5181"(1 + égﬂg'y: < 0, N\

for any ¢, and ¢.. Thus the vector x* renders the llurn{i,t.\izm\f::1'.111
associated with D, negative. Now let ey andl e, Ir;; srul_ulml 10
such a way that the component xX,, vanishos. Il'"‘\s-Ii’«m:t e that
the Hermitian form %7 Dui1 X reduces to the fornx" D, x wlw.n.
Tmi1 = 0, we conclude that the m-dimensionaN"&t or made up .ul
the first m components of the x* 80 determined¥enders (he II(~1-1mt.;-
ian form associated with D.. negative. bm\u, D, is ]Jureiti\'(:' (liff.l-
nite, this situation is impossible, and thevdesired contradiction is
obtained. { : \

The specialization of the preceding argument to the case of a
real symmetric matrix, and its Jassociated real quadratic form,
is obtained by deleting the_bars indicating complex conjugates.
In this case, uy and u, are real, and the constants ¢; and ¢, ure also
to be real.

Whereas the req&iﬁexﬁents that a form or matrix be positive
definite thus need not be stated in terms of tj
nevertheless are-of” considerable Importance in themselves. We
see from (149) that each B: i8 a symmetric funetion, of degree 7, of
the charaqtg};l tic numhers of a, Also, it follows from (147) that
Jor any ;@'sguare matrices a and b such thay ba —AI| = |b — I
Jor all Yalies af N, the n quantities 8; are the same.

.lg'lférder to determine conditions under which this situation
EXISts, let a and b be two equivalent matrices. This means that

Onsingular matrices p and Q exist such that b — PaQ. Ience
we have, for any value of A,

e sums g, these sums

b—M=Pa@ 17

= Pla — \P-1Q-1g
and also |b~)\I|=[P[|Q[|a-—)\P—1Q‘1]. (156)
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Thus, if P and Q are such that P-1 Q-1 =1 or P = Q' s0 that
b=Q1aQ, (157)

there follows also PQ =1, and hence |P || Q| = 1, and (156)
takes the form

[b —rxI| =]a —rI] {158)
for all values of M.

A transformation of the form (157) has been defined as a siméc\
larity transformation, and the matrices a and b are said to, be
stmilar. Since (158) states that a and b have the same (,harzﬁrter-
istic equation, it follows that the quantities 8; are mvarwnt under
(unchanged by) any stmilarity transformation. This{¥epult has
important consequences in many physical ¢ 0n31derat{cms

Since orthogonal and untary transformations. are $pecial types of
similarity transformations, in which also Q~! = QT and Q- = Q7,
respectively, the preceding statcment applies 4 t\o them.

1.19. Coordinate transformations{ hat similarity trans-
formations are of frequent interest Ln prrachce, is indicated by the
following ecnsideration.

The elements of any vector x a spa(,e of n dimensions may be
interpreted as the components, of that vector in the directions of

the # mutually orthogonal \umt vectors iy = {1, 0, O L,
={0,0, ..., 1} Whu,h lie along the axes of the (,oord.lnates

%1, Tz, - - - , &n Thatls, we may write

X =R+ wdds + 0 F Tade = 2 T (159)

. ’\“ N
Now li\a new coordma,te system be so chosen that the unig
vectors, 11, 12, ..., i, in the directions of the axes of the new
coordmat(,s #h, Thy « . . , T, are related to the original unit vectors

by\the equations
if = Quir + Qade -+ - -+ Quidy, 2

i:, = anil 'JF QQniZ 'Jl_ ot + Qnuiﬂ )
or =7 Qi (161)
r=1
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The quantity represented by the vector x cun then be evpressed
in terms of its components zh, Ta, - -« £, utong the new s, I’f
we denote the vector specified by this array of compunents by X
there follows

R - S Y S
Pl
To determine the new components in terms of the priginal ones, we:\
first introduce (161) into (162):
n h .} n ’0\‘\”
¥ =3 D a0 = 3 (X 0ud)in VT
kwmlr=l ruml “kwml L

Then, since (163) and {159) represent the same quant r\ti :Em‘i .T'inue
the vectors i, are mutually orthogonal, their rcspctst}&'e cocflictents
i (159) and (163} must be equal, 8o that
w\,/
] ':'\
To= 2, Quthn (164)
k=1 AV

Thus, if we write X’ = {z}, ©h 8, x5 for the vector vom-
priging the components of x in thetdirections of the new coorihnate

axes specified by (160), there f.c}lio{\'s

,\ x = Qx/, (163)
where Q is the tmns:fmtion malriz
,\':“' Qu Qu - - Q.
\\ Q=|Un Gm 1 Gy (166)
\ Qi Que * -+ O

of srhiich the coefficient matrix in (160) is the transpose. We notice
\ﬁl‘ﬁf each column of (166) contains the components of a new unit
vector along the original coordinate axes.

Here we interpret the matrix Q of (165) as relating the com-
ponents of a veetor along the original coordinate axes to the com-
ponents Of_ the same vector along the new coordinate axes. In other
considerations we may suppose that no change of azes is involved,
?md that an equation of the form (165) merely transforms one vector
into another one, both vectors then being referred to the same axes.
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‘Which interpretation is to be attached to such an equation in prac-
tice clearly depends upon the nature of the problem involved.

In order that equations (160} be solvable for the vectors i, in
terms of the vectors i, the determinant |Q | must not vanish;
that is, the mairiz Q must be nonsingular. Hence Q7! then exists,
and we have also, from (163),

x =Q'x (167)

N\

Suppose now that two vectors are related by an equation of the
form ' A\

y=a4ax Oy (168)

when the components refer to the original coordingte 'f‘rame, and
that the corresponding relationship between thé&  components
referred to a new coordinate frame (160) is reghited. (We may,
for example, imagine that y represents force and'x acceleration. In
Newlonign mechanices, the matrix a would thien be a scalar matrix.)
By replacing x by Q x’ and ¥y by Q ¥" sinder the assumption that
x and y transform in the same way, we-obtain the relation

Qy 2aQx

and hence, after premultiplyﬁig"t)oth sides by Q~1, we obtain the
desired result K

\'\i”i" = (Q'aQ)x. (169)

Thus we see that'the matrix relating x” and y” is obtained from
that relating x @and'y by a similarity transfoermaiion. In particular,
it follows @}@ii}fhe Invariance properties discussed at the close of
the preceding section apply in the present ease. That is, the quan-
titics @a'ef that section, pertaining to the matrix a of (168), are
invariant under a nonsingular linear coordinate transformation.
@s“result is of great importance.

If the new unit vectors are mutually orfhogonal, we readily
obtain from (166) the result

Q"Q=I o Q'=0Q7 (170

so that Q is then an orthogonal matrix. Thus a fransformation from
one set of orthogonal axes fo another is accomplished by an orthogonal
transformation. We may verify that in such s transformation the
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tength of & vector in the new system is the same as its lemgihoin the
original system (that is, that there is no change in seafe). For if
x = Q ¥’ there follows

PexTx=(Q¥)QXY =xTQ QX =x7x' - " (171

Also, the magnitude of the sealar product of two veetors is the
same in both systems (that is, the magnitude of an angle’ ix alse

preserved), since ~

&y =x"y=xTQ QY =x7y = (x,y). (%2

'\

As these results suggest, it can be shown that any i)]"i‘h:};_{ml:ll
transformation in space of n dimensions can he intgurdted us a
combination of rotations and reflections. S

1.20. Diagonalization of symmetric matriges. In the two
sections which follow, we reconsider, from thevpint of view of the
preceding section, the problem of reducing'ﬁ{ féal symmetric matrix
(or the associated quadratic form) to a cafiohieal form, and estaldish
s result stated without proof in Section M1 (see page 32) and used
in succeeding sections. For completeness, cortain notions and
results already discussed are firgf’Summarized.

Associated with a real square matrix a, we consider first « set of

equations of the form RS
O
anty Fouts + © ¢t ar. = gy,
\ .................. {173)
.t\@mxl +aums + - g, = #n
.“\‘.

which, \‘vﬁén'written in the matrix form

Nestablishes a relationship between the vectors x and y. If we
require also that

¥ = Ax, (175)

80 ti}at thfa “transform” of x is to be parallel to x, we are led to 8
consideration of the equation

{a —~2Dx = 0, (76
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which can be satisfied nontrivially if and only if A is a root of the
characteristic equation

- X 13 Q1n
=D =| O fmTh o0 oo am
i [17%] lyy R L 2 b

If a is a symmelric matrix, it is associated also with the quadratic
form N\
F=xTax, (IT8)
N

the value of which is merely x*y = (x, y); that is, F is th¢ jtalar
product of x and its transform. The form F involves on{y squared
terms if and only if & is a diagonal matrix,
Suppose now that a coordinate transformation, of f‘he form (165)
is made, new coordinates being introduced by the matrix equation
x=Qx, (O (179)
and that the new axes are required to he' br%hogonal. This means
that the new unit vectors, as given by {160), are to be mutually
orthogonal, and that the transforma.tlon matrix Q must be an
orthogonal matrix: ~N

QT = Q‘l\“’" or  QQT = (180)
Length and magnitude o{‘a;ﬁgle are then preserved.
If we write accordingly

@ y=Qv, (181)
the vectors x* \aﬁ)d 'i}" are related by the vector equation
D Q12 Qu =7, (182)

or by 'sgoﬁesponding scalar equations which may be written in the

fo@‘, v
? ? e e [ —_ !

..................... : (183)
aﬂl..".‘.‘;_ + Ctnzx; ‘I“ R aﬂﬂx; = Ya

The result of introducing (179) into (178), which is of the form
F=xTy=x"QraQx’, is identical with the product x'7y’,
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where ¥’ is given by (182), only under the restriction thu [ 180)
be satisfied, so that the transformation s orthogonul.*

The present problem consists in attempting to determine o new
coordinate system, specified by the orthogonal mutrix Q. such
that the coefficient matrix of {183) is a diagonal mutrix: that iy,
such that a; = 0 when ¢ # . The form (178) will then tvolve
only squares of the new coordinates .

Let \; be a root of the characteristic equation (177}, and let a
unit vector which satisfies (176) when X = X, be denoted by epe &N
{en, €1, - - - , €1a}. Then we may require that the direction of
the first axis in the new coordinate system coincide with th,u\: li7e-
tion of e, in the original system. Hence, in accordance with”(160),
we must take Y

at ¥ ;

\
Qn = €n, Qn = &1y, oty Qnr?—}\ﬂlm (134)

Now it must follow that the transform of the vettdr {1,0, . . . .0,
in the new system, is X; times itself, and hefict is the vector [N, O,
-« ., 0}. When this condition is imposed’on (183), there follows

an = M, @z = ogy TN 0 = o = U (183}

Hence, if the first column of Qf';é made up of the elements of e,
there follows A

.&"‘ ?\1 23 ¢ oyp
.0 | O SRR
© 1a\Q ol DR (186)
PN X 0 ans -+ am

s Butl i a:%i??immm'c, this matrix must also be symmetric; for
- since also 'S\Js orthogonal there follows

Yo =
O = Q72 Q7 = QraTQ = 00
{é‘s&ce, in this case, there follows also

Riz = 13 = - - 0 o= oy, = (}
in —

* When two vectors x and ’

and (181), the two sets of va

to be cogredient, When the

{187)
riyb;mdergo the same transformation, as in (179}
Venétoes which comprise their components are said
that the cordition (x,v) = (x' '3 are transformed separutely in such a way
said to be contra, rad'?: = {x,¥) is satisfied, the two sets of variables arc
same orthogonal ffi tent.  As is seen heve, when two vectors undergo the
agonal transformation {their component, TR
contragredient, 8 ave both cogredient and
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and (186) becomes _
N 0 e 0

00522""!2%_

QaQ = (188)

0 Qg """ Onn

It is easily shown (see also Section 1.13) that, if the second
column of Q comprises the elements of a second unit characteristic
vector e, all elements in the second row and second column of {188¥\
except az reduce to zero and e is identified with the corresponding
characteristic number As. R\,

However, since an orthogonal eoordinate transformati ) pre-
serves the magnitude of angles, the essential difﬁculty:is}dnvolved
in showing that the second axis direction (v, = Of'er =1, 27 =

. =1, = 0) can in fact be identified with the direction of es;
that is, that e, is orthogonal to er. If these veeers correspond to
different characteristic numbers, Ay # As, wé have shown (Section
1.11) that they are orthogomal. Thus,.’i?‘ all the characteristic
numbers of & are distinet, a generaliza-ﬁibﬁ of the above argument
leads easily to the result of Section,’1}13, which states that if the
elements of eark column of Q areken formed from distinct charac-
teristic unit veetors, the mafti¥ (186) takes the diagonal form
[ Bi5l ' 2
In the case when hy is@Yoot of (177) of multiplicity s, it remains
to prove that s correspending linearly independent characteristic
vectors exist, so thab s mutually orthogonal unit vectors can be
determined a5 ].ipe'@r'combinations_of them. The truth of this asser-
tion was assuified in Section 1.13. _

1.21. B{f{iple characteristic numbers. Suppose that X\ 15
a repeaghed\c aracteristic number of a, so that (A — M)t iz a factor
of | a.\'ﬂ’;?\l |. From (188} it follows that, if Q is any orthogonal

atrix such that the elements of its first column are the components
of Wne characteristic unit veetor corresponding to A, we have

)\1‘—}\ 0 0
QaQ NI =| . LT )

But the determinant of this matrix is identical with la — WI| [see
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equation (158)] and hence must possess u factor (0 — A% Thus
it follows that the cofactor of M — X in (189) must vanish when
X = Ay, so that the rank of the matrix (184) cannot be grenter than
n— 2 when A = Ay Since the matrix (W89 i rguivalnl to the
matrix & — M,

QaQ —-2I=0Q 'a-- ADHQ.

the same statement applies to that matrix.

O\
Thus it follows that if M, is a multiple characteristie numbr of
a, the equation (NN
A\
(@a—2Dx =0 >

N
possesses at least two linearly independent Htllllt]u!\‘%;\:\"ll('n Mot
Hence & second characteristic unit vector €, cofigkponding to Ay
can indeed be determined in such a way that ifys orthogonad to ey,
and the reduction can be advanced by onesAdp.

Consequently, if the first #wo columias) vi Q comprise the ele-

ments of e, and e,, equation (189) theneduces to

MmN 08 0 C 0
0 RS 0 < ]
Q'aQ —rl= 0 N0 as — A

E0)

R
gat;setzl‘;i%g:{ of Mlﬁ greater th"%n two, the preceding argument
than 1 usuin that the matrix a — N ILis of rank not greater
150 When A = ), 5o that at least three linearly independent
co.r';r?pfmdmg. characteristic vectors can be obtained.

\»i«gﬁc I{:;%i:;tg;e :easomng,. we th\:lS deduce that if X is & character-
order n. then thesfmtemc matrix &, of multiplicity s, and a is of
" s W:hen , oy an hof the matrl?c a — A1 is not greater than
b vocbors. oors 81; sg I::d_at at least s linearly independent charucter-
rank also ca;:mot bepl jgillg fo Ay can be obtuined. Ilowever, the
lineasly independent es]i an n =3 for if this were so, more than 8
in which case the tot ;3 al‘acterlstu.: vectors would correspond to Ay
vectors correspondi ! nuiher of linearly independent characteristic

ponding to all characteristic numbers would be greater
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than the dimension % of the space involved. Hence we obtain the
following important result:

If N\ 1s a characteristic number, of multiplicity s, of o symmetric
maidriz a of order n, then the rank of the matriza — M1 is exactly n — 8
when N = Ai; that s, there exist exactly s linearly tndependent corre-
sponding characterisiic vectors.

This statement does not apply, in general, to a nonsymmelric
matrix, as was shown by an example in Section 1.11. However,

“argument analogous to that given above shows that ihe statemept
does apply also to Hermitian mairices. Ke

In the general nonsymmectric case, it is shown in Section 1.26
that a matrix a with n distinct characferistic numbers Possesses 7
linearly independent characteristic vectors. If a qual matriz Q
is formed, in such a way that the components of guscessive vectors
comprise suceessive columns ol Q, the matrix a¢al be diagonalized
by the similarity transformation Q' a Q, she’resultant diagonal
clements being the characteristic number$\of a (see Problem 51}.
However, in consequence of the facp that the n characteristic
vectors are gencrally not orthogonal)it follows that @~ # Q7, in
gencral, so that the matrix Q is generally not an orthogonal matriz.

If certain characteristic n}}riibers of a nonsymmetric and non-
Hermitian matrix are repested, there may be less than » linearly
independent chara(:t-(:ristiu\;ec.tors, so that complete diagonalization
in this way is impos 'bl‘e::t Tn any case, it can be shown that any
square matrix can’k:e\transformed by a similarify transformation
(which is not ypefessarily orthogonal) to a canonical matrix with
the following, ,}{rpperties:

1. AllNdietnents below the principal diagenal are zero.
2. ”lfh} diagonal elements are the characteristic numbers of the
mateixs
"\B“A]l elements above the principal diagonal are zero ezcepl
%ssibly those elements which are adjacent to fwo equal diagonal
elements.
4. The latter elements are each cither zero or unity.

A matrix having these four properties is known as a Jordan canonical
mairix.

In illustration, for a matrix of order five for which M = X = Mg
and h; = Xs, but A; # A4, this eanonical form would be
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Moep 00 0
0 M az 0 0
0 0 M O O
0 0 ¢ )\‘ (xy
0 0 0 0 M

where each of the elements a), as, and ajy is either unity ur #ero,
according as M, corresponds to one, two, or three independenl r}mr-
acteristic veetors, and A, to one or two independent chiraetenislga
veotors. Reductions to certain other standard forms have alsQ
been studied.* <\)

1.22. Funciions of symmetric matrices. in thi;f Getion,
we restrict attention to real symmetric matrices, which gre ot pri‘n-
cipal interest in applications. We notice first thatihs 1s casily
shown, the sum of two symmetric matrices of the e order (s alse
symmetric, while the product of lwo symmelric Qm(m’rm of the sume
order is symmetric if those matrices are commydlahve,

Positive integral powers of a squaré\dndtrix & are defined by
iteration:

o\

3.2 =8 a, a_s = 8 ai’ N ?.v:::" 'a"-)-l =4 au' e, (I{.)l)
In consequence of this deﬁnitiéh’,'t.here follows also
;a“?’ =a'a = a™, (192)

N\
when r and s are pq&ive integers. Negalive infegral powers are
defined only for @fisingular matrices, for which a unique inverse

a~?! exists, ancKa;re then defined by the relation

N
N an = (a~1)", {103)
Ii We.(}é’ﬁ\ne also
o) a® =1, (10-4)

} .
\ﬁhen (192) applies to any nonsingular matrix, for any integers r und
& I Is-dear that any integral power of a symmelric matrix i ulso
symametric.
f Poiyﬂomz‘.ag f 1fnct£ong of a are then defined as linear combinations
oI nonnegative Integral powers of a. Any polynomial in a can

hence be expressed as s symmetric matrix of the same order as a.
* Bee Reforence 6,



§1.22] MATRICES, DETERMINANTS, LINEAR EQUATIONS 63

Suppose now that a is of order n, and let its charaeteristic num-
bers be denoted by Ar, Mg, . . . , Aa (DOt necessarily distinet), with
corresponding orthogonalized characteristic unit vectors e, e

., €, Thatis, let X; and e; be such that

ae; = N6; (195)
fori=1,2, ... ,n If we multiply both sides of (185) by a, and
use (195) to simplify the resulting right-hand member, there f ollow\s

a? g = )\ga e = )\,-*eg-, ‘(196)

KON
and, by repeating this process, we deduce from (195) thewreigtion
are; = \'e; N a9
for any positive integer r. Similarly, if a is nonghﬁghi@r, the result
of multiplying both sides of (195) by a~* beconies ’
a~le = Nlg ,’;§' (198)
and, by iteration, we find that (197) s j;l}tén {rue for any integer r,
Thus we deduce that if X ¢s a chatucteristic number of a, with o
corresponding characteristic vector gythen N7 is ¢ characterisiic number
of ar, with the same chamcteristz’@"zreétor e;. For a symmetric maftrix
of order n, there are exactly # linearly independent characteristic
vectors. Hence it follows in this case that a’ cannot possess

additional characteri t'@ xnumbers or vectors.
Next, consider ar& polynomial in a, of degree m, of the form

PapLaa + aa + - < tanoa taal  (199)

If we cons,idé} the product of the matrix P(a) with any character-
istic vect\\ei'"éf a, and use (197), we obtain the relation

.,g'("éx)ei- = ™, +_a1)\.-“‘_1e,- 4+ amohe - awe,
Sor) P(a)e; = P(\je. (200)
Hence it follows that the equation
[P@ —pllx=0 (201)

possesses & nontrivial solution when p = P{}), and that a sola-
tion of (201) in this case is an arbitrary multiple of e.. But, as in
the preceding argument, no additional solutions of (201) can exist,
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Thus it follows that #f & i8 symmelric, then P(a) hay the sume charace-
teristic vectors as a, and also, if the characteristic numbers of 2 are
Ny -« » y Mwy thER those of P(a) are P(M), .+« -, FP(ha).

Let the determinant |a — AT}, the vanishing of which deter-
mines the characteristic numbers of &, be denoted by FEa:

FOO =]a — NI (202)
Then F() is a polynomial, of degree = in ), which vanishes when
A= M, . ~
F(a) =0 (t=12,...,n. ’,\‘[{2{13)

If now we identify the polynomial P with F, cqu:}{ii\m {200)
becomes N

Flaei=0 (=12 00 204)

Thus if we write temporarily b = F(a), it follogs that the equation
b x = 0 possesses the n linearly independe golutions x = €., - .« s
€, _But gince b is a symmetric matri;e"%f order n, the results of
Section 1.8 show that b must be o rank n —n = (.

Hence
b = P(a) must be the zero matrizaBind it follows that

Ba) - 0. 205)

’II;?;t is, if the charac@g;?ﬁiic eguat‘ion of o symmelric malrir & 18

Em:i 0, th'm the a@u a satisfies the equation F(a) = 0.
o 8 cu:ilc.;us a,nfl seful regult is known as the Cayley-Hamillon
._ m, and is often stated briefly as follows: “ A matrix satisfies its

characteristi¢ equation.”

hw];t S :ﬁ%;:an: :1? notice that in deducing (205) from (204 we
B indepen(()l teliaet tha't & symmetric matrix always hus #
PR - toen e aracter}stlc ve_ctors. Since this statement
misﬁc ot 3PP thenfmsyrgf'.net',r!lt:: maftrices with repeated character-
However, it can hepricﬁ l;g proof does not apply in such cases-
gl Ie, o prove l?y somewhat less direct methods that

i g({;} OS stion theorem s true for any square malric.
mult-iphcit}lf) s Sf}fze:f factor (A — \.)*, where s > 1, so that X, I of
e sa,t.isﬁés e 1-::16 arfument sthw.s that the symmetric matrix
GO - POV /O ):ice characten_stzc equation G(a) = 0, where
iy be teod as an 71 (The matrix & considered in Section 14
example.} This statement is not necessarily true
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if a is nonsymmetric, as may be illustrated by the matrix considered

on page 32.

As a verification of the theorem, we notice that, for the matrix

2 1]
a = [1 2:|! (206)
we have
z=-x 1 | _.,
F()\)—‘ . 2_)\‘_7\ 4N + 3, (2073,

and the equation a? — 4a + 3I = 0 becomes Oy

[54r84+530_00_.j~>
4 5 4 8 0 3] {6 ol

. <
We notice that this theorem permits any powé};\of a matrix a,
and hence any polynomial in a, to be expressef’as a linear com-

bination of the matrices I, a, a% . . ., a"j?,\\vhere % is the order
of a. o\
Thus, for the matrix (206} consi@grb’d above, we have the
successive results o A1
a® = 4a — 31, SO

o = 4a% — 3a = \4‘(4;— 3T) — 3a = 13a — 121,  (208)

and so forth. In ad iﬁoﬁ, we obtain the relation a — 4I + 3a~™?
= 0. Hence we deduce that
N et = -+
N
and obtain{Skecessive negative integral powers of a by suecessive
multiplidations and simplifications.

A\~E§ﬁ’nvenient determination of the constants of combination,
igjb;le: case of a general polynomial, is afforded by a result next to
b&vobtained. In place of determining the constants involved in
the representation P(a) = cia® ' + 2" + . . . +el, it is
desirable for present purposes to assume the equivalent form

P(a) = Cilta — \Dfa — D)+ - - (& — NI
+Cfa —MDia —2I) - - - @—ADI+ - o
+ CJla —MD@—ND - - - {a— Aol (209)
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where each bracketed quantity, and hence also the complete right-
hand side, is clearly a polynomial of degree n — Lina. 'y deler-
mine the » (s, we postmultiply the equal members of (2087 sieees-
sively by each of the n characteristic vectors ey, ... ,e, o the
mafrix a.

If both members are postmultiplied by e., and use is mevde of
the relation a e, = A8y, it is found that the coefficients of 4l ("
except Cy then contain the factor (M = ), and hence vanisies
Thus there follows, after a simple calculation,

O\
Plajey = Qo[ — \y) -+ - VRS VIR [ VIR VI B (s EW ey,
AN 210)
fork =1,2, ..., n. But reference to equation (;{Q\tﬁ’t}u-n shows

that the coefficient of e, on the right must he equalte °(h).  ‘Thus

if the characteristic numbers of the matriz a are all Wistinet, we obtain
the result 2

7

Cy = —‘—I-)—O—\k—)——— (% ?:i,'ﬁ, Cee L, m), (211)
H v — A) ~N
r ik ™

where the notation l] deno’ges’ “the product of those factors for

. rk
which r takes on the

. valnes 1 through n, excluding . If this
result is introduced int.

0.(209), the desired representation is obtuined

in the form ¢
\ZZ'\ P@) = 3 POWZia), (212)
_ \& k=1
with the c@;ve’nient abbreviation
N Zya) == k=19 ... 213
N Mow—ny ® =120 @
ik

Cases in which certain
special treatment, *
* See Reference 1.

It can be shown that thj : : :
t i i 13t this representation with appropri-
ate n}odlﬁca,;mns for repeated characteristic numbers) is valid (for ang? Isqulurt‘

characteristic numbers gre repeated recuire
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To verify this result in the case of the matrix (206), we notice
that x; = 3and x; = 1. To evaluate P{a) = a’ we first calculate
a -1 a—n 1

3=1 ~ 3 =3 - —3@®~3L
Hence, with P(3) = 27 and P(1) = 1, there follows
at = 3l(a — I}) — 4(a — 3I) = 13a — 121,

in accordance with (208). The usefulness of (212) would clearly\
be better illustrated in the caleulation of al®®. O\

It should be noticed that the quantities Z; depend onlj;x ol a,
and are not dependent upon the form of the polynom:la,l P chosen,
The result (212) is known as Sylvester’s formula. >

Having defined polynomial functions, we may, néxt ‘define other
functions of a by infindte series such as

Zl'_ a—I), Zg=

w0 M 4 \\ :
D, @wa™ = lim as,‘a'” (214)
m=0 M = LN ;

for those matrices for which the mdjca.fed limit existe. We omit
discussion of the convergence of auch geries. However, if a is of
order =, it is clear that the sum of M terms of the series can be
expressed as a polynomial of; anaximum degree n — 1 in a, regardless
of the value of M, in const%quence of the preceding results. Hence
we see that &f the sekigs tonwerges, the function represenied by the
series must also be 8¢ expressible, and hence must be determinable
Srom (212) if the s@amctemsﬁzc numbers of a are distinet.
In part;culos\r it can be shown that the series
N\

Q.t

(215)

3]”

c(xm?erges for any square matrix a. Suppose that a is a matrix of
ordér fwo, with distinct characteristic numbers A and ;. Then
(213) gives

a — )\21 a — )\11

e Z
A — A D VIS W

Z, =

and from (212), we obtain the evaluation

oo — L[ = a — (e — NI (216)
Ay — As
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The corresponding evaluation when ks = A2 can be t)])t}LiIlt:t.l from
this result as the limiting form when ha — Ap {sce Problem 55).

1.93. Numerical solution of characteristic-value proh-
lems. In the process of dealing with » characteriztic-vidne prob-
lem of the form

ax = \X, {217)
it is necessary first to determine roots of the characteristic equation
la —»xI| =0, (2[8)

and then, for each such value of X, to obtain a nontrivial Hp]{il‘ib?l
vector of (217). If a is of order n, equation (218) is :111’:1"1&‘\11‘:11(:
equation of the same degree in X, and the numerical dgténmination
of the characteristic numbers generally involves consfdbrabie labor
whenn > 2. Further, the actual expansion of (218 wiay be tedious
in such cases.

In this section we outline a numerical i@’w ive method which
avoids these steps, and which is frequentiyudeful in practice.  This
method is analogous to the method, assdeiated with the names of
Vianello and Stodela, which is applied ‘to corresponding problems
involving differential equations.* O .

Suppose first that the domirint characteristic number, that is,
the characteristic number with largest magnitude, is required.  To
initiate the procedure,, wé ehoose an initial approximation to the
corresponding charagtetstic vector, say x!, In the abwence of
advance knowledge,'as’ to the nature of this vector, we may, for
example, start with“the veetar {0, 0, . . ., 11 or {1, 1, ..., 1}

This initial g,\p:bfbximation is then introduced into the feft-hand
member o,fQ(ZI'T’). If we then set

T,
d

N ¥ = ax(0, (219)

bl{e“:fequirement that (217) be approximately satisficd becomes
y(l) = A xh, (220)

If the respective components of x(V and ¥ are nearly in a constant

ra.(.;io, We Inxy expect that the approximation x(V s good, and that
this ratio is an approximation to the true value of h.

It is conventional to choose x(¥ in such s way that one com-
¥ Bee Reference 8.
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ponent is unily, and to choose, as a first approximation to the domi-
nant characteristic value of A, the corresponding component of
y. A more efficient determination is outlined in the following
section [equations (232a,b)].

A convenient multiple of ¥ is then taken as the next approxi-
mation x(*, und the process is repeated until satisfactory agreement
between successive approximations is obtained. As will be shown,
in the case when a is real and symmetric, this method will le
inevitably to the domsnant characteristic value of X and to ‘the
corresponding characteristic vector, unless the vector x¥ happens
to be exactly orthogonal to that vector, except in the undsgal case
‘when the negative of the dominant characteristic nurpbe;' 18 glso a
characteristic number. K7

If the smallest value of X is required, we fixgb bransform (217)
to the equation '

x=ha"lx. /W
With the notations

NN

b=al &&=

(221a,b)

this equation takes the form .“ ' _
e =kx (222)
The largest characteristiclvalue of x for this equation can then be
determined by the ia{lfative method, and is then the reciprocal of
the smallest charagteristic value of x for (217}, - -
This inversio\ﬁ.clearly fails if & is singular, that 513, if & = 01is &
characteristic mimber of (217). A method whieh is useful in this
case is presefted in the following section (page 73).
To jm}é't.rat-e the basic procedure, we seek the largest charac-
teristigy value of A for the system
4 ~\' $
\”“3 2 X2 b T =AE
T -+‘ 2272 + 2173 =% Xay ¢ (223)
1+ 232 + s = A23

With the initial approximation x™" = {1, 1, 1}, there follows

11 1}t 3 3
yo =|1 2 2|{1; =15} =615 (224)
1 2 3]l1 6 1
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If we determine A such that the zs-components of A x" snd yo

are equal, we have AV = g, Next, with x(» = {§ = 1!, there
follows
L1 1§{3 ¥ 51
VR =1 2 2008 =140 = {arh (225)
1 2 3[l1 3L 1

The second approximation to the dominant charncteristic number
is then M» = 31 = 517 The third step then gives

O\
11 1] (4 3t Yoy O
1 2 2|18 ={%2) = EERp gL AN (226)
1 2 3]l1 t1A \

i ’\\

and also A9 = W = 5.06. The ratios rigRa according to
the four approximations are (1:1:1), (0.500:Q833:1), and (0.446;
0.803:1). The next cycle leads to the value A\ = 505 und to
the ratios 0.445:0.802:1, which henceqnﬁ} be expected tu be
aceurate to three significant figures, ¢ >)

124 Additional techniques,\\ih order to improve and
extend the procedure jus outlinedyin the case when a is real and
symmetric, it is desirable to congfdér the analytical basis of the pro-
cedure in that egge * For this Purpose, we may suppose that e,
€ . .. ,e,are the true-arthogonalized characteristic unit vectors
of the problem {217) sotresponding to the characteristic numbers
?\13 ?.\2, ©« + 5 Ay artanged in increasing order of magnitude. If the
initial a,ssun:lpti({n\’::m is imagined to he expressed in the form

\ %
:..\';’ D = 2 i€y, (22?&)
\\ k=1
then. the vector ¥ = g x(0 et accordingly be given hy
~O J -
9, YO = D cae, = 27k

Next, if?, Ipultiple of ¥0, say o ¥, is taken to be x(® there then
follows similarly !

x[ﬂ) z ; n
= g )
bl ¥ kek] Y(e) = o 2 :\.k ckek- (2283,1))

. .
Certain other cases are considered in Sections 1,25 and 1.26,
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More generally, after r steps we have

b T -1
k=1 A

n

k=1
or
r—1 =1
x = At I:cnen. + (;\;*1) Ca1€a—t + v 0 ()%) clel:l
n _ ” CdN
_ (229a)
and, correspondingly, - o\ _
¥ = BAS [cneﬂ + (}k—l Coin1 -+ * 7 T (Ll '.";:181]‘ |
hn hl’l -
' ’ (229b)

D .

Since ), is the dominant characteris f6~\number, the powers
(Ae/M)" tend to zero when k # n, aadithe expressions tend to
multiples of e, as r increases excépi;;jirfhe very special case when
the initial assumption x(® happens o be exacily orthogonal 1o €,
so that ¢, = 0. N

If N, is & multiple root of fhe characteristic equation, it is easily
seen that the process will&till lead to one corresponding character-
istic vector. The casé when ), and —X\, are both characteristic
numbers requires gpecial treatment.* However, in most practical
cases the characteristic numbers are all nonnegative.

The rate f:c\onvergence of the method clearly -depends upon
the magnitudéof the ratio of the two largest characteristic numbers,
In case th:sr ratio is near unity, and the convergence rate is slow,
the malﬁrix a may be first raised to an integral power p: The
chafacteristic numbers of the new matrix a? are then M%) . . . ; M,
and The ratio of the dominant and subdominant numbers is clearly
inereased. _

We may notice from (229a,b) that, if at any stage of the iter-
ation the true vector e, were known, the condition

(0 7) = Mew X) (230)
* Tt is apparent from (229a) that if A,y = —\» the sequence xw, x®,

converges to a multiple of c.&s + Cr-1€a1, whereas the scquence x2, W, L.
converges to a multiple of e.8, — Cn1€n (3€€ Problem 62).
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would lead to the relation

Bhica = ABASle,  or N =\, (231)
and hence would determine ), ezactly. Clearly, any multiple of
e, would serve the same purpose. Thus it may be expected that o

reasonably good approximation to A, would be obtained by veplicing
€a by a convenient multiple of either the approximation ' or the
better approximation y* in (230). 'This procedure gives t.iQ
alternative formulas

(x, ¥9) & X (x, x7) (2320)
'\
or F7, ¥9) = Mix0, yo), 327 E3h)

of which the second is in general the more nearly acpt}faté, It can
be shown that the approximation given by (232ajNs always con-
servative in absolute value (when g is symméttidd. The same is
true of that given by (232b) if the matrix a jg'also positive definite
{see Problem 79). W

We list in the following table the results of applying (A) the

preceding method, (B) the formula, of, (2329,), and (C) the formuls
of (232b), to the illustrative examples
I VRN ¢ N o)
— B L)
1 i 6.000 4.667 5.000

21 5487 5043 5048

3 \?.’065 5.049 5.049

O 5.051 5049 5.049
It may be_seer:zﬁjshht if (232a) or (232h) is used, the successive
approximationsto A

» converge more rapidly than do the approximsa-

tionstoe (This statement ig generally true. Thys these formulas

To obtain the smailess characteristic number of (223), we write
& = 1/), resolve the equations in the form
2m — Ly = K X1,

-z + 2%, — Xs

i

K s,

-

(233)
Iy oy = oy
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and determine the largest characteristic value of « by the preceding
methods.

Suppose now that one characteristic vector, say one which
corresponds to a dominant characteristic number, is known exactly.
Then for a symmelric matrix, all other characteristic vectors may he
considered to be orthogonal o e,.* Hence, if we impose the
constraint

(e, x) =0 (234)

on the problem (217), the resultant problem will posscssk‘ﬁhose
characteristic numbers and corresponding characteristi€ vectors
which are in addition to A, and e.. But (234) permigtsiﬂne of the
components, say z,, to be expressed as a linear combistation of the
others. Hence we may eliminate 2. from thesealar equations
corresponding to (217), disregard the rth resulting equation, and
obtain 2 set of n — 1 equations involving ehly' » — 1 components.
The dominant characteristic number, apd\a corresponding charac-
teristic vector, are then cbtained as béfore, the component z, being
determined finally from (234).

Whereas the coefficient math associated with the new set of
n — 1 equations is generally ,ﬁ;iné.ymmetric, the convergence of the
iterative method is assured\in this case by results to be obtained
in Section 1.26. o)

In particular, inkthe case when la| =0 so that A =0is 2
characteristic number of a, we may replace &, in (234) by the corre-
sponding charasferistic vector. Unless = 0 is of multiplicity
greater thaw)one, the corresponding reduced set of equations can
then be irverted for the purpose of determining the smallest non-
zero charucteristic number. In the more general case, a number of
Un{ir{é}'%ns equal to the multiplicity of the number A = 0 must be
&liminated in this way.

"The procedure may be repeated until the solution is concluded
or until only two components remain, at which stage the character-
istie equation is quadratic in » and the analysis can be conveniently
completed without matrix iteration. Thus, if a is of order three,
only one iterative process is needed. If a is of order four, we may
conveniently determine the largest and smallest characteristic

* If the characteristic numbers are distinet, t}}iﬂ must be so; otherwise, we
may impose this condition without loss of generality.
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numbers and their corresponding vectors. The conditions (e, x)
=~ 0 and (e, x) =0 then permit the elimination of two come
ponents, and the reduction of the problem to one involving only
two components.

In practice, the determination of the primary charuct eristic

vector is only approximately effected. It is found tlat the mumer-
ical determination of & subdominant characteristic veetor will of ien
involve repeated subtraction of nearly equal quantitics, partich-

larly if the two relevant characteristic numbers are nearly, wipltal.
In such cases, it may be necessary to caleulate the compuhids of
the dominant characteristic vector to g degree of accuriey much
higher than that required for the subdominant charseiristic vector.

To illustrate the reduction in the preceding exgiple, we notice

that the dominant characteristic vector is givem By 0,443, 0.802, 1}
to three significant figures. Hence (234) herg bBecomes
(N

0-4452; + 0.802z, + 2= 0. (235)

If'we e]jmipate: *3 between (235) gnd'~(223), and notice that the
t.!ur(:l equation is then g consequence of the first two (to the three
signifieant figures retained), wedobtlain the reduced problem

0.5552,% 0.198z, = X, ]

0;1{0;‘}-}- 0.396z; = A g, (236)
of (236), and the two com-
! teristic vector, can then be
obtained by matrix iteration, if this i8 desired, the component z;
being dete;‘fqihed in ferms of them by (235). Otherwise, since the
cha.rac!:?l?tsmc equation of (236) ig quadratic, that equation can be
_Sol‘fﬁd':by the quadratic formula, anq the ratio of the z, and z.
E%?é?ﬁ:;ﬂdiezil;he corresponding characteristic vectors can he

1.25, Generalized
tain fields we encounte
general form

characteristic-value problems, In cer-
r charactenstic-value problems of the more

8% = \brx, (237}
where a and b are real

3quare matri
reduces to the type con nices of order n. Such a problem

sidered Previously when b = . The charac-
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teristic equation corresponding to (237} is of the form
|a —Ab|=0. (238)

In the important practical cases in which hoth a and b are
symmelric, so that a7 = a and b” = b, we next establish a useful
generalization of the results of Section 1.11. If X\, and A; are
distinct characteristic numbers corresponding, respectively, to the
characteristic vectors e, and e, there follows ~

ael=)\1bel, aeg=7\2beg N
and hence also .\

(ae)Te; — Mbe)T e,  efae; = helbe
&
or, making use of the symmetry in a and b, \
efae; = Mel” b €3, eTae; x=,{2\ge1’" b [ (239)
By subtracting the first equation from thessecond in (239), we then
obtain the relation i O
(2 — Me bés = 0. . (240)

Thus since & 7 A by a.ssump’tiah, we conclude that e," b e, = 0.
That is, #f e, and e, are charaeleristic vectors, corresponding lo two
distinct characteristic numbers of the problem ax = Nb X, where 2
and b are symmetric, @‘&follow&

N\ ej_Tbeg = 0. (241)

Tt is convedieiit to speak of the left-hand member of (241} as
the scalar ;oa(‘ it of &, and e, relative to b, and to say that when
(241) is sa\@sﬁed the vectors e, and e, are orthogonal relative Fo b. tI‘he
ordinaxy type of orthogonality is thus relative to the wndf matriz L

. ln;,'cénsequence of (241) and (239), we deduce that the veclors
L and e, are also orthogonal relative to the matriz a.

The left-hand member of (241) is conveniently demoted by

(e1, €5)p. More generally, we write

(w,v), =u’bv=v"hbu ' (242)

for the scalar product of u and v relative to a symmetric matrix b.
In particular, when v = u we define the produet

[ = (4, W)y = 0" DU (243)
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to be the square of the generalized length of u, relutive to b, In
order that this quantity be necessarily positive except only when u
1s the zero vector, the matrix b must be positive definite,  'I'his is the
case which most frequently arises in practice.*

In ihe remainder of this section, we assume thal a is real and
symmetric and b real, symmetric, and positive definite.  In particular,
this implies that b is nonsingular. The generalized length of a
vector, relative to b, is then real and positive unless the veclor is i,
zero vector, in which case its generalized length is zero. N

By a method analogous to that used in Section 1.1, it..i’nf‘t,hen
easily shown that the characteristic numbers of (237) are redl) Fur-
ther, by an argument similar to that used in Section I“.:!]',:’«it. cun he
shown that to a characteristic number of mu ltiplicity s Qm}‘r correspond
s linearly independent characteristic vectors, Then,” by methods
completely analogous to those of Section 1.J2N'this set can be
orthogenalized relative to b, and normalizetin such o wayv that
each vector possesses generalized length unit.y: It is scen thad. the
condition | b | = 0 guarantees that the characteristic equation (238)
be of degree n. Hence, in the case wnder consideration, we may
always obtain a set of n mutuallysorthogonsl unit characteristic
vectors e, €z, . . . , e, such that

L ey = 3. (2:H)
L

The normalized’mfgda.z matriz M, associated with (237), may now

be defined &y the matrix having the components of the Eth vector

of the set as thevelements of its kth colump,

- Then in consequence
of the relation™

N
N ae; = xbe; (5:1,2,...’,&)
\” !
t{@r’e"fo]lows
A0 .. 0
- 0 x -+. ¢
aM=bm| " o0 =bMD, (245
0O o ... M

b is positive definite. 1If a is

* Usually at least otte of the i
.. ) matrices a and
positive definite
1Le, we nterchange the roles of 4 and b

may replace » by , .
throughout this section. ¥ 3/M and i
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and also, in virtue of (244},

MZbM =1 (246)
(See Problem 24.)
We may now verify the fact that, with the change of variables

X =Mue, {(247)
the fwo quadratic forms
N\
A = x7ax, B=x"bx (248a,b
oA\
arc reduced simultaneously to the canonical forms £\ ¢
A= o Da= a4+ haas? + 00+ M\ (249a)
B=aa=alta+ - +al” (2490
For the substitution of (247) into (248b), and the use of (246),
gives immediately :'.\\"

‘L
B=e"M’bMa<x"e"w

in acecordance with (249b), Wherea.s;i“;}ﬁé: substitution of (247) into
(248a) gives ”.
A= {!@MT aMa

and the use of (245) leais@; the result
e, :
A2 M7bMDae=0a"De,
i accordance W:i’(ﬁ:: ‘(54:93).
From (24}3{“‘3 follows that

N 1

NI | M| = & —=

\ VIbT

80\$E§‘E- the transformation (247) is nensingular, Further, since
(246) leads to the relation M—1 = M7 b, the inversion of (247) may
be conveniently effected by use of the eguation

o=M"bx (247)

™

Equations (249ab) are identical with equations (140} .and
(142) of Section 1.17. It isimportant to notice that the coefficients
A:in (249) are the roots of the equation |a — Ab| = 0, and hence
are real, under the present restrictions on 2 and b.
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If the matrices a and b are both postlive definite, the characler-
istic numbers \; are also necessartly positive.  This result is cstabe
lished by noticing that the relation

ae = l.'b -
implies the relation
&"ae = \e be,

Since both e a e; and e.” b e; are positive when a and b are pos}?-
tive definite (and e, = 0), the same is true of A, O\
The preceding results will be of importance in Sectiong. 12 of
the following chapter. A\
Any veetor v in n-dimensional space can he expregstd s a linear

combination of the vectors &, €, ..., e, of thefurm
VoGt t s toen 2D ce. (2502)
SO E

In order to evaluate any coefficient ¢,, Ave merely form the general-

ized scalar product of e into both gides of (2501), and use (244)
to obtain the result \\

ad

NS

Cr = (&r, ¥)y, = e,ftgvf.’" (r=1,2 --. n. (250b)

The case of most cgm}non oceur

] : rence in practice is that in
which b is 5 diagonal z(a\mx g, say

ANG - g
N g, -0
57, (N = lg: 8] = [g; 8), (251a)
'"\:.
:\\“ 0 ¢ 0
8O thajf the equations g x = A g X take the special form
N\
\”‘; - St + ony + - .. 4 G1nZn = \ gu1,,
e I T , (251b)
Ca1®t + gty - v v s T Cunn = X\ guz,
where q;; = ;.
The generalizeq scalar prodyct (x, ¥)g then takes the form

(xs Y)g = g].xlyl + szzyz _+.. [P + annyn, (2510)
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while the generalized length of x is given by
2= (x, %) = gt +gota? + + -+ + g2t (251d)

The condition that g be positive definite requires that the diagonal
elements be positive:

g >0 =12 ---,n). {(251e)

1t may be noticed that in certain cases a set of equations of the
matrix form a’ x = A x, where a’ is a nonsymmelric square matrix,
can be reduced to a set of the matrix form ax = A g x, whére'a s
symmetri¢c and g is a diagonal matrix with positive dig;g;gnﬁl ele-
ments, by multiplying the 7th equation of the origifial st by a
suitably chosen positive constant ¢, When a’ is of@raer twe, this
reduction is clearly always possible if aj,ay > ByE is possible in
other cases only when the coefficients satisfy eértain compatibility
conditions. If and only if such a reductioi}\is possible, a’ can be
expressed as a product d a, where d = grlis a diagonal matrix with
positive diagonal elements, and 2 is symmetric.

To conelude this section, we inditate the extension of the numer-
ical methods of the preceding sedtions to the treatment of a char-
acteristic-value problem of the form '

AN
o\‘..’ax = Abx, {252)

where again a is a ggmmetric matrix of order », and b is a positive
definite, symmetrit/matrix of the same order.

Since by a.sﬁsinhption, b is nonsingular, equation (252) can be
reduced tosthe form

Olk blax =\X, (253
whitehis of the type considered previously. However, the matrix
b~ will now not be symmetric, in general. In the case of (251D}
the reduction to the form (253) involves only division of both sides
of the 7th equation by ¢..

In order to investigate the convergence of the iterative pro-
cedure in this case, let the normalized characteristic unit vectors
be denoted by &1, €2 . . . , €n corresponding, respectively, to
Ay, Ae, .. ., A, SO that

ae = Mbe. (254)
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The initial approximation x( can then be imagined to he expressed
as a linear combination of these vectors, in the form

R
i — 2 Ci8y. (255&)
k=1

Then if we denote b~ a xV by y», there follows

n H .\
yO =h1q xh = 2 ablae, = 2 ab b e
kwi LT O\
{
n 7"\ "
or yO =blax = 2 AiCe,. A (255D}
k=1 A

By comparing (255a,b) with (227a,b) of the prededing section,
we see that the arguments presented in thatgeedion again apply
here, to show that successive approximationg, will indeed converge
to & multiple of the dominant vector e.. O

In this case, however, it is seen that the requirement

(en, Yy = )S(’en, xY,,

in place of (230), would give }'?::; A

» exactly. Hence (232a,b)
should here be modified to the“alterna.

tive conditions

EOLP), ~ Rz, 200, (256a)
or, better, \"
RS A SONESD We L I i (256D)
Similarly, equ,a\,tie\n (234) must be replaced by the relation
...\.:, _ ox
N (&, X}y = 0, (257}

which: bermits reduction of the order of the system when one
chafdeteristic vector has been obtained,

\ JThe same statements apply to the inversion of (253),
1
X =a'bx,

which is. used in determining the smallest, characteristic value of A
when a is honsingular.,

L26. Characteri
Whereas the char

stic numbers of nonsymmetric matrices.
acteristic equation fa —~AI| =0 of a non-
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symmetric square matrix a of order » is of degree , we have seen
that when the roots of this equation are not distinct the total number
of linearly independent characteristic vectors may be less than n.
In the present section we exclude the exceptional cases, which rarely
oceur in practice, and suppose that the n characteristic numbers of 2
are real and distinet. The corresponding characteristic vectors are
then linearly independent. '

In order to cstablish this fact, we assume the contrary and,
deduce a contradiction. Suppose that the characteristic numbers

A1, . . ., Ay are all distinet, and denote the eorresponding cha}ao-
telistw vcctors by €5, ..., €. We then have the {rélations
ae; =ne; fori =1, 2, , % Assume that the ﬁ}‘at r char-

acteristic vectors are llnea,rly independent, but that\

841 = 2 CrBk, \‘

where at least one ¢ is not zero. BY( p\emultlplymg the equal
members of this relation by a, there then follows

\\
r+1ef+ N 2 CrAiLry

) §

and hence also, by comgp{’lng these relations,
\ \E ce(hrpr — M)ex = 0.
C\ )

But, since ey’ . , € are linearly independent, the coeflicient of
each ey, must’vamsh Since at least one ¢x 15 not zero, at least one
M. mustrediial A4y, in contradiction with the assumption that the
N's arevdistinet.

~Iﬁ correspondence with the characteristic-value problem

) 2

(258)

ax = \X,
we may consider the problem
aTx' =\ ¥, (258"

a. In virtue of the fact that the
differ only in that rows and
nts possess the same

associated with the transpose of
two matrices [a — A I] and [a7 — M]]
columns are interchanged, thelr determina
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expansion, so that (258) and (258') possess the sume characteristic
numbers. Let Ny and A; denote any two distinet charneteristic
numbers, and let corresponding solutions of (258) and (258 be
denoted by e, e, and e}, e}, respectively. We then have the
relations
ae = )uel, a’ e', = )\ge;,
from which there follows ~
(A2 — Ae,T e'; = {} . (%59)
xS
Hence we conclude that any characteristic veclor of (258); T Sortho-
gonal {0 any characleristic vecior of (258') which corresponds o a
different characteristic number: e\
¢4
(o) =0 () 2O

This property permits the generalizatimk\of the methods of
Sections 1.23 and 1.24 to the more generdl “case considered here.
While the problems considered in Sectipung.25 are included in this
generalization, the methods given in thatsection are usually prefer-
able when they are applicable, ON?

In particular, it is seen that the Eﬂeﬁicients in the represcntation

(260)

“" R
= 2 Crey {2Gla)

k=l

are determined by fQT}ﬂHg the scalar product of e} with the two

raembers of thig equation, in the form
NS

AN ci(er, e) = (v, o). {261h)

&
A develop)gent analogous to that of Section 24 then shows that
the ety iteration procedure again converges in this case to the
chatjat{teﬂsmc vector corresponding to the dominant characteristic
I\“?‘;bﬁr of & In fact, such a development shows that the con-
vehgence of this procedure is insured if the matrix a possesscs 7
linearly independent, characteristic vectors, and only rea! charac-

teristic numbers (which need not be distinct).* While formulas

* By a somewhat more involved a i i
) _ nalysis, which may be based on the general-
i;le;fl Sy)lﬁiesttirhfoymulav mentioned in Section 1.22 (ef. Problem 54), it can be
ooown that the fterative procedure converges to the dominant charncteristic
number of any real matrix if ihes

number is real. and ¢ . istie
number has egual absolute valye, If the dc-mi:)a;lan ¥ o unequal characteristic
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analogous to (232a,b) can be devised for more accurate estimates
of An, their use involves a considerable increase in calculation.

The essential modification in procedure is involved in the caleu-
lation of subdominant characteristic quantities. In the more gen-
eral case considered here, the constraint condition (234) must be
replaced by the equation

(e, x} = 0. (262)
N\

Thus after the (approximate) determination of the dominant charac-
teristic number \., and the corresponding vector solutiof \ep, &
vector el satisfying the related equation a” ¥ = Ax musﬁsb\e deter-
mined (see Problem 71). The constraint {262}, whigh’ubrresponds
to the fact that all other characteristic veetors of a‘dre orthogonal
to &), then permits the elimination it p KNS LSSl
of one of the unknowns in the sys- O K,

tem of equations (and the neglect LD

of one of the resulting equations) \ M, 1-_

.*'

so that the order of the system is 1D
reduced by unity. .',,’:L )
1.27. A physical applicatioin
Several applications of the preced-
ing methods will be found\in the
chapters which follow)“In this ¥2
section, we presend oné such appl- ks
cation to a mechatieal problem. e
We consider/the problem of N T
determining/#he natural modes of
free vibb{tic;ﬁ of the mechanical
SyStem‘f%dicated in Figure LI, ‘
in which the masses M1, My, and M are connected in serles to a
@éd'support, by linear springs with spring constants ki, ks, and
kY The effects of viscous damping are neglected. If we dencte
the displacements of the respective Mmasses from their eq_uihbnutm
positions by (), ve(f), and yi(l), respectively, the deferenplal

FicurE 1.1

ays exponentiol and the procedure is often not
f that number is somehow known in advance.
Problem 62) which are useful in this special
dominant numbers are conjugate coms-

the rate of convergence is not alw
practical unless the multiplicity o
Modifications (similar to those of
situation, as well as in the case when the
plex, are given in Reference 1o
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equations of motion are of the form

Mld;fz ko(tiy — 1) — Kap = — (k1 - kz)yr A ey

M!Slti_:ég = ks(yz — y2) — kalye — y1) = kan — (k2 ksjys + Ky
M, ddys —kalys — y2)} = kalp — Kaa A
(263)

The natural modes of vibration are those in which tha }n Anses

oscillate in phase with a common frequency, and hLIlLL uru specified

by equations of the form m\
() = 2y 8in {wl -+ o),

A\ o
ya(f) = zg 8in (wf 4+ OQ""\ (264
ya(f) = x; sin (wz.+’ a),
where the amplitudes 1, 2z, and s zmd the common circular fre-

gueney o are to be determined. By introducing (26:4) into (263),

and canceling the common resultant time factors, we obtain the
equations A

(ks + ka)mn ,\z:f;\ ~ kas = Mo,
— kalta B (kg + ka)xy — kazy = Muw? s, ) (265)

N ~ ks + kamy = Maw? 75
It should b@ notlced that the matrix of the coefficients in the

Ieft—han&me:nbers is symmelric. Also it is found that the “dis-
crlmmants” A, defined in Bection 1.18 are of the form

AN

\»\} » Ay = k4 kg,
Ay = Tky + koks + Kok,
Ay = kikoks,

80 that the matrix of coefficients is also posifive definile when the
spring constants are positive.

In the special case when ky = ky = k; = k, and M, = M, =

M; = M, these equations reduce to equations (233) of Section 1.23
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if we set

K= = (266)

Mo?,
2

| -

Tence the characteristic values of A discussed in the example of
that section are invergely proportional to the squares of the natural
frequencies of the physical system under covsideration, and the
compouents of the characteristic veetors are in the same ratio as
the three amplitudes z1, zs, and x; in a correspending mode of
vibration. .

In the fundamental mode, corresponding to the smallestgiatyural
frequency, and hence to the dominant characteristic vapll;w\ of X as
defined by (266), the circular frequency is hence giv?a’ﬁy

L
Mol o 10 o= 0445 31;\
~
Here the three masses all move in the sande direction, the respective
displacements from equilibrium at amyNinstant being in the ratio
(1.445:0.802:1. o\

By completing the analysis dndicated in Section 1.24, we find

that in the second mode therefollows

(e = 1247 T“f{-
N
In this mode the first two masses move in the same direction,
whereas the thidd ‘mass moves in the opposite direction, the dis-
placements Baig in the ratio —1.247: —0.555:1. In the third mode
there folldws”

R P
A ws = 1.802 \/ﬂ--

e &

) 4
}[ere the first and third masses move in the same direction, ar.id t}']e
second mass in the opposite direction, the displacements being in
the ratio 1.802: —2.247:1. )

The most general motion of the system, possi})le in the absence
of externally applied forces, is then & superposition of t.he three
modes just described, in which the phase angle a of equation (264)
may take on different values in the individual modes.
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f the three masses are unequal, equations (265) are of the
form of equations (251b), with g; proport waul te M, To illustrate
ihe treatment of this case, we suppose that

k1=k2=k3‘£k, M1=ﬂ'rzﬁ."w, 1‘1'3:2‘1!,
so that equations (265) become

M?
2Ty — ¥ = T
] N
Muw? N

—z, + 222 — %3 = _kw La, »* AN
Py N
f ot W

—z3+ %2 = 2)}: La ™
) ) (&
In this cage we may write O

=1, g=1 g2
In order to determine the fundamen\ta}\mode directly, we must
firgt invert these equations in the form

T+ oz +2~’53 = X Ty,
$1+25€2+’4I3 = ?\I:-;_, ’

T, -{-{sz + 611?3 = A Iz
where \\ g
k
“;.z" M= e

Except for réﬁned suceessive estimates of A = &/(Mw,?), the culet-

lation Prbobeds exactly as before. The results of successive steps

are fabu ulated below to three significant figures:

w\:'}'ﬁm yin l Xy l e
\:151 1 4 (0444 3.22 | 0.402 3.15 | 0.399 3 15 0. 399

ze{ 1 7 10777 6.00|0.750 5.00 | 0.747 5.80 | 0.747
zz0 1 9§ 1 8.00 1 7.90 1 7.80 1

Thus, after four cycles, the modal column {0.399, 0.747, 14 is
repeated. The dominant characteristic value of A is scen to be

7.89, S0 that the fundamental circular frequency of the physical
system 18

yeo (9 Ym | x(ﬁ)
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.. 1k
wy = 0.356 ﬂ

if only this value were of interest, and accurate values of the corre-
sponding mode components were not required, the use of either
(236a), in the form '
Mzt + 2t 4 20t & (@ + Ty + 23ys),
or (256b), in the form N
A\
Mo + Ty + 2xays) = (' + 90* + 2057,

would yield the above result for the dominant value “oi’}?«after only
the second cycle. * O

If the remaining modes are required, the orth'iig}mality relation
(257) becomes

Q.

0.399a, + 07472, + 200085 0,

and permits the reduction of the ordepnofthe system to two.

1.28. Function space. In tlg’is’sect-ion, we develop certain
analogies between vector space aiid the so-called “function space’”’
and point out certain essential j@iﬁiculties involved in the treatment
of the latter. ¥

If, in ordinary threefdimensional space, we consider any fwe
vectors 1 and v wh'ck{i are not scalar multiples of each other,.we
sec that the totality%f all vectors of the form ¢;u + £2¥ comprises
a double infinityaf-+vectors, namely, all vectors in that space which
are parallel ‘ﬁﬁe plane of uand v. If w is any third vector which
is not parahel'to the plane of u and v, then all vectors in that space
are co@déed in the representation et + Ca¥ + €W. I‘n the
lﬁ-ngll\alﬁe of linear vector spaces, we say that “any three linearly
i,lldéllﬁéndent veetors form & basis in three~dimensional space.” ‘

\\ ) Similarly, if we consider two functions f(z) and g(z), defined
over an interval (g, b) and not multiples of each other over that
interval, those functions which are of the form ef(z) + eef (%) com-
prise a doubly infinite set of functions. However,.thls get very
obviously falls far short of comprising all functions which are 'd‘eﬁned
over (a, b). The question mext arises as to the possibility of
choosing a set of funections guch that any funetion, sausfymg
appropriate regularity conditions, ean be expressed as a linear
combination of these functions over a given interval, hat is, as to
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the possibility of choosing a Hhasi'! in funetion spaee’” nsso-
ciated with that interval, Certainly any such set of funrtions mast
have infinitely many members; that is, function spaee COMPIises
infinitely many dimensions. Also, as In vector spuec, we would
expect the choice to be by no means a unigue one.

In vector space of n dimensions, great udvantage s allained by
choosing as a basis a set of » mutuully orthugonul vectors, that is,
a set of vectors such that the scalar product of any two distinet
vectors in the set is zero. This fact suggests that we intreduce af >
analogous definition of the scalar product of two funefiins, 1‘1'};\1}{\'8
to the interval under consideration. It is found that u purigegrirly
useful definition is of the form \ <

b , "\ ' -
(o) = [ fods. L9 e
This definition is & natural generalization of the'vector Jefinition
9, N
n { &
(b, v) = 2 uf,yk’:x\
k=1 )

as the dimension of the space %ﬁfi:“the number of components
_involved become infinitely large O .

Thus {(assuming here and"hén;::éforth that the functions involved
are stch that the integral§ involved exist) we are led to suy that
two funclions g’(x) a (&) ‘are orthogonal over an interval (a, b} if
the integral L g dpwanishes.

In particulagr,:\w};en f = ¢ we may think of the number f ! frdz

i AN H ]
ﬁttl?zh esgl}gagf}oi the 1§ng ” of f(z) in the funetion space associated
; ,‘%QS val {a, b). It is more conventional to speak of this
quantity, as the norm of f, and to write

.\'

Ot vorm f = {if{ = (7, f) = Lbf’da:. (268)

iko it;nctlon whose norm 1s unity is said to be normalized, and is scen
e analogous to a unil vector in vector space.*

We n(.Jtme thati if the norm of § is zero, then the integral of the
nonnegative function f* aver the interval (¢, b) must vanish. +his
roeans that f{z) cannot differ from zero aver any range of positive

* In some references, the norm o

(. 1.

f f is defived as the positive square roof of
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length in (e, b). In particular, if f is continuous everywhere in
(a, b), and has a zero norm over that interval, then f must vanish
everywhere in (@, b). However, it is clear that If f(x) were zerc
everywhere except ab a finite number of points in {a, b), the integral
of f2 over that interval would still vanish. It is convenient to speak

of a function f{z) for which Lb 2 dx = 0 as a trivial function,and tg

say that such a function vanishes “almost everywhere” in (a, b).%

A set of » functions is said to be lirearly independent in (g, b)il
ne linear combination of those functions (with at least one rien-
vanishing coefficient} is identically zero over that interval. . Giyen
any such set of functions f;(x), we can then determine & st of n
new functions ¢.(x), each of which is a linear combinat:idt; of certain
of the f's, such that the ¢’s are mutually orthogonal@nd formalized
in (g, b). The procedure is completely anaiogqus\fo the Schmidt
procedure of Section 1.12. We call such a gat” of functions an
orthonormal set. Any two functions of Ahe set then have the
property that v

(65 &) = [, Si0hdR = 85, (269)

where 8 is the Kronecker delta,0f equation (39).

Now for any (sufficiently rég‘ular) function f(x) defined in (a, )
we may caleulate the seafar product of that function with each
Tunetion ¢: “\

s J b
SG= (f, ) = [ f s (270)
The functions ¢pare analogous to a set of » mutually orthogonal
unit vectors ir{ Space, and we may think of the numbers ¢, ¢z . - .

Cn 88 the s.e{il}r“ components of f{x) relative to thosefunctions. We
refer to,these numbers as the Fourier constanis of f(z) relative to the
functigns ¢;(z) in {a, b).

/There then exists an n-fold infinity of functions which can be
gonerated as a linear combination of the n ¢’s. If for any such

function F(r) we write
. .
Fio) = 3 aen@ (@ <z <), @)

k=1
* ¥or a more precise definition of this term it is desivable to consider an
extension of the usual coneepts of integration. The points at which brivial
funection differs from zero may be fnfinite in number, so long aa they are not
“densely ”* distributed.
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ench coefficient @, can be determined by forming the sealar [)I:U(llwt
of &, with both members of (271), und using (2007 (o ubtain the
result

d, = {Fu ¢r} (272)

Thus the coefficient ax in (2711 s the scalar compounent of F(z)
relative to ¢x(T)-

For a more general function f(z}, we may assume wi approcimda
tion of the form

: <.
f@y = 3 wdlx) (e <z <b) AN
k=1 & W

\
¥ 4 s ~.
< 3

and determine the coefficients a, tn such a way tipt/the norm of

the difference between the two members of (373 bver ta, ) iy 48
small as possible: N

A= Hf(x) - zﬂ, cucqbk(;c)! - f [,f(x? f;“%:”mk(.r) \2 dr = min.

k=1
& (274)

The approsimation to be obtagﬁﬁd, over the interval {a, b), is thus
the best possible in the “l8ast squares” sense.

If we think of a furchion f(z) as & “vector” in funetion spaee,
extending from an.origin to a “point” I” in that space {sec Prablems
86-91), we can igterpret (274) as choosing, from all pointx which

A\ n .
can be att-g,xg'cd by vectors of the form 2 apdelr), that pont

. N\ . ko=
- whose distance from P is as small as possible.

Equation (274) is equivalent to the requircment that the
eXPression .

e \ W
\ s

As= Lbf‘"‘dxwzé:,l ay, Lbf¢kdx+ Lb[ kﬁ; akrﬁk(:z'}]e dx

take on a minimum value. But since the functions ¢, are ortho-

normal 1t follows that only squared terms in the last integrand have
_honzere integrals.

Hence, with the notation of (270), we uvbtain
the result
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b - 10
A= szdx—2 Zakck—l— Zaf,
E=1 F=t
which ean be put in the more convenient form
b n n
a=["pd— 3 0+ 3, (o — a) (275)
@ =1 =1
From this resulf it is clear that, since f and the ¢’s are fixed,
takes a minimum value when the coefficients a; are chosen such that
@ = . L 276)
Thus it follows that the best approcimation (273) in thp.,{eifi'st-squares
sense 1s obtained when ay is taken as the Fourier gopstant of f(z)
relative to ¢(z) over (a, b). N

The norm of the deviation between f(z] aid its best n-term
approximation of the form (273) is then Ql\bﬁined, by introducing

k=1

(276) into (275), in the form o~
) X \
_ a P — 2, 277)
IEEDECCTIS S T

From the definition (274) itjs:'.,‘clear that (277) eannot be negative;
that is, we must have )

N\ n
fPria— 3 o z0 278)
\ 4 k=1

This relation is&gown as Bessel’s inequality.

Suppose oW that the dimension n of the orthonormsl set ¢,
2, . . . pHidsincreased without limit. The positive series in (278)
must in&‘e“ase with n (unless the corresponding ¢’s vanish) so that
the ?1:1‘:01‘ involved decreases, but since the geries cannot become

g;@,-é,‘ﬁﬁr than the fixed number j; ’ 2 dx, we conclude that the series
2 ¢x? always converges to some positive number not greater than
1

f bf 2 dz.. However, there is no assurance that the limit to which

this series converges will actually coincide with this integr al, sothat
the right-hand member of (277) then tends to zero as n InCreases.
That is, it is not sufficient merely to have a set of infinitely many
mutually orthogonal functions.
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In illustration, we may recall that the functions cos (krr/a)
k=123, . ) constitute an orthogunal set of functions over
the mterval (0 a) that is, we have the velation

a
rRx 8L
cos — cos —— tz = 0 {r # 8).
0 @& a

The norm of each function over (0, a) is a/2, so that ihe Funelions

olx) = \/% cos"i’l'f (k=1,2, ") 27N
a a N
A\
form an infinite orthonormal set over (0, @). MHowever, fm the

gimple function f(z) = 1, the relevant Fourier (Unht,mt-» are all
zeros, since here

. .~f\“
6&*%@[ l-cos;ﬂda:=0 k=X )

AN

Hence, in this case the right-hand membel\cif\ (277) 18 conxtantly
equal to g, regardless of the value of n. AN

In space of n dimensions, if we ednstruct a set of n mutually
orthogonal vectors, then the possfblht.y of exprcsmn{, any other
vector as a linear combmatlon «f ‘these vectors is a conseyuence
of the fact that no other Vector can be linearly independent of
them; that is, there ex:sts !*10 veetor in that space, other thun the
zero vector, which is multaneously orthogonal to these n vectors.
However, in functign space (of infinitely many dimenslons) the
difficulty consists; \m “the faet that a funetion may simultaneously
b.e orthogonal to an infinite aumber of mutually orthogeual fune-
tions. Thus,in'the above case, the function f(z) = 1 is orthogonal
to all the«}&mehons in the set (279) over the interval (0, ¢). How-
ever, if\tan be shown that this function is the only nountrivial
funct}on which has this property, so that for the extended set

1\)30—“?,\]7008%;--- \/? nEr o,
a ' Alg 008 5 (280)

there is no nontrivial function whose Fourier constants ail vanish.
Such a set of orthogonal functions is said to be complete.

It is easily verified that the set (280) is also orthogonal {but nob
normalized) over the larger interval (—a, o). However, it is
obvious that any edd function of » [for which f—z) = —f(a)] will
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possess zero Fourier constants relative to this set, over that inferval.
To complete the set, it is found to be sufficient to add the functions

2 . 2 . .
,\Fsm L \/2 sin 2_1rx’ e gsm mr:v} e, {281)
a a a ) a &

Either of the sets (280) and (281) is complete over (0, a), while
the combination of the two sets is complete over (—a, ¢} or, as a
matter of fact, over any interval of length 2a. These results a¥e ™
consequences of the known theory of Fourier series. O\

It can be shown that if the set of functions ¢, ¢z, . v, u

., is complete in (a, b), then the right-hand member of (277)
does indeed tend to zero in (g, b) for any function f(z) which is of
integrable square over that interval. The proof of¢this theorem is
involved. Furthermore, it is difficult in practi¢e’aetually to estab-
lish the completeness of a given infinite orthogonal set of functions.
For this reason, no attempt is made hgap{i'}i pursue the general
theory. AN

However, it is important to reslize-that one further difficulty
exists. Ewven though we prove tllafgr’ﬁhe right-hand member of (277)

tends to zero as n increases, s¢ :t,héjt

i [ [0 kz; ad@) | dz = 0, (282)
$ - =1

n— @

we cannot then coftelude that the integrand tends to zero every-
where in (a, b), 50t only that it tends to a trivial function over that
Interval. Th&:bis, there may be no specific value of z in (g, b) for
which w%if}fthen certain that the statement

&

L

fz) = lim 2, catn(®)

Z’\. I |

Qt;ue. We know only that the mean square error in (@, b) tends .to
zero, and we say accordingly that if (282) is_ frue .then the series
converges in the mean to f(z). However, if f (x) is continuous through-

out the interval (e, b), and if we can prove that the series 2 exdr(T)

1
also represents a continuous function over that interval,* then the

* This will be the case, in partieular, if the functions ¢ are continuous and
if the series converges uniformly in the interval (g, b).
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difierence between these two functions is a conlinuous funetion
with gero norm, and hence is indeed zero everywhere in {a, 1), 80
that the series then converges to f{z) tn the true sense al ench point
of (s, ). Unfortunately, the conditions stated wre not always ful-
filled in practice.

While the knowledge that a series represents a funetion which
differs from f(z) in {a, b) by & trivial function is often ull that is
required (for such purposes as infegration), it is nevertheless fre-
quently desirable to determine whether or not the series aetualig >
represents f(z) af a given point. The trentment of problems of s
type iz again beyond the scope of the present work. O\

The problems just discussed have been satisfactorily “Sotved,
in the mathematical literature, for a very large classvol sets of
orthogonal functions which frequently arise in praftie. Certain
known results are summarized, for convenienpoxpference, in the
following section. AN

It should first be pointed out that, in dnklogy with the corre-
sponding situation in vector space, it ighoften desivable to modify
somewhat the definition of the norm of & function. In particular,
if f(z} is a complexr function of .a{"réal variable z, of the form

uw{x) + i0(z), the norm of fis I{Sli’ifllir defined to be the real quantity

151460 = [ Fras, (283)

O

where g bar indicai?es}hat the complex conjugate is to be taken.
We speak of (283) 55 the Hermitian norm of f. The Hermitian
scalar product 6)two complex functions f and ¢ is then defined to
be one 'of @hég:two different quantities (f, g) and (J, §), these two
qqantt@gs}bemg complex eonjugates. In particular, f aud g are
sald to De orthogonal in the Hermstian sense if ,

AN

PR

O Fa=0p=o0 (284)

In problems analogous to those discussed in Section 1.25, but

llizzhfrmg de:_ﬁ“erent‘ial equations, sets of functions are often gener-
ah()n 1?1‘ lellch the members ¢, 4, . . . , ®a, . . . are not ortho-
%01‘; 1 the sense of (269), but for which a relation holds of the

b
L r@)e@e Y de =0 (4 5 5y, (285)
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We may define the left-hand member of (285) to be the generalized
or weighted sealar product of ¢; and ¢;. The funetion r(x) is cailed
the weighting function, and in practical applications is nonnegative
in the relevant interval (e, b). The functions ¢,(x), for which
{285) holds, arc said to be orthogonal in (a, b) with respect to the
weighting function r(z). Finally, the norm of any funetion f relative
to the function # is defined to be :

1£1, = [ rras, (286)

and a function with wnit norm, so defined, is said to be q{m&lized
relative to r(z). The weighted scalar product of f ag;'d g is con-

veniently indicated by the notation N
b %7 2

G o= [ rigde O (287)

1.29. Sturm-Liouville problems. In this section we sum-

marize briefiy certain known results coAcérning sets of orthogonal
functions generated by certain typgs.ef boundary-value problems
involving linear differential equatigns.”

A problem which consists of ' homogeneous. linear differential

equation of the form o

) §

PO} =0 288)
.‘E‘i;g\ﬁ)—!-qy%'?\?’y 1 (

together with hom(}?neous boundary conditions of a rather general
type, prescribed:a’b the end points of an interval (@, b), generally
possesses a.fonirivial solution only if the parameter X is assigned
one of aeettain set of permissible values. For such a value of A,
say A %&;, the conditions of the problem are sa,tisﬁfad by an expres-
sionebP the form y = C ¢u(z) where C is an arbitrary c?nstant.
r\I‘hE ‘permissible values of A are known &8 its characteristic mlﬂraes
: \(éf “eigenvalues’} and the corresponding funetions or(z), which
! then satisfy the conditions of the problem when A = A, are known
: as the characteristic functions (or ¢ gigenfunctions”).

In most cases oceurring in practice, the functions p(z) and r(z)
are positive in the interval (a, b), except possibly at one or both of
the end points.

If we define a linear differential operaior
equation

of second order by the
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d d
L = = (P d—x) +q, (289)

equation (288) takes the operational form
Lyd+rry=0, {290)

and is seen to be analogous to equation (237) of Section 1.25.

We show next that, when suitable boundary conditions are pre-
seribed at the ends of an interval (g, b), the characteristic functiofs
of the resulting problem have properties analogous to thoge dis-
cussed in Section 1.25. For this purpose, let ¢:(x) and gfe) be
two characteristic functions, satisfying the conditions of the problem
in correspondence with distinct characteristic numbers % and Az

We then have the relations .m;\'\
d { dé,
Tz \P _d%) +adi+ e ¢si\0 (201a)
d deb: ) )

and pr (p H’%) a0 hg = 0. (291b)

If we multiply (291a) by ¢,-~a,nvd’;(291b) by ¢; and subtract the
resultant equations from each other, there follows

W b x"'S_d de; d{ de
()\J_ R!\)?" ¢l¢\1\.. ¢3£(p‘ﬁ)_¢‘ﬁ(p%€)

N\

ON d de; de;
N\ = E[P (%‘% - ¢s£§):|r (292)
s .
and the re%f't,\of integrating both members of (292) over the interval
{a, b) takesthe form

Ny

PR b b
O 00 [y o = [p(s28 _ g 19)]
\\}.. Of ) e ¢¢J P d’s dx Py dx N (293)
Thu_s, since we have assumed that A # N, we conelude that if the
specified boundary conditions require the right-hand member of

(293) to vanish, then the characteristic functions ¢: and ¢; are ortho-
gonal relative to the weighting function r(x): :

b L
@ dde= [Tromde=0 (v . (204)
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Appropriate boundary eonditions which may be seen to give rise
to this situation include the following:

1. At each end of the interval we may require that elther y or
dy/dx or o linear combination a y - 8 dy/dz vanish.

2. 1f il. happens that p(z) vanishes at # = a or at z = b, we
may require instead merely that y and dy/dz remain finite at that
point, and impose one of the conditions 1 at the other point.

3. If it happens that p(b) = p(a), we may require merely th{t
y(b} = yla} and ¥ = ¥'(a).

In most practical cases [in particular, if p, g, and r are yegular®
and both g and r positive throughout (a, b)}, when the interyal {a, b)
is of fintte length it is found that in each of the listed\cases there
exists an #nfinife sct of distinet characteristie numbey@ Ny Agy -y
Am . . . . If also the function ¢(z) is nonposigive.in (g, b), and if

¢ ol <0,
[p ..\\‘

the N's are all nonnegative. Furthermdte;” except in the case of
the periodicity condition 3, to each™characteristic number there
eorresponds one and only one chgré@téristic funetion, an arbitra.r‘y
multiple of which satisfies all ¢he specified conditions when A is
assigned the appropriate Qh;a}acteristic value. In case 3, fwo
linearly independent chamcﬁéristic functions generally correspond
to each characteristic mhmber. Such pairs of funetions can t]:Een
always be ort.hogm\éli’zéd, if this is desirable, by the Schmidt
procedure. o _

A problem, @f the general type just considered is known as &
Sturm-Liouyilbe’problem.

The Jgiportance of such problems stems from the known fact
that thé%éts of orthogonal funetions generated by these problems
are chmplete, in the sense of the preceding section, and ful:ther, that
'a\ii(\)‘-ii'tive statement can be made in such cases cONCErning actual

“eohvergence of the series representation of 8 gufficiently We]‘l—beha,vefi
function f(z) to the value of the function af all points where f(z) i
eontinuous. '

In actual practice, it is often inconvenient.to nor'm:ahze. the
charactoristic functions (so that their norm relative to r is unity).

In such cases, the coefficients in a series representainon

* A funetion f(z) is said to be regular at & = %o if it can he represented by

4 power scries over an interval including Zo.
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fi®) = i Crgpn(z) {a <z <h) (295)
k=1

are given by the formula

I

C, ]:' r ¢ dx _Lb rf o dx (206a)
or, symbolically,

Cu‘ || b ”r = (f:l ¢€)r- (290}3)

N\
This result iz obtained by multiplying both sides of (295) by\ the
product r ¢;, integrating the results formally term-by-term ower
(@, b), and taking into account the orthogonality of the chakacter-
istic funetions relative to the weighting function r(x). ~We notice
that (206b) reduces to the obvicus generalization ,0{’.(270) when
I ¢:llr = 1. The theorem to which reference wasmiade above can
then be stated as follows:

Let the funclions p(x), ¢(z), and r(z) in'(BS‘S) be reqular in the
Jinite interval (a, b), and let p(z) and r(z) be \pbsitive in thatinterval,
tncluding the end points. Then, if f(x) @5 Precewise differentiable in
{a, b}, the series (295) converges to flz)at all points inside that interval
where f(x) is continuous,* and to the hean value 3[f(z+) + flz—))
. at any point where a finite jumg‘éc;‘curs.

While the stated conclusions follow also under even milder
restrictions on f(z), the condition given here is satisfied by most
functions arising in px éﬁcé.

To illustrate thisg%esult, we may consider the differential
equation e

' ) d%y
) gz TrY =0, (207)

'$)
which ig4hé special case of (288) in which p(z) = r(z) = 1 and
¢(@) 20." If we consider the interval (0, @), and impose the
bm.{n“dary conditions
A% 30 =0, gy =0, (298)

it is easily verified that the characteristic values of X, for which this
problem possesses a solution other than the trivial solution y{x) = 0,
are of the form A, = k%r2/ %, where k is any positive integer, and
that the corresponding characteristic functions are given by

* The conver

. genee is absolute and uniform in any inferior subinterval which
does net include

& pomnt of discontinuity as an interior or end point,
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¢:(x) = sin ﬁ?—

Thus we obtain in this way a derivation of the Fowurier sine-series
represeniation

MW =N 0<r<a, (299)

k=1

where, with r{z) = 1, equation (296) determines the coefficients
in the form \
¢\

Cr =2 [ f(z) sin 7= da. O 300y
aJo a A\

In a similar way, the conditions ¢'(0) = y'(a) 20 associated
with (297} give rise to the Fourier cosine-seniés representation,
while the periodicity conditions y(—a) = y{ehand y'(—a) = ¥ (@),
relevant to the interval {—a, @), lead to thie general Fourier series
representation over that interval, involyitg both sines and cosines
of period 2a. O

By considering other approprigte, special forms of (288), expan-
sions in terms of Bessel functitms, Legendre polynomials, and so
forth, may be established. ~The latter two cases are exceptional
in that the coefficient functions p, g, and r do not satisfy the require-
ments specified in the préceding theorem. However, it has been
found that the congliisions of the theorem are still valid in these and
certain other exceptional cases. .

Elementargfiscussions of such developments may be found in
Reference 8 ACHapter 5). For more detailed treatments of these
topics, Refercnces 4 and 5 are suggested.

In tKost: cases when the interval (a, b) is of infiniie leng_th, or
Wheﬂ\'jﬁ’vher conditions of the stated theorem are violated, it fre-
guenily happens that the characteristic values of A are no }onger

isretely distributed, but that all values of A in some confunuous
range are characteristic values. In such cases, the superposition
of characteristic functions is accomplished by integration, rather
than summation. In particular, for the problem discussed relative
to equation (297), it is found that all positive values of  are charac-
teristic values when the fundamental interval is of infinite lengt.h,
and one is led to the Fourier infegral representation. In certain



100 MATRICES, DETERMINANTS, LINEAR LEQUATIONS [§1.29

other exceptional cases the characteristie values may again be dis-
cretely distributed, or there may be both continuously disiributed
and discretely distributed characteristic values of A.

Finally, we remark that the preceding discussion can be general-
ized to apply to characteristic functions of boundary-value problems
governed by certain linear ordinary differential equations of higher
order, as well as to characteristic funetions of two or more variables
asgoclated with certain partial differential equations. ~

Analogous characteristic-value problems governed by Hitear
difference equations, and by linear inlegral equations, are ‘td) be
treated in Chapters 3 and 4. O

\ N
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PROBLEMS

Sections 1.1, 1.2,

1. Ilustrate the use of the GGanss-Jord ion i ini
. ~Jordan reduction in obtaining the
general solution of each of the folloswing sets of equations :m obtaining
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(8.) Xy '+' 232 + 2$3 = 1, (b) 2.’51 + Xz = 4,
21, + 2z + 33 = 3, T — 2z, + 2:33 = 7,
z, — %2+ 3z = 5. 321 + 22 =1,
Section 1.3.
2. Evuluate the following matrix produects: 7\
(a) [1 27111 0 1 {b) [1 2][ 6 —2], »
1 —1J [1 —1 1]' 3 6ll-3 ™
© la ar -« ad (b} @ () la el el
ba by (N ’
. . m'\\‘
ba RN
(e) 3] 0 a1 alg:l ,(f):.‘ 11 e €1 0 .
[0 Cz] [0.21 Qan ) :w’ an an] [0 Cz]

3. If the productab ¢ is deﬁgg&,’:ﬁhow that it is of the form
fasdiballed = | 35 aibocis |
4. It is required tq ide‘ti:erminez values of the funetion
S = [ e pi0

at the n pointh\/z; . . . , z.. Show that, if in each case the integral
is approximgted’by the use of Simpson’s rule, as a linear combination f;}f
the ordinategof N equally spaced points & = a, &, - - - fvny S = by
Where ‘L\Qs‘t'fdd, the calculations can be arranged in the matrix form

Q fi
NS &, o0 K 4fs
J K,y Kz ¥

w\: N ?2 b—a Ky Ku -+ Ko 2'?(3

= —SN — 3 g?l. ’I-{s-s ] ' .- .. ' -I{‘gj\f ?
G;“ Knl Kﬁﬂ <+ K j:N

where &, = &(z,), K,; = K(z, £}, and f; = f(£)- )
5. Apply the procedure of Problem 4 to the approximate evaluation

of the integral
$(z) = ];1 m sin 7£ d§,
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for & = 0,4, 4, , and 1, with N = 5. Retain three significant figures in
the ealeulation.

6. Prove that, if two square matrices of order three are both sym-
metrically partitioned (as in the fext on page 9), then these nintrices
may be correctly multiplied by treating the submatrices as single elements.

Section 1.4,

7. Prove, by direct expansion or otherwise, that | a
" when a and b are square matrices of order two.

bl = [ab]

8. Determine thoge values of X for which the following set of equations
may possess a nontrivial solution: NS ¢

3t 2 — Az =0, . ("}«. '
4 — 20~ 3z =0, (O
M+ drs + Ay = 0. SNV
For each permissible value of A, determine the m’,d&:general golu tion.

9. Bhow that the equation of the straigh.t'li\l; ar + by 4 ¢ = 0 which
pagses through the points (x,, 4,) and {x.f @g)' can be written in the form

z oy AP
1y ld| = 0.
e ij‘-:;, 1

. 10- Express the requiremefit, that four points (zi, o) (i =1, 2, 3, 4)
lie simultanecusly on a con?e of the form ax? 4 bry +cy?-+d =0, in
ferms of the vanishing Kf\aai, ‘determinant,

¥

Section 1.5, N

1. A symmelMematrix g = [2:] is a square matrix for which ftis = s
(2) Bhow that a” = a if and only if a is symmetrie.
(l}{fl}bt‘a and b represent symmetrie matrices of order n. Prove
that a l{)\rs\ 50 sytnmetric if and only if 2 and b are ecommutative.
12x¥rove that, if a and
Ad{(ad) = (Adj b)(Ad] a)

NJI3. Letaand b represent diagonal matrices of order .
(a) Prove that a b ig also a diagonal matrix.
(b) Prove thatba = a b,

b are square matrices of order n, there follows

Section 1.6.

M. Ifd = [2; 3,))is a diagonal matrix, prove that its inverse is given by

1
d-1 =] =5 {.
{d“au]
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. (a} Prove that a Adj & = 0 if a is singular, and illustrate by an
examp]e
() Prove that |Adj a|={a|" (a of order #) and illustrate
by an example.

16. Determine the elements of aT, Adj a, and a—? when

1 21
a= 2 1 03
-1 01 ~

17. If ab = ac, where 2 is a square matrix, when does it necessarily
follow that b = ¢? Give an example in which this conclusion ddeghnot
follow. S\

Ny

~

Section 1.7. N

18. If a is a squure matrix of order n, show that eac of the three ele-
mentary opcrations on rows of a ean be accomphshed by premultiplying a
by & mutrix P, where P is formed by performing tha’eberation on corre-
spondmg rows of the unit matrix I of crder n. .@.each ease, show also
that P is nonsingular. A

19. If a is a square matrix of order #, shewthat each of the elementary
operations on celumns of a can be accompllshcd by pestmultiplying a by a
matrix Q, where Q is formed by per:formmg that operation on correspondmg
¢olumns of the unit matrix I of order 7} In each case, show also that Q is
honsingular. OB

200 (a) If agy = 7, $;, Pro¥, elthat a is of rank one or zero.

(b) If a = [} is oftrank one, prove that a:; can be written as ris;.

[Buch a matrix is odllg&& dyad.]

Bection 1.8,

21. (a) Ry 1nw3§t1p;atmg renks of relevant matrices, show that the fol-
lowing set of eqt’mtlons possesses a one-parameter family of solutions:

o\ ), 26y — Xz — Xz = 2
~: a4 232+ s =2,
:.\. ’ 4x1 — 7$2 — 5x3 =2,

YV {b} Determine the general solution.
22. (a) Show that the set
9py — 232+ Xa = ATy
21, — 3z2 + 225 = A3y
—x; + 22y = A3

®an possess a nontrivial solution only if .)t =1lord=
(b) Obtain the general solution in each case.

—_3.
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Sectton 1.9.

23. (a) Prove that if the Gramian of two real vectors v, and v: vanishes,
then v; and vs are linearly dependent. [Notice that, if & = 0, the equa-
tiens eviT v F v T v = 0 and cveT vy -k ¢o¥27 vo = 0 possess o non-
trivial solution. Multiply the first equation by ¢;, the second by ¢, add,
und interpret the result.]

{b} Generalize the result of part (a) to the case of n vectors.

24, (a) If a is an m X s-matrix and b is an § X n-matrix, and if the
elementg of the rth column of b are considered to comprise the elementgs.of
a vector v, show that the rth column of the product a b is the vectoraw,:

_— SO\

| | O

&
N,

R 3
)

! i
[a] Vit Va|=1avic - ave )
H . :
1 H !
: : :

Lo bl or
. (b) If the matrices a, b, and ¢ are corformable in that order, and
if the rth rew of a comprises a vector u,, whereas the sth column of ¢ com-

prises a vector v,, show that the typical elément P,, of the product abe
is the sealar u, b v,: ™

Ty e— wmbv - - wmbv,

' 4
&2
7

S
=
By

[ I — '_-‘d i
o T T
3
I

R4, | Uabvy oo unbv,

25. Detarniine the dimension of & ;e
of the f%j“‘mg sets of vectors: e veetor space generated by each

O

..:; éﬁ% %]]j’ é: g}: gly 0; 1}}! {0’ 1! 1}
:~\"" IR T} 0;1;0) 0,0, p il 4y Ly,
@) i1, 1,1{, {1, 0,1}, %1,2,12}.{1 L

N\

Section 1.10,
26. Show that the get of equations
Tt -+ o =3,
Tt oz — x =1,
3504 3w — Boy = 1

If
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possesses a one-parameter family of solutions, and verify du'ectily that the
veetor ¢ whose clements comprise the right-hand members is orthogonal
to all vector solutions of the transposed homogeneous set of equations.

27, (a] Prove that if the set ax = 0 possesses an r-parameter set of
nontrivial solutions, then the same is true of the transposed set a”x' = 0,
and conversely.

(b} Interpret the statement at the end of Seetion 1.10 in the ease
when the transpuosed set a” x* = 0 possesses no nontrivial solution,

Section 1.11.
28. Bhow that the problem N\
% — 2 = A&,
Ty — %2 = Ay Wy
does not possess real nontrivial solutions for any valueg eﬂ\x

29, (a) Determine the characteristic numbers Qla g) and correspond-
ing unit chargcteristic veetors (es, e2) of the mat,m( /
am[8 \
=15 2 "N\
(b) Verify that e, and e are orth()gons.l

{c) Use the results of parts @), together with equation (89), to
obtain the solution of the following %et of equations:

5$1\+ By = h$1+2
sg‘z-l-l-zxz—-)ivz'i“l

Consider the exceptwnal cases separately.

30. (a) Supposgt ﬁhat the n characteristic vectors of the symmetris
matrix g are nat\garmah?ed {reduced to unit length}. If they are denofe
by v, v, .2\, show that (89) must be replaced by the equation

'\
* ’1\ (vk: C)
N x = E Ae — A (Vk; ﬂ)

e

\ ) (b) Verify this result in the case of Problem 29(c).

Section 1,12,

ors which are

31. Construct a set of three mutually orthogonal unit vect
{1,1,0,0}.

linear combinations of the vectors {1, 0, 2, 2}, {1, 1, 0, 1}, and

Sections 1.13, 1.14.

h 32, T{ F is a (homogeneous) quadratic form in @y Tay v+ v 1 Ty
at

prove
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n
1 aF

33. Construet a normalized modal matrix Q corresponding to the

matrix
1 0 0
a=|0 3 =1
o -1 3 A

and verify that QTa Q = [A; §:;]. (Notice the footnote on page 31.')‘ )

oA
34. Reduce the quadratic form F = z,2 4 3z.t + 3?32 — 2@@‘1}0 ?‘
canonieal form by making an appropriate change in variables, .= Q x’,
where Q is an orthogonal matrix. N

35. Let M represent a modal matrix of a symmetl"{élgihatl-ix a, the
modal columns of which are orthoponal, but not neéessrily reduced to
unit length, Tf the characteristic vectors whose elempots COMPTISC BUCCes-

sive columns are denoted by vi, vs, . . . , vy, sho that
v o o-- :..ﬁ"
Mrm— |0 OO
0 0 V.2
and :v
)\ﬂ'l?j:" 0 0
mraM = |Gy M e 0
L2\ o PN AV
{ 0 AV

Hence deduce algo thsg,t the form F = x7 a x is reduced to the form
Pl e 4 vl + - - - 4 AoV a22)?
by the changeimVariables x = M x'.

[Notica\t};:@ts’t'his form reduces to the eanonical form {109} if the vectors
Vi are norihglized, so that M is an orthogonal matrix.]

Sectiop 115

W

3 1 2
N\ 36, Leta = [3 4]— Determine nonsingular matrices P and Q such
that Pa Q = b, where b is obtaine

and then adding twice the firs} col
Problems 18 and 19),

d by interchanging the two rows of a
umn to the second column. (See also

Section 1.16.

37. Determine the char cteristi i
Hermitian unit chay acteristic numbers (A,, A;) and corresponding

acteristic vectors (e, ez) of the problem
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92, + (2 + 20)72 = Ay,
(2 - 2?:)‘.'51 + 232 =_R$g,

where 12 = -1, und verify that e, and e, are orthogonal in the Hermitian
fenge.

38, Describe the modification of the SBchmidt orthogonalization pro-
cedure of Section 1,12 which applies when orthogonality and unit length
are defined in the Hermitian senge,

39. Prove that the normalized modal matrix U of a Hermitian matriz iy
is & unitary matrix [i.e., that equation (128) is satisfied].

40, (a) Show that, if a matrix is both unitary and Hermﬂ;mn ﬂ‘,\m}lst
satisfy the equation I.T2 =L
(b) Prove that any matrix of order two, of this type, 18, ezther the
positive or negative unit matrix, or elge is of the form N

%4

k W
U= [ a re'“], \
T Lrete —a ’
where o, r, and « are real and a® + #* = 1. \x\\\
Section 1.17. ) "' v/

o/

41, Determine whether the form "».""
F =22+ 20 & B — 2z + 2eams

is positive definite, by emmmmg t.he characteristic numbers of the asso-
ciated matrix, \

42, Determine a ch n,gé Jin variables which reduces the forms
A = 3331 = 2mi3s + 322 B = 2z* + 2z
simultanecusly to‘t‘he canomcal forms
:»\,\A = han® + haord?, B=a'tad,
by USiDg th%ﬁ{ethods of Section 1.17.
Sectmn b, 18
\46 Find the sum and product of all characteristic numbers

2 1 -1 0
1 3 4 2}
a=f_1 4 1 2
0 2 2 1
44, Determine whether the matrix a of Problem

10 be negative defindte if its asse-
and is zero only

of the matrix

43 is positive definite.

45, A real symmetric matrix a is said
elated quadratic form x7 a x is nonpositive for all real X,
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when x = 0. Stafe conditions under which this situation exists, {a) in
terms of the characteristic numbers of &, and (b) in terms of the digerimi-
nants of a. (Notice that a iz negative definite if and only if —a is positive
definite.)

Section 1.19.

46. A vector x has components {1, 1, 1} along unit vectors iy, i, and i;
coinciding with the axes of a rectangular z,z.5-coordinate system.  Tinew
axes are chosen in such a way that the new unit vectors ave related to tQ’

original ones by the equations

i; _ {il + i'.i) i; (iI - iz) i.r i f\~\
- ————"7 = 0, = 13 - -
T ‘\/ 2 * ‘\/ 2 ! ’ . \.\
determine the components of ¥ along the new axes. Shoyfr‘;ifs:) that the
new coordinate system is also rectangular. €Y

2\
47. A vector y is related to the vector x of Problensdt by the equation

¥ = ax, where \
1117 o
a = lﬂ 1 1i|=~\“
L0 0 NNV
when the components refer to the origingl axes. Assuming that x and ¥
fransform in the same way under thelclange of axes, determine the com-
ponents of y in the new system,, first, by determining the original com-

Ponents of y and transforming them directly, and second, by using equation
(169} in connection with the result of Problem 46,

48. Prove that, if the@madw unit vectors of (160) are mutually ortho-
gonal, then the matrix 86) is an orthogonal matrix.

49. (a) Show. thaﬁ D orthogonal matrix of order two is necessarily of
one of the followig'two types: '

Q4 r"\[ CO8 & ®in o _ €O8 o sin a
\:~\”—ain°‘ cos o I’ Q™ = sina — cosal
[Notice,tﬁt Qs | = +1, and | Qo = —1.]

thed s\am iblxii X &iﬁd&f; ar';a EO;SiderEd a8 tw.o digtinet v?ctors. referred t’o

\Qfated int ¥ through 1;1: :ngll;:;y at%e equation x = Q x’, verli:}"_Ehat X JE;
fionif Q= Q 9, ¥ a positive {eounterclockwise) rota

() ¥ x and x" are considered as ¢

same vector, referied to o omprising the components of the

. ginal and rotated axes respectively, verify
th?: the m)ordma:tg transformation x = Qi x corre’spongs to o negative
rotation gf t}w origimal axes, through the angle o
= O g o i
() If Q = QO in parts {b) and (¢}, verify that the transformations
otation combined with 5 suitable reflectron.



MATRICES, DETERMINANTS, LINEAR EQUATIONS 100

Section 1.20.

50, Show that if the first two columns of an orthogonal matrix Q
comprise the clements of fwo unit characteristic vectors of a symmetric
matrix a, then Q- a Q is of the form

MO O -0

0 X O 0 .

0 0 aag Dan |2
............. N\
0 0 @ * ' Cud .

2 A\
where &, andd k. are the characteristie numbers corresponding respectively
to the two characteristic veetors, ' by

Section 1.21. " :

51. Tet M represent a modal matrix of any squa,re“}:\na,trix a of order n
with n distinet charscteristic numbers Ay, . . ., An, the successive columns -
of M comprising the elements of successive qo@sponding chaliacterlstac
vectors vy, . . . , v, which need he neither ofthogonal nor of umt_lengt.h.
Prove that M—! a M is then of the form [A\'34], 8o that a is thus diagonal-
ized by a similarity transformation. ) .

[Make appropriate modificationg.d b the argument of equations {101)

to (104) of Section 1.13. Notice thak a need nob be symmetric.]

SN N

Section 1.22.

52. (a) Tia = [2 ljt\determi_ne the characteristic numbers and

1¢ q i ) ‘ ¢~ g v 1

corresponding charactéist.ic veators of the matrix b = a° — 3a + .
(b) Determing whether the matrix b is positive definite. _

53. Evaluat®\a where a is defined in Problem 52.
84, (3).'511}‘*' that if & is a symmetric matrix of order n, with distinct
character{g’tic’ numbers, then

*
¢

N n
A a¥ = 2 MY Zu(a),
\ \; w k=1
where Z, is defined by (213) and N is a positive integer. _——
~ (b) Let X\, be the dominant characteristic mumber (1-?-’ th*;ﬁc(};;rjfy
feristic number with largest ahsolute value). Notieing th”“:l or St te, show
large ¥ the nth torm in the preceding sum will then predominate,

that if x is an arbitrary vector there follows
a¥x = ANy, avtx = ATV

Where v = 7, (a)lx, when N is large, unless it happens that v = 0.
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{c) Henee deduee that, in general, if an arbitrary vector x is pre-
multiplied repeatedly by a symmetric matrix a, the vector ohtuined after
N 4 1 such multiplications i& approximately A, times that obtuined after
N multiplications, where A, is the dominant characteristic number of a,
and hence also that the vectors obtained alter successive multiplications
tend, in general, to becorne multiples of the characteristic vector associnted
with A..

{d} Show that the exceptional case, in which the vector x is such
that [Za(2)]x = 0, will occur if x happens to be a charscteristic vector of.%
corresponding to a characteristic number My # A, or if x is a lincar ‘egm®

bingtion of those vectors. O\
[A more eomplete treatment of this procedure, from a somew;h@.t\ ‘differ-
ent point of view, is given in Section 1.23.] N

55. Suppose that a is real and symmetric of order twogi*iiﬁ' a repeated
characteristic number Ay = A,.

(8) Obtain frem (216) the evaluation ."';\\
e =¢eha — (A — l)e*l!.\:
(b) Prove that & must in this ease be g\'s;éa,lar matrix, a = k1, and
show that the evaluation of part {a) reduces‘to
edl = ei‘,I.:

56. Suppose that the elements.@f‘;ﬁ' matrix a{t} = [a;;(t)] are differ-
entizble functions of a variable ¢.o\ ™
{a) From the definition

daft) _ A +A) —a@) _ . Aa
dt o At = a0 AL

prove that da(t) (4 = [da; itk
(b} Brove that

. d da db
.\ — = —
& dt(ab)—dtb+aﬁ‘

) ,‘((?}\Specia,lize the result of part (b) in the case when b = a, and
gwg\;}n;emmple to show that da/dt > 9a da/di in general.

¢\';S"e¢;:tir‘m 1.23,

57. Determine the dominant char iati
: R acteristic number and the corre-
sponding characteristic veetor for the system

A x2+ $3=h$1,
m1+3x2+3$3 = sz,

x4+ 35"49. + ﬁ«".‘a = h..".!s.
(Retain slide-rule aeeuracy.)
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58. Show that the iterative method does not converge to a charac-
1

teristic vector if a = [_ P — i ], regardless of the initial approximation.
Explain. '
59. Investigate the application of the iterative method to the matrix -

[t 1] I
a—[_Q 1l Explain,

Bection 1.24,

60. Determine the two largest characteristic numbers, and corretapoﬁd>
ing characteristic vectors, of the system AN
T4 2t T+ zi=Amy, gi} '
Bt 2+ 20k 2m = Ay 0
21+ 2a0 + 325 + 324 = A as, .mz\"
z) —!‘.2$2 4 3z 4 44 = 7\{;.‘ ¥
(Retain slide-rule accuracy.) R s\ i
61, Delermine all characteristic numbers, and the corresponding
characteristie vectors, of the system R \J
¥ — 2 .‘{ = A&,
—z1 + 2ng;’; X = Ay,
\~x2 + 225 — 2 = M Zay

b —x3t+ x4 = A T4

+
(Retain slide-rule acquﬁéy_)
62, Suppose that “the iterative method of Section 1.27 fails to converge
for a real symmlatfic matrix a, g0 that A, and —A, are both dominant
characleristic/mumbers. Take An > 0, and write At = —Aa
Show Hab, if r is sufficiently large, the input in the rih cycle is given
approxinfately by

R h. LI + Va1,
wWhere' v, and v,._, are constant multiplies of the unit characteristic Ye(,ims
évant to An and Ay = — A\, respectively, whereas the outppt ig then

given approximately by
¥ 2 Ay(¥a — V-t

Show further that if this oulpul ds taken as the input for the nexd cycle,
80 that
Xt = g,
there follows also
yorrh = A2V, + Va1)s
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80 that A, can then be determined approximately by the relution
AL IR W (LN

after which approximations to v, and v._, are given by

¥ ml xin +_1.y(r] Y Wyq 5 _l_ L lyir) B
2 A 21 An

when r ig sufficiently large.
63. Tllustrate the technique developed in Problem 62 in the ease'¢fthe

symmetric matrix a = [ —4 3]- RO N
. 3 4 L
Section 1.95. A\

S D

64. Prove that the characteristic numbers of the P ()iﬁcm ax=Aabzx
are real wher a and b are symmetric, and either a urDByis positive definite.

65. Determine the characteristic numbers ;m&l yectors of the prublem
INY

aX = Abx, where Ke
_[5 2] _[‘1\"0
“‘[2 sl Palb 21’

and :{%ﬁfy that the characteristic vegt’di‘s are orthogonal relative to bhoth
f 3 . ™

NS

66. Construct a nermalized modal matrix associated with Problem 65,
where the normalization is relitive to h.

67, Use the results szjlf}oblems 65 and 66 to determine a change in
variables which reduce‘s\bhé quadratic forms

4 .=’..5-.:‘?.T2 + 4z.5, 4+ Sz.7, B =2+ 222
simultaneously\:t"g?tﬁe canonical forms
:“\;”' A = Nay? + Aqces?, B = g + wy,
6?."3%5: that the condition (256a) is equivalent to the condition
oY (K, Xy = Az, 20
\'a?rul"ishat (256h) 18 equivalent to the condition

(y(r], y(r))h - hn(x(r)’ x(r))a‘
Section 1.286,

_ 1 )
69, Ifg = [__ __1], determine the charaeteristic vectors e; and e-

of the problem ax = ) ¢ and th ‘s ’ ’
. X e characteristic vectors e’ and e, of the
assoclated problem a7y’ — ) ¥, and verify the validity of tl:quution (260).
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70. {a) Buppose that a possesses n distinet characteristic numbers
Ay, .. ., Ay, with eorresponding characteristie vectors v, . . . , v,, and
denote corresponding characteristic vectors of a? by vy, . . . ,v.. Obtain
the solution of the problem ax — A x = ¢ in the form

%= ﬁ Vi, ©) _ v
<IN — A, V)

when X 5 Xy, . .., A [Compare Problem 30.]

{b) Tiscuss the situation when X assumes a characteristic value
M (Notice also that this cage is deseribed by the result of replaciug a
by a — Xl in the statement at the end of Bection 1.10.) A

RO
71. With the terminoclogy of Problem 70, use the result at j:]{e\énd of
Section 1.8 to show that the elements of v, are proportionsl to the.cofactors

of reapective elements in any row of the matrix PN
(011 = R,-) 130" P moa.‘n’
a—All= a1 (a2 — A) - - N

Gn1 Gng "xi'\\s: (ann — Rr)

whereas the elements of v, are proportional ,ttbtl‘l’e cofactors of respective
elements in any column of that matrix, " w6t all the relevant cofactors
vanish, Verify this conclusion in the e;g%mple of Problem 68,

Section 1.27. N

Determine the natural freque:rf;fies and nafural modes of vibration of
the mechanical system of Iigdte 1.1 in the following cases:

72. Assume k, = 2k, }ca=\=k3 =k M= M, =M, = M.

73. Assuyme }13_1 = ?Nﬂ = ks = k; Ml = M, = M, Ms = 2M.

T4, Assume kip=Mh kg = ks =k M1 = M, = M, =M.

73. Assume k;;\: 0, ky=Fka=k; My =M, = M, My =2M.

[In mo, t;pijiysica,l problems of this type, the fundamental mode (pc:rr_:e—
sponding 4g\the smallest natural frequency) is usually such that the initial
approximation {1, 1, 1, .. ., 1} is a convenient one. In the highest
naturdds mode, the successive masses general‘ly tend to oscillate with
opposite phases, so that the initial approximation {1, —1,1, . . ., *1}
usydlly leads to more rapid convergence. In Problems 74 and 75, the

system of masses and springs is unatteched to a support, and the character-
istic number sssociated with @ = 0 corresponds te motion of the system

as a rigid body.]
Minimal Properties of Charactertstic Numbers.

76. Let a denote a real symmetric matrix of order n, with characteristic
numbers Ay, . . ., A, arranged in increasing algebraic order (he = A =
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. « = \.),and corresponding normalized and orthogonalized chiravteristio
vectorg er, . . . , &, ]
{a) If x is an arbitrary real vector with n components, and hence
expresgible in the form

n

T=cer 0oyt 0 +caes = 2 x4,

k=1
establish the relations N\

n f~\'
Frooltelt - dat= Y o S\

£ O

i '\"\
ax= R1':':1‘31 + Xgﬂg&z + et + kmcmen = & "Akckefu
e\
\V/

and xTax = }\1612 + 32022 + - =+ ?\,.c.,f«%wvz R;‘ng.

“\v k=1
{b) Deduce that :":‘}
TAax Mot + haetS - - 4 Ao
x7 x R e S
and hence also that "
TN\
o, a4 ;’Y ax| .
\\ X7 x = | hi Imnx-
(¢) Prove thit)
A\N© .
N A — ADes?
N\ \ Tax kz=:1 { )k
A e~
.\\ XTx "
3w
oN®t k=1
{)?}&ny real vector x,

(d) If x is orth

ogonal {o th isti ey
ex, show that g e characteristic vectors e,.1, €e, -

> 0 - M

xTax =
ala'_ T :kl 20
xTx Yr\ = U

2

oy Ck

k=1
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(c) Show that, if x = e, there follows

xTax eTae;
X7 x el e

=e;Tﬂ.e"=A; (1::1,2,“‘,?3).

77. Tet a be a real symmetric matrix, with characteristic nambers
MZEA = ... =k and corresponding normalized and orthogonalized
characteristic vectors ey, es, . . . , €, Deduce the following results from
the results of Problem 76:

{a) The number A, is the maximum value of (x7 ax)/(z” x)_for
all real vectors x, and this maximum value is taken on when x ig identifled
with a characteristic vector associated with h,. Ko\

(b) The number A, is the maximum value of (xT a x)/(xTa&Nor’all
real vectors X which are simultaneously orthogonal fo the characteristie
vectors associated with Ay, Aoz, . - . , Mg, and this maximivn value is
taken on when x is identified with a characteristie vector agdotiated with A..

(c) The number A, is the maximum value of'e?lz\t e for all real
unil vectors e, and the number A, is the maximum vilue ¥or all unit vectors
simultaneously orthogonal to €,41, €rys, « + ., ga,;\'a.nd these successive
maximy are taken on when e i identified the x{ig}ant unit characteristic

vegtor. < )

78. Suppose that Problems 76 and 77 are’modified in such a way that
ME XA S ... £, are the charadteistic numbers of the problem
ax = Abx, where a and b are real and $ymmetric, and also b is posit{wc
definite, and ey, ey, . . . , €, compiise'an orthonormal set of corresponding
characteristic vectors, the orthogdhality and normality being relative t‘()
the matrix b. Show that t}qz tesults of those Problems again apply if
x7x is replaced by x7 b x ffroughout, and if “unit vectors” are of unit
length relative to b. X\ b

79. Suppose thatl the charaeteristic numbers of a real gymmetric
matrix & are arranged in order of increasing absolude value.

(a) Dedulec'from the result of Problem 76(b) that the use of equa-
tion (232a), im leonncetion with iterative approximation to characteristic
quantitics, Jeatls to approximations to A. which are not greater than A,
in absolufe, value. o

D) Show that the use of equation (232h) amounts to approximating

Aybyal ratio of the form
3
Atfer? + Aer® + 0 7 + )\“2612;
Mel 4 Ase + 0 + Autal
and deduce that such an approximation is conservative if all characteristic
numbers A; are posifive.

80. (a) If a is a real symmetric matrix, all of whose elements are non-
negattve (a:; = 0), deduce from preceding results that the _{:haractemstlc
number of largest magnitude js postlive (although its negative may then
also be a characterigtic number), and that all components of €he correspond-
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ing characteristic vector e, are of the same sign, and hence muy he taken
to be all nonnegative, (Consider the naturc of eTa e.)

(b) Show that the result of part (a) is also true of the dominant
characteristic quantities for the problema x = A b xif b iy reul, symumetric,
and positive definite, a is real and symmetrie, and a;; = 0.

81. (a) If 4 is & real symmetric matrix with characteristic numbers X;
and corresponding characteristic vectors e;, show that there follows
ef ax = M, x, and hence also ~

e;7(ax — Ax) =0 =12 ---,n), N
oA\
for any real vector . [Notice that this result follows also fronvtlle fésults
of Problem 76{n).] g
(b} With the notation y = ax, for the “transforpi. "6f x, deduce
that +50)

L

e‘,T(y_)\‘.x)=0 (£=1'2, .. ;‘*n,

for any real vector x. O
82. Suppose that a is 5 real symmetric mat&fx.\with no negative elements.
(a) Deduce from the results of Prolilemis 80(a) and (81) that the
components of the vector y — \.x, wherd p = a x, then cannot all be of
the same sign (unlegs they all vanish,‘so';that x is a multiple of e,).
(b) Deduce that, in this case, il the input x of the iterative methoed
of Sectml_'l 1.23 possesses only ngAnegative elements, then the dominant
characteristic number A, is not greater than the largest ratio y;/z; of corre-

sponding elements of the outfiit and input vectors, and not less than the
smallest such ratio:

)

N\ " ]
N, min® <), £ max ¥
" i Ty P ¥

83. Prove th@? the statement of Problem 82(b) is true glso for the
application _t)\f}he iterative method to the determination of the dominant
Gh&rac’ﬂ?rgalg'nun}ber of the problem ax = A b x if b is real, symmetrie,
and positive definite, whereas a is real end symmetric and composed only

g@ﬁggegﬁive elements. [Use Problem 80(b) and a generalization of

) 3?4. Buppose thaii a is a real, symmetric, positive definite matrix such
diag:) n\;}]ereas ﬁll diagonal elements are positive, all elements off the
1al are either negative or zero. ix of
coefficients in (265).] o, for exemple, the matrlx ©
(a) Bhow that, if & is an iti

. . ¥ positive constant larger than the {argest
diagonal element of a, then the matrix m=gal — ais a symmetric matrix,
all of whose elements are nonnegative,
N (b)}\Show that the characteristic numbers u; of m are given by
g]; . QEt‘,e_"- i, Where \; are the_characteristic numbers of a, and that the
aracteristic vector of m associated with . is that of & associated with As.
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(¢) Use the result of Problem 80(a) to show that the largest p; is
positive, Deduce that the dominant u; is gy = & — Ay, where A; i the
smallest characteristic number of a, and that all components of the eorre-
sponding characteristic vector have the same sign. Hence show that the
smallest characteristic number of & mafrix a of the type under consideration
is not larger than the largest diagonal element of a, and that all eomponents
of the associated characteristic vector may be taken as nonmnegative.
[Notice that the matrix m can be obtained
more easily than the matrix a=!, for the ]
purpose of determining M and the cor-
responding characteristic vector by ma-
frix iteration.]

85. Generalize the results and pro-
cedurcs of Problem 84 to the case of the
problem ax = Abx where a is a matrix
of the type described in that problem, and 9 (x)
b is a positive definite matrix with ne neg-
ative clements.

Section 1.28. AN
86. Prove that the relation

£

fix)
15 — gl | = [ fiz) [1 + 1l g(z} .|[ ; Fraurz 1.2
is true, over a prescribed interval (Ea,’"b}, if and only if ]; and g are orthogonal
over (a, b). Notice that if w{’thjnk of || flz) || = j; f? dz as the “square
of the length of f{x)" i {Be’function space relevant to {g, &), and write
f] = + \/[bf% dr =1+ \/m, this result becomes

a "~

O + g - - o
and hence if’\:é}‘;lOgous to the Pythagorean theorem (see Figure 1.2).

87. By Noticing that, if all integrals are evaluated over an interval
{a, b), 3¢ quantity

O U@ +rg@Pde = [Pdz+ 2 [fgde + N [gds

i necessarily nonnegative for any real value of X, deduce that

(Jfgday < (f 2 da)([ ¢* do)
| [fgdn| = (VT 7 )V [ g o).

This relation is known as the Schwarz inequality. Show also that equality
holds if and only if g(z) is a constant multiple of 7(z).

and hence
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Deduce that if we define the “angle between f(z) nnd ¢{(x)}"” in the
function space relevant to (g, b) by the equation

ALY

cos O[f, g] = = S 1
b b { (
NIRRT
a a2
then 8 is a real angle.  Notive that
this definition is completely analg-
gous to the gpeometricy] defiritfon
of the angle between two yectors
{see Figure 1.3). ) \'\“.
88. With the termﬁi‘(;]ng\_' of
X - Nl L
I ) —glx) Problems &6 and 8% ©3tablish the
“law of cosines,2¢0)
(([f —gl)® = fﬁ}l)" + (Mgh* —
,Q‘%L{ (g cos 811, g1,
00 in fu?’q%m space,
BEVeri tl hoof tl
Ficurs 1.3 ide}?gty erify the truth of the

(VI fde - vfgf;&f 4 AN [frdz /T gt dz - [ fgdx]
(VI dz+ NJF oy — /T dz /[ gtdz + | £ dal

where each integral is eval’qﬁ‘t}d over the interval (a, 5). Use the schwarz
1nequaJ1t3_r (Problem 87)%&%0\# that each quantity in square brackets is
nonnegative, and henge déduce the relation

f(f~9)”dx5{

VP~ | S VT e 5 TG + /T
O Wt s - g s+ g
A

whe;‘e thevequality holds if and only if g(x) is a constant multiple of f(z).
ogqu;(‘t’ whit geometrical relation is this function-theoretical result anal-

bl). Asas

that pECiﬂ.l case of the Sch\varz inequality (Problcm 87), deduce

. . e
1
b—aﬁfdx§\]-b——a£ Jdz.
IThe left-hand member j
member the so-called rg

s the mean value of f(x) over {a, b}, the right-hand
ot mean square (rms) value.]
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01. Establish the validity of the following statement: “ The rms value
of the sum of two functions over a given interval is not greater than the
sum of the separate rms values, and not less than their differcnee.”

92, Tet fi(z), folx), . . . , fa(®), . . . comprige an infinite set of func-
tions defined over {g, #). Deseribe a procedure for forming from this set
a set of linear combinations ¢ (x), (%), . . . ; $a{®), . . . which is ortho-

normal over {a, b). [See Beetion 1.12.]

93. Show that the functions fi(z) = sin pz (k= 1, 2, . . .) comprige
an orthogonal sct over (0, 1) if the constants uy satisfly the transcendental
equation tan pe = pg.

94, Bhow that the complex functions fi(z) = e=, where k¢fakes on
all integral values, comprise a set which is orthogonal in the¢ Hermitian
sense over any real interval (g, @ + 2r). Determine the‘ normallmng
factors. :

"
Section 1.29. \

95. Show that the funetions defined in ProblémM03 are the character-

istic functions of the following Sturm-ljouﬁll,e'?r fplem:

Py =0, y(0) 207 ¥ = ¥ Q).
dz « \/

96. Determine the coefficients ivrg{t}ﬁé expansion

ny *
8NN
@

1= z A O<z<l),
P

where tan u, = ua. 9/

97. (a) If a fu_nota\n F(x) possesses the expansion
: :F(z) = 2 As sin g (0 <z<1),

Whem t@\i = u, obtain the solution of the problem
~%3' M pay =P@;  vO =0 ¥ =y

3

in the form

N
%(x) = E x —-kpk"" BIIl pal @<z< 1),
k=1

when X £ g% g2, o L
{b) 68’8 ihe result of Problem 96 o obtain this solution in the

speelal case when F(z) = 1.



CHAPTER TWO

Calculus of Variations and Applications
A\
™

2.1. Maxima and minima. Applications of the ealculus of
variations are concerned chiefly with determinatigf bf maxima and
minima of certain expressions involving unknewhfunctions. Cer-
tain techniques involved are analogous to pracedures in the differ-
ential caleulus, which are briefly revieweddrithis section.

An important problem in the difiétential caleulus is that of
determining maximum and minimum values of a function ¥ = f(z)
for values of z in a certain interga;}’ (@, ). If in that interval f(z)
has a continuous derivative, it‘isq?écalled that g necessary condition
for the existence of g maad;nuﬁi Or minimum at a point z, inside
{a, b) is that dy/dz = 0@1& Zo. A sufficient condition that y be
& maximum (or g migim{uin) at %o, relative to values at neighboring
points, is that, in addlition, d%y/dz* < 0 (or d2y/dz® > 0) ab that
point. RS
. Ifzisa futietien of two independent variables, say z = f(x, ¥),
In a region Rpkind if the partial derivatives 9z/dz and dz/dy exist
and are’ énbinuous throughout R, then necessary conditions that
2 pos§e;ss\a relative maximum or minimum at an interior point
(%o, ya) of R, or that z be stationary at that point, are that 9z/0z = 0
smgl z/.ay = 0 simultanecusly at (%o, ¥o). These two requirements

€ equivalent to the single requirement that

_ a2 9z
dz“'gidx‘f*'@dy = {)

at a point (z,, yo), for arbitrary values of both de and dy. Sufficient

'condltu?r%s for either a maximum Or a minimum involve certain

nequalities among the second partial derivatives (see Problem 3).
120
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More generally, a necessary eondition that a function f(z,, z.,

., ) Of n variables z,, . . . , z, have a stationary value is
that :
_ of RN AP
df = 5= day + 57 des o+ + 5 don = 0 O
for all permissible values of the differentials dxy, . . . , dx.. If the

n variables are all independent, the n differentials .can be assigned
arbitrarily, and it follows easily that (1) is equivalent to the™w
conditions N

of _ R | 2@

= = 2N\

331 61:2 oLy ) \.

Sufficient conditions that values of the variables sa.txsfymg {1) or
(2} actually determine maxima {or minima) mvoivé\eertam inequal-
ities among the higher partial derivatives (see Froblem 1).
Suppose, however, that the n variables aJ:Q got independent, but _
are related by, say, N conditions each of th;e form

GilZy, - - ,x.,) =0

Then, at least theoretically, thesé W equations can general]y be
selved to express N of the Varlab{es in terms of the n — N remain-
ing variables, and hence to-&xpress f and df in terms of n — N
tndependent variables a,nd their differentials. Alternatively, N
linear relations among the n differentials can be obtained by differ-
entiation. These _conditions permit the expression of N of the
differentials as linéay combinations of the differentials of the n — N
independent vanables If (1) is expressed in terms of these differ-
entials, the1r"&aefﬁ01ents must then vanish, giving n — N neccessary
conditio fbr stationary values of f which supplement the N con-
straint, cbnchtlons
AMprocedure which is often still more convenient in thig case
(’Onsmts in the introduction of the so-called Lagrange multipliers.
o illustrate their use, we consider here the problem of obtaining

stationary values of f(z, ¥, 2),

df = fodx + f, dy +fedz = 0, @)

subject o the two constraints
ooz, 4,2 =0 . (s
dolz, ¥, 2) = 0. (%o
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Since the three variables z, y, z must satisfy the two auxiliary
conditions (4a,b), only one variable can be considered as inde-
pendent. Egquations (4a,b) imply the differential relations

¢z d2 + pr,dy + dudz = 0, (5a)
b, dz + by dy -+ .7 dz = (. (5b)

The procedure outlined above would consist in first solving
(5a,b) for, say, dxr and dy in terms of dz (if this is possible) aud(in
introducing the results into (3), to give a result of the form

2\

df = (- ydz = 0. .;:\

Since dz can be assigned arbitrarily, the vanishing (}f.fth?é indicated
expression in parentheses in this form is the desired Tecessary con-
dition that f be a maximum or minimum whern(d%, b) are satisfied.

As an alternative procedure, we first p\’oﬂ,tiply {Ba) and (5b)
respectively by the quantities A, and )\2,;(61 be specified presently,
and add the results to (3). Since thedfight-hand members are all
geros, there follows D

(e + Mo + Nabad d + (fy + 2005, + Mathy) dy
o :t—: tfz + hld’lz ‘+‘ R2¢2:) dz = 0’ (6)

for arbitrary values of )\'k'a?zd s, Now let A; and X; be determined
so that two of the pakéntheses in (6) vanish. Then the differential
multiplying the remaining parenthesis can be arbitrarily assigned,
and hence thai; Jparenthesis must also vanish. Thus we must have

) 3
\Z:\.“ §£+A1§§+A2%%2=0’
O\
= af ]
m\ 5@} M .a%l + Rz%‘_;} = 0: ) (780}-)’8)
V af ap
- ) g2 _

Equations (72,b,c) and (4a,b} comprise five equations determining
Yz Efnd Ay A2. The quantities »; and A are known as Lagrange
mu!t*aphe.ars. Their introduction frequently simplifies the relevant
a’lgebra in problems of the type just considered. In many applica-
tlons they are found to have physical significance as well. We
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notice that the conditions (7) are necessary conditions that f + ¢
+ Moo be stabionary when no constraints are present,

The procedure outlined is applicable without modification %o
the gencral case of # variables and N < n constraints.

In illustration of the method, we attempt to determine the point
on the curve of intersection of the surfaccs

z =xy + 5, rtyt+z=1 (Sa,b\)
which is nearest the origin, Thus, we must minimize the qua{ltity
£

f=atyte O

subject to the two constraints (8s,b). With ~‘ R

A\
¢ =z —xy — 5, ¢y =2 T ¥ hE ],
.\\,’

PAL
W

equations (7a,b,c) take the form
2z — hy + ?\2.?‘-"0,
2y — Mz _l_>;)§2 = 0, - {9a,b,c)
22 + >\1"F =10
If equations (9a,b) are solved for h; and Mg, and the results are
introduced into (9¢), iitere follows
.\\x+y—-z+1=0- | (10)
The simllltaneéﬁé“solution of (8a,b) and (10) leads to the coordi-
nates of the 4o points (2, —2, 1) and (=2, 2, 1) which are each
seen to kb three units distant from the origin. G_eome_tncal con-
siderations indicate that there is indeed at least one P‘f‘mt nearest
tho.oeigin; since the two points obtained are'necessam_l’y the only
Possible ones, they must accordingly be the points required.

N Ag an illustration closely related to certai_n topics in Chapter 1,
we may seek those points on a central quadrie surface

= ay0? 4 agy? + ase? + 29wy + 2asye + 20172 = covstant

for which distance from the origin is stationary relative to neighbor-
Ing points. We are thus to render the form

e
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stationary, subject to the constraint ¢ = constant. Here, if we
denote the Lagrange multiplier by —1/X, the requirement that
é — ) f be stationary leads to the conditions

ant + tagy + a1z = 7,
G123t + ey + G2z = A Yy,
13 -+ Qaay + Gas = A 2

" This set of equations comprises a characteristic-value problem of
the type discussed in Section 1.11. Each “characteristic wildg”
of ), for which a nontrivial solution exists, leads to the thredwbordi-
nates of one or more points P: (z, y, 2), determined withii afcommon
arbitrary multiplicative factor which is available for the satistaction
of the equation of the surface. Sections 1.19 ant 120 show that
it is always possible to rotate the coordinate axes in such o way
that each new axis coincides with the direétion from the origin
to such a point, and that the equation of the§urface, referred to the
new axes, then involves only squares of the new coordinates. That
13, the new axes (which coincide withidhie “ characteristic vectors”
of the prqb{em) are the principal gies of the quadric surface. The
characterlst}c values of ) are injersely proportional to the squares
of the semiaxes. Repeatedroots of the characteristic equation
correspond to surfaces 9{’T}Volution, in which cases the new axes
can be 5o chosen in i}‘@‘itely many ways, while zero roots corre-
spond fo su’rfaces wltick} extend infinitely far from the origin.

. fu?z];tewl;a“:luc I{E}Qlem n tl:fe calcw’:us fJf variations is to determine
o oot e bzh\ fa't a cer:tau:t definite integral involving that func-
value, Ahy ’;11; ::mjtsa%;“;at;"e? t:}i!es ﬁn & maximum or minlmum
R il art ol the theory iz concerned with a
necessary’ condition ‘(g_enera.]ly.in the form o?ra differential equation

g show ma theﬁgil;:l’lns)t;‘;hlch the reqluired function must satisf ¥
mizes (or minimiges) t}{e i : the fl-mctmn Obtmned_actuaily maxi-
the corresponding ntegral is much. more difficult than in

problems of differential calculus. Sufficient
eveloped i ) .
P& In more advanced works. In physically

motivated L
problems, such additiona) considerations may frequently

be avoided.
Asan example of g

to determine the surfy, problem of thig sort, we notice that in order

e of revolution, obtained by rotating about



§2.2] CALCULUS OF VARIATIONS AND APPLICATIONS 125

the x-axis a curve passing through two given points (z;, y1) and
{xe, ¥2), which has minimum surface area, we must determine the
funetion y{x} which specifies the curve to be revolved, in such a
way that the integral

I=2r [Ty +y e

is & minimum, and also 80 that y(z1) = ¥ and y(x2) = -

In most cases it is to be required that the function and the
derivatives explicitly involved be eontinuous in the region\ of
definition. Ko\

2.2. The simplest case. We now consider the, problem of
determining a funetion y(x) which makes the integ;‘@]?‘ by

<

I=["F@ude (D ()

stationary,* and which satisfies the prescribed ¢nd conditions

N

A\
Yy = 1, y(x{) ; Y

To fix ideas, we may suppose that Risto be minimized.

Suppose that #(x) is the actual Minimizing function, and choose
any continuously differentiablg function y(z) which vanishes at the
end points & = z; and 2 =, ;r:g Then for any constant e the func-
tion y(z) + e 5(x) will satisfy the end conditions (Figure 2.1). The
integral K

s S %

IG& [ F,y +en v +en) ds, (12)
obtained by, replacing y by y + €7 in (11), is then a funetion of
once y and g mie assigned, which takes on its minimum value when
¢ = 0. ,BGt this is possible only if

’f’\\“ dl{e) = when e=20. (13)
e de
PN

<\}i we denote the integrand in (12) by Fe,

F.=Flz,y+eny ter)

and notice that then

dr. _ oF. | OF. .
de Ay oy
* We suppose that F has continuous second partial derivatives with
to its three arguments,

respect
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we obtain from (12) the result
L2
(e _ 3F. 4 OF. dn) iz,
de o W\ OY ay dx
by differentiating under the integral sign. Finally, since #.— F
when ¢ 0, and the same is true of the partial derivatives, the

Y
Y
N\
I § N
\
]
¢ Figure 2.1
necessary condition J21“3) takes the form
o Nl £
& aF oF ¢
O n _ .
\\ f ( ﬂ+6ydx dz = 0, (14)
The,nexl;
secoﬁd term b?ep i the development cousists in integrating the

parts, to transform (14) to the condition

\:
f[%g" ;x(ap) ]dx+[ S 1 )J =0 (19

But since 7(x) vanishes at

grated termg vanish and ( the end points, by assumption, the inte-

15} becomes

f [9_1*_” d {oF
n | Oy - dx _-_f')jl pdr = (. (16)

oy
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Finally, since n(z) is arbitrary, we conclude that its coefficient
in (16) must vanish identically over (z,, z.). For if this were not
so we could choose a continuously differentiable funetion 5(x)
in such a way that the (continuous) integrand in (16) is positive
whenever 1t 1s not zero,* and a contradietion would be obtained.

The end result is that if y(z) minimizes {or maximizes) the
integral (11), it must satisfy the Euler equation

d {IF aF
260 -5 -0 N

Here the partial derivatives aF /3y and 9F /oy’ have been f\bi’m?d by
treating x, y, and y' as independent variohles. Remembering that
aF/fay’ is, in general a funetion of z explicitly and @lse imp]icitly
through y and y' = dy/dz, the first term in (17&) can be written in
the expanded form

a {oF aF\ dy aF) dy
_x(ay’) +6‘y( ) +fw

Thus (17a) is equivalent to the equatlon

””d2+Flfvdm“+(F:fz_' ,,)=0. (17b}
This equation is of sem)nd ‘order in y unless Py = 8°F /3yt =
80 that in general twor Gonstants are available for the batlsfactwn
of the end conditiohgh, ™ .
It is useful to‘hotice that (17b) is equivalent to the form
O,
N1 d (s oF dy aF [ 0, (17¢)
REEAFTAN 4
N\& dx ay’ dx ax
as Cﬂfﬂs’% verified by expansion. From this result it follows that
ifF deeb not involve z explicitly a first integral of Euler’s equation is
° oF o .
N\ F—w;-leM—& (
while (17a) shows that if F does not involve y explicitly a first
integral is
F _¢ i L= (18b)
3y’ dy .
* This fact, which is intuitively plausible, can be proved analytically.
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Yolutions. of Euler’s equation are known as exfremals of the
problem considered. In general, they comprise a two-parameter
family of functions in the case just considered.

We may notice also that if at one (or both) of the end points
y(z) is not preseribed, then the function 5(z) need not vanish st
this point. Reference to (15) then shows that the Euler equation
still follows if at that point the condition

oF \
— =0 &t =21 0OFf T = 2; (NN
dy A\
2

is imposed instead. This ¢condition 1s known as a natural Qoﬁmri (ry
condition. P \}

2.3. IMustrative examples. In Section 2.1 it was pomtod out
that to find the minimal surface of revolution passr\g through two

. given points it is necessary to minimize the mtegral
I xs N
o = j; ¥l + yfz)!-s.}gm (20}
With F = y(1 + ¢'% the Euler equatlon (17a) becomes

d vy
or, after a reduction or ps&of 17,

\w"!’;,, . yrz . 1 = 0 (21)
Foll i i
Wz s(;t:mg the: u'sua;l procedure for solving equations of this tvpe,
7.
N\W :
\“ 4 y" =P, L d-_p = d—?g
A T

s?,Q}iéit (21} becomes
\ \: N p u Ei—i? = n?
dy =P + 1,

This equation ig separable, and ig integrated to give

¥=rc{l + Po¥ = e [1 + (@)2]5‘3’

as would be obtained more dj
O 1rect]
F does not explicitly involye z. Tthebf{Jl;:JS\is o (18, sinee here
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(¢ LY
dx - 812 !

and hence finally
y = ¢ cosh (gi + c?). _ (22)

Thus, as is well known, the required minimal surface (if it exists)
must be obtained by revolving a catenary. It then remains to be
scen whether the arbitrary constants ci and ¢, can indeed hege
chosen that the curve (22) passes through any two assigned points
in the upper half plane. RAY;

The determination of these constants is found to :n%n\)lve the
solution of a transcendental equation which possesseq ‘two, one, or
no solutions, depending upon the preseribed valueay'(ml) and y(zs).

The elassical ““elementary” application of {le)caleulus of vari-
ations consists in proving mathematically that\the shortest distance
between two points in & plane is a straiggifhﬁe. If the points,
the zy-plane, arc {x1, ¥y and (2, $4)) d the equation of the
minimizing curve is y = y(x), we are'tiien to minimize

I= :ch1+ )% de.
Ty ." *
Bince here F = (1 + y’”)iﬁfdo'és not involve either  or ¥ explicitly,
either of the forms (18b) can be used o give a first integral of
Euler’s equation diréebly. If form (18b) is used, there follows
W27y =0+
From this result we
d if it con be specified
t necessarily

and conseqite\n'tly y' = ¢ or Yy = 0% T 6
can conaﬁidé that ¢f @ minimizing curve exists an
by any ééuation of the form y = y(x), then that curve must ne
be @'Sraight line. It is clear that the case in which z; = %218 excep-
tional, and must be treated separately.

In the preceding examples no proof was giv?n_t!mt the ourve
obtained actually possesses the required minimizing property-
Such considerations comprise most of the less elementary tl.leory
of the caleulus of variations. In a great numbel: .Of _p'hysmally
motivated problems it is intuitively clear that a minimizing fun(}-
tion does indeed exist. Then if the present methods_and their -
extensions show that only the particular function obtained could
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possibly be the minimizing function, the problem can be considered
as solved for practical purposes. If several alternatives are deter-
mined, direct calculation will show which one actually leads to the
smaller value of the quantity to be minimized.

Further applications are deferred until the more general theory
has been established.

2.4, The variational notation. We next introduce the
notation of “variations” in order to establish more clearly the,
analogy between the ealculus of variations and the differentis)

- caleulus. O\

Suppose that we consider & set § of funetions satisfying ¢ertain
conditions. For example, we might define S to be the sat” of all
functions of a single variable & which possess a confintous first
derivative af all points in an interval ¢ £ z < b, Thbﬁ &Ny quai-
tity which takes on a specific numerical value corfesponding to
each function in § is said to be a functional. /5

In illustration, we may speak of the qug,n‘:biéies

*

L= [v@ s, L= [ @y - @ a

as f@cFionals, gsince lcorresporgdjfl’g’ to any function y(z) for which
the mt_:hcated operatiohs are<defined each quantity has a definite
numerical value, ,{”z\

With the above defnition, it is proper also to speak of such
quantities as fly()] and gle, y(x), ¥'(z), . . . , ¥ ()] as fune-
tl'enals In thqse oASE when the variable 7 is considered as fixed in a
given dJSCIJ{SSlQ?\aDd the function y(z) is varied.

In Sec:@tﬁi\zﬂ, we considered an integrand of the form

A F'=Fy,y)
hi: 3
W %I; t);irea ﬁ‘;‘r:zd t}:;leue of z depends upon the function y(z) and its
oy ne\;g A e 1’35 en changed the function ¥{x), to be determined,
callod e ;1;3 won gz +‘e 7{z). The change e4(z) in y(z) is
riation of y and ig conventionally denoted by 8y,
& = e plz). (23)

ghto this change in y(z), for a fixed value of z,
changes by an amount, AF, where

Correspondin
the functiong! F
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AF =F(,y +eny +en) —Fla, y ¢). (24

If the right-hand member is expanded in powers of ¢, there follows
AR = g en + g—fi, en + (terms in.volving higher

y y powers of €). (25)

In snalogy with the definition of the differential, the first two terms
in the right-hand member of (23) are defined to be the variation

of I, A
aF oF
EF"'@E‘G-FB—?;E’}; e
or, using (23), O
aF oF _ , \
= — — . S D 26
F 3y &y + 37 &y 0O (26;

D

For u complete analogy with the definition o"f‘}he differential,
we would perhaps anticipate the definition N
ar /o

’ ¢
F=222 _|___61 +~&1 5.

But here z is nof varied, so that wef!i&ve
8= 0, @)

and hence the analogy is indeed complete.

We notice that the @ifferential of a function is a firsi-order
approximation to thé. ehange in that function along @ part’.:’c:ular
curve, while the saftion of a functional is a first-order approxima-
tion to the chahge/from curve lo curve. _

It is eusilyyVerified directly, from the definition, that the laws
of Varial;i({i"l\'df sums, products, ratios, powers, and 50 fort}:n, are
complgf;ehy analogous to the corresponding laws of differentiation.
Thysor example, there follows

\'\‘ 5(F1F2)=F15F2+F25F1,
Fy __F:!iFl'_Fla_F’z'
N\m) = B

and so forth.

Analogous definitions are
Thus, for example, if # and ¥
v are dependent variables, we may consi

introduced in the more general case.
are independent variables, and = and
der a functional
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F = F(i:, y: U, y! Ugy Uy, ﬂlr vﬂ')-

We now vary both « and », holding # and y fixed, into new functions
# + ¢ £ and ¥ 4 ¢4, and define the variations of « and » as follows:

du = ¢ E(x: y); dy =e 7}(.’5, y) (28)

The change in ¥ is then found (by expansion in powers of ¢) to be

aF oF aF oF ar E')‘_{‘_
AF=§§€E+6_3:”+£65’+&_?}:EE”+E”’ + au,”".s\
Ko
+ (terms involving higher powers of ). Oy29)

The first-order terms are defined to comprise the varigﬁiﬁa of P,

Hence, using (28), we have the definition ) \\
oF aF oF aF AF  N\\VOF
=9 o oL o il s 30
F 3 du -+ 3 oo o du, - o, du, + avzi\v,} + a, s, (30)

Since the independent variables z and y are ‘l:ref}ci'ﬁxed, there follows
also CHY

b7 = by =0\ 31)
From (23) we obtain the resu[t.‘: "

d & 3n_ dy
& WS eg = oy

o . AN
Hence, if 2 s the zMgMent variable (and, accordingly, éz = 0}
the operators § ang dida are commaudative:
AS

\\" % by = s%- (32)
?;nmdlaﬁzfuﬁ (38; W_e_ f'{;ld ;hat iz and y are independent variables
c{ﬁ@ﬂf@tﬁ:e: ¥ =0) the operators § and 8/dx or /3y are

00 = 2, 5 o = o (33)
Ths';.t 15, the derivative of the variation with respect fo an tndependent
m”ﬂbf:h“;ut{é@ Ezﬂ:le Es the wm'atio'n of the derivative
difforentingic oticed that thig js not generally true unless the



§2.4] CALCULUS OF VARIATIONS AND APPLICATIONS 133

2 and ¥y are both functions of an independent variable { we may
write

dy _dy/dt _y

dr  dx/jdt

where a prime now denotes {-differentiation. Thus we then bave

5 dy (g;_ri) _ ¥ sy — o

dz ) z"? O\
But now 8 and d/df are commutative, so that \:\
dz d dy d d dy d N\
Grl oy — 42 ad SCRE
b aa® " aa® _a™ _aa {g=)
&~ Y’ & (i
a dt o8 Tt dt
or, finally, Y,
dy _ 4, _ 9 dgy (32a)

dr ~ dz y_&'_p@;

Tf 5z = 0, equation (32a) reduces td,(32). _
The quantity F is sometimes'called the first variation of F, the
second variation then being.defined as the group of second-order
terms in e in (25) or (29)¢ However, when the term “yariation”
13 used alone the first yg;r}a.tion is generally implied.
For a functional k@ﬁféssed as a definite integral,

¢ ~\ I= LT’F(I, Y, y,) d{l’-, (343)
where x is ﬁk{é}ﬁﬂependent variable, there follows from the definition
% 8 =5 f “Fde = f " oF dz, (34b)

NS . .
§o\that variation and integration Dbetween limite (which do not

Ivolve the dependent variable) are commutative Processes.
We now show that a necessary condition thal the integral

I= j::' F(z, ¥ ¥) dz (35)

be stationary is that s (first) variation panish:

sT=35 LT’F(Q‘,‘, y, ) dr = 0. (36)
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According to (34) and (26), equation (36) is equivalent to

EI—[ 8F(z, y, ') dx = f[ 8y +—5J]dx=0.

If we replace 8y by d(3y)/dz, in accordance with (32), and inte-
grate by parts, there follows

= [ oF oF oF 1 .
”zf [E@ dx(ay)]‘s dz +[a"”] A

But the right-hand member of (37} is proportional to th(\ }(h
hand member of (15), the vanishing of which was shown to be Acces-
sary if I is to be stationary, and by retracing steps - We “see that
(15} or (37) implies (36), as was to be shown, ‘O

The use of the variational notation leads to coficise derivations
and computations. This notation will be used\in' the remainder
of this chapter; its justification in any partiédlar case follows the
lines of the preceding argument. O

2.5. The more general case. We éonsider next the case when
the integral to be made statlonary i tff~the form

I= f[ F(z, y, uwj..ug, Uy, U2y Uy) dx dy. (38)

Here z and y are mdependent variables, v and v are functions of
£ and y to be determi é{i ‘and the integration is carried out over
a simple two-dimerigional reglon B of the ry-plane. We suppose

that the values of u(‘?‘* y) and v(x, y) are prescribed along the bound-
ary (' of the regu}n R.

The cond{tg n

5 =0 39
“18]1 beéomes ( )

\h:.[f [(au B”’Jf— x+§£auy)

aF
+ (ay o + 59: -1- — ﬁv,,):\ dr dy = 0. (40)
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The terms involving variations of derivatives are next to be
integrated by parts. The general procedure may be illustrated by
considering the treatment of a typical term:

aF =) oF g
[f at—hﬁ—d dy ‘{a I:-/;](y) a‘!,{,, ax du dzx dy

(See Tigure 2.2.) If the inner integral is integrated by parts, this
term becomes
-3 x =Ty
aoF aF O\
— d
j:n {[au, 6u]x=xl .[-’-l I:ax (6 ) au:l dx] v A ¢
oA\

where x; and x, are the extreme (boundary) values of 2 correspond-
ing to the value of i held constant in the x—lntegratlon B"ut gince

N\ Froure 2.2

du Ele’qmred to vanish along the boundary,
rins vanish and there follows*

Jf, ot o - [ [ ()]

If the other terms of this type in (40) are jreated similarly,
takes the form

the partially integrated

(40)

* If lines parallel to the axes intersect ¢! in more than two points, the region

E must be appropriately subdivided in this derivation.



136  CALCULUS OF VARIATIONS AND APPLICATIONS  [§2.5
- aF 9 foF 3 aF)]

- aF 9 - 2{&\ s
o f R [[au o (6%) dy (auy “

aF @ foF\ 9 [oF _ .
+a-2@) - (@) el eaw=o w

If the vanations 6u and v are independent of each other, that
is, if u and » can be varied independently, then as in an curlier
argument it follows that the coefficients of d% and v in (41} must,
eack vanish identically in B, Thus two Euler equations are
obtained in the form O\

g‘l(@)Jri oF _F .,1:\
9z \ou.) ' dy \ow,/ ~ du

C I .(42&,11)
dx \dv, dy \du, TR ’

) These eonditions .eomprise two partial .dlﬁérential equations
in u and » and are, in general, linear or qua;ﬂi}ﬁhear of second order
I % and v, as can be shown by expansidn}” We notice that in the
dlﬂ'farentaa{_;mns with respect to v, », UF Uy, 7., and vy all of the eight
variables hste.rl in (38) are treated asthough they were independent.
Thus oF /3u, 15 formed by holdingz, y, u, Y, Uy, ¥z, and v, constant
In the expression for F, Hewever, in the differentiations with
Tespect to z or y only thesg»mo variables are treated as independent.
f-}mc?, In general, 37 /au4 will involve » (and ) both explicitly and
implicitly, the first texm In (42a) becomes, on expansion,

F..). WY .y, gu,
(ude + (o). 5203 0., 2  Fudu 52

:..\ W o -_6_5 .
& G R
O
o Tk + o, i+ P P
o g Foa 2 4 P
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preseribed boundary conditions along €. The formulation of
sufficient conditions is again extremely involved, and is omitted here.

Completely analogous eguations are obtained in the general
case of m dependent and =n independent variables. Here m equa-
tions analogous to (42) are obtained, each having =» + 1 terms.
Still more generally, partial derivatives of higher order than the
first may be involved in the integral to be made stationary. The
extension of the present methods to such cases is straightforwapd,

If the integrand F involves » independent variables x, 3, , .\',
and m dependent variables u, #, . . . , together with partialdetiva-
tives, of various orders, of u, », . . . with respeci to -’g‘?,ly\, sy
one obtains one Luler equation for each of the m dependent var-
iables. The equation corresponding to u is then 0{ the form

3 d a2 07 8°

Fu - (apu. + @Fﬂ, + - ') + (a_szu?;\i-:azayF"ﬂ + ayBF“W

i e
+ - ) - (@Fuﬂ, + - :)j—t@ﬂm, + )

— e =0, (43)

As an application of the ﬁrééeding results, we obtain the partial
differential equation satisfied by the equation of a minimal surface,
ssihg through a given simple closed curve ¢

that is, the surface
in space and having%nnimum surface area bounded by ¢. If the

equation of thessurface is assumed to be expressible in tl}e form
z = 2(z, ), t&é %rea to be minimized is then given by the ntegral

O = ffa e+ ddy (44

“'h?i‘i}: R is the region in the zy-plane bounded by the projection

g@f ¢ onto the zy-plane. With #F = 1+ 22+ zyﬁ)”, the Euler
e

uation is
dx \ 92 8y \9zy dz

8 2z d ._____z_,,_____] = Q.
3z [(1 Tt zﬁ)}ﬁ] + 5 [(1 s

After some reduction, this equation takes the form

or
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(1 + 2,020 — 2242y 25 + (L + 2525 = 0,
or, with the conventional abbreviations for the partial derivatives,
P =2 =2y T =2 8§ =2y L= 2,
the differential equation of minimal surfaces becomes
(1 +¢9r —2pgs+ (L + pt = 0. (A5,

As a second example, we seek the function ¢(z, 3, 2) for whieh
the mean sqtare value of the gradient over a certain regiom 7t of
space is minimum. This problem is closely 1‘elated<»‘tzp many
physical considerations, as will be seen. A necessaty " condition
for the determination of ¢ is then ,“}\

aﬂf}z (¢ + ¢ + ¢7) d dy’d;\\:’ 0. (46)
R

With F = ¢,2 + ¢,2 + é.2, the Euler eqﬁ:;,tixon can be obtained by
reference to (43), in the form N

o (kY o (&Y, o (oF
az (6%) + By..(%;) T (?3‘?) =0

sinee F does not involve i{ﬁkxplicitly. This equation reduces to
™
%\'l‘ by + & = Vi = 0, (47)

80 that ¢ must Bafisfy Laplace’s equation.
Convertsg\ljfi\éuppose that ¢ satisfies (47) everywhere in a region
% and 13\:5011 presjcribcd values on the boundary of that mg-ion.
¢ gy When multiply both sides of (47) by any continuously

dﬁeggnti&ble variation 3¢ which vanishes on the boundary of R,
{:n} Integrate the results over R to obtain

fff}e (bue + by + ¢) 80 d dydz = 0.

i

//U ¢”5d’d*’”] dy dz =ff[[¢: 5¢] - f b ﬁq‘:xdx} dy dz
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—ff ¢ Sz dn dy dz
1
—§6[f o.* de dy dz.

By treating the other terms similarly, we thus recover (46) from
(47) if & is preseribed on the boundary of B. Thus, in this sense,
the two problems are equivalent. '

Hence, the so-called Dirichlet problem, in which we seek\a
funetion which satisfies Laplace’s equation in a region R and‘which
takes on prescribed values along the boundary of &, can be expressed
as a variational problem. As will be shown, the variational prob-
lem (46) can often be treated conveniently by approxfgjmte methods,
to yield an approximate solution o the corresponding Dirichlet
problem. \

2.6. Constraints and Lagrange mijhip].iers. In certain
cases in which one or more functiong\ame: fo be determined by a
variational procedure, the variatiods)tannot all be arbitrarily
assigned, but are governed by 01}3}61‘ more auxiliary conditions or
constrainis. Methods analogoudtto those described in Section 2.1
are available for the treatmentof such cases.

We illustrate the protedure first in the special case of two
dependent variables u,a’ﬁ& v, and one independent variable z,

I

£ ‘5'7>1F('T'? Uy Uy Yay i‘J‘z) dz = 0! (48)
in which the,{éﬁsi;raint is of the form
O #(u, v) = 0. (49)

s,\\ " -
We again require that the variations of » and v Vamsh.a.t the eu_d
poifits! Then, by proceding as in Section 2.5, equation (48) is
Strgnsformed into the condition

= (TaF  d {aF 6F#i(ﬁg)]-ld=o 50
j;{[a_u*&'i(éﬁ)]au_%[ﬁ- L)) =0 (50)

1

Sinee » and » must satisfy (49), the variations &u a:nd v ca_nnot
both be assigned arbitrarily inside (x3, %2) 80 that their coefficients
in (50) need not vanish separately. However, from (49) there
foliows 8¢ = 0, or
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bu du + ¢, 00 = 0. (531)

If we multiply (51) by a quantity ) {a Lagrange multiplier}, which
may be a function of #, and integrate the result with respect io x
over (%, 7a), there follows

f’” Oh du Bt & N ¢ 80) dz = O (52)
for any x. The result of adding (50} and (52), O
O\
{=(1oF _a{oF aF_i(a_F) ] lﬂ 2,
G o [ () 1 =0,

N {53)

must then also be true for any A. Let A be chqseh\so that, say,
the coefficient of du in (53) vanishes. Then, sihee"the single vuri-
ation & can be arbitrarily assigned inside (gy'zs), its coefficient
must alse vanish.* Thus we must have \ v

d(oF\ oF ™
& (ﬁ) T T =0,

d(aF\ _ ak
‘d‘z’(‘az)farm =0

N\
. £8 )
Equation (54a,b) and (49) comprise three equations in the three
functions v, n, and

16 A is eliminglod between (54a) and (54b), the result
}“‘aF 7
Chd [ oF _ 49 d { oF aF .
z"\\%:[dfb (auw) Eﬁ] L [Ei (gl;) - E] = O! (‘3‘48)

Eothe (49), gives two conditions governing w and v, It may
b noticed that this same relation would be obtained more directly

by solmg (51) for, say, u as g multiple of &, introducing the
res.ult mmto (50), and equating to zero the resultant coefficient of
Iﬁv in (50). Inmore involveq cases, the use of Lagran ge multipliers
18 frequently more advantageous,

*Tf %, vanishes identiea]l i
? - ¥, M i8 to he chosen suck that the coeflicient of 6o
vanishes. Clearly, ¢, ang $o cennot both, venigh identically. o

(54a,b)
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The extension to the more general case i3 perfectly straight-
forward.
In some cases the constraint condition is prescribed directly in
the variational form
foutgdr =0,

rather than in the form of (49). Whether or not a function ¢ ean
be found whose variation is given by the left-hand member, the
preceding derivation shows that the required necessary conditions.
are piven by replacing ¢, and ¢. by f and ¢, respectively, in (5¢a,b)
or (5dec). R \J)

Also, a constraint condition may be expressed by the-fequire-
ment that a certain definite ¢ntegral involving the u.n]gmwn function
or functions take on a preseribed value. We illustaté a procedure
which may be used in such cases by suppositg that the minimal
condition is of the form Y,

8 = 3 L T!F (x, ¥, ’yf)’:&“——' 0 {65)

where 7 is to take on preseribed valﬁiés at the ends of the interval of
definition, and also is to satisfy.the constraint eondition

[ee vy d =K (56)

where K is a, prescribqﬁ 'ébnstant. As before, if ¥ is the minimizing
function, the condition (55) leads to the requirement that

¢
O oF _ 4 (EE)] sy de = 0, (57)
Z"\.“ E1] a?] dﬂ; ay :
Q S
for army admissible continuously differentiable Sy which vz_mllshes at
the(énd points. But now 8y is not completely arbitrary inside the
Soterval (z), ), since both y and y + &y must satisfy the con-
straint (56). .
In order to specify a set of admissible forms of 8y, we write

by = efl@) + agl@) (58}

whete f(z) and g(x) are continuouslty differentiable functions Wh_ich
vanish at the end points, and e and o are constants. The require-
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ment that y -+ 8y then satisfy the constraint condition is of the form
Jeoy = ["Gaytef+agy tef tag)ds = K. ()

We now propose first to fix the function g{z) and, for any sub-
sequently chosen f(z), then to defermine o &s a function of € in such
o way that (59) is satisfied. It is recalled that an equation of the
form J(e, &) = K, which is satisfied by ¢ = @ = 0, determines « l
a function of e for small values of ¢ and « if 9J/3c 5 0 when e'<
w=0. If we denote the integrand in (59) by G, noticing t.b@j:\(?
tends to (7 as ¢ and « tend to zero, this requirement takes theform

aJ(0,0)  [* (3G aG
o 'L(@“a—y’g &

s
S D

0.0 AN

" G\ >d oG
_f;l (@r—\ %an)gd:r#O.

Unless the coefficient of g in the last intéérénd vanishes identically
when y() is identified with the minindizing function,* y(x) certainly
can be so chosen that the last intdgral does not vanish. Let ()
be so cihosen. Then for any subsequent choice of f(z), « can be
determined as a function of€in such a way that (59) is satisfied.
The requirement, that%k}e function
™

rin N\
IO = [P y+ef+agy +ef +ag)de

NS
take on a mitiMtum value when ¢ — =
e 01:;@ ¢ =0, and also af¢) = 0, then

dI{0),

d1{0), & iy oF d oF d (0) ” ,
AN @ _ 8ol o aF d oF
,{ie\ Y o (ay dx ay.!) fd.’I} +—“—de -Ll (@ - % é?) 4 dr = 0.

7

(60)
If we recall that, when J (& @) = K, there follows

--@)/@

* It can be shown thy . :
intorest, b those cases in which this situation exists are of 10
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we may obtain the result

= fald 4 oG
daw)__L (@‘%ﬁf)fdx

de fb(%;‘ _ _(.?. ..ag) dx
o \dy  dz oy d l0.0)
[E-a5)e

= (oG  d aq R
fn (@ ‘d—xa?)gd?«»
N

The result of introducing this expression into (60) can e written
i the form AN

=[(oF d oF oG 4 aaﬂf\‘ ‘
oF _ d oF 9G _ 4 IGN N — 0, (62
[zx Kay dz ﬂy’) A (c’iy dz ny 4 (@)

where \ is & constant, defined as the ra i68f two definite integrals
involving the arbitrarily fized functiot\glz):

= (aR\ * d aF)
G2 Vgde
[m (ay dxdy )’

y!

A= TR

" (§§ ——d—a—g,)gdx
N x ay dxay
\

Bince the function s'@n}now be prescribed arbitrarily inside (21, %),
its coeflicient inN62) must vanish, giving the desired necessary
condition e

“&F d (aif)] [aG - d (6G)] =0 {63)
SO 2N x| = = a .
\» i} dz \dy' dy dz \9Y
N\ AL Y

”

Ti{e result established may be summarized as follows: In order io
- N > 3 b . .
wg@z\wmzze (or mazimize) an integral L F dx subject to a consiraint
f ’ Gdx = K, firsi write H = F + )G, and minimize {or maximize)
a ¥

j;bH dx subject to mo constraint. Carry the Lagramge multiplier X

through the calculation, and determine i, together w@'tfh the consiants
of integration arising in the soluiion of Euler’s equaiion, s0 that the

constraini f ° G dz = K is satisfied, and so that the end conditions are
41

saligfied.
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The above statement applies in the more general case, in which
two or more independent and dependent variables are involved.

. To illustrate the procedure, we determine the curve of lengh L
which passes through the points (0, 0) and (1, 0} und for which
the area I hetween the curve and the z-axis is a maximum, We are
thus to maximize the integral

1
I=['ya, (o0)
subject to the end conditions A
(0} = y(1) = 0 _OGb)
and to the constraint ‘ o)
&
.
L asyra -1, ' (64c)

_ _ A

where L is a prescribed constant greater t,}'i'a{’l:}mity.

_ The Euler equation corresponding $¢'\the maximization of the
integral of H = y + A(1 + y'0)i 35 therof the form

PN N
& -1 -0
or, after integration andiaifxi;)liﬁcation,
DG - )y = o — o
By solving for yand integrating again, we find that the extremals

are of the form™\*

A0 V=N - -y g,

and h @ (8s might have been expected) are arcs of the circles
~O° @~ et + (y ~ o2 = 22, (65)

' are 1o be determined so that the circle passes
We may notciceogll:? %ﬂd 80 that the relevant are length is L.
not satisfy the require L > a2, the.“solution " obtained flf)l!s
27 Stmm-l.iom?ﬁnt that y be  single-valued function of 2.
tion of a closely related ® problems. To illustrate an applica-
determining stat; brocedure, we consider next the problem pf
ALY values of the quantity X defined by the ratie
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b
f(;oy’z—qy?)dx I
A = 42 S
b I
fryﬂdx 2

where p, ¢, and r are giveﬁ functions of the independent variable z.
The variation of the ratic is of the form

(66)

_ sl =181, 1 _ .
. '\
where, if 8y vanishes at the end points, .
b ¢\
= -2 [Tlgy+ )itz )
" a0 (68a,b)
=2 f ry Sy dx e \ e
If (68a,b) are introduced into (67), there fOHOWb
—2 fa (@) + gy W Ary] oy de
o\ = —— (69)

AN
[
Thus, from the arbitrariness of 6J; the condltmn dx = 0 leads to
the Euler equation in the form

i(p@)+qy+my_0 (7()

Suppose that thé\boundary conditions are of the form
\“'x' ¥y =0, yb) =0 (71)

Then the problem is one of characteristic values, and is a partieular
case of {h"é general Sturm-Liouville problem. (See Section 1.29.)
It follpws'that the problem of determining characteristic functions
of (rO) subject to (71}, is equivalent to the problem of determining
functlons satisfying (71) which render (66) stationary.

' Stationar v values of A must then be characteristic numbers of
the problem. To verify this fact directly, supposc that i and
#x(x) are corresponding characteristic quantities, so that

(0 &) + q ¢ + M e = 0. (72)

Then if y is replaced by ¢x in (66), A should reduce to A;. Before
making the substitution, we transform I, by integrating the first
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term by pa.rts, using (71), to rewrite (66) in the form

b
¥)Y + qylydz
A= — ﬁ‘ e . (66

fb rytde
Now, by replacing y by ¢, there follows
b
[l woy —godecdn [ Dur euloe d N
A== b =2 =N, TIN
f r it dx f r ¢ dx N
‘ ¢ O\

as was to be shown. The equality of the two square bratkels in
{73) follows from (72). \

If we artificially impose the condition (“Cﬂnstl'ui;lg\.’f’;&'
fry*da: =1, ) (79
it follows from (66) that the minimal conc}?t\fé?}iakes the form
M =3 f (py't — qya)id_; _ o, @)

wherfa 4 is to satisfy (74) and the.pi:gs&ribed end conditions. 1Tom
(67} it follows also that the condition

SN 1) = 0, (76)

W}th .the provision y D;’is equivalent to either (67) or the com-
bination of (75) antl (74). Tn this last form, the constant A plavs
t'h,e role of a Lag{(’*‘ﬁge multiplier, and is to be determined together
with the fll_nptifpn y 80 that I) — X\ I, is stationary and y(+) # 0.
Th_e ccfnd,lt@J @74) is recognized as a normalizing condition, the
Welgh_%f‘mchon r{z) being that funetion with respeet to which
the fllg}lget characteristic functions of the problem are orthogonal.
”(\S‘eegSectlon 1.29.)
U 1f the constraapt (74) were suppressed, the problem (75) would
In genersl determine only one extremal (y = 0
the condition (74) ig added, the problem -
set of extremals, for each of which ) is

ations in ¢,
o L0 e st st i
are still valid if 3 ). Itis I‘f&adlly verified that these equations
10 1, Instead of requiring that y vanish at an end point,

However, when
has in general an infinite
stationary for small varl-
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we impose the nafural boundary condition that p dy/dr vanish at
that point.

For a physical interpretation of these results, we recall that,
for free vibration of an elastic string of length L under tension F{z},
the amplitude y satisfies the equation

d dy . .
d—m(F%)—I-wpy—O {77)
where p(z) is the linear mass density and w the eircular frequehcy.
This equation is identificd with (70} if we set ;)
: 7N\ ¢

p=F, g=0, r=p A=ot >~ (8

NN
L

Hence the vibration modes are extremals of the prplglem

ny’”dx V
|\ Fova 7

and stationary values of the ratio are squareb of the natural circular
frequencies. Alternatively, from ’(7 6), the variztional problem
can be taken in the form NN

TN

dw? =

b f, = wp g de = 0. (80)
\Y

The statement 0%(\793 is a special case of Rayleigh’s principle
which applies to shoré general elastic systems.®* It can be shown
that the smallest stdtébnm‘y value of w* is truly the minimum value of
the ratio in L’Q)\for all continuously differentiable functions y{x)
which vanisbiat x = 0 and z = L (see Problem 37).

Equa{ioh (80) is closely connected with Hamilfon’s principle,
whichys treated in the following section.

" I\’It thods for obtaining approximaotions to the extremals of sueh
mc;blems are to be considered in SBections 2,17 and 2.18.

2.8. Hamilton’s principle. One of the most basic and impor-
tant principles of mathematical physics bears the name of Ham-
ilton.t From it can be deduced the fundamental equations govern-
ing a large number of physical phenomena. It is formulated here

* Bee Reference 3.
1 8ir William Rowan Hamilton (1805-1865), an Irish mathematician, is also
known for his invention of guaternions.



148  CALCULUS OF VARIATIONS AND APPLICATIONS  [§2.8

in terms of the dynamics of a system of particles, and is readily
extended by analogy to other considerations.

We consider first a single particle of mass m, moving subject
to a foree field. If the vector from g fixed origin to the particle
at time { is denoted by r, then, according to Newton’s luws of
motion, the actual path followed is governed by the vector equation

fizi F =0, 81
QY
where F is the force acting on the particle. Now consider ang
other path r 4- 8r. We require only that the frue path d.IId ‘t’lw
varted path coincide at two distinet instants § = ¢; and { = !, thut
is, that the variation &r vanish at those two instants: i N

ot
3

- ari = 0. w\‘ (82)

At any intermediate time ¢ we then have to mmmdcr the true path
r and the varied path T 4+ ér. <!

The first step in the derivation consmts in taking the seadur (dot)
product of the variation sr into (81), 4 and in integrating the result
with respect to time over (i, t,), tog abtam the relation

31 dor
Am R ar.~ F . 51') dt = 0, (83)

If the first term is inte\gr\.é,}%d by parts, it takes the form
e dr 2] 3] dr
m 61‘ =
f @ " [[dt o ]t, j:, & d l

S‘?ﬂe the Va lon 41 vanishes at the ends of the intery al, the
in egrate\thnns vauish. Also, we have the relation

dr .dr _ 1 (dr\*
o @& '@y

\Hénee, the first term in (83) is equivalent to

1 2
—B[Qm(%‘!) ] - (84)

h . . .
where I'is the kinetic energy {&mv?) of the particle, and (83) becomes

tz
fior+F.oma=o (85)
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This is Hamilion's principle in its most general form, as applied
to the motion of a single particle. However, if the force field is
conservalive it can be put in a more concise form.

To fix ideas, suppose that F is specified by its components
X, ¥V, Z in the dircctions of the rectangular zyz-coordinates. We
recall that a force field F is conservative if and only if

Fodi=Xde +Ydy+ Zdz

is the differential d® of a single- valuod function ®, The fOl 0e F is
then the gradient of ®. The function & is ealled the foroe\p‘sientml
and its negaiive, say V, is called the potential energy. \\Clearly, P
and V each involve an irrelevant arbitrary additive @}Qnstant

It follows that F is conservative if there (,lefs & single-valued
function ® such that N\

F«or = 6. ’ (86)
AN
In terms of the zyz-components of F, p@s}neans that
X oz + ¥ by K'2% = 50 &7)
where N
% s\ 8
X = 5’17 = Z = v {88)

Thus if & is the pot\ntlal funetion, equation (85) beecomes
RS E (89)

In place of {i® potentlal function &, it is more customary to use
the 'potentw\ energy funetion V,
"\‘

" V= —& 90
& (50)
go that Hamilton’s prineciple takes the form
4 t\: $
O aL‘ (T — V)dt =0 ©1)

when a potential function exists, that is, when the forces acting are
conservative.

For such a problem Hamiltor’s principle states that the motion
is such that the integral of the difference between the kinetic and
potential energies is stationary for the true path, Tt can be shown
further that actually this integral 15 & minimum when compared
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with that corresponding to any neighboring path having the same
terminal configurations. Thus we may say that “nature tends to
equalize the kinetic and potential energies over the motion.”

The energy difference

L=T-7
is sometimes called the kinetic potential or the Lagrangian function,
In terms of this function, (91) becomes merely \
5 f “Ldt = 0. )
(] 7"\

Ny
I nonconservative forces are present, the potentinl cnerpgy
function generally does not exist, and recourse musthe had to (85).
We may notice, however, that in any case F . 61“;'}, the element of

work done by the force F in a small de'splaceme{u or.  In particular,
when the force 4s conservative this elemgrgb}of work 1s equivalent
to & = —5T, \ N

The sbove derivation is extended do's system of N particles by
summation, and to a continuons systam by integration. Thus if the
kth particle is of mass iz, 1s specified by the vector Ix, and 15 subjeet
to » force Fy, the total kinetie.gnergy is given by

EN \1' dri\? X 1
T = X )5 M (-d—;) = E 5 Mt {93a)
w1 k=1

while the total @ork done by the forees acting is given by

N
N DF o (93b)
kmi

n .\'ﬁFmaHY, t'he. principle a;?plies equally well to g general dynamient
\cislfmt_conmstmg of par_tmleg, and rigid bodies subjeet to inter-
i flil e I(;)ns and GDﬂStra,f_ms. We notice that the derivation i3
hdependent of the coordinates specifying the system.

2.9, ’ . )
? Lagrange s €quations. Ip g4 dynamical system with n
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of a point mass m suspended by an inextensible string of length L,

the position of the mass is com-
pletely determined by the angle ¢
between the deflected and equi-
librium positions of the string
(Figure 2.3}, If =zy-coordinates
were used, £ and y would not be
independent since the constraint
equation z? 4+ 4* = L? would have
to be imposed. Similarly, the
compound pendulum of Figure
24 has two degrees of free-
dom and the indicated angles
¢; and . are suitable general-
ized coordinates. In rectangular
coordinates, if the quantities i,
y1 and 2, ys representing the
positions of my and m, were used,

A\

L8

Frgury 2.3

two equations of constraint would, be needed

N

4} ".".X

Figume 2.4

—§V = +5® =

Q8q1 + Qs 3g2 + - - -

In the general ease, the
total kinelic energy T may
depcnd upon the general-
ized ecoordinates, say ¢,
gz, - - - ; Ua, 88 Well as upon
their time rates of change
or so-called generalized veloc-
ities qu, s, - - -, gut Tor
a conservafive system the
total poteniial energy V is
a funetion only of position
and hence does not depend
upon the generalized veloci-
ties.

Also, the work done by
the force system involved
when the ¢’s are given small
displacements is

+ Qndgs, (99

* Here and elsewhere, a dot indieates {rme differentiation.
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where

@ = 801 O 9qn 90

The quantity @ 8¢; is the work done by the forces %11 a di.spl:u.'{?munt.
bq. Since the @'s may or may not have the‘ (lln’l‘(‘.ll.‘iIU!l of tr}m
force they are called generalized forces. .Th'us if Qs a linear LI!S-
placement, then {); is truly a force, while if ¢s Is an m;yuf:rr clis-
placcment, then €; is a forque. In other applications the ¢ B mays
represent electric charges, currents, areas, volumes, ‘mui H0 tf;{t.h,
and the nature of the @’s is determined accordingly, in such. i:u, Way
that @ 8¢ has the dimensions of werk. . \
In applications of Hamilton’s principle, N

at ¥

to conservative systems we may thus suppose xt@b the total kinetic
encrgy T is expressed in terms of the Q’S'?Qd’ the n ¢'s, while the
total potential energy V is expressed in teiims of the ¢’s only. The
associated Euler equations then become It

dafar -] _or—v) N° 97
— == B TV A = PP . W7
= [ T ] 0 ’j:ﬂo (i=1,2, y ). (Y7a)
Since a¥/ag; = 0, we may x@“'ite each equation alternatively in the
form g gw’
4aT  oT  av o7
N o — _— = ‘) }
R ag 3 Vg =0 o
or, using (95),"{1:&-& form
% dar ar .
:§“ . a_iﬂ—q‘ _ a_q_ = Q. (H7¢)

The.three forms (97a,b,c) are ¢o
: %ell‘gaﬁve system, and are usually ¢
effation is obtained for each inde
In illustration, for the simple
energy is given by

mpletely cquivalent for a con-
elled Lagrange's equations. One
pendent g,

pendulum of Figure 2.3 the kinetic

T = ym(L ), (98a)

> the work done by gravity in lifting the
M position to the position § ix negative and

If damping is neglected
mass from its equilibriy
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is given by —m g L{l — cos 8), so that the potential energy is of
the form
V = 4+mgL(1 — cos 8} + constant. {98h)

Thus, with ¢, = 8, equation {(97b) becomes

%(mL”B) —0-+mgLsing =0

or i+7 Y sin 6 = 0. {(99)

A\ ¢

This is the well-known equation of motion for such a pegaulum

For the compound pendulum of Figure 2.4 we ma)? ‘proceed as
follows. If the rectangular coordinates of m, and. % mz ‘are taken as
(x1, 1) and (zs, ¥} there follows v

i =Lisin 8, iy = mthjos '61;
(N
Zz = Lysin 0y + Lo sin 62, %2 =584 cos 8; — L2 cos .

N\

The total kinetic energy 1" is theﬂ
= gma(d? + y ) + gma(ds? + 9.
Henece there follows, by substltutlon and simplification,

T = 3(my + ma)la?6,7 —i— malnLiafh0; cos (B, — 84) + el
b\ © (100a)
The total potenjagl energy is given by
A&/
x,\ V = mag ys + mag y2 + constant
or :~\1.

V =8\=(m1 + my)g L1 cos 61 ~ mag Ls cos 85 + constant. {100b)
»Ijéu\s of equation (97b) then leads to the two equations of motion
3

(m1 + ma}lnby + malg(f; cos @ + 65° sin )

-+ (‘f??q_ + m:{)g sin 61 =0 (1013)
and
L1, cos & + Lofy — Lif:2 sin o + g sin 8, = 0, (101b)

where a = 8 — (102)
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' We notice that it is not neecessary to evaluate the constraints

exerted by tensions in the strings supporting the masses, since they
do no work. -

For a nonconservative force field, Lagrange’s cquations must be

based on the form (85), rather than (91). In this ecase it s still

" possible fo express the work done by the force system in smull

displacements §q1, . . . , 8¢, in the form
N O
2 Foodre = Qudq1 + Qadga -+ + -+ 4 Qn dqga, ‘.\fLUR)
k=1 : -

'\

a8 in (94). However, the generalized forces Q; are nqu‘.}j?f generad
not derivable from a potential function as in (95). (jr}fr-(=1-‘:ui1: tol-
conservative systems such a function may existedepending wpon
time as well as position.) To determine the Q& by physivel con-
siderations, we need only notice that, as befere) (: 3¢ is the work
done by the force system when g; is chafighd to ¢, + 6y and the
other ¢'s are held fived. P\%

For an analytical determination, ge-Tay suppose that the com-
ponents Xz, Y&, and Zy of the foﬁéé'i?k acting on the fih pariicle
of the system are known in the.directions of the z-, y-, and s-axes.
Then (103} gives the relation h

Qudqr + Qy 8g0 + - - :zq*.\Qn 5
O
N = kzl (Xx 82x + Yy Sys + Zi 52.). (104)

AY

Sinee w, y4and 2

£ are functions of the eoordinates
Ty thel',e\\f(“)hows also ‘eoordinates ¢, gz, . -

L]

*

r s ax,k
g & = ... axk
e Ty 5 i + + %, Btfn,
\/ 3 .
= _?{ic R : ayk
We=antmt e+ g, am - (105)

6zk
O = 13 . . 82;
3 0t + 3, %

then gives at au.the 89’3 excepi dg; vanish, (103)
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_ O o = Ok 5 G
axk = a_q" Bgﬁ} ayk = aq‘ ‘S‘Iu 327‘ - 6?; aqﬁ (1063‘)
and (104) becomes
N
¢ bg; = 2 (Xx bz + Y dyn + Zn 22, (106b)

in this ease. By mtroducmg (1063) into (106b), we then obta%n
the desired relation

N
+E\

N

dxp . 8yk dzy NS ©

0. = ( 7 ) S
k=21 T 2 ¢/ | ‘ (

 {

This result is clearly valid whether or not the systeggb'\i's"censeryaﬁve. .
Hamilton's principle (85) then states that '

5[0 rar+ [T Quoq + Qaog + -.\»:\\'+ Qn 3g) dt = 0.

By calculating the variation of the ﬁer integral in the usual way,
we obtain the condition Y

N

t(foT g
(EET

\L% 2(30) + .| saf at=0. s,

The wvanishing of Jhe coefficients of the independent wvariations
leads again to e’ cquations (97¢).

Thus theé}éguatians are valid whenever the variations of the n ¢'s
are ?Inde%{r—ﬁent:

&Y i) -Z-a G-vzecom (09
}‘or 8, conservative system the s are derivable from a potentisl
funection and (97a) or (97b) can be used alternatively.

2.10. Generalized dynamical entities. Before considering
the definition of additional generalized dynamical entities, it is
desirable to emphasize the fact that the so-called generalized velocity
¢;, associated with a generalized coordinate g;, is merely the time
rate of change of that coordinate. 'Thus, for example, in polar coordi-



156  CALCULUS OF VARIATIONS AND APPLICATIONS  [§2.10

nates {r, 8) the generalized velocities associated with r and ¢ are
merely # and 4, respectively. We notice that 8 is not the component
of the velocity vector in the circumferential direction {r8). Simi-
larly, the so-called generalized accelerations ¥ and 8, ussociated with
r and 8, are nof the respective components of the acceleration vector
in the radial and circumferential directions. It will be reculled
that these latter quantities are of the forms# — r8? and r§ + 256
In the remainder of this section we deal always with generalized™
forces, velocities, accelerations, and momenta. For brevity, she
adjective “generalized” will frequently be omitted. R N,
In rectangular coordinates (z, 3, 2) the quantitics A

7N
L 3

Pe=m%, py=my, p=mé 2

: o\ .
are called the components of momentum. Since weHave the relution

T=3m@ + 4 + 8, o
it follows that W

or_ v @

gr ~ Pu Gy T Palg; = P-
| In generalized coordinates, y@ oall the quantity #7/aq; the
generalized momentum associated with g, and write

AN T
¢i' JPe = — 0
& ' o, (110)
The associated equation of motion, (109), then becomes
"¢/
RS dp. _ oT
o 7=+ (111)

‘$)
H o .
we;f:’ 3®' ate of f':hange of the ith generalized momentum is equal
I é;:’m of the tth generalized force Q; and the quantity a7 /dq;.
A eiongular coordinates the “corrective terms” 97/aq, are

&Qsént.

I i i
i motion specified by plane polar coordinates (r, 8) we have

=1 fds\'
T= 5’”(&?) = g ml* + 7247
and hence
pr=m‘i', ‘pa::m?-sa. ?_?_1__ 67’
b= mrf 55 =0 (112)
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The equations of motion {111) are then of the form

(fi?;f = @, +mr ¢ ' (113a)
dps _
@ €. (113b)

Here §, is the impressed radial force, while the generalized §-force
Qo is a torgue. If a particle moves in such a way that the (general-
ized) momentum associated with r is constant and heneeg\from
(112), dr/dt is constant, (1132) shows that a net foree @, =\—mr 62
must then be exerted externally (e.g., by a spring} im the r-diree-
tion. More generally, in so far as change in the r-\mémentum is
involved, the mass behaves as though a force &m r 6% = 07'/dr
were acting in the r-direction in addition ¢ the actual external
force Q,. The fictitious force is recogmzed\ ak the so-called cen-
trifugal force. L

Since such quantities are not true physma.l forces, they are often
called dnertia forces. 'Their presence of mbsence depends, not upon
the particular problem at hand but upon the coordinale system
chosen. .u,

In general, we see that if* Tinvolves the coordinate ¢; explicitly,

the quantity d7/9¢: ¢ {be considered as an associated inertia
force. Thus, if we dcii?.;te this quantity by P;,
P;= o, (114)
O 84
the ith equation of motion (111) becomes
:"\"~
\\ ‘2:" = +P. (115)

S

'\

\'We shall refer to the quantity P; as a momental inertia foree.*

We may notice next that while the quantity dp:/d¢ willin gen-
eral contain terms involving the generalized acceleration §;, its expan-
sion may also involve nonaccelerational terms. Thus, if acceler-
ations associated with generalized coordinates are to be of prime
interest (as is usually the case), these latter terms may be con-
veniently transferred to the right in (115) and considered as addi-

* Various terminologies, some of which are at variance with this one, are
in use,
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tional (generalized) inertia forces, Such ingnstwa forces are often

said to be of the Coriolis type.

~ Thus a Coriolis inertia force is equivalent to an impressed force

associated with ¢; which tends to change the genernlized velocity

G5, but which does not tend to change the generalized momentum,

when actual external forees are omitted. On the other hand, an
inertia force of the “momental” type (e.g., & contrifugal foree) iy

equivalent to an impressed force which tends to change hoth 174

and ¢; in the absence of true external forees. .
Since, from (112), we have dp./dt = m ¥, no such termg e
present in (133a} and we have O

P
™

mi=Q,+ mré O 7 (16w)
N\
However, sinee dps/dt = m 7§ + 2m r 7 ¢, the sedond term can be
conveniently transferred o the right in (113b) {Q;give

mrif = Qs ~ 2m r ?"‘9.:\;’ (1161

The generalized “Coriolis force” in (116h) 38 clearly a forgue.

' Vf’e notice that the momental (eentrifugal) term m r ¢ is an

}nertla force with regard to changeiiboth r-momentum and r-veloe-

16y, Whéle the Coriolis term —2m 7 6 is an inertia “foree™ (forque)

ouly :ﬂth regard to changg&]'n f-velocity. That is, one may sy

that “a -velocity tends to.change the r-velocity and the r-monen-

fum, vs:hert?as simultaneous r- and f-velocities tend to chunge the

f-velocity, in the absente of actual impressed forees.”

coo:-?; a further ,ezfémpif, we consi‘der motion specified by spherical
Lnaies (9\1;,\,9‘2, s} = (r, 8, ¢) in space, where r iy distanee from

the origi 2 . ,
50 thatg.]’]\l"\\euls POIM angle, and ¢ is “cone angle” (Figure 2.5),

At % = rcos ¢sin ¢,
N Y = rsin 8 sin ¢,
2 =7co8 ¢,

Since the element, of arc length ig dg?

th ' 1 /ds\2 = drt + r2gin? ¢ do* + r* de?,
ere foll = s
ows from T = 5m (RE) the result,

T = dm 4 pae sin? ¢ + rege),

N\
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Thus, with the notation of (110) and (114), we have

pr=m¥F ps=mrisin?e, p; = mri (117a)
and
Po=mr@®sint¢+mrd?, Py=0, P, =mrif’gin ¢ cos ¢.
(117b)
z
.. N\
L\
(x,y,2) ~ N
[ I \/
N
| a3
|
e
N ¢
N ¢
OO
o8, |
):', - \
O N
FidwRE 2.5

The equations of motion{n the form (115} then become
o\

% (m Q\;'Q, 4 m oy 6% sin? ¢ + mr 7

:g?“(‘é};rgé gin? ¢). = Qs, + (118a,b,c)
x’\"’

\& )
\\a % (mrig) = Q4 + mri¢? sin ¢ cos ¢
W\

:~{fﬁ'partictllar, if a particle ig constrained to move on the surface

{f}j“é sphere of radius a, there follows r = g, # = # = 0, and hence,
rom (118a}, the necessary physical constraint normal to the sphere
surface is given by

Q. = —maé2sin® ¢ — ma i (119)

That is, the total centrifugal inertia force (P.),—, must be balanced
by a physical constraint equal to the negative of that quantity.
Equations (118b,e) then give the equations of motion
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ma*d% (6 sin® ¢) = Qs

‘or matsin? $ § = Qg — 2m ¥ 4 sin & cos ¢ (120a)
and m o’ = Q, + m a2 sin ¢ cos ¢. (120b)
ol_~ The inertia force (torque) as-

soctated with @ is of Corlolis
type, while that assoringbdéd
with ¢ is of momental thwe.

Similarly, if thesparticle
is constrained tooui;u;'“é on the
surface of the cone éj = athe
constratnt i.a,&\iif'cn by (118¢)

in the form v
Qs =.’;§}“m 0% sin @ co8 a
D (121)
>;md the equations of motion
. N° miét =@ +mré§sinta
Frovge 2.6 (1224}
and . d
\m sin® @ & (r40) = Q,,
)
o \mrﬂ Sn’ad =Qy — 2mridsin? a. {122b)

The inert; “);' ; L _
Corioli?\;%’ézfome 18 momental, whereas the inertia f-torque is of

Ttillustration, suppose that o

. bead (e lidine wit
friétion, under gravity along a wi of mass m is sliding without

. ; re, inclined at an angle a to the
rotating with congts t

t angular velocit Figure 2.6)

Then m must mo Ot ang veloaity w (Figure 2.6).
v -

way that € on the surface of the cone ¢ = ¢, in such a

= ut, (123)

if )
We measure { from g time when ¢ = 0. Also we have

Qr=mg(303a_
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Hence, with 6 = o, equation (122a) is the equation of motion
determining the coordinate » which, together with (1238) and the
relation ¢ = @, specifies the position of m. This equation takes
the form

mi—mro’sin’a =myg cos a, (124}

from which there follows
* = ¢y sinh (¢ sin @) + e4 cosh (wf sin o) — %a_'
If the bead is released from rest at the origin at the instunt t\—

the evaludtion of the constants gives N

Ny

S
7°%Q

g 00s & [cosh (wi sin a) — 1], \\ : (125)
AN

w? sin? o

With this expression for r, the generalized fordes (torques) asso-
clated with ¢ and ¢ are then found from¢ {ﬁl) and (122b), in the
form \

& = —mriw?sin & cos g, Qg 2m wr¥sin®a.  (126a,b)

These results may be mterpr&ted as follows: The forces acting on
m in the positive ¢-direction a,re ‘the gravity component —im ¢ sin o
and the reaction r'mnponent R.,, exerted by the wire. In a linear
displacement 8sy = r 3¢, duwhich r and # are considered to be held
fixed, the work doned it,hese forces would be (R, — m ¢ sin ce)f 3.
By equating this M}h‘( to €y 8¢, we obtain the reaction B, in the
form

’\'R¢=mgsinav—mrw 8in o Cos o

Further, 4 a finesr displacement 8s; = r sin « 66, in which r and &
are consl?iered t0 be held fixed, the work done by the reaction com-
ponegt ‘R would be Ry r sin « 86. Since the force of gravity has
O\cemponent in the f-direction, there follows RBsr sin a 68 = Qy 86.
nce, the circumferential force cxerted by the wire is given by

Ry = 2m o Fsin a.

In this example ¢ is fixed and, if we think of # as prescribed,
the system essentially has only one degree of freedom. 7he reac-
tions Ry and Ry were obtained by considering the system as ¢ degenerate
case of a system with three degrees of freedom.
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If the reactions were nof required, we would write dircetly
T =rcoswisiﬂa, y = rein ol 8in &, 2 = 7 cous «,

and so obtain T immediately in terms of the one independent
 coordinate r, in the form

T = m{#? + r%? sin® a).
Lagrange'’s equation for that ecoordinate would then be obtained as
%(mf‘) —mruwtsin? e = Q, = mg cos a,
O\
in accordance with {(124). A
2.11. Constraints in dynamical systems. In somelases it
Is ineonvenient or impossible to chocse n indcpt!lld(:l1}-(;},{‘.“1‘7'5111?,0(1
coordinates to specify the configuration of a systénr having »
degrees of freedom. Instead, if n coordinates a¥&ised, wo may
have k auxiliary equations relating these n coor;gmt.(-s. I'he <vstem
is then usually said to have n — k degrees OPiteedom, and (he &
restrictive equations are known as the gqiiations of constraint. If
thése equations are of the form O

¢1(q11 qs - - J:g’w)n = 0:'
¢2(q1) gz 2 };:,-' Qn) = {,

¢k(@:g2: g =0
then two possible progedures are available.

Clearly, if $he’k equations can be conveniently resolved to

express k of thev's in terms of the # — k remaining ¢'s, then these

latter ¢'s aréymdependent and the governing differential equations
are determined by the methods of Section 2.9.

If.ft?ﬁs procedure is not convenient, the method of Lagrange
m;yf{?plw::-s, a5 deseribed in Seetign 2,6, is useful. The method

opsists in first forming the variational conditions which follow
from (127)
3¢, 3¢,
aq 1+ + é‘q: 6&'3 = 0,
.................. . (128)
I 3¢
aQ’l g1 - - . + 5(; aq“ =0
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These equations are then multiplied respectively by functions
M, . . ., Mg, infegrated over (f, £s), and added to the equation
of Hamilton’s principle. Then, as was indicated in Section 2.6,
we obfaln n equations, each of the form

d {aT aT 8@‘}1 3‘35.1,-
7 (B_g-,) EP = -+ M

(’i=1,2,"',n)- €129

These » equations, togethcr with the % equations (127), then fom-
prise ® + k equatlons in the n -+ k unknown quantities § @ - - .,
gn and Ny, . . ., A If the Ns are eliminated, the wesultant n
equations serve to determinc the # ¢’s.

In equation (129), @ is, as before, determined" }ty the faet that
€); 8g; is the work done by the external forces allen ¢; is varied by
5¢q; and the remaining ¢’s are held fixed. Hov&vcr here it is impor-
tant to notice that such a vartation may vpalufe the physical constraind
conditions, which may require that{a vdisplacement 8g; should
actually be necessarily accompanied\by changes in certain of the
other ¢’s. Tt is useful to notice that, for a conservative system, (129)
is obtained by replacing ¥V by ¥4~ Z\.4, in (97b). This last quan-
tity is sometimes called the reduced potential energy.

From (129) it is appareht that s term Ay 0¢z/9g; 18 of the nature
of a generalized forcefdue to the kth constraint and associated with
the 7th coordinate. AEach constraint muy thus contribute an addi-
tional generah?ed\fo?'ce to each of the equations of motion,

However, akgnotice that the work done in any set of displace-
ments by th& force due to the Ath constraint is given by

N
R\ ""* " 51+ ;5" Sga + - -+ + M "";’

AN
Fenice, in virtue of equations (128), the work done by the (fived)
constraint vanishes if the displacements salisfy the constraini con-
ditions. Displacements which are compatible with the constraint
conditions are often called wvirtual displacements.

In certain cases, a constraint condition may not be expressible in
the form (127), but may be of the form

% 8¢

Ol 5Q1 + e + On agn = 0, (130)
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where the left-hand member is not proportional to ‘I,}im \-'in‘mtlon
i onstraint 18 said to be non-
tion. In such a case the cons . e
Ofljny f;::nc }f k nonholonomie constraints are mvolvtzld, . bs Tmt
” Qggté eliminate certain of the ¢’s by solving equutllfms similar
1?(?8(127) so that » coordinates are still needed to H])[.tt'.lly the con-
ﬁguratio’n Nevertheless, the system is usually said to pussess
r n — k degrees of freedom. o
Onlblnnany casegrit is clear that the method of Lagrangc nmltu;lu,}B
’ . i - "
(which involves only the wariations of the coordinutes) Is agrain

directly applicable in that the functions a¢,/d¢, . - ,.{i_&fi;-’r?‘g?
are merely replaced by the functions €y, . . ., Ch. "LEhé&penera

problem of the rolling of a disk on a plane is found tu,:lfu e |11\'(;l.\«';
ing nonholonomic ¢onstraints, and is solvable l-)ymt{{msv mel }_1:)( 8.
The basic ideas of this section may be illugtalcd by two ele-
mentary examples. The simple pulley of I'1§m, 2.7 possesses one
degree of freedom, and ¢, is a suitable courtinate. [.hc kinetie
energy of the system, neglecting the wgighls of the cord, is
T = %(ml Tb’?ﬁz)(jﬁz.

If g, is increased by 8q1, the work done by gravity is given by

m{g" 3gy — mag 8¢,
and hence \\iQ; = (m; — my)g.

Thus the equation(of motion is

’\~\ (M1 + ma)gy = (m, — ma)g, (131)
as is alsg ghyious from other considerations. .
Su , however, to tlustrate the preceding developments in @

simplescuse, that the g coordinat
used - These two coordinates are

Nif the tota] length of the cord (assu
congtraint

es ¢, and q; of Figure 2.8 are
clearly not independent since,
eed to be inextensible} is 1, the

Q14 ga=1 (132)

must be imposed. Tp term:

8 of ¢; and ¢s, the kinetic cnergy of the
sygtem s

T = Ty IMags?, (133)

* Bee, for example, Refersnce 4,
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If ¢) is increased by 8¢, and g. ¢s held fized (violating the constraint
condifion), the work done by gravity in the displacement &g, is
g 8¢1.  Thus, we must have

Q1 = mayg
and, similarly,
€2 = moy.
From (132) we have also
51 + g2 = 0. (134)

This condifion clearly requires that the displacements satlsfy the
constraint condition, that is, that they be virfual dlsplaceylénts 80
that the work done by the constraining tension Vamshes‘

LALLESIL il s ////n///x?//ff/u/

g
5 j ‘ ’
ml— —_— N

Figure 2.7 N Fraurr 2.8

With the mtroducmehs of a Lagrange multiplier, the equations
corresponding to (12{}\become

O mg = myg + 7\,}

<"

x'\ Mafy = Mag + A

Equatio s:‘§i35a,b) and (132) are the desired three equations in
qu ¢z, afid'A.  The elimination of A between (135a,b) gives

T,
NS

(135a,b)

O mads = mady = (my — ma)g, (136)
“and the elimination of g2 between (136) and (132) then leads to
(131).

From (135) we see that A is the foree exerted by the tension in
the cord on each of the masses. By eliminating g: befween (131)
and (135a), we find that

A= —2 (ﬁ) g. (137)
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The negative sign corresponds to the fact that the tensile force
acts in the negative direction relative to ¢, and g..

As a second example, involving two eonstraints, we consider the
rolling of a right circular cylinder of mass m on another cylinder,
assuming the axes of the cylinders to be parallel. We choose the
angles 6, and 8, of Figure 2.9 and the distance r between the centers
as coordinates, noticing in advance that so long as the cylinders are
in contact §1 and 8; are not independent, and r is actually constraineds,

Fidves 2.9

to remain constant, We-notice that the rolling eylinder rotates

through an angle 6, 6y, 85 the angle 6, is generated by the line
of eenters, and also th

d . "a,t the kinetic energy of the rolling cvlinder is
i:zotrinpose of th DBELE: one of the form 3m + £26,2) due to trans-
(;t o? of tht_e pﬂ:,ter of gravity, and one of the form L(hm R.9)62
Ue Lo rotatiertabout the eenter of gravity. Hence we have

O .

Q T = §m{i? + 10,2 + §R,24,2). (138)

¢

The; potential cnergy can clearly he taken as

V =mgrcos g + constant. (139)
The requirement, of contact leads to the constraint equation
T (B1+R) =0, (140)

g 35 present, the condition Ry = Ra(6, — 81)
al constraing equation

while, if pure rollin
leads to the friction
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(Rl + R?,)Bl - Rzﬂz = 0 (141)

The variational forms of (140} and (141) are then

1-6r 4 0- 86+ 0- 58, = 0,
- (142a,b)

0'5T+(R1+R2)561—R3593=0

With the intreduction of two Lagrange multipliers A; and hz{the
Lagrange equations (129) take the form A
xS
m#= —mgcos § +mr b+ A, ';:\
2 i) — mgrsin 6 + Aa(By + BOYY (143ah,0)
dt RE
Im R, = —\aR, \

the coefficients {1, 0, 0} of A, and {0,‘3}\%- R, — R} of dgy in
successive equations, being read from({142a,b).

If » and ¢, are eliminated by use.bf (140) and (141), equations
{143a,c) give ™

M =mg cos.‘&}j}-—‘ m(Ry + Ra)6: {144a)
Ay = M :'R.zéﬂ = —}m{R: + Ry)b;, (144b)

~& ]
and the combinati '\éf.’(143b) and (144b) gives
MRy + B2 = m g(R: + Re) sin 61 — dm(B: + R2)*0;
¥/
or AO7 §® A+ R — g sin 6 = 0. (145)
\& )
This is,‘\bhe'required equation of motion, valid so long as contact
perSiSt:S . . .
e Pom (143a) we see that Ay is the normal force (in t?le r-direction)
\”@Xﬁi't-ed by the stationary cylinder on the rolling cylinder. Equa-
ion (144a) shows that this force is positive only when g cos &>
(Ry + R.)6:2, after which contact ceases and the constraints are
removed. Fquations (143a,b,c) then hold with Ay = Az = 0.
From (143¢) it follows that —X: is the frictional force exerted
on the rolling cylinder (—AsR. is the corresponding Porque shout
its center). By combining (144b) and (145), we obtain

—X; = 3mgsin fy (146)
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Tf the constraints were of no interest, we would more economi-
cally introduce (140) and (141) directly into (1385 and (139), to

obtain
T = %m(Rl + ff:}r"ol:

and V =mg{Ri + Ro) cos 81 3 constant,

Sinee #, is now an independent coordinate, cquation (1457 follows
immediately as the relevant Lagrange cquation. It should dey
" noticed that no information as to the runge of validity of (143) er
as to the nature of the subsequent motivn would then be j{]‘\fl}t’il\l(!d.
While the examples just considered, in which the denstraing
equations were of sufficiently simple form 1o permit @y elimina-
tion of superfluous coordinates, do not illustrate the W@h-reney of the
" method of Lagrange multipliers in more involad&d problems, they
may serve to illustrate the lechnigue involved SPurther, they indi-
cate the fact that such multipliers ure \'('l'_((ﬂ‘l en capble of useful
physical interpretation, and that theif hve in connection with
superfluous coordinates may lead to thedeterminaiion of unknown
constraints when they are of interosty®
) At the same time, it may l}e’ﬁiii'pmpri:m- 16 point out that the
simplicity involved in the usé of Lagrange's equations siems from
the f‘act t]fl&t unknown C({Istru.ints ean generaliy be omitted from
consideration when they 3re not of interest .
2.12. Small vibrat

. N ions sbout equilibrinm. Normal co-
;:::l:ll].;z?;h Irn-ma.ny prObIEmB in q}’_]lll.‘l‘l‘li.(‘ﬁ we I(](-;q_i \\.'ii h ;_ h'_\’:-;[.‘(!m
the systemezﬁems‘fs a stable equilibrium conhgyration in wl‘uvh
with smgll)dis l:mam permane“tl}’_il_t rest, and fnr-h that motions
ibrig@Nate plfci?llents and .Vclomt‘ufs can persist pear the equi-
nafes g ‘ & system is specified by n ].{!‘Ilt'l'.'lll?,l'lll enordi-

'“\;‘ﬁY‘ tha’t tile.y.&.r(; gﬁ’ We can choose these coardinates m‘ Hllt’!l a
plicity, we consid ah 2eTo at an equilibriim position.  For s10-
SYSten:: - t:: dere only the case when » dan lhut't.hg
by the coordinageg ° egl‘ees of freedom and is completely .w'pwlfli :
generalized. 9180d g5 The results to be obtuine ] are readily

I
thereneﬂj)izt:a;epzfteanz?;sm%”e ayﬂtc‘m with two degrees of frvmlom;
¢1 and g, and which c:nergy function § whieh ddepends only 11.1_“”
" generally be vapanhad i a power = 15,

NeAr gy = g, = 0, of the form
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B av 3%
Vigi, q2) = Vo -+ (5.51)0 g1+ (:3-&'2)0 Iz

LI&VY o o 9V LA WY I
3 [(afllz)o o+ 2 (591 3!12)0 e ¥ (32122)0 e ] & ’

(147)

where & zero subscript indicates evaluation at the equilibrium
position ¢q; = ¢ = 0. But, since ¥ must be stationary st equi-
librium, the linear terms must vanish. The constant V is irrele<™
vant, and it can be taken to be zero. Hence, if the terms ol order
greater than two in the expansion of V are neglected, we L&J{ Wwilte

V = 3ang® + 26120192 + 222925, (‘:f}' ] {148)

where the a’s are constanis defined by comparisog'\wtith (147), so
that (to a first approximation) ¥V is a homogenegus,quadratic fune-
tion of ¢, und gs, with constant coefficients. )

The kinetic energy T is of the form \\

T = §{(buds® + 2b1sfuda S buds?), (149)
where the b's may depend upon qf.’a;ild gs. For small departures
from equilibrium, and small x(e}’ééi‘ties, these coefficients may be
replaced by their values when'gy = ¢z = 0. Hence, in such cases,
(149) expresses T as & ho )éeneous quadratic function of gi and e,
with constant coefficients, )

With these apprgﬁx\nat-ions, Lagrange's equations in the form
{97b) become mezely.

N\
& XV av .
IN= | = — =0 t=1,2 (150)
~0a (agu) * o =12
or, with the'notation of (148) and (149),
s \ budy + biofe + @ugr + Gz = 0, } (1515.b)
A biath + basfie + @12g1 + G2z = 0

Tt is important to notice that these differential equations are Linear,
with constant coefficients. ,
If the equilibrium state is to be stable, ¥ must possess a relat.lye
minimum at g = ga = 0, so that the form (148) must be posiive
unless ¢; = ¢, = 0. Also, since the kinetic energy T cannot be

negative, and cannot vanish unless sll the velocities vanish, the
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same must be true of the form (149). Quadratic forms having this
property are said to be posifive definite forms (see Section 1.17).

If we consider the ecordinates g, and ¢ as the components of a
vecfor g, equations (15la,b) can be combined into the mutrix
equation :

bi+aq=0 (152}

Following the usual procedure for solving such sets of equationg,
we seek solutions of the form

N

¢\
q = x cos (wi + 7), CVE1A3)

vthere the elements of x are the amplitudes of the I‘c'(il’l'ii"(‘d solu-
tions, and are to be independent of . Equation (L82Y then tukes
the form \¥%

ax = whx \\ {151)

In this way we are led to a characteristi}-;;alue problem of the
type considered in Section 1.25, with «*4dentified with the param-
eter A of that section. The characfemstic values of w? are thus
the roots of the characteristic equation

6= ] = 9 s s = |
Aig whiy gy — w?byg |

#\J

{ Ssm‘?e & and b are Symmetric and positive definite, the results
02 ectlon 1.25 Sh(?}?’that the roots of this quadratic equation in
w? are f'eal' an@‘posit'ive. However, they need not be distinet.
(?E)r}'espondlngt{o. each distinet root, the problem possesses a. nom-
tmrzid,l vectql:?solutio?. Furthermore, to a double root there cm-.re—
?Il:()irrt;ﬁn?f‘::;\ tnearly independent solutions which can be specified
correé:‘ﬁicindyt(IJIl 3(1111:13;"’?&378. Two ?Ol.u tion vectors v, and v; which
s stinet characteristic values of w? are orthogonal
With respect to both a and b; that is, we have the relations

= 0. (155)

V]TaVQ = 0, VITbVQ =0 (IJG)

in thi i
8 case. Furt'hermore, the two linearly mdependent solution
ponding to a repeated root of
gonalized .by the generalized Schmidt
{U]l '!-’12} and ¥ =
pendent characteristit; )

{(155) can be so ortho-
procedure, if this is desirable.
Vottons combe {?Jz}, v22} are linearly inde-

ponding t0 w,? and w2, respec-
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tively, where w; and w; need not be distinet, the solutions eorre-
spouding to the assumption (153} are then given by the expressions

q® = v; cos (wif + v1), q® = v; cos (wsf + vs) (157)

where 1 and ; are arbitrary constants. The most general solution
is then obtained by superposition, in the vector form

qQ = €171 €08 (w1t + v1) + eV cos (wal + 7va), (168)

or in the expanded form N\
. N\
g1 = c1211 608 (wit -+ ¥1) + Cova €08 (we + y2), |
& {159a,b)
gz = Cit1e €08 (et + v1)  Cowzr cos (oaf + (g}

where ¢; and ¢» are also arbifrary constants,

1t follows that the most general motion of $he specified system is a
superposition of two simple-harmonic moti x5’,.\the natural frequencies
of which are w;/2zx. The fact t-ha,t,t]ﬂs statement is true even
in the case when (155) possesses repeated roots is of particular
importance, Q »

The general solution (158)::61'“'" (159a,b) can be writien in the
matrix form N

[9_’1] ;{{y‘l} vzl:l {61 cos {(wit + ‘Yl)} (160a)
q= \ ez Vas Ca COS ((.ogt + 72)
or q=MC, (160b)
AS
where M is a’atodal matriz having the components of successive
chara,ctei\a;t‘bc"vectors as the elecments of its successive columns,
Ayt

and C dénbdtes the vector multiplied by M in (160a). If the equal
membens of (L60b) are premultiplied by M~ there follows simply
\ J «=C, (161)
where the vector « is defined by the relation

q=Me¢ a=M1Igq (162a,h)

Thus the new coordinates «; and a: so defined are such that the
general solution of (151a,b) or (152) can be expressed in the simple
form

ar = €1 ¢08 (enf + 1), o = C3co8 (waf + va), (163)
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odes of vibration then being wuncoupied. ‘Ihese new
the tro 1 finates ol the problen,
i led normal conrdinates .
ates are often cal ol the N
GUOI'SC_]HI the characteristic vectors v, nmd v nre cachl dete tmm(?d
e ) ‘ ! ' e
nl m'thin a multiplicative arbitrary constant, 1l rnn.:l.d m J.tl;w
;PI . 1Snthr:! normal coordinates ey, a» are not unipuely iIl‘lHII'!l.. i(;)r
. i 7 the vectors relutive to
it i t to normafize the ve
oses 14 1s convenien _ el
S?’crﬁe p:rgr b.* In partieular, we may determine nmliples n[} A2
either . ‘ mine : |
and v,, say e; and e, which are normalized relitivie 10 b, so thab
n E] '

RO
e be; = §, S \[. )
where 8;1s the Kroneeker delta. It then follows tha 1 }11 nnr mierlized
modal ??:am::: M made up of these nermetfized clinrae mln vertors
\
has the property that it satisfics the cquation n\
63
M?bM =1, N (163)
N ) f
where I is the unit matriz, By pua(mulm\l\ ing both e n:h(tl 125
{165) by M2, there then follows M- -“MT b, =o that (1623 ta
the more convenient form R

g=Muq 'u= M™bq (1665a,b)

. o 9
in this cage, Furthermorg{ it then follows (as in Section 1.25)
that also *)

:‘
2%

AN 0 (167}
h aM - [0 we

; d
Consequently«, with the substitution (166, the potential an
kinetic ene;g;e then become

V= %}Taq %NT(MTQM)&‘ = %(wl y?
A wq*"bq HMTb M)a = §(a,? 4 a,7)
\The ¢orresponding Lagrangian equations ure

. w37[r-:l’|_ ] (”iSa'b)

then simply

&y - wytey = 0, &1+ wilas = (), (lbg)

and equations (163) follow ; Mmediately. al-
Ore generally, if the columns of M are nof necessarily norm 1
i
*In some references the GOOI'dll'lnT.(“l a nnel e oane caljed sutfrirnd court
Dates, and are said to be

aeid
“ r,rrg]’f‘l ¥t
al coordinates only when they are s

in a certain Way, ag the termmolog; SUZRests,
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ized relative to b, it is easily shown that the substitution ¢ = M a
reduces V and T to the forms

V = $wfi?es® + wiflan?), T = 3(filas? + f2as?)  (170a,b)
where f2=v"bv,. . (171)
The corresponding Lagrangian equations,

f2(é1 + wifor) =0, f2(a: + @las) =0 O

arc seen to be of the same form as (169}, in accordance with. the
previously established validity of (163). Ilowever, unles){165)
is true the relation (166b) is not a conseguence of (166&);.‘5:nd {162b)
must be used instead, for the purpose of expressmg ¢ and @
explicitly in terms of ¢; and ¢.. \

Unlesg it is desirable to actually reduce the expressuons for the
potential and kinetic encrgies to the stanglaﬁ} forms (168a,b), it
is clear that there is little to be gained bynermalizing the character-
istic vectors in the developments under tensideration.,

In the more general case, the imp’res"sed foree system may con-
sist of a conservative part, denva.ble from a potential energy V,
and alse of a dissipative (nonpunservatlve) part. In particular,
there may exist resistive forees B, and R., associated with g, and
gz, which are proportlongl‘bo the velocities, and hence are expres-
gible in the forms \\

By = '—.(?“'1;1;?1 + risda), Be= —(raih + raafs). (172)

A
These terms wguld then be added to the right-hand members of
(151a,b), thus htroducing velocity terms into the linearized equa-

tions of maotion. In the special case when rs = 71z (in particular,
when thése two coupling coeflicients are zero), if we ‘define the

function
N F = Hrug? + 2ristafs + r2ads?, (178)
we see that
rR--F (=12. (174)
a¢;

The function F is then known as Rayleigh's dissipation function.
If we denote any external forces associated with g1 and gs which
are dissipative but not derivable from a dissipation funetion by



i74 CALGULUS OF VARIATIONS AND APPLICATIONS  [§2.13

Q) and @), respectively, equation (150) must be modified to read

d av , oF ' s
dt(aq‘) T dog -1, (175)
to include both conservative and dissipative forces. With the
notation of (148), (149), and (173), this set of equations can be
eombined in the matrix form -«
bi+réd+aqg=0Q (17(3
where b, r, and & are symmetric square matrices and Q \l‘a t‘m
column vector {Q}, @3}.

The coefficients b; in (149) are often known as) 111{ inerli
coefficients associated with ¢, and ¢, and the cocﬁi\ ends a1
(148) as the stiffness coefficients. The coefficients r;; in (173),

" which govern deviations from s1mple-harm0m(\\motmns when sutl-
able dissipative forces are present, are oft,eu ‘ealled the associated
resistance coefficients.

2.13. Numerical example. Tq lllustrate the results of the
preceding section, we consider the, determmatlon of nutural modes

of small vibration of the compound pendulum of Section 2.9. We
obtain the form (148),

o\

V=3 ml“ﬂ" ms)g L61% + Fmog Lofs?, (177)
by retaining 1ead111g ‘terms in the expansion of (100b) and the form
(149}, A\

T =“~%;G"'1 + ma)ln*® + molnLofif, + Amol 2047, {178)

A\ .
by settill’ 8: = 6, =0 in (100a). That 8, = 8, = 0 actually
spemﬁeﬁ*a.n equilibrium state {as is clear from physical consider-

g?}qns) follows mathematically from the fact that oV /o6, =
7363 = 0 when 8y = 8y = (.

The resultant equations of small oscillations,
(ml + ma}La?h + malLofy + (m1 + mz)g Ih6, =0 (1?9:}.)
and MmalalaBt + oo™y + mag Loy = 0O (170b)

1

are equivalent to the results of linearizing (101a,b) in the displace-
‘ments and velocities.
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We now consider explicitly the special ¢ase in which
M1 = My = MW, L] = Lg = L, (180)

s0 that, after removing a factor m L? from the equal members of the
governing equations, there follows

200+ &+ 25 0 =0,

(181&{))
51+92+ =8y =0 ~f
Corresponding to the agsumption \ ~
6 = x cos (wt + ), AT asy
the equation corresponding to {154) is obtained in'\i;i;é form
ax — % x, ’ (183)
where a— [3 {1}] b= E‘\ ] (184a,b)
and where & is a dimensionless paﬁi‘%@&tﬂl‘ defined by the relation
2“;% - (185)

The matrices a and b go  defined differ from those defined in the
preceding section onK{ﬁ Ahat their elements have been made dimen-
sionless.

We have them ttr deal with the matrix

\N¢;
\> - 200 — &%y =&t
3\ —— ==
o la — &%b] [ — 1 NJ (186)
the Vani\s}img of the determinant of which leads to the characteristic
equatmn
<\, d wt—4a? + 2 =10, (187)
Corresponding to the smaller root,
&2 = 0.586, (188)
the masrix {186) takes the form

] 0.828 —0.586
2 — &:7b] = [—0.586 0.414]
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and the elements of the modal column are proportional to the
cofaciors of the elements in either row of this matrix. By choosing
the first row, we may hence take v, in the form

0.414
= . (
Vi lO.éSﬁ} (189)
Similarly, in correspondence with the other root of {187),
Qg = 341, (19)>
the modal column v, may be taken in the form \ '\@\‘
—2.414
= . N {
v l 3.414] o) (D
&/

The geueral solution of (181a,b) ean then Nelespressedl by the
relations

N
¢ = 0.414e; cos (.t + 1) — 2.4145:,"(3: ;.(wg’ + vl ] (192)
g2 = 0.586c; cos (wif + ) + 3.,41402 cos {(wal - yal ‘
where w = 0.765 JSL‘" 'm = 188 \/‘; \ (163)

and where oy, o, ,, an(};r;\are arbitrary constants,

the:rlm(t? Ezdfa(‘)lr?tr.maé up of the clements of (189) and (191) i3

..\'".s"'M [0.414 —2.414}

O = 194
0 0.586  3.414 (194
and thé\ec) . . .
matl:jg;feqﬁzﬁzzpondmg normal coordinates are defined Dy the
.0\.0
w\\; 4 x = M-—} = 1.2[)? 08.-)‘ ]95)
\ 1 [Ho.:zo? 0146 & (

happen to be normalized in
column add to unity.  BY
\ iteble constant, these columns can
@ (In terms of wi; flr WVays, and multiples of the present @ and
¢h the nat s are s : ) are
then obtained. atural modes are also uncoupled)
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2.14. Variational problems for deformable bodies. Gen-
eral variational principles have been establizshed in eonneetion with
the theory of elasticity,* as well as in many other fickls. In this
section no atlempts are made to establish such general theories.
Instead, it is shown in what way the variational problem ean be
derived from the differeniial equation and associated boundary con-
ditions, in certain illustrative cases. In later sections it is shown
that such formulations are readily adapted to approzimate analysis.

We start with the problem of determining small deflections af\a
rolating string of length L. The governing differential equauen is
then of the form N

Ny

d d £ ’}g
@(F %) +owlyt+p= q, \: (196)

where y(z) is the displacement of a point from\he axis of rotation,
F(z} is the tension, p(x) the lincar masq:gk\mity, o the angular
velocity of rotation, and p(x) is the intepsity of a distributed radial
load. Suitable end conditions are als¢ %0 he preseribed.

In order to formulate a correspond.mg variational problem, we
first multiply both sides of (1963 by a variation 3y and integrate
the result over (0, L} to obtam

Ld d A
f—(r J)a dx%—j o0 @y by dx + payd:cs{). (197
ud.fc d. \ 1]

The second and £hird integrands are the variations of §p «%* a:nd
Py, respective{y,; Tf the first integral is transformed by integration
by parts, ittakes the form
A
A dy dy d
Ny ¢ — x
NN [Fd y} ]; Fd

7N\
\ W

%d the integrand in this form is the variation of 3 (dy/dz)® Thus
the left-hand member of (197) can be transformed to the left-hand
member of the equation

I 1 dy2 fd_y :IL= 198
o[ 2ewn 4oy~ r(2) 2o+ [P o], —0 as®

* 8ee Refercnes 5.
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If we impose at each of the two ends the condition that cither

¥ =y OT Fg—g=0 .{when z = 0, L) (199)

where y, is a prescribed constant, the integrated terms in (19%)
vanish and the condition becomes

L 2
L 1 o{dy ] = N
3-[] I:Epwy +py QF(d:c dz = 0, (?00)

A
Conversely, (196) is the Euler equation [(17a)] corregponding
to {200). That is, if ¥ renders the integral in (200} s,ta{f;‘ib’naz'y it
must satisfy (196), while if y satisfies (196) and end :cbndit-ions of
the type required in (199), then y renders the infsegrai in (200)

stationary. \4

The end conditions (199) or, equivalentl;g,\ )
L AN,

[F% ay]o =10,/ (201)

are the so-called notural boundagy conditions of the variational
problem {200). If we recall th@t.‘ (in the linearized theory} the
product F (dy/dx) is the eompohent of the tensile force normal to
the axis of rotation, we sed that (201) requires that the end fensions
do no work. This s @io’n exists if no end motion is permitted
(dy = 0), or if no end Yestraing (normal to the axis of rotation) is
present [F (dy/dzy=A].

Thl_ls, if theeud tensions do no work, we conclude that of oll
Sunctions y(xQ;bﬂich satisfy the relevant end conditions, that one which
also satisflesshe relevant differential equation (196) renders the integral
in (200) stationary.

1638 clear that the term #0{w y)® in (200) represents the kinetic
e%z:éxgy of _the string per unit length, since the speed of an element
of*the string is given by o y. Also, since p 5y dz is the element of
work c_lone by p on an element dz in » displacement &y, the term
—Pyis potential energy per unit length due to the radial force dis-
tribution p(z). To identify the remaining term, we notice that an
element. of original length dz stretches into an element of length

ds = [1 + (%)T d,
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The work per unit length done against the tensile foree is then

gt [ @T
@) v

1 . (dy A~
~3 F (dx)

N

oA

if higher powers of the slope dy/dx (assumed to be sma?ﬂ) are
neglected. Thus this term represents potential cnergy per unit
length due to the tension in the string, to a first appfommatlon

Finally, (200) requires that the difference bétween the total
kinetic and total potential ecncrgies be stationary; in analogy with
Hamilton's prineiple.* N

For the case of a yielding support ai'\the end z = 0, the end
condition at thai point would be of the form

dy Y
(F dx)m . k(y)x..a {202}

where & is the modulus of the support. There would then follow

dy L
(riz "”\L by =s(ghe) g

Since {his termy Would not vanish, (200} would be replaced by

i [ [;\NE toy-3F(L) | ae - (3rr) | ~0, @9
2 |

the additicma,l term representing the potential energy stored in the
suppbrt

NI the slope of the string at the end x = ( were prescribed as
¥'(0) = «, where « is small, the deflection ¥(0) then being unknown,
there would follow

(F dy 5y) (F o 5?,’),,:0,
dz 0

* For o eomplete analogy, we should require that the téme inlegrel of this
difference over (1, £2) be stationary., In the present case, however, the encrgy
difference is independent of time,



180 CALCULUS OF VARIATIONS AND APPLICATIONS  [§2.14

and (200) would be replaced by

M1 1 g\ ‘
51L [prz.yﬂ'l‘?)y'—-jf‘j(ﬁ)]dx—F(O)G:y(O) =1, (204)

the additional term corresponding to work done by the component
of the tension normal to the z-axis (Fsin ¢ = F o} in the end
displacemens y(0).

In both (203} and (204}, admissible functions must satisiy thv\
single end condition y(L) = 0.

As a second example, we consider the case of small defléciierns
of @ rotaiing shaft of length L, subject to an axial end logd)P and
to distributed transverse 1oad1ng of intensity p{z). The deﬁectmn
%(x) 18 then governed by the differential equation

M\‘
ja(EIdy)Jrde puty — P 0, (205)
£ dx? dx? \J)
PN
where E I is the bending stiffness of the sha’f’t We first form the
equation

f (B Iy 6ydm+Pf i’ Sydx - f (pw’y + p) dydr = 0.
QD {206)
If the first term is mtegra’ﬁed twice by parts, it becomes
[ 81y ﬁfy\* LIy sy I f By sy da,

and the new mtegra.nd 1s recognized as the variation of 3E I'(y'")%.
After one mtegr&tlon by parts, the second term in (208) becomes

[P;zp{y}s -—Pf ¥ &y dx = [P e 5,7,!]“ - 6}; -éP(y')”dx.
Thus (206) implies the equation
\f [ EL@ )y - P(y")2 ~ 3 pw"y" -~ py]
+{ETyY +Py sy —BIy sy =0.  (207)
The value of (B [ 4"y + P ¢'] oy at an end point can be inter-

preted as the work done by the total transverse shear at that point
in a displacement 8y, while the value of BT ¥’ sy is the work
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done by the end bending moment & I ¥" in a rolotion (change of
stope) 8y".  The total work done by end forces and moments will
vanish in case of satisfaction of the natural boundary conditions

[{B1yy +Py oy —ETy sy )i =0
or, cxplicitly,
Y=y or (BIy"Y +Py = 0}

N\
, (when z = 0, L)
end y =y, or Ely' =0

.\:\(208}
For any ease in which such conditions are to be szi,t;i\sﬁed, the

variational problem (207) reduces to the form N
L e Loy 1 R
3 ﬁEI(y )?—iP(y)z—przyz—p’y de = 0. (209)
0 5

Here 4p w?y? is the kinetic cnergy per unit longth, and the remainin z
terms 4F [{y"')?, —4P(y)?, and —p y_cah Ye identified with poten-
tial energies per unit length due to bending and to the end thrust
and lateral loading, respectively, .\ .

It end supports do work in bending the shaft, additional terms
must be added to the integral‘;in (209) in analogy with (203) and
(204). S
We notice that (209 involves the second as well as the first
derivative of y. TQxe\ﬁu(‘ZOS) is fruly the Euler equation of (209)
can be establishedvdirectly {see (43)], or by retracing the above steps
leading from (205)to (209).

Asa thirgl:é)?ample, we consider small steady-state forced vibration
af a rectang{da; membrane. The bagic equation is of the form

'\“ i 2
O 3 du 9 ou %

SR () e
“here  is displacement, F tension, p is surface mass density, and
}’(SU, ¥, t) is the impressed periodic normal force, If P is of the
form P = p(z, y) sin (wf + @), we may write the steady-state
displacement % in the form

# = wlz, ¥) sin (wf + ),

where w is the amplitude of the oscillation. The amplitude
must then satisfy the equation

(Fw)e + (Fw,), + ne¥ L p=0 (210)
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After multiplying by the variation #w(z, y) and Integrating
the results over the membrane (v; < 2 < a,, ¥1 =y = y2), there
follows

Tz s Iz e
f f (F w.), dwdz dy + f / (F wy), &wdx dy
x1 " £ ¥1

2] 2
+a/ [ (épwzw2+pw)dxdy=0. @11
1 yl y

After a partial integration with respect to =z, the first term takes

2 A
the form = \/

fm I[F Wa aw:l - [ Fow, 5w, dx] dy P\
i I I “.'
E2] Yz v: [T € E2]
= —§ [ / lF w* de dy + “[\F w, Bw:’ dy.
rL 1 2 i x1

If the second integral is transformed in & similal\\vﬁy, (211) becomes

7

N\

S

1 fyz 1 1 x\
3[ [ Ii“—ﬁp(wxz‘i'wyz) +§Pw2w2:+‘pwjl dx dy
£y H

Y ay J.Jq"'." vz
“+- / [F W, Bw:l dy 4+ f~ {F W, S*w:‘ dr =0, (212)
I’R 1 B Ozi ¥I

This resuit can be writterg:mdr’e concisely in a form independent
of the coordinate system a{afollows:

Q5 (212a)
Here 4 is the avew’of the undeformed membrane and C is its closed
boundary. EI:hé’ term dw/dn is the derivative of w in the direction
of the outward normal to the boundary. By more general con-
sideratidns (see Problem 20}, 1t can be shown that (212a) i3 the
proper ¥ariational form for membrane of arbitrary contour.

‘he single integral in (212a) represents total work of the trans-
verse component of the edge tensions, and vanishes if % is pre-
scribed along ¢ or, more generally, if the Testraining transverse
force F 8w/dn vanishes st all parts of the boundary which are not
fixed. In all such cases the relevant variational problem becomes

1
a]L {EF(VW’ —%pw“wﬂ —pw] 8 =0.  (213)
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The term 4p wiw? is the kinetic energy (per unit area) corre-
sponding to positions of maximum displacement, while the term
#{w.* + w,*) represcnts the potential energy stored in the mem-
brane at such instants as a result of the siretching, and —p w is
the corresponding potential energy due to the loading,

I, instead of prescribing w along part of the boundary €, and
requiring that F dw/én vanish along the remainder of the boundary,
we require that dw/dn = ¢(s) along the portion ¢ where w is ROL
prescribed, equation (212a) shows that the term —3§ f Fafv'ds

must be added to the left-hand member of (213). R N,

When F = 1 and @ = 0, equation (210) is Poisson’s-equation.
When also p = 0, this equation becomes Laplace’ s“equdtwn The
varigtional form of the Dirichlet problem, where u&: “¢(s) along C,

then takes the form 3 f[ s(vw)tds =0, where the varied func-

tions are to take on the prescribed value al\ng . The variational
form of the Neumann problem, v.herex dw/dn = (s} along C,

becomes
’ [[L 3 w)f.@;:?}ﬁc buw ds] =0,

where the varicd functiongare wnrestricted along C.

2.15. Useful transfoxmations. Certain formulas of frequent
use in transformatidn$.0f the type considered in the preceding sec-
tion are collected begether in this section, for convenient reference.

The formulal’;™

rz ,t\.". X2 1 2y
/\:I‘p‘fﬁ), & de = —8[ (§ pfzz) de + [Ip fa 6)"] ’
'\&\ €1 a1

est-alzl'i,éhed by integration by parts, implies the relation
QO @ f=of = —3hp i) + (Pl o) (214)

Here p is an explicit function of x, which is not to be varied. Ina
similar way, the following relations can be established.:

(8 fec)ou of = 838 fas?) + [(8fa)e 8f — 8fax 8fae. (215)
[(pfle+ @F) 8f = —8(p fefs) + (@ Ju e + (P fe 8}y (216)
2fny 8f = —8(fuf) + (fy 8= + (F2 8. (217)
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8(fa") + 2(few 8F)e + 2(fems )y — 2(fuw 8)zsy  (218a)

5(fx=:fyy) + (f:yy 5f - fw 6fz)z + (fny Bf - fn ‘Sfu):.r-
(218h)

2fxm if = {

The differentiations in (214) and (215) may be total or partial.
In each case, the truth of the relation can be verified directly by
expanding both sides of the equation.

In each of the preceding formulas, the left-hand member I8,
expressed as the sum of an exact variation and one or more derida®
ties. Tt is of interest to notice that 2f..,, d8f can be expressedithus
in two different ways, according to (218a,b). The two alte;rfﬁatfves
can be combined by expressing the left-hand membery a'ég (1 — a)
times (218a) plus « times (218h), where « is a complefaly arbitrary
constant. Thus we may write N

_Qfa“-‘xw o = 31 - a)ftyz + af-rtfw] '\\:
1@ = e of = afuy 8 + (@ iy o — o fo 1),
SO - ol i, @19)

where a 13 an arbitrary constant.j;’ This form reduces to (218a)
when « = 0, and to (218h) whepla' = 1.

If we take p = 1 in (214), aild add to this expression the result
of replacing z by y, we obtdin the further useful result

Vi of = SSEYHT+ (o + G, o), (220)

As a further example of the use of these formulas, we consider
the product A"

SOV = (Frsne + 2y + o) 5.
It usgé&hacie of (215) and (219), there follows
VY =BG + [fom f — L a7,
SO 0 = 0 + afuf,] + (2 — &) of — af,y of.).
@ = oo of — afue of], — 201 ~ a)if,y 471,
+ 0G0 A+ fow 8f ~ fu 67,1,

or, after collecting terms,

LR LT R |
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-+ a% [szf + (1 — a)fm”,il 8f — (Joo +  fy) 5fx]

ax

3 [[av?
-+ 5 [ ayf‘l‘ (1 - “)fur.r:! 6f - (fw + af:w) 6fy]
a?
~ 3y (21 — a)fe O] (221)
2.16. The variational problem for the elastic plate. Asa
final iltustration of the preceding methods, we consider the prohlem
of determining the amplitude w of small deflections of ‘a)thin,
initially flat, elastic plate of constant thickness, If tbe;}a?mplit-ude
of the periodic impressed force is denoted by p(z, 3) andithe circular
frequency by w, 1t is known* that under certain sim@ifying assump-
tions the governing differential equation is of the?form
D¥w —pow —p ;\\Q, (222)
Here D is a constant known as the bea@d@":ng:'st@ﬁness of the plate.
We consider here a rectangular p%ate 0=2x=a 0=y =5,
Then, by multiplying both sides«of (222} by a variation §w and
integrating the result over the azea of the plate, there follows

3 [ Q:?P B
f f D Yy dw dx dy —.:ﬁf f [épwﬂwﬁ-kpw] dzdy = 0.
a o AN A
+{ 3

(222a)

¢ _
If use is made of é:[uation (221), this condition is transformed
immediately intd,the requirement that

L \¥; .
3 f f .:%%[wmz + oyt + 20 wastty, + 2(1 — a)wy,’]
1} q\ /
O

—%pwz‘w"' —pw} dx dy
.0\.0

NTrb

FE

2 9V b
+ DI L1 — a)Dtwamy | b — Dy + cwsy) bw,p  dz
Q ay #=0
et T
- [[21)(1— )ity aw] B] =0.  (228)
=l kit

* Bee Reference 6.



186 CALCULUS OF VARIATIONS AND APPLICATIONS  [§2.10

It is to be noticed that (223) and (222a) arc equivalent for any
constant o« In the physical problem under consideration, a is
identifiable with the physical constant known us Poisson's ratio.
Its value is between zero and one-half, and is dependent upon the
plate material.

If the conditions of edge support are such that no dellection
or rotation of the edges is permitted, the plate is said (o he cluniped,
In this case w is prescribed as zero along the complete houndary,
while dw/0x must be zero on each boundary & = constunt i
dw/dy must vanish on the boundaries y=0and y = b i view
of the fact that the corresponding variations are to vamishAvhen
these quantities are prescribed, it follows thut the pibrtially inte-
grated terms in (223) vanish, and the variational problem akes
the form R /

-3 b 1 }
5 ﬁ ﬁ i—2- Dlw.? + w,,? + 24 Wty + g({\_ ahw.,?]
&

0
—Puw "*";ép o'W drdy = 0. (224)
I_ hat part of the ItnteET&Dd."yﬁfhiﬁh involves D is known us the
stm?n‘ frergy per umit area.$The term —PpwW again represcits
addl.tlona,l botential energ$per unit area due to the transverse
loading, and the term '%p“t}?w? Tépresents the kinetic energy per unit

area, each of theseSquantities being evaluated at a position of
maximum deflection

The @atum@«jﬁoﬂndary conditions of the problem are ohtained
by'equatmg,%ojzero the integrands of the single (line) intepruls,
which are evaluated along the boundary, Thus, at the boundaries
T = 0‘535\ % = g, one must have either

. AV 2y
};é\ W prescribed or p - T 1 —a)D Woy = 0 (225a)

W prescribed or Dlw,, + o wy,) = 0. (225b)
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(@z) at a boundary z = constant, the quantity (1 — &)D w,,
as the corresponding twisting moment (M,,), and the quantity
—D{w.: + acw,,) as the correspending bending moment (M.,).
From (223) it follows that the effective transverse edge foree asso-
ciated with a deflection éw along an edge 2 = constant must be of
the form R. = Q. — 8M,,/6y. The discovery of this fact, by
physieal reasoning, constituted a significant advance in the theory
of small deflections of elastic plates. The presence of the last
expression in (223), which involves values of M, at the four corglers
of the plate, corresponds to the possible presence of concentmted
reactions at the corners. )

The wvariations of appropriate line integrals, o,btsun_ed by
reference to (223), must be added to the left-hand member of (224)
when edge deflections and/or rotations are noQ prescribed, but
edge forces and/or moments are given. §

It should be noticed that the case of statie loadmg is contained
in the above discussion when o = 0. PN

The present section is intended ﬁo\llustrate two important
facts, Tirst, it has been shown (inf ayfairly complicated physieal
problem) that mere knowledge of the ‘governing differential equation
can lead to information as to Whmh mathematieal quantities should
be prescribed af the boundary,! afnd hence which mathematical quan-
tities must be of principaliPhysical interest.

Second, it is seen"gha\t, once the differential equation and the
relevant boundary sonditions are known, the corresponding vari-
atlonal problem (ifyone exists) can be obtained withoul speecialized
knowledge of thelphysical details of the problem inwolved. On the
other hand sa sufficiently general knowledge of the physical back-
ground c\ the problem would permit one to write down the vari-
ationalproblem and, if it were desirable, derive the relevant differential
equaéwn from 1t.

N\ {Ih the remajning sections of this chapter, it is indicated that the

valmtlonal formulation of a problem is often particularly well
adapted to numerical procedures for obtaining an approximate
solution,

2.17. The Ritz method. The so-called Ritz method is a pro-
cedure for obtaining approximate solutions of problems expressed
in variational form. In the case when a function y(z) is to be
determined. the procedure consists essentially in assuming that the
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desired extremal of & given problem can be approximated by a
linesr combination of » suitably chosen functions, in the form

Y = adi(@) + codalz) + ¢ -+ ¢ + cagpal®), (226)

where the ¢’s are constants to be determined. Usually the func-
tions ¢x(x) are to be so chosen that this expression satislies the
specified boundary conditions for any choice of the e’s, Thus, iy
is to vanish at the ends of the interval under consideration, ‘we
require that each of the ¢’s satisfly the same condition. OLlii?r\\\(?iSit,
the choice of the functions ¢: i3 to a large extent arbitraty. In
physical problems, the general nature of the desired “splution is
usually known, and a set of ¢’s is chosen in such 2 'way that some
linear combination of them may be expected{ o satisfactorily
approximate the sohrtion. \

The quantity 7 to be made stationary, «iébt”hen expressed as o
function of the ¢’s, and the ¢’s are so detemmined that the resultant
expressicn is stationary. Thus in place of attempting to determine
that funetion which renders 7 stabionary with reference o all
admissible slightly modified fungtiens, we consider only the farily
of functions of type {226, and,dgétérmine that member of the family
f?r which I is stationary with reference to slightly modified func-
t1ons belonging to the fa‘m;ﬂy‘ It is clear that the efficiency of the
brocedure depends u@ "the choice of appropriate approximating
functions ¢;. \,

A more ‘elabp{ate procedure consists in obtaining a sequence of
approximations, in which the first assumption is merely ¢,¢,, the
second ¢¢y<ftrds, and so forth, the ath assumption being of the

form (22@;" "The relevant c’s are determined at each stage of the

process},};y the method outlined above, Ry comparing suecessive

a;;y:dﬁimatinns, an estimate of the degree of aceuracy attained at
any stage of the calculation can be obtained. In order that this

TOCEss converge ag i
p 8¢ a8 # — =, the functions b1 o, L .., P,

polynmnial of degre
certain cases the
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harmonics, Tegendre polynomials, and so forth, may a.fford eompu-
tational advantages.

To illustrate this procedure in a simple case, we consider the
problem of determining small static deflections of a string fixed at
its ends (z = 0, L) and subject to a uniformly distributed load of
intensity ¢. We assume that the tension F in the string can be

considered as constant.  With @ = 0 and p = —g¢, the variational
problem (198) becomes . A
L1 Oy
ﬁf (-Fy’2+gy)dx=0, 227y
o \2 ‘ O
the integrated terms vanishing in virtue of the end ggiff&ﬂ;ions
R
y(0) = yL) =0, (228)
which require that sy must vanish at the eI{d\ﬁﬁnts The funetions
bl@) = sin T B3, ),

"
~

which satisfy (228), are Gonvegigz;'iﬁ' admissible eoordinate functions.
H, for simplicity, we assuine & three-term expansion of the form

sin 3Tz
Jmclsl\L -}—cgsmz 4 g sl E (229)

.

N -

the result of replgfr;iﬁg y by its approximation in (227} is of the form

5 Y \
F il i 2rz B
5 j; [5 2:€cl cOS = 4+ 2¢4 co8 57 + 3¢, cos T )
. ,,\’.”:2’ 2 + ce sinn 3rx i = 0. 230)
~O % gleisin ™= + £ ¢in 2 s 8in 7~
The integrations can be carried out explici’sly._ Thus, making use
of the orthegonality of the harmonies,* we obtain

2
b I:; Ezéj (cl -+ 4 + 9632) + q— (2(;1 + 0cq -+ g '93)] =0.

(231)

* Hee Section 1.20.
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.N oticing that here the ¢’s are the guantities to be varied, we next
write (231) in the form

3 dgL° 4q1 .
gz_ [(cl + ETF) Scy + 4es b + (Qca +gigr J des| = 0. (232)
But since the dc’s are arbitrary, their coefficients in (232) must
vanish, giving the evaluations

_ Yl = — _ 4qL% 23-’3\
S A
The “best” approximation of the form (229) to the required
extremal is thus of the form &N
dglr{  mz 1 , 3rz "\\ -
Y = — F (sm A —+ o7 S0 gy (234}
The exact solution of this particular proble,px\ié readily found by
elementary methods, in the form S
__q _~ 35
= — 55 xg{.; z), (235)

and it can be verified that (2?34;:):’ .'E‘omprises the leading terms of
the Fourier gine-series expa.qgior[ ‘of (235) over the interval (0, L),
and that (284) does inde (tafford a good approximation to (235)

over that interval. L)

It is useful to no}i&\iﬁt only that the Euler equation of (227)
is the governing diffevential equation

\ ¥/

O Foy' —q= 2
AN ¥ g =0, (236)

but also t ai\ff Yy satisfies the naturs] boundary conditions of (227)
then (227)“is, in virtue of the equivalence of (197) and (198),
eqm'qn:{l?pz o the equation

"‘\\ o/ L
YV b #v ~gayaz o (237)

With the approximation of (229), this condition becomes
L 2
T . T .2
j; [FIE (01 sin W-E + 4¢, gin %_x + 9¢; sin g’? + q):l

. TE .2
: [301 sin IE + de¢; sin —-;-;—x + 8¢; sin 3—}?] dz = 0. (235;
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If the integrations are carried out, equation (232} is obtained
directly. This last procedure ig equivalent to calculating the
variation of (23()) before carrying out the infegration, and it fre-
gquently involves a reduced amount of calculation.

While the procedure of forming (237} directly from (236) is a
eonvenient one, before it is employed in other eases one should
make certain that the differential equation involved 7s indeed the
Euler equation of some variational problem, §f = 0, whose naturel
boundary conditions include those which govern the problem\at
hand. N\
For example, the equation U

(z%'Y +xzy==x 0=x L) ~‘

o

R W
is readily transformed, by the methods of the pif‘a:eding sections,

to the variational preblem O
(N i
L 4
6[ [—£x2(y)2+ xy2—-:cy] }—!-[x’-y’ﬁy] =0.
0

0

If the spemﬁed boundary condﬂflons are such that
[xgzl’ 5y]0 =0,
the variational problen}‘.cs(n thus be taken as

\Q,t' .
2 6ﬁlx2(y')* — oyt + 20y ds = 0
sy 2t

3 3

or, after c-algulz;.tiﬁg the variation,

'S M L
A0 [y 4wy —awaz-o.

'llle'ijaéic equation, when expanded., hecomes

\\ 2%y +2zy +xy =2

While this cquation is equivalent fo the equation
zy' +2y +y =1

this last form eannot be transformed to a proper variational prob-
lem, 5/ = 0, merely by multiplication by #y and subsequent inte-
gration by parts. The correct multiplicative factor is seen to he
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x 8y. Thus, the form
ﬁ(-’cy”+2y’ +y—-1Ddyds =0

is not the consequence of a proper variational problem and, as was
secn above, the “weighting function” z should properly be intro-
duced in the integrand, in order to ensure convergence of a sequence
of approximations, and hence to increase the probability that a
good approximation will be afforded by a given finite numben ‘el
terms. O\

In the case of a differential equation of order greater than tiwo,
it may happen that no such weighting function exists. AHowever,
it is readily verified that the abbreviated procedure ls‘ valid (when
appropriate boundary conditions are prescribed)_ifihe governing
equation is of the precise form \%

%S ) (239a)

W

Ly=0yY+ey=f (2
Ly=06y)"+0vY +qy =\ (0 <o <25, (239h)
where p, ¢, and s are functions of'js?::'br constants. That is, such

an equation 43 the Euler equs,tie.t{ Wf a proper variational problem
8 = 0, which is equivalent to'the condition

1 2

[y — 5oy =0 (240)

when y{z) satisfies ti}e\appropriate natural boundary conditions.
Any linear secondioi‘der equation ean be written in the form (239a),
by suitably defining p(x) and ¢(x). While not gl equations of the
fourth orde;:@a}l ‘be reduced to (239b), the reduction s possible in
most caseﬁvﬁich arise in practice.

it mg}y e noticed that, if the “unnatural” condition y{(0) = «
and Alie natural condition ¥(L) = 0 were imposed on the solution
0{1236), the variational problem (198) would take the form

L 1,
‘SU (ﬁf‘y’zﬂy)dxway(w] =0,

in place of (?27). By integrating by parts, this condition can be
transformed into the problem

B v =0 s+ Ry - o) - o
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in place of (237). Here the approximating series (226) must
satisfy the condition y(L) = 0 for ali values of the ¢’s, but it need
not satisfy the condition ¢/{(0) = a identically. However, if it
does not do so, care should be taken that the latter condition can
be satisfied for some choice of the ¢'s.

As a second illustration of the Ritz method, we consider the
solution of the boundary-value problem for which y(x) must satisfy

the differential equation A\
dry N o
—_— = — 4_N
dz? Tey * .\j(e“. a)
and the homogeneous conditions ) ;’f;: )
y0) =0, y(1) =0 \‘ (241D}

Since {241a) is in the form of (239a), and the end conditions corre-
spond to the requirement that Sy vanish, &t }he end points, the

variationsl problem corresponding to @%\a,b) can be expressed
immediately in the reduced form QO

f o +ay, %) by dr = 0. (242)

An appropriate assumpj:‘ioﬁ' corresponding to (226) and satisfy-
ing (241b) is of the formp\

y = az(llx\;i{cl +ocor e+ -t ) (243)
according fo whu}h’ (242) takes the form
j;l [(—2 t?”-\-—“z“)cl +@2-6r - —ahat - +al
Ny bor (& — 2 + Bos @ — o) + - - - lde =0

NS ) . .
he Yesult of carrying out the indicated integrations is then of
theé form

(—48ey — 3tea + - -+ + ) 0
+ (e - #i5ee + - — @)t - =00 (244)

If only a one-term approximation is assumed,

y(li = cl;{;(]_ — x)’ (245)
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wehavecs =¢; = ... =0,and hencealsodey = 8¢, = ., . . = 0,
and (244) reduces to the condition

(—%8e1 + 75) 82y = 0.

In virtue of the arbitrariness of éc,, we must then have

e = 155
and hence the “best’’ solution of form (245) is given by 7\
¥ = 0263z(1 — z). ,(246)

Similarly, for a two-term approximation of the form X O

¥ = el — @) fon(l — @), 0 (217)

. o\
the vanishing of the coefficients of the arbitrargNariations &, aud
" 8ep in (244) leads to the simultaneous equatim{s‘
i
0.317¢; + 0.157¢s = 0,0833,

NV (218)
0.157¢; + 0.127¢, = 00500

if only three significant figures, am retained in the calculations.
From these equations we obtaip:’t]ie numerical results

o =071, ¢ =0.173,
)
80 t?hat the *“best” solgtion of form (247) is given by

A= (0177 + 0.1732%) (1 — z). (249)

In dealing’similarly with the characteristic-value problem con-
sisting of ‘t\he\fequ&tion
) N N

™ Y -
AN g TATy =0, {230)

mN\./

ﬁs f:)]a,ce. of (241a), and the boundary conditions of (241b), the
~ assumption of (243) iz found to lead to the equation

1A I, a
Ii(_g'i_zj_o)cl"!'(‘—g‘{“m-s—)cz-l- ... ]861

1, a 2
+[( ‘6+T'0—5)31+(“E+T@)62+“‘:|5%+"'=0-
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Corresponding to a one-term approximation (245}, we obtain the

condition
1 b
(‘ gt m) a=0

sinee 3¢, is arbitrary, and hence obtain a nontrivial approzimate

solution only if
A= a0 o= 20. (251)\

The coefficient ¢, is then arbitrary. .
Corresponding to a two-term approximation (247), weohtain
the two conditions O

(0.333 — 0.01670)e; + (0.167 — 0.00955M)cs =0‘} 52)
(0.167 — 0.009556)\)¢, + (0.133 — 0.00595M23 = 0

Hence a nontrivial approximate solution cambe obtained only if
_the determinant of the coefficients of the o8 vapishes. The expan-
sion of this determinantal equation takes.the form

3 — 364\ 45880 = 0, o (253)

with the two roots :
MO = 1020 AP = 102. (254)

Thus we obtain & second.Approximation to the smallest character-
istic number Ay, and g@rsf approximation to the second character-
istie number g Fo&ach quch value of A, the two equations of
{252} beeome eq\{'iﬁaient and either can be used to express ¢z 43 &
multiple of ch{gith ¢, arbitrary), thus determining approximations
to the corresponding characteristic functions. In more involved
CHIES, thg%érative matrix methods of Sections 1.23 to 25 are useful.

TheMrue characteristic functions of the problem are arbitrary

mul\ti}:a.l’es of the functions
’ fal) = 2,0
where A, is the nth solution of the eguation
Ju(8 =0,
from which it is found that A; = 18.9 and As = 81.8. As is indi-

cated by this example, the accurate caleulation of the higher charac-
teristic numbers by iterative methods may involve considerahle labor.
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Ag a third example, we consider the caleulation of the small-
est eritical frequency of a vibrat-
ing membrane in the form of
an isosccles right triangle. Wo
choose dimensionless rectangular
(0,1 coordinates in such a way that
the vertices are at the origin and
at the points (1, 0) and (0, 1) (Kia-
ure 2.10). If it is assumed (hilt
the tension in the membmne is
(&pprommately) umfmm (210
gives the dlﬂerenu&l« equation
{0)  y satisfied by the amphtude fune-
tion w in the forh}

Fiaure 2,10 -}— Aw =0, (255)

Y

where, if the legs of the triangle are of lqng\th a,

A= ? wigt\.

s (256)

%
LAY

If we require that the membr‘adé"l;e fixed along its boundary, the
boundary eondition is )

w =~B on the boundary, (257)

From the results\e\f Bection 2. 14, the associated variational
problem can be oxpressod in the form

ﬂ slww)?2 — widedy =0 {258a)
or, eqt;j:yglently, in the reduced form
A
\\ ffA (Vi 4+ ) w) Swds dy = 0. (258b)

Since the equation of the boundary can be written in the form
ylz+y —1) =,

appropriate a

£opr pproximating funetions satisfying (257) are of the

”"2xy(x‘f"y‘1)(61+62x+cay+cqx”+ <) (259)
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For simplicity we here eonsider only a one-term approximation:
wl = cxyler +y — 1). (260)
When w is replaced by w'? in (258b), there follows
¢o; bcy j;l ﬁ)l_y 2(x + v) 4+ Ay + x 32 = zy)]
@y eyt -y dedy =0,

Sinee 8¢, is arbitrary, and ¢; = 0 leads to a trivial so]utioq,sﬁhe
double integral must vanish. The integrations are readily.fattied
out, if use is made of the known formula g M

S,
.

! m!ln!
. ann = —" & 261
and there follows WV
8 A A
_ R
—gtA =0 or :}..,_ 58. (262)

Thus a first approximation to theSmallest characteristic value of
)\ is obtained. From (256), it €olows that the smallest critical

frequency is w/2r, where "
£ o\
Ox 748 (f—) - (263)
\ pa

The true value ofythe numerical factor in (263) is known to be
T4/5 =703 (\ ’
2.18. A sx{n'}i"direct method. The procedures described in the
preceding,. s@etion are often known as the direct methods in the
caleulug\of variations. The approximating functions are com-
Plete;lsi'sﬁeciﬁed at the start, and only the constants of combinalion
afe deétermined by variational methods. In the present section a
modified procedure of frequent usefulness is outlined. . .
To fix ideas, suppose that the function w to be determm.ed in
& variational problem depends upon two independent variables
z and y, and that the region of determination is the rectangle
(~e<z=a —b<y=<bh). In the Ritz method we would

assume an approximation in the form

w = cl¢1(:cp y) + R + cﬂ¢n($! y) (264)
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where the ¢’s are completely specified functions, satisfying appro-
priate boundary conditions, and the ¢'s are to be determined by
variational methods. However, in many physical problems, while
the general nature of the behavior of w in, say, the z-direction may
be known, it may happen that the behavior in the y-dircction is
less predictable. In such eases, it is convenieni to only partially
specify the approximating functions by writing instead

w = i{e)fily) + - 0 4 a2V faly), (2{|3ﬁ

where the ¢’s are suitably chosen functions of z alone, szr‘rii;ﬁ-'ing
appropriate conditions on the beoundaries z = constm;t;:\and the
['s are unspecified functions of y alone, to be determintdiby o vuri-
ational method. A procedure of this type, which a8y be called a
semidirect method, then leads to a set of ordinargj’?iﬂercntial equa-
ttons involving the unknown f’s, together with'a proper number
of corresponding end conditions. AN

To illustrate the procedure, we congider small deflections of a
square membrane (|z| < q, |yl = 2} fixed along the edges x =
constant and along the edge y = s@; but wnrestrained along the
edge ¥ = g, and subject to a digtribution of static loading given by

p ="g(a* — 29 (266)
where ¢ is a constant. iB’\the tension F in the membrane is aguain

?.aaumed to be const-ﬂ{it,”the governing differential equation (211)
is of the form 2\

Q7 Fvw = gla* - o), (267)

and the ag§g§‘§§téd variational problem (212) becomes
o “ G 4 1 .\
—38 [Q;;}i_u [El‘ (Vw)? + q(a? — x”)w] dz dy

Z.\: a omtl a y—a
VU f_a[f‘“ww&w] dy+ﬁ [Fw, Ew] dz = 0.  (268)

e I

The v.anishing of the first line integral is assured if w satisfies the
prescribed conditions

w—a,y) =0, wley) =0. (269)

Since w is not prfascr%bed along the edge y = a, the requirement.
that the second line integral vanish shows that in order that no
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work be done by consiraints along these edges we must have
w(z, —a) = 0, wy(x; a) =0, (270)

in accordance with the approximations upon which the present
formulaiion is based. Having thus formulated the boundary con-
ditions appropriate to the variational problem, we are at liberty
to use cither (268) or the more convenient reduced form -

[ [ v — gl@ — ) wdzdy = 0. @)

In view of the nature of the loading (266), it may be sﬁsb“e\cted
that the deflection w(x, y) will be approximately parakolit in the
z-direction, with the maximum deflection {along the zfaxis) varying
as a function of y. Thus a simple approximation ©i‘the form

= (g2 — 2 ’ 272
w = (a :v)f(y).\‘ (272)

{ \ ’
may be assumed. This approximation fabisfies (269), regardless
of the form of f(y); in order that it sapsfy (270) for all values of z,
fly) must satisfy the end conditiongy .”

f(—a) = 3% f(a) = 0. (273)
I w is replaced by its a,pf)i'o;(imation, there follows
viu &tat — =) () — W)
K&
and N dw = (@ — x%) 8f(y),
and hence (27:1;§3c-a“1{es the form
® “ 103 2 2
L[ siried — oy — 27 1) = gle® =22
O\ _
A (@t — o) do} o) dy = 0. (@74)
" .
<3The integrations with respect o x can now be carried out explic-
itly, to express (274) in the form '

€ 1 .
f_a |F [% asf" (y) — g a3f(y)] - % a5q] §(y) dy = 0. (275)

¥rom the arbitrariness of &f{y) jnside the interval (—a, aj, it
follows that the quantity in braces must vanish, so that f(y) must

satisfy the differential equation
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s 5 q -
@ - oRE ) = b (276)
The solution of (278), satisfying (273), is found to be

_ 2a% [, _ cosh+/10(1 — y/a)]
1) = 5F [1 cosh /10

and the introduction of (277) into (272) leads to the determination
of the desired one-term approximation to the deflection. Q)

(277)

A\
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O PROBLEMS
p. \ J
'\..
Bf/(-}x B l;%‘(}m that f(x, y) is stationary when z = @ and ¥ = b [so that

9y = 0 at (g, §)], and that f(z, ¥) can be expanded in power
series near (a, b).

R \ ‘() Show that the relevant power gerles then takes the form
Tl ) = 1@, 5) = §iz ~ a)*f..(a, b)
T2 - QW — 0)fau(a, ) + (v — BYu(a, B+ - -,

where-omitted terms are of degree greater than two in (x — ) and (y — b).

(h) Deduce that if of/dx = af/a
. y=0 at ), th
possesses a relative minimum at (a, b) if the matrix o O then fiz, ¥

M=l o]

Section 2.1,
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is positive definite when = a and y = b, and that it possesses a relative
mazimum 1f M is negative definite at that point. [See Section 1.17.]

fe) Use the results of Section 1.18 to show that the stationary
valug is & maximum if frr < @ and feofyy — foe? > 08t (2, 8), and is a
minimum if f., > 0 and foafyy — fz0° > 0 at (g, b}

() CGeneralize the ecriterion of part (b) in the euse of 2 function
of # independent variables £, s, . . . , @

2. Of all rectangular parallelepipeds which have sides parallel to the
coordinate planes, and which are ingeribed in the ellipsoid )

xt oyt 2 .

e T tETh O
NS ¢

determine the dimensions of that one which has the largest possible volume,

3. Determine the lengths of the prineipal semiaxes ©f the ellipse
Az? + 2Bzy 4+ Cy? = 1, where AC > B?, and deduce g,lspihat the area

of the ellipse is given by w/+/AC — B

4, Of all parabolas which pass through the geﬁhfss (0, 0) and (1, 1),
determine that one which, when rotated about the ¥-axis, generates a solid
of revolution with least possible volumejbetwieng = Gandz = 1. [Notice
that the cquation may be taken in the formny = z + cz{l — x), where ¢
ig 4o be determined.] N

5. (a) If x = {m, &2, . . . , ¥ )(i8 & real vector, and 218 2 real sym-

®

metrie square matrix of order n, shaw that the requirement that
FZ£x"ax —AxTx
¢ \J

be stationary, for a prescﬁ\'\bed a, takes the form

y ax = AKX
AKX
Deduce that the\:péquirement that the quadratic form A =xTax be
stationary, subj}th to the eonstraint B = xTX = const-ant_, leads to t_he
Teéquiremen \a;xé A x, where A is a eonstant to be detqrmlned. {Notlce
that the gameé is true of the requirement that B be gtationary, subject to
the congtpaint A — constant, with a suitable redefinition of A. (See also
[336*{23 of the text.}}
’ (b) Show that, if we write

the requirement that A be stationary leads again to the matl"ix eql_xahon
ax =\x [Notice that the requiremend dx = 0 can be written in the
form (BdA — AdB)/B*=0 or (d4 — A dB)/B = 0l] Pelduce that
stationary values of the ratio (X7 a x)/(x7 X) are characteristic numbers
of the symmetric matrix a. {(See also Problem 77 of Chapter 1.}
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Section 2.2,

6. Establish the equivalence of equations (17b} and (17¢).
7. 1t is required to determine the continuously differentiable function
1
y(x) which minimizes the integral I = jn-] {1 + #'%) dz, and satisfies the

end conditions y(0) = 0, y(1) = 1.

(a) Obtain the relevant Euler equation, and show that the extrewal
By =gz .
{b) With y(z) = z, and the special choice n{z) = =(1 — 1) Wil
with the notation of equatlon (12}, caleulate I(¢) and verify directly thit

dI(e}/de = 0 when ¢ = 0. 2
(¢} By writing y{z) = z + w(x), show that the problem\bechimes
1 ("‘}g
I=2+ L %% dz = minimum,
~\
where u((]) = u(l} = 0, and deduce that y(x) = z\8 Jrideed the required

minimizing funetion. \ )

8. Obtain the Euler equation and the asqocmted natural boundary
conditiong, relevant to the determlnatlon, ‘of extremals of the integral

[ F(z, y, ') dx, in the following cases, *

(a) F =y +yy +y",";f."" DYF=xy*—yy +y,
@ F=y?+keosy, ™ (@) F =a@)y? — bl
Section 2.3, NS

A geodesic on a glvx surfa,ce 18 a curve, lying on that surface, along
which distance between two pointg is ag small as possible. On a plane,

& geodesic is a wraight line. Determine equations of geodesies on the
following surfw@s

9, ity Gircular cylinder. [Take ds? — g2 d8? + dz? and minimize
.[‘\/a"- z/dﬂ)ﬂ a6 or | \/a? (d6/dz)* 1 dz]
10 nght' circular cone. [TJ h . .
d&‘ = dr? -+ 12 gin? o d62.] [Use spherieal coordinates (Figure 2.5) with
SO11. sph _
a” sin? ¢Ié£ri aa[gii]sphemal coordinates (Figure 2.5) with ds? =

12, Burface of revolution, [Write = i
=recosf, y = rsind, z=f(r).
Express the desired relation between r and § in ‘oerm; of an integral.] 70

Section 24,

1 —
18. Tf I(y) — fo VT + 7y dz, caleulate I(z) and I{cosh z).
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M. Iif F=14z+y+ ¢ caleulate the following quantities for

z =0
{a) dF where y
{h} &F where y

Il

sin 7 and dz = e
sin z and 8y = ez + 1).

[}

1

15. If T = j; (#? — y? + #'%) dr, calculate both Al and 47 when
¥ = xand by = ez

16. Let i = 1 + z2, where ¢ and y are functions of an independent

. 1 Lo
variable £, Calculate § j—y and % dy when z = ; and Sz = e {2, and verifi
T

the validity of equation (32a) in this case, :\:\'

Seciion 2.5. %
17. Derive the Euler equation of the problem
5 f”F(x, vy, y") de =0
x
in the form PAY;

P2\
o (or\_af(or) @O
dz® \dy"’ dz \3y' /Ny

and show that the associated natural hondary conditions are

¢ or  ar\, P8y o ]
il _ AL d — 8y’ = (1
1:((1’.3: ay” 63}’) ay“:l:z:l v 0 an [ay:; y T
L

18. Specialize the 1‘esul’&s"‘§f Problem 17 in the case of the problem

¢ o [“ﬁ\)y — byt + el@)ytl dz = 0.

19. Derive t’h\e‘ Eﬁler equation of the problem

PG4

'x“; affRF(x,y,u,u,,uy)dxdy=0
in the fofm _
NN
s (), 2 ()20
N dx \Ou, + dy \duy du

subject to the requirement that «(z, y) Is prescribed along the closed bound-
ary C of the region R.

_ 20. Obtain the natural boundary condition relevant to Problem 19,
n the form

| aF oF . ]5 _
fuialll — uds = 0
ﬁclf}uz cos v+ P, sin ¥ !
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where s is are length along € in the positive {counterclockwise) direction,
and v is the angle from the positive z-axis to the outward normal at a

point of €. [Notice that fj; %:i dr dy = éc ¢ cos vds and fL %—% dr dy

= 9504’ sin v s

21. Specialize the results of Problems 19 and 20 in the casze of the
problem :

8 [[, Lo vzt + b, Wy — oz, vl da dy = 0.

In particular, show that if 5(x, ¥) = a(z, ¥) the natural boundary éondition
takes the form O

56 aa—uﬁu ds =0, A
C a'-n \\~

N

N

L
/N

where du/dn is the normal derivative of w on C.

22. Derive the Euler equation of the prob]gn‘;l\\':

T2 fys :’.\ !
3 j_;l Ll F(z, y, Uy Uz, Uy, Wz Edy) Uy} drdy = 0,

where @1, &3, 3, and y; are constants,fi the form

Ll (ﬂ) Lo (orY, aer
AL \ Oz, ox 8y \Jiey e AT
O _a(er\_a(erY, or
\\ dz \du, dy \du, du
and show that the aisséciabed natural boundary conditions are then
¢/
3 ARS 9 OF  OF = aF ™
[Qt’?;am‘ + ay auzv B ‘a_u'z) ou :Ll - 0’ [a_u‘” b 1 - 0’
“\

and &

(o or o ar  ar\_ Tm o
an \ "4 — —_——— — = =
\ 3 (By T + dx du., Ouy bul =0 [a—uy; 6%] -

W1 m

23. Specialize the results of Problem 22 in the case of the problem

&Iz Bz
1 1
8 fm Li [5 Usz” + 5 tyy® + & Uty + (1 — oc)u,u?] dedy =0,

where « js a constant. [Show that the Euler equation iz of the form

Viu = 0, regardless of the value of @ whercas th -
ditions are dependent upon o] , ® natural houndary con
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Section 2.6.

24, A particle moves on the surface ¢(z, ¥, 2) = 0 from the point
(21, 411, 2.} to the point (&4, 42, 22} in the time 7. Show that if it moves in
guch a way that the integral of its kinetfic energy over that time is a mini-
mum, its coordinates must also satisfy the equations &/¢. = §/¢y, = £/¢..

T
[Minimize f ; (£% 4+ 3* + 2% dt, subject to the constraint ¢ = 0.]
0

25. Specialize Problem 24 in the case when the particle moves on the
unit sphere 2 + 4% + 22 - 1 = @, from (0, 0, 1} to (0, 0, —1}, in time T
[Show first that the motion must be described by the equations 'S

A

Q.

. nwt nrt 7 o\ Y
At 4yt = sin T z = cOS 7 f = tan—lir = const., where @15 an

odd integer, so that motion is along a great circle of the sphete. Then
show that the integrated kinetic energy is least when n = dpand is then
given by #/(27).] .\

26. Dctermine the equation of the shortest are whith passes through
the points {0, 0) and (1, 0) and encloses s prescribedyaren A with the -axis.
[Reduce the problem of determining the arbitrary constants to the solution
of a transcendental equation.] A/

27. (a) Bhow that the extremals of $he, ;}f(;blem

87 et — e diS 0, [ r@nds =1,

where y(x,) and y(z,) are presc{i”bed, are golutions of the equation

e
KA S =0
dx.ﬁw dx) +{g+Any=10

where X is a constan¥./ .
(b) Showjthat the natural boundary conditions are of the form

W

.;%Z"\' [ dy By]

P

; .\' ‘ » -
80 ﬁm}hthc same result follows if ¢ is required to vanish st an end point
Wh\e\re ¥ is not preseribed.

28. Specialize Problem 27 in the following special case:
r, - LI =1
5];} y'rdx =0, j; y? dx ;
y(0) =0, y(m =0

[Show that the extremals are of the form y = +/2/x sin nz, where n 18
an integer other than zero.]

]
= 0}
- .

Ed)

e
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29. Show that, if the constraint j; " y? dz = 1 iz omitted in Problem 28,
the enly extremal is the frivial one ¥ = 0.
30. (a) Show that the extremals of the problem

b [ sy — p@w + d@yds = 0,
fﬁ rizyytde =1,

where y(21), ¥'(z1), y(zs), and y'(z,) are preseribed, are solutions uf{the

equation A
2 d d M
dz,( dxy,) +a(1’d—i) tla-Any=0

where X ig a constant. \

{b) By considering the relevant natural boundary\condltlons show
that the game regult follows if (sy™) + p 'y is reudired to vanish at an
end point where y is not prescribed, and s 4" is \regulred to vanish at an

end point where 3 ig not prescribed. AN
31. Specialize Problem 30 in the following}sf)’ecial case:

B Lvras =0, \[fyras =1
¥y(0) = ¢"(0) = 0“"‘ y(x) = y'(r) = 0.
[Show that the end condltlons aré approprlate and that the extremals are
of the form y = +/2/7 suyqx, where 7 is an integer other than zero.]
)

32. Bhow that, if thg\constra,mt f y*dr = 1 ig omitted in Problem 31,
the only extremal i ;s the trivial one y = 0,

Section 2.7, \‘.\
Kﬁfy that the Euler equation relevant to the problem A = 0,
where '\

X\ \ f(sy — Py + gy ds
m~J =

\‘ leryzda:

is of the form
i dy d dy
dxz( dﬁ) +a-$(93£ Tlg-2Any =0,

and that the relevant natural boundary conditions at © = ©, and £ = 2
are the following:

8Y") + Py = 0or yprescribed and sy’ = 0 or y' prescribed,



CALCULUS OF VARIATIONS AND APPLICATIONS 207

[Compare Problem 30.]  Deduce that, when homogeneous natural boundary
conditions are preseribed, stationary values of the ratio A are characteristic
values of the associnted beundary-value problem.

34. The deflection y of a beam executing small free vibrations of fre-
guency o satisfies the differential equation

e dy
E(Eldxz) — puwiy =4,

where F [ is the flexural rigidity and p the linear mass dengity. Deduce

from Problemn 33 that the deflection modes are extremals of the problem

L RGN

[ EIy"de £\
0 =0

Fova | O
, Py

when appropriate homogeneous end conditions are prest}fibed, and where
L is the length of the beam, and that stationary valpes of the ratio are
squares of the natural frequencies. [The bending moment M i given
(approzimutely) by M = EIy”, and the transyerse shearing force 8 by
8= M = (£ Ty, XNotice that the natral’ boundary conditions are
satisficd if either 8 = 0 or y is prescribed, dng either M =0ory is pre-
seribed at each end of the beam. T cam Bb"Shown thet the smallest station-
ary value of w? is truly the minimum3alue of the ratio.]

*

35. Buppose that the tension Pand linear density p ofa freely vibrating
string of length L are nearly uniform, and that the string is fixed ab the ends
#=0and & = L. Recalling ‘that the nabtural vibration modes for a uni-

Jorm string are mu]tiples’\qf\the funections

St = b

N

p@2 (") won
s
motivate t-h@i}fﬁuximate formula

\ N7
AN na fu F cos? {(nwz/L) dr
PR N W = — S

i - (ﬂ=1,2,"°)l
O L fo p sin? (nrx/L) de

for the nth natural frequency, in the case under congideration. It the small
deviations in ' and p from uniformity are assumed to be linear, show also
thaf the approximate values of the natural frequencies take the form

w“zﬂ_LE g— (n=1}2!"°)!

Wwhere 7 and 5 are the mean values of F and p.
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86, Obtain formulas snalogous te those of Problem 35, in the case of the
freely vibrating beam of Problem 34, both ends of which are hinged in
such a wey that both ¥ and M vanish.

37. Let w? represent the ith characteristic value of w? for the problem
consisting of the cquation (Fy') 4+ pe® = 0 and of specific end con-
ditions which require that at each end of the interval (0, L) either y or /7y’
vanishes, and dencte the corresponding characteristic function by ¢:(s).
Suppose alro that the ¢'s are normalized in such a way that

v, »
j; p dip; dr = & \
)
{see Seetion 1.29), and that the w%s are arranged in increasingwra‘er of
magnitude. >
(a) Show that N

AP

fordrde = - [F@ oy iim 2o

_ (b) By making use of the fact that any centifiuously differentinble
_functxon 1(x) which satisfies the prescribed end €onditions can be expressed
in the form N\

+
y(x) = 2 S () ,\’{;(0 =Ex =),

k=1 \

where the_series converges l_miferrjnly, and by taking inte account the
orthogenality of the ¢’s relatigato p, show that the relation

P

.t L
\\.. 2_-[) Fyfgdm

Wl = :
> prdm

K%
takes the form,{ )
N -

’\\ i 2 Crlon?

al mE=I-c—-_=1
)
AN
O 2 e
k=1

(¢) Show that w? — w2 = 0, and that w? = w,2 when y(x) = ¢:(z).
Hence deduce that the smalfest characterisiic value o_;" w? 18 {h(,e )minﬁ:a(u?)n
value of the ratio in (79) fm" all admissible funclions.
. w(gd)}Sﬂhow that, if e, =es= .., =¢,_, = 0, there follows
T . =0 ar_1d‘that 0! = @ when y(z) = ¢.(r). Hence deduce that

characterisiic value of w? is the mintmum value of the ratie in (79)
Sor 2l admiseibls functions which are orthogonal to the first r — 1 characteristic
Functions. {Compare Probjem 77 of Chapter 1.)
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Section 2.8.

38. A particle of mass m is falling vertically, under the action of
gravity. [T . is distance meusured downward, and no resistive forces are
present, show that the Tagrangian funetion is

[, =T =V = m{§3? + g 2) + constant,

L2 .
and verify that the Tuler equation of the problem & f; Ldf =0 i8 the

proper cquation of motion of the particle.

39, A particle of mass m is moving vertically, under the action of
gravity aml a resistive foree numerically equal fo k times the digplage-
ment z from an equilibrium position. Show that the equation pf Ham-
ilton’s prineiple is of the form \ .

U
7

r 1 e\
E-L (—%mi“+mgm—§kx’)dt='q~,:\'\

and obtain the Euler equation. O

40. A particle of mass m is falling vertically. viugder the action of gravity,
and its motion is resisted by a force numericallyy gual to a‘cor_lstant ¢ times
its velocity #. Show that the equation off Hamilton’s principle takes the
form o\ o

iz ,’ 3 3]
af (%m:fzz—i-mg‘a}' d?,—-[ ed dndt =0,
t 3 f

41. Three masses are con{\fcted in series to a fixed suppor, b3f linear
springs. Assuming that ol the spring forces are present, and Using the

L\

! I
—Xz—

Ay Ficure 2.11 |
“0ta<’5i“?m of Figure 2.11, show that the Lagrangian function of the system 18
b 3
L\: gt 4 maEs? A+ madst — by’

— kolzs — @) — K@ — z9)% + comst,

where the w; represent displacements from equilibrium. [Notice that if
:;he z; are given inerements dz; the tofal work done by the springs 18 gIven
vy _

8 = — 3V = [kalee — 21) — Fu) 82 -
+ [ks(ﬂ?a — g} — kolxs — -’Dl)] dxa -+ [—-ks(ﬁs - xz)l bar
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Section 2.9,

42. Obtain the Lagrange equations relevant to the mechanical gystem
of Problem 41.

43, A mass 4m is attached to a string which passes over a smooth
pulley. The other end of the string is attached to a smooth pulley of mass
m, over which passes a second string attached

LLLLLLpLr 2220202 b masses m and 2m. If the system starts from
rest, determine the motion of the mass 4 iy USInYE

the coordinates ¢; and ¢. indieated in Fipre

-—J-—- 212, O\
e
4 44, Obtain the Lagrangian equationd ior a
L triple pendulum consisting of three\weights of
— "4m —3— etqual mass m, connected in seriés™to u fixed

9, support by inextensible strings gf>equal length
__1_ @ taking as the coordinateg t] angles 6, #.,
2m and 6, made with the Yeli¢al by the three
strings. Show also that, for small deviations
Fioums 2.19 from equilibrium, ant’small velocities, the
' Lagrangian functiow'takes the appraximate form
mat . ) A i
L= ~5= (36: + 202 + 4,2 + 46,0, + 2846 + 26,4,
o .”‘_29_“ (3612 + 28,2 + 6,2) + const.
45. Two particleg of equg,l’\‘mass m are connected by an inextensible
string which passes throygh{ayhole in & smooth horizontal table, the first
particle resting on the table, and the second particle being suspended
vertically. Tnitially, the first particle is caused to describe & circular path
about the hole, with(an angular velocity w = v/g/q, where g is the radius
of the path, so t@at’ the suspended mass is held at equilibriuma. At the
Instant ¢ = 0,4hefuspended mass is pulled downward a short distance and
18 releaged, kbi&é the first mass continues to rotate,
.. lap ¢, © represents the distance of the second mass below its equi-
llbl'l}ll'[l\.gt?mtl()n at time {, and § represents angular position of the first
ps,rjuglp ‘at time {, show that the Lagrangian funetion is given by

L= ml3® 4+ $(a — x)y2d2 + gzl + const.,
and obtain the equations of motion,

(b) Bhow that the first integral of the f-equation is of the form

(@ —2)% = av/ay, and that the result of eliminating # between this
equation and the z-equation becomes

~

" 1
29:+L-—-———1 _x/a)s~1:lg=0.
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{¢) In the case when the digplacement of the suspended mass from
equilibrium is small, show that the suspended mass performs small vertical

oscillations of period 2w ‘\/ 5&735
Section 210,

46. {a) In terms of Lagrange's function L{m, . . . , gui 1, - « - » du),
such that . = T — ¥, show that the equations of motion become
d { 8L aL .
=] == =1,2 - ,n).
dﬁ (aq) aqt (‘!’ =y ¥ n) .\
(1) 8Bhow that the gereralized momentum p; eorresponding to\the
tth eoordinate ¢, is given by O
0= Q.i_n oL 7 ".} -
T ag—i 59: "~\ :

47. By noticing that T is a homogeneous quadra.tlc‘}brm in the #n ¢'s,
establish the identity

\

w\J/
pege = 27 'x;.\
2 R\

X 3
A b

[Compare Problem 32 of Chapter 1] ()
48. The Hamiltonion funclion H, ©of3 conservative system, is defined

as the sum of the kinetic and poten’ﬁm‘l*energles H=7T+T.
(a) By making use of the‘rcsult of Problem 47, show that cne may

write £
¢ ".H = 2 e — L.
\ - a
(b) Let the, 3n wariables p1, « . . Pas @y« - - Gni G ol O
be considered indepehdent, By using the result of Problem: 46(b), show
tha.t >\ 4
7))
N\ o

\¥ — =0,
£ \ ¢
80 ’shat H is a function only of the p's and ¢’s, and is independent of the

75,0
4?9. () By noticing that L is a function only of the ¢'s and ¢’s, use the

result of Problem 48(a) to show that
ﬁ
dp:
(b) By combining the results of Problem 48(a) and 46{a}, show
that the equations of motion can be written in the form

ﬁﬂ_pi (E=1,2+",nh

ag;

=é£ (?:=I,2,"',ﬂ).
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[The two seis of equations obtained in parts (a) and (b) are known as
Hamilton's canonical equations.]

(¢) By multiplying the {th equation of part (a) by p; the ith
equation of part (b} by ¢;, adding, and summing the results over ¢, deduce
the equation of conservation of total encrgy, dil/dt = 0.

50. {a) For the simple pendulum of Figure 2.3, show that the Hamil-
tonian funetion (expressed in terms of coordinates and mowmentu) is of
the form

- P _ N
omii T ™ g L cos & + const., X
where p is the generalized momentum associated with the g{nﬁr&lized
coordinate g — 4. \

(b} Obtain Hamilton’s canonical equations in the fprm
P, .

mIt

and show that they imply equation (99). \\

51. For a harmonic ogcillator with one defg:ria'e of freedom, show that
the Hamiltonian function is of the form M\,

mgLsgin g = —?5:."’:\'\

p? k g2\ -
H = m—— e N

5 +:"~2 v+ const.,
where £ is‘ the stiffness constant @Iji;he systemn. Show also that the canon-
tcal equations take the form s ~kgand g = p/m.

. 52. A mass m moves jgr'tl}e #y-plane, under the action of a central force
dlre(:'ted slong the radj\s‘\fi'om the origin. If the position of the muss is
gpcmﬁed by the polar coordinates r and 8, and the potential energy function
18 denoted by V(r); express the Hamiltonian function in terms of 7, 8, p.,
and pe, and obtdig“the four relevant eanonical equations.

Section 211\\

53:0£de8 the problem of the simple pendulurm by taking as fwe coordi-
natt;s{ \ the ‘mags m the dllstance 7 from the support to the mass and the
a,gg}% 18,0 of Figure 2.3, subject to the constraint r = L, and making use of
% agrange multiplier. [Show that the equations corresponding to (129)
€eome
m(F —r 82 — g cos §) = ),
m(r* +2r7 6 4 grain §) = 0.

By introducing the relation ¢ — L, obtain e i
. ? = L, quation (99} and deduece further
that the tension § in the string isgiven by § = —} (: ,,?n g cos gliemui gle_]

to 54, ISUDPOBO that the ogcﬂlati(?ns of a simple pendulum are not resiricted
& plane. By appropriately introducing the spherieal coordinates of
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\ Figure 2.5, obtain the equations of motion in the form
q*i—{?ﬁsinqbcos:ﬁ-i-gsinqb:{), 8 sin? ¢ = C,

snd show also that the tension in the string is given by
S = mgecos ¢ + m L{p? + 67 sin? $).

Sections 2.12, 2.13. "\

55. Poteniial energy of @ linear spring. Suppoge that the foree @xerted

by a spring is dirceted along the spring, and is proportional to its\sfi‘etch e
bevond its “natural length” Le. « N

{a) Prove that the potential energy V. stored in“thé spring is
given by : AN
k uQ’\\
Vs = 3 ¢ 4 const., \y/

AN

where % is the “spring constant’’ of praport@p%aﬁhy. [Caleulate the work
done in stretching the spring from the length ¥q to the length L - el

(b) Suppose that an unstretehed Spring of length Lo coincides with
the vector ai -+ bj + ¢k, where a® 4242+ ¢ = Lo? and that the subse-
quent displacement of one end relative to the other is defined by the vector
wi+oj+ wk, Bhow that th§~ﬁ§tential encrgy is of the form

V., = g[‘\/(a -+ u?&‘:s{— (b 4+ )+ (c + w)? — Lo}* + const.
N .
(¢) Under the assumption of small digplacements, obtain the

expansion @
Z‘« 2
. =E E-ﬁ-bv—i—ﬂ) 4+ -+ - 4 const.
Z" \ v 2 Ln
‘§ )
,’:; =§(Eu+mv+nw]2+-'-+const.,
'~\’~

“where omitted terms involve powers of , v, and w greater than two, apd
I, m, and n are the dircetion cosines of the line of action of the spring in its
natural position, so that the contents of the parenthesss comprise the cott-
ponent of Lhe relative displacement vector in the direction of the natural posilion
of the spring,

56. A mags m is elastically restrained in space by a number of springs
with spring constants k., which are attached to the points P;. The mass
is at equilibrinm at the origin 0, the springs then being of natural length
(Figure 2.13). If the direction cosines of the radii OP; are denoted by
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z

FioURE 2.13 /0

(L, ms, n;), and gmall displacements are aasﬁj;fed, obtain the potential

energy stored in the springs when the mass ds displaced to the position
(z, ¥, 2} in the form N

N
O
A N

ALY

k; &N
¥, = ‘2 5} LI;—‘:?;—{— miy -+ ng2)t

™\,
[Use the result of Problem’ gﬁl‘e).] Also, obtain the equations of motion
\\“' in the absence of external forces.

) 57. Suppose that a pendulum, vibrat-
ol ing in a plane, consists of a mass m
attached to a fixed support by a linear
spring with spring constant & Figure 2.14).

(a) Show that the potential energy
is given by

k
=3 € — m g(Ly + €) cos € + const.,

where Lo is the natural length of the spring
and e is its streteh.

{b) Bhow that the position of equi-
lbrium ig specified by ¢ = m g/k, 8 =10.
Fiaurr 2.14 With the introduction of the new eoordi-

nate s = ¢ — mg/k, such that s is the
= Lo + m g/k assumed by the loaded spring
tion of gravity, obtain the relevant cnergy

stretch beyond the length 7,
m equilibrium under the ge
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functions in the form

T =S8+ @+ o,

z
V= 526 (ng + s) — m g{L + &) cos & + const.,
and deduce the equations of motion in the form
mi+ ke —m@ 8+ mg(l —cos ) =0, \
d _ O
m;{t[(L + 8+ mgll £8)sind =0 A\
(¢) Assuming small stretch and deflection, obtain ”ﬁhg’ﬁpproxima-
tiona '\; ?
T = ;—?’ (s*+1%n, V= gs” + % m g HW*+ const.,

AN,

s . .
and deduce that in the linear theory the extenssqna_ll and deflectional vibra-
tion modes are uncoupled, with frequenqief:‘v‘:\/g/ m and +/g/L, respec-
tively, so that s and 4 are normal coor@%{mﬁes.

58, In Problem 57, use as coordiﬁ?g:téé the componenizs @ and y_of the
displacement of the mass m from }équilibrium position, in the horizontal
and vertical directions, respectively. Show that there follows

S
V = g\[,\/xs + (g — L)* — L* + mgy + const,

,i":?r — ?_;' @ 4 ),

. k mg
obtain the expansion V = Eyg + or 24+ ...

3

)
where Ly =\ %

+ conghy) }e]eva,nt to small oscillations; and compare the corresponding

linegrized equations of motion with the results of Problem &7 .(e). [Notice

thap the results of Problem 55(c) are not applicable here, since z and ¥
&/hot measured from u position corresponding to zero gireich.]

59. The point of suspension of a gimple pend}ﬂum is GOmpletely
restrained from vertical motion, and is partially restrained from horizontal
motion by a spring system which exerts a restpring .force eqlial to —ka
when the horizontal displacement of that point is @ (Figure 2.15). Obtain
the equations of motion of the suspended mass m, assuming the string to
be inextensible and of length L. Show that for small displacements there

follows approximately z = m—-?? @ and (L 4+ ?33';‘:_9) § 4+ g8 =0,5s0 that the
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system is then equivalent to a simple pendulum of length L + ”1_!.3 with g

fixed support.

60. A mass m is attached to three symmet-
rieally placed supports by linear springs.  With
the notation of Figure 2.16, the muss is ut equi-
librium at the origin, equidistant froni the three
supports (and in their plane), the springs then
being unstretched. O

(a) Assuming small oscillations, show
that the potential energy stored in thegspriigs,
corresponding to & displacement (x (A" in the
plane of the supports, is of the foruy 3

Vo = gl(4k1 + ks + k3)z? +K\w/{§ (L_. — ka)xry
N+ B{ks 4 kg,

Frevre 2.15 and obtain the corregponding equations of mo-
tion of the mass. € ¢

(b) In the special case when kpenZk, ky = (2 4+ /3%, and

ks = (2 — \/3)k, determine the natural freffiencies and the natural modes

Fieugre 2.16

of small oscillations, Show also that the coordinates ay =z + ¥/ \/é,

u2d= (@ — /2 are then normal coordinates, and express the kinetic
and potential energies of the system in terms of them.
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61. A mass m under the action of gravity executes small oaciliations
near the origin on a frietionless paraboloid

= $(4z* + 2Bry + Cp),

where B? << AC, A > 0, and where the z-axis is directed upward. Obtain
the characteristic eguation determining the natural frequencies. [Use
x and ¥ as the Lagrangian coordinates.]

62. A mass m under the action of gravity executes small oscillatione
near the origin on a frictionless ellipsoid A

2 y}! (Z — 0)2 .
ntet @ b S
A N
where the z-axis is directed upward. Show fhat the coordinates z and

y are normal coordinates, and that the natural frequencieg}a:i:é' g/

R %7 C 2 2
and \LBQC . [Show that, pear the origin, there fo]]ows*z}gé %2 + %
+ terms of higher order in ® and 3.] O

63. From the analogy between coupled ,fugehanical systems and
coupled electric networks, in which linear di5 -ement @ correspends to

charge ) = #I dt, where I is curreni, and.where mass m eorresponds to
fo ™ . -
inductance [, spring constant & tg:{recﬁproual capacity 1/C, damping
coeflicient r to resistance R, and impressed force F to impressed veltage E,
deduce that to the potential cnergy V there must correspond the “electro-

magnetic energy”’ ¥
1 n 1 ,imI‘\n i-1 1 n
BEEE SERERIS A SANE IR 7Y
1 QZGQ&QZE%JQQJ >

where Q@ = I isAheurrent fowing in the ith circuit, C; is the capacitantie
of that cireuit'ﬂhich is not in common with other cireuits, Ciy; = _C,-,- is
routual exmdeitance in common with the ith and jth cireuits, and B is the
impressed voltage (positive in the positive direction of I;) in the ith (il(l'lf:l.llt..
Show aldo“that to the kinetic energy T there must correspond the ‘‘mag-
neti¢eitrgy”

\\3“ 1 L i I .
LA 2 J,-.ﬂ — E EL'QE-Q')-gi
i 2 . 1InQ‘ +2" i ‘T( H
i= = =

where I; and Lg; = Lj; are coefficients of self-inductance an(.i 1_nut}lal
inductance, respectively. Finally, show ’shfat fo t_he Rayle_lgh”dlsmpatlon
function there must correspond the ‘ heat dissipation function

F= ;2 RO + % ﬁ Sl Rai(@: — Q%

=1 i=1 j=1
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where B: and Ri; = Rj: are the resistances, after which the ecircuit equa-
tions are obtained in the Lagrangian form

dfaT av aF
A=+ s+ =0 1=1,2 - ,n})
dt (3Qs) 0 ag; ( ' )

64. Derive the cireuit eguations relevant fo the two networks of

Figure 2.17 by the Lagrangian method of Problem 63, and verify the results
by use of Kirchhofi’s laws. Also, investigate the nutural [requencies of

@ i
2

\\, {h)
LN\ Fieure 2.17

ﬁm@\l;?s;: Illat[i!ng currents in each of the two networks when the resistances
Te“,t?g ected. [In the second case, mercly express the characteristie
\equation n terms of the vanishing of a determinant.]

Seciion 2.14,
65. Suppose that y(x) satisfies the differential equation

Gy +(yY +qy=7F
everywhere in the interval (1, x4
one or more of the functions s,
analytic expressions over the tiwo

except at an interlor point £, and that
P, ¢ and f may be defined by different
subintervals {z;, £) and (£, z.).
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{(a) If y and ¥ are required to be continuous at # = £, obtain the
relation

£ 1 I 1
Z ry e = 2
B.L (28y 2 PY +5ay fy)dx

sy +pvt oy — v &y ]l
~[eyy + oy ] ou® + [sv )5 0w = 0.

(b) Deduce the natural transifion conditions @
oA\

yEH) = =), TED = YED),
[y e = 59y 169 +poles = (63" +ay .

(¢) Suppose that the conditions y = yand ¥’ = f{re prescribed
at @ = z,, and that the conditions (s ")’ -+ py’ = Spahd sy” = M are
prescribed at © = .. Further, suppose that it is required that (s ¢} +
Py possess a jump of 4, and s y” & jump of B ag the.point z = £ i crossed
in the positive direction. Show that the va,;i'gtfmnal preblem takes the

form \

NN

] 1 1 1 R "
’ 58y~ sput ey —fufds
[L (2” g Pyt gey - J9
+ Sgy{x‘,_,')"_ _M‘sy;(xz) -4 y(E) + Byr(s)il _ _ﬁ,

."’\ g
where admissible functiphs.are to satisfy the 9011(1113101‘18 y(z1) = y1 and
¥'{#1) = y}, and are o bavcontinuously differentiable in {(x1, T2).

66. Specialize the'résults of Problem 65 in the case of the equation
N4

.O \ “¢~ q d2
~0 L (p128) —po =
N dx? da®
Y o
which giverns the steady-state amplitude of small forcec} vibration of &
beam;\ind interpret the conditions in physical terms. [See the note to
Tablem 34

67. (a) Modify the treatments of Troblem 65 in the case of the second-

order equation

pyY +ay =5

omitting the requirement that 3’ be continuous stz =& . ]
(b) Specialize the results of part (a) in the case of the equation

d . dy -
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which governs the steady-state amplitude of small foreed vibration of
string, and interpret the conditions in physical terms.

63. Two unknown funetions ¢.(z) and ya(z) are governcd, over an
interval (a, 3), by the simultaneous equations

(puy;]’ + (Pn!f;)’ 4 ray 4 rss = h
(Pry) + (Paayt)” + My Fayz = fu,

where py;, 7, and f; are prescribed functions of z. By multiplying the
first equation by s variation 3y, the second by dy., adding, integratiig
over (g, &), and simplifying the result, show that the corresponding viwi-
ational problem is of the form ¢(\N

7o\

Ny

b

) , \

s f [5 (Duy’f + 2pa Yy + eyt — oyt N
a

¢°{ ?
~ 2riange — fzzyzz) -+ fft}'\t + fz?!z] dz = 8,

if the preseribed boundary conditions are con;pm\rﬁle with the foliowing
ones: W

[t + poas) o0 T = 0, [0l oo 82 ), = 0.
- 69, Show that the equations . >
zy + 2?};.%';'?}1 — Y = Py,
R I TR T

are reducible to the s n{ia.rd form of Problera 68, and obtain the relevant
variational problem.

i dm- By starting with the known differential equation, or otherwise,
educe the folldwing variational problems in the cases moted. In each

case, u I‘eDI‘GSjeili_‘ﬂ deflection at time ¢, and f represents the corresponding
Impressed fox0e intensity.

Ja)Trangverse deformation of a string:

n rL
Ny 1 au 2 1 a 5
Q) & = i _2 __u
\m‘:" L L [2"(3;) 2F(3$ +.f‘u] dz dt = 0.

(b) Transverse deformation of & beam:

8_[“ fL . a-—u 2_ 1 FIAT
2z %
w Jo [2'0(('%) 5&’1(5;2) —{—fu]d:cdt = 0.

() Transverse deformation of a membrane:

IWIEOR
NIARLS —EF(Vu)2+fu]de£=0.
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{d) Longitudinal deformation of a rod:

3] 1, 5 .
v (du 1 du
BL L [é"(“gé) ‘5“(5;) +J'u]dxdt = 0.
[E is Young's modulus, A the cross-sectional area.}

Section 2,13,

71. Derive cquations (215), (216}, and (217) by considering the integral
of each left-hand member over an appropriate interval or region, and\
transforming the integral by integration by parts.

72. Verify equation (219), by expanding the right-hand membed or
otherwise. NS ¢

73. A Hnear partial differential equation of second orderg ~{i£. Ehe form
Flt] = 0 Wew + 26 Wy + Wy + d 102 + 20, +f:<—1i’g =0,
where the coefficients may be functions of z and g, dswderivable from a
variational problem & f f . Gdedy = 0if and on}x{f\the left-hapd member
ean be reduced to the left-hand member of a §oqujlied “gelf-adjoint” form

Stl = (pwde + (g w)e + (g FF WY + 5w +1=0,

by multiplication by a function A(w, y};%}ﬁich may be termed a “'reducing
factor.” Ry

{a) By requiring that Slw} be identical with A Fw], show that
there must follow A

p=Aa, q;.Aj& r=Ade¢, s=Af t=4y,

\ . .
and that the reducing .famor A mugt then sabisfy the simultaneous first-
order partial differengial’equations

NS
PAS S-S P ST 8
A& dz dy
& . S S V'Y
= ax dy

Urbl&gs:}hése equations possess a commeon solution, the equation Flu] = 0

18'nop derivable from a variational problem. o
(b) Suppose that a reducing factor 4 exists. By multiplying the

equation Flw] = 0 by A 8w dx dy, integrating the resylt over the relevant
region B, and making use of equations (214) and (216), show that the
variational prohlem js of the form

6[/ l:%(awxg+2wawﬂ+cwyz_fw3)—gijdx‘(iy=D!
Fid

if appropriate boundary conditions are preseribed.
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{e) Apply the preceding technique to the differential equation
2%, + 22 1wy + TPy, + 32w, -2, w4 g = 0.
{Show that the reducing factor must be a constant multiple of 4 = =]

Section 2.16.

74, When the plate considered in Section 2.16 is also subjected to
compressive forces N1 and N, parallel to its surface and in the z- and
y-directions, respectively, and to a shearing force 8 parallel to its surfacg@\
the approximate governing differential equation differs from cquation
(222) in that the zero right-hand member iy replaced by — (N yw,, +250:,
+ Nawy,). Show that the integrand of (224) is then to be madiffed by
the addition of the expregsion Lo

ol
2NN
4 %

—%(legz + 28 Wattly + Ng'wﬁ). 0\§ ?

75. Buppose that a rectangular plate of uniform thiekness is acted on
only by a uniform compressive foree N in the a-direchion.

(a) Show that the variational problem deriwed in Problem 74 takes
the form AN

% 3
NS

D 4] b % \/
3 8 j‘; f; [res? + wp? + 20 Wpatvyy, - 200 — ojw,, dx dy

‘:.” X -N- a b
" —-—:Sf f wrdedy = 0.
~Q" 2 0 0

{b) Deduce that the':(}r\ftical buckling loads (for which the problem
possesses a nontrivial solition) are stationary values of the ratio

o b 9 >
_ D j; ‘L\[wa:gﬂ + wn? + 20wy, + 2(1 — a)w,? de dy
‘t\" & b -
Z"\.“ f{; L wzgdx dy'
N
where y\satisfies the appropriate support conditions along the boundary.

{Comkf;,re' equation (69) and Problem 33. It can be shown that the
sm{les!. stationary value of ¥ is the ménimum value of the ratio.]

Section 2.17.

¥

76. Use the Ritz method t
nroblem '

d{ dy
T\ TU=2  y0 =0, y1)=1,

¢ obtain an approximate solution of the

in the form y =~ 2 - (1 — 2)(ey + cox).
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77. Usc the Ritz method to find two suecessive approximations to the '
smallest characteristic value of X in the problem : '

d d
&;[(l +x)a%] +ay =0 y0) =9, y»1)=0

assuming first ¢(x) = ez(l — ), and second y(z) =~ (&1 + eam)ax(l — ).

78. Suppose that a small mass M is attached at the point x = a to &
vibrating string of lincar mass density p and length L, and that M < pLy
If the string is fixed at theendsz = Oand 2 = L, show that the variational

problem for small vibrations of frequency is of the form O\
L 2 N
1 1 dy 1 &
il = T _C 24 z 2 2 | =\
aﬁ [2pw"’y 2F(dx)]dx+6[2Mw{y(a)] ] A0
or, equivalently, y \ .

L \
f [F d—z% +p wﬂy] Syde + M wfy(a)%’y(a} =0,
0 dx KA

 §

where F is the tension in the string. Assqmi:ng that F and p are ?onatanf,,
and that the deflection modes differ slightly from those in wl;ueh M i3
abeent, show that the nth natural fregiency is approximately given by

*

e E(T_M @)
wumfm.p(l PLsm 7
+ 8 )
[Compare the use of the}a?ocedure of Problem 35.]

79. A uniform sqpare plate of length a is su_bject o a uniformly dis-
tributed compressivedoad N in the #direction, in the plane of the plate.
The plate is clgfaped along its complete boundary (z =0, =a, ¥ =0,
¥y =a). Sht{”ﬁhﬁ'b the appreximation

"\

\ w = C(l —cosgﬂ) (1 _.0032"__3"),
) . a i
f} the fundamental buckling mode, satisfies the relevant boundary_cl(m—
ditions, and determine a corresponding approximation to the eritieat
buckling load ¥... [Use the result of Problem 75, or, cquivalently, use
the relation

D_]{;u j;}aV“wﬁwda:d’y'!"Ncr ﬁ;]{; w0 0w dx dy = 0.

The rtequired approximation is given by ‘N, =~ 32r2D/3a® = 1050 /a?,
whereas the true value is known to be 103.5D/a%]



224 CALCULUS OF VARIATIONS AND APPLICATIONS

80. (a) Establish the relations

f’”’py’wx - — fﬂ (@ )y ds + [p y’y}

x) Il £

aﬂd ET
fxisyl”lzdx e L :{s yfﬂ')ffydx + [syffyr‘ . (S y”)’y]x‘,

(b) Use the results of part (a) to show that the expression

5 E2 '1- ,,2‘__1- ,2+l 2—)'1)(33 "\
L \BSYP 5Pyt gy ¥ .

oA
can be written, not only in the form e\
les [(8 yrf}u + (p yl')f + qy ‘__ﬂ ﬁy dx “.(‘.:«'

2% 2

m\\ E
Horra gy + oy s
but algo in the form \\

1 1 RS
59 l/z [y + @)Y +qy — 2y d&‘\

.~“ﬁ'[ta ¥y = (sy") + py’}yJ ]

81. Let R denote » region of'the zy-plane, with boundasry € made up
of one or more closed curves; and suppose that w is to satisfy Laplace’s
equation in R, that w is pges}ribed as ¢(s) along the portion €7 of €, and
that dw/dn is preseribédias ¥ (s) along the remainder of the boundary C”,

where s represents digtanice along C. By caleulating the variation, verify
that the problem . \J

A%
1 \) Jw
slz |z 2 _ - =
[2 :L“{‘Vw) dx dy L’(w qﬁ)aﬂds Lﬂ;&wds] 0

is equi\{alént to the problem

NN
Q(:f“'vﬁwﬁwdxdy-i-f (w—gb)&?lgds— (a-iv— )6wds=0,
R c an o \On

angi hence deduce that the desired solution is gn extremal of either formu-
lation of this variational problem, wh

. L ere the admigsible functions are
unresiricted along ¢, [Either ¢ or ¢" may, of course, be identified with

the w_hole_ of €. Notice that, if use is made of the Ritz method, the linear
comblpatlon of approximating functions need not identically satisfy the
prescribed conditions along either ¢ or C”. (In two-dimensional problems,
it is often inconvenient o choose approximating functions which have
this property) In particular, it ig possible to chnose, as approximating
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functions, special solutions of Laplace’s equation, so that the double infegral
in the second form vanishes identically, and then to determine the constants
of eombination in such & way that the sum of the line integrals vanishes.]

82. Let the symbol ¥ represent y, when x = z; and y; when z = 2.
With this notation, verify that the problem

8 u;(%py’*— %qy*~fy)dx— [p(y— Y)y’]x;] =0

is equivalent to the problem _
Es “r A T '\\\
[Flowy ey -+ [pw-naw [ =0 L

Henee deduce that the extremal of this problem, when the,_ﬁ.d}ﬂissible
functions are unrestricted ab £ — @, and 5 = 2, is the sp}}ﬁﬁlon of the
equation (p ') + gy = f for which y(z:} = 11 and y(x:}N‘a?}z.

Section 2,18,

83. Theedgesz = 0,z = a,andy = Oofa vibraftt\nﬁg square membrane
are fixed. Whereas the edge y = 6 18 unresteained, the thickness of the
membrane is abruptly increased at that edge.( \Suppese that the addlt_lonal
material may be considered as concentrated along the edge, with linear
mass density A p/h, where A is the effettive crogs-gectional area and £ is

the uniform membrane thickness, W ]
(a) Show that the relevantwariational problem is of the form

ﬁff [EPM’WZF lF(wﬁg"%w,“):ldxdy
oJo 12 2 L™
S P G[Eﬂ’wswzl dy =
\..:..’ + o 1272 - s

and that this l'eqqi}einent is equivalent to the condition

A~
e {a \J a aw AP ) :|
Fv4 2 - F— — =~ ) dw de =10,
ﬂﬁ[&-zhpww]awdxdy L[( it S i

Where,\:w\xs to vanish along the three fixed edges.

N/ (b) Suppose that p, F, and h are congidered to be GQDStant! w}}erea.s
4 may vary moderately along the edge y = a. By assurnung ap proximate
deflection modes in the form

w =fm(y) Sil’lflr'y“‘T:"ﬂE (m =1, 2, - ')’

where ,,(0) = 0, show that fn(y) musb satisfy the differential equation



226 CALCULUS OF VARIATIONS AND APPLICATIONS

and the homaogeneous end conditions
fa(0) =0,  af.(a) — dww¥fala) = 0,
where
2p [° ., ITE
= —. dx’
Ol %F J, A{x) sin .

(e) Deduce that corresponding critical frequencies are of the
appreximate form

F O\
Wy = \/—F-z it £ knu?,
pa
where k., ig the nth solution of the equation

Lo o

—pa__k
otk = BT

¥ '\.'
[The approximation can be shown to be exaet when clﬁ’ constant.
(d) Bpécialize this result in the two limitige*cuses in which the
edge ¥ = ¢ is unstifiened (a,, — §) and in whic}\\it;is fixed {om = o0).

84. A uniform square plate is clamped along the edgesz =0, r = g,
end ¥ =0, and completely unrestrained along the edge y — @, and s

gubject to a uniform loading p = —pq ngrinal to its surface. If an approxi-
mate deflection ™

w = 2% ~ D) = paifiy)

is assumed, where F(y) satisfiess{he conditions S0y = f'(0) = 0 along the
edge ¥ = 0, vse equation (22300 ghow that the relevant natural boundary
conditions along the edgeigl‘% a take the form

WG + @ — apbyf(a) 0,
SO B0 + akifa) = o,

N\
. 4 "B 9 a 7
kh\f 2d‘$=_.a_, — e =_2€L
\{}“ 0 ? 6300 P17, 09" - g
and vghp_r} @ is Poisson’s ratio for t
dlf_j'f”e\repmal equation governing f(y) is obtained, from the condition

\"\’ f;ﬂ UJ“ [DV(s 1) + pole da:] &dy =0

for arbitrary 3f, in the form

where

he plate material. Show also that the

RIPW) + ot ") + kify) = —k, 2
where %, and &, are ag defined above, and

]
;Ga-_—.f ivdx:%f, _ “ __Ef"
0 P 50 R ) ed=gg



CHAPTER THREE

Difference Equations

O\
S\

3.1. Introduction. For a given function f(z),,% Mmay in

general calculate the change in the function when z,i8 drcreased by

a positive amount k. This change in f is calledthe first forward

difference of f, relative to the increment A, andxje\(;}enobed by Af(z):

Afle) = fo + 1) @ W

The corresponding differences of high,ef'b:rder are then defined by
iteration, according to the formul@s.f’{ )

AY(z) = AIAJE] = % 20) — 2f(e + B) + f), (2a)
AY(@) = AIAY ()] =z 480~ 3w +20) + 3o +h)— o), (20)

and so forth. . D

An equation whidhmay be considered as relating differences of
an unknown funghibn is known as a difference equation. Thus, for
exanaple, it i§..{82§dily verified that the relations

VG + 20 + Ay + 1) + Byla) = 9@ (32)

and ¢
N\
<\;ﬁ’2y(x) + (4 4 2y + (4 + B+ Dyl) = ¢l), (3b)

where a certain increment k is implied in (3b), ate equivalent forms
of the same linear difference equation.

The order of the equation is defined o be the difference be?ween
the largest and smallest arguments involved, in units of tl?e incre-
ment or spacing h, when the equation is writien in a form similar fo
(3a). Thus, if B = 0, equation (3a) or (3b) is of the gecond order,
It may be verified that the equation A%(z) + 2Ay(@) + y@) = o(@)

227



228 DIFFERENCE EQUATIONS {83.1

is' equivalent to the equation y(r + 2h) = ¢(2), and hence is
actually of order zers. I ¢(z) is preseribed and »{x) is to be
determined, the solution of this equation is obviously y(z) =
o{x — 2h).

A linear difference equation is one which involves no products
or nonlinear functions of the unknown function and its differences.

Suppose, for simplicity, that the coefficients A and B in (3a)
are constants, and that B = 0. If equation (3a) is satisfied fopea
particular value of 2, say z = x5, we may write

O\
yizo + 28) = ¢(za) — A y(zo + B) — B ylz). O

Bimilarly, by setting z = zo + &, we obtain the resul}}("k
y@o £ 3h) = ¢(ea + 1) — A ylzo + 20) ~ Beflzo + b)

or, making use of the preceding relation, SO ‘

y(wo + 8h) = ¢(wo + h) — A ¢(z0) — (B f~‘%:2§;(xo + k) + AB ylxo).

By repetitions of this process, it ig;t’he’n clear that the value of
y{xs 4 kh) can be obtained for any-positive integer k = 2 in terms
of prescribed values of ¢, and interms of the two arbitraridy assigned

v

values y(zo) and ylz, + k). ~8°

If we write
<\

x=\£;'+kh or k=x—hx°; 4)
so that k is dim\eﬁsion]ess distance from a reference point z,, in
units of the S,Qafping h, it follows that % then takes on the integral
values 0, 1,20 . . at the points Toy o+ hymo + 20, .. ..

In ﬂz,a\\w applications it is found that the independent variable
z tal;es'g.oon only integral values, say z = 0,1,2, ..., in the sense
t”kia:t\the function ¥(z) to be determined is defined only for integral
Yalués of the argument. In such cages it is often convenient t0
replace.a: by the symbol % to indicate more explicitly the fact that
the'vanable takes on only discrete values and is not a ‘‘continuous
variable.” ?n other cases, y(z) may be defined for all values of z
0 some continuous range, but it may be that the difference equation
governs only those values of % for whichz = 24,2 = 2o + h, . . . ,
To + kh, .. .. By using the notation of (4), we then con-
veniently place these values of x into correspondence with the
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integers 0, 1, . . . , k, . . ., so that again the difference equation
deals only with integral arguments.
Accordingly, we introduce the abbreviations

Jo=fm), fi=flwoat+h), -, fhi=flmt+kh), -, (52)
and write also
O =forr — oo AMe=frpa—2Hu+h -, (513)\

in place of (1) and (2). A constant spacing A is assumed ineath
case. ™

ra
With this notation, the linear difference equation {3hcan be

Ny
7

written in the form N
Yirs + Aatirr + Bayn = ,\\
or A2y;‘ + ax FAN /TS + bkyk = %.‘

If the values ¢o, ¢1, ¢2, and so forth, qy{fa}zown, and if the fwo
nitial values yo and ¥, of the unknownMunction y are prescribed,
it is seen that the successive values g% ys and so forth, can be
determined step by step from (6a}; as long as the coefficients Ai
and By are defined (and finite) fork = 0, 1,2, . . . . More gen-
erally, in the case of a linear difference equation of order n, of the
genersl form K

(6a,b)

Ce™yen + Ck"‘—l’yx\ﬁii"-% v GOy + CO = i, (7)
it is clear that welibay arbitrarily prescribe n initial values ys.,
Yy . . ., Yoy 200 determine the values ys, Yn+a, . . . In terms

of them, if th@\Fatios of each of the remaining coefficients in (7
to the leadz'@“\cﬁeﬂicient (.= are defined (and finite) for k& = 0, 1, 2,
. ¥ These ratios are finite and Cx® % 0 for 0 = k £ K, the
geﬂeral;:sfilution of the difference equation over that range involves
2 m{y' n arbitrary constants. The specified eonditions, which serve
t&eterminc these constants, need not preseribe the 7 initial values
directly, but may be expressed in various other ways, as will be geen.
To illustrate the solution of a difference equation, we may con-
sider the problem of determining the solution of the equation

Yerlr — T Y = 1 {k = 0), (8a)
where r is a constant, with the initial condition
Yo = 1. (Sb)
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By setting % successively equal to 0, 1, and 2, there follows casily
n=1l4+rnp=14+r+r" and y3=1+r + 724+ r* Induc-
tive reasoning then leads, in this case, to an explicit form for y,,

ye=1l+rtrid - 4ok (9)

While this form is explicit, it is not ¢losed, since omitted terms are
necessarily indicated by dots unless  is specified. However, sihce
the terms in (9) form a ““geometric progression,” a closed form is
obtained by recalling a result of elementary algebra. "ThisJesult
may be rederived here by noticing that (9} also satisfieg the relation
Yirr — Y = rLoand by eliminating g, between this relation
and equation (8a) to give \\

1 — gl \
A = ot 0

When r = 1, it is obvious that y; = h‘-i,-}

Whether or not an explicit formy or a closed form, can be
obtained for  in other cases, T always possible to determine
suceessive values of y step lgy: step (when the coefficients of the
governing equation are suﬁiciéﬁﬂy well behaved). In Sections 3.4
to 3.11, we consider ceft#in important cases in which explicit
solutions ean he obtaixed, whereas in the remainder of the chapter
we indicate in whab ways the possibility of step-by-step solution
of difference equatiens leads to techniques for obtaining approzi-
male solutiondb6/certain problems governed by ordinary or partial
differential ggirations.

Beforé proceeding to these matters, however, it is desirable to
Introdice’ certain operational notations and indicate other related
aPp\li@ations, and (Section 3.3) to illustrate typical problems which
-ate.conveniently formulated in terms of difference equation.

' 3.2. Difference operatoxs. In addition to the forward differ-
ence operator A, defined by

Afy = forn — fx, (11a)

there are conventionally defined also the backward difference oper-
ator V, defined by

V= fi — fis, (11b)
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and the central difference operator 8, defined by

8 fr = ferss — fuose (11c)
To this list we may add the shifting operator E, defined by
E fi = fin, (12)
and the differential operator D, defined by A
pi= (). R
In all eases except (13), the spacing k is implied. (JP‘ N

It is readily verified that all these operators satisfy/fhe commu-
tative and distributive laws of ordinary real numbbrs We say
that two operators are equal when both give the\site result when
applied to any function for which both operét'xons are defined.
With this understanding, it follows immediately that

A=E—1r V=1—E'1=ETE—:1: 5=E$6_E_}§;
A\ ) (14a,b,c)
where, for example, E-V, j;‘_’l' and EYf; = fip. Other useful
relatlons are of the form ~~\
A=pEis=Ev, 5\= ESY = BHA, V= E#i=EA
{ ’:' (15,a,b,e)
AN/
N
\O° VA = AV = (16)

For any\fllnctlon f(z) which is regular at x = = {in particular,

for 3U\Y\P03ynomml) the Taylor series expansion

and

\f(x" + h) = flz:) + 1 f (@) + - mf(“)(iv“k) + e

can then be written in the symbolic form

h D)y
B, - [1+ hD +(hD) 4. +Lﬁ!_)_+...]fk (7

Or, more briefly,
E f;‘ = ehD fk-
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Hence, we are led to the curious and useful operational relation
E = e, (18}

which is merely & symbolic way of writing (17). By making use of
(14a,b,c), we may then express the operators A, ¥V, and §in terms
of the differential operator D,

In particular, since (18) implies that h D = log E, reference to

(14a) gives the formal operational relation N\
AD=log(1+ A) = A — AT+ 3A* — - - - Oy (19)
. which is equivalent to the relation A O
g N

1 1., 1, .0
_)H‘t = E(Af" 5Ltz A fkix . ) (20)

Thus we obtain a formula for the first derivative of a function at
2 point, in terms of its forward difference At that point, assuming
appropriate convergence. Similar fqnﬁulas are obtainable in terms
of backward differences and central differences. Further, it is
possible to generate (by analogoﬁlg" methods) formulas for numer-
ical interpolation, extrapolatiow, and integration, by the use of
differences, N

In the present worlywe will not be concerned with these last
topies, which were .msﬁ.t}ioned here only to indicate the scope of an
important phase gf‘ghe caleulus of finite differences.* 1In so far as
the operator D i§ oncerned, it is sufficient for present purposes to
notice that, frefthe definition of the derivative, the guaniities AJi/h,
¥ fx/k, a3 fi/h each tend to D f, as h tends fo zero and are, in
gener%l\:a}vaﬂable as approximations to the derivative of f(x) at
T w};eﬁx h is sufficiently small, Similarly, the quaniities A™fi/h%
fok/ B*, and &f./h» each approzimate arf/dz at ® = zx for small

'“*zz;alues of h.

The operators A, &, and E are to be used principally in the
remainder of this chapter, although reference will oceasionally be
made to the operator V. The relation (14a) is particularly useful,

for example, in transforming one of the forms {6a,b) to the other.
Thus, (62) may be written in the form

(B? + ALE 4 By = ¢,

* Bee References 1 and 2.
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and may be transformed to (6b) by replacing E by A + 1,
A + 12+ AdA + 1) + Bilyr = ¢,

and performing the indicated algebraic operations.

3.3. Formulation of difference equations. To illustrate
the oecurrence of difference eguations in practice, we consider first
the problem of determining small deflections of a tightly stretched

Y N
f fice ¢\ )\
} £\
fk_! [ N \v/
7
T .4}:/ “d)K*I“\\
// "‘wk
\EDK-I x.\\,,‘
,”,\ v
"\ “yk*l
Y 0N
yk—] R K : -
a2 D X
> ¥ Xk Akl
PN
N Fieure 3.1

&
string, dug%fo“é number of concentrated forees f; applied at equa]l_y
SPaCEd,pﬁints 13 along the string, We agsume fhat the string 18
under arge uniform tension 7, and that the slope of each segment
of\the deflected string is small. The weight of the string is neg-
lected. With the notation of Figure 8.1, the deflections ¥x and
Yks1 ab successive points of load applieation differ by

Yep1 — Y = h tan ¢ (21)

where } is the horizontal spacing. Also, for force equilibrium 8t
(@, y2) we must have the relation

T{sin ¢, — sin 1) + f = 0. (22)
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For small slope angles, we may identify the tangent and sine to g
first approximation. Hence the introduction of (21} into (22)
leads to the equation

%’[(?,’Hl ) — e — )]+ =0

)
or Yot — 20 + g = — %fk- (23)

This relation is a linear difference equation of secoddvorder,
with constant coefficients, for the determination of the ddéfloctions
at the points of force application. We may (:()Ilsi"dt?l"}‘fc as repre-
senting dimensionless distance along the horizontr{aixis, in units of
the physical spacing h.  Tf there are N massed s that the length
of the string is L = (¥ + 1}k, and if the twosdiids are lixed to the
#-axis, with one end at the origin, then the faded points are denoted

byk=1,2 .., » ¥ Thus (23) is w}m ouly for those values
of k. The end conditions O

Yo=0, {¥wn =0 @4
complete the formulation of thé' }Sroblem.
Onr_:e the deflections of“the loaded points are determined, the
deflections of intermeglgat} points are determined by the lincarity
of the deflection cur¥e\beétween loaded points.

W.hile {23) is perbaps the most convenient, form of the governing
equation, we notite that the forms

B h h
0%y =\'—¥1‘1fk, Aty = — Tfk—l—ls Vi = — Tfk—l (25a,b,c)
are euivalent statements of the basic condition, Equation (25a)
c,ap"be written also in the form

\ }

P PV@) _ f)
If we let the spacing % tend to zero, so that the discrete loading

tends to become continuous, the ratio f(z,) /1 tends toward the linear

Intensity of a distributed

(26)
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well-known differential equation

Ld%y
R 100

which governs the case of a distributed load.

In other problems the additional conditions supplementing the
difference cquation may be in the form of éndtéal conditions {as
will be seen) in place of boundary (end) conditions. Further, the™\
coefficients in the difference equation may depend upon £, as wau]d
be the case in the preceding analysis if the assumption of e}:[ual
tensions in the several segments were abandoned. Fmally, noN-
linear equations may be obtained, as in the case when, }Targe deflec-
tions of the string are considered, so that the sines a@é ‘tangents of
the slope angles cannot be equated.

As an example of a formulation of a d,lﬁeqmt nature, we con-

sider the evaluation of the integral R
™ cos k8 —(008 ko

_ cos kf —(CoS £¢ ., 27

Ik(¢) ’/’0 COs 9’.'— cos ¢ ( )

where [ is zero or a positive 1n$egel For k& = 0 and 1, the inte-
gration is readily carried oump. = We next attempt to det(,rmme &
linear combination of, say, {kﬂ, I, and f_, which can be integrated

in a simple way. Cox\&épondmg to the combination

SOA Tws + BIi 4 C Ly
PN

we find that
A cos (k 4\1)43 "+ B cos k8 + € cos (k — 1)8
— [(A + C) cos § + B)] cos k6 — (4 — ) sin 8] sin ké,
hl& tombmatlon will eontain cos § — cos & the denominator in
(27, as a factor if we take
A=C, B=-24c:s¢ (28)
e the operator

(29)

Thus, if we set 4 = 1, for convenience, and defin

[ = E—2cos ¢+ E

* This integral is of importance, for example, in the Prandtl “lifting line

theory of acrodynamies.
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there follows
L cos k9 = 2(cos # — cos ¢) cos ké,
and also we are fortunate in that
Lcos k¢ = 2{cos ¢ — cos ¢) cos ko =
Hence, if we apply the operator L to (27), there follows

LI =2 " {cos @ — cos ¢) cos k6 — O

ae O
o cos 8 — cos ¢

N
A\

2f‘cosk6d9=0 (k=12 ,)\
B

&

Thus the integral (27) satisfies the linear dlfferencc equatlcn
Lyi~2Licos ¢+ s =0 (K3 ) (30)
This equation can be treated as a recurrence i@ﬂula, {o deduce that
I; =25, co8 ¢ -—IE
Iy=2Isc08 ¢ — 1 = (4 cggf{q:"—— DI, ~— 21, cos &,

and so forth, by seiting % succeis%‘i{;ely equal to 1, 2, .
But the initial values T o and I are easily obtained, in the form

gfn\'= 0, I.=m (31)

Henece we see that th\:hfference equation (30), and the initial con-
ditions (31), serye to determine the value of (27) for any positive
integral value(of %, by step-by- -step caleulation. However, it is
clearly dESlT\&'}}le to Solve this problem explicitly; that is, to obtain
a general\expression for I; which is valid for all positive integral
values of
A ‘he foliowmg sections we consider the problem of finding
suoh explicit solutions in those cases when the equation to be solved
is'linear, with constant coefficients. It will be shown that for the
homogeneous equation {with right-hand member zero), an explicit
solution can always be obfained in closed form, in terms of ele-
mentary functions. The same is true of the nonhomegeneous equa-
tion if the right-band memsber is of one of several frequently oceur-
ring general types. In other cases, the explicit solution can be
obtained in terms of finéte sums which may or may not be expressible
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in closed form, in terms of elementary functions. In particular,
golutions will be obtained for the problems formulated in the
present section.

3.4, Homogeneous linear difference equations with con-
stant coeflicients. We consider first the general homogeneous
equation of order », and write it, for convenience, in the form -

Yoow + A e+ 00 A + Aun =0, (32)
where the A’y are assumed to be constants, and 4, = 0. With tl:te '
use of the operator K, (\A

Eyr = yrry, X L:\ '
defined in Section 3.2, equation (32) becomes ..'(”}"

Bry 4+ A B Yy + - 0 A AnalB e A,‘y;ff =0. (32a)
If we further define the finear difference operator )

L= B vt 4 - - +m._1E + A 33)
equation (32) or (32a) can be written i}:f the abbreviated form
Ly =d “ (34)

As in the ease of the analogous differential equations, it may
be expected that (32) will poksess solutions of the exponential form
¢*, where 7 is a suitablf thosen constant. However, here it ig
us_ually more convenjerth to write @ = ¢, and to attempt to deter-
mine solutions of thé lbrm

% " = B (35)
Trom the resultgy”
N E g = g+ = B8, )
’,’;.' Bt = gpYy, - - -, EvfF= Am(8%),

. 4 ~\‘ 3
. {81}@“’5 that the resuit of the operation L 8¢ will be merejly a
18ar combination of constant multiples of itself, the coeﬂ‘im.ents
bemg. independent of k. In fact, with the notation of (33), direct
Substitution shows that
L§ = (g + At 4 - - - + Ao T A0S GD

Hence 4, = 85 will satisfy (32) if 8 is a root of the determinantal
€quation

Bﬂ + Alﬁﬂ_l + et + An—-l-B + Aﬂ = 0. (38)
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Suppose first that the n roots of (38), say 8 = By, Bs, . . . , B,
are all real and distinet, Zero roots are excluded by the condition
A, # 0, which insures that (32) be indeed of order 2. Then, from
the homogeneity and linearity of (32), it follows that any linear com-

hination of the solutions 8%, 84%, . . ., 8.* will also be a solution.
That is, any expression of the form
y = cllﬁlk + Czﬁzk + e + cnﬁnk (33)

then satisfies (32}, for arbitrary values of the n constants of,_com-
bination. As in the case of analogous differential equatip‘u’s}"ﬁ can
be shown that sinee (32) is of order n, and linear, and ‘since (39)
involves n independent arbitrary constants, (39) repre§etifs the most
general sotution of (32).* m%{'
In some special cases solutions of the forme/* are more con-
venient, By writing O
N\

Bm = g""‘, T = ];ngﬁm, (40)
the general solution (39} then ta,kes't}:{e form
Yo = cie® 4 e} - - gk (41)

in those cases when the n roatsiof (38) are distinct.

We remark that the difference equation need not be written in
the specific form (32) ¢hefore the substitution {35) iz made. In
any case, direct subbtitution will lead to the equation which plays
the role of (38) in determining permissible values of 5. The possible
presence of zepo’\i:oéts, in such cases, indieates merely that the order
of the diffepehee equation is then smaller than the degree of the
determinafital equation so obtained. Thus, while the equation
Yirz —&em = O is actually of the first order, the assumption (35)
leadstbe the extranecus root 8 = 0, in addition to the relevant root

13\'_":\’1 corresponding to the obvicus gencral selution ¥ = constant.
3

Exampir 1. For the equation
Yiyz — Bpryr + Byr = 0,
the assumption y. = g% leads to the requiremnent
(@ — 563 + 6)8* = 0,

* Mon? speciﬁf:a.]ly, the constants in {39} can be determined in such & way
that (39) is identified with any solution of (32) for all relevant tntegral values
of & The case when  is a confinusus variable ig treated in Problem 16.
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from which there follows 8 = 2, 3. Hence, the general solution is of the form
ye = ¢12% + 2 3%
Txavrire 2. For the equation
yher — 2y cosh a + 41 = 0,
where e {4 a constant, the nssumption g = % is found to be more convenient.
We thus obtain the requirement
{er — 2cosh & -+ eT)e* =0,

from which there follows cosh r = cosh o, and hence r = ta. The ggr\qu
solution can then be written in the form 7\

N/
Y = e b e or g = €1 cosh ek + € sinh a-’fa.}‘

Suppose that 8 = B, is a real double root of (3§X<:There then
follows \Y;

L= (8~8)4B—8) " {g; "Ba)B".

Hence, in this case, we have not only,@lﬁ")a;s, = L pf =0, bub
also s

"
a X

d a v‘
gyl =Ll 2@ = Lo = 0.
[aﬁ( p )]smal L [?5@” L=ﬁl (k8 ")o-s

Thus a second solution, cim:;iJlementing the known solution B4%, can
be taken as & 84—1 orSdiite §; is a constant, as k 8i*. More gen-
erally, it is readily sftown that the part of the solution corresponding

to an m-fold root (s given by
U= Bit(er + ook A+ - o ek (42)

EXAMP{‘ﬁ%?w.ThE difference cquation
o A~ BAy + 25 =0
N}“&d by use of (14a) to the form
Yrps — Syrea + 4 = O
The determinantal equation for § is found to be
(8 + (g —2)* =9,

from which there follows § = —1, 2, 2. Hence the general golution can be
taken in the form
yr = ey —1)F 4 2¥(es -+ cskh
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Finally, if the part of the solution corresponding to a pair of
conjugate complex roots

Bi=a+1b, Bi=a—1b (43)
is written in the form
o = Ala + by + Bla — i b)*
= A(p 6 + B(p o), A

where (p, ¢) comprise the polar coordinates of the point (@)
.~\ o

p = ‘\/l‘f F 52, ¢ = tan—! g, ”:}‘\,,a (44)
there follows also . mj\ 4
CYe = pH(A ' + B gie\V
A
Hence, by writing ¢; = 4 + B and ¢, = &4 — B), the part of the

solution corresponding to the roots (43 ean be expressed in the real
form W

e = g*cs cos,a;},f}}ﬂ—i— ¢a 5in k), (45)
where p and ¢ are defined byw@f-li It is seen that the angle ¢ can

be taken as any angle for, which cos ¢ = a/p. Multiple complex
roots are treated in ar, 6bvious way,

ExamrLe 4. For bl{é\éq'ua.tion
...:.,,: Wotr — 2yk -f— 2yg_1 = 0,

A</
the assumptip{a B = B% leads to the condition
£\ 2
x“; —_ 2 Z = 2 -
\'\\ @ + & 0 or p 28+2 =0,
from’“ﬁchich there follows g = 1 =+ 4,
) ”{ﬁ'd}lience (43) gives the solution

\ }

From (44} we obtain p = V2 6 =x/b
L .k
Yp = 22 (c1 cos —; 4+ ¢z sin —IW :
EXaMPLE 5. For the squation
Yee1 — 2y co8 o + Yeur =0,
the assumption ¥u = % leads to the requirement

B =cosm * isin @,
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from which there follows p =1 and ¢ = e Thus (45) gives the general

solution
yr = C1 608 ak -+ ¢z 8D ak,

From Examples 2 and 5, we deduce that the solution of the
differcnce equation

yre1 = 2A g + ypa = 0, (46)
“where A js u real constant, is of the form A
¥ = €10 + ee™*  or gy = Cicosh ok + (s sinh ok A o
where A = cosh a (4 >1), ‘jE 4
and also PR ‘
yi = €1 cos ak -+ ¢z sin ok '\\ (47h)
where A=cosa (4] 1)’-\;
In a similar way, when 4 < —1,it is founlixﬁhat the solution is of
the form N\
Yi = (_1)"[016:’:]?3}: Bae—o]
or e = (—1HC1 cQs.Efdh—l— (', sinh ok (47¢)
Where A= — ({Q“gha (A < —1).
In the intermediate ca@@};&.’e find the solutions
Swl=eatok (A=D1 (47d)
and \Qﬂ\; (—1)4es + k) (4 = —1). (47e)

Y . .
Equaﬁ‘&s“ ‘of the form (46) occur rather irequently in practice.
We “%?ft%at (46) can be written in the equivalent forms
O
\\. N Yirr — 20 + Yo = 2(4 — Dy, }’ (46')
8y + 2(1 — A)ye = 0

and hence is analogous to a differentzal equation of the form

LYy =0,

Where tho constant A corresponds to 2(1 — A) /.
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In illustration, we have seen in the preceding section that the
integral

Ii(s) = ﬁ "’%HZ:%?M 48)

satisfies the difference equation
Iy~ 2Lccos ¢ + Ly = 0 (k 2 1), (49)
with the initial conditions QO
=0, ©L=n <0

 From (46) and (47h), it follows that T, must be of the genéral form

Ii(¢) = c1c0s k¢ + c2 sin k. m'\”(.’
The initial conditions give \4
¢ =0, €2 8in ¢

and hence there follows ANV

" cos k8 — cos kd gin k¢
— 8y = o P 51
_ﬂ cos&—cqs&;ﬁ 1rsmqi- (61)
for any nonnegative integral value of .
3.5. Particular solul;iéns of nonhomogeneous linear equa-

tions. The general {{ﬁtjon of a nonhomogereous linear equation
of the form

N\

Ly = v dBipns + - -+ A + Aoy = & (52)

ean be expljp\s'.%d’ a5 the sum

\\ Yo = Yl 4 gy, (53)
thrgfﬁ}z‘”) 13 the general solution of the homogeneous equation
" \Y;
V Lysm = q, (54)

and %" is any particular solution of (52). The coefficients may,
of course, be functions of the argument %,

In those eases when (52) has conslant coefficienis, a method of
“undetermined coefficientg similar to that applied in the solution
of analogous differential equations can be used when the right-hand
member ¢ is & linear combination of terms each having one of
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the forms
a* or %, sinck, cosck, k? (p=0,1,2, -4, (55

or of products of such forms.

Terms of the form a® or e#*, where ¢ and b may have any constant
values, have the property that the op}crator E= merely multiplies
each such function of k by a constant which is independent of £,

That is, we have the relations ~
Emgt = (am)a*, Emeht = (gbm) ek, K :(56)

For terms of the form cos ¢k and sin ck, there follows S

En cos ek = cos c(k + m) O

= {cos em) cos ¢k — (sin c.'.»ﬁ);}in ck, 57)
Ergin ¢k = sin ek + m) _ AN

= (sin em) cos chedN(cos om) sin ek
Hence, the result of operating on cgs €% or sin ¢k by any power of
E can be expressed as a linear combination of cos ck and sin ok,

the constants of combination ‘bé.fn’g independent of k. Finally, for
a term %7, where p is a positive integer (or zero), there follows

Evkp — (b + m)» = fr @pmie + - - - + pm—ik +mr. (58)
€

Hence, if p is a nohpegative integer, the resul of operating on &7
by any power of & ¢an be expressed as a linear combination of the

terms ke, kp—'l,,\:,'_ Lk L '
Thus,  we“may speak of the ‘“families” {a*}, feb*l, .{sm ck,
£os f’k}:.an\i"{kﬂ, k71 ...  k, 1} where p is a nonnegative integer,

in the sarise that the family of a term fi is defined to be the set of
all funetions of whieh fi and all operations Enf; are linear com-
binations, Only the functions listed in (55), and products or
linear combinations of such functions or products, have finile
families. 1t is easily shown that the family of the product e
consists of all possible products, in cach of which one and only one
member of each of the families of f; and gs appears. )

The method of undetermined coefficients, for obtaining a partu.:ular
solution of g linear difference equation with constani coeflicients,
corresponding to a right-hand term fi with a finile family, is to be
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applied after the general solution of the associated homogeneous
equation has been obtained. The procedure may be outlined as
follows:

1. Construct the family of that term.

2. If that family has no representatives in the homogeneous
solution, assume ¥, as a lincar combination of the members of
that family, and determine the constants of combination in such a
way that the difference equation is identically satisfied. ~

3. If that family has a representative in the homogendous
solution, multiply each member of the family by the ‘shallest
integral power of & for which all such representatives ui;éz\rmhuved,
and assume as a particular solution a linear comlghi’:-;tiou of the
members of the modified family, 4D

Proof that this procedure always succeeds in"t}yg cases deseribed
is lengthy, and is omitted. However, it can™be shown that if the
family of f; possesses n members, the requitement, that the assumed
form reduce the left-hand member identiéﬁlly to fi leads always to a
set of n linear algebraic equations in‘;uhé n unknown constants of
combination, and that this set of, equations always possesscs a
solution. N

As an example, we consider, the equation

Yey1 :(éyk + 2y =1 + at, (59)
Q)

where g is 3 constant,\ The homogeneous solution is found to be
\ Y = e + ¢, 25 (0]
Bince g 'ﬁa‘is & homo

solution\\in the form
i “ ¥ = Ak + B g (60L;
4 ~\" ¢

\”Sybstitution into

geneous solution, we assume a particular

(59) leads to the requirement
2
-A+(a-—3+—&)8a"zl—|—a",
from which there follows

A= 1

El

- a
(@~ Tj{a =3y
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if @ 1 or 2. Thus, with this stipulation, the required solution
1 = ¥ + '™ takes the form
a?c+1

Y = €1 + C22k —k + (aﬁl)(a — 2)‘

(61)
The two exceptional cases, in which (60b) involves a member of
{60a), must be treated separately.

Certain other procedures, applicable to the determination o
particular solutions of linear differeniial equations, can also \De
translated to analogous procedures for dealing with différesice
equations. In such cases, the process of integration transighes into
a process of summation, the sums involving only a finibe number
of terms. In certain cases, these sums can then bqtex;iressed in

elosed form. ‘~~,'\\
As the simplest example, we consider the ahaldgy to the differ-
ential equation dy/dr = f(z), N
Ay =fr O Y B Fe (62)

If we write .
.\

Ho =G

¢

equation (62) gives SUCCESS'IVB’I:Y}.:'
=t fo ve=q®fotfy v =ctfithitsy
and hence, by induct@,“ 4

A\ E—1 k
‘@{:c_i_ Zfﬂzc-i‘ z_fn—l- (63)
> r=0 n=1
"\n
The arbitrd®y constant ¢ is seen to be the peneral homogeneous
solution #£(62), corresponding to fr = 0. .. i
If 'Wé hotice that a change in the lower limif of the summ‘atxon
can be compensated by & change in ¢, it follows that a particular
Solyition of the equation )
Ayr = fr (64)
is given by ye = ZF faory (%
where we adopt the convention that the symbol 2k indicafes summa-

ton with respect fo the relevant dunvmy pariable [denoted by n in

(65)] from an arbitrarily fived integral lower limit o the variable wpper
limit k.



246 DIFFERENCE EQUATIONS [§3.5

We next indicate the application of the method of ““varistion
of parameters” to the solution of linear difference equations, follow-
ing a procedure analogous to that used in dealing with differential
equations,

In the case of the general linear difference equation of the first
order,

Lyr = Yot + Ay = ¢y, (66)
where A may be a function of %, we suppose that the genet@l
homogeneous solution O\

W =cw N A67)
has heen obtained, so that (‘f.’;'

Lue =0 O S (88)
and ¢ is an arbitrary constant. We then attemplivo find a solution
of (66) in the form RN

ye = Com, (O (69)

where Cs is now an unknown function 8%, to be determined.
For the determination of C, we fixst notice that from (69) there
follows o\

Yirt = Crpttings = Opbtey, + (Crpr — Co) g

and hence, with the usua&@bbrevia,tion

ne
OAC = Crn — Gy, (70)
we may write also A\
\!}k+1 = Cittirr + s ACh (71}

This artiﬁcq'géfédé to a simple method of determining ;. For the
introductﬁgx.of (69) into (66) then leads to the condition
.j':’; Celurs + 4 we) + uppr AC; = P (72)
N
i%;ﬁ;fhich the coefficient of € vanishes in virtue of (68). Thus,
Y will satisfy (66) if ¢ is determined in such a way that

AC, = -, (73)
U4
or, in accordance with (64) and (65),
Cp = 3 En1, (74)

b g
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For any conveniently fixed lower limit of summation, the intro-
duction of (74) into (69) then gives a particular solution of (66),

$ny

1" =y Th—— (75)
which may be added to {67} to give the complete solution.
ExaMprE 6.  For the equation
N

Yeor — Eyr = k! (b = 1),
& homogeneous solution is found (by induction or by inspection) in th.e'for.ﬁa'

B = ek — 1) = ¢ un y W

%

Hence (75) gives a particular solution 70\

wl = k-—l)lz ("‘B} —k(k—l)*=k|

{2
and the general solution can be taken in the form\

ye = k! + e(k — 1) :w{k z1)

where ¢ is an arbitrary constant. K .’:

In the case of the genera,l Ilnear difference eqguation of second
order,

Ly, = ym.\ + A Yo + Bye = i (76)

We suppose again th&t\\the general homogeneous solution has been
obtained in the forfn
2O = oy A+ ooty (77

I
where ¢, and.©; are arbitrary constants, and assume a golution to

(76} in thg\‘orm
™y Yr = CeVuy + Cr®ug, (78)
o .
Q@,IE"CJ&“’ and (. are functions of k to be determined. By pro-
eding as in the fransition from (69) to (71), we find that

Yerr = iy + Ci®vpqr + [tiers ACEY T e AC®] (79

As the first of two conditions needed to determine both Ci
and C?, we require that the bracketed expression in (79) vanish,
and hence arbitrarily impose the condition

2R ACEY 4 v ACE = 0. (80)
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There then follows

Yerr = Ciuppy + C®Puyy, (81)
and hence also

tere = Cellupys + CiePvpis + gy ACLY 4+ Ve ACHD. (82)

If (78), (81), and (82) are introduced into (76), and use is made
of the fact that w; and v satisfy the homogeneous equation 438Q-
ciated with (76}, the second condition complementing (80) is readily
obtained in the form ¢\

N\ ©
Uy ACH 4 Vggo ACED = P A\ M (83)

Equations (80) and (83) permit the determinationwol AC:" and
AC in terms of known quantities, after which® €V and €@
are determined by summation. The generalsolution of (76) is
then obtained by adding (78) to (77). />

L

Examrre 7. We consider the equation N )

et — Zpmeos a +yyefi (kz 1),

nacticing that, when this equation is wri'tf:én in the “standard form'’ (76), there

follows ¢x = fi,). The general hofageneous solution is 4@ = ey + covy,
where ~N

Uk = €08 ka, e = sin ke,

¢(\J
fleosal <1,in aceord‘n@ce with (47b). If we assume a particular solution
in the form X

.\' ‘ Yl = (g + Oy,

equations (80) Sa3'83) take the form
’\oNC'éﬂ (k + l}aI ACW + [Sill & + l)a] A = 0)
“\.ff'o leos (& + 2)a] A [sin (& + 2}a] AC® = fi.

NN/ .
gl;.:zdet.ermmant of the coefficients reduces to sin &, and the solution by defermi-
nans gives

o _frnmsin (B +1 108 1
ACHD = — —-'i-?u.ﬁx._k‘, ACHD = +fk+1 (‘Osin(ka'}' Ja,

There then follows, by summation,

k . &
G = 2 5 8N fir o = 1 z fr 008 mo
= sina = Sin o
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and the general solution of the given equation takes the form
u v 8in n k 1
" £ . n .
yp = — 08 Ko E —-r——— 4 sin ka E, M + £ cos ke + €z Ain ke,
e St o g 21N

After an obvious reduction, this solution becomes

e = zfn sin (5 — n)a + ¢1 ¢08 ka 4 ¢z 5in ha.

sin e

We notice that this solution is valid only when sin @ # 0, that is, when ths
coefficient cos « in the given difference equation is numerically smaller tl\am
unity, as is required by equation (47b}. 2N

The extension of the above procedure to the trcatmen‘(j of linear
equations of higher order is completely analogous to thg correspond—
ing extension in the case of differential equationsa o\

3.6. The loaded string. To illustrate the “basic types of
problems involving linear difference equatx&hs, we take as our
maodel the tightly stretched string (Flgure 3\2} loaded at N equally

Y .
f '
Al f
&
< A o
S e N O P
Py X Xz 1 Xy
7 \W
N\ Figunre 3.2
spaced \potnts z, = kh (k= 1, 2, , N) by forces fi, and

aftﬁcﬁﬁd to the r-axis at the pomts Ty = 0 and @xp = (N + Dk
KL In Section 3.3, it was shown that for small deflections ¥z
the problem is gov uned by the difference equation

0% = Yy — 24+ Pra = —f" 1£k= N, 84)

where A is the horizontal spacing and T the tension (assumed to be

constant), and by the end conditions

w="0  yxn=0. (852,b)
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As a first example, we suppose that ¥ beads of equal mass M
are attached to the string, at the points x;, and that the string
hangs under the action of gravity. Assuming always that the mass
of the string itself is relatively negligible, we then have

Jx = — My, {86)
so that (84) becomes
Mgh -
Yesr — 206 + Yoo1 = i—if— (87,
The general homogeneous sotution of (87) is of the form \\\
. N
yk(ﬂ) = “'+" 62;3 ”"} Mt (88)

Accordingly, the method of undetermined coeﬂi{:len‘r@ leadb to the
assumption

Y = Ak v (89)

A \/
o . oy "
and substitution of this expression into (87} mives the condition
_ Mgk NV
A= 2 T (90)
Hence the general solution of (8?) b of the form
Mgk
Y = \2% k2 + c1 + ek, (91)
The end conditions (85@\10) then give
M,
=0, o= = My ) ©2)

and (91) be:@qmes

AV
SO Mg Mok gy
AN
Oi‘ﬁnﬁlly,
¥ = — M"hk(N+1~k) O=k=N+1). (93

If we notice that z, = kh and L = (N + 1)A, this result can
be written also in the form

Yz = — Mg
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Hence the segments of the deflected string are chords of the parabola

_ Mg
y = = gy ol — 2). (95)
In the limiting case as k — 0, we may replace Mg/h by the linear
intensity p of a load uniformly distributed in the horizontal direc-

tion, and the well-known parabolic form

R _ N\
Yy = sz(L z)

is obtained. )

As a second example, we suppose that the string, ,wlth beads
attached, is rotating about the z-axis with uniform a,ngufar velocity
@, the mass of the string itself again being neglet{&d Then f is
to be replaced in {84) by the inertia force

= szyk, ,"\\': (96)
50 that (84) takes the form \ ;
Yip1 — 2 (1 - Iid;;h) ¥ + 41 = 0. o7

We stipulate first that phe'é*:pf'sed of rotation is sufficiently small

that §
m> 3
Lo MeRS ﬂf_‘ff_h <1 (98)

The coefficient Qf ’2yk in (97) is then less than unity in absolute
value, and \ve\may introduce the abbreviation

\w~ 1 Mah (99)

22T = eo8 a.

27

Thegeneml solution of (97), with the notation of (99), is then given
by (47b) in the form

yx = ¢ cos ak + ¢z sin ak. (100)

The end condition y, = 0 requires that

¢ = 0, (101)

0 leads to the condition
(102)

while the second end condition y¥x1 =
e sin alN + 1) = 0.
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Unless « has a value for which sin a(N + 1) = 0, the only solution
of (102} is ¢, = 0, in which case (100) reduces to the frivial solution
% = 0, and no deflection can exist.

However, if it happens that

alN+ 1) =nr n=1,23, -, {103)
equation (102) is then satisfied identically, and ¢, is arbitrary.
That is, if we write ~

nr (10
oy = N¥1 n=1223, - 3, .\’.\“:{.10—1)

we conclude that no deflection oceurs unless a = an, 1L\ which case
the present linearized theory gives only the shape of she correspond-
ing deflection curve y,, specified by the ordjnates“j\‘

_ . nrk _ N
Ynk = CnS].ﬂ N—'F—l (]{? = 0, 1,{\\' R N + 1)’ (105)

where C, is undetermined. Since N azn’glx\k are integral, it is seen
that the values n = 1,23 ..., Nead to ol possible distinct
deflection modes. All other integral Walues of n lead either to 76
deflection (n =0, ¥ & L, 2N 8%, . . ) or to deflection modes
identical with those just listed®

If we denote the valye \df w corresponding to a, by w., equation

(99) gives O
~ 9
‘ \} - M;}““ = CO8 a,
or \":"‘
: (%" or
et = 7 (1 — cos a,) = % gin? %‘- (1006)

O\
Hence,zu&g (104), we obtain the critical speeds w, in the form

N\

7 T .

The number N of distinct critical speeds and deflection modes is
seen to be equal to the number of distinet masses present.

With & = 24/h and ¥ + 1 = L/k, equations (107) and {(105)
can be written in the form

[T . nwh
Wy, = 2 mﬁﬂl% (‘n=1,2"°',

e

—_ 1) {108a)



3.6] DIFFERENCE EQUATIONS 253

and Yulaw) = C. sin @Lﬂ‘ (108b}

In the limiting case when h — 0, if we write p = 3 /b, we have

. 2T . nrh  wm [T
Wy = L]_l"fé E\/; Slﬂﬁ = f\/;: (109)

where is o limiting uniform mass density. The number of relevant
values of » in (108a) increases without limit as A — 0,inaccordang@\
with the fact that a rotating string of uniform mass density posgesses
an infinite set of critical speeds. 2™
From (108b) we see that the segments of the string iIfx’r)m nth
deflection mode are chords of the curve representing < N\

z? ’\'.
y=C sin'ﬂi’ﬁ: ’\

and that there are exactly N distinet deﬂée%ion modes of this
type, each corresponding to one of the M eritical values of « given
by (107).

If we write \¢

),’“
o

" v
QT

(110)

~

we conclude that the problém which consists of the linear homo-
geneous difference eq;la\ﬁl:@ﬂ

\ e + Ay = 0 (111a)
and the homoggzi}éé&é boundary conditions
\\ yo=0, ma =0 (111b)
determé@ég\ﬁ; characteristic values of the guantity A,
\\:\ An = 4 sin? WHTTI_) (n=1,2" - -,N) (1l
and N corresponding characteristic funciions
G = sin L’f—l =12, N (11d)

We have supposed that the speed w is such that thg irfle_(lua]ity
(98) is satisfied, that is, that A < 4. The characteristic values
(111c) are in sccordance with this assumption. [If we assume that
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{(98) is not satisfied, so that X = 4, the general solution of (111a)
can be expressed by {47¢) in the form

g = (= 1)¥ere® + o
when A > 4, where « is a real constant defined by

cosh e = 1 4+ (3% — 4),
and is of the form N\
yi = (—1)*(c1 + cok) O\
e\
when X = 4. In either case it is readily verified that™“the end
conditions {111b) can be satisfied only if ¢; = ¢; =8, &nd hence
= 0. That is, there are no real characterigtic\ ¥alues of X in
addition to those given by (11ic). N4
As a third ezample, we suppose again thap N beads of equal
mass M are attached to a stretehed styj{@}wvith negligible muss,
and study possible free vibrations of thé\gystem in a plane. That
is, we suppose that no physiesl extprrlai foree acts on the system,
but that the separate beads are ga:c}i"given certain initial displace-
ments and velocities in & plane ,afrt;ﬁe time ¢ = 0, and we investigate
the motion of the system at_alMollowing times.
In order to obtain the £gliations of motion, we may replace the
force f in equation (84X Py the inertia force — M A%y /812, so that
" {84) becomes \
Mh 3%y

LU Yk 12
T off (112)

'.’\N?ﬁcﬂ = 2+ Yoy =
We first seelythe natural modes of free vibration, in each of which all

th(? beadsare vibrating in phase with a common frequency, and
writefor the kth bead,
AL

<\3 . Yo = A cos {wt + @) (113)
“There B is a constant phase angle, and A, is the amplitude asso-
clated with the kth bead.

H (113) is introduced into {112), and the resulting common time

factor is cancelled, there follows

Appy — 245 + Ay = — %{;—% Ag. (114)
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If the ends z = 0 and # = (N + 1)k of the string are restrained
from motion, we have also the boundary conditions

Au = 0, AN+1 = 0. (115)

But (114) and (115) are equivalent to (111a,b), Hence, from the
preceding results, it follows that solutions of the form (113) exist
if and only if » takes on one of the N permissible values
N Q"
T . nT
Wy = 2 \fm BIIt Q(Im (n = 1, 2, ' N),'\E]&lﬁ)

'\
in which casc the corresponding amplitude of vibrationiof-the kth
bead i1s given hy an expression of the form \ )
N+T ’
AY;
It follows also that any mode of vj};q’afion in which the kth
bead vibrates according to the law 380

4
<

App = Cusin (117)

. nwk N

= _hwk AN =12 ---,N) (118)
Yai = (', sin N cos {cont +ﬁ§) b (n )
satisfles the basie equatiojl"(ﬂm and the prescribed boundary
conditions for arbitrary ¢ounstant values of €, and 8. Fr(.)m I.Dhe
linearity of the problend, $he same is true of any linear combination

of such expressions, say

P W 7 N
\</ . nwk
\-4 AL o+ Bn)- (119}
.’\y& EOﬂSlnN—l'ICOS(w "E_JB)
4 \.1 n=1
But thj.s'gci)ression contains 2N arbitrary constants ¢, ... C
and 3%, . . , By which presumably can be chosen in such a way

t’1'5‘330..13\’]:@ displacements and velocities of each of the N beads all take
’prescribed values when £ = 0. The determination of the
constants is treated in Section 3.9.
The limiting form of (112), as = — 0 and M/h tends t'oward a
uniform linear mass density p, is seen to be the wave eguation
o'y _ p oy

3zt Tai

a8 would be expected.
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It is of some interest to investigate the formulation of the general
~ problem of the discretely loaded string when the assumplion of
uniform tension T' is abandoned and replaced by the assumption

Y
f
K+|
f J
fee
]
l —
/“.F'/ N\
/ k A\ ¢
Tk—l ¢\
-~ 'S
yk.‘.l P :N.’S
Yy R
Vi \V
1M__ ’5 3\" X
L ¥k

Freurm 38
that the tension is constant only between successive points of force

application. If the tension in“the segment Zwory 18 denoted by T%
(Figure 3.3), equation (2})@3 unchanged,

)
’\?Nl{ ~ Yr = h tan ¢, (120)
whereas (22) ta.kgsiﬁhe modified form
i sin ¢y — Ti1 8D $pg 4 for = 0. (121)

x:\u'
Again ass{@jﬁg small slope angles, we again approximate (120) in
the fom{\
AN . 1
\\, SI0 b = 5 (Y1 ~ ),
and introduce this result into (121) to obtajn the equation

Ty esr — y) — Tialyn — yumr) = —hfi

This equation can be written in several equivalent forms, such
a3

Tien = (Th + Tisdys + Toogos = —hfu,  (122a)
AlTes Ayecr) = —h i, (122b)
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and V(Ty Ay} = ~hf (122¢)

3.7. Properties of sums and differences. We have seen
that, in the solution of difference equations, the operators A and Z#
are, to a certain extent, analogous to the differential and integral
operators which relate to differenfiel equations, In this section,
we examine this analogy more closely.

It has been shown that if Ay = fi, then g = ZFfu ;1 +c0n
yi = ZF 1 f, 4+ €, where the summation with respect to the dummy
variable n extends from a convenient lower limit, say M (be/the
indicated upper limit. This result is analogous to thegs’ta ement

d ¥ . A
that if % = f{x), then y{x) = f flg) di + ¢, wherf:j the integra-

tion with respect to the dummy variable £ exte;\ld\s: from a con-
venient lower limit, say g, to the upper limit £\ '
It follows by substitution that ’z’,\\“
L x\ 4
2% Dus = phe (123)
To determine the *‘ constant of sﬁ’iﬁmation” wemay sebk = M + 1
In (123) and so obtain Ay,u’ﬁ'ymr; -+ ¢ or

s\ ¢ = —yu (124)
Thus (123) takes thta\f\();';ll
x'\:"" ' Ayﬂ = yk - y“' (125)

'S
tI‘his re,sslﬁ\i“é also easily verified directly, since the left-hand member
18 givem by
Ny

@’L\H:l__ y‘u) + (yM+2 _ yM+1) + I .
+ (pz — wen) + W — Yi_1)y

and this sura evidently “telescopes” into the result of (125}. .
 With a change in notation, equation (125} can also be written
In the form

N .
% Ay = Ynia — Y o (126)
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which is seen to be analogous to the relation
b
dy , _
L 7z % = y(0) ~ yla).

It should be carefully noticed, however, that the ri ght-hand member

of (126) is nof yv — yw, as might have been formally expected.
Corresponding to the product formula d{uy) /dx = u dv/dx +

vdu/dz, we find that O

Aluaty) = Ui — 2w ( D
= (e — ui) + we(Prpn ~ l{lfa;'}‘;
and hence we may write \ v
Alwne) = u, Avy + Ohar Al (127)

From the symmetry of the left-hand memBe‘r, it follows that % and
v may also be interchanged in the right-hand member.

If we sum the equal members ofthis relation with respect to &
from M to N, there follows N

oy
¢

N NN N
A ks == .
% { Wk).“’\%: wy Avy -+ % Urrr ANy

L 4

) ’\“.'
But, according to (12E}, the left-hand member is given by

AN ity — Uy = [uwk]ffﬂ,

P2\
and henc%tkp'preceding results can be transposed into the form
O

N

\ N
NN § U Ay = [ukvk]z+l - % Uer1 A (128)

m\" w4

This result is the formula for summation by parts, and is anal-
0gous to the familiar formula for tnfegralion by parts. It will be
partlcu.I arly usoful in the developments of Section 3.9.

To illustrate the explicit use of (128), we consider the sum

N
2k (1),
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where r is a2 constant. If we write
Ur = }6, A, = f‘k, )

we have also

r—1 r—1

—1 -
A?Lk=l, vk=Er“+c=Tk_1+c=_rk._+C,
o

since Z r* is # geometric series. Taking € = 0, for convenienea
the use of (128) leads to the result O\’

N N ¢
krv V¥ 1 « \J
P - k1 G
Z’” |::r—1:|a r—12"" RS

(N 4+ Dt 1 Ii?..vv+2 —_ ,.:| \‘
r—1 r—1] r— 1NN

s

- [V\Tr+2—(N+1s)\r@1+r} (r = 1).

r— 1) 1)2
In particular, we may proceed to the lmnt Nooifjr| <1, a.nd
80 obtain also the result R
bt =Y (7] <1
L — 1)
0 o\

It is of interest t‘s\‘notme that the same result is obtainable as

follows:
A |
S i ’"E’”"‘l - E”" - (=)
O

We I‘anark that we have arbitrarily chosen to deal with the
operator A. Corresponding results can be obtained in terms of V.
3. Special finite sums. In this section we list certain fre-
\“enﬂy oceurring finite sums which can be expressed in closed form.
First, the sum of a finite geometric series :

X
N - ﬂ—T’-’ r # 1), (129)
r -—

1

Where ¢ is g constant, has already been considered.
T = ¢ where « is a real constant, (129) becomes

If we set
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K e gl B+ gia - gtkas2 G_Q'warz e‘:(!{;-]__)a
E ¢ - gie — 1 Pl — g—ias2 -
1
. K _
S 5 @ t.(Ki-l)a |
=g e (@0, £2r, - - -, (130)
sin i

Hence, by equating real and imaginary parts in (130), we obtain
the resuits

AN
. K K+1 AN
K Sin 5 @ 008 ~—5— @ O
cx{o) = E cos ko = 1 (o 7 Opit2m, - - )
1 8L = o I ¢
2 '\\
L (131)
and 7\
K K4+ LAY
K s1n E'a 3111 ‘—T Qﬁ
sxla) = E sin ko = T (@ %0, +2r, - - ).
1 sin Z.as
-\
(132)

~

It may be noticed in all, cages that, if the lower limit differs
from unity, the obvious:re:iation

™ & M1
~§\¢k52¢k— 2 o (138)
M 1

1

Ts useful. ) :‘;\’)
From E;]:@:T’results (131) and (132), many other sums may be
6btained\\~Fcur example, we notice that
W\
K *

™% K
Eﬁ,{ff‘si“ bo = — E(i_z exla), 2 kcos ka = d_O; sg(a), (134a,b)

/

and so forth, Algo, we h

K
}smkasmkﬁ=

ave the relations

bo| —

K
E [cos k(e — 8) — cos k(x + B)]
1

= 5lexle ~ B) = cula + B, (1350)
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and, similarly,

iy 1
E sin ka cos ¥8 = 5 [sx(a + B) + sxle — £)]  (135b)

i

and
K . :
E cos ke cos kf = 5 [ex(e + 8) + ex(e — ). (135}
1 :"\t\'
If we notice that \ O
ex0) = K, sx(0) =0, N0 (136)
AN
we may derive from these forms the further regults
S K 1 K sin KQbos (K + Da
o s 4
2 sin’ bo = 5 — 50x(2) = 3 ~ T3 95ma (137a)
and V‘I):’
K .“3’:“
) K 1 K | sinKocos(K+Da’ o
28032}"‘”=§+§"’&“)=§+ 2 sin & {187b)
e
\\\
form

For a sum of the

R TR R

Where P.\'é:?i“nonnegative integer, we notice that Si(p) satisfies
the différehce equation

~O So— Sia—ke (k22 - (139)
9

and the initial condition 8§, = 1. The homogeneous ?.olutlon of

(139) is merely 8;¢0 = ¢, and the method of undeterrmned‘ coe.fﬁ-

cients then shows that a particular solution is a linear combination

of the terms k= ke, ..., k% k. It follows that (138) can be .

expressed as a polynomial of degree {p -+ 1) 7 k,

Su(p) = ¢ + Ak + Ak? + + -+ + Aprh”H (140)-
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The A’s can be determined by substitution into (139), after which
¢ is determined by the initial condition S; = 1. In this way,
results in the cases p = 2, 3, and 4 are obtained in the form

124224324 ¢ -« k2 =31+ kM1 + 2k), (141a)

P28+ 854« o« k3 = $52(1 + k)2, (141b)

20430 o 0 LB = k(1 + B + 2k)(3k* + 3k )

L (CflLe)

The summation of (138) can also be affccted by, @b of the
results of Problem 6. £

Produets of the form %(k — 1)(k — 2) .. o —'p) are of
frequent oceurrence in the solution of differente ‘equations. We
use here the abbreviations

o\
and {."2"
ke & re+n (143)

RN
(k+1)(k+2)ﬂ..- S k+m) Th+m+ 1)

where m is a positive ‘ihtgger, and notice that k“» is then a poly-
nomial of degree @ i k, which vanishes when k = 0, whereas
ko™ g the reciprécdl of an mth degreec polynomial in £.* To see
the importaned\df such funetions, and the usefulness of the abbre-
viations, wg'ﬁalbulate the differences AL™ and Ak as follows:

AW
M"f‘.’.:.%\(k TLEE - 1) - - (k~m + 2)]

‘\ ~ [k —=1) - (k—m+ 2k —m+ )]
=E+D)—G—mt DIFGE~1) 5 - (k- m +2)]
= m k0 (144a)

* \ffhile the notation {142y
pretations of {143) are in use, 50
used here,  Tf the Gamma fun:
then (143) is obiaine
notations suggest.

is rather conventional, several different inter-
me of which lack the consistency of the notation
ction definitions are taken to he the basic ones,
d from (142) by replacing m by —m, as the abbreviated
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1
E+2E+3) - GFmE FmtD

1
TG DEFEFD) - G

1 1 1
=(?c+m+1_k+1)(k+2)(k+3) <o (B A-m)
_ . —m O\

F+DE+ - F+Fm+ D) %
= — klm—D, (ﬁfb)

Thus we see that k™ is a polynomial in % of degreé mf related
to the difference operator A just as the power z» 13'\1~elated to the
differential opcrator d/dr, and that k™ as defiped in (143) is
analogous in the same sense to the mverse\yower z™, Thege
polynemials are sometimes known as factorzal}mwers of k.

If m is nonintegral, then the deﬁmmon involving the Gamma
function is to be used. In this more general case, it is readily
verified that (144a) and (144b) aretill true for any nonnegative
value of m. We may notice that, Tt = 1.

By making use of (126), we'may convert the difference formulas
(144a,b) to the summat:lon\formulas

N

bny N1 :
E ke =2 > E ARUHD = [k(_:)l]u (145&)
Py :
and ’\
e\
\“
Jp(—m+1) N-+1
(u-m‘)' —_ — = | ——— m = 1)'
.,2;« s D ewe = [EL
(145b)
These formulas can also be written in the explicit forms
N+1
k(k—l)"'(k'—‘m)] |
EM"“’“‘U (k"m+1)=[ﬂ?_1"—__—u ’

(146a)



264 DIFFERENCE EQUATIONS [§3.8

4 1
;(k+l)(k+2) o (k- om)

1 1 N+4+1
——m——‘f[<k+n(fc+2)---(k+m—1_>] m  1).

M

{146b)
Mére generally, if we consider any linear function of I,
Je = ak + b, (4w
where a and b are constants, and write ¢ \\\

'\

o™ = fofes - v - Jommty,y \ \/

v 0N (148ab

fim = 1 o (1482,0)

ot fk-l—m ."‘\

we may verify that, in consequence of the cht' that Af, =a =
constant, equations (144a,b) generalize to’the\forms

Al =amftm=v, A fm *;—:3\—a m [0, (140a,b)

and, similarly, equations cofrespgndiﬁg to (145a,b) are modified
only in that the right-hand mergbéfs’ are divided by the constant a.
Thus, the generalizations of {(146a,b} take the form

iff a [ff R | :|N+1 )
kJe—1 * " r} L] = ﬂ._l— k—m 1580
AR am T Ly

fk+1fk+2 : (“

and N

3

Foafoialdo g = — =
k=Mf’°+1f"§F“"\i~ Seim a(m — 1) [fk+lfk+2 T fk+m—l:lﬂf

Q (m > 1).  {150b)
..\:"Rf;:mustrate the use of these formulas, we notice that the sum
NV B 12403 484t hnar ) (51
m&mﬁmnmmMMhm=zM=zmﬁN=n+Lmd
hence there follows ' '

ntl
S,.=Ek(2)= @ﬁz%@_—l—m(n{-l)n 2.
2 3l 3 -

1

-0

1
3
n{n + 1){n + 2). (151b)

I
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The sum
P SRS RN 1
T 147 4.7-10 Bn — 2(Bn 4+ 1)(3n + 4)

(152a)

is of the form (150b) withfi =3k — 5, m =3, M = ,and N = n,
and hence there follows
O\
S___J.[ 1 ]““_i_} 1
T 3-21 Bk —-2@k+1], T 24 6@n+ 1)(813,\4\4)
(152b)

We may notice that, as n -+ , the sum becomes:.g, convergent
tnfinite serics, with the sum . AN,

The preceding results can also be used in gonnection with the
methods of partial fractions in certain ot}:@ more general cases.
To illustrate this fact, we consider the sux@

5 1 . 1‘. S S

cratas o 6T T De )

The kth term 1/(k + 1)(k + 3) cannot be put in the form 1/frq1frsa.
However, if we write

1 m\ k42
&+ )& + 3)\\0; T+ D%+ 3)

=1[(k(;c4-1)+0‘c+3) ]

(153a)

2O T F 20 + 3
I
A& IR + _____1____],
N\ =3 [(k INGEF2  GEOETI

eagh\"t'éiim in brackets in the last member is of this form, and we
\Ghi;ai‘h, by the preceding methods,

ntl 5 1 1 1 )
2Sn—Ek<—ﬂ+Ek‘ =g“1(m+n*+*3 ’

and henge

1o 1 _5___mts
2.4""5‘.—“54' Tt +m'—1)(mj'_1§ 2(n + 2)(n + 3)

(153b)
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As n— « we have the additional result

S 1 5
g(fo+1)(k+3)"ﬁ‘

It should be noticed that in (146b) and (150b) the case m =1
is exeluded. The sum

E'—1—=—'}—+—1—“+‘°'+# (a;é()')"\
ak+b a+b' 2aFb na + b A\ ¢

1 ¢\
cannot be expressed in closed form in terms of elemcntatjsfhnf:tions.
However, it is expressible in terms of a certain labulated function.
To obtain the desired result, we notice first that Q‘Q}n the relation
P{xode + 1)

e + 1)

there follows, by logarithmic diﬂ'erentjaiiéh with respect to the
parameter «, AV

R B L1 DTG Fat+ ) Ta+1)
1+a "2+ nde Tn+at+1) Tlatl)

The so-called Psi funciion, deBhed by the relation

At a@+a) - (nta) =

oo T + 1) ;
\'\XI{’(Q':) = f‘_(a:——l-T)’ (154)

is & tahulated funétion.* With this notation, the preceding result
takes the formn\'\{

1,071 1
R it et et ) — ).

MO}‘efogenerally, if both sides of this equation are divided by a
saiglent o, and « is replaced by b/a, there follows finally

) 3
T

1 1 1
Eak+b“a+b+2a+b+ Tt T

1
_ 1 b b
a [‘Il (n + E) . (E)]' (155)
v (lejﬁg;e/ Prg;rences, the definition (154) is replaced by the definition
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The number —¥(0) is known as Euler’s constant, and is often
denoted by -,

¥(0) = I'(1) = —y = —0.5772157 - - - . (156)

Thus, in particular, the result of setting a = 1 and b = 0 in (155).
is of the form

1 1 -
Lhg+ o 4o =¥0n) + (A57)

3.9. Characteristic-value problems., Any linear homogene-
ous difference equation of second order can be pub into theform’
Alpe1 Ale—1) + sy = 0 N (158)
by a suitable choice of the functions p: and . Thv? form is par-
ticularly convenient for the purposes of thislséction, and is the
form fo which the formulation of many phjsital problems leads
in a natural way [sce equation (122b)],.&I¥is also expressible in
the more symmetrical form o\

V(e Ay +%We = 0, (158')
ax well as in the expanded forgn:';’
Peyri1 — (px + @_z)?ﬁc + Pr—alr1 T Slr = 0. (158")

We suppose now hg{t the coefficient s is expressed in the form
% + A7, where AMs & parameter which may take on different
constant values 'kii:a given problem, Equation (158) then fakes
the form O

% “&(pk—l Ays) + {ge + A ey = 0. (159)

As in thic ease of the analogous differential equations, and as in
the ’sqé{ihd example of Section 3.6, we speak of the problem son-~
sisting of (159) and homogeneous boundary conditions prescribed

two different integral values of k as a hamogeneous I;_'ou.ndar_'y 'thw
problem. In such a problem, no nontrivial solution exisis, 1n
general, unless A takes on one of a set of chargcteristic values ki,
Ay, oL, , whereas if this is the case, say N = An the conditions
of the problem are satisfied by an expression of the form‘ yx = C b
Where € is an arbitrary constant, The funetion ¢ is known as
the characteristic function corresponding to As. We show_ next ﬂ}at
Such functions possess properties analogous to those associated with
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the corresponding functions which arise in the solution of linear
differential equations and sets of linear algebraic equations (see
Chapter 1).

For this purpose, suppose that the origin has been so chosen
that (159) holds for £ =1, 2, . . ., N, and that suitable homo-
geneous conditions (yet to be specified) are prescribed when k = 0
and k=N +1. Let N, and A, be two distinct characteristic
values of A, with corresponding characteristic functions B, xza0d
$ns Then the two equations .

O\

A(p}c—l A¢m.k—l) - (Qk + M-Tkjﬁbm,k = 0) :\:} (lGO&,b)
AlPey Adni1) + (g + Mariddug = O

are satisfied. If we multiply (160a) by ¢, ag{i’x{lﬁﬂb) by
and subtract the respective results, we obtain'the relation

Q= AT Pm s NV
= bmi APect Adppy) — ‘i”l-i”:béjk—l DAdmr_1). (161)

By summing the equal members of Y161) with respect to & from
k =1t%0k = N, there follows alsos

NS
oy

¥
(m — An) 2 Tebmidng N
E=1

N R .
= ;,;21 Bk Alpr_y .\&4’»:&—1) -~ kgl bak A(Dr_1 Admi_i). {162)

N

The sums on-the right can be transf ormed, by the formula (128)

for summat‘iglz'bf parts, to the form

& e N
[¢m.i I{k\\iﬁ%.ig—L]ktfH — z Pr DNdmp Adui
A\ k=1
AN E=N+1 X,
w\:"\': N - [¢n,}c Pr—1 A‘t’m.k-—l]k 1 + 2 Pk Aqb"-" A(bm'k'
\. - 51

he two sums in this last expression cancel identically, and the

iummed. barts can be combined to give either of the eguivalent
orms

k=N+1

N -_—
Am—2s) kz Tion e r,ze = [Prosloms Bbnscs = bui £9msd) Ji
=1

{pk—l(‘fsﬂ.k‘ﬁm,k—l - ¢‘m,k¢'n.k—-1)]:if+l
(163)
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The second form is merely an expansion of the first one. From s
consideration of this result, it follows that the sum (163) vanishes,
in particular, if the prescribed boundary conditions are of the form

’ } (164)

Further, the condition at the lower limit of the range may be omitted,
if po = 0, while the condition at the upper limit may be omittedNf
oy = 0. <O

In analogy with the terminology of Chapter 1, we saythat two
functions f, and g, are orthogonal over the range kb = {23\ . . , N

=0 or peAy =0 or yutady =0
Ywyp1 = 0 or Dw ,f_\.yv =0 or Yw + AQ’N =0

if o
» .”‘.\\ .
S fugn =0, (165a)
1 ) / \\,
and are orthogonal relaiive to the weighting\function . if
I .  § . 3
S, refugit="0. (165b)

1

From the preceding result‘s;'we conclude that fwo characteristic
functions of the di fference equation (159), salisfying the some homo-
geneous boundary conditions for k = 0 and k = N + 1, and corre-
sponding to distinet, characteristic values of \, are orthogonal over the
range k= 1, 2, sy, | N relative {o the weighting function 1. In
particular, if the Goefficient of X y. in (159) is unify, the charac!ser—-
istic funct.ngé;\,:fre simply orthogonal, with weighting functif)z} unity.

In physical problems, the functions ps and 7 are posutve over
therange b = 1,2, . . . , N. Asisshown in the following section,
the ﬁréblem then leads to N real characteristic numbers, ar%d toa

\gﬁ;ﬁmspfmding orthogonal set of N characteristic functions which are
Rearly independent in the sense that no nontrivial linear combina-
tion of these ¥ functions vanishes for each of the ¥ relevant values
of b.* In consequence of this fact, any function fi which is df;ﬁned
fork = 2, .. ., N can be expressed as a linear combination of

*] - + be distinet, and two
D unusmial cas ristic numbers may no ’ O
ases, the characte he same characteristio

ormore characteristic functions may then correspond to H -
umber,  These funetions can be orthogonalized by the Behumidt procedure of
Seetion 1.13.
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the NV characteristic funetions,
N
i = 2 Autpar k=12 ---,N). (166)
n=1

By this statement we mean that the N constants of combination
can be determined go that the linear combination takes on the same
values as f; at the N relevant points.

To evaluate the constants, we may require that the differexde
between the two members of (166) be orthogonal {relative to.r:)
to each characteristic function, over the relevant range in k& “Thus,
if we multiply both sides of (166) by ri¢ms and sum the/results,

we obtain the condition N
N N N M'\'\
2 rkfkqsm.k = 2 An ( 2 ?k‘i’m,k‘ﬁ;i,k)-
k=1 n=1 E=1 \

o ‘ N
But, in view of the orthogonality of the s {te, all the inner sums

on the right are zero except that oneor ‘which m = n, and we
obtain the equation W

W
R

N N &N
4, kz Tabas® = 2 rifidwe  (n=1,2 - -, N) (167)
=1 3

E=1

which determines each cogfficient in (166) as the ratio of two cal-
culable sums. ke

More generally, 1f}\£§ think of & as a continuous variable, so that
F(k) is defined, sayan the ¢nterval (0, N + 1), then the right-hand
mf3mb81‘ of (188)effords an approximation to f, in the sense that,
with the coal”ﬁc’ients given by (167), this function agrees with f
at the N\Qan’és of the domain (k = 1,2, . . . , N) for which the
genemtjf% difference equation is valid.

.3..-\10: Matrix notation. In this seetion, we Investigate the
re}aj:tlonshig_) between the discussion of the preceding section and the
corresponding diseussions in Chapter 1. We again consider the

difference equation (158), and write it, for present purposes, in the
expanded form (1587}

Peferr — (pr 4 po_y + Pi-tr1 1+ (gn + X i)y = 0. (168)
It we introduee the abbreviation

O = P + Pry — g, (169)
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this equation can be written also in the form
—Pri¥ho1 + Glr — PrYra =M (=12, - -, N). (170)

If these equations are written out explicitly, they take the form

—Potfe + @1t — Pile = A 7afy,
— p1 + GaYr — Paifs = \ raifs
— Doy T Gslfs — DiYs = A7gysN

...........................

O
~—Pry-1l¥x1 + axyx — PN?J’N+15-?}3\ ."T:N'yN-
Lo am

Tn addition, two homogeneous boundary conditions are to be
prescribed. The possible forms listed in eql}a:bibﬂ (164) are com-
prised by the conditions o\

~~ o

o = il pﬂ)yf\’,: ~y;f\’“l-ls' (1723')}3)

where p; and u. are appropriately r;ﬁ;}sen constants.

These two conditions permitithe elimination of ¥ and ywis
from equations (171), leading to a homogeneous set of N linear
algebraie equations in the JY;\mknown guantities y1, %o, . . . , ¥»-
If, in accordance with the terminology of Chapter 1, we eonsider
these quantities as tle)compenents of an N-dimensional vector y,
the resultant set oi}c;quations can be written in the matrix form

X'\"’
' ay = \r1y, (173)
\O

where the}f):';,trix a is of the form

AN, —p. 0 0 0 0 0
\ }—}'31 @z P2 0 0 0 0
0 —ps a; —Ps 0 0 0
a = 0 0 — P2 (477 0 0 0
0 1] g 0 — P2 ay1  —Pa-t
0 o o o 0 —pva1 Oy
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with
Gi = {1 - f1Po, !1;\.- = ay — Hapx, (175)

and where r is a diagonal matrix, [r; 5;).

We notice that a is & symmetric matrix, and that the requirve-
ment that ry, re, . . ., ry be positive leads to the facl that the
matrix r is positive definite. Hence the results of Section 1.25 are
directly applicable, and the statements made in the preceding
section can be established. .

It is clear, from the form of (171}, that if po = O the tantity
Y018 not involved in those equations, so that a homogenepigrelation
(172a) is then not needed. In this case, there followsdd, = a, in
(174). A similar statement applies in the case whin py = 0, as
was discovered by a different approach in the préacding section.

3.11. The vibrating loaded string. In\Section 3.6, it was
shown that for small free vibrations of ;sﬁ‘s}fing of length L =
(N + 1)h, with beads of equal mass M ati:a}liéd at the pointsz = k,
2h, . .., Nk, and with fixed ends, the” deflection ;. at a point
Z» = kh may be compounded from ¥ ‘normal modes, in the form

E XY

N ~
e = E O sjn’N—nj—_?_E—l cos (wal + Bn), (176)
n=1 i”‘t\ L
where Ny J_T_—'_ 1 i__u T
wﬂ\— 2 35 o 3N 1) (177}

In ccmseque?ée of the results of Section 3.9, the amplitude
functions

A
Q

. nrk
g = SN - 178
P,k qu—kl (178)
ON” )
e{izfirthogonal over the range k — 1,2, ..., N, with weighting
fufiction unity:
N
mak . nwrk
sin ———— —_— = 79
2 1y 0 {m = n). (179)

This result follows from the fact that (111a) is identified with (159}
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by taking p = re = 1 and ¢x = 0, and can be independently verified
by making use of equation {135a) of Section 3.8,
Also, in the case when m = n, equation (137a) gives the result

N sin AL €08 7
Esing_n‘rrk _N N+1
SN FI T2 T T
N+1 A
or, after an clementary reduction, <\
O\
o, ok N +1 o
; smzN T1= 3 (”.}“‘w (180)

To complete the solution of the physical problgmj}i’t’ is necessary
to determine the 2N constants €, and 8, so that the prescribed
initial deflections and velocilies of the N bedd‘i\a‘re assumed by the
solution when ¢{ = 0. We denote these prusgnbed values as follows:

s"

= dy, % o (181a,b)
lt=0

The requirement that {176) sai‘lsfy these conditions then takes the

form Wi
N } . nak
dp = ﬂ_El\(ﬁ"" eos 8, sin N+T
oI _ _ nak
"\szc‘: 2 (— sl 8in B,) sin YIi
(\ _ k=12 ---,N). (182a,b)

thuatlons (182a,b) are compared with (166), equation (167)
ShQWS that the constants must satisfy the equations

) Ed’“"mN+1
N

_ ke
)—E“smNJrl

k=1

N

. cos B (E sinﬂ

k=1

— w,Cp sin 8. (E sm2
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and hence, making use of (180), we may write

N
2 ) nwk

— [ — - — = ]83

A, =, cos 8. N T lk_;_l:dism e (183a)
N
2 . nak

= _— i = = te SN —— . 183b
B,= —(,sin 8, “‘”(N'{'I)k;l“ KN { )
= N\

With this notation, the required solution (176) cun be \v}‘j\fzf@n in
the form N\
y
e = 2 sin Pk (An cos wd + B, sinm}ut}‘i {184)
aa=] N + 1 ..,‘\g’

As a simple example, we consider the case When only fwe masses
are present (b = L/3), and suppose that, atythe instant £ = 0 the
first mass is released from rest with ai1nitial deflection d, while
the second mass is initially af rest in an undeflecied position. In
this case we have the following datas

N=2 d=dx\d=0; v, =0v; =0, (185)
Equations (183a,b) ther}gfve the results

2r

gdsin = 1'1.1, B] = B?. = 01

3 3

A, =2y sin ¥ ;Qﬁ, Ay =

3 3 (X3
\</
and the solufign’(184) takes the form
N\

A . wk . 2k

= il sin 27 o5 o, > =1, 2), (186)
yk;‘f% (sm 3 008 it + sin 5 tos w;t) {k , 2y«
Wh@uﬁé,‘in accordance with (177),
T 3T

o \f My« Mh a8

By setting k successively equal to 1 and 2, the displacements of
the two masses at any time ¢ are thus obtained in the form

d
= '2— (COS wt + (&4 51 wzt), e = g(COS wit — Ccos wgt). (188)
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The loaded string has been chosen as a meodel, in the illustra-
tions of the preceding theory of this chapter, so that the various
types of problems which most frequently arise in many other fields
may he motivated and investigated as simply as possible.

3.12. Linear equations with variable coefficients. The
general homogeneous linear difference equation of the firsi order
can be written in the form

N\
Yrpr — Gy = 0. (189)
If (189) is valid when k& = 0, we may obtain successwely the
results N\
Y1 = Yoo, Yz = Yooy, Ys = Yololsds, o\
N
and hence, by induction, "‘\
e = Yolotay * * * @r)g\D (180)

The coefficient of ¢ in (190) is in the form\of a ;m'oduct of & terms,
and is conventlonally abbreviated in thé’ form

»,'

k&
]___[ dy, = H aﬂ_.l.:!; &nalaz M T (191)
=0 Aml ~, "

If we notice that any ﬁxecl number of factors in (190) eould be
incorporated with yq, tof form a new arbitrary constant, it follows
that the general solution ‘of the equation

B ae =0 or (E—a)ys =0 (192)
15 of the form“\'z,\"
Nl = O T g, (199)
with th&“convention that the symbol II* indicates the formation of
the S’?'O?iuct of those factors for which the relevant dummy index takes
ol integral values from some permassible fixed integral lower limii
to the variable upper limit k.

In illustration, we consider the equation

k4 Dyesa 4+ e+ Qye =+ DE+2) k=12
(194)

With @, = — (b + 2)/(k -+ 1), equation (193) leads to the general
homogeneous solution
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k
o= [ (-4
1

= o(—1p2.

|
|

= (—1}Ck + 1),

With this result, the method of variation of parameters [equatiﬁn
(75)] leads to a particular solution of the nonhomogencous equation,

in the form N
Q n+ 1 A\
7 = (1} N ML R
w = 0+ D X i e

=D - S -

The sum in brackets is zero if % is even a;t}d —1if k is odd, and
hence is conveniently expressible in the, form (cos kx — 1)/2. Thus
the complete solution of (194) can he'written in the form

ke — 1

=&+ 1) (C :ir::eos 5 ) cos kr

or, with ¢ = (¢ + 1)/2:..\:

7\

Yr = k—_g—l\@ cos kr + 1) k=12 .- (195)

No general Lﬁethod exists for solving linear difference equations
of higher order (with variable coefficients) in terms of finite sums
and pm?ieﬁs. While infinite series solutions (involving factorial
powersr,:o k) can be obtained in many cases,* they are of limited
gsgfqlness and are not discussed here. instead, three special
ngthods of oceasional usefulness are outlined.

a. Reduction of Order. 1In case one homogeneous solution, say
¥ = u;, can be found by inspeetion or otherwise, an equation of
lower order can be obtained for the determination of a second
homogeneous solution. TFor if we write v = /4, and attempt to
determine vy, the resultant equation must be satisfied by v; = con-
stant or Av. =0, Hence the equation will be of reduced order if

*Bee Reference 1,
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the new unknown 7 = Ay, = A(ye/uz) is introduced. In partic-
ular, if ¥, = constant is a homogeneous solution, the order of the
equation is reduced by the substitution ¥, = Ay
b. Factorizatzon. ¥ a linear difference equation can be written
in such a form that the relevant difference operator is factored, say,
in the form
(B — b)) (B — an)ye = ¢n, (196),

then the general solution can be obtajned by solving two sucoeSsive
equations of the first order, since (196) is equivalent to shie two
simultancous equations \ o

(B — bijur = ¢ O tpy — by ='~%’\.’ (197a)
and ) _

(F — @ys = wx O Ypyy — GYNE % {197b)
9.\

Thus (197a) first determines wus, after Whléh ¥ I8 determined from
(197b). o\

¢, Substitution. In somc cases ib, i3 possible to rearrange an
equation so that it takes the formy ™

@ firaifie + b,ﬁ+1§fk+l 4+ cfuir = s, (198a)

where g4, b, and ¢ a-rg“‘ébnstants. The substitution w. = fun
obvicusly reduces thexgquation to one with constant coefficients.
Similarly, the substifution w; — yr/fr reduces the equation

Gfkf@}%k-}-z 4 b feferaers -+ € far1 Ferate = ¢ (198b)

to such g &Ql}ﬂ In illustration, the substifution . = /(6 + 1)
is seen t6De appropriate in dealing with (194). .

32143: ."'Appl' oximate solution of ordinary differential equa-
tione:” In the remainder of this chapter, we depart from the con-
gi}@réﬁon of the possibility of obtaining explicil solutions of differ-
fnce equations, and indicate applications of the fact that they can
be solved hy step-by-step methods or considered as sets oi_sxmu}-
taneous linear algebraic equations. The principal &pplic?.tlons 'to
be treated are related to problems governed by parfial differential
equations, However, in order to motivate the basic ‘prosed.mes,
we consider first analogous problems governed by ordinary differ-
ential equations.
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As a first example, we consider the simple problem of determin-
ing the solution of the differential equation
j—g —z  (@>0) (199)

which satisfies the initial conditions

y(0) =0, ¢ =1 (20\0)
It will be seen that the methods to be used are readily gencralized
to the treatment of more involved problems. N\

In order to obtain an approzimate solution to t..hd:\[)i'oblcm,
we first replace the differential equation by a finite  difference
approximation, the simplest of which is of the fornd O

v+ B = 29(2) + ye — DN
A N
. D
Accordingly, we replace the initial conditioits by the requirements

(201)

¥(0) = 0, y(h»).~_]:"y(0) -1, (202)
As the inerement kb tends to ‘ze;b;, the new problem tends to the
original one, and it is reasondble to expect that the solution of the
new problem tends, at the’same time, to the solution of the original
one. Thus it may be,&xpected that, for sufficiently small values
of k, the solution of \(‘2\01) which satisfies (202) will afford a satis-
factory approximaion to the required solution.
If we requitg’that (201) be satisfied at the successive points
1 = h, To 52K, L, oz =Rk, ... , and notice that (202}
determines 3 at the initial points xy = 0 and z, = A, the differcnce
equat?qli\san be written in the form

OV M =2y =kl (12 -, (203)

‘where y;, = ¥@) = y(kh), and the initial conditions (202) take
the form

Yo = 0, Y1 — Yo = h. (204)

While this problem can be solved explicitly by the metheds of
Sections 3.4 and 3.5, in the form

X ’
y;c——-(h—-ﬁ)k—i—%ks, (205)
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this situation docs not ordinarily oceur. However, in the present
case, we may notice that (205) is equivalent to the equation
h?

1
y(mk) = z; + 623;;3 - E Tk, (205’)

while the exact solution of the original problem is of the form
N\
y(@) =z 4 x5 (2069

O\

Thus it follows that the solution (205°) does indeed tend.t()\(?(}('})

as & tends to zero, and also that the ratio of the error ‘as¥ociated

with the approximation (205') to the exact value of,ft}ié solution
at any point x; is less than A2/6. L

In the absence of such information, we wolld merely assign

& convenient numerical value to k, say AsodD.1, and generate

approximate values of ¥ at the chosen poi:r{s:by step-by-step caleu-

lation. Thus, from (204), we then obm'ni=

yo=0, a0l

ay

By writing (203) in the form o
Yrrn =&y — i1 + 0.001,

£

there then follows | \’
y2 £Y.2 — 0 + 0.001 = 0.201,
\Zg}s\= 0.402 — 0.1 + 0.002 = 0.304,

and so fgkﬁh\.’“ An estimate of the accuracy attained would be
afforded\by comparing these results with the results of a sceond
series.bf caleulations, based on the halved spacing A = 0.05 or on
t@‘s}oﬁbled spacing b = 0.2. ‘

More efficient methods of integrating differential equations
approximately, when snitial conditions are prescribed, involv!:-: the
use of differences of higher order, and may be found in the litera-
fure.*  The preceding method was presented here principally _for
the reason that it is analogous to methods, discussed in fol.lo.w‘lng
sections, which are of frequent use in the solution of cerf:ain initial-
value problems associated with partiel differential equations.

* 8ee References 2 and 3.
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As a second example, we consider the nonhomogencous boundary
value problem consisting of the differential equation

2.
j—;ﬁ+y=0 ©<y<b), (207)

and the end conditions
y(0) =0, y(1) = L. (2!3\8J

We replace this problem by the difference cquation

O\
Yorr — 20 + Yo + Ry = 0 k=1,2--- 0% (209
and the end conditions N
Yo=0, gvm=1 N (210)

where y. = y(kh) and (N 4 1)h = 1. ’l‘wQ‘possihle procedures
are now evident. Firsf, we may determing the values ys, Wiy -« «
¥x successively (as before), in terms of the specified value y, and
the unknown value y, and determiney finally in such way that
Y41 = 1; that is, the value y; magtbe carried through the esleula-
tion as a literal parameter, and.determined at the end of the caleu-
lation. Aliernatively, we may ‘treat (209) as a set of N linear
algebraie equations in N A&mknown quantities, ¥, and Yxa1 being
given by (210), and sglm}thjs set of equations by any of scveral
standard methods, "This procedure is particularly well suited to
the use of modg;'n: automatic calculators. For the sake of sim-
plicity, we herelfake N < 3, 80 that h = 1. The three rclevant
equations thentake the form

'"\.s.
P 7 S =0,
B =Byt gy =0, o (211)
\ 3} Y — Yy = —1

from which the values y, = 0.2943, y, = 05702, and ys = 0.8104
may be obtained ag approximations to the required ordinates at
=1 % andf Approximate values of intermediate ordinates can
be obtained by polynomial interpolation, or by mercly plotting
the calcglated ordinates and joining them by a smooth curve. The
true ordinates are found from the exact solution y = (sin z)/(sin 1)
to be g1 = 02940, y, = 0.5608, and ¥s = 0.8102. It happens,
again, that in this cage the explicit solution of the approximate
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formulation can be obtained by the methods of Section 3.4, and con-
vergence Lo the exact solution as & — 0 can be explicitly established.
An iterative method, which avoids the direct solution of equa-
tions (211}, is outlined in Section 3.19. .
As g third example, we consider the characteristic-value problem
consisting of the differential equation

2,
%§+hy=0 0 <y<, (212N
and the end values ¢\

y(0) =0, y1) =0, 5?@@

~
NN
<

and which is accordingly replaced by the problem N
Yo = 2 b Y F AR =0 (b = 1,230, ) (214)
with yo = 0, Yvp = 0-..\\: (215)

The new problem then comprises a chargeteristic-value problem
of the type considered in Section 1.11{ and can be solved directiy
or by the methods of matrix iteration\described in Section 1.23.

In particular, if we take N 23, the equations corresponding

to (214} take the form N\
2y1 _"'\?2 = X hzyls
—y\%"ﬁye — Y3 = AR, o (216)

oS =y + 2y = MR,

The exp]iqi{;;i\alution of the problem consisting of (214) .and
{215) was _obtained in Section 3.6, and is specified by equations
(111a-d) geith A replaced by A h%.  Thus, with the present notation,
when Msiriterior points are chosen the problem determines N .di?—
tin&tf{;}idrawteristic values of A, and N corresponding characteristic
fitmgtions, which arc of the following form:

%{b} g = gin nEre (ﬂ = 1, 2; T 5N)

(217)

4
A = e 5In?

Lt is easily seen that, for small values of the spacing k, th'ese results
#pproximate the first A characteristic numbers and funetions of the
exacl problem:

A = nlr? ¢a(7) = sin nrz (=12 """ (218
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By noticing that & = 1/(N + 1), we may obtain from {217) the
following table which indicates the rate of convergence to An, 88 &
function of the number N of interior points:

=2
—
T b
R
.

AT

1| 8.00 — - —

2| 9.00 27.00 — —

3| 9.37  32.00  54.63 - ~
w\ 9.80  38.40 83 40 141 .4 \)

20{ 9.87  39.26 87.51 1536 4%

................ L&C
©| 9.87 3948 8883 ¥

In the remainder of this chapter, we ,ix:‘,ﬁ%(;ate the application
of similar methods to the approximate splition of certain problems
governed by partial differential equatiojys‘.’

3.14. The one-dimensional hedt-flow equation. Transient
heat flow in a homogeneous megﬁiﬁh, in which the teraperature 7
depends upon one rectangulatieoordinate z and upon time £, is
governed by the partial diffexential equation

N 2

\'\x,..\%_i; — o fz_j;, (219)
whelje a® is a conspant known as the thermal diffusivity of the con-
(%ucltmg medi}lnily\ "This equation can be considered ag the formal
limit, as the dhcrements £, and A, tend to zero, of the difference
equatio%w‘
T, bk ) — T(a, 1)
O W

YV a2 T@t he ) = 27, 1) + T(@ — by, 1) (220)

S
After a rearrangement, this relation can be put in the form

Tlx, t + k)

— hs
= azh—xg T(x + h,, &) 4 (1 — g2 hi;) T(x, ) + o ;* T(z — hs ).
(221)
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This equation will retain its form as the increments k., and h,
tend to zero if and only if k, is taken to be proportional to h.2.
A particularly convenient choice of the relationship between the
two spacings 1z scen 1o be

2 = 2a%h, (222)

in consequence of which (221) takes the form
Tla, t + h) = §T@ + hey &) + Tlw — by 0] (22350

This relation states that, within the framework of the approxhh:%e
formulation, the temperature at a point z, at time ¢ + i I8 the
average of the temperatures A\
. ; - t o\ 3

at the two neighboring points D
al the time ¢, if the spacings \\
satisfy (222). '

In order to illusirate the PN G
use of this formulation, we AN
consider the solution of the NN
problem in which, initially,
the temperature distribution
in a homogeneous rod of .
length £ varies linearly from 4
100° at one end (x = 0) tD\
150° at the other end (z &by, X X
At the instant ¢ 0, we L
suppose that the .\"t-émpem— TFravr: 3.4
tures at the (ends are
suddenly reducéd to 0° and maintained at that temperature there-
after, The}éeéultant temperature distribution in the rod is 1-h§r1 to
he detemh:ined, as a function of distance z from one end and time ¢
measyted from the instant of change. It is convenient, fo}' present
pdtpgdses, to introduce a fictitious wi-plane (Fig‘.lre 3.4), nw bich
points corresponding to successive positions and times are mldlcat..ed
a3 the vertices of a network of squares or rectangles. If N interior
division points arc taken in the z-direction, this means that the
spacing h, is such that (N + 1)k, = L, and the corresponding actual
time increment k. is then determined by (222). For the ’three
numbered points in Figure 3.4, equation (223) gives the relation

Ts = %(Tl + Tz); (224}

/

m;;?"——h
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and since 7T is prescribed when ¢ = 0 (and along the end boundaries
z =0 and z = L), successive use of this formuly determines
approximate values of T at following times.

I, for simplicity, we take N = 4, the following array is very
easily obtained in this way:

Freurg 355/

However, we may notice that hergthe temperatures predicted for
t = h; are exactly those which ar@actually prescribed along the rod
immediately after the change.S¥Thus it appears that the approxi-
mate solution so obtained lags the exact solution by about one
time interval. In faqt,"éince the end temperatures are required
to be zero throughoudsthe first time interval (except at { = 0}, it
may be suggested‘bhat in the difference-euation formulation the
initial values atithe ends be taken to be zeros. Accordingly, the
calculations, invthe present case would differ from those given in
Figure ?Q;My in that the initial row of entries (at the foot of the
diagram) would be deleted and the time origin would be moved
upward by one unit,

Bt if the initial end valyes were indeed replaced by zeros,
the error would clearly be overcorrected, since then we would obtain
an approximate solution to g problem for which the initial tempera~
ture distribution, before the abrupt change, departs continuously
from the originally prescribed one near the ends of the red and
vanishes at the two ends, the end temperatures then merely being
mainiained at zero thereafter,

The difficulty sterns from the fact that here the prescribed limit
of T(x, ) as © and ¢ tend 1o zero is 100 if the approach is made along
the z-axis and 0 if the approach is made along the {-axis, and a
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similar statement applies t0 the end £ = L. A reasonable com-
promise between the two extremes suggested above consists in
replacing the inilial values at the ends by the average of the two
limits approached in the #- and ¢-directions.

This modified proeedure leads to the following calculated results:

4
f l l l
0 .

[} (15} (3t (ua {a} e
11

Figuze 3. 6 N\

The exact solution of the problem cons1dered can be obtained

in the form R\
‘.' N nirinlf
Tz, z)_@ Zw.SCosmrsinﬁﬂe i
T \ 7 L

from which true va.lue‘s\borrespondmg to the preceding approxima-
tions arc found as follows:

Ficurs 3.7

It is seen that, even with the usc of only four intermediate division
points, re&sonably accurate results are obtained with very little labor
in Flgure 3.6.
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For a rod of length I = 1 ft and diffusivity «® = 0.01 sq it per
hr, there follows k. = 0.2 f§, and from (222), we find that the time
scale 1s then piven by A, = 2 hr.

In place of prescribing the temperature T at an end of g rod,
one might, preseribe the rate at which heat flows through Lhat end.
If this rate of heat flow is denoted by ), the relevant end condition
would then be of the form

Q"
N\S ©
where K is the thermal conductivity of the materiahland A the
cross-sectional area of the rod. Here § is positive ifythe flow is in
the positive z-direction. Thus, if heat were inﬁrbduced into the
end z = 0 at a preseribed rate @, an end condition relevant to the
difference-equation formulation would be ijﬁic form

O\
o _ QR XS ar \
T]_ TU - K—’{i‘"—; h E 0' (225]3)]

It is important to notice tl:gat-r 0o increase in complexity is intro-
duced in the approzimate caleulation if we modify the problem in
such a way that the presembed temperature (or rate of heat loss)
at an end of the rod dgpies with time in an arbitrarily specified
Inanmner. O

3.15. The twg-{limensional heat-flow equation. Transient
flow of heat is\& homogeneous, isotropic medium, in which the
temperature.'{ﬂepends upon two rectangular coordinates z and ¥,
and upor’t\\ﬁi}\né t, is governed by the differcntial cquation

RN\ T o, f 92 o ;
~O Elad ((?3—:6 + %) (220
\ 3

In the usual problem, the temperature 7' is preseribed as a funetion
of 2 and ¥ over a two-dimensional region at the time ¢ = 0, and
theﬁ temperature distribution along the closed boundary is pre-
seribed for all time 2 > 0. The resultant temperature distribution
is then required as a function of x, ¥, and £.

. If we introduce the increments hey ky, and ke, and proceed as
in the preceding section, it is readily verified that when these incrc-
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ments selisfy the relation
kot = Rkt = dath, {227

the approximating difference equation reduces to the convenient
form

T, g, L+ h) = HTG + hoy 9, 0 + T — by, ) A
+ T,y + by ) + T,y — by ] ((328)

S\
Thus, if we consider the pattern of Figure 3.8, equatibh (228)

states that, when the increments satisfy (227}, the {;eﬁnp'érature at

L 9

<
A5 EANNANENSORSN RN SN
\ \ N
p \/ §
N N X QX NN
R J
N TN N
I 3 OO C‘)i—' \ N
~ ™ N
.i"‘;\ § AN
__._027_..’ \\ Q —] S
] > — AN
FIG@:&E\ 38 ' Figuzs 3.9

7'\NW
point 0, -L\{\mmo { + hy, is merely the average of the tempe.raturcs. ab
the foui'.: adjacent points 1, 2, 3, and 4 at the time & This relation
canshe written in the abbreviated form

T = é (Te+ T2+ Ts+ Ty) , (229)

t+he

In order o illustrate the numerical treatment of actual problems,
we consider the region indicated in Figure 3.9. Initially, we SUI;'
pose that all points in the region are at the temperature 100°.
Then, we suppose that the temperatures along the inner boundary
are abruptly raised to 300° and maintained at that temperature,
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while the temperatures along the outer boundary are maintained at
160°,  (As will be seen, the more interesting case in which the inner
temperature is ralked continuously, in a specified way, from 100°
0 300° can be treated just as easily.) From the physical symmetry,
it is elear that we may restrict attention to the shaded portion of
the region indicated in Figure 3.9.

At the time £ = 0, we take as the temperature along the inner
boundary the average of the initial value 100° and the immediatel$n
following value 300°, so that the initial diagram appears as follows
{with the indicated choice of division points): R\

Figure 3.10 3

The diagonal line at the left, and the last vertical Yine at the right,
are to be lines of symmetry, and the values at the indicated relevant
points outside the region Atmder consideration are to be determined
accordingly. &V

The approximats. !}mperature distribution after the time incre-
ment k;, determinpd“in terms of the physical spacing by (227), is
obtained by tl;e }r\veraging process (229} as follows:

Figure 3.11

The starred values are obtained by symmetry, after the interior
values have been obtained by the averaging process. The tem-
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peraturcs along the inner (upper) boundary, from this stage onward,
are given their true prescribed values. After a second averaging,
the approximate distribution when ¢ = 2k, is obtained as follows:

s} —{dw}—so0}—{ 5]
- 1
L1co* }— 12 I;| 156 — 162 162 \
- .

'__J_I ] [ 4
100 106 {106 |— 106
T T

Freurn 3.12 R
o,

2

If the outside dimension of the region in Figuré 3.9 were, say,
4 ft, the spacing h. = h, would be ¥ ft, and, for\a* material of diffu-
sivity «® = 0.01 sq ft per hr, the corresp\ﬁ@ding time inerement
would be b = 2.77 hr.

It is of some interest to consider g physical basis for the actual
difference-equation formulation of thig'beat-flow problem. For this
purpose, the material of the &0
relevant region can be consy® /
sidered as possessing two prop- /
ertics: that of heat cowiﬁc}ion
and that of heat  aBsorption. 4
The (uniform) thigkness of the ‘
physical body, in€ke direction \ gg
Defpendicular.fbb“ the planes in \ 3 & 0 ! \
which hegf )flow ogeurs, is
denoted By b, In place of
studying*the actual continuous
bodyyave substitute for it a net- / /
work of point masses inter- /
Connected by conducting rods Fraure 3.13
(Figure 3.13), associating with .
each interior vertex point an effective mass p %, where p s f:he mass
density of the material and % is the net spacing, and associating with
€ach interior rod the effective cross-sectional area h b. Thus, in
Figure 3.13, the material of the shaded square surrounding the point
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0 is associated with 0, in so far as heat absorption is concerned, while
the four rods connecting 0 with adjacent peints are considered to
comprise the material in the respective shaded strips, in so far as
heat conduction is concerned.

The rate at which heat is conducted in the positive z-direction,
elong any rod, is given by the quantity — K A(07/9x), where K
is the thermal eonductivity of the material and A is the cross-
sectional area of the rod. In particular, in order to obtain {Be
rate of heat flow from 1 to 0, we replace 37/dz in the C(')Il!l&&tirlg
rod by the constant value (T, — To)/h and write A = hiand so
find that the rate of flow from 1 to 0 is given by K 5(7; M. By
considering the other rods leading to the point 0 in 4 similar way,
we deduce that the rate @, at which heat i beingﬁQRﬁlucted to the
point 0 at any instant is given by the expressigns)

~NY;
Q= EWTy+ T2+ Ts + O 4T0), (230)
But also the rate of increase of, ﬁlié.tempemturc of the mass
p b h? associated with the point 0 isigiven by

9To 3 Qo
ot spbhR?
"\

where 5 is the speciﬁé\ﬁéé{ of the material, and hence there follows
(to a first approximation)
O
N g, = SO,
\:\ Qo i Ty
A

Whe}‘g he'is 2 time spacing.  If we recall that the diffusivity «® is
dgl\ig‘ed by o = K/sp, and choose h, in such a way that (227) is
Safistied, the result of equating the right-hand members of (230)
and (231) is Precisely the difference equation (229),

'{‘hese physical considerations are frequently useful in inter-
preting the results of the approximate analysis, Thus, for example,
it is of interest to determine the approximate rate of heas loss (as a
function of time) through the shaded region of Figure 3.9. With
the approximate data of Figure 3.12, the rate of heat flow through
the rods extending from the inner boundary of one-eighth of the

s ) (231)
L -4
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entire region after 2k, units of time is given by

[(300 — 156} + (300 — 162) -+ (300 — 162)
+ (300 — 162)]Kb = 489Kb.

Only one-half the flow through the right-hand rod is considered,
since only a half-strip is associated with that rod in the region
under eonsideration. However, the material to be associated with
the rod extending from the inner corner to the point at tempega,\t‘lue
156 in Figuve 3.12 consists of the diagonal half-square at,ifs Teft
and the vertical half-square at its right, so that the flow, through
that rod receives full weighting. The {(approximate) total rate of
heat loss from the interior of the complete region{i% then eight
times this result, or 3912Kb, at the time ¢ ='2h, Finally, the

so-called thermal resistance at N\ d
that instant, defined as the \’ :.\_/o
ratio of the constant tempera- N\,
ture difference between the O
inner and outer faces to the o
total rate of heat loss, is given o0
by 0.0512/Kb. \\)
~N = o @ o
In place of prescribing the | A 0 A
temperature itself over (the
boundary of the  physical
vegion, when ¢ > 0, éne might _
Prescribe the rati ot'heat flow o
vormal to all/p“part of the —°
boundary. \Xhe preceding dis- d
cussion indieates the modifica- Frooug 3.14

tiong Iléc'éssa-ry in such cases.

Uypaxticular, at a point on an énsulated boundary, there must be no
netvflow outward in the direction normal to the bOU:DdaTY- .T}ﬂs
situation can be achieved by asscciating with each point 4 ad._;racenf
to such a boundary point 0 a symmetrically placed image point 4
4 the same temperature (Figure 3.14). Thus, for example, the
Procedure of Figures 3.10 to 3.12 would also be employed to §olve
the problem in which the right- and left-hand boundaries are snsu-
fated boundaries, rather than lines of symmetry; that is, the solu-
tions of the two problems are identical. It should be noticed that
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the requirement that the temperatures at 4 and 0 he equal, so
that there shall be no fow in the rod joining these points, is net
physically appropriate (unless the boundary points adjacent to 0
happen to be at the same temperature 2s 0) since the prwsihiliby of
flow from A to 0 and thence along boundary vods (or vonversely)
should mot be excluded. The difference between the solution
corresponding to this requirement and that eorresponding to the
preferred one would, however, tend to zero as the spucings were
continually reduced. \

Unless the boundary of the relevaut region is of u specidlform
(such as a square, a rectangle with sides commoensuraify with a
convenient spacing, or a figure bounded by a portiad «f such &
boundary and one or more suitable lines making andangle of 45°
with the remainder of the boundary), it is usually tmpossible to
constract a square net in such a way that itg Bundury points all
coincide with points of the actual boundasgy” Methods of deter-
mining appropriate values to be assigneddo outer points of the net
which do not fall on the boundary (and’taking into account con-
ditions jnvolving the normal derivafive of the unknown function in
such cases) are considered in Sé;;jtion 3.18. In some cases, it 18
convenient to transform the prlrib’lem into one invelving boundaries
which are rectilinear {or ngarljr'so) by the use of conformal mapping.
An example of this progeditre is given in Section 3.19.

3.16. Laplace"seifuétiﬁn in two dimensions., Steady-state
flow of heat in ghhomogeneous, isotropic medium, in which the
temperature dgg'ends only upon position specified by the rectangular
Goordina,tes’;{:gnd ¥, is governed by Laplace’s equation:

"'\50
© o1 o1
~N dx? ay?

:.\’.

0. (232}

\Ifr this ecasze, the values of the temperature 7 or of the normal
derivative 87 /dn are usually prescribed at all points of the closed
boundary B of a region R, and the temperatures at internal points of
R are required. The former problem is known as the Dirichled
problem, the latter as the Neumann problem.
If equal spacings are taken in the z- and y-dircctions,

B = hy = h, (233)
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. the approximating difference equation takes the form
T, y) = AT +hy) + T —hy)
T T,y + )+ T,y — B)], (234)
or, with the notation of Figure 3.15, _ '
To = HT1+ Ta+ Ts + T (285)

Thus, when equal spacings are chosen, the difference equation
requires that the temperature at any interior point be the average
of the temperatures at the four adjacent points. A\

L% is known that the solution of any transient heat—ﬂ.(fw’i)roblem,
in which the prescribed boundary temperatures donbt vary with
time, tends in time toward a solution of Laplace’s equa-

tion which takes on the pre- NS
scribed boundary values, and \’ o5
that only one such solution

can exist. This fact indi- D

cates that if we start with 'jf:"

any assumed temperature o\
distribution at interior net
points of the region R, anQ’“ O o
repeat the averaging process
corresponding to (229)siffi-
ciently often, the réshlts of
Successive avergging proc-
esses  will 1énd to the
solution of (the difference- 02
equation formulation of the Ficurs 3.15
steady=stitte problem. .
"Ffequent-ly it is possible to guess the required steady-state dlfr
tl‘ﬁ)ufion to a fair degree of accuraey, and to improve the approxt”
mation by a sequence of averaging processes until a repetition of
values indicates that satisfactory accuracy has been obtained.
Unfortunately, the convergence of this mefhod is usnally slow. 'A
fore flexible method, which often permits a very great-_ decreafe o
the amouns of necessary calculation, is outlined in Sectlon‘B.l 7.
However, in order to illustrate the method just deS_cI'lbed: we
tonsider the determination of the steady-state solution of the prob-
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lem dealt with in the preceding section. The result of such a series
of caleulations is presented in the following table:

*

200
212
208 | 00 —— 300 —— 200 — 3001
213 T
2| ;
213 | ' i
1 N
. / i 'o\..'}
150 200 200 200 200 200) L {200
150 175 212 212 212 a2y | o
138 181 209 218 218 | {2k 218
140 / 174 213 220 222 NN Y 222 222
136,/ [174 213 226 230/ 231 230
(¥ ]
1/ I
150 150 150 1504 [ 150 150 150
125 150 150 | 3o 150 150 150
-5 125 138 183 | |3 163 158 | 1183
119 140 15045% | 156 156 156 156
/ 18 16|  fase 160 164 165 164
100 100 106, B 0 1 @ @ 100
\< Fraure 3.16

The entry at ghe’top of each column denotes an initial *‘ guess,”
while succegding entries denote the results of successive averaging
processes{{%The omitted entries correspond to the results of cight
suchp\&;l’es of operations. In each case, the entry in a given cyele
igthoaverage of the four neighboring entries in the preceding cyele.
Hexé, a total of twelve cycles was required before all entries repeated
themselves to the three significant figures retained.

If the procedure is modified in such a way that the entry in a
given cycle is the average of the most recently caleulated values of
the four neighboring entries (so that entries in a cycle affect certain
succecding enfries in the same cycle} the rate of convergence is
increased.  Here the rate of convergence depends upon the order
in which the new entries are made. In particular, by proceeding
first from Jeft to right along the upper row of interior points, and
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then from left to right along the lower row {(entering valucs at
cxterior points immediately after symmetrically placed interior
values have been caleulated), we reduce the requisite number of
cyeles to six in this way.

It may be expected that further reduction of labor would result
if 1t were possible, at each stage of the process, to determine those
entries which differ most from the aetual limiting values, and to
concentrate primarily on improving those entries. A procedus
which tends to accomplish this purpose, and which possesses certgin
other additional advantages, is described in the following seelions

3.17. Relaxation methods and Laplace’s equation. As
applied to the difference equation (234) or (235), the so-called
“relaxation” method associates with each interiol ‘node of the
square net a “residual” R, defined by the equation,’

/

Ro = Ti+ To+ Ts + To 24 (236)
The difference equation (234) or (235) thgri:n\equires that the residual
at each <nierior point D
vanish. Suppose that N\ @
L , =N 4
an  mitially  estimated N
value of 7 is associated "

with each net point, and /&
that the corresponding (5"
_ po i

residuals arc also tabis

lated. 1f now at auly n- @ f_f4\ @
terior not polit (blfeesti- 3 o :
mate 7'y is modifiéd by a

eeTtain amolyit, and the

estimatesCat all other

point’-s{é-r'é unchanged, it

follogws’ from (236) that
Fl}eresidual at that point 2
18 decreqsed by four times Frevre 3.17

that amount, whereas )
the residuals st the neighboring point 1, 2, 3, and 4 are mc'rea:?ed
by that amount itself. Thus with the differenc.e zlequat-l(?n
under consideration, we have the “relaxation pattern” mdlca.ted in
Figure 3.17, which specifies changes in residuals corresponding to
& Unit increase in the estimate To. o

In general terms, the relaxation method then consists In con-
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sidering, at each stage of the calculation, that point whose residual
is of greatest numerical value, and modifying the estimate of the
associated value of T at that point in such a way that the magnitude
of that maximum residual is decreased.

In particular, one might remove (*‘liquidate’) the residual at

“the point 0 complefely by adding to Ty exactly one-fourth of the
residual Ro. However, this procedure is rarely useful except near
the end of the over-all caleulation, since new residuals will be intros
duced, in general, when the neighboring entries arc subsequently
modified.  Since the algebraic reduction of a vesidual at (m?fve 11
point is accompanied by an algebralc increase in the ne;ghbormg
resxduals, it is usually advisable to “overrelax” a potat O (that
is, to add more than one-fourth Ry, so that the 1(\31(@*11 at 0 changes
its sign) when the predominating residuals at theMigighboring points
are of the same sign as Ry, and to “underrelan®” 0 otherwise. In
this way, we tend to cause the residuals to, difier in sign from point
to point, as is usually desirable for the pu.rﬁ)se of rapid convergence.

It may be noticed that, unless the telaxed point is adjacent to a
boundary, the algebraic sum of thetresiduals is unchanged. How-
ever, gince residuals are not, calcmatcd for boundary points, the net
over-all residual 4s modificd wiieh a point adjacent to a boundary is
relaxed. Thus it is appafémt that, when the residuals are pre-
dominantly of one signg ‘thie net over-all residual can be decreased
only by etfectively m6ying residuals to the boundary.

A useful physmal interpretation of the relaxation process, as
applied to the s.tsady-state heat-flow problem, is obtained by com-
paring equatishs (236) and (230). Since the residual R, at any
interior net point 0 is identical with the quantity Qo/Kb, it follows
that the(re idual at 0 is proportional to the rate of which heat would
be COIAductcd to 0 if the temperatures at the net points were in

aecordance with the estimated values. Thus the presence of a
ﬂegatwe residual at an interior point would correspond to the
presence of a “heat source” at that peint. The relaxation process
can accordingly be visualized, in this application, as essentially
“balaneing out” interior sources and sinks and moving excess
sources (or sinks) to the boundary of the region.

In order to illustrate the process, we consider the situation in
which 7' is prescribed as zero along one foot of an isosceles right
triangle, and as 100° along the remainder of the boundary. The
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temperatures at interior points (in the steady state) are required.
For simplicity, we introduce only the three interior points 4, B,
and € of Figure 3.18. Initial estimates are made at each of these

>
%/ A e
Q ¢\
%

S A O

T N

-
&/

5 5 \
O
T=0 ‘{>
Fraure 3;18' o .

points, and the corresponding resiéﬁé]s (indicated in parentheses)
are calculated, as is shown in Flgure 3.19. A typical sequence of

relaxations al the three interfer points is indicated below.
M\

+10
80{30} \\80(30) 80(45)
G| +15 - |
S0(30) L50(50) 5O(48) [ | 65(—10) 65(—16) 65(5)
’ Step 2 Step 3
81(1} 91(0)
65-3) =] 66(D) 61y || 86(0)
Step 5 Siep 6
Ficurz 3.19

In each case, the amount added to a particular entry is tabulated
lmmedlateh above that entry.
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In Step 1, we notice that the point € has the largest residual {(50).
Since the neighboring residual is of the same sign, we overrelax ¢
by adding 15, to obtain the array of Step 2. At this stage, B has
the largest residual (45). Since the larger of the nelghboring
residuals is of the same sign, we again overshoot zero.  In the third
step, we underrelax A, to obtain the array of Step 1. IHere we
simultaneously relax 4 and C, and after one further step, arrive
at the final results. The final residuals are then checked{by
equation {236), in order to expose possible errors in the intermediate
caleulations. In case the existence of such crrors is digeO¢ered,
the process is merely continued until the corrected residuals arc
removed (to within the tolerance adopted). N

In actual practice, the successive steps arc us(la,lly carried out
on a single diagram, the successive entries (O Jcorree tions) and
residuals at each point being arranged in s dwumn. Since inter-
mediate calculations are of no ultimate jAterest, it is often more
convenient to enter fixed boundary v alueb\n ink, and imterior values
and residualg in pencil, and to alter ,thc%o entries by erasure as the
calculation proceeds. It is desirall®, in a lengthy caleulation, to
check the residuals completelyifrom time to time (taking into
account the fixed boundary wglues), in order to avoid prolonged
propagation of numericul etrors.

The great advantage(c 5§ the relaxation method over the averaging
process discussed in the | preceding section consists in its fexibility.
While the successive steps could indeed be prescribed in a fixed
manner, in suph<d way that the method becomes identical with
the averaging process, even a limited amount of practice permits
one to dI;\hover special devices and “rules of thumb” which tend to
improve the rate of convergence of the iterations. The possibility
of overshootmg or undershooting zero residuals, and of concentrat-
ang at each stage on that point at which the difference equation is
[aast nearly satisfied, is particularly valuable.

A special techmque which is very useful when the residuals
at points in a certain region are predominantly of the same sign, is
usually referred to as block relazation. In this operation, all entries
corresponding to a chosen connected sot of interior net points are
simullancously modified by a certain amount. Tor example it 14
casily verified that if all entries in the block indicated in Figure 3.20
are increased by unity, the residuals at these points and at neighbot-
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ing points are modified as shown. It is convenient to speak of &
net line which extends frem a point in a block to a point sufside
the block as a “free line’ of that block. With this terminology,
the following rule of block relaration is readily established in the
general case under consideration:

If each eniry in a block is increased by unity, the residual af any
point of the block is decreased by the number of free lines leading from

N

+[I +‘| A
4 \..'

H—@—@“‘H \‘s\

+1 @ @ @—*-H\\ v

+L A0 #]

o Treurs 3.20
that poinf, q’n@&‘é residual at any point adjacent to the block is tncreased
by the numiber of lines which join that point to points in the block:

In garticular, if all interior points in the region under consider-
ath\?‘;‘r""é relaxed as a single block, so that the “iree lines” lead only
to béundary points (at which residuals are not calculated), the
increase of each entry by unity is accompanied merely by ’the
decrease of the residual at any point by the number of lines joming
that point to boundary points. The net decrease in the over-all
residual is thus equal to the total number N of lines joining boundary
points to interior points. .

Tt is often convenient to initiate the relaxation process by first
caleulating the net over-all residual £ R, corresponding to the



300 DIFFERENCE EQUATIONS 8317

original estimates, and then increasing the estimate at cach interior
point by approximately (2 R)/N, so thut the new mean residual

is approximately zero.
A f Thus, in the example of Figure
_.....@__ 3.18, the initial total residual is

30 + 30 + 50 = 110 and & = 8 so

that (% B)/N = 14 to two signifi-

cant figures. The block relaxatigh,

pattern, giving the changes Nh

] residuals corresponding to awiiheyer-

—-—@—-———@ —— all increase in the entrics, isgiven by

B G Figure 3.21. Thus, if ¢&eh interior

| ! entry in Fieur ON 7 )

¥ 1 Figure 3,18 i increased by

Freure 3.21 14, the residuals aﬁ"t}m points 4, B,

and € are decreased by 42, 28, and 42, respectiveigyand the new array

of entries and residuals is as given in Fi ire 3.22. Two further

relaxations then lead to the final result\(when only two-figure

accuracy is required). O
In applying relaxation methods) it is

usually desirable to start the prosess with

relatively few interior points,f;}nd to pro- | 64(2) |—| §4(8) ]
ceed su.ccessivgly to finerfets by add%ng Froune 3.22

new points (either thlzqu@hout the region

or only in areas where rapid transitions occur) after each series of
relaxations. O\

:\“ x X +

- - \ v —e . /.

, \’\ ) X—)|<—)<—K \+ 4
. "'s"':"." v—)i(- _I_.. .< >.//

".w _| |_i_|‘_ .
) I . OO AN
V A AT T NN
. [ |. PN B R N INSNAN,

(a) {b} (c

Frevre 3.23

Thus, in the illustrative example of this section, the initial net
(Figure 3.23a) could be refined by halving the spacing throughout
(Figure 3.23b), and hence obtaining a similar net with 21 interior
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points, or by merely introducing an additional point at the center
of each initial square (Figure 3.23¢).

The new net obtained by the latier method, which contains &
interior points, is seen to be diagonal to the original net. Iowever,
since Laplace’s equation is invariant under a rotation of the eoordi-
nate system, the busic relation (236} can be applied equally well to
the new net.  In any case, the caleulated approximations at the
initially chosen points may serve as starting estimates in thé >
following process, and a starting estimate at esch added point, tan
be obtained by graphical interpolation or, in the case of the, sbeomnd
refinement, by calculating the average of the four (previously
approximated) adjacent values. A

By judiciously combining the basic averaging pg‘bpeés with the
more flexible relaxation procedure, considerablddabor ean often
be avoided. In particular, we may notice that' the point B in
Figure 3.18 is at the center of a square of\fsiae 2h, all vertices of
which lie on the boundary. TIf the vali€ of T at the right-angle
corner is taken to be 50 {the mean of ‘tHe two limits approached
along the edges), the temperature af"B may be estimated as the
average of the temperatures at diagonally adjacent points: (100 +
100 4 50 + 0)/4 = 62.5. Con;és'ponding estimates at 4 and C
are then immediately foundids the average of values at adjacent
points, to be 91 and 66, fespectively. With these starting values,
a single relaxation lead\b\\to the final (two-figure) result for this nef.

It may be rcmarkbd that the possibility of using triangular and
hexagonal nets, sédell as taking into account corrections to the
approximation/gf an nth derivative by an nth difference, has been
congiderad N{’.It};e literature (see Reference 5).

In t-l‘lq"ﬁ)llowing section, a brief account of the treatment of
ir regularboundaries is given.

{338, Treatment of boundary conditions. In most bound-
arysalue problems governed by Laplace’s equation, the boundary
condition specifies either the unknown function, say T, or the
normal derivative 97/on at each point of the boundary. In more
omplicated cases, a linear combination of these two quantities
may be preseribed, or 7 may be prescribed along part of the bound-
ay and a7/an along the remainder. In this section we cm;xslder
the treatment of such conditions with reference to the al?proxnmatw
formulation of the problems in terms of difference equations.
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Boundary-value problems of the first kind, in which the unknown
function is prescribed along the complete closed bhoundary of a
region, ordinarily present no essential difficultics (except at corners,
where difficulties already discussed may exist} when the boundary
points of the net coincide with actual houndary points, DBoundaries
for which this last situation does not exist may be culled drregular
boundaries, and boundary points of the net which do not lie on the
true boundary may be termed drregular potnts of the net.  Itis with
the treatment of such points that we arc here concerned, While
more or less elaborate methods of dealing with these po}n\téﬁave

4 been  proposcd, (cxperience
? indicates that{the use of
77775} rh relatively si@p'le methods is
Al to be pralérred, since the

corresp\onding inaceuracies
tend t0 disuppear as the net
I sh is{afined.

01’ > In a region such ag that
~2vof Figure 3.24, which is
A% adjacent to a boundary, the
calculation of the residual at
. the interior point 0 may in-
o N volve the values of T at one
_j B\l or more irregular points such
as points 1 and 4. If we
y suppose that the spacing A is
sufficiently smmalthat the function 7 is nearly a linear function of
and y in t{é‘t"region, we may obtain approximate values of 71 and

1)

N\

FIGngﬁz:S:Qé

T; by ligéar extrapolation (or interpolation, if these poinis lie inside

the fc-;'\lie"bounda,ry), in the form

. Te=T, + 1—1_;» (T — To, (237)
Ti=Ts+ 12— (Ta — To). (238)

Here the ratios r and s are to be taken as negative if the points
4 and 1, respectively, lie inside the true boundary. The values
T4 and Ty are agsumed to be prescribed. Two possible relaxation
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procedures are then suggested, of which the first is usually to he
preferred.

In the first: place, we may estimate 7" initially at afl points of the
chosen net. In the absence of further information, the value of 7°
at an irregular point may be taken as the prescribed value at the
nearest boundary point. The boundary points of the net are then
held fixed, and the inner points are relaxed until their residuals are
liquidated. At this stage, corrected estimates at irregular points(
may be obtained by the use of extrapolation. The resultant
residuals at interior points are then again liquidated, ap.( ‘the
process is repeated until no further changes occur. Usually/only
a small amount of recaleulation is needed, and it may b;;if:iftaferable
to apply the correction only after transition to a ﬁHQIy spaced net
hag been made. \Y;

Alternatlively, in the case of the configuration of Figure 3.24,

we may use (237) and (238) te eliminate Ty a\nﬁ‘ 1 from the expres-
sion for the residual at the point 0, to rediide the expression
Ry = Ty + Ty + Tk T4 — 47 (239)
to the form N
i

Ry =

1 A\
1_.rTA+'1—_.-sTH.‘l"T‘2+T3

O
S (i Fri)re e

1 —r

N\

The points 1 and™ay then be omitted from later consideration.
Equation (240)pérmits the initial estimate of the residual at 0;
it must then(be noticed that whereas unit increases in 7' and i_f’a
each lead{th unit increases in Re, as before, a unit increase in
the estimiated value of Ty now leads to a decrease in Ro given by
4\:12%‘{‘—?. + 1_8"7)’ rather than 4. That is, in addition to
modifying the initial caleulation of residuals at points adjacen't to
irregular points of the net, we must form an array of modified
relaxation patterns for certain points, Irregular points are then
not involved in the subsequent relaxation. N
In dealing with a boundary-value problem of the secont:l kind,
where the derivative of 7' normal to the boundary is prescnpt?d at
all points of a closed boundary, we encounter certain additional
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difficulties. We consider first the simple case in which » portion
of the boundary considered is straight, and such that boundary
points of the net fall on it (Figure 3.25). With the notation of
Figure 3.25, the basic condition to be satisfied at g boundary point 0
can be most simply approximated by the difference condition

To— Ty = i (g) - (241)
L} N\

If T were a linear function of distance along the line joiningpgints

3 and 0, this condition would be in complete agreemeut\'{\ ith the

exact one.  Maragencrally,

;’ﬁl R a.nd“i’f} represent
Z respectively’ ¢he values of 7
; at a b()uliﬁ&l')f point and at
o an interior point which lies
f on the normal to the hound-
’ m‘} at the boundary peint,
_..fl, & o. Cand at a distance d from that
E ;0 24 point, the corresponding
/ 3 condition could be taken in

/ N\ the form
7 & Ty~ T, = d (‘;_i)b (242)

&

‘7/(132\ For irregular boundaries,
Fredae 3.25 two such net poinis are

o\ usually not available, and

further ap:piemmations are needed, as will be discussed shortly.
For\ tlar boundaries of special types, a condition which is
both gigre nearly accurate and also more conveniently used than
(»2«4‘1}: tan often be derived. We again restrict attention Lo the
‘cage m which the governing differential equation is Laplace’s equa-
tion, so that the problem may be interpreted in terms of steady-
state heat flow., We may notice first that since interior heat
sources and sinks eannot be present, it follows that the net rate
of flow of heat through the entire boundary must be zero, so that
0T /on = —Q/KA must be so prescribed that its mean value along
the entire boundary is gzero. Also, it is clear from physical con-
siderations that in this case the interior temperature distribution
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is not uniquely determined, since any constant temperature may he
added at uall points without affecting the value of the normal
derivative at the boundary. However, it is known that the solution
i3 unique except for such an arbitrary additive constant. Thus,
the temperature at any conveniently chosen interior point may
be arbitrarily specified, after which the entire distribution is
determinate.

For the boundary point 0 of Figure 3.25, the rate ¢, at whick {
heat flows oufward from the boundary (through a ‘“‘rod” of cross{
section 4 = b k) is given by the equation PR

Ny

QU = (T — To) — % (To — Ts) — 5 (T{. Tﬁ N
ar ‘u.\

Kb

one-half the flows from 0 to 2 and to 4 beiﬁ:g*\ccnsidered sinee only
half-strips are associated with boundary reds. At boundary points
where T is prescribed, equation (243) \derves merely to determine
the rate at which heat is taken away »{or supplied, if @ is negative)
at points of the boundary, and, does not enter into the actual deter-
mination of temperatures. owever at a boundary point where T
18 not prescribed, equa; gh. ‘(243) may be taken as the physically
motivated condition whibh requires that the rate of outward flow
normal to the boundapy at such a point take on a prescribed value
€. Also, since ave“have the requirement @o = — Kb h(aT/0n)0,
We may write.(,g'is") in the form

Q 1 1
L 5 Ty + 3 T, —E:igw: (243)

o oT
3 ‘1“ (Te +27:4+ T4 — 4Ty = — (an) (244}

{ ‘\
‘Ii e now introduce a fictitions heat source or sink at the
exterior point 1 of Figure 3.23, at a temperature T such that

_on (T (245)
T, — Ty = 2h ( an)

the requirement that (244) be satisfied is equivalent to the require-

ment that the conventional residual

Rn = T:L + Tz -Jr T_3 + T4 - 4Tu (246)
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shall vanish. Thus, we essentially extend the region of definition
by introducing external points, and deal with points on the actual
boundary as interior points of the extended region. Whercas the
condition of equation (241) is exact only when 7' varies linearly
near the boundary, the condition of (245) is exact also when T
varies parabolically. In particular, for an tnsulated boundary, this
procedure reduces to the introduction of tmage points which was

discussed at the end of Section 3.15. N\
Clearly, the fictitious point need not he considered if we replace
(246) by the definition D)

"\

Ro=Ty+ 2T+ T, — 4T¢ + 2 (31); (247)
W
and associate this residual with the boundary Point 0. The pre-
scribed quantity & (37 /9n), then enters only. to the indtial calcu-
lation of R, and the subsequent relaxation Phattern is modified only
in that a unit inerease in the estimatedalue of T3 now leads to an
inerease of {wo units in R,. . O

We may notice that the precedifig equations define the residual
ab & boundary point where 7' is afob preseribed as fwice tho net rate
of heat flow (in units of Kb)Jinto such a point., This definition
merely weights the error emmitted in failing to satisfy (243) at
a boundary point by a f@c}or of two, and hence does not affect the
array of approximate\t\éiﬁpemtures to which the relaxation process
leads. It should be*noticed that (247) is relevant only to Laplace’s
equation. Howetdr, (245) may be used to obtain similar definitions
in other casege\/

The success of the preceding procedure is seen to be a conse-
quence of>the fact that the line Joining the points 3 and 0 is normal
to the botndary. n the case of an irregular boundary, the general-
ization of this formulation usually leads to a rather elaborate and
donfusing relaxation pattern, and it is usually preferable to general-
ize the simpler condition (241) or (242), making up for the resultant
loss in accuracy by proceeding to a finer net spacing, We next
discuss one such generalization.

Figure 3.26 represents a situation in which one outer point of
the net falls outside a curved boundary. A line is drawn through
this point, normal fo the boundary, and is extended until it interseets
a mesh line, which lies completely inside the actual boundary, at the
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point P. If this normal intersects the boundary at the point B,
and if & linear variation of T' along the normal is assumed, the
temperatures at the points 1 and P are related (approximately) by
the equation
T
Tl - TP = d (E)B’ | (248&)

where d is the distance betweeﬁ the points 1 and P. If also we,
assumc & linear variation of T along the line joining the points.

)
-
‘}‘.
|
—)
|3
. \;“ Frauxe 3.26
0 and 2, there.\fﬁﬁéw;s also (by linear interpolation)
O T = P (T — T, (248b)

Wh‘?!{l ?;18 the ratio of the distance from 0 to P to the spacing A.
Th(‘\qﬂlantity 7'+ can then be eliminated between (248a) and (248b),
o give the relation

ar
T1=(1—?‘)T9+TT2+d(%' H' (249)

This relation is easily remembered if it is noticed that it is equivalent
to (242), where T, = T» is the weighted average of the values of T
at the extremitics of the mesh line intersected by the normal.
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By introducing (249) into (246), we obtain an expression for
the residual at the point 0, in the form

al C’j()'” ~
Ro=Q+nNTe+Ts+Ti— B+ 0T+ d (;';‘r_&_) - (250
n
The use of this expression permits omission of the irregular point
1 from further consideration. However, the initial caleulation of
Ro and the subsequent relaxation patterns relevant to neighboring

points are both modified.

O Figure 3.27

It is seen $hat'the normal at the boundary point B may instead
intersect thelhorizontal kine extending to the right from point 2
in Figure\8:26, in which case (250} will be modified in such a way
that 1;}1:8 value of T at an additional point is involved. Further
glqdiﬁcation will occur if more than one of the net points adjacent
toy0"are irregular points of the net,

While (248a) is exact if T is a linear function of the distance
along the normal at B, it will be exact also for parabolic variation
along that line if the point B happens to bisect the line connecting
the points 1 and £, and will afford a good approximation to the
true requirement if B nearly bisects that segment. It is clear that
the normal could instead he terminated on a diagonal line, as is
indicated in Figure 3.27. The corresponding modification of the
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definition of R is easily determined. While this procedure involves
interpolation over somewhat shorter intervals, it tends to introduce
a greater number of points into the relaxalion patterns, and to
further complicate the calculation. [ 2

In order to illustrate the use
of the method outlined, we suppose
that a portion of the boundary
under consideration is a guadrant
of a circle of radiug 2k (Figure
3.28), and that along that arc it is
prescribed that A (87 /8n) = 50sin 4,
where 8 is the polar angle in-
dicated in that figure. By con-
structing the indicated normals
at the outer points 1 and 4, and
proceeding as outlined above, L&
approximate expressions relating 7 and{Ty to interior values of T
are easily obtained in the form >

, :ZQFEGURE 3.28

1 1 5 RN 1
T]:§T0+§T£+T~:6’0‘75—§T0+2T2+251
1 1, ~Q5 2 1 1 _
_1 Lo &NV 50, 2 =27+ 2 Ts + 50,
T, 2Tu+211\3\*q7.’2 50 5 2 n+2 3

N

following form{“‘ _

Ry = (11,7&-‘4-51 4 25) 4 To+ Ta-k GTo+3Ts + 50) — 4T
~§0 + 3T, — 3T + 75,

&N . .

““Fhe usc of this definition implies the modification of the relax.a-
%n patlerns corresponding to the points 0, 2, and 3. That is,
we obtain from it the entries listed in Figure 3.29 for those pafiterns.
The remaining entries in those patterns, and in other modified
patterns, are to be obtained after other modified residuals have
been defined.

3.19. Other applications of relaxation methods. In t}:Ee
difference-equation formulation of the Dirichlet problem, N uni-

formly spaced interior points of the relevant region are selected,

and the residua,l.\'at“{;he point 0 may accordingly be taken in the
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and the N unknown quantitics in the resultant formulation ave the
values of the function 7' af those N points. Associaled with each
such point, the basic difference equation then affords a linear equa-~
tion involving certain of those unknowns, so that the resultant
problem then actually consists in solving a set of N linear algebraic
equations in N unknowns, For the Dirichlet problem, not maore
than five unknown quantifies are involved in any one equation;
the presence of an adjacent boundary point reduces this number /by

C|> . o >
O-05 @ O—gﬁﬁ
O @O

O

C Figure 3.29

unity, .ajﬁwintroduces a known quantity into the corresponding
equation.

~Dhe relaxation method can then be considered as an iterative
‘Tagthod of solving such a set of equations. Corresponding to an
initial estimate of the N unknowns, a measure of the extent to
which each equation fails to be satisfied (a “residual”) is selected.
and is associated with the point which gave rise to that equation.
Next, a table listing changes in residuals due to a undf increase in
the value of each unknown (a “relaxation pattern” corresponding
to each point} is constructed. If the residual corresponding o the
kth equation is the predominant one, the estimated value of the
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kth unknown is modified (by use of this table) in such a way that
this maximum residual is reduced, and the resultant modified array
of residuals is determined. The process is repeated successively
until the magnitudes of all residuals are within the tolerance
adopted.

- In the Dirichlet problem, the coefficient of the kth unknown in
the kth equation is large relative to the coefficients of the remaining
unknowns in that eguation. The efficiency of the relaxationy
method, in dealing with this problem, is to a large extent a conse-
quence of this situation. RAY.

’l‘he'_'prec-eding summary essentially characterizes the appﬁcat-ion
of relaxation methods to any problem which is specified, (exactly
or approximately) by a set of a finite number of hrfear algebraic
cquations in the same number of unknowns. - Whie the precise
procedure whereby the magnitudes of the geveral residuals are
eventuully liquidated is not specified, it is e)izl'}tly in this flexibility
that the power of the method lies. By ,aﬂ)i%rarily prescribing the
erder and nature of successive steps, theyTelaxation proeess can be
made to be eguivalent to any oncwef several standard iterative
methods for solving such sets oftequations. However, in conse-
gucnce of the simplicity of the ljz?;sii: ideas involved, only a moderate
amount of experience and.dngenuity leads to abilily to vary the
technique in an efficientyway, in accordance with the peculiarities
of the particular pf\\t;lém under consideration. While certain
“il-conditioned’” sebs, of equations are apparently not amenable to
eny standard itefaiive methods of solution, the flexibility of the
relaxation methed often permits its application when standard
methods failly®

Tn dea%fg with physical problems, the successive steps in the
iterativelprocess may be motivated by physical considerations, and
one\:rﬁaje’ take full advantage of information afforded by known
solptions of similar problems, or of trends or peculiaritics indicated
by early stages of the calculation.

The treatment of problems governed by Laplace’s equation is
particularly straightforward because of the simplicity and uniform-
ity of the relevant relaxation pattern. In the more general case, -
this pattern may vary from point to point in the region considered.

The application of relaxation methods to boundary-value prob-
lems governed by ordinary differential equations [see, for example,
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equations (207) to (211) of Section 3.13]is clearly a one-dimensional
specialization of the technique associated with problems governed
by partial differential equations, and will not be considered explicitly
here. However, a few further oxamples may be ciled o indicate
the scope of the applicability of these methods in the trentment
of other types of problems.

In the approximate solution of Poisson’s equation in rectangular
coordinates, ~

2 2
G IS Sy =0 O

where the unknown function ¢(z, y) is preseribed alqng‘.t-hc bound-
ary of a region and f(z, ) is a given function, thtztrusidual ab an
mnterior point 0 may be defined by the equution."‘}\

Bo=¢1 4 ¢2+ ¢3 + ¢4 — }Q‘)H— h2fy, (252)

with the notation of Figure 3.17. By po}rfl')aring (236) and (252),
we see that the solution of such a problem differs from the solution
of the Dirichlet problem only in_that the known quantity 23, is
initially added to the caleulated residual at each point. The
relaxation pattern is unchanggéd; and the subsequent relaxation
process is then carried outexactly as before.

In dealing with a characteristic-value problem, such as that of
determining values o&f\f’or which the equation
¢ 9% i
— _— = 2
7 3 T =0 {233)
possesses I%&(l’i}i:v"ial solutions which vanish (or satisfy certain other
homoge{@sms conditions) along the boundary of a given region,
we are I¢d in a similar way to define the residual

4 ~\’ ¢
N\ Bo=¢1+ b2t ¢+ d — (4 — Ah%g0 (254)

3

PN

et each interior point. Various methods of making use of the
relaxation process have been proposed in connection with problems
of this type. Such methods consist essentially in first estimating
the values of the fundamenital characteristic function ¢ (correspnnd-
ing to the smallest characteristic value of A) at the nct points,
and in then determining a corresponding estimate of the relevant
value of X\, This latter estimate may, for example, be taken as
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the average value of the ratio {(ddo — ¢ — @2 — b3 — ¢s)}/ k2, at
interior net points of the region. With this estimated value of A,
it will {in general) be impossible to liquidate completely all residusls.
However, after a certain amount of relaxation & new estimate of A
may be caleulated, and the process may be repeated until a value
of A is obtained for which all residuals are liquidated within the
tolerance adopted. Since the characteristic functions are deter-
minate only within an arbitrary multiplieative constant, and singes
the conditions of the problem are satisfied by the frivial sojation
for which ¢ = 0 everywhere, convergence to this trivial Q')l\ﬁtlon
can be averted by arbitrarily fixing the value of ¢ at a convemently
‘chosen interior point of the net. The approgimate La.lctﬂatlon of
additional characteristic functions and values of “)g\(s.s well as the
formulation of improved techniques) can be Gaged on the ortho-
gonality properties considered in Chapter { vsee Sections 1.11
and 1.24}. \

'The application of relaxation methetls $0 the solution of bound-
ary-value problems governed by hnea.r differential equations of
higher order involves more
elaborate relaxation patterns. &Y @,a
Thus, for example, corre- “\
sponding to the bitharmonde™ :
equation \\ TK @?'—-@4__@8

4 4 4
Yo o 0% LB, ' |

ozt ory
* o af\, \ P (255) T ?3 @o ®| ®9

the relaxat\-i'g\i‘pattem as30- |
clated }\jﬁh an interior point @;”7-@5
of th\e “specified region is
fonnd’ to involve the resid-
u\a,ls at twelve equally spaced @,0

neighboring  points. With Ficuns 3.30

the notation of Figure 3.30,

the residual at an inner point 0, which s not adjacent to the boundary,

is readily found to be expressible in the form

Ry = 2040 — 8(¢s + b2 + &3 + )
+ 2(ps + dr + ¢7 + ¢s) + (ds + ¢10 + ¢11 + d12).

(256)
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Thus the changes in the residuals accompanying a wnif increage in
the estimated value of ¢, at such a point are as indicated in IMigure
3.30. At points adjacent to the boundary, the difference cquation
does not apply, and hence fails to define residuals. However, along
the boundary of the relevant region, fwo conditions musi be pre-
scribed in the exact formulation of the problem. Ior example, the
values of both ¢ and its normal derivative d¢/dn may be prescribed
along the boundary. Iudhe
corresponding differente-
equation f()rlnu]u’tj@ﬁ;'.\ one
must  prescribe boandary
values of ¢ and™also (essen-
tially) relatedsolindary values
to values ¥t)points which are
adjacent™e’the boundary., In
partidular, along a regular
steflight boundary, the require-
15 . fagnt  that d¢/dn take on
’ ~&9preseribed values can be con-
/ % veniently taken into account
[9] N\ by introduecing fictitious exter-

S nal points which are images
Freume 331 (relali:;)ive Lo the boundary) of

- - ] - ‘i. ) .
Interior points adjac&@t ‘to the boundary {(Figure 3.31). If the
value \

TI2

ALY

.
s}

w
o

-~
L{e]

NS

&~ |, _ 3% 257
'\“ ¢s = ¢y + 24 (5?1)1 (257a)

g, &

is assignedite the external point in Figure 3.31, the point 0 {which
is adj&cf;:nt to the boundary) can then be treated as a completely
in@e;ic}rpoint in the extended region.

Wless nearly exact formulation, which is, however, more easily
getieralized to the treatment of irregular boundaries, clearly con-
sists in caleulating ¢ directly from the approximate relation

— e = [ OPY 57b
$1 — o h(an)l (257h)

This relation is exact for linear variation in ¢ near the boundary,
whereas {257a) is exact also for parabolic variation.
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Partial differential equations of the general form

%(a j—i’) + %(ﬁ g—;f) -F (258)
arise frequently in practice. The functions &, 8, and F may depend
only on the position eoordinates x and y, or they may, in addition,
involve the unknown function ¢ and its firsi partial derivatives ¢,
and ¢,. Several methods of applying relaxation techniques to thé™\
approximate solution of problems governed by such equations have
been proposed. A frequently useful one consists in ﬁrst.vs\fﬁ'i‘bi}:lg
(258) in the expanded form « O

7%,
S

& Gup T B Gy = F— a9, — By, ,\“

.

and in then introducing the functions

A \/
i=8 e=lw- aﬁqtfa:\—:bm), (259,b)

so that (258) takes the form i

bes + f 0 = G- (260)

In those cases when the prgbléiﬁ governed by this equation is a

boundary-value problem ovef a tertain region, the coeffivient f = 8/a

is generally postiive oveKﬁ;h’at region {that is, the differential equa-
tion is of the “elliptip’\'\type). ] )

The result of seplacing ¢.. and ¢, by appropriate difference

quotients in (260938 then of the form
9\

(91— 240 + &2 ¢ — Zdot b4 _ o 261

R et L

wher;;,f;.’ﬁnd @y represent the values of f and G at the point 0. In

the“Case when f and ¢ depend only on  and y, these quantities

arévknown: otherwise, their values at 0 depend upon the function

¢ which is to be determined. If equal spacings are taken, so that

hr = h’ﬁ' = h’!

the residual at any interior net point 0 can be defined by the
equation

Ro = ¢y + Jaba + o + fogu — 200 + oo — #¥Go. (262)
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Corresponding to estimated values of ¢ at net points, the coeffi-
cients fo and Gy are then caleulated at cach point. If valyes of
partial derivatives of ¢ are involved in the caleulation of these
coeflicients, these values are approximated by appropriate dilference
ratios. Initial residuals are calculated at each net point, by the use
of (262), and are partially liquidated by use of the corresponding
relaxation pattern of Figure 3.32. This patiern will, in general,
vary from point to point in the net. After a certain amounbaof
relaxation according to this pattern, revised values of Jo and {}n are
RO

'\
4 . : N

S
-2(1+fo) 9

ON

0 o
3 o] ’ {
Y
X

. L

Fisurr 3.32

AN

€3
#\.J

&

N\

2

7 &

Q"
£./9

calculated at 031 point, modified residuals are calculated, and
further relaxafion is carried out according to the new pattern.
The proe\eﬁs’is continued until no further revisions of Jo and {7, are
requirpd;,, and all residuals are satisfactorily liquidated.

. When @ involves linear terms in ¢ and/or its derivatives, it is
often preferable to transpose such terms to the left in (260} and to
replace partial derivatives by differences, thus obtaining a relaxa-
tion pattern which differs from that of Figure 3.32.

Many such applications of retaxation methods to the approxi-
mate solution of involved problems governed by one or more non-
linear partial differential equations can be found in the literature
(see, for example, Reference 6),

When a two-dimensional problem is governed by Iaplace’s
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equation, and the boundaries are of certain simple types, the use
of conformal mapping is frequently advantageous. In particular,
when part or all of the boundary consists of ares of concentric
cireles {(or of curves which are nearly circular), it is convenient {0
take the origin in the xy-plane at the center of the circles, and to
agsociate with the zy-plane a mew ww-plane according to the

relations®
u = log E”l v =6, 26"

A\
where r and @ are the polar coordinates of the point (x, y) @nd @ is
a conveniently chosen positive constant. If we adopt}‘t\he con-
vention that 0 < # < 2w, it is then found, for exa}rqple, ‘that the
region in the zy-plane bounded by two concentriei¢iteles of radii
@ and b, with center at the origin, is mapped inbovthe rectangular
region for which N :

0<»<2r, 0=uslog-

in the wz-plane. The boundaries a%&'a apd r = b map into the
houndaries % = 0 and % = log (Bfa), respectively; arcs of circles
with center at the origin map Jhto scgments of lines parallel to the
v-axis, and segments of radial lines into segments of lines parallel
to the u-axis (see Figuress33a,b).

In terms of the neiv\\'ué‘.riables u and v defined by (263), Laplace’s
equation takes thg ,fjgrm

NO o 2o, ¥, (264)
N dut ot

If the \-'al\xés\ of ¢ are prescribed along a boundary in the zy-plane,
the { uT.ld;‘ﬁon ¢ rust then take on these same values at corresponding
points ol the corresponding boundary in the ue-plane. Thus by
itroducin g a square network in the new region, the usual 1'e1ax&t1.011
méthods can be conveniently employed to determine values ‘?t @
at inlerior points of that region, and hence at corresponding points
In the original region. The relations

69 _ 1 g 12 1 3¢ (265)

ar Cqedu  ro8  aed
variable, if we write z =
along the positive r-axis)
= log {z/a).

* In the terminology of functions of a coxﬁplm,(’
z+iyand w = u + 19, the z-plane (with a “eut™
is mapped into a portion of the w-plane by the relation
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permit the translation of conditions prescribing the normal deriva-
tive of ¢ along a circular or radial boundary in the original plane
into corresponding conditions in the wr-plane,

Y
|
I
I
|
{

—x O
'5"5 "
A\
O
,.\{j}\
- N\
r b ’::\\./
Freure 3.333 .\
"N\’
Iv
f o
v=a 7 V'
&
A\
EN/
N _ b
\ \ u=log &
O ———=—u
x;\Qt'
 \d

Figurr 3.33bh

Under the same mapping, it is found that Peissen’s equation, in

N/
@/ orm

¢ B2
gy 6?‘3 +fz,y) =0, (266)
is transformed into the equation
a? a2
@%’ + 5? + @*¢™F(u, v) = 0, (267)

where Flu, v) = f(a e* cos B, @ e gin v). (268)
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3.20. Convergence of finite-difference approximations,
In the remainder of this chapter we consider briefly certain gues-
tions which bear on the validity of considering the solution of a
problem governced by a difference equation as an approximation to
the solution of a related problem governed by a differential equation.

We suppose, first of all, that the exact problem, governed by
& differential cquation together with appropriatc side conditions,
does tndeed possess a unique solutton. In order to obtain an apprafis
mafe solution of this problem, we replace the differential equation
by & difference equation, in which derivatives with-respegy ‘ta)the
independent variables are replaced by difference quotients of the
same order, relative to certain increments ("spasingsf’)~3assouiat-ed
with the respective variables. The side conditiops/are expressed
similarly, in terms of finite differences.

In particular, for a problem involving two jndependent variables
the resultant difference equation is then valid &t N interior vertices
of a network of squares or rectangleg ,which {exactly or approxi-
mately) covers a certain region of a plaile'iu which the two variables
arc considered as rectangular coordindtes. In this way, we obtain
aset of N algebraic equations ir}vph;ing the values of the dependent
variable at the N interior ndb*points, certain of these equations
generaily involving presefibed quantities in consequence of the
side conditions. x\

The two followingjmportant questions then arise:

1. Does this_&& of algebraic equations possess a (unique)
solution? & '

2. Suppoge that the chosen relationship between the spacings
is retained, Ybut that the spacings are indefinitely diminished in
such a&¥ay that net points tend to become densely distributed
3"61135&'1'101‘3 inside the relevant region. Does the sequence of
.""@pi‘OXimate” solutions tend toward the solution of the exact
peoblem? )

It is clear that these questions are of more than theoret_lcal
interest. In particular, with reference to the second. question,
it is by no means inconceivable that the sequence of solutions corre-
sponding to the successively refined nets might exist, and 301.3113113'
tend to a limiting function, but that this limit is nof the solution to

the true problem. i
Unfortunately, complete answers to these questions are not
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known, particularly in the case of nonlinear equations, and the
engineer must rely in such cases upon his knowledge of the physical
problem, to decide whether a function arrived at Ly successive
refinement of a chosen net is to be accepted as an approximation to
the required solution. However, in the case of finear problems,
the theory is in a somewhat more satisfactory state, and certain
known results* are summarized in the remainder of this section.

In many problems arising in practice, Involving a lincar partial
differential equation of the second otder, the relevant equatiorNs a

N

specialization of the form O

'\
0 (o92) L2 (1o8Y o (, a8\ a( ag\ .5
aé(“a?)*é&(ba)ﬂ‘g(ba—x)*a_y(%)??d‘*“f’
~A\" (269)

where the prescribed coefficients may be conspants or functiong of
the independent variables z and ¥ Angeguiation of this form is
said to be self-adjoint. Further, theNegmation is said to be of
elliptic, parabolic, or hyperbolic typeni:ryé, given region, according as
the discriminant b2 — g¢ g negative, ‘zero, or postiive, respeclively,
throughout that region. Boundghy-value problems are essentially
associated with elliptic equations (b* < ae), whercas initial-value
problems are, in general, goiverned by hyperbolic equations (b > ac)
or parabolic equations (%= ac). In the latter cascs, one of the
independent variahleS\lnay often represent time while the other is
a position coordinats,

For boundamfvalue problems governed by lingar, self-adjoint
equations of elliptic type, in which the function ¢ is prescribed along
the bound\afi‘g,"it is known that the answers to the preceding ques-
tions areafirmative. That is, when the exact problem pogsesses
a solutfen, the approximste problem can also be solved; further, for
any! g\rbitrarily fixed ratio of the spacings h, and h,, as the net is
cﬁnﬁinually refined the solution of the approximate problem tends to
the solution of the exact preblem.

In the special case of the Dirichlet problem, in which the govern-
ing equation is that, of Laplace, the answer to the first question can
be obtained in g simple and instructive way, as follows, when equal
spacings are taken in the z- and y-directions, As has been seem,

* Bee Reference 7.
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the linear algebraic equations to be solved then require that the
value of ¢ at any interior point of the net be the average of the
values at the four adjacent points. From this fact it follows that
at no inlerior poini of the nel can ¢ take on MOLEMUM oF MInimum
velue relative to neighboring poinis. Hence, in this case, maxima
and minima can occur only at boundary points. Suppose now
that ¢ is preseribed as zero at points of a closed boundary. Then
it is clear that ¢ must necessarily be zero at all points of the net )\
in consequence of the preceding result. But we have seen (Segtion
1.4) that if a homogeneous set of N linear algebraic equatiqg’é‘ifi N
unknowns possesses only the trivial solution, then the corresponding
nonhomogeneous set of equations obtained hy introduging nonzero
right-hand members always possesses one and only {éne solution.
Henco it follows that since the approximate Diriéhlét problem has
8 unique (trivial) sclution when zero boundary values are pre-
scribed, it also has a unique solution in the gcﬁ‘&ai case. The treat-
ment, of the convergence question is moredifficult (see Reference 7

In the case of initial-value problemd, tho existence of a solution
to the associated finite-difference problem is in general assured when
the exact problem possesses a solation. However, in order that
this solution tend toward the exact solution as the net is indefinitely
refined, it is, in general, necessary that certain conditions involving
the spacings be satisfied. ~\

In partieular, for a\é{ﬁblem governed by the hyperbelic equation

¢ 324 0¢ , . 0
7209 99 ’e == = V>0 270
Vim g T og; T Tee=0 ( ) (270)
. e

1 which @ia‘awat are prescribed for — o <z < @« when ¢ = 0,
convergenoe® of the finite-difference solution to the exact solution
with suvecssive net refinements has been established when the
Spa.ci:nﬁs he and b, satisfy the relation

by @71)

hg .

Further, it has been shown that eonvergence to the exact solution
s, in general, impossible when b, < V k.. Certain facts bea.ring_ on
this situation, in a special case, are disenssed in the following section.
In more involved problems, the governing equation may, for
example, be elliptic over parts of the region and hyperbolic over
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other parts, and the nature of the equation in the neighborhood of
a point may actually depend upon the behavior of the unknown
solution in the neighborhood of that point. Prohlems of this type
combine the features of boundary-value and initial-valye problems,
in which it may happen that part or all of g certain boundary is not
specified, but must itself he determined. Very limited theoretical
information is available as to the existence of solutions of cither the
exact or approximate problems, and as to the relationship betieen
these solutions when they do exist. However, finite-difference
methods often lead to “approximate solutiong” to otherwise
intractable problems, the validity of which can  beychecked
empirically. by

Relazation methods are usefi] only in solvingproblems which
are essentially of the boundary-value type. It.ghaould be noticed,
however, that they are needed only in such problams since the differ-
ence equations associated with initial-valye, problems are, in gen-
eral, readily solved by step-by-step mg;{xﬁ.s‘ When an itcrative
method is used to solve the set of algabaic equations generated by
the difference equation {by successive :afiipmximations) we encounter
a third question as to whether thid Method itself converges to the
solution of that set of equations," However, this question of eon-
vergence cannot be discussed-with relation to the general refazation
procedure, since the explic technique is not preseribed. When
the set of equationg Ji08%esses solution, that solution ean be
obtained by seme progdess of relaxation, and it remaing only to
discover some suck ‘process in a given case, by judicious trial and
error. ¢
3.21. The) one-dimensional wave equation. In order to
llustrate 'nilpﬁrtant aspects of the approximate solution of problems
governed“by hyperbolic equations, we suppose first that g funetion
#(x, z\) is to satisfy the equation

) 3% %
N\ Vies — 55 =0 (272)

for all positive ¢, § > 0, and for all values of Z, —w Lz Ao,
where V is a positive constant, and where both ¢ and dp/M are
prescribed when ¢ = 0, according to the conditions

0. 0) = Plx), 4.z, 0) = 0. (273a,b)
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The exact solution of this problem is eagily seen to be of the form
¢z, t) = 3F (@ — Vi) + Flz + Vil (274)

Before considering the corresponding finite-difference formu-
lation of the preblem, we may notice that this result is capable of
an interesting interpretation. If we consider the point Pz, )
in the zi-plane (Figure 3.34), equation (274) states that the vahy
of ¢ at that point is the mean of the prescribed values of ¢ at the
two points A and B on the s-axis for which & = @ — V#{ and
x = zy + Vi, respectively. Morc generally, it iz seen that the
values of ¢ at all points in ¢ ~\ ’
the shaded triangular section
of Figure 3.34 depend upon
the preseribed wvalues of ¢ at
poinis in the interval AR of
the r-axis, and only upon those
particular initisl values. In P \'4
the more general case, when o\
arbitrary nonzero initial .:,"~"
values of 8¢/6t are also pre- «\™
seribed along the line ¢ = 0,
it is found that again.mﬂy
those values prescriped- at
points in the interval AR influence the solution in the region PAB
(see Problem 88) ™

We may ny tie\e further that one of the terms in (274) remains
constant aloug'any line x — V¢ = constant, while the other term
ig constau&rlbng any line z 4+ Vi = constant. These two famllljes
of lines,ate known as the characteristics of the differential equation
@2y r.i‘hus, the region PAB of Tigure 3.34 is the region bounded

- the initial line ¢ = 0 and by the two characteristics which pass
through the point P. We may speak of it as the reg’im’_& of deter-
mination, for the point P, relevant to the differential equation (272).

Suppose now that (272) is replaced by the difference equation

V2 8@ + hay ) — 26(x, 1) + (& — hsy D)
Aot

bl L+ R — 2¢}Ex2, DFont=h _ o (o)
t

Freunr 3.34
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where h, and k, are spacings relevant to @ and £, If we relate these
spacings by the equation

e =« V b, (276)

where x is a constant, and associate with the point (z, £} and the
four adjacent points the indices indicated in Figure 3.33, equation
(275} can be rewritten in the abbreviated form

Ky = by + bz — K1 + 20 — Vo (28N

With respect to the corresponding rectangular net-wo;'l{.’in\ the
zi-plane, equation (273a) prescribes ¢ af points on the Mnitial line

<

t O\
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. LY " 1 . E \ ¥
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Fiaure 3.35

£ = 0, after thiah equation (273h), expressed as an appropriate
difference re\l’a}ion, serves to determine ¢ at points of the parallel
line { = %\ ‘From this stage onward, (277) determines values of ¢
at poit').}ls of the lines ¢ = 2h,, 3k, and so forth, by step-by-step
cg}@tblation, the values along each line depending only upon values
iQ the fwe preceding lines.

It is easily seen that the calculated value of ¢ at the point P
of Figure 3.36 depends only upon the calenlated values at the indi-
cated points of that figure, all of which lie within or on the boundary
of the region bounded by the line ¢ = 0 and the twolines & — « VE =
constant and z 4 « V¢ = constant which pass throngh P. This
region may be called the region of determingtion for the point P,
relevant to the difference equation (275) with h, = « V k. For
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any net, no matter how fine, of which P is a net point and for which
{276) holds, this region is invariant, once the ratio « has been chosen.
Buppose now that the ratio « is Iess than unity. Then the region
of determination for the difference equation lies completely inside
the corresponding region for the differential equation which governs
the exaet problem, and it follows that the solution of the difference
equation takes on a value at P which does not depend upon pre-
scribed values of ¢ at points of the interval AB (Figure 3. 34) whigh,
are at and near the ends of that interval. Since this situgtion
violates (274) and continues to hold in the limit as the net spacfngs

4 \.
A\
p }
//’\\ A
A
/ \\..\
4 A}
o r“x \
/ 0 \
Fa H ' A
/ o' AY
J/ - . '1 a \. ¥

¢\ FieurE 3.36

tend fo zero, it follows\}hat the solution of the difference equation
does not, in gener al\cOnverge to the solution (274) of the true prob-
lern when « < 1) \that is, when h, < V h. However, it 13 known
that convvrggﬁhe to the true solution does follow when x = 1, that
is, when t,QQBpacmgs satisfy the condition

hy 2 V b, (278)

t‘hat the region of determination for the difference equation
S(%udes or coincides with the corresponding region for the differential
equation (sec Reference 7).

The same statement applies in the more general case when (272)
governs a problem in which ¢ and 8¢/8n are prescribed along any
initial line or eurve which does not coincide with a characteristic.
In addition, ¢ or ¢ /dn may be prescribed along one or twq 1'1nes.or
turves, otiginating at points of the initial curve and of semi-infinite
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extent on one side of the initial curve, but not intersecting each
other, the solution then being required in the semi-infinite *curvi-
linear strip'’ bounded by these curves.

The variable ¢ wag used in (272) to represent one of the inde-
pendent variables because of the fact that, in many problems
governed by that equation and its gencralizations, that variable is
identified with time while the variable x represents distance. The
constant V then has the dimensions of a velocity. Howover, in
other cases (in which the more general conditions mentioned infhe
preceding paragraph may often apply) both variables may re prc}sunt
distances, g0 that the zt-plane is truly a physical plane.

In an interpretation of the first type, ¢ may lepleserfﬁ the dis-
placement of a point of a uniform string which is &\bumng small
free vibrations in a plane. The constant P2 is thén the ratio of
the tension {assumed to be large and upiform)stathe linear density
of the string. The variables z and ¢ then reprckent distance, moeas-
ured along the string, and time, respecti}@y. At the time L = 0,
the displacement ¢ and velocvity a4/4t)ef\each point are prescribed,
while at the ends 2 = aand z = b the «deflection (or slope) is pre-
scribed as a function of t.  The caS‘e considered explicitly was that
m which the string is considered to. be of infinite length, and in which
the string is released from a prescubed initial position with zero
initial velocity.

The simplest perm 1ble choice of the spacing ratio is that for
which b, = V Iy, sa t ]{t = 1 and equation (277) takes the form

,’\”" by = 1+ Py — oy, (279)
with the H.Qt-afiﬁn of Figure 3.35, and does not involve the value
$o. Theéerresponding net in the zé-plane then has the property
that the' (sides of the parallelogram determined by the four relevant
points lie on the characteristics of the governing differential equa-
t,mn The advantage of this situation follows from the known
£a%% that irr egularities in the sclution of (272} can cxist only along
its characteristics. (In consequence of this possibility, it is found
that a characteristic cannot, in general, be taken as an initial curve
in the formulation of a problem, if that problem is to possess a
unique solution.)

Analogous situations exist in the case of problems governed by
-other hyperbolic equations. For an equation of the form
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a¢zz+2b¢xy+c¢w+d¢z+3¢y+f¢’=g; (280)

the characteristics are those curves in the zy-plane which satisfy
the differential equation

a (dy)* — 2b d dy + ¢ (dr)* = 0. 281}

Unless (280) is hyperbolic or parabolic (b* = ae), this equation
cannot have real solutions. However, for a hyperbolie equatien
two distinct families of curves are determined; for a parabolic
equation the two families become coincident. The Tegion of
determination for a point P, in an initial-value probleii)y ts “then
bounded by the two characteristies which pass throu,gli;P, and by
the arc of the initial curve which they intercept. Iwwider to insure
convergence of a finite-difference approximation, thesbacings should
be so related that the region of determinativinfor each point P,
relevant to the difference equation, nowhere’lies intcrior to the
corresponding region for the differential egdation.

It is often convenient to transforin’a’linear problem of hyper-
bolie type by choosing new indepegdént variables % and ¢ in such a
way that the characteristies of the transformed equation are the
straight Hnes » = constant an'd: # = constant. The introduction
of a rectangular net in a p]{);né in which % and » are rectangular
coordinates (the sides of tite rectangles being paraliel to those axes)
then serves to make the regions of determination for net points,
relevant to the djff(gr&:e cquation, coincide with the regions which
are appropriate tovthe differential equation. For this purpose, in
the case of (250).\“'9, may set

OY  uw=Pay, =0y, (282a)

where R ?33, ¥) = constant and Q(x, y) = constant represent two
indegendent solutions of (281). It is then easily shown that (280)
takew'the form
N\ $uo + A ¢ + B¢+ Co¢ =D, (282b)

where A, B, €', and I are functions of the new independent variables
% and v (see Problems 90 and 91). The usc of (282a) permits the
Mapping of the relevant boundaries and associated prescribed con-
ditions from the original my-plane to the new uw-plane.

Thus, for example, if we make the change in variables uw =
Vi— 2 and v = vy + z in equation (272) the new equation takes
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the form a2¢/du dv = 0, with the characteristics u = constant and
7 = constant. The initial line ¢ = 0 maps into the line » + » = 0,
and the strip [£ > 0, @ < 2 < b] maps into the diagonal strip bounded
by the linesu + ¢ = 0,9 — u = 2q, and » — w = 2b (¥Figure 3.37).
If equal spacings are taken in the u- and v-dircctions, the relevant
difference equation takes the form ¢; — ¢2 + ¢3 — ¢, = 0. The
two prescribed conditions at the end of the strip, as well as the
single condition prescribed along each side, are transformed (peint
by point) so as to apply to the net points on the boundary, of\the
new configuration. The solution is then obtained in the usualyway,

v the value of ¢ qbtéﬁneﬂ at a
net point being’ alse ihe
i ‘g required val® 'al the corre-
o . - ..
: sponding po}ht of the original
configurdation.

TOMY clear that little is
gained by the transformation
Gn “the special case just con-
% ‘sidered, since the new net is
8% merely diagonal to the square
‘f:'o ) net which would have been
obtained in an zy-plaue in
NS which y is identified with V1.
Figure 3@ However, in the more general
ease, in which the Characteristics may be curves, rather than straight
lines, it is oﬁte?i sextremely important that the “frontier” of the
advancing galeulation lie on a characteristic, in order that proper
account\e?l‘be taken of possible irregularities which arc propagated
only along characteristics. This situation is brought about by the
metlod outlined above.
=\ 3.22, Instability. In addition to the question of convergence
“of a finite-difference approximation, as the mesh spacings tend 0
zerg, there is a further difficulty relevant to initial-value problems,
the nature of which may be illustrated by the considerations which
follow.
Suppose that we require the function T(x, £) which satisfies the
differential equation
aT _ T
T

O<aez<x, >0, (283}
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together with the initial condition
T{z, 0) = gin rz, ’ (284)
where r is an integer, and the $wo end conditions
o, =0, T(r &) =0 (¢t > 0). (285a,b)

The exact solution of this problem is given by the expression

QY
Tz, £) = ¢ gsin rz. ~(286)
Corresponding to the differential equation (283), we m&y con-
sider the ditference equation N
T t+h) = T(x, ) _ T+ hyt) = 2T(x, ) {a:r(:c — Fiay £)
B ha2 &
N (287}

where %, and h; are spacings in the 2- and'\gfédnrcctmnb If we write
the coordinates of the mesh points in’the’form

T = 1 hay (M = 0 (288)
and introduce the abbreviatijz;rﬁif: y
RO e (289)
this equation can be\WTlt'ten in the form
K(Twéw.i — Trn) = Toprn — 2Tmn + Tinetn (290)
where »\\ TFrun = T(m hay 1 Re). (201)

If there &E M — 1 division points along the x-axis, the reqm.rement
that (‘234) be satisfied at these points becomes

\'"‘: T T = sm%’“ m=1,2---,M—1), (292
Whereas the conditions (285a,b) take the form
Pon =0, Twn =10 n=12 - (293)

In the remainder of this section, we obtain the explicit solution
of this problem, and compare it with the solution (286) of the true
problem. The method of solution is completely analogous fo the
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method of “separation of variables” which is often useful in dealing
with partial differential equations.
If we write
Toin = futfn, {(294)

where f is independent of n, and ¢ independent, of m, equation (200)
can be rewritten in the form

. _ 5 N
(Iot = On o = 2+ fus (295)
In Jr”‘ 4 ’\..\'

The equal members of (295) are clearly independent of I)th n and
n. If we denote their common value by the consfmat’ —X, we
obtain the following difference equations which mugt he salisfied by
fand g: o)

o = 2 = N+ fos B, ' (296)
Gur1 — (1 -~ %) 5 &0 297)

Reference to equations (1 11a-d).ob Section 3.6 shows that (296)
Possesses g nontrivial solution fo;:fxﬁ%ich fo = far = 0, in accordance
with the requirement (293), 1f.&nd only if the constant x takes on
one of the M ~ 1 distinct vélues

/o

0
\\X, = 4 gin? -26;%; (298)
where s is an intqglé’}:s,"in which case that solution is of the form
~0 f = Csin 5T, (299)

where C}is an arbitrary constant. Tt is clear that the initial con-
ditjgﬂ‘@%) will be satisfied if we take

\ 4 s =7, C=1
and require that

(300)

go = 1. (301)

Accordingly, with the choice A = 4 gin? (rr/23), the appro-
priate solution of (297) is found to he

{1 ~fgerY 302
gn—‘(l KSIH-QT{), ( )



§3.22] DIFFERENCE EQUATIONS 331

and the required solution 7', . = f,.g. is determined in the form

N PR S Yo omrr

Tm,ﬂ - (1 —Sll:l 2M) 81N ﬂ?‘ . (303)

In order to compare this solution with the solution (286} of the

exact problem, we replace m by £m/ha, 1 by ta/hy, and M b by 7, It

aceordance with (288), and so rewrite (303) in the more explig@
form

Lyihy N
T(tm, t.) = (1 - % sin? %h’) Sin 72,8 \"(%04)

2 >

ool

If we write N
B2 €% -
h; = h, h: = I’} '“".\ (300)
in accordance with (289), the coefficient of\gm TZm In (304) can be
expressed in the form \
%L /?a’
(l il sm"’ :gz) ; (306)

*

after which elementary 00n31derat10ns show that thiz quantity tends
to the limit e—* as h approaehes gero, for any fized positive value
of the spacing ratio k.

Hence, it follow that the solution (304} of the difference-
equation formulatmni)f the problem does indeed tend to the solu-
tion (286) of the siuwe problem as the spacings tend to zero, for any
fixed value of thg spacing ratio x = h;%/h,. The same result clearly
obtains wher, the right-hand member of (284) is replaced by a
findte sur%af terms for which r takes on different integral values.

Have iever, if we examine (304) more closely, we may notice that
o h; 18's0 chosen that
O ¢ < 2 sin> e (307)
it follows that the quantity inside parentheses in (304) is a negative
quantity with absolute value greater than unily, so that, in this case,
the coefficient of sin i, will oscillate with ever-increasing ampli-
tude as ¢,/h, takes on increasing integral values. Thus }t fﬂllmtfs
that, when (307) is satisfied, the “‘approximate solutlon_ Wl!l
oscillate with increasing amplitude as  increases, and hence will fail
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completely to approximate the true solution, which decreases
exponentially with ¢ for any fixed value of z.
Further, in the case when « = 2 sin? (rh,/2), the solution (304}
takes the form
T(xm ta) = (—1)" sin ra,,

and hence oscillates with constant amplitude from point to point in
the ¢-direction along the net. ~

While it is true that, for any prescribed fixed valuc of r,\and
for any chosen fixed value of the ratio &, a process of suc{e&{s;ively
refining the net will eventually lead to a nonoscillatory approxima-
tion which tends toward the exact solution with conzt‘iii}led refine-
ment, it is clearly desirable to choose « once and o5l in such a
way that the inequality (307) is reversed for u,ngbﬁnite values of
r and h,. This situation is attained if and onlnf we require that
the ratio be such that N

NS (308)

K=

v

32
BT O
the equality sign being permissibjlé:'“because of the fact that the
coefficient, of 4/x in (303) is unity ohly when the factor sin (mrx/M)
vanishes, N

By superimposing solu{'rons of the form (303), we find that the
s

expression J
)

N _4 ., N\ mr
Tm.ﬂ.r-..E Cr (1 M 21848 m) g1n ﬂ—- (309)

.’} =1

is the solutjai}’})f the difference cquation (290), subject to the end
condjtion§(293), and to the initial condition
o3 M1
T =fa= X Cosin T (=12 .. M 1), (310)
\ ) r=1 M

where reference to equation {180) shows that
2 S mrr

== jin 2%, 311

C. s ;1 fm sin i (311)

In particular, if we require that

In =8 (0 < me < M), (312)
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so that 1'..0 vanishes except when m = mq, and is unity for that
value of m, equation {311) leads to the determination

¢, =2 sin 70T
T M M.’

and hence the corresponding solution (309) is cbtained in the form

M—1 )
2 . " . :
Ton (1 - % sin? E) sin 227 sin KMTI (318)

M = M M
The term for which » = M — 1 involves the factor \ \J)
R SR ¢/ Vo L AR ST\
1:1 ESIHW =1 ;cos‘—szf )
which ig unbounded in absolute value ag n — ®{inless
- 2 T 314
k= 2 cos a2 (314)

When (314) is satisfied, it is easily seéipthat all terms in (313) tend
exponentially to zero asn — . _(Inthe case of equality, the single
term for which r = M — 1 oscillates with constant amplitude.)
Thus we may conclude thi the presence of an initial numerical
tnaccuracy {such as a round-off error) at m = mo will lead to an
error in the approxig:gat} golution which inereases exponentially
in magnitude with #<{that is, with time) when and only when (314)
is violated. 1In this case, the approximate procedure is sald to be
unstable; Whep‘@ﬁ) is satisfied, the procedure is said to be sta??e.
As the net jsiedntinually refined (M — «}, the stability criterion
(314} tends)o the requirement (308). o
In e case of a general initial condition of the form (310), in
whiclithe right-hand member may tend to an infinite series of the
N/ -
Tz, 0) = f(z) = 21 ¢, sin re,
=

a8 the net is continually refined, the question of convergence of the
sequence of solutions to the solution of the true problem, as the
spacings tend to zero, is of some difficulty when (308) is violated.
Tt appears that such convergence usually does not obtain when ’.ohe
Procedure is unstable. However, the solution (303), corresponding



334 DIFFERENCE EQUATIONS 1§3.23

to the special one-term initial function (282), illustrates the fact
that this corrclation between instability and lack of convergence
is not perfectly general. Also, we may recall that, in {hat special
case, the ezact solution of the difference equaiion oscillates about
the exact golution of the approximated differentinl equation with
unbounded amplitude as » increases, when (307} is satistied.  When
the condition

2 sin?i%E = & < 2sin? —(ﬂ—I; Dhe A
is satisfied, the procedure is still unstable, but increasing oftillation
of the eract solution is moi present. Thus it follows +Bat ncither
ultimate lack of convergence {as M — «) nor infinit¢ wseillation of
the exact solution {as n — o) is inevitably impliegd’by instability.
However, by definition, instability does implyMajtendency for the
effect. of any numerical inaccuracy o in({e\a.sc unboundedly as
f— W, ,‘\ g

When the spacing ratio satisfies (308};\xb0th stability (for a given
mesh fineness) and convergence (wﬁhlcbntinued mesh refinement)
are obtained when T(z, 0) is presciibed in a regular way.

For the difference equation (221), an obvious change of variables
shows that the stability eritesion (308) is replaced by ihe condition
h.® Z 20%, It may be noticed that the choice made in equafion
(222) is in accordance,\ﬁgh this requirement,

3.23. Stability ®riteria. In this section, we first obtain a
criterion for stability of a five-point difference equation of the form

‘Wm+1“<‘j:"\2@ Worn 4 D10 = (Wt + d Winne), (B15)

where ap8, ¥, and d are real constants, under the assumption that
end cpn’di ions of the rather general form

*

,..\ \ \ Won = mtW,n T+ HUn, Wirn = potlartn -+ U
) ;
N O=m =0, 02wy 20) (316)

are imposed when m = 0 and m = M, and initial conditions are
imposed when 7 = 0 and » = 1 (ov merely at n = 0 if d = 0). It
will be convenient to refer to end conditions which are special forms
of those listed in (316) as proper end conditions for (315). The
solution is required for positive n and for 0 £ m < M. Many
difference-equation approximations to linear second-order differ-
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ential cquations with constant coefficients are taken in this form.
As will be seen, the procedure ean be easily generalized to certain
more involved linear equations with constant coefficients. Also, if
the coefficients depend upon m and/or m, it may be possible to
divide the region into subregions in such a way that the coefficients
may be replaced by constant average values in each subregion, and
to apply the criterion to each subregion separately. Needless to
say, this last procedure is heuristic, and cannot be guaranteed to he,
valid.

In studying the propagation of a numerical inaccuragf, Yywe
must replace any nonhomogeneous end conditions by corregpphding
homogeneous ones. Thus, for example, if w is pregmi?;bed as a
function of n along the boundaries m = 0 and m = &, he propa-
gated crror {from any source) must vanish along thbs:e boundaries.

Proceeding as in the preceding section, walséek solutions of
{(315) of the produet form \\

Wen,n = fmgn{ C’\“

3

and find that f,. and g. must according’ly' satisfy the relation
Jmi1t — 28 for + B¥ms,

*
Ny

e gni1 + dga-y _ -, (317)

Fm _ N U
where X is an arbitrary qofjétant. Hence there must follow _
fMIX} (201 — A)fm A+ BHur =0 (318)
and O g+ 2 g+ d g =0 (319)

't\u
."\$~
Since cml}%ﬁa appears in (315}, and b has been assumed to be real,
there is '.lio loss of generality in taking b fo be nonnegative,
4 .\” 3

O 320
S bz 0. (320)
 In order to obtain the solution of (318) in a convenicat form,
1t 15 desirable to write

20 — A = 2b cos &, (321)
80 that (318) takes the form
fm+1 -2 fm cos & -+ bzfm_1 = 0,
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and the methods of Section 3.4 lead to the solution
Fu = 0"{c, sin am + ¢y COS am). (322)

The imposition of proper homogeneous end conditions for m = 0
and m = M then determines M — 1 permissible values of the
parameter @, say @« = o, {r = 1,2, . . ., M — 1), and, for each
such a,, relates the coefficients ¢; and ¢.. For present purposes, it
18 not necessary to effect this determination explicitly. Howevery
it is important to notice that (in virtue of the results of Prgblém
55) all permissible values of « are real, and that no 50111151()T|§ of
(318) which are independent of those so obtained can batlsfy the
prescribed end eonditions. : N

For each such value of «., equation (321) deterqunefs the corre-
sponding value of the separation constant A,

= 2(e — b cos a,) o) (323)

and the corresponding function g, is determined from the equation
obtained by 1ntr0ducmg {323) into (319)

Gni1 +2 ~(@—b cos«rz)gn +dguy =0 (324)

The general solution of (324 can be expressed in the form
9‘ (r) r 118:' + B 'Zﬁr Fl (325)
where (8, and .8, ars, t\he roots of the equation

: ‘Q—E-%(a——bcosm).ﬁ—%d':{), (326)
2N\
if those rogtsiare distinct.

Thg;.'r%st general solution of (315), subject to the prescribed
homogejieous end conditions, is then of the form

e &

\} M-=1
N W = 3, (e s+ By B, (327)
r=1

where £, is a convenient multiple of the appropriate form of (322)-
The coefficients A, and B,, which may be complex, are determined
finally by initial error distributions when = = 0 and n = 1, or or
any two consecutive values of . When d = 0, only one nonzero
root of {326) is obtained, and the one resulting set of coefficients in
(827) is determined by a single initial error distribution, When the
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roots happen to be ¢qual, the second term in parentheses in (327) is
replaced by B, n 3"

Thus it follows that any error distribution is of the form (327),
appropriately modified in the case of equal roofs. In order that no
error distribution shall grow exponentially in magnitude as n — =,
it is necessary and sufficient that the constants 8, and 48, be not
larger than unity in absolute value. This statement applics also
in the case of equal roots. If 8 = <1 or —1 happens to be a double\
root, the contents of the parentheses are replaced by A, + B or
{=1)"(4. 4+ B,n), and linear instability (in which the errof ‘may
grow linearly with n} may be present. Hence we obtain t,]léfo]}ow-
ing stability criferion: N

The difference equation (315) is stable, for arbitrargly prescribed
proper® end condilions, if and only if G

(1) the roots of the equation \

.\\.

gt 4 % (@ — b cos a)@ERE = 0 (328)
cannotl exceed unily in absolute valp;’ef;for any real volues of o, and

(2) neither 8 = 41 nor 8 =e=1 may be o repeated roat.

If (1) 4s satisfied, but either ,8= +1 or 8 = —1 moy be a repeated
root, then (315) may be linedely unstable.

We may notice that, fiis criterion is independent of the nature
of the end conditions’,\}o’ long as they are proper ones. For any
specific end conditiohs of this type, this requirement is slightly
conservative, sifigé-then only those values of a for which (322) can
satisfy the pd.frésponding homogeneous end conditions need be
considered{hYSQS) . )

Mnea.r\inst-ability can occur only if d =1 and the equation
a— ’5\13:0"8 a = +c¢ can be satisfied by a permissible real value of &
It‘i&:uéually not troubleseme in numerical work. '

Ii, in illustration, we apply this criterion to equation (290) of
the preceding section, we have

a=]-—%; b=1 e=¢x d=070

* The restrictions in (316) may be replaced by the condition 0 - T
M b~ Difyp =0orby0 = pp £ Mo/(M — 1)if pu =0 igeerbI?m
5(0].  When the restrictions on a1 and up are violated, a complex value of &
™3y be permissible and the criterion obtained then may not be valid.
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and (328) takes the form
g+ (1 - 2 cos a) 8 =10 (329)

Clearly, linear instability cannot exist. The nonzero root of (329)
is given by

2
B=1—(1 - cosa), (380)
and the stability criterion then requires that RN
S
—1<1— ? I —cosa) S1, N\ (330)

for all real a. The right-hand ineyuality is noméﬁfnctwe for any
x > (0, whereas the left-hand inequality gives

21— cos a. .*.\\ (332)
\N

If this condition is to hold for all real\@y’there must follow « 2 2,
in accordance with (308). In the: \case of the specific end con-
ditions which prescribe wy, when m =0 and m = M, the poer-
migsible values of & were found‘ in the preceding section to be of
the form .

G =12 -, M—1) (333)

& = 35 N
\Qu'
The right-hand member of (332) then takes on its maximum per-
missible valuewlen r = M — 1, and (332) then reduces to the
criterion (314«)\'

Asa ectmd application of this criterion, we consider the result
of replating the differential equation 9%w/dx? 4 dw/dx = dw/ /ot

by the difference equation

Q”\-}l me.n + Wm—1.n 'l_":’m+l.n - w_m_.u _ Wmang1l — Wan 334
Rt T ks B Fe ;334
with the usual abbreviation w,.. = wim ho, n by, If we write
h 2
= _=, = 335
k= h = h,, (335)

this equaiion can be written in the form

(1 4 Btgan — 2 + kb — OWan + Wt = &k Wrnes, (336}
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and is identified with (315) by writing

_2th—w 1 &
T .b Wi dha e d=0 (337

The nonzero root of (328) is then found to be

24k —2+T1heosa

K

g=1-

(338)
"\

In view of the inequality 2 4+ & = 2+/1 + k, the reqmrsment
8 £ 1 is nonrestrictive; the requirement 8 = —«1 Ieads\ t6/ the
inequality

N}
7 %A

k=1 +_ — 1 Fheosa ;‘T © o (339)

If the difference equation is to be stable for GEE proper end con-

ditions, the right-hand member is maxmnzed@hen cos ¢ = —1,and
the desired stability eriterion becomes \

k=14 +~\/1+ (340}

If the end conditions prescr;be, w when m =0 and m = M, per-
missible values of a are q{uthé’ form o, = rr/M, as before, and the
maximum permissible iV.glue of the right-hand member of (340)
corresponds to cos &&Cos aw1 = — cos (x/M) = — cos (vh/L),
where L = M is’the'length of the range in z. Thus the sharper
criterion in thls spémﬁc case is of the form

\\ k21 + B o /T + hocos ff"— (341)
O
For Ieas}nably small values of the ratio h/L, {341) differs only
Shg;hﬁly from (340).
It should be pointed out that there also exists in the literature®
a Tather widely used criterion, often associated with the name of
von Neumann, for testing the stability of linear difference equations
with constant coefficients. This procedure consists in first directly
assuming a solution of the difference equation in the form

W = B . (342)

* See, for example, Refcrence 11.
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Substitution of this assumption into the difference equation, and
subsequent cancellation of the resultant common factor §» e»#
then leads to an equation which must be satisfied by the parameters
8 and ¢. The von Neumann criterion for stability is the requive-
ment that it be impossible Lo satisfy this equation by any real or
complex value of 8 for which | 8] > 1, when ¢ takes on all real
values.

If this procedure is applied to equation (315}, the necessary
relationship involving 8 and ¢ is obtained in the form

O\
c (;3 + g) = g% — 2a + ble O
or, after a rearrangement, \:
B+ L (20 — o — bte)g + B0, (343)
c INY

The von Neumann criterion for stability‘e’f}&m] is thus the require-
ment that the roots of this equation be’ not larger than unity in
absolute value, for all real values ofg:

When b = 1, it is seen that ~eﬁfﬁat-ions (343) and (328) become
formally identical. Thus (exeliding the consideration of linear
instability) the two criteriazare identical in this special ease. When
b 5 1, it can be shown{that the von Neumann criterion is con-
servefive in the preser}t\s}zse; that is, this criterion will predict insta-
bility when instability exists, but it may also predict instability
when the equatidris actually stable.®

As a specifiillustration, we again consider the difference equa-
tion (336)&.R’Vith the data of (337), the nonzero root of equation
(343) s fahud to be

X The criterion was proposed by von Neumann for difference cquations
(#ith consgtant coefficients) in which the range of m iz infinite (— = < m <
+ o), and 7 provides a condition which is fndeed necessary and sufficient such
eases, since then only produet solutions of the form (342), with ¢ real, can
remain finite as m — & «. In those cases when the net of definition is con-
fined to a strip, and end conditions (of various types) arc imposed along the
lateral boundaries of the strip, complex values of ¢ may be admissible and the
criterion should be applied with some caution. In particular, if “proper”’
end conditions relevant to s stable formulation were replaced by “impl‘OPer”
ones (in the present terminology), the new formulation would generally become
unstable whereas the von Neumann criterion would, of course, continue 0
predict stahility.
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2(1 — cos ¢) + h({l — &¥)

K

B=1-

=%{K—(2+h)(1 —cos¢)+a’hsin¢],

and the requirement | 8 |* < 1 takes the form
lz I[;c — {2 + k)1 ~ cos ¢)]* + A sin? qb} =L (344}

The quantity on the left is easily shown to take on its makimum
value (for fixed & and «) when ¢ = x. Hence the von Neumann
criterion is found to be A\

1 — @ or  xz25%% (345)

If h is small relative to unity, this restriction)differs only slightly
from the correct restriction (340), as ma)(be seen from the expan-
sion A/1-Fh=1+32r— 2+ . 28) We may verify also
that (345) is indeed conservative 111 “this case, by noticing that
VIT R <1+ 3k N\

The fact that (345} and (340] dlffer by little when A is small
mighi have been anticipated¥rom the fact that the coefficient b
defined in (337) differs by \little from unity when A is small. This
situation always exxst{When (315) is an approximation to a differ-
ential egqualion., “eases when b differs more appreciably from
unity, a meore ~slgmﬁcant-1y overconservative estimate may be
expected from tlie’ von Neumann procedure.

It is of §éme importance to notice that this procedure would
reduce tb\the present one, in the case of (315), if the assumption

(342) W’e}(, replaced by the assumption
oy £ \ s Waan = |8n bm ci‘mcl (346)

‘} .
}}y writing ¢ = o — 1 log b, where now « is to take on real values.
To conclude this section, we generalize the preceding analysis
to the nine-point difference equation
(aswm‘l"l,n-}-l + bswm.ﬂ-i-l + Ca’lﬂm—l,ﬂ+l)
-+ (a'zwm,-l—l,n + bama + Cz’wm-—l.n)
-+ (a}_wm+1_ﬂ_1 + b}’b‘)m,n-—l + cl’wm—l,n—l) = 0: (34:7)
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in which the coefficients are constants, subject to the requirement
that corresponding a’s and ¢'s are in a constant ratio,

€ = pta, €2 =pla ¢ = p’as (348)

where p ig 7eal and may be taken to be positive. We suppose that
end conditions of the type described by {316} or by the footnote
on page 337, with b replaced by p, are imposed for m = Qandm = M
and that appropriate initial conditions are imposed for two_ceu-
secutive values of n.* Error distributions propagated from numer-
ical accuracies introduced at a given stage in the caleulationmust
then satisfy corresponding homogeneous end conditions 'fd\li\,sué(:ced-
ing values of n, as before. N
¥ a product solution of the form

LY
= fugn \%

is assumed, and use is made of (348), equ.a‘s\.l‘cjn (347} then can be
separated in the form ~N

_fmr + 0 fer _ bagn+1.‘f—_~_5__eg3 + bigay _ 2
I= a3g?r-¥—i:+ Qo + C1fe !

where X is an arbitrary conbtant ) Thus f. and g. musi satisfy the
equations

fmi—ilnt{_ hfm + 92 fm—l =0 (34()3‘)
™
(bs — A Ga)gnsd P (b2 — X @2)gn + (b1 — A @)gncr = 0. (349D)
Since (3494 ¥s identified with (318) by writinga = 0 and b = p,
it follows that’all characteristic values of A, corresponding to end
conditip\réxof the class described above, are of the form
AN A= —2p cos g, (350}
‘u{hé?é a s real.  If this relation is introduced into {349b), the result
of setting g, = A» is the equation

(bs + 2p @z cos a)B* 4 (by + 2p azcos a)8 + (b1 + 2p aycos @) = 0):
(351

and

which generalizes (328). The stahility criterion is thus the require-
ment that the roots of (351) not exceed unity in absolute value for

*Hao=h = ¢1 = 0, only one initial condition is to be prescribed.
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all real values of «, and that neither 8 = 1 nor = —1 may be a
repeated root. For any specific admissible end conditions this
requirement is slightly conservative, as in the preeeding case, since
only a finite number of values of « then need be considered.

In connection with equations (328) and {351), use may be made
of the easily established fact that if the coefficients of the equatior

Bt+A8-+B=0 ' ©52),

are real, necessary and sufficient conditions that neither roo of
that equation shall exceed unity in absolute value are Qh{it"t}e
inequalitics 4 S
A EB+122 O (883)
be satisfled. L O

In illustration, we analyze the equation )

K(wm.ﬂ-{-l - wm,ﬂ) = %[(wm+1,n+1 — 2Wem a1 +"!'-';’hv<\—1.n+l)

= (wm+1.n. ‘_’.:2\1-'0»;.n + wm—l-ﬂ)li (354)

which was proposed by von Neur.ga,hn" (see Reference 11) as an
approximation to the heat-flow eguation (283) (with unit diffu-
sivity), in place of the simpletapproximation (290). As before,
we have written ’a
1
o (355)
A\ B
We may identify (354) with (347) by writing

$ . 1
al,z_—'\;bl=01=0, Qo = Cp = Q3 = L3 = T

\ be=1—«  bs=1+s

and (?3’48) is satisfied by taking

\ )
after which the nonzero solution of (351) is found to be

x — 2 5in® (@/2) 256

8= F s (@2) (856)

Since the condition | 8 | £ 1 is satistied for any pOSitiV@_ value of «,

and for any real «, it follows that the formulation (354) is stable for

p =1



344 DIFFERENCE EQUATIONS 1§3.23

any spacing ratio h.*/h, {when proper end conditions are imposed),
whereas formulation (290), subjeet to (293), is stable only when

., T
k= 2cost

In practice, it is often found fhat the time increment must be
taken to be inconventently small in order to insure stability of a
procedure based on the result of inserting the actual diffusiity
parameter in (200). The corresponding formulation of type, (354)
has the advantage that the spacing ratios arc unvestrictedi “How-
ever, it possesses the disadvantage that the values to bg defermined
at the nth stage of an advancing calculation are oy expressed
explicitly in terms of values which are known af $hat stage. In
order to advance the caleulation, it is necesgary to solve M — 1
simultaneous linear algebraic equations imythe 1 — 1 desired
following entries. O

It may be noticed that the von Neuiann procedure is equivalent
to the present one when (348) is sat@sﬁéd by p = 1. In particular,
that procedure leads to the preceding result in the case of equation
(354) (see Reference 11). In, othdr cases, this agreement generally
is not present. Jf (347) represents an approzimalion lo a partial
differential equation, as agesult of replacing derivatives by divided
differences or combinatiohs of divided differences, it is easily shown
that p will differ frqx}t\\nity at worst by an amount which tends to
zeto as the net is.gontinually refined, so that the stability prediction
afforded by thé\¥en Neumann procedure in such cases will increase
in accuracywith decreasing net spacing when proper end cou-
ditions acedmposed. For spacings of practical size, however, the
discrgpaﬁcy when p # 1 may be of some consequence.

Anithis connection, it may be pointed out that if, in such cases,
,éz‘lfv.e?; procedure predicts stability when the relevant spacing raiio «
1%”such that « 2 x {or « £ «o] in the limit when the spacings lend to
zero, then a condition which is generally sufficient to insure ultimate
stability (at some stage of the refinement) is that x > o [or « < #a)-
This result is a consequence of the content of the preceding para-
graph, combined with the further observation that the lower [or
upper] limit of stability will vary in a continuous way as the net is
continually refined, and iz of some importance in theoretical
considerations.
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As has already been pointed out, enly scattered information is
available as to gencral convergence of selutions of difference-equation
problems to solutions of approximated differential-equation problems,
with increasing net refinement. However, the existing evidence
indicates that, if stability is attained at some stage of the refinement,
then eonvergence generally follows when the prescribed functions
involved in the end conditions and initial conditions are sufficiently
well behaved. Whereas it has been shown that lack of stabilit
does not inevitably imply lack of convergence, this result iIs §
limited practieal significance since instability generally rep\ders a
numerical procedure useless unless special methods. of contr{j]lmg
propagated errors are employed. \

A technique which sometimes can be used to cata.bhs(h stability
in a simple and direct way is Hlustrated by the content of Problem
135, which is easily generalized.

X7\

X\‘
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PROBLEMS

Section 3.1. N,
1. (a) If y; satisfies the difference equation
Yrvt — 2Yr CO8 & + yomy = 0 k=1,2, :‘ )
and the initial conditions 4o = 0, ¥1 = 1, determine y{,‘gs, and 4 in terms
of the real constant c.
(b) Verify that the expression 3 = (s;n\\?ea) /(sin ) satisfics the

difference equation and the initial CDndltlonBJ\gnd that it agrees with the
results obtained when k = 2, 3, and 4. 2\

2. (a) If y, satisfies the difference: eq‘(w.t.ion
Yrgr — h 21 + yk-—;.l::q’:o (k = 11 2) 3)

and the end conditions yo = Opigy = 0, determine those values of the
constant A for which a nontrixgal solution exigts. [Determine ys, ¥s, and ¥4
successively in terms of y end A, and determine X\ such that y, = 0 but
n # 0]
(b} Verify that\the permisgible vaiues of Aare A, = 2cos (??‘ﬂ'/ 4)
where n = 1, 2, a.nd 3, and that the corresponding solutions ¥ ure arbi-
trary multlples of §in (nﬂ-k/ 4).

3. Let anote the kth term of the sequence 1, 3, 6, 10, 15, 21,
¥ considering differences, show that fk satisfies the equatlon
fk+1—‘ 2 fx_1 = 1 Wlthfl =1 a.ndfg = 3
Wb} Verify ths,t. the difference equation is satisfied by fi = ¢1 +
eak 352, for any constant values of ¢, and ¢,. Evaluate ¢, and ¢z, and
t@tbmune the 100th term of the seguence.

Section 3.2,
4. Beduce the difference equation

Ae A%+ By A+ Cogy = @
to an equafion of the form

Glfkse + Batiest b et = e
[Write A = E — 1))
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5. (a) Derive the formuly

UG 1)

a1 =31+ Kk A+ |

P /TI k=12 --1.
[Notice that B* = (1 + A)~]

(h} Apply this result in the determination of the kth term of the
sequence of Problem 3.

6. (a) Derive the operational formula £\
N p o O\
Elyn““—E_lyr. \\ .

(b} By wntmg E =1+ A, and formally expanding’ the ratio
(B* — 1)/{E — 1) in aseending powers of A, derlve the su;{lmatwn formula

-1 k-—lk
oL [FL LS T A
=1 “\\

(k=1,2...). [Notice that the series{ bp¥ihe right terminates after
N+ l terms if 3, is @ polynomial in & c;f order N.]

7. Use the summation formulavﬂf Prohlem 6(b) to show fthat

k
2 Sk — 2 kk—l E— 2}k —3)
2n3=k+?_k( HZ{;(% )( } { 3¢ - ) ( )
2
= ¥k k + 1) \\
[Form a table of différences of fi = 4* near & = 1.]

n=1

N/
Section 3.3. &
'\n'

8. A.cOntihuous uniform beam rests on N Pqually spaced supports,
with sep \m0n %, and is unloaded between successive supports (Figure

.\" 3 f 1 !

S
fcff“c::"”(’f,/,—x—-(_é'({j
/\ SN RS
R Y Y Y NN

Figure 3.38

3.38). Show that the bending moment M; at the kth support satisfies the
difference equation

My +4My + M =0 (k=2,3,-",N-—1);
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whare M, and My are determined by conditions of loading or support at
the ends of the beam. (Denoting by z distance to the right frum the kth

support, show that M(z) = M, + (M; — M,_,) ;: for ~k < 2 <0, and

M) = My + (M,,, — M,,);;' for 0 £ = < A Recalling that the defies.

tion y(z) is governed by the equation F J ¥ = M, where BT is the eon-
stant flexural rigidity, show that the requirements that y vanish when
2z =0 and +4 and that ¥ be continupus at z = 0, lead to the desifed
relation.]

O\
9. A mechanical system consists of ¥ identical musses umeTfed in
series by identical springs to fixed end supports (Figure 3.39).  8hew thata

kxl-- [-Xa—-
3 K M K M K Af

[
Ficuze 3.39 \

x.,Q(.‘ K

small displacement g, of the kth mass szg:ti;.sﬁes the difference-differential
equation &N

Mjk:K(xk-i-l_ka +~$k}—:)' UC = 1121 Tt r“'\'r):

and the end conditions x, = Ty4r= 0, when no external forees are acting,
where K is the spring constantof each spring.  Show also that the agsump-
tion z, = A, cos (wt + ,81%)

vhére w is the frequency of a natural mode of
vibration and A, is the g,m\ﬁtude of the oscillation of the kth mass, leads
to the difference equation

P\ M2
Ak+1_24tk\‘+Ak—-1+_“K—Ak=0 k=12 +-- N
'"\50
with 4, = 7= 0,
10, Th:e Bessel function J4(z) can be defined by the integral

g \

1" )
\ ), Je(z) = ;/{; cos (x sin 8 ~ k@) d8,

when £ is zero or a positive integer. Determine 4, B, and ¢ in such &
way that A Ju s+ BJ, + € J,_, is represented by an integral which can
be evaluated by elementary methods {(where 4, B, and € may depqnd
upon x and %), and henee show that Ji(x) satisfies the difference equation
(or “recurrence formula’)

ng+1(¢) — b Jz) + g Jerz) = 0
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when % iz a positive integer. [With % = zsin # — k6, determine 4,
B, and ( such that A cos uk+1 + B cos w+ € eos up_, reduces to
€05 tz (dur/d).]

11. The Tschebycheff polynomials T.(x) are defined by the expression
1
Ti(z) = 53 cos (hcos™ ),

when % is a positive intcger or zero and |2 = 1. By considering the

expressions for Ty, T%, and iy, obtain the reeurrence formula A .
'€

Ty —2Ti + %T}c—l =0 (k=12 "1 \“\

where Tp = 2 and T: = 2. Also, use this resulf to write gﬁf’i‘?,, Ty, Tsin
explicit polynomial form. '\;
12. Let a sequence of functions 7:(z) be defifed as follows: The

zeroth funetion is defined to be 'rn(:c) = z, the firsbfunction to be riz) =
a1/(b; + x), and the kth function is obtamed fr()&“the preceding function

re1{x} by replacing 2 by /(8 + 2}, wnere\ql, az, . . .and &, by ...
are constants. PN
(a) Show that there follows W/
o NV e
T‘cl($) = z, ?'1(23) = B +v$ “?'2(1?) = b N _ag_’ L)
" Thtx
and, in general, ..,<
o
¢ \ @
re(@) = — -
D it -
< by + s
*',\:": bs + - ) .
O™ T
,\\“" + bk + &

The-papression 1y = r,(0), obtained by seiting x = O i ri(z), is called a

tonkinued fraction of k slages.
N/ (b) Noticing that the result of clearing fractions in the expression
for ry(z) is necessarily the ratio of two Linear functions of 2, of the form

Ak + (zkx I
k = 0, 1, Z, R
@) = BT D ( )

deduce that there must follow

Ak -+ C;;x (bkAk L+ C&}aC}o—l) + Ak 13 UC - ]_’ 2} .. .'))
B, ¥ Dz (BeBr_s + asDi) + b B
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for all values of # for which #,(x) is defined, and that also
4, =xa, Ci=0 B,=«bh, D =g

where  is an arbitrary nonzero econstant of proportionality. [The right-
hand member of the identity iz the result of replacing £ by & — 1 and z by
a/ (b + z) in the left-hand member.]

(c) Show that the satisfaction of the identity of part {b) implies
the relations

Oy = ,ukAk—l; Dy = #kBk—lj N
Ay = p(beAr 1 + @Cii), B, = m(be B + ak})k’l)r’\:\.
for k =1, 2, ..., where g, differs from zerc, but is Uthcrwisse:\zl)'biﬁmry.
{d) Deduce that there follows ~\ )
Ay + pediax ~ :

P N ot k= 1,2 - ’..i.
B; + upBrax ¢ 2 v \)’

where A; and By satisfy the difference equations
Fo \d

rlz) =

=23,

v

A = b Ag 1+ pepe_mds g, h‘
By = ppbi By 4 g 106 Bi s €

and the initial conditions Q A\

Ao = 0, A;l =K &;’;"];130 = K, Bl =K bl,

and where &, pi, pe, . . . are gfhitrary nonzero constants.

(&) By setting x,=\0) and taking &« = u; = g2 . . . = 1 (for
convenienee), deduce t@&&e continued fraction 7. of & stages can be
expresged in the forms,

%

ry = —NGL X <A 01,20,

) b;\;F’ s B
\ v/ -

253

o\ i

N Y b
N\

%éée”:the numerator and denominator of the cleared fraction safisfy the
linehr difference equations

Ap = bedp + wdis, By = bBiy + auBis (k=23 "9
and the initial conditions
Ay =0, Ay=a;, Bo=1, B =b.

(f) From the result of part (d}, show that the value of 7, = 7i(0)
is unchanged if each b; is replaced by ud; and each g, is at the same time
replaced by pa,_ia,, where o = 1, and where gy, po, . . . ave arbifrary
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nonzero constants. [Show that this substitution (known as an equivalence
transformation) reduces the difference equations and initial conditions of
part {e) to those of part (d) with x = u..

Section 3.4.

13. Find the general solution of each of the following difference
equations:

(a) 2¥rss — Ttagz + By + 200 = 0. A~
(b) Yers — 5@.’.&-}-2 ‘J[‘ 81}1;.;.1 - 4yk = 0 '.\:\
(€) Yurs + e = 0. : O

(d) Yrra+ 295 + tog = 0. o,

L
14, Btarting with the difference equation of P}‘(;Blem 11, derive the
form given in that Problem for the Tschebychaff\péolynomial of degree k
when | z | = 1. If the polynominal is defined by the difference equation
when = = 1, obtain the alternate forms \‘

Ty = 5“1:; [(z + +/z* -—,}«)": “1'-.(x — /2t = 1)4

= -;E[cosh, Uc. cosh-t x}]
in that cage. 4

15. Suppose that the,%ontinuous beam of Problem 8 can be considered
as being of infinite extént to the right (g0 that the number ¥ of supporis
is infinite), and that the left-hand end of the beam overhangs the first
support by a diftance &, at which end a concentrated transverse force P is
acting. Sho{vnthat the moment at the kth support is then given by

NV
My S84~ 1)F(2 — /31 Ph = (— 1) Pheo®D (k=1,2, -},
.ks'\c‘ ) ( ‘\/_.) ( )

wherela = cosh~! 2 = 1.316, if no other forces are present. [Here one
LJgisthave M, = —Phand lim M. = 0.]

3 k— w
\ 16, Consider the linear difference eguation
¥ + nk) + Aglz + nh — B) + - - - + Aaoayle + B} + Aaylz) = 0,
where % and the A’s are real constants. .
(a) If « takes on only the values z + Kk, where z, is fixed and
k is integral, show that the results of Section 3.4 lead to the solution

y@) = aft + e+ - + eaBn=h,
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where the ¢'s are arbitrary consiants, and where the 8's are roots of the
charscteristic equation

B+ A+ - b A+ Aa =

in the cass when the » roots are real, distinct, and positive.

(b) Verify that this expression satisfies the given equation iden-
tically, regardless of whether the argument z is considered to take on
only discrete values or to vary continucusly,

{e} Verify that, when z varies continuously, the result of replacing
each arbitrary ¢ by any periodic function w(z), which €5 af period b algds
satisfies the difference equation, so {hat the expression N

(\A

#Hz) = (@B + wu(@iB + - - - + w"(x)ﬁn“’".‘

is a solution for any choice of the » functions w;{x} of permd }.ﬂ It can
be shown that this solution is the mosi general one.]

{(d) In the vase when 3, is real and negutive, sag\ﬁl = —py, show
that the real or imaginary part of the expression

x)(plexr):fh = w{x)plw’hf,nl”({\’

ia a solution, so that the sclution correspondmg}to the root 8, = —p1 can
be taken in mther of the real forms ¢

T N . T

yl@) = wal@)p*™ cos -~ oLV y(@) = walz)pr™ sin -
Notice also that the second form %s identified with the first by writing
wi(#) = w:(z) tan (rz/A), sines, the function tan (ww/h) is itsell of period
k. [Except in this case, thé"yesults of Section 3.4 are directly gencralized
to the continuous case €placing y,. by y{z + rh), k by z/k, and the

arbitrary ¢; by arbitraby functions w:(z} of peried A.]

17. Apply the @esults of Problem 16 in obtalmng the sclutions listed

in the following,@ses with the convention that w:(x) is an arbitrary fune-
tion of period. &g

(5%@ + R — 2@ +ye—- k) =0;
O y(@) = ou(@) + § wsla).
®) yle+ 8 + 2@ + ylz — ) = 6;
w(z) = cos — [m;(z) + = wz(x)]
(@) y@& + ) ~ 2y(z) + 29(x ~ h) = O;

. wr
y(z) = 2%k [wl(x) cos g + w{z) sin I};]
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In each case, also verify the correctness of the result by direct substitution.
Section 3.5.
18. Find the general solution of the equation

Yo — 20 + Y1 = ¢y

in cach of the following cases:

(2) ¢ =at (o= 1) {b) ¢r = &* (B = 0). O\
(c) ¢ = sin ck. (d) ¢ =1. Ko
(&) ¢u =k () dx = ke* (b0

19. (a) Xf Iny, Lys, Loy, and Ly are linear difference (@e}@tors with
constant coefficients, show that all solutions of the simuitti\geous equalions

. : \
Lgug + Loty = fa, Loty -+ Loty X 05
are algo solutions of the uneoupled equations \\“
L uy = Lagfy — Lisgy, Lo, :"'v?ﬁgk — Laify,

where L is the operator LyLes — Lyl ZCSihce the converse is not gen-
erally true, conditions on the a,rblt.rary constants in the general solutions
of the latter equations must be detcrmmed by substitution inte the original
equations. )

(b) Obtain the general solutlf)n of the equations

g +’U¢Ic — 2 = 0,

. u}&}—uk—vku-i'yk—g 3
in the form ¢

Uy = pa’}:{;"cﬁ" 4 5.8 wo=2c+ 2"+ 4.3
by the methpci;o\fuf)art (a) and by at least ons other method.
20. Q%\Min the general solution of the equation
. ’j'fz' Yot — 2t =F B=1,2 -
in,the Yorm
\ ) &
Ux 2 k —n)fs+ o + ¢
n=1

Also, specialize wher fi = 8.
21. It is required to determine the coefficients fi in the Maclaurin

expansion
I ON E St
A—2Bt+ A_2Bi+CP
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‘where A, B, and € are constants, under the assu mption that the expansion
of P{1),

Py =3 P,
k=0

is known. By equating coefficients of like powers of ¢ in the relation

o

D Futt=(A-2Bi4Ce) Y fir,

E=0 i O\
show that f; satisfies the difference equation ,gj\'
NS @
Afs =2Bfi 1+ Cfo =F, k=23, -9\

and the initial conditions

~
o

N\
Afu=F0, Af1—2Bfg=F1'.'}

d AN
IIf ¢() = 2 Fx ¥, the function ¢(!) is called {Hg}enemting SFunction ol fr.]
= -

22. (a} Use the result of Problem 21 1th~ ohtain the expansion

1 2 - S+ 18

= —— B 1).
28 s 8 07 nm 1] <1)

1 —-2teos8 412

(b) By setting ¢ sug,c{%sively equal to 1/nand ~1/n, wheren > 1,
deduce the relations, | \‘}

” Jsin ke n gin 8 (n > 1)

NE= nt T mr2ncosf41 ’
U sin k6 —n sin

{ —1)* = 77 13,

'\=1{ ) n* nf 4+ 2n cos § -+ 1 (> 1)

.'\

23WA function ¢(f) is the generating function of f, [that Is, ¢(f) is
m~\J -

defiried by the series ¢(1) = ka #] where f, is known to satisfy the differ-
0

ence equation
Jeva = 2+ fi = 1 k=23 - -

and the conditions fo = 1, f; = 0. Use the result of Problem 21 to show
that

qboj)=1—2H-zz(1+z+zﬁ+---)_1»3;+3c*
1 —2t 42 IS E

(] <1
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Section 3.6.

24. Two players take part in & game of coin tossing, the first starting
with m coins and the second with % coins. It is agreed that play is finished
if either player wins all. What is the probability that the first player will
win? [Let p; represent that probability when he has % coing and show that
Py = (Pr11 + pai1)/2, where po = 0 and pmin = 1. Then determine p;
and, finally, p:m.]

25. A flywheel of moment of inertia I, is attached rigidly to a fixed
support, by a shaft of length (& 4 1)A on which are mounted N identical
disks, each of moment of inertia I (Figure 3.40). The portion of ‘shalt

= O
y : G\
# & N
= 5 . F
c e[ ‘:[‘ N e
I I AN 2
:’t’} If
Fiure 840

joining successive disks exerts a restraining torque numerically equal to
an elastic constant e times the relfitive rotation of those disks.
{a) Show that the rgj:atidn 8, of the kth disk is gove_rned by the
equation ~&
)

9 y. ‘,.:
I dd:z" = (B Kop, + O)+ T (k=1,2-"-,N)

where T ig the c}ﬂémal torque applied to that disk, and that the end
conditions are/6f the form

O 0.1 '
\.\\w 60 = 0, J.Tf e = - C(e,\-'+1 - BN).

."\’":‘fb) In the case of free torsional oscillations of the system [T = 0,
TS, eos (wt show that the amplitude A, satisfies the equation
3 + £,

Tw?
Ak+l'—2-Ak+Ak—1+%Ak=0 (k=1,2, , )

and the end conditions Ao = 0, Axy = € Ay, where € = ¢/(c — L) is
the so-called dynamic elastic constant of the support.
(e) Show that the natural frequencies are of the form

fE &in 22,
Wy = 2 151112
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where a, is the ath solution of the transcendentsl equation

sin (N + Do = Csin N,
in which

C = !

ff Lo, O
i 41—311'12

26. (z) Obtain the natural frequencies and modes of the mechanieal
system of Figure 3.38 (Problem 9), by using the results of equubions
(111a-d). O

(b) I the problem of part (a) is modified in such a way that the
end ¥ = N + 1 is unresirained, show that the natural frettencies ure
given by N

4

K an— 1+ ,\ ’
= 37 S DAY 1 19 = - N .
=2 JJW s (2‘?\“‘ +1 2) (n L 2’ s N

[The condition at the free end is Ty41 = 2a] o0V

27. A schematic representation of a sﬁyi?g\{nsulator is given in Figure
3.41, one end heing grounded and the other’end being attached to a line

N

Vy= Acos Wt

AU R NN
ol
RSP
O
A
o
f—
O g
<
=

COe T, %
[ T i |

2 veo
\\ Fieure 3.41

con@ggto\r which carries alternating current of frequeney w. The line

carties ¥V — 1 identical insulators, the eapaeity between successive con-

“dueting segments being denoted by €, and the eapacity relative to the

round by €2 Show that the voltage Vi of the kth conducting segment
is given by

ginh «fk

Vi=d sinh al¥

cos wl,

where cosh @ = 1 4 €,/2C,. [Notice that, if T, is the current flowing in
th@EY 1Jigrth stage, there follows I, == (Vi — Vir) and npr — I =
—~ V]
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28. A string of length (¥ 4 1}k carries N identical equally spaced
masses which are connected with a fixed support by equal springs (Iigure
3.42). If the string is stretched under a large uniform tension 7, and the

M M M
__f‘ ot _*
T / T
7 K K K
1
7] fe :
T r N TS N\
Ficore 3.42

~N
oA
. NN T
ends are fixed, show that the natural frequencies of small transverse oscil-
lations are given by the expression “~\

7
<

T pn RK LV
= _— mf— —_ = P A‘ N
oy = 2 i \/sm 3N+ D) + o7 (n =2, ?,. y N)

AY;
where K is the spring constant and & the spacing))

29. The so-called Fibonacci numbers tomprise the sequence 0, 1,
1,2,3,5,8, ... ,such that each numbeiis’the sum of the two preceding
humbers. R\

(2} Show thut the £th number ns is given by

»

(b} Show that}h} r'atio e/ Ny OF the Kth number to the following
mumber tends to thelunit 3/(1 + +/5) = (v/5 — 1)/2ask— @, [This
number is offen kngwn as the “golden mean” and is said, for example, to be
the ratio of theysides of that rectangle of most pleasing proportions.]

30. Assume that rabbits reproduce at a rate such that one pair is
born eack{™mionth from each pair of adulte not less than two months old.
If one pair is present initially, and if none die, show that the tota_l number
iIi.?‘ﬂC\SéSsive months is given by the Fibonacci sequence 1, 2, 3, 5, 8, . . .
%\dﬂf&iﬂered in Problera 29, that 377 pairs will be present after a year, and
that the ratio of the number in 2 given month to that in the following
month tends toward the “golden mean’ with increasing time.

. 3L If the ratio m/ne of successive Fibonaeci numbers (Problem 29)
I8 denoted by 1, show that 7, satisfies the nonlinear difference equation

1

-+ 1) =1 or n = ml k=12
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with the initial condition rp = 0. Hence show that 7. can be expressed
as the continued {raction

Ty = -

N

KoY
whieh is terminated at the kth stage (after the kth dwnsmn} > Alfo, use
the result of Problem 29(b) to deduce the expansion

:‘s.’s
VE—1 1 R4
2 14 1 1 »
L —
14

of the "“golden mean,” where thed1w51ons ate continued indefinitely.
[Notice that the ratio nk/nkH is; hence the kth “approx1mant” {or “‘con-
vergent’') of the continued- fractlon expansion of the “golden mean.”]

32. (a) sa.tmﬁesr{ the nonlinear difference equation

sl

O ndltana) =1,

with ro = 0, shov{'tllfé,t 73 can be expressed as the continued fraction

x\"' 1
“\‘ rk = ——._._____F&____..__._.
.§§" T
N 14—
N\ .
A\ 1+ ’
i
*3

which terminates at the kth stage.

(b} By making the substitution vy = n/n4., reduce the diﬁ'erence
equation of part (a} to the form ne, — # — @ mu_y = 0, with 7o =
Obtain an expression for Tz, assummg that a 1s real, and considering 39?9‘"
rately the casesa > ~%, 0 = —% anda = ~% — ¢, wherec > 0. (Notice
that the solution involves an arbitrary multiplicative constant.) Xence
ahtain an explicit expression for 7 in esch case.
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(¢) By congidering the behavior of r, as k— , deduce that
the continued fraction of part (a) converges to the limit
2
V1 +40+1

when a = —% and fails to converge when a < —%, as the number of
divisions is continued indefinitely.

33. Deal as in Problem 32 with the difference equation A
refb + ) =1, 4 s\,
with ro = 0 and b 5 0, showing that the infinite continued fractibn™
1 ) ‘:}‘ N .
1 AR,
b ‘O
1
PR SRV

b+ - \

c AN

converges to 2(A/5? + 4 — b) when b > Oigmnfl to —3{+/b? 4 4 4 b) when
b < 0. In particular, deduce the expapsion
0N
1+ 5= V2
2 P
oy

& -

34, Let wk({,).je:present the value of w at position z = &, + kh slong
the s-axis at timé/t. Verify that the real and imaginary parts of the
expression N

'S wy(t) = A ewim®
rePTBSBBEQ';J.I‘aVeﬁng waves” which move in the positive o-direction with
velocity h/e, without damping, and whose amplitude oscillates in time
Wit eircular frequency w. _
\ ) 35. With the terminology of Problem 34, show that, if wy(t) satisfies
an equation of the form
d’wk
8% = wyp — 20 + Wit T B

where 4 is a positive constant, then traveling waves may be propagated
without attenuation (damping) only if their frequency 18 such that

2
W< —=
Ve
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[A system {mechanicel, electrical, acoustical, or otherwise) which is gov-
erned by such an equation is an example of what is known as a “‘low-pass
filter.” The value w, = 2/ \/; is ealied the cwtoff frequency; waves of
higher frequency are damped out as they progress along the z-axis.)

36. If the governing equation of Problem 335 is modified by the addi-
tiont of & term -+ wy on the right,

d’wk

Ty — gk
0fwy = p s + ¥ W ~
where v is a positive constant, show that traveling waves may b@ypropa-
. . . 2 K
gated without attenuation enly if ] 14 % - ‘Lf—;—u—

< lor "\:\

7%
L 3

___H._,Z O\
\/Z < @ < JZl{-_ m\\
p e $

{Buch a syetem is an example of & “band-pags’ilter.”” Only frequencies

between w1 = 4/y/p and wy = /(v + 4)fptare not damped out as k
increases.] 'S

"

37. If the governing equation of I?g-oiﬁém 35 is replaced by the equation

BN
52(121?) = K W,

where x is a positive cons:{ant, show that the condition for absence of
attenuation becomes , 2\J

\ —
O o> VE
o 2
X
[Such a Systh;Q' exemplifies a ““high-pass fil{er,”)
3 S}}éw that the mechanical system of Figure 3.42 (Problem 28) has
the prapetties of a band-pass filter, with eutoff frequencies w, = \/m

and.;q£3= _\/(K_k + 4T)/Mhb. [This means, for example, that the effect
,offoreed vibrations of one support, with frequencies outside this band, will
\bé damped out with distance from that support.]

39. Show that the networks of Figures 3.43(a), (b), and (c) represent
respectively low-pags, high-puss, and band-pass filters. {If I, = ¢ is the
current 1n the kth loop, in each case, show that there follows

1 .
s 3@y + LG = 0in (a),

~L 80, + % Q= 0in (),
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and

1 2 1 .
—Easz*{-LQk—l—an:UHl (C)]

{a}

?z‘w {c
FIGUBE 3.43

..‘\
Sections 3.7, 3.8. \'\\}
40. Show that;vz gint ko = 0 if & = 2nr/K or 2”’-“'/ (K + 1), when
7 ig an 1nteg{3'r\ ‘Also, verify this result directly in the case when K =3
and n =

41. \Qﬂow that

AY =4 nrk K41
N/ (n # 0)
\'"> kzl gin® X+i_ 2
when n is an integer. By replacing sin® u by 1 — cos® «, deduce also that
K b K+ 1} n 0,
Do ity
k=0 K+ 1: "= 0"

when # is an integer.
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42, Show that
K41

Fid cos Ko sin ) o
2: coB ko = ———————— (o # Irm),
Py sin Fo
and deduce that
EX @n + Tk EK Ok
n wk R
gt o8 T — 0 and s 08 }7{:1—1 Y N\

¢~ v

AN
. . - . . . £ '\
when = is an integer, and when »/(X + 1) is nonintegral in the scednd-ease.
\/

43. Let ¢ = (:) denote the hinomial coefficient _ { ™

+¥7)

ke — 1) « fc—n+1)
n{n — 1) -1 ,'\\;
(a) Show that C* = %"T) N \
(b) If n is fixed, show that AQ’Q = (ﬁ_-n_;;)r C%_,, and dednee

that 5
ChL 4 e

44, Show that the form{fm derived in Problem 5 can be written in
the form & \J

8 A
B D CEA My = E =g,
\ J =i}
[Notice the anal'hgy with the Maclaurin power-series expansion.]
43. E,@mss each of the following sums in closed form:

~{a)1 2:834+2:344+ -+ +an+ Din -+ 2).
A
\ "/ 1 1
Y R T AT S )
J_ ﬁl_ ) 1
O3 st tmroe s

() 1:34+2:443.54+ .. +nn+2).

46. The functions ¥(z), ¥’(z}, ¥”(2), and so forth, where primes
denote differentiation with respect to z, are tabulated functions. [The Psi
function, defined by equation (154), is often alse called the digamma fune-
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tion, and its successive derivatives the trigamma function, the tetragamma
function, and so forth.]

(a) Show that ¥(x) = Tz — 1) + /2.

(b) Show that the rth derivative of the Psi function hag the
following property:

i

1 = (r). — -
; G F i F(n+2) — ¥ (=01, }
N
{¢) Show that
L5 4 \:\.
v ¥y - 30 =+ D (), O
(n +2) — ¥(n) — T(zx) =+ g kj'g‘“'
k=1 N
when » ig a positive integer. . m( ¢
47. Use the result of Problem 46(b) to obtain the\maore general sum-
mation {ormula : ) \\;
~ 1 . (_l}r {r % 3 \:_ rird E):i
; (ak + byt el \:\I! ??:fﬁ a

48. Tt can be shown that ¥(n -+3) — ¥(n) tends to zcro for fixed
% 88 #—> w0, and that all derivagives of ¥({n + 2) also tend to zero as
n— ©, Assuming these facts, ‘ebtain the following relations from the
results of Problem 46: \\

a
N \ 1__ 1\
(8) T(x) = :;{\+ El (k o x)
\\'“ i 1
(k) \113?%3)' = (=1)rHiq] 1 W (r=12 ...

\"4 =

19, ,,Tfl‘se\the result of Problem 48(a) to show that

E] »\’o
W Ay A,
E\[k+?1+"'+k+an]
% 1 1 L_gi)]
- 17 ...+AN(_
"2[‘4‘(x¢+a1 k)+ Eton k

= —[Al\y(a]) + - + An‘l’(au)]}

HA 4+, ., + 4, =0. Show also that this last condition is necessary
In order that the given series converge.
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50. By expanding each summand in partial fractions, and using the
results of Problems 48 and 49, obtain the following results:

(®) ; k+o)k+b a—b [Wa) —~ ¥ @) (a7 b).

S 1 1
() ; G+ a4 b (o~ by

(¥{a) — ¥(b)]
; N
— === ) {gazED).
a— b oA\
Alro, verify that the result of part (a) agrees with the limil;.i:i_;r,?form of
equation (153b) when ¢ = 3and b = 1. [Use equation (13f0)
Seetion 3.9. m'\"\.'
51. {a)} Show that the characteristic funetions b e problem
Yoot ~ 2 e FAm =0 (% =.1:;Q,d <, N,
..\ W
Yo = 0, Y — i~ 0,
where g is a constant such that 0 £ p & 17 arc of the form
boe 2N
where a,, is the nth solution of "t'l‘Ié :i;i'allscen(lental equation
sin‘@{—i— Dea = posin Ne,
and that the correspondiqg’éﬁal'aﬁtei‘istic values of A zre given by
O o
P sl = ind .
& An = 4 sin 5
(b :fhe special case w = I, in which the second end condition
becomes Mgy = 0, show that there follows

“ . n—1 2n — 17

N = N — - mEl — - I
A Pai = 5in (QN 1 m'fc) and A, = 4sin (2 Y i 2)
whote n = 1, 2, ..., N. [Compare Problem 26(b}.]

(e} If u > (N 3+ 1)/N, show that one of the characterisiic nufo-
bers, say Ay, is negative and is then given by

M o= — 4sinh? M4y where sinh (N 4+ 1)y = p sinh ¥,

corrcsponding to the characteristic function ¢ = sinh vk, [Notice
that here a1 = {+ in the notation of part (a).]

52. Suppose that the end 2 = (¥ + 1)k of the vibrating loaded string
considered in Section 3.6 is completely restrained from motion in the
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z-dircetion, and is partially restrained from transverse motion by a spring
which exerts a restoring foree numerieally equal to K gy, where K is the
spting congtant. If the end # = O is fixed at the origin, show that the
linearized formulation is that of Problem 51 if we take A = MAw?/T and
u=T/(T + Kk), where T ig the tension (assumcd to be constant).
[Notice that p = D corresponds to Lxity, whereas p = 1 corresponds to
absence of transverge restraint.)

Y

e b
Y \Xml

Freure 3.44

53. It can be shown (see Problem 55) that exactly N of the roots

a, defined in Problem 51 lead to,distinet characteristic numbers. If f; is
defined for k = 1, 2, . . . , N, show that the coefficients in the expansion

AN
o= Dpdisnak (k=12 N)
'n:=1

are then determin\éd}' b’ir the equations
O\ .

An [i\"— éig\ﬁ(ﬂr + l)aﬂ] = Efk 5in ank (n == IJ 2! YTt N)'

_2:\\&' 4u8in @, y
AN .
[I\Ia”k\lag;use of equations (167) and (137a).]
{é}iﬁ}a 3.10.
54. Show that the charscteristic numbers of the Nth-order matrix

2 -1 0 0 - 0 0 0

-1 2 -1 0 .-~ 0 0 O

- -1 -+ 0 0 0

a= . -0- . -1- - -2. . .1. P T L O O
o o o o ~--- -1 2 -1

0 0 0 0 aox o 0 '_] 2
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are also characteristic values of X for the problem
e = Wb v F A =0 (k=12 -+, N),
ya = 0, Y = 0

and conversely, and hence are of the form

. i
Rﬂ=4sm22(—N-_F——ﬁ (1‘3=1,2,"',N).

N\
55. Consider the problem R
oA\
g — 2a g+ b Ay = 0 (k=12 - - - 30,7
Yo = mth, Yv41 = L2, :"}'«.

where ¢ and b are real constants, and where b > 0, & &
{a) Show that the difference equation ig'i@entified with (159) or
(168) by setting \
N
pe =0, =%~ 20 £ B%), o= b

and hence, in particular, deduce that t}}eifpﬁ;trix t of Section 3,10 is positive
definite, and that the N characteristieyalues of X are real.
{b} By writing a"

A =,‘2(;z— b cos a),
obtain the general solution/6f\the difference equation in the form
y,g;’ b (c; sin ok -+ ¢ e08 ak),
and show that permigsible values of « are then determined by the equation
sin (V 1B — (& + &) sin Ner + 7,82 sin (¥ — Da = 0,

where @, s\’&): and gy = b1p,.
e}’ Show that the reality of the characteristic values of A assores
the reality of cos a, 80 that either « is real or cos @ = cosh y wherc @ = 1%

or ¢O%a = — cosh § where o = v 4 ¢, where v and § are real and
pasitive. o
y (d) Under the assumption that a value o =i is perinigsible,

where ¥ > 0, show that 4 must satisfy the equation
sich (¥ + 1)y — (&1 + i) sinh Ny -+ iz sinh (¥ — D)y = 0.

Denofing the left-hand member of this equation by F, verify that 8F/881
and 9F /3@, are negative for all positive values of y when 0 & f1 = 1ab
0 = g2 £ 1, and that F is positive for all positive values of v when jn =
#z = 1. Hence deduce that no value of « of the form « = {7, where
v > 0, can be permissible if 6 £ g, € b tand ) = p. = b
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(e) Show that the assumption e = 7 - ¢ 8, where § > 0, leads
to the requirement

sinh (N 4+ 18 4 (& + #2) sinh N6 + fiff: sinh (N — 1)§ = 0,

and hence cannot be valid if g; and p» are non-negative.

(f) If w1 = 0, show that all permissible values of « are real if and
only if | ! = (N + 1)/N or |u.| = (N + 1)/N, whereas the corre-
sponding condition when gs = 0is | g [ = 674N + 1)/N.

(Show that {sinh (¥ + 1)v}/{sivh Ny} takes on all positive values
greater than (N -+ 1)/N, and only those values.] Q)

Section 3.11. , .\:\

56. Solve the modification of the problem considered in Sebﬁon 3.1
in which the end z = (N + 1}% is not restrained from trangverse motbion.
[Bee Problem 52.] I

57. A conducting rod of cross-sectional ares A, biex ¥ conductivity
K, and length L = (N + 1), conneets N mass pointsof equal mass M and
specific heat 5. The masses are at a constant s ration 2, and the red
extends a distance 5 beyond each of the ex’@m masses (Figure 3.45).

M M N\ M
L s {):{Jﬁ:::@:::i
0 ) Xpou" o Xy X5+l
FfGuRE 3.45

(a) If Qs representgithe rate of flow of heat into the kth mass,
and T, is the temperaturg’dfithe kth mass, show that §; satisfies the two
conditions &\

Qk =s M %;. Qk = E'é [(Tk-}-l —_ Tk,) - (TI: - Tk—l)l.

h
Hence dedugs t’hat T, satisfies the difference equation
. KA -
S e T T A Toy) (=12, N

tﬁg?@}\rﬂr with appropriate end conditions and initial conditions.

\/ (b) Show also that ag the distribution of magses tends to become
eontinuous, in such a way that A — 0, (N + DA s constantly equal to L,
and M/Ah—> p, where p is a limiting linear mass dengity, the governing

equation tends toward the heat-flow equation

OT _ 0T,
a * 322
[Notice that, in the discrete

where a? = K/ps is the thermal diffusivity. ] ,
ccessive mass points.]

case, the temperature will vary linearly between su
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58, Suppose that, at the time ! = 0, the temperafures of the mags
points of Problem 57 are prescribed in such a way that

TH0) = ¢y (k=1,2, -+, N},

and that, at all following times (¢ > 0}, the ends of the condueting rod are
maintained at temperature zero, so that

Polty =0, Fuply =0 (£ >0).

Determine the temperature at each mass point at time ¢ by the follo&i}g
procedure; ’:\*\~
(a} Assume s particular “product solition” of the fmju( x?
‘\“l
Telt) = 1 U (D), N

<

where fi is independent of timie and [7(t) is independe Lo position, and
show that, with the notation y? = (K A)/(k s M}, tlete must follow

Jorr — 2fi + fenn 1 dU:o\.; 2

e = s i — 2

Je v dh ™
where u?is an arbitrary constant, and “;hi::re fk satisfies the end conditions
fo = fé«.:ixzé 0.
(b) Obtain permissible pybifﬁct solutions in the form

Tin = Ca sinﬁ‘?% gt (= 1,2, - - -, N),
\\

N/

where 'S Ha = 2 gin

%

nw i
ANV + 1)

N\ S/ o
. (e} By\shperimposing such solutions, and satisfying the initial
condition T.-,{Qj = ¢, obtain the desired solution in the form
\w ~ .
B = > Cusin e R R

S £
Q~ 1
N
2 nwrk

where Cp == 2. in —— .

N ¥ 121 Al |

59. Specialize the solution of Problem 58(c) in the following cases:
(a) Take ¢ = sin \T—‘:{G-—I-: where r iz an integer.

I

{b) Take ¢;
(¢} Take ¢

O when & # r, and ¢, 7% 0.

1

if
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60. Buppose that the spacing A tends to zero (and N -~ o0} in Problem
5%(c), in such a way that (N + 1}A remains equal to L, and that 37/44
tends to a constant p.

, KA . nrh nir? K
{a) Show that ~2u,®=4 PN gin? o tends N3 P =
nirt ot cpm e s
o o where a? iIs the thermal diffusivity.
(b) Bhow formally that the sclution talkes the form O\
= Oy
Tz, 1) = _S_ €, sin 2T gniatad/ 5 N\
L . \J
=]l 'N}
where A 3
N L4 m'\\’
2 . 2 &\ mrw
Cp =+ lim 2 d(zz) sin Tk Ax = ¢ afavsin T dz.
L‘ Naa e L L 0\ \
E=1 N
Section 3.12. ’~~‘\ v

61. Obtain the sclution of the equatioi:.%u — ey, = 0, in the form
e = & &(){f‘—:é}:}fﬂ_
62. Tf 4, satisfies the equationbyes: — @y = 0, where a > 0, show

that g, = %, where w; is the general solution of the equation . — =
a.  Apply this procedure toéthe solution of Problemn 61.

63. Show that the e@aﬁon

O Yoo — Ol = By
i8 equivalent to @h(}é‘q”ua.tion
;"\\ Alpiye) = Prerdy
if p, is deﬁhed;by the relation
R\ 1
AN Dr = ika_:

@né: with the notation
qp = 0¥ @,

deduce that the general solution of the given equation is of the form

b
Ve = Gk (Ek Yn-l + C)'

dn
64. By making the use of the fact that % = 1 satisfies the equation

b+ Dyipr — o+ D+ 16 =0,
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obtain the general solution in the form

x
]
w=C Ea-i'cs (k= 0.
=0

65. Verily that the substitution yx = (ur/uxs1} — B reduces the
nonlinear equation

el + Ay + By = C ~

to the linear equation O\
(AB + Chrper = (A ~ Byus — wery = 0. O
{Bpecial cases in which B = 0 ocecur in Problems 32 :i.’llt.{.f:i:;:‘]
Section 3.13. ol

66. (a) If y(z) satisfies the differential eguation y” + zy = 0, and
if ¥(0) = 0, obtain the approximating diﬁcrf‘r\frze equation

Yegr = (2 — By — y;,_;fu’here = 0,

by writing zx = kk, and ¥ = y(z:), and replacing ¥y by (8%) /A%

(b) Taking & = %, expresais, . . . , ¥s as numerical multiples of
¥, Tetaining slide-rule accuracyo ™ _

fe} From these results;“obtain approximate valies of the solution
of the initial-value problemyfor which (0} = 0 and %'(0) = 1.

(d) From the re;ru\ts of part (b), obstain approximate values of
the solution of the houndary-value problem for which y(0) =0 and
y(l) = 1. N

67. Repea, the calculations of Problem 66, with a halved spacing
ko= 4, and, gompare the results of the two caleulations.

68. OB%in approximations to the smallest characteristic values of A
for theproblem ¢ + Az y = 0, where y(0) = y{1) = 0, taking suces-
sively W = 1 and ¥ = 2 interior division points. [Write the approximat-
ing~difference equation in the form yy — (2 — R B)ys + tar = 0, where
TN A3, and where yo = yuan = 0.

69. Obtain approximate values of the solution of the problem
dy
_— _— = = ' =1
8ot 2y =0, 3(0) = y'(0) '

at the points z = 0.1 and 0.2, by replacing d%/dz? by (§%,)/h? and replac-
ing dy/dz suecessively by (g — ve_1)/h, (s — 9a)/h, and (G — Ba)
2h, with h = 0.1. In each case use the mitial conditions 5, = ! &B
th — Yo = k. Compare the three values at x = 0.2 with the true value
y(0.2) = o2 = 12914,
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Section 3.14.

70. A uniform rod of length L = 1 ft and diffusivity e = 0.02 8q it
per hr is initially at a uniform temperature 200°. The end & = 1ig then
maintained at 200°, whereas the temperature of the end » = 0 is then
reduced at a constant rate in such a way that it becomes 100° after five
hours, after which that end temperature is maintained. Using four interior
division points along the rod, determine approximately the temperature
variation over the first ten hours.

71. Using & halved spacing along the rod in Problem 70, determines
the approximate temperature variation over the first hour, and compare
the distribution after one hour with the corresponding result of Problem70.
[Notice that dividing k. by two corresponds to dividing k. by folr).

73, Tet Problem 70 be modified in such a way that ad dheend z = 0
heat escapes at a rate proportional to the difference betwéeén ‘the tempera-
ture T of that end and the temperature 7, of the surtounding medium.

{a) If the constant of proportionality is denated by g, show that
the condition at that end may be approximated b\g( ‘the requirement

F-hx _ .’p‘j‘;’
Ty (1 + 2 A) = T}_:-f-. %A T

where & is the thermal conductcivityf;ina A is the cross-sectional area of
the rod. JON
(b} Suppose, for simplicity in computation, that k4 /p = ¥ ft and
T. = 100°. Again using {eut interior division points, determine the
approximate temperature i1>‘za}~ia,tion over the first ten hours,

Section 3.15. \\

N

73. A unifort@plate, in the form of an isosceles right triangle whose legs
are of length 1{ft; 1s initially at a uniform temnperature of 100°, At the
Instant ¢ =.0,{the temperature along one leg of the triang_ular boundq,ry is
abruptly teduced to temperature 0° and so maintained, while the remainder
of the hundary is maintained at 100°. Take ks, = &, = % ft, and suppose,
for cafivenience, that a* = ¥ sq ft per hr so that &, = ! hr. Determine
approximate temperatures at the three interior net points at the end of

\Qaéh of the first five following hours.

74. Obtain a corresponding approximate solution to the modification
of Problem 73 in which one leg of the boundary is abruptly reduced to 0°
and so maintained, the other leg is maintained at 100°, and the remainder
of the boundary is insulated when ¢ > 0.

Section 3.16.

75. The temperature slong the boundary of a square plate ABCD
is maintained in such a way that it varies linearly from 0° to 200° along
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AB, is constantly 200% along B¢, varies linearly from 200° to 100° along
OD, and from 100° to 0° along HA. Obtain the approsimate steady-
state tempernture distribution by replueing the plate by o network of
25 intereonnected point musses, estimating temperatures it the nine interior
net points, and proceeding by the iterative method of Seetion 3.16.

76. Obtain s corvegponding approximube solution to the modification
of Problem 73 in which the edge BC is nsulated.

Section 3.17.

77. Apply the relaxation method to the treatment of Problem T
N
8. Apply the relusation method to Problem 7i (\)

- C e . . . NS,
79. A blindfolded prisoner is placed in o square maze eonsisting of N
equally spaeed interior passagewnys extending in the z-dhe'tion, crossed
at right angd@by N similarly

// // % / spaced intcpit;\}1:155:1{:,8\\'3.3'5 in the
/ prdirertig\ W igure 3.16).  Along
// s S
/ /

N\

three _of Yhe bounduries of the
maze’Z deep moat is present,
\\‘h’(‘.h‘us the fourth boundaryy =0
Fopfesents aceess to freedom.  Let
\ the passages in the y-direction be
“denoted by = 1,2, . .., &, and
those in the s-dircetion by j = 1,

>

N

1 7

2.,..,N.
1—-—i — 4 () IT the probabil_ity of
Fieuns 3 46*,\ evenbual escape when the prisoner

\\ - is at the junction of the ith and
jth eorridors is dendted™hy pi;, show that there must fullow

:‘:'Pi.-: = i‘(ﬁim.j + Piet,i+ Pzt + i im1)s

where ¢ a.l}d\’j.\vary from 1 to ¥, and that the boundary conditions

Q™

”I«nnSt ‘be satisfied. [Notice that the difference equation is completely

\aﬁ{ﬂagous to equation (235).] . .

(8) Determine the probability of eventual escape at each junetiol

of a maze for which N = 3, by relaxation methods or otherwise, obtalniiy

each probability correct to two decimal places. [For convemence 1B
calculation, multiply all probabilities by 1000.]

poi =0, Pyun;=0, poyn =90 po=1

Section 3.18.

80. The temperature along the boundary of the plate iBCDE 7 of
Figure 3.47, where CD iz a quadrant of a cirele and AB = EA = 2 BD,
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is maintained in such a way that it varies linearly from 100° to 200° along
AR, is constantly 200° along BC, varies linearly along the are CD from
200° to 100°, and is constantly 100° along DE and EA. Determine
approximate steady-state temperatures at interior points of & squarce net

with spacing AB/4. ' £
81. Modify Problem 80 in such a

way that the edges AB and EA are
insulated (or are lines of symmetry).

D

Section 3.19,

82. A function ¢z, y) satisfies
Poisson’s equation

Vig+ g8 =0

where 8 is a positive constant, over a A \J B
square of length @, and vanishes along
the boundary of this square, ¢,

(s) By replacing the square by a netfork with spacing b, = &y =
a/ (N + 1), and writing _ PN

. par
P = Toogy+ 1

» Figure 3.47
oD

show that u;, 18 then dimensipn'l’eéé, and that the residual relevant to the
relaxation procedure takes t\he form

+8 3
Bo =+ iz + ws + %s — duy + 100,

with the notation-gf.Figure 3.17.
(b) OPtdin an approximate solution to the problem of part (a)
with N = B/~
{€\Use the results of part (b} to obtain an approximation to the
iﬂmgr&}l’&ﬁ&» over the aquare.
.83} A thin square plate of uniform thickness is bounded by the ‘edges
4 &0, 1 =a,y=0, and y = a. In the absence of external lg).&dmg, a
sthall defiection w(z, y) satisfies the equation Viw = 0 (see Sceotion 2.16).
Suppose that the plate ia clamped and undeflected along the three edges
z=0,5=gqa, and y = a, so that the conditions w = 0 and Sw/dn =0
are satisfied along those edges, and that the edge ¥ = 0 iz elamped in a

z z
deflected parabolic form, in such a way that w = 4wm.xa 11— 2 and
dw/dy = 0 along that edge. By replacing the plate by a network with

spacing h, = h, = a/4, obtain approximate deflections at the nine interior
net points.  [Write w/wne = %/100.]
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84, The interior of & long eylindrical furnace of inner reling @ and
auter radiug b is muintained at constant temperstore 2007 |Figure 3.48(a)].
Hslf of the outer boundary (CHCY ig insuluted, wherews heat esoapes from
the remainder (CDT) at s rate proportional tu the difference hetween the
boundary temperature Th, at a point, and the temperature T, of the sur-

rouwmbng air, so that a condition

Y of the form
G
ar .
f A o R IR
D E 2 X . .\\\
- - must be satisfied along thibsmdary
k, ond. .\
{n) By wltny” the trans-
o formation of cgfiagim (263}, show
that the sem&a?w.\tinn ABCDEA is
ta} mapped Nnro the rectangle
A'BC DY of the we-plane in
v IMigurg ’I{}L\‘(h), Slww also that the
N IDTIIIIIIIIIIIINIIILN Eravistprnied problem consists in
L o b détormining the solution of the
9a _vequation
"\ T | T
T | :c:‘ N Ol FIC ©
L
ol i\ g for which 87/8n = 0 along A;B!’C:’
I /;Q(f/ U andalong YE, T =200° along B4
N and a7/du = —be (T — 1) along
PAY {b) c'D. ‘
Fretis 3.48 (b} If the rectangle in the

y ur-plane is replaced by o square net
with spacing®s, show that an appropriate condition along B is of the
form ;\\"

.‘:'.’ (1+b&C)T5=1r|‘+btha;
4 0\’ $
\where T, is the temperature at & houndary point, 7y that at the adjacent
mterior net point, and T, that of the surrounding air.

{¢) For convenience in caleulation, suppose that bfa = ¢/? and
that b ¢ = 4/m, so that b h ¢ = 2/(X + 1), where N represents the number
of interior division points in the u-direction. Assuming also thal T:a =
100°, obtain the approximate steady-state temperatures at the neb points,
taking N = 1. Arbitrarily consider the point €7 to be part of the boundary
B'¢’, and the point D’ to be part of C'D,

(d) Indicate on a diagram the temperatures so obtained at corré”
sponding points of the original region of Figure 3.48(a). Also, sketch 2
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few corresponding equithermal lines. and lines of heat flow. (Notice that
equithermal lines must intersect insulated boundaries at right angles.)

Sectron 3.20.

85, (a) Show that the solution of the equation %" + y = 1, for which
#(0) = 0,18 given by y = 1 — ¢™=.
(b) By replacing dy/dx by the approximation (Yry: — #2)/h, and
so obtaining the difference equation e — (I — Ry = k, with 3o = 0,
obtain the approximate solution

w=1-(1—Hk* or gz = 1 — (1 — Byea,

Show that this expression converges to the exact sclution as A — 0. [Reegll
that im (1 + e)* = e N

Q!

¢ - Wy

{¢) Show that the approximation dy/dz = (1 —&y)/h leads
to the approximate solution y(z) = 1 — (1 4 k)™=, and,tliat this expres-
sion also converges to the exaet solution as h— 0. P\

(d} Show that the approximation of dy/dibyv(Yes: — 7a-1)/2k
{which also becomes exaet ag 2 — 0, and which ig {Ql:general more nearly
sceurate than either of the preceding approximafions) leads to the differ-
cnee equation # + 2hye — Yrs = 2h, withygeneral solution

e = 14 a(V/T R — B + eacosmh(v/T + 32 -+ )™
By setting & = /h, show that the caefﬁcfént of ¢, doeg not tend to a limit
as h— 0 for fixed x;, whereag the goefficient of ¢; tends to e~ In addi-
tion to preseribing the value yo =0, one must preseribe a fictitious value,
say, toy_,. Show that unlesgthe value y . = 1 — h— \/ 14+ h2_happens
to be chosen, convergence £0ythe exact solution (or to any function of x)
cannot follow as h— 0.’\\"

86, If (k) 15 a .dlifferentiab]e function of % for small values of % and
at b = 0, and if §(8) = 1, show that

2.\ lim [B(R)¥* = ',
\Yv W—0

[Write u(li)x——“ g% and evaluate lim [tog u(h)] by using L'Hospital’s rule.]
o A0

- 87 Given the differential equation ¥’ 4§ — 2y = 0, ghow that the
néril solution of the difference cquation obtained by replacing ¥ by
el — 2 + yen) /B2, and ¥ by either (Hep — Yk, (e — y:f_l)/ k, or
(941 — Ye_1)/2h, converges to the gemeral solution of the differential
equation as A—> 0. [In the first case, show that the general solution is of
the form y(z;,) = ef®* + 87", where

(2 + b+ 28%) + hA/9 + 4k - 482
ﬂl,g(h} = —'_—_2—4——_2}:‘, — -

and use the result of Problem 86, showing that #1(0) = 1 and 83(0) = —2.]
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Section 3.21.

88. Verify that, if the conditions (273x,13) are repluced by the more
general conditions ¢z, ) = Flz} und ¢, 0) = ({), where # and & are
twice differentiable funetions of x, the relevant solution of (272) is of the
form

é(z, z)u— Flz — V1) +I-(z+i£]——~[h’(:~ o) — fi(x + Vi)

where H(z) is a function sueh that if'{z) = (,(r) Thus establish thedact
that the region PAB of Vigure 3.3+ ia the region of i{(‘tt’rmm‘ttl{)ll I Mhis
more geners| case. O\

89. Buppose that the function F(x) of equation {273a){ (hf’fers from
zero only for ¢ £ x = b SBhow that the solution (271, Im % > 0, then
differs from zero only in the two strips bounded by thehoes z — Vi = a
and & — Vi = b, und by the lines 2 4+ 1t = a .m(jﬂ\\&— V't = b, respee-
tively. [Notice that any irregularities ot points alodig Fhe taitiul line y =10
are therefore propagated ulong the characteristics sWhich pass through those
points.] N

90. Let the independent variables z an’(l\y‘in the equation
6 ¢+ 2b ¢y + oy +d¢, ed, Hfd =9

be replaced by new independent ety !:bl()b % and », which are prescribed
functions of # and y. By nmlung the ca.h,ulftt,v.on‘s br = UpPa T Voo
(b:: = Uz ¢uu + 2uxv:¢uv + e téln + uxx¢u + !xr¢(, and so fortrh shOW
that, if the original equation{is written in the abbreviated form

O L) +16 =4,
the transformed equa%n can be written in the form
B(u, %) uw 2B, Yo + Blo, 0)dve + L{w) s + LE)be +1 6 = 6
with the add;@xpnal abbreviation
AV B8 = aas. +blas, + @) + o by

9h\Let u = (7, ) and v = Qlz, y), where Pz, y) = Ciand Q(x,%) =
C’z ate independert integrals of the characteristic equ*ttlon (281):

\ )™ aldy)? — 2b dz dy + c{dz)? =

With the notation of Problem 90, show that then B(u, u) = By, v) = 0,
80 that the translormed equution takes the form of equation (282),

¢'“5+A¢“+B¢|'+C¢=D,

with
L Lw e L@ _ s D9
2B(u, v} © T 2B(w, vy T 2B(w, ) . 2B{u,v)

where the coefficients are to be expressed in terms of » and ».
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[Notice that, if the equation P(z, ) = (7, is considered as defining ¥ in
terms of #, there follows P, dz + P, dy = 0, and hence dy/dx = —P./P,.
Then show that the requirement that the function ¥ so defined satisfy the
characteristic equation leads to the result B(P, P} = 0.}

92, (a) Show that the eharacteristics of the equation
Y Do — 2z Quy — ¥ ¢W‘ = g(xl y)

are solutions of the equation

2 P
dr 2 + \jﬁ +1, N\
ay v \
; . . . . KA
and (solving this equation by taking «/y as a new variable} ol:[t.zéﬁ “the
equationg of the characteristics in the form « \

VRt r = \/xT-i-—y’-—x=cz.~f b

{b) Noticing that here ¢; and ¢, cannot be negative, show that
the characteristics are all members of the family y&=¥%? — 2kz of con-
focal parabolas, where the members of the first seb,Open to the left, and
those of the second set open to the right, Sketchthe Bwo sets in the upper
half-plane y > 0. q‘x\

(¢) If ¢ and d¢/dy are prescribed aleng the z-axis, and the solu-
tion of the given partial differential equation'is required in the upper half-
plane, represent in a sketch the regiouvqudétermjnation for the point {3, 4).

93, I, in Problem 93, one wrltes .

u = '\/x"—i-y?."—l—:c; p=Set Ayt -,

restricting attention o the.\ﬁi);er half-plane y > 0, show that there follows

also e\
(p=1@m—v), y=vVur

Verify that the ‘u}i})e’r half of the zy-plane then corresponds tg the first
quadrant of th&wi“plane, with the y-axis corresponding to the line # = u.
Show slso thal)the strip bounded by the 2- and y-axes and the line & = a
correspondsibo the diagonal strip bounded by the lines % = v, % — ¢ = 2a,
and thew-axis.

04} With the terminology of Problems 80 to 93, verify directly that
B‘QL;‘E) = B(p, v} = 0 in the special case under congzideration, and show
that

o A/
Blu,v) = —2y = —24/uv, L{w) = L} =ﬁ='§%§"

Hence deduce that the differential equation of Problem 92 takes the form

i g _g
“2(u+v)(¢u+¢v)+4m

Puv
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in terms of the characteristic variables u and » of the Problem 93.  [Notice
that the characteristics of the modified equation are then lines « = eonstant
and v = constant, so that finite-difference methods (with net lines parallel
to the u- and v-axes} are uppropriate.)

95. Obtain an explicit solution to the finite-differenre approximation
of the problem in which T'(z, ¥) sutisfies Laplace’s equation ¥, + 7y, =
in the semi-infinite strip 0 < = < m, y > 0, vunishes along the edges 2 = 0
and z = &, and takes on the value T'(z, 0) = sin rz (where r is an integer)
at points along the edge ¥ = 0, by the following steps: ~

{a) Obtain the approximating difference equation \

K(Tape = 2Tun + Toosid) + (Tt = 27 + T i,

where « = h,/h;, and where Thn = T'0m hoon by}, Bllhj(?['t(t‘(ta}'aj}le cunditions

i &
Tow =0, Tan=0, Tus=sin f*_f;?-
{b) Assume a product solution T;..,é "{gn, and obtuin the con-
ditions " g
.fmﬂ - (2 - k),r-m +fm-| :“.0,’: fo = f.u == 0,
fni1 — (2 + «¥N)gn +g,.’_{} =0, lim g. finite,

fimd @
e
N

fogether with the condition releici;nt ton = 0.
) {e) Show that therg\must follow A = 4 sin?® (rx/2M), and deter-
mine T, in the form .\
)
\s..T - man o '::E-;r_',
ST e

where « is a congtant defined by the equation
- > T
\\\ cosh & = 1 4 2«? pin? i

‘\9“6’-" (a) Show that the sclution of Problem 95 can be written in the

] ™
3

T(Zm, Yn) = € P4 8D 7T,
where
eosh™ [1 4 2% sin? (rh,/2)]_

=2
ﬂ_kv Khz

) (b} Bhow that, as the spacings tend to zero in such a way that
their ratio « retains any fixed value, the constant 8 tends to r, so that the
solution tends to the expression

T{z, ¥) = e~ gin 7z,
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and verify that this limiting solution is indeed the solution of the exact
problem. (Show first that the function f(u) = cosh~! {1 + w?) i3 given

@? oy
by \/5 ¥ =15 4 « -+ ) for small positive values of u, by considering
the scries expansion of f/{u).]

Section 3.22.

97. In the problem governed by equations {283 to 285), let aT/at
be replaced by a divided first forward difference, while 9°T/9x2 is not\

approximated. N
{a) Show that the appropriate solution of the regultant diffefence-
differential equation, e\
9T (z, ¢ L
T(ﬁ, tk+1) — T(.Tv, tg) = hg —é(':cz—‘k), i <‘..<'
is of the form RS /

Pz, t) = (1 — r2h)%™ sin ra,

(b) Show that this solution converges :t({\eff" gin vz as h.— 0,
for any fixed r, but that the solution oscillates qpl{oundedly ag{—> o unless
he < 2/v%, \S,

98. In the problem governed by eguiit'rons (283 to 285), let él“_T/ax2
be replaced by a divided second centrgl difference, while 87 /dt is not

approximated. &N .
(s) Show that the approptiate solution of the resultant difference-

differential equation, g

2.

APz, ¢
Txpss, £ — \?,\T(z\k 1)+ Tz §) = h? (ax: ),

is of the form A\
- E‘%sins%rh,): .
e ,\T(.’.Ck, g) =g £ gIn 7.

N b s
(h{Shbw that this solution converges to ¢~ sin rz as h, — 0 for
any fixed, s, \"(Notice also that the solution does not possess oscillations in
time for\amy value of %s.)
4 .\’~ 'S
eeigon, 3.23.

99, Show that the difference equation (275}, replftci_ng the wave equa-
tion V¢, = ¢, is stable only when b= V h;._ ‘(l\otlce that, according
to Section 3.21, this requirement is also the condition for convergence.)

100. Show that the result of approximating Laplace’s equation by the
difference equation
— 2 T Vet _ g

Wmytl,e — 2wm,ﬂ + Wn—1.n + W, ntl
3 byt
hs ¥
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would he unstable for any ratio i, /b, if it were treated as an initial-value
problem,

101. Show that the result of replaving (T np1 — o) P by (Tongs —
o1}/ 20 in equation (200) is unstable Tur any ratio 4,05,
102, Show that the result of repluving (i — o ndfhe Y (Cmprn —
Wmetn) /2R 0 (334) is stable if
h,?
Szl VTS
I

103, Show that the result of replaring the heat-flow equation m,, = 13!1":\
by the difference equation O\
Wagtont = LWonit + Wnorngs = &{10n e — W), O
where x = A.%/h,, is stable for any positive value of . R ("’K’
104, Show that the result of replacing the wave e(ILI{lel Viger = du
by the equation
K Pmnt1 — 2,0 + Bmopt) x.,\\}
= 4{(mitonit = 20m.nit ¢ Q‘g\;’a ni1)
+ (sf?mn N 1 R - Sy |

where x = k,/V ki, is stable for any pmr{wc value of x.

105. Prove directly that suﬂ'cmu’, Ponclitions for stuhility of the lormu-
lation

W

Wm,ppl = Citlmar,n + Cz'wm,w}*' Catt'm_i,n (1 =m & M -1, nZ 1):
¢ No?
Won = jJ1T.U1\\ Wyn = Molliar_1n (n Z 1),

‘w,,,n—f,,, (0= m s M)
are that the relatwh?:

;"&}’% Oy Co = 0, CSEO, oL+ ez 4 es
QO 0=m=l, 08m=1

he sa.tieﬁ'ea {buppose that f, represents an error distribution, Let K

Kt otethe maximum value of [ fm |for0 = m = M, and show by induction
thatAhen | wn. | < K (for all < m < M)whenn 2 0] Also, illustrate
this result in the case of equatlon (290)

llA

1,



CHAPTER FOUR

Integral Equations
O\
S
4.1, Introduction. An infegral equation is ax_eguation in
which a funection to be determined appears under 40’integral sign.
We consider here only linear equations, that i, &quations in which
no nonlinear functions of the unknown functivi ate involved.
Linear integral equations of most fregént oceurrence in prac-
tice are conventionally divided intd\{ j}o classifications. First,
an equation of the form O

a(@f(e) = P& [ Ka, 7@ dt 0

where a, F, and K are giveh functions and A, ¢, and b are constant,
is known as a Fredholm“@uation. The funetion f(x) is to be deter-
mined. The given Yq;\i&tion K(z, £), which depends upon the cur-
rent, variable z a§ well as the auxiliary variable & is known as the
kernel of the in’beéral equation. If the upper limit of the integral is
not & constAnt, but is identified instead with the current variable,
the equafion e form

?%;Qn tukes the fo x
£»N wl@)f(x) = F@) + [ K, 9 d&, @
a\Y4

\afad is known as a Volterra equation.

Tt is clear that the constant A could be incorporated into the
kernel K (x, £) in both (1) and (2). However, in many applications
this constant represents a significant parameter which may take
on various values in a particular discussion. Also, it will be seen
that the introduction of this parameter is advantageous in theo-

retical freatments,
k1231



382 INTEGRAL EQUATIONS (4.1

When o # 0, the above equations involve the unknown function
f both inside and outside the integral. In the special ease when
a = (0, the unknown function appears only under the integral sign,
and the equation is known as an ¢nlegral cquation of the first kind,
while in the ecase when o« = 1 the equation ig said to he of the
second kind.

In the more general case when « ig not a constant, but is a pre-
geribed function of 2, the equation is sometimes called an integral
equation of the third kind. lowever, by suitubly rvedefiningMhe
unknown function and/or the kernel, it is alwnys possible 16 yévrite
such an equation in the form of an ecquation of the sehend kind.
In particular, when the function a(r) is positive hronghout the
interval (g, b), equation (1) can be rewrittcrlwﬁgx”ml equivalent
gymmetric form G

/

F(z) N n—
& = A N ESS - fa 3,: i ' 3)
+a(z) f{x) NZIE + ﬁ \f";x(jb&(&) Val(g) f8) dE, |

and hence, in this form, can be considered an integral cquation of
the second kind in the unknown$nction /a(x) f(x), with a modi-
fied kernel. Whereas otherisimilar rearrangements are clearly
possible, it frequently hapgéns that K(z, £) is a symmetric function
of z and §; the mOdiﬁed{kérnel in (3) then preserves this symmetry.
As will be seen, syxri‘;ﬁefric kernels are of the same importance in
the theory of lineal ¥nfegral equations as are symmetric matrices in
the theory of set€lof linear algebraic equations (Chapter 1).

In the preeeding equations the unknown function depends only
upon One\tiitﬁslépendent variable. If f depends upon two current
variablés“e and y, the corresponding two-dimensional redholm
eqqa\tio'n is of the form

e &

N a0, o) = P, 4 [ K g b nfe m didn. &

In general, an integral equation comprises the complete formu-
lation of the prablem, in the sense that additional conditions net}d
not and cannot be specified. That is, auxiliary conditions are, I
a gense, already written into the equation.

Certain integral equations can be deduced from or reduced 0
differential equations. In order to accomplish the reduction, 1k 1e
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frequently necessary to make use of the known formula,
d B{=)
p F (%, ) dE

_ f BF(iL'; E) dt + Flz, B(x)] — Flz, A(z)] jI—A? (5}
A

for differentiation of an integral involving a parameter.*
As a useful application of this formula, we consider the differs

entiafion of the function I,(z) delined by the equation A
¢\

L@ = [[@-poe O ®
where # is a positive integer and a is a constant. )V‘l%h'\
Fz, 8 = (@ — 970,00
equation (5) gives the derivative of (6) in t.kg\e\fmm

el Gl 1)[ (@ — (B dE + e — Y (E)]ime

s

Hence, if n > 1, there follows W

e

Nl

Efii’z = (n"_—‘:l")L._l (n > 1), (7)
_ WO
while if # = 1, we have ) :
\ N\ dI % = f(z). (&)

Repeaied ug,e\:(;ﬁ‘\(:?) leads to the general relation
%;gé”é (n—Dn—2) -~ @®n— B s r>k. 9

-,l,{:'fiia]i‘ticular, we obtain the resuit

Y ‘?:E”Il = (n — D! 1), (9a)
and hence by using (8), there follows
% = (n — D1f). : (ab)

* The formula of equation (5) is valid if both F and aF /azx are coniinuous
functions of both 2 and £
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If we notice that I.{(a) = 0 when n 2 1, it follows from (9) and
(9a) that I.(x) and its first (n — 1} derivatives all vanish when
T =a

Thus we may conclude that [.(x)/(n — 1)1 is equivalent to the
result of integrating f(z) n times from ¢ to z; that is, we have the
result

ﬂ times

n timea L\

f fﬂmn j (@ — o i) g

Q' " (10)

This result will be useful in the work which fnl]mn
4.2, Relations between differentinl uml\inu wrral equa-
tions, We consider first the initial-value ;nohlem consisting of
the linear second-order differential equationv/
'\l
+ BY= @), )

5”

where 4 and B may be functwns “of 7, together with the prescribed
initial conditions \

dy+Ady

y(a)\- ¥,  Y(@) = vo (12)

If we solve {11} for}i?’y/d:cz, integrate the result with respect to
over the interval (a z), and use (12}, there follows
\ ~

3\1\3}”#*[ A%dz~f Byd;c+f jde
O

or, after integrating the first term on the right by parts,
A9

mJ

x

A% gg= ~Ay—-f (B—A')ydz-i—[ fdz + Ala)ye + %o
A second integration then gives the relation
y—w=— [ A@y@ dz ~ [ [ [Be) — 4@y drdz

+ L:, j;x flx) dx dx + [A(a)yo + iz — &)
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If use is made of equation (10), this equation can be put in
the form

v@ = — [T{A® + @ - DIBE — 4©LyE d
4 [ e - o A+ @ + e — @) e

or, equivalently,
~

v@ = [ K, Dy® &+ F@), A

K, 8 = & — DB — 4] - AQCY  (14a)
and w'\a.’

F@ = [ - 8@ de + (4@ + VIR ) + v (140)

This equation is seen to be a Volterrg egultion of the second kind.
We may notice that the kernel K is a Jiedr function of the current
variable z. It must be assumed, of .Fourse, that the coefficients
4 and B and the function f(z) axg\#uch that the indicated integrals
exigt. N\

In illustration, the problem’

where we bave written

O+ = s } .
OO =1, Y0 =0

is transformejﬂiiﬁ this way to the integral equation
:”\:s. . .
U [ - pu@at - [ €~ af® a8

,,,\:Q:{’)Il'\'erscly, the use of (5) permits the reduction of (13) to {11)
y)itwo differentiations. The initial conditions {12) are recovered
hy setting # = & in (13) and in the result of the first differentiation.

Thus, differentiation of (16) gives
@=—xfm9&+fﬂ9% an
dz 0 o

and a second differentiation leads to the original'differential equa-
tion. Since the integrals vanish when the upper and lower limits
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coincide, equations (16) and (17) supply the initial valies y(0) =
and y'(0) = 0.

ToMustrate the corresponding procedure in the case of houndary-
value problems, we consider first a simple example.  Sturting with

the problem
2
Z’xy +Ay=0, 18
‘ 19

W) =0, ya) =

~~ ¢

{
we obtain after a first integration over (0, @) the relationys\ ™

Yo A ywdr o o8 (19)
dx o y o ‘."\'\'

\
W

where C represents the unknown value of ; (0). A second inte-
gration over (0, z) then leads to the rel; mo\n\

y(z) = —x[(x—aﬂmde+rx (20)

While the condition #(0) = 0 has! 1‘!(-911 incorporated into this rela-
tion, it remains to determine CZ 80 that the second end condition
¥{a) = 0is satisfied. When\thls condition is imposed on (20) there
follows Ko *

fw—mw& (21)

If the value of (3 sg determlned is introduced into (20), this relation
takes the fornq

y(ﬁ:}é ‘7\[ (& — Byt ds + 22 / {a — tiy(t) d
:"\. .
~O . ]
y@=xﬁ§m—@maﬂ+xﬁgw—ama% (22)
With the abbreviation

f{a —z) when £ <z,
K(z, &) = (23)
2 (@ — £ when £> z,
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equation (22) becomes -

v =\ [ K, 9y(®) i (24)
Thus, the integral equation corresponding to the boundary-value

problem (18) is a Fredholm equation of the second kind.
To recover (18) from (24), we differentiate the equal merabers

of (22) twice, making use of (5), as follows: ~
dy x| {7 _ Ko
M = [ s b+ ot — 0 O

+ f "0 - Dy® dE — &~ w)y(x)J

A @ a )
=a[—f E'y(E)dEJrf (a—E)y(S)dé] '
0 v WA
and O
&y _ 2 _3503 = 2@
Gus = glTu@ — (e ; Hp)] = —ry@),

in accordance with (18). The beundary conditions y(0) = yla) =0
follow directly from (22) by.getting ¢ = 0 and = = a.

We may notice that thekernet (23) has different analytic expres-
sions in the two regiqlgs} < z and £ > z, but that the expressions
are equivalent wheh'§ = x. Thus, if we think of K as a funclion
of x, for a fixed value of &, then K 1s continuous at z = £  However,
the derivative @K /9z is given by 1 — £/a when z < & and by
—£/a whe;r\:;u}g. Thus 6K/dz is discontinuous at = = £ and
it has a @pite jump of magnitude —1 as x increases through £
Furth&i:,&{’e notice thab in each region K is a linear function of z,
thaftffs, it satisfies the differential equation 3°K /8z =0, and K
'“K{inxmhes at the end poinis z = 0 and & = ¢. Finally, it is seen

\tHat K(z, £ is unchanged if @ and § are interchanged; that is,
K(z, £) = K{(¢, z). Kernels having this last property are said to
be symmeiric.

1f analogous methods are used in the case of the more general
homogeneous second-order equation

d*y dy -
EEJFA(EJFBTJ 0,
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with homogeneous end cenditions, a kernel is obiuined which is
disconfinucus at z = £ unless the cocflicient A is zero (see Problem
8). However, a kernel which is continuous can, in geoneral, be
obtained by a different procedure which is ontlined in the following
section.

4.3. The Green’s funetion. We consider first the problem
consisting of the differential equiution

Ly+ a) =0, (25)
where L is the differential operator \\\
7'\
_d d _ d* dp d S hy
L= CT:E( {!J:) +4 P * dx de f“t}, 3 (252)

%
together with bomogencous houndary m:ulitium&',’}.:u-h of the form
ay + ﬁdx = 0 for some constant values Q{’a and @, which are

tmposed at the end points of an interval é\< = b

In order to obtain a convenient furm of the solution of this
problem, we first attempt the detenhination of a funetion G which,
for a given number £, is given.,lpj?;'(r‘i(‘r) when & < & and by Ge(@)
when z > £, and which has theMour following properties:

1. The functions G, and"{» satisfy the equation L ¢ = O in their
intervals of definition; that'is, L G, = 0 when & < §, and LGs = 0
when = > £, \

2. The functiot\G satisfies the homogeneous conditions pre-
seribed at the eddipoints = o and ¢ = b; that is, G safisfies the
condition pr&siri‘bed at r = a, and (73 that corresponding to z = b.

3. The f’uncmonG is continuous ot z = £; that is, G1(£) = Gx{&)-

4. The derivative of G has a discontinuity of magnitude
~1/1p6)] at the point = = £; that is, GL(§) — GL(&) = —1/[p(B]

We then show that if this funetion ¢, in which ¢ will appear a3
B\ﬁarameter, exists, then the solution of the original problem is of
the form

y@ = [ e, s

For this purpose, let ¥ = u(z) be a solution of L y = 0 which
satisfies the prescribed homogeneous condition at z = a, and let
y = v(z) be a solution which satisfies the condition at z = b. Then
the same is true of ciu(x) and ex(x), where ¢, and c; are arbitrary
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constants. Thus, conditions 1 and 2 are satisfied if we writc
Gy = em(x) and G = e}, so that

g = eyu{xr) when oz <
" lew(r) when x> &

(26)

Clonditions 3 and 4 then determine ¢; and ¢, in terms of the value
of £ For 3 requires that

N\
ew($) — exu(f) = 0, [(Xa)
2N
while 4 gives the requirement o\

1
e’ (£) — ext/(8) = — m '( b (27h)

L W
Equations (27a,b) possess a unique solutionf }\the determinant

W[u(‘é), U(é)] = ur(g) EJ"(E)
does not vanish. This quantity is fhe Wronskian determinant of
the solutions » and v of the equatidinl y = 0, and it eannot vanish
unless the functions % and » aredinearly dependent. According to
Abel’s formula,* this expressioi® has the value A/p(£), where 4 is
a cortain constant indepeeaent of £; that is, we have

W@ () =%@@—mmm>@&

) A
Wy - v@w () = 5 20
.%{)v (&) — v(§u'(8) e (29)
With this relatién; the solution of (27a,b) becomes
o »(£) u()
{\Y &y = — ——* Og = — —
A A
&
and hence (26) takes the form
7\
m\" ..': 1
N/ — — wlaw(f) when = <&
Gt =1 = (30)

_ j—iu(f)v(z) when @ > &,

* Abel’s formula may be derived as follows: The requirements that _u(a:)
and v{z) satisfy (25) are (p ') + qu =0and (po’) +gv = 0. By multiply-
ing the second equation by # and the first by », and subtracting the results,
there follows wulpv’) — »(pu’)’ = [pluv — 2w}’ = 0. Iknce we have
Py’ — pu’) = A, where A is a constant, in accordatice with (29},
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where 4 is 8 constant, independent of £ and £, whicl 13 determined
by {29).

This determination fails if and only if A vanishes, so that »
and ¢ are linearly dependent, and hence wre each multiples of a
certain function {F{x). In this case, the function {'(r) satisfies
the equation L y = ( and both end comditions.  Thus, fur example,
since the function U{r) = 1 solves the problem %/ dz® =0,
¥ = y'(1) =0, the Green's funetion does not exist for the
expression L y = d%y/dx* relevant to the end conditions ph=

y'(1) = 0. A generalized definition of 7 which is mpm;mate to
such exceptional situntions is given in Problem 16. \ )
We now show that, with the deiinition of qumﬁ()‘n {30), the

relation NG
b _
we) = [ 6, ga g L (31)
implies the differential equation ‘\\“‘
A,
Ly+ qa(x) S0, (32)

together with the prescribed‘}youndary conditions. For this pur-
pose, we write (31) in the exp},ic'it- form

y(x) = [LUQ\JU(E)‘?(E) d +f u(z)r(5)P(E) dé} (33)

Two diﬁerentiatiprfs, making use of (5}, then lead to the relations
N\

xt\. 4 x b
v@. o0 | [ veuwe a + [ w@ewe i) 6
.\,\ a =z
and %3
ON”

) ,,
V@ = - [ [ veuwse o+ [ oo a]
- i @ue) - wEE@BE. 69
If we form the combination

Ly =p@y"(@) + p' @)y (z) + ¢lz)y(=)
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from these results, and make use of {29), there follows

x b
Ly = — 4| [ Eenoe@ o+ [ Lo o
| i A
- [P(x) 5@ @(x)]-
But since u(x) and »(x) satisfy Ly = 0, the two integrands vanish
identically, and this relation becomes merely
Ly(x) = —%(), .

oA\

so that (31) implies (32). That is, the function y defingd\o¥/(31)}
sutisfies the differential equation (32). Also, since (§3)“and {34)
give NG

b D
V@ = - L@ [ o

Q"

AN
y@ = — 5@ f vEIB(E) d,

it follows that the function y(x) deﬁhed by (31) satisfies the same
homogeneous conditions at z =_ @38 the function u(z). But these
conditions were specified as those which are imposed on the solution
of (32). A similar statement applies to the satisfaction of the
condition prescribed at °="b.

If now we replage &(x) by A r{2)y(2) it follows that satisfaction
of the integral equati

D@ = [ G, or(ou (36)
implies Sa.ﬁs’f\a;:tion of the differential equation
\\ L y@) + 1 r(z)ylz) =0, 37)

'gagé’oher with the relevant homogeneous boundary conditions. The

converse statement ean also be ghown to be true (see Problem 14),
80 that the two formulations are entirely equivalent.

More generally, the presence of a preseribed function f(x) in

the right-hand member of (37) would correspond to the addition

of the term — j; ’ Gz, HF () dE to the right-hand member of (36).

We may notice that the kernel K=, £ of (36) is actually tl_:fe
product G(z, £r(f). While the definition (30) shows that G(z, &) is
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symmelric, the product A(x, £) ix not symmetric unless #(z) is a
constant. However, if we write

(@) ylx) = Y(), (38)

under the assumption that r(x) iv nonnegative over {a, b), as is
usually the esse in practice, equation (363 can be written in the
form

v = [ Rz, py (o ag, (89)

where K is defined by the relation R\ \\

R, &) = Vrzp® Gl 8, N\ (0
and hence possesses the same symmetry as G Q){' importance of
symmetry will be seen in later considerations: )

The function G(x, £) defined by (30), or ky‘ the properties 1to4
(page 388), is known as the (reen's funélibn associated with the
differential expression L y and the assgl('-i;}l-cd boundary conditions.
In most physical problems, it is subjéct to a simple physical inter-
pretation, as is illustrated in Sectﬁéﬁ 4.5,

As an application of these resillts, we consider the problem

~ 3

d?y dy
el s+ (W2t — Ly = 0,
dr? o \, { Ju ' (41)

o =0, ) =0

N

The differential equation is first put into the form of (25),
r N

Y df 1 _
Q07 bR (inae-o

fm:n{';ir'hich there follows

\
N =%(m%)-£ pmz g= b or=a ()
The general solution of the equation £ y = 0 is found to be

Y = x4 cax L
As a solution for which y(0) = 0 we may take y = u(z), where

{43)

u(z) = z,
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and as a solution for which y(1) = 0 we may take y = v(x), where

v(z) — % — (44)
The Wronskian of « and v is then given by
wlaW (@) — vl (z) = — % = p'(*j) N
and hence, with the notation of (29), we have N o
A\
A= —2 A\ H15)
Thus (30) becomes ~\ "
2—3:5 (1 — &) when =z g'\'é'\,:'
G(x: E) = v (46)
£ (1 — 22 when i > &
2 L&
Tt follows from (36) that the problem™ @) then corresponds to the
integral equation R\
y@) = A [L&, DEy(o dt )

1t is easily seen that ile Bessel equation (41) has no solution
other than the trivial ,s@ﬁ‘tion y = 0, satisfying the prescribed end
conditions, unless A Satisfies the characteristic equation
o TV =0, 48)
in which casféitﬁe solution iz
)Y _
N y = ¢ Ji(n/m ). 49)

whe{éfb is arbitrary. The same statement must then apply to the
infegral equation (47), with G given by (46).

A Similarly, from (18) it follows that the integral equation (24),
with K given by (23), has no nontrivial solution unless A= nig? /‘az,
‘where = is an integer, in which case y = ¢ gin (mrz/a) is a solution
for any arbitrary value of the constant c. .

A completely analogous procedure can be used in transfor.m_lng
a boundary-value problem consisting of a homogeneous linear
differential equation of order %, and relevant homogeneous bound:-.mry
conditions, to a Fredholm integral equation. The Greer’s function
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corresponding to L ¥ in the interval {g, b) then is to possess the
following properties:
1. G satisfics the equation LG = 0 when z < fand whenz > &
2. @ satisfies the prescribed homogencouns boundary conditions.
3. G and its first (n — 2) z-derivaiives are continuous at @ = &
4. The (» — 1)}th z-derivative of & has u jump of magnitude
~1/]5(£)] as x increases through £, where s{(r) is the coefficient
of d»/dz” in L. \
With the function G so defined, the velevant solutipfof the
equation L y + ®(z) = 0 is given by s\

s ™

b (":}
ya) = [ Gz oo ds, o
/o -
and also the problem consisting of the equalion Ly + xry =]
snd the prescribed boundary eonditions ixs\\e\(,[uivalent. to the Fred-

7

holm equation W
b AV b e
v@ = [ G, Brioye o= [ 6w b d

In particular, for those fouﬂfﬁébrdcr operators which are expressed
in the form

dt ij d® d d
L= E\L*@ d?] + 2 [p<r> 5] +q@, 60

it will be found{that the Green’s function Gz, &) is symmelric.
Most of the linfar fourth-order operators occurring in practice can
be expressei this form.
4.4.’%I}érnative definition of the Green’s function. A
usefglﬁl}terpretation of the above definition of the Green’s function
max-be obtained as follows. We again consider the problem eon-
\"é‘lsftii]g of the linear differential equation

Ly+2() =0, (1)

and suitably preseribed homogeneous boundary conditions at the
ends of the interval (a, b). Suppose first that &(z) is replaced by &
funetion ®,(z) which is zero in (@, b) except over a small interval
(¢ — ¢ £+ ¢ about a point £ and is given by 1/(2e) over that

interval, so that
Le-_—t! @,(:C) dz = 1. (52)
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If the equal members of the equation L y + @.(z) = 0 are inte-
grated over (¢ — ¢ £+ ¢, 1t follows that the solution of that equa-
tion must be such that

Ete
j;_e Lyds = —1. (53)
For explicitness, suppose that
d d N\

L=£(p3;)+q, : .E’*)
where p(z) and g(z) are continuous in the interval {a, b).;:‘In this
case, (53) takes the form EN

e Ete M'\‘\ /

ap% + gyde = L&) (55)
f—e E—e

) ¥

We are concerned with the limiting form of fhis relation as ¢ — 0.

If we require that y satisfy the‘«é:q\ation Ly+&(x)=0
throughout the interval (a, b), the derivative of p dy/dx must exist
2% all points of that interval and hedide, in particular, the quantities
» dy/dz and g y must remain contéituous at the point 2 = £age— 0.
Thus the left-hand members<of (55) then rmust tend to zero as
e— 0, 50 that (55) cannoth®d satisfied in the lirsit.

However, if we relaxthe requirement to the extent that, while ¥
is still to be continuohd throughout (g, b), a discontinuity in dy/dz
is permitted at thepoint & = £ it is seen that the limiting condition
is satisfied if didk has a jump of magnitude —1/[p(£)] at = = £
If we requifgyfurther that the differential equation Ly = 0 be
satisfled  both sides of this point, and that the houndary con-
ditiong.z“o} satisfied, we have exactly the conditions which define
the, ~@l‘éen’s function of the preceding section. The same con-
¢logion is readily obtained in the more general case of a linear
E)emt-or L of order n, if we require that all derivatives of order less
than (n — 1) be continuous at & = &

It is convenient (even though lacking in mathematical elegance)
to say that, as e— 0, the function &.{z) “tends to the unit singu-
larity funetion, with singularity at = g” This latter “function”
is then considered to be zero throughout (@, b) except at the poind
z = £ and is imagined to be inBnite at that point in such a way

that the integral of the function across its gingularity is unity.
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This function is often known as the “anit impulse function’ or as
the “delta function.”

The convention is exfended o two- or three-dimensional space
in an obvious way. Thus, in three dimensions, we sturt with a
funetion which vanishes except inside o small sphere S, of radius ¢
surrounding a certain point @, and which is 50 defined inside that
sphere that its integral over the volume of the sphere s unity for
all values of e We then solve a problem, the formulation of fiich
involves that function, and consider the limit of the solufith,as the
sphere S, enclosing the point @ shrinks to a point.  ligstien con-
venient to say that the limit of the solution (if jtj’{zﬁsts) is the
“solution” corresponding to a “‘unit singulurifgNunetion, with
singularity at @.” ~A\°

If we agree to the meaning of this convehfidn, we may say that
the Green’s function, associated with a lgedr differential operator
L and given boundary conditions, is thel “olution’ of the equation
Ly + 8 = 0, subject to the same :ln}uhdury conditions, where dq
is the unit singularity function (gr *delta function'), with singu-
larity at a pomnt . The Grceuf’g'f{uwt-inn thus involves the coordi-
nates of @, as well as the elrrent variables representing position
in the space considered. .

When only one inde;i)endent- variable is involved, the Green’s
function can be obt }Qed by the procedure outlined in the preceding
section, and we have seen that if it is of the form Gz, £) the golution
of the equatigr&’by + &(z) = 0, subject to the relevant homoge-
neous boun;@gy conditions, is merely

o~ W/

\\\ y(x) = f Glz, £)P(E) d

“\In" order to indicate the plausibility of the truth of an ana‘log?us
~sbatement in the more general case, we consider the determination
£ a function w(z, y, z) which satisfics a linear partial differential

equation of the form
Lw+Flxyz =0 (56)

inside a three-dimensional region R, together with appropriate
homogeneous boundary conditions along the boundary of R. Let
Gz, y, 2, £, ) be a function which, for any relevant fixed values
of £, », and {, satisfies the equation

LG, +8 =0
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and the same boundary conditions, where &,, considered as a func-
tion of (2, y, 2), vanishes outside a sphere S, with center at the point
Q¢ =, {) and radius ¢, and has the property that

fff‘%@edm dy dz = 1.

Then also &,, considered as a function of (£, », ¢), vanishes outside
a sphere S, with center at the point P{z, ¥, 2) and radius ¢, and hdg®
the property that ¢\
€ N\
ffo@‘dEdﬂdf=1- S\

¢ W

o
27N
LS 3

If we then define the function o\
&
iz, v, 2 = [[f 6w v, 2 & 1, OF G 1 BHe dn dy,

and calculate L w, by formally dlffercnmatmg under the integral
sign, there follows

Lo,

Il

- fff 2 7C f»j}:.gsf) =I>; dE dn d¢
- fff G»FEE: ?;, t)®. dE dy dt,

where again S, is a spherelbf radius ¢ with center at the point
Pz, y, z). T1f the function' F' is continuous at P, its values in &,
will approximate Fiz, % ¢) for small values of ¢, so that it may be
expected that the gpproximation

L, F G, 3, 2 [[f,, @ dednds = ~Fez, v, 2
2

will, in eral, tend to an equality as e tends to zero. Hence, if
we denote the lmuts of ¢ and w, by & and 1w, respectively, {and
if L’wk tends to L w) these formal arguments indieate that the

fugchon
wie, y, 2 = [[[, 6, v, 2 &7, OFE 1, D dedndr BT

satisfies the differential equation (56). The rigorous establishment
of this fact [and of the fact that (57) also satisfies the same homoge-
neous conditions as does the Green’s function G] is complicated by
the fact that G geperally becomes infinite when the points P(z, y, 2)
and Q(, 3, {) coincide, but is possible in most practical cases.
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As this statement implies, the function @ will not satisfy the
differential equation af the point ¢ where the unit singularity is
located. In the special case of the partial differential operator

a d a g @ i
L=a(?3;)+é§(95§)+a—z(736—z) + ¢ (58)

associated with a three-dimensional region, it is found that & must
behave near the point Q(£, %, {) in such o way that the int.egrraﬁ of
the normal derivative of G over the surface of the sphere(S, tends
to —1/pi(E, », {)] as the radius € tends to sero: 'S\

3G i N
A8 = — o S I 59)
p(§ 0, 5‘)\~ (

Here G /én represents the derivative of ¢/\in“the direction of the
oulward normal at points of the sphcricgl:jb))ﬂndury.

This result can be obtained by neticing first that the equation
LG, + & = 0 can be written, in teims of the vector differential
operator ¥, in the form N

lim —
« Sl dn

v VA g6 = — .

If the equal members 05 {l”;is equation are integrated over the volume
V. bounded by t.he\éphere 8. with center at Q(F, », {), and the

eondition \
\ ff Ly EedV = 1

is imposed{:ﬁs”foilows that G, must satisfy the condition

,:.;'\"’fff,,w'- wvGyav + [ff 9G.av = -1

~:[fh;é' first volume integral on the left can be transformed to a sul”ffwe
\iﬁtegral, by use of the divergence theorem, so that this conditlon
takes the form

3G, o
[fs.p—é?fds +[f[p{qG.dV =L

It is clear that this condition canmot be satisfied in the limit a8
e— 0 if @, and ite first partial derivatives are required to remaln
finite st the point Q in the limit. For small values of ¢ the first
term on the left is approximated by 4r¢? times the mean value of
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p 8G./dn on 8,, while the second term is approximated by 4ré®/3
times the mean value of ¢ G, in V.. 1f we represent radial distance
from the point @ by the variable r, so that aG./én = 8G./dr on S,
the first term thus approaches a finite nonzero limit as e tends to
zero if and only if 8@, /dr becomes infinite like 1/r? on 8, as ¢ — 0.
In this case, G, becomes infinite like 1/r and the second term is thus
small of order ¢ when ¢is small. - Hence, as e — 0, we musi require
that the first term tend to the value —1. For small values of g
the function p may be evatuated at @ and the condition (59} follows.

In the case of the special operator <\
2"\
af 9 af @ G\
=2 p L)+ Z{po N (60)
L ax(p 6x)+ay(pay e (60)
N

associated with a fwo-dimensional problem, wé ’c&sider a circle
. of radius ¢ surrounding the point Q& ’pt The condition
corresponding to (59) then requires thaf}ﬂl\e integral of 8(//on
around the perimeter of C, tend to —1ﬁ [@lg, )] as e tends to zero:

. i o+ 1
i Pe.om ds: FIGE) (D
The condition (59) or (61}, $ogether with the requirements that
G satisty the equation L Q\= 0 except at the point @, as well as the
prescribed boundary c{ﬁditions, serves (in general} to determine
the Green's function, Mevacnt to the operator (58) or (60).
In the two-dimensional case, it is convenient to represent by r
the distance f}'gm\the point Q(&, 1) to the point P(z, ¥),

O = Ve (62)

On the é}rcle C, surrounding Q, we may then Wl'itl?. ds = r d#, where
8 xepresents angular position and 7 = . Equation (61) can then
be written in the form
2n

. o R

o f, & YT TR
This condition can be satisfed only if r 3G/or tends to the value
—1/[2x p(%, )] as r tends to zero. Thus the funcéion G m1_13t
behave like — (log r)/[2r p(§, n)] in the neighborhood of the point

Q(Ea 7).

(617
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In particular, when p = 1, the Cireen’s function relevant to
the cperator (60) must be of the form

Glx, y; & m)
= — % log v(x — 8+ (y — m* + glz, v; £ 1),  (63)

where g satisfies the equation Lg < Vi + g¢ = (¢ 20) log r in
the prescribed region, and is so determined that the right-hand
member of (63) satisfies the prescribed boundary conditions, When
also ¢ = 0, the equation L w 4+ & = 0 becomes Poisson’s, éghation,
7'N\S “
a* a* \
W w X (64)

dx? ' ay? - N

If the Green’s function (63) is known for g l'egjafxﬁ‘é with specified
homogeneous houndary conditions, then theNgeMtion of (64) in R
which satisfies those conditions is given by,the integrul

w = _UR Gz, u; &, n)zﬂ’é;\nj dE dy. (64a)

Similar considerations lead .fo\the fact that in the three-
dimensional case of (58) the,.G;iaeén's function must behave like
r='/{4x p(&, n, {)] near the point Q(&, », ), where here 7 represents
the disfance

A\
T MBS DF G G- (65)

In particular, xvller:l.p = 1, the Green’s function relevant to (58)
must be of theyfarm

Gz, y,2; 5.,\,?3\:;")

10 1
= 7N == +glz, y, 25 60, §), (66)
Ve -0+ G- F oo
whére ¢ satisfies V% + qg = —g/4nr everywhere in the given

}egion and g + 1/4=r satisfies the prescribed boundary conditions.

We may notice that whereas the Green’s function relevant to
the one-dimensional operator (54) merely possesses discontinuous
derivative at @, that function relevant to {60) becomes logal‘ithm_lc'
ally infinite at @, while that corresponding to (58) becomes infinite
like 1/r, where r represents distance from .

In the case of the operator (54), which is clearly a one-dimen-
sional specialization of (60), the circle (. is replaced by a [ine
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segment extending from the point & — ¢ to the point ¢ + e The
outward derivative of @ at the point x = £ + e is given by the value
of dG/dz at that point, whereas the outward dertvativeatz = £ — ¢
is given by the negative of dG/dz at that point. The requirement
that the sum of these outward derivatives tend to —1/[p(£)] as €

tends to zero,
1im[@ _ do| }:——1“,
oo LOT |4 O%|-c p(E)

is seen to be analogous to (59) and (61), and identical with gbp-
dition 4 of page 388. o\ N

We have seen that the Green’s function can be defined;” first,
48 the limit of the solution of a certain problem in which a pre-
seribed function tends te a unit singularity functiog'\&ﬁd, gecond,
as a function satisfying a differential equation (with houndary con-
ditions) except at a certain point, and having @ eertain proscribed
behavior near that point. The two deﬁnij;igxns are equivalent, the
second usually being more convenientathan the first in actual
applications. In the following section, asthird alternative interpre-
tation of the Green’s function is pge@aeh"ted.

4.5. Linear equations in c%iué“e and effeet. The inflzence
function. Linear infegral, ednations arise most frequently in
physical problems as a result of the possibility of superimposing
the effects due to seve a.}\i;sﬁmcs. To indicate the general reasoning
involved, we suppcser\that + and £ are variables, each of which
may take on all yalués in a certain common interval or region R.
k of x and £ as each representing position

T AS .
We may, for exdmple, thin :
(in space of-0hé, two, or three dimensions) or time. We suppose

further that™a distribution of causes is active over the region R,
and th&tjwe are interested in studying the resultant distribution of
cficatsin R.

Tf the effect at  due to a unit cause concenirated at & is denoted
by the function G(z, £), then the differential effect at = due to a
uniform digtribution of causes of intensity ¢(£) over an elementary
region (g, £ 1 d§) is given by e(£)G(x, E) dt. Hence the effect e(x)
at x, due to = distribution of causes ¢(£) over the entire region R
is given by the integral

ew) = [, G De®dE (60
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if superposttion ¢s valid, that is, if the effect due to the sum of two
separate causes 18 (exactly or approximately) the sum of the effects
due to cach of the causes.

The function G{z, £), which represents e effect at @ due to a uni
concentrated cause at £, is often known as the infucnce Function of
the problem. As may be expected, this function is cither identieal
with or proportional to the Green’s function defined in the pre-
ceding sections, when that definition is applicable. 0\

If the distribution of causes is preseribed, and if the infltence
function is known, (67) permits the determination of @-l@‘cﬁect by
direct integration. However, if it is required to determine a dis-
tribution of causes which will produce a known {rylesired effect
distribution, (67} represents u Fredholm z'uteyrui(@a.z-io:L of the first
kind for the determination of e. The kernel' 3 hen identified with
the influence function of the problem. \

If, instead, the physical problem préseribes neither the cause
nor the effect separately, but requited” crely that they satisfy a
certain linear relation of the form = ()

o(x) = $) + X efx), {68)
where ¢ is a given funt:i':-‘iﬂn’ or zero and X is a constant, then the
effect ¢ can be eliminat-ie(?\bet-\\'ecn (67) and (68), tu give the relation

“f?(::c)\= #) + 2 [ G, D) de (69)

A
This rcla.tiql\:is a Fredholm integral equation of the second kind,
for the determination of the cause distribution. Alernatively, if
the cayse\c'is eliminated between (67) and {68), the equation
S O @ =[G Do dr 42 [, G, petds (70
serves to determine the effect distribution. Both cause and effect
are determined by solving either (69} or (70), and using (68).

As an explicit example of such derivations, we consider the
study of small deflections of 2 string fixed at the points z = 0 and
z = a, under 2 loading distribution of intensity p(z). We suppose
that the string is initially so tightly stretched that nonuniformity ({f
the tension, due to small deflections, can be neglected. If a unt
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concentrated load is applied in the y-direction at an arbitrary point &
{(Figure 4.1), the string will then be deflected into two linear parts
with a corner at the point = £ If we denote the (approximately)

Y

t X o~
o
1/ \r <\
Freure 4.1 \
.
uniform tension by 7T, the requirement of force equilibrium in the
y-direction leads to the condition ANV

Y o

T sin Sl—t— f'sm gy = 1, 7

with the notation of Figure 4’1 I’or small deflections {and slopes)
we have the appromma,tion

8
G =
QQ% tan &; ;

3
hlﬂ 6'3 tan 8; = ETE

, (72)
Q

,\“.
where ﬁ\f\‘the maximum deflection of the string, at the loaded

point §“\The introduction of these approximations into (71) leads
to ﬂsg relation

~\J 5 5\
\§) TQ+G_Q—L

and henee determines the deflection § in the form

1 _ 73

The equation of the corresponding deflection curve is then readily
obtained in the form .
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when & < g
(74)

8 _:__:c when x>

BIR sl

where & is given by (73), so that the influence functivn (for small
deflections) is given by the expression

T O\
( m= (e — & when x <§ . o
Ta O\
Gz, £) = ; )
a Pa (¢ — x} when z > Ei"}’«.

Hence, by superposition, the deflection y(;tf)wﬂl'}é to a loading
distribution p(a) is given by v/

v = [} G Q@ (76)

If the deflection is prescribed, this relien constitutes an integral
equation of the first kind for the determination of the necessary
loading distribution. .

Suppose next that the bt}“ﬂ};{ is rotating uniformly about the
r-axis, with angular velocity w, and that in addition a continuous
distribution of loading, ;ﬂ@) is imposed in the direction out\\'grd
from the axis of revolufion. If the linear mass density of the string
is denoted by p{z),the total effective load intensity can be written
in the form x I

SO p@) = whlaly@ + fia, @
80 that ('R"{):}é:kes the form
O\

@ = [T6G Bewue de + [} 6 pfw a7

RS
\| Jt may be noticed that the influence function (75) differs from
the kernel (23) of Section 4.2 only in s multiplicative factor /7.
By performing two differentiations, as in the reduction of (24_).150
(18), it is easily shown that {78) is equivalent to the more familiar
formulation in terms of a differential equation with boundary
conditions,

d2y o P
y(0) =0, y{a)=0
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If we write the differential equation in the form L y + & =0,
where L = T d2/dz? and ® = p o’y + f, we may recall that the
(reen’s function of the problem would then be that function which
satisties 1" d%y/da? = 0 except at ¢ = £, which vanishes whenz = 0
and © = a, which is continuous at x = £, and for which the vertical
force resultant T dy/dx decreases abruptly by unity at x = ¢ These
arc precisely the conditions which determined the influence function.

Tt is of interest to notice that if a concentrated mass mo Wers,
in addition, attached to the rotating string at the point z s\,
the inlegral equation (78) would be modified by merely Sdding
the deflection nww?y(z) G (, o) to the right-hand member? The
corresponding modification in the differential-equation formulation

7

would be somewhat more complicated. L&

In many physical problems, the Green’s funstion is obtained
empirically, and is specified cnly by a table sofs numerical values.
Thus, for example, in studying small defléctions of a beam of
irregular cross seetion, subject to certahl: physical end restraints,
a number of points %, Tz, - . - , » may be first selected along the
span of the beam. By applying Joatls successively at the points
£ = 2; and (in cach casc) meagdring the deflections at each of the
points z = x;, a table of vg:,lﬂe;s' of the influence function Gz, &)
can be obtained, givingﬂc&’:ﬂec{;ions at points z = x; due to uni
loads applicd at points &)= z;. If the beam extends from z = 0
to x = a, we thus Qb\mm n? entries, specifying G(z, £ = G(z, x)
at symmetricallypldced points of the square (0 2 x S a, 0 = ¢
< @) in a fictifous zé-plane.

Tt is knofdh that the deflection at a point z, due to a unit load
at a PUill.T\;E;”ls equal to the deftection at £ due to a unit load at 2.
The truth of this reciprocity relation reduces the number of neces-
sary-ieussurements by a factor of pearly two, and shows that the
wlavant Green’s function is symmetric; that is, Gz, £) = G(%, ).
A¥cordingly, the matrix of entries Gz, x5} 18 symmetrical with
respect to its principal diagonal.

The determination of small deflections of the same beam when
it is rotating and subject to & radial foree distribution can then
be based on the soluion of an integral equation of the same form
as (78). Numerical methods which are appropriate to the solution
of such an equation, whether G(z, £) is given analytically or by a
table of values, are described in later seetions of this chapter.
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It is important to notice that the influence function itself
incorporates the end conditions appropriate to the problem. Thus,
as was mentioned previously, the integral equation serves to specify
the problem completely.

Similar formulations of two- and three-dimensional problems
are clearly possible.  However, for the purpose of simplicity, atten-
tion will be restricted in most of what follows to problems involying
only one independent variable.  We consider next certain andlytical
procedures which arc available for the eract soluljon of “wertain
linear integral cquations, after which we describe numerienhméthods
of obtaining approcimate solutions. ~\ Ny

4.6. Fredholm equations with separable kernels.  We
shall speak of a kernel K(x, £) as separable if'it:\(‘.\;m be expressed
as the sum of a finite number of terms, cuch dfNFhich is the product
of a function of r alone and u function ofsbudlone.  Such a kernel

$
7

is thus expressible in the form M
N x
K(x, §) = 2\x)ga(8). (80)
Jé’:‘f‘l

There is no loss in generalityffj'wé assume that the N functions fn(2)
are linearly independent in{the relevant interval,

Any polynomial irgir,\‘in(l £ is of this type. Further, we may
notice, for example,‘t@t{i't the kernel sin (z + &) is separable in this
Sense, since we cafl write

AS . .
LS00 (x + £) = sin z cos £ + cos z sin £

Inte ']:\';:'quations with separable kernels do not oceur fre-
quently\it practice.  However, they are casily treated and, further-
mopé;the results of their consideration lead to a better understand-
ng of integral equations of more gencral type. Also, it is often
§Dssible to apply the methods to be developed in this section 0
the approximate solution of Fredholm equations in which the kerpel
can be satisfactorily approximated by u polynomial in z and £ oF
by a separable kernel of more general form.

A Fredholm equation of the second kind, with (80) as its kernel,

can be written in the form

v@ = [ K, 9y ds + F@) (81)
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or
N
B
y@ = [1] 3, £@e.® | u(® d + F@)
n=1
or
N
y@ =2 5@ [ [ e@uoa) +r@. 6
n=1
It is clear that the coefficients of f1(x), folz), « . ., fu(®) in
(82) are constants, although their values are unknown. If -w&™
introduce the abbreviation : O\’
bn = _Lb gn(2)y(x) dx (n=12 -, N).’.’t O (83)
equation (82) takes the form w\: .
N \¥;
y@) = Fl@) + ) 3 cafalady (84)
n=1 &,

This is thus the form of the required -?QI*?:&:&\OH of the integral equa-
tion (81), and it remains only to detetmine the N constants ci, s

-y Cxe N
For this purpose, we may, o#hin N equations involving only
these N constants and calguiab"le quantities by multiplying both
members of (84) suc-cegai{vfely by g:x), 928, « - - 5 gx(x), and
integrating the resultKiof,Ver the interval (a, b). This procedure
introduces calculable integrals which may be denoted as follows:

L >

SO o = [ gl de, (852)
x'\‘
O~ B = f ? (@) F () dz. (85h)
Witlil.f‘;};lese abbreviations, the N equations so obtained can be
weiften in the form

) 2

(1 — X @1)er — A o€z — A 1sCs Ao hawey = By

- — + (1 - 022)32 — h ctesCs + ca - — N agnly = |821

4 oo AL = Naw)er = By
(36)

—X N1 — A Ayl — X owaCa
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This set of equations possesses n wnigue solution for the ¢'s if
and only if the determinant A of the toellicients of the ¢'s does
not vanish. In the matrix notation of Chapter 1, the set may be
written in the abbrevigted form

I —Xaje = g, 87

where I is the unit matrix of order N and « is the matrix {ay).
Thus the results of Chapter 1, relevant 1o sels ol linear <e(;11at}0ns,
are immediately applicable to the present. diseussion uf¢’sglutions
of the integrul equation (81), with a separable kernel, A\

If the function F(z) is identically zero in {813, the integral
equation is said to be homogencons, and is obviuhely satisfied by
the trivial solution y¥iz) =0, corresponding 1o Gl trivial solution
Ct=0= ... =¢v=0 of (8) when thisNwzhi-hoaud  members
vanish. Unless the determinant A = | L)X @ | vanishes, this is
the only solution. However, if A = 0, af d&ast one of the ¢'s can be
assigned arbitrarily, and the remsfiih s can be determined
accordingly. Thus, in such cases, infinitely many solutions of the
integral equation (81) exist, .3.’::'

Those values of A for whichdh) = 0 are known as the character-
istic values {or etgenvalues)s dind any nontrivial solution of the
homogeneous integral eguation (with & convenient choice of the
arbitrary constant or{ @onstants) is then culled a corresponding
characteristic functz'o‘n\\(éigenfunction) of the integral cquation. If &
of the constants €55 ¢o, . . ., ¢y can be assigned arbitrarily for a
given characteristic value of A, then & linearly independent corre-
sponding characteristic funetions are obtained.

If the firiction F(r) is not identically zero, but is erthogonal to
all thefunctions $i(z), goz), . . L gx(), equation (85h) shows
bhap,;ﬁe right-hand members of (86) again vanish, The preceding
di.s{cﬁssion again applies to this case, except for the fact that hfere

€ solution (84) of the integral equation involves also the function
F(z). The trivial values G1=¢=.,. =¢y =0 thus lead to
the solution 4 = F(z). Solutions corresponding to characteristic
values of A are now expressed as the sum of F(z) and arbitrary
multiples of characteristic functions.

Finally, if at least one right-hand member of (86) does not
vanish, a unique nontrivial solytion of (86) exists, leading to &
unique nontrivial solution of the integral equation (81), o the
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determinant A(N) does not-vanish. However, in this case, ¢f AQ\)
does panish equations (86) are either incompatible, and no solution
exists, or they are redundant, and infinitely many solutions exist.

4.7. Iustrative example. The several possible cases just
discussed may be illustrated by a consideration of the integral
equation

y@) = [ (1 - eyl at + Fla). (38)
N
This equation can be rewritten in the form O
y@) = Mo —3ex) +F@), O 69
1 1 N
where a=flupd  a=f 9l d) (90)

To determine ¢; and ¢z, we multiply both wdes of (89) succes-
sively by 1 and x and integrato the reaﬂts:@ei {0, 1), to obtain the

equations R
B
=2 ({}1 - g‘ﬁz) +J F(z) dx,
R ]
S NS
Cp = A ('—C_]’"';',C.g‘) —}—f x F{z) dx,
2 N 0 _
N\ 1
or (1,—:\‘}){«;1 + g}\ £y = f Flz) dz,
N 0 (91a,b)
T%h e+ (1 + Nee = ./(; zF(z) dx
:t\"’ . )
The de‘sir"ihihant of coefficients is given by
"\
2\ 1-2 3 | 1y 02
o) N RN L Cht (92
1t follows that a unigue solution. exists if and only if
A £2 (93)

and is obtained by solving (91a,b) for a1 and ¢z, and infroducing
the results into (89). In particular, if F (1) = 0 and X > 2,
the only solution is the trivial ome, y(z) = 0. The numbers
M = 42 are the charaeteristic numbers of the problem.
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If X = 42, equations (Uln,b) take the form

t
—t; + 3w = j; F{x) dr,

. (94a,b)
—¢; + Jex = L x Moy dr
while if A = —2 equations (91a,b} become

i 1
) — €a = 3 f F{ dr, O

o ‘ (195a,b)
e — ¢y = f @ F(e) dr O

1)

S
7Ny
& R

Equations {(34a,b) are incompatible unless the pwwuh( ] function
F(z) satislies the condition ~\

LF(::) dz = ﬁ} xF{x)de or L' ('li;’\&f;r)["(;r} de =0, (96)

wheress (95a b) are incompatible unlag§)
H 4 \

1 1 AT
é f Fi{z) dx = [ z F(z) dz QI‘:" f (1 — 30)F(x)de =0, (97)
1]

in which cases the [OIIC“:[JUIldm{_, equation pairs ($1) or (95} are
redundant. K
We consider first t{b.i:a.se when

O Fx) = 0, (98)
so that (88) is;ht}nfogcneous. Then, if A = +2. the only solution is
the trivial gfi}'i}(x) = 0, as wus mentioned above, If A =2 (and
F = 0) eqtiations (84) ure redundans, and either equation gives the
single ¢ondition ¢; = 3cs.  Thus {89) then gives the solution
~O y(@) = A(1 —z) when X =2 (99)

) 4 . -
§‘here A = B¢y is an arbifrary constant. Thus the function ! -—3»
(or any convenient multiple of that function) is the characterisic

Junction corresponding to the characteristic number A = +2.
In a similar way, we find the solution

yl@) = B(1 — 3z} when » = —2, (100)

where B = —2¢; = —2¢, is an arbitrary constant, so that 1 — 3z
is the characteristic function corresponding to A = —2.
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Equation (89) shows that any solution of (88) is expressible in
the form :

y(x) = Flz) + Ol — 2) + Cs(1 — 32), (101)

where we have written 'y = 8M(er — ¢2)/2 and €3 = A8 — ¢,)/2.
Thus it follows that eny solution of (88) can be expressed as the
sum of F(x) and some linear combination of the characteristic functions.
The fact that this statement can be applied to a wide class of
integral equations is of basic importance, as will be seen.

In the nonhomogeneous case, F(z) # 0, a unique solution cXists
if A= +2. If A = 2, cquation (96) shows that no sofutign.dxists
unless Fz) is orthogonal to 1 — x over the relevant z'ntgm@ﬂ (0, 13,
that is, uniess F{x) is orthogonal o the characteristic fuiction corre-
sponding to N = 2.% If F satisfies this restriclion e(@zations (9da b)
are again equivalent. Hence, if we use (94&};}\% may obtain

é1 = 3ca — fﬁl F(x) dz, s0 that (89) gives t-he\ golution as fp[lows:

7.4
A =2 ylz) =Fl) -2 ﬁg@(‘fm + AL - @),
when [ a- xjf}(ét).élzc = 0. (102)

Here A = 6¢, is again an arbi"t}’ary constant. Thus, in this case,
infinitely many solutions exst, differing from each other by a mulfiple
of the relevant characteristic funciion.

Similarly, if A = &<2'there is no sclution unless F(z) is 0§"th0g01}2ﬂ
to 1 — 3% over (0L, in which case infinitely many sclutions exist
a8 follows: Q"

?\i::\«}z y(x) = Flz) — gﬁ F(z) dz + B(1 — 3z),

when(® f 1 (1 — 32)F (z) dz = 0. (103)
/N ; 0
ére B = —2¢, is an arbitrary constant.
4.8. Hilbert-Schmidt theory. In those cases when the
kernel K(z, £} of a homogeneous Fredholm equa,ti_on is not of t]}e
form (80), in particular, if K(z, £ is given by diferent analytic
expressions in the intervals for which = < £ and z > £, there are

* As will be seen in the following section, this situation is & consequence of
the symmetry of the kernel K(z, £) = 1 — 3zf in (88).
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generally infinitely many characteristic numbers A, (n = 1, 2, 8,
.. .), each corresponding fo a characterisiic function defined
within an arbitrary multiplicative constant. In exceplional cases,
& given characteristic number Ay may correspond to two or more
independent characteristic functions, In this section we investis
gate certain properties of these charncleristic functions.

Let ym{x) and y.(z) be charaeteristic functions corresponding
respectively to two defferent churacteristic nutabers h, und A, of thQ
homogeneous Fredholm equation

O\
b A
¥@ = [ K, oy d, (O oy
and suppose that the kernel K(z, £) 4s symmetric, so ,t.li’:\:t :
N
Kz, §) = K(§ 2). \4 (105)

p ¥

As has been indicated in preceding serxtiofi;g\,\ wuch kernels are of
frequent occurrence in the formu!utiop"hf physieally motivated
problems. We may notice that A = @ tannot be a characteristic
number since it leads necessarily $dithe trivial solution y(z) = 0.

The functions y. and y. musbiitcordingly satisfy the equations

lZ) - Z‘QI Kz, Bym(®) dt,

@ X [ Kz, Hyale) dt

If we multiply bofly members of (106a) by y.(z), and integrate the
results with respect $o x over (a, b), there then follows

)
J v s = na Lo [ [ K, Dyate @z s 00D

If thiedorder of integration is reversed in the right-hand member,
equation (107) becomes

[ un@ya@) de = Aa Ji P () [ [ ke, 9ua(0) dx | dg. (108)

We now make use of the assumed symmelry (105) to rewrite the
inner integral on the right in the form

(106a,b)

[ & 29,0 da.
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But this integral differs from the coefficient of A, in {106b) only
in that & and £ are interchanged, and hence it is equivalent to

1
i; y”(s):
so that (108) becomes

b b ’
f ym(a:)y:ﬂ(x) dﬂ: = %'T f ym(z)yn(é) dif‘ (109)
a . . n a .\

Since the integrals in (109} are equivalent, (109) can be rewyitsen
in the form K™

O — ) [ yn(adua(a) dz = 0. A aw)

N

Thus we conclude that &f yn{z) and ya.(x) are chmc:g:istéc funciions
of (104) corresponding to distinct characleristic umbers, then yn{x)
and yu(z) are orthogonal over the interval (a, b)\ \

If two or more linearly independent, Gharacteristic functions
correspond to the same characteristic pyber, then an equal number
of orthogonalized linear combinations gan be formed by the Schmidt
procedure (Section 1.12). In thesgmainder of this chapter it will
be sssumed that this has beencdone, when such exceptional cases
arise. N\

It is important to o 7os that the preceding results apply only
to a symmetric kernel,, ()

We show next that the eharacteristic numbers of a Fredholm
equation with « xéa symmetric kernel are all real.* This result is
established by fdticing that if . were & complex characteristic
number, cofresponding to & complex characterigtic funcfuion Ym(T),
then the\icoﬁip]cx conjugate number e would necessan}y _also be
a chagr@’c\ﬁeristic number, - corresponding to the charaeteristic fune-

tion §n(x) which is the complex conjugate of ym(x). Hence, by
it, would follow that

g

(Eoptiicing A, by Rn and yn bY T in (110),
O — %) [} ale)n(e) dz = O
If we write Ay = am + i Bn and yml(E) = ful®) + 1 gm(z), this rela-
tion takes the form
8, [* G+ ) dz = 0
2zﬁmﬁ(fm+gm) T a

* Proof that such an equation always possesses at 1
number, when K is continuous,is omitied.

east one characteristic

i
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But, since y.(x) #£ 0, the integral cannot vanish, and we conclude
that the imaginary part of A, must vanish, as was to be shown,
A Fredholm equation with a nonsymmetrie kernel may possess
characteristic numbers which are not real.
In more advanced works* the following basie theosem is estab-
lished:
Any function f(x) which can be generated from a continuous
. . b, . N
Sunction ®(x) by the operation L Wr, £yb{E) dE, where K(z\E) s
N ¢
continuous and symmetric, so that (\H
'S

\

N

j@ = [P K@ vemae O\

YA 1

. . ~\
for some continuous function @, can be represe n!’m’ orer (a, b) b'y &

linear combination of the characteristic funclions yi(x), yalx), « .
of the homogeneous Fredholm integral r’quatzbn (l()l 1t iUL K(z, & ) a8
its kernel. 1 $ ,

Because of the orthogomllty, thb coeflicienls in the repre-
sentation

HORSDY A,,y:;(i-) (eg2<h) (111a)
are then determined bywqiie familiat formula

L
A. [“[yn(:cnw.x\= [ i@ dz =129 Q1)

In those. \t,aSes when only s finite number of characteristic
functloniextst the functions generated by the operation

Q) [’ k@ pa az
“form a very restricted class. For example, if K(z, §) = sin (& + £
and (g, b) = (0, 2w), there follows

ﬁ,zr Kz, H)®(%) dt = ﬁf' (sin z cos ¢ + cos z sin £)®() df

- Mﬂ' (8 cos £dt | sinz + Uf ®(£) sin gdg] cos z, (112)

* Bee, for example, Reference 2. &
T When the set of characteristic functions is infinite, the resultant infinite
serics converges absolutely and wniformiy in the interval {a, B).
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and hence this operation can generate only functions of the form
fx) = Cysin & + € cos x, (113)

regardless of the form of ® The characteristic functions of the
associated homogeneous Fredholm integral equation

y(@) = [ sin (@ + Dy(s) ot (114)

are readily found, by the methods of the preceding section, to b;
arbitrary multiples of the funetions yi(x) = sin - cos, £ Yand
y2{x) = sin & — cos x, corresponding respeciively to A =\'lj1r “and
A = —1/x. Tt is obvious that any function of the(fgrﬁl (113),
generated by j:T sin (¢ + £)®(£) df, can indeed hegpressed as a
linear combination of y,(x) and y.(x). \

Even though the number of relevant indepehdent characteristic
functions be infinite, it is not necessarily {rile‘that any continuous
function f(z) defined over (e, b) can be represented over that interval
by a series of these functions; that is, ¢ie"set of characteristic func-
tiong, even though infinite in numpe}*:, may not comprise a complete
set, in the sense defined in Sections1.28.

Suppose now that we have'fin some manner) obtained all mem-
bers of the set of normalized characteristic functions y.(z), each
corresponding o a chapapteristic number A, of the homogeneous
equation

N
Qi) = [ K 0y &, (115)

A%
where K(z, ,«;-)\'is‘s?;mmm'c. We next show that the knojwledge of
these functions and constants permits a simple determination O.f the
solut-ion‘&\fhe corresponding nonhomogeneous Fredholm equation

N,

SV v =F@ -+ [ K6 00 ds (116)

&tshe second kind, when a solution exists.

We suppose that the characteristic numbers have been ordered
with respect to magnitude, that characteristic numbers correspond-
ing {o k independent eharacteristie functions have beex} counte;d k
times, and that such subsets of independent characteristic functions
(eorresponding to multiple characteristic numbers) have been
orthogonalized.
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In order to simplify the relations which Follow, we suppose also
that the arbitrary multiplieative constant associated with each
characteristic function g, 15 so chosen that the function is nermalized
over the relevant interval {(a, ). Thus we write

$n = Colfn, (117)
where the normalizing factor 7, is given by
O\
Cn = , b ] . '\:\. (118)
\/_L [a(2)]? dx N
o that there follows ~\ >
4 A\ 3
[ [bal)f? de = 1. ) (119)
a ,\ g

The expansion (111) of a function f(z} in a feNes of the normalized
characteristic functions then takes the .a:im{\hsr form

AN\
@) = 3 am0u(z) where Ju= [ f()ea(n) dx. (120

Since the series (111) and (120p%re identical, it follows that
Gt = Angr A = @il (121s,b)

~\
These relations permiftransition from the expressions to be obtained

1o correspondm;_., expressions involving nonnormalized characteristie
functions.

If the equam;ﬁn
o

§\ ¥@) = F@) +x [ Kz, Bul) dk (122)

4 &

possesses a solution y(z), then the function y(x) — F{x) is generated
Ny ) b i
“hy/the operation ]; K(z, &) y(£)] dE, and hence it can be repre-

sented by a series (or linear combination) of the normalized charac
teristic funetions ¢u(z) (n = 1, 2, . . .}, of the form

¥@) = Fz) = X a.d.(x) (@ =z 2D), (123)
where the coefficients a, are given, in virtue of (120), by

o = f lw(z) — Fla)l¢nla) dz. (124)
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With the convenient abbreviations
& &
e = [ u@onxydr,  Ju= [ F@)én@) dz, (1258)

this relation takes the form
an = €p _-fﬂv . (126)

In order to obtain a second relation which permits the elimings
. . (] )
tion of the unknown integral ¢, = j; ¥ ¢ dz from (126), we 'ml\lltl-
£\

ply both members of (122) by é,(x) and integrate the regults Gver
{a, b}, s0 that there follows G\

R

=t [ o [ [ K, z)y@);zg\]i’éx, am

with the notation of (126). I the order of integration is reversed
in the coefficient of X, and use is made of Jhe assumed symmeiry
in K{z, £), that coeflicient, becomes * '

b b o\ .s.:l b en
f v | f K&, 9)a(s) dx;IjzgiE'ﬁ L f Y(H0(8) dE = 2

and hence (127) is equivalmﬁ’ﬁ?r the relation
NS A
ey = fu + = ta {128)
AN »

The climinaifofrof ¢, between (126) and (128) then gives

\ _ __)\__ 129
NV @n = An — )\f" (129)

if A %)\} Hence the required solution (123) to (122) takes the
forms

o \¥;

Q7 v =F@ +2 Slyse  O=w (130

where, as previously defined,
o= [P ds =120

We may notice that the constants f, would be the coeflicients
in the expansion F(z) = Z faa(z) if Flz) were representable by

{131)
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such an expansion. It is of some importance to notice that in the
preceding derivation it was not necessary to assume the validity
of this representation.

The expansion (130} exists uniquely if and only if A does not
take on & eharacteristic value, DBeeause of the presence of the term
Fedu(2)/(he — A), we see that if A = A, where Ay is the Ath character-
istic number, the solution (130 is nenexvistend unless also fi = 0,
that is, unless F(z) 1s orthogonal to the corresponding characlepsstic
function or funchions. But if X = A\ and fi = 0 equatiop (128)
reduces to the trivial identity when n = k, and hence imposes no
restriction on ¢.. From (126) it then {follows that t}lé:?:ncfﬁcient
of ¢i(x) in {130), which formually assumes the fora™g70, is truly
arbitrary, so that in this case (122) pussesscs o dftely many solu-
tions, differing from each other by arbitruppraultiples of ¢.(z).
If X assumes a characteristic value and F(a)Nis not orthogonal to
the corresponding characteristic function/ér functions, no solufion
exists. These results are illustrated Dy the example of Section 4.7,
which involves the symmetrie kernel(&{z, £) = 1 — 3zt

In virtue of (121), the normalization of the characteristic func-
tions is unnecessary, in the sepgeMhat (130) can be replaced by the
expression N

yz) = F (2.\ B E L@ AN, (30)

where
F, Lb [%@ﬁdz = Lb Fxyy.(x) dx m=12 ). (131}
2\$

We{%ﬁ'sider next the Fredholm equation of the first kind,

~O" Fo) = [ Kz, (b ag, (132)
N/ N
with a symmetric kernel, where F is prescribed and y is to be deter-
mined. It follows from the basic expansion theorem (page 414)
that (132) has no continuous solwfion unless F'(z) can be cxpresse
as a linear combination of the characteristic functions corresponding

to the associated homogeneous equation of the second kind,

v@) = [" K, Hys) at. (133)
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For example, in the special case for which K(z, £ = sin (x -+ £
and (a, b) = (0, 2r), cquation {132) beecomes

Fle) = [, y(&) sin @ + ) at (1342)

or

Fiz) = [1;27 y(£) cos sdg] gin ¢ + [LZT y(£) sin EdE] cos .
(134K

This relation can be satisfied only if F(z) is prescribed as & Jingar
combination of sin ¥ and cos x or, equivalently, as a rel%té.c} lingar
eombination of the characteristic functions y and y.(0f\the asso-
ciated homogeneous equation (114), o\'{j

y1 =sinx 4 cosz, Y =SNT < (;6-5 z, (135}
corresponding to A = 1/7 and Az = —'1',@:1.\ if F(z) is presorihed
- F(z) = Asinz, g—’%s‘ cos 2, (136)
then (134b) is satisfied by any.{ft{ii’c’tion y for which

[ (@ cos 503{::’}21', [Tupsneiz =B (13
One such function is ‘&f&lﬁ"}ly

Qi) ~ LA cosz+Bsna). T (19)
However,\{f}!:é\ add to (138) any function which is (1rth0g<?nal to both
sin 2 and™dos z, and hence to the characteristic functions z: and
Y1, o¥& (0, 2r), the conditions (137) will still be satisfied, so that
the| ;Eﬂut-ion is by no means unique. Unless F(z) is prescribed In
Torm (136}, no solution exists.
Suppose now that (132) does possess & €O

b
Then #(x) is generated from y(x) by the operation L Kz, y(é) i,

and henee it can be expanded in a series

F(I) = 2fﬂ¢ﬂ(x) (“.1 =z = b);

ntinzous solution.

(139)
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where fo = [ PE@6u) dx, (140)

and where ¢, is the nth characteristic function of {1331,  The series
may be finite or infinite.  But since ¢, satisfies the equution

$u@) = M [ K(x, Du(8) 8, (141)

and since {132) must be satisficd, we may replace F(z) and o)
by the right-hand members of (132) and (141), s0 that (139) takes
the form )

L
[* K@, vy di = S [ K@, peugde” (14
or L} ""\Zt'
b 1 NN
j; Kz, &) [y(E) — 3 Mafabnld) ] Wi 0.* (143)
Tt z:\\:

This condition is satisfied if and only 1fig{s) is of the form

ylz) = 2 A"fnm,(;f)"# ®(z), (144)

*

where $(z) is a solution of thes é}iuution

Emktx HB(E) dE = 0. (145)

We conclude that ‘{f\{\t?;?.) possesses a continuous solution, then
that solution must®g of the form (144), where & is any continuous
function satisfyitfg’ (145). From the homogencity of (145) it 18
clear that eithér (145) is satisfied only by the trivial function
&(z) = {)\Q:\lt possesses infinitely many solutions.

If Ee}nultiply both members of (145) by ¢a(z), integrate the
resulgsiover (g, b) and make use of the assumed symmetry in K, We
Kﬁ‘ty;fzih the condition

b &
[ oo [ xe pow at)as = [aco] [ 5 $ute) de | 08

b
=§ f () da(e) dt = 0. (146)

* The validity of the interchange of order of integration and summation 18
a consequence of the uniformity of the convergence of (139) (see footnote OF
page 414).
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Hence it follows that if (145) possesses a nontrivial solution, then
that sclution must be orthogonal to all the characteristic functions
$o. If this sef of functions is finite, then infinitely many linearly
independent {unctions satisfying this condition exist. If the fune-
tions ¢, coraprise an infinite complete set over (g, &), then no con-
tinuous nontrivial function can be simultaneously orthogonal to all
functions of the set, so that in this case the function & in (144) must
be identically zero. ,

In the preceding developments we have made use of a known
expansion theorem to show that if a Fredholm equation #ith a
symmetric kernel possesses a solution, then that solution miust be
of a certain form. In particular, if the nonhomogeneeus-equation
{116), of the second kind, possesses a solution, then, thtat solution is
unigue unless A assumes a characteristic Va.lue‘,w%,n'd is given by
(130). If the equation (132), of the first kind)\pessesses a solution,
then 1t is given by (144) and it is or is not qz\iquely defined, accord-
ing as (145) does not or does possess nonfrivial solutions, *

In physically motivated problemgnguestions concerning exist-
ence and uniqueness of a solutign sually can be resolved by
bhysical considerations. Thus, forcxample, if the kernel in (145)
is the Green’s function (75) for 8Yoaded string, a nontrivial solutiqn
of (145} clearly cannot exist} since it would represent a static
loading which leads to so\deflection at any point of the string.
From the mathematical\point of view, however, such questions are
of considerable inter%&. Certain known results are presented in
Sections 4.9 and 4.0 .

It should be‘¥emarked that before the theory of this section
can be applied it is necessary to determine the (?ha.mcterlstlc
numbers\éﬁd functions of the homogeneous equation. Exc_ept
in special cases this determination must depend upon .numerlleal
(or graphical) procedures, cerbain of which are discussed in Section
Vi
4.9. Tterative methods for solving equations of t]:}e second
kind. In certain cases integral equations of the second kJI_ld can be
solved by a method of successive approximations. In this section
we describe the method and investigate its validity. .y

Tt § i irect, substitution, that (130) and (144) do
indeeit ;:tig?;m}}llfg;oai?‘ﬁ’ggi f;;'::ctively, when the infinite series fnvolred
converge uniformly,
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Suppose that in a ¥redholm equation of the sceond kind,
b
u(@) = Flo) + [ Ko, 00 a, (147)

we replace ¥ under the integral sign by an initial approximation
¥, Then {147) determines an approximation p in the form

Y@ = Flz) + 2 [ K, 0y () di. (148)

By substituting this approximation into the right-hand mdniber of
(147}, we then obtain the next approximation y®, andljtontinue
the process in such a way that successive approximatiops arc deter-
mined by the formula O
"

Y@ = F@) +A [ K@ gy e (149)

ANY;

The same method is clearly applicable g{;@.\whcn the upper limit &
is replaced by the current variable 2\8o that the equation is of
the Vollerra type. It remains to gict]m:mine under what conditions
the successive approximations gﬁ.tiﬁ).lly tend toward a solution of
(147). O\

In order to examine this“procedure more closely, we write oub
explicitly the results ofmtsl\ie indicated substitutions. Thus we first
obtain the result of r@lﬁcing 4 in the right-hand member of (147)
by ¥V, as given by\MS). In this substitution, we must replace
the current variable z in (148) by the dummy variable £ appearing
in (147). Toghy6id ambiguity, we must then replace ¢ in (148) by
another d}lqghfy variable, say £, so that {148) becomes

NS
SO o = F@ DK By dn
N\

\Tlite result of the substitution then takes the form

y®(z) = F(z) + A L” K(z, %) [F(g) + A f K(&, £y @ (&) d&} dk
or

b
y2@ = F@) + ) [ K, OF () d

x [P R@, o [P KE tyo G dads (50
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If we now replace = by £ £ by £, and & by &, in (150), and
substitutc once more in the right-hand member of (147), there
follows

@) = Fl) + ) [ K@ OF dé
-+ a2 f K(z, £) Lb K(t, e)F (&) db dE
N
+ A3 f” Kz, & /” K(§ &) [i‘ K(ts, By ® (£ dba dby d‘&- ‘(151)

The analysis is abbreviated considerably if we 1ntaqﬁuce an

tntegral operaior ¥, defined by the equation K. \
s = [ K 050 a6
The integral equation (147) then takes the Qﬁmbnhc form
y(x) = Flz) + MW(:B), (153)
while (149) becomes & "l
y™(z) = R’(x) + A K yP ). (154)

Further, equations (HS)\ (150), and (151} take the form
yWe) = F(z) i\ &y (),

y ¥ (x) = F(x) S AR F(z) + ZNRO(), (155)
¥ (@) F(:c) + AR F(z) + NKF @) + NRyO@)
More g&Qéhllly, after the nth substitution we have
ye (x} Fz) + 2 X Flx) + NKF(@) + NWRF@)
O b e () + Bz, (156)
\Where R.(z) is defined by
(157)

Ru(z) = Ay @ (z)-
Hence, ag n— e, we are led to the possibility that the desired
solution of (147) can be expressed as the ipfinite series

y(z) = Flx) + 21 MR (), (158)
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It remains to determine conditions under which the expression R, (z)
tends to zere and under which the formal scries (138) actually
converges and represents the soelution of (1473,

Suppose that for all values of x and £ in the inferval {a, b) the
kernel K(z, £ is smaller in absolute value than a certain fixed
constant Af:

| Kiz, &) | < M; (159a)
that the presceribed function F(z) is also bounded in (g, £): | AL
VF(e) | < omg .*(,%5970)
and that the initial approximation ¥'{x) s likewise Iw}lndtd n
(ﬂ, b) s'\'ﬂ‘
[y (x) s < C. O (160}
These bounds will certainly exist if A, #, and _;,f"'”:':u'e continnous in
the closed interval (a, b). \/

With the understanding that b > q, f\k{};\(‘ then follows
| %y | = [ K, oy dc.[:.@‘f_ MCdE = M — a)C.

More generally, we find by ite un’mn that

sy @Y < Mo — @O (161)
and, similarly, A0 _
L\agw(x) [ < M*b — a)'m. (162)
Hence, accor(’ijn:g to (167) and (161}, there follows
\“f’; R.(x) | < |\ 1Mn(h — a)C, (163)
and we n{? deduce that R.(z) tends to zero with increasing # if
O 1
N 164)
:..\ >3 l | < J'1’1(b _ ) (

‘”\ N/
“Rurther, from (162} it follows that the scries

F@ |+ 3 ] R |

=]

is dominated by the constant series

[1-{—2[)\|U (b —ar|

n=
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Since this geometric series converges when A satisfies inequality
(164), we may deduce that the series {158) converges absolutely and
wniformly® in (a, b) when (164) is satisfied.

It is easily seen, by direct substitution and term-by-term inte-
gration, that the series (158) satisfies the integral equation (147)
and hence represents the continuous solution of (147) when (164} is
satisfied and K 1s continuous.

The series (158) is a power series in A. If we recall that the
solution to (147) generally fails to exist when A takes on a eharacter:
istic value, we are led to expect that the series solution (168) wall
cease to converge at least as soon as | A | becomes equalte the
absolute value of the smallest characteristic number Ay, It can be
shown that this is the case and, indeed, that the septgs (168) con-
verges when | N | < | A1 ], and only then. N

Noticing that the condition (164) may be aomservative, in the
sense that the series (158) maoy cONVETEL ex{erﬁhOugh (164} is not
satisfied, we are thus led to the useful re}aificin

1 L 4 - -
S . 165)
!XJI =M(B'__ a) (
which gives a lower bound for‘pﬁle‘ nagnitude of the smallest t_sharac—
teristic number A A some{vhat more involved analysis (see
Problem 75) leads to tbgihequality

) i | (166)

N7 TN [ K o1 ded
N
which giW{S»»\ & sharper lower bound.

In th’e\case of the Volterra equation,

~O y(x) = F() 2 f K(z, Hy(8) 4§ (167)

\ 3
with a variable upper limit, we define X, as the integral operator

such that
K@) = [ Ko, 858 & - aes)
. o . ot
* A series of funetions of 5 which is domma.tedfbxy ii acgnix;izﬁzxg E.::-lgi (i)s

positive consianis independent of z, for all valaes O :
untformly convergent in (g, b). Sucl; o, series of continuous functions represents

a continucus function and it can be integrated .term by term in (4, 5)-
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and a procedure completely analogous to that used above leads to
the formal solution

@ = F@) + 2, W8P, (169)
n=i
if the expression
Rax) = MKy (x) (170)
ON

tends to zero as 1 — oo, A o

In this case, if we consider any interval (e, b), wherd Wis any
number larger than a, and again assume the bounds (I{)‘.})szd (160)
over (a, b}, we have N

*x :f-"\.\:
%@ | = [7 K, oy de | < Mo - MG —a),
o
‘..:\"

w0 s 1K, 9110 Yo dr

when ¢ £ z £ b, and hence 2lso

Mz — a)? ¢
2.1 '

=irc f (& - a)di =

Inductive reasoning themnleads to the result

O Afn _ n
Bu(z) | = | oaapole) | s |1 2E 22
< (b — a)n
:,\:,,.’ < Inn Ji(ll L) C, (171&)
ol nl
\: \.:so
fora £% < b. In a similar way, it is found that
»\:\ ) IR () | S N Mrb — a)" m (171b}
\/ n!

for a £ 2 = b But the last member of (171a) tends to zero as
n— o, and also the series whose nth term is given by the right-
hand member of (171b) converges, for any finite value of A. Thus
the method of successive substitutions converges to the series (169)
and that series converges absolutely and uniformly, for any finite
value of \, in any interval (e, b) for which b > a. A similar result
follows for any b < a. It then follows, by direct substitution, that
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the series (169) comverges o the unique continuous solution of the
Volterra equation (167) for all values of N, in any inlerval (a, b) in
which K(z, £) is conlinuous.

We may notice that, as was to be expected, the final solution
in each case is independent of the initial approximation y®{z). In
practice, it is often desirable to merely evaluate the successive
terms in the scries (158) or (169) by iteration, 2s is illustrated by
an example which follows, rather than to actually pursue thes
method of successive substitutions which motivated (158) and (189
If the latter method is used, the initial approximation R

YO ) = F() (‘.’:.:“' (172)

is usually a convenient one, unless advance information as to the
nature of the required solution is available. N

As a very simple illustration of these ;‘e{@bs, we consider the
Fredholm equation RS

yo) = 14 [0 A0y b (173)

the solution of which can be oitained readily from the results of
Section 4.7 in the form N\
() = AN —82) o x 49) (174)
\\..: 4 — AZ

The operation J’Cf(‘x’) is then of the form
</
1 _
7 wfw = [ @ - 30

To Obta'gt';he ceries solution (158), we make the caleulations

W\
'..\',

1 3
a\"4 _ [ —3 dE=1-2z,
QO X F L( z¢) dE 5

1 3 i
3€2F=f (1-—-3x5)(1-52)d5=1’
Li]

i 1 3
3€3F=ﬁ (1 —-Sxf)idé’:-'z(l *gﬁ)’

and go forth. From the form of these results the form of the gen- _

eral result is obvious, and (158) becomes
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y(w)=1+>~(1—§a:)+ + 2 ( %;.)

+ 2 +"5( —-gj:::)%-'--. (1758)

This result ean be expressed in the form

2 4 ™\
ylx) = (1 +%+)‘—.+ e )[1 +>\(1 ~ E*)] (15b)
1] - 2 AN

The power series in {175b) is a geometric series, conyo’@ené when

[ X ] <2, with the sum 1/{1 — A%/4). Tlence (V73S the power

series expansion, voelid when and only when | N <\ 2y'of the solution

AR Ul NN 176)

ve) = D B (

which 18 identical with (174), and whwh ?ﬂself is valid for all values
af X except A = 2.

We may notice that consequ’ently the method of successive

substitutions would not comergé Jfor example, if it were applied to

*

the infegral equation N\

y@ =4 [ (- sapy(v a,

while it would cony\ge if applied to the same equetion with fhe
factor 4 replaced-by any number smaller than two in absolute value.

Obwously b method of Bection 4.6 is generally to be preferred
when the keﬁre] K (z, £) is separable, as in the preceding ease. Itis
importahdsto notice that the methods of Section 4.6 express the
SOIUtme as the ratio of a function of x and \ to a polynomial (A,
valid for all values of X except the characteristic values for which
ABY = 0. The method of successive substitutions, in such cases,
léads to the power series expansion of this rafio, valid only when
A1 iz smaller than the magnitude of the smallest characteristic
number,

In the more important cases when the kernel is not separable,
there exists a method, due to Fredholm, which generalizes the
procedure of Section 4.6. 'This method is discussed in Section 4.13-

In the following section the preceding developments are 600~

» sidered from a slightly different viewpoint.
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4.10. The Nenmann series. With the notation of equation
{1562},

%@ = [ K@ ofwa, Q7
there follows also
5@ = [ K, 8% (&) db
- [k o | [ K 05w ] an
= ['[ [ K e0Ke, 8 6] 50 dt ..f’ti?é}

\

1f we define the ierated kernel Ka(z, £ by the I'B].&tl()n'

Ki@, ) = [, K, 8)K(u 9 dsn\‘ (79)
equation (178) takes the form \\J
xof(@) = [ Kala, srp d (180)
By repeating this process, it is ea&jy geen that one can write
seofle) = R, DI b asn)
where K, (x, ¥) is the nth 1¢@rated kernel, defined by the recurrence
formuls
P, [ K@, 0Kl D60 (1520
forn = 2, 3, 4,\'“ and where we write
D7 K=K (182b)
Itis nof@}ﬂicult o establish the consequent validity of the relation
’"\':\:’; 1J+q(37: E) f KP(Q:; EI)KQ(Eh dEl! . (183)

ot any positive integers p and ¢. Further, if K(z, £) is bounded
in (e, b), in such a way that
| K@, | <M
in (g, b, then it follows easily that also
| Koz, £) | < M0~ @)~

for values of z and £ in (a, b)-

(184)

(185)

N
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With the notation of (181), the series (158), representing the
golution of the equation

b .
§@) = Pl [ K D) d (186)
for sufficiently small values of | A |, takes the form
o b B , )
y@ = P@) + X x [1 K, 010 dt \
=l
¢(\A

n=f)

b - -1 . .. o
F{z) 4+ X f | S MR, B [ FOIE)T (8)
assuming the legitimacy of interchunge of sum’qﬁﬁi(m and inte-
gration, If we introduce the abbreviation \/
- K7
2 N Kui(z, §) L&

n=0

Kz, &) + ) Kufz, g};{ﬁzxs(x, g4 e, (188)

T'(z, £ 2)

I

!

equation (187) takes the f(_,rm:.’; N
y@) = PE@ [0, £ 00 d. (159)
)

The function 1‘(:%,‘\3;"; A) is known as the reciprocal or resolvent
kernel associated (With the kernel K(x, £) in the interval (a, ).
Further, the sefes (188) [or, in some references, the series (187)]
is known as/the Neumann series. 1If use is made of (185), it 1s found
that this\éie\riés converges (absclutely and uniformly) when B3 |_<
1/ M §b.“> @). A more precise analysis shows indeed that the series
copyerges when | A [ < | Ay |, where A is the smallest chal‘acteris'tw
buhber, as was the case in the analogous expansions of the preceding
s€etion. In fact, equation (189) is merely an abbreviation for
(187), which is equivalent to (158) in virtue of (181).

In practice, unless the solution of (186) is required for several
choices of F(z}, it may be more convenient to obtain the series (187)
or (158) by the iterative methods of the preceding section, than
actually to evaluate (188) and insert the result into (189); the net
result is, of course, the same in both cases. However, the Neuman?
series and the resolvent kernel are of importance in theoretical
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developments. An interesting result in this connection is obtained
if we rewrite (188) in the form

Tz, £2) = K@, § + 2 2, MEualz, £

ne=i}
- K@ © 2 33 [ K@ 0Knle, 8 db
n=i
and henee, again referring o (188), deduce the relation

T, &) = Kz, § +2 [ Ko 006 6V dis O

"\
or, with s change in notation, \J

Fo, 33 %) — K, )+ [ K, DTG u B (190

Thus it follows that the resolvent kernel T, cmszdera}l as a funciion
of the two variables z and y and the parometer W15 the solution of
equation {186) when the prescribed Funetion B¢ 1‘.;\"33)3@{:3(3 by the kernel

K, considered as a function of © end 3. N0
In order to illustrate the actual détermination of the resﬂbmt
ketnel in a simple case, we aga:m adnmder equation (173). With

K (-’B, EJ ST - 3,
there follows

Kule, £) — f(p )(1~3sls)dsla1~—(a:+s)+3xz

and, similarly,
K. (x,\a f Kz, e Kalts, §dt =5 (1~ 350
Since, 1&13 special case, we therefore have K, = K./4, it follows
easﬂy”that K, = K, 3/Aforn 2 8, and hence we have
T K1+7\K2+}\K3
\ hg )\4 ) K
=(1+Z+E+---)K1+h(1fz+ﬁ+ 2

or

Tz, £ = i ]'k/ [(1 +2 - ~Mx + £ -30 - 7\)&'&]
B (x)<2. (18D
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~ The introduction of this funetion into (189), with #(x} = 1, leads
again to the solution (176).

It 1s important to notice that the result obtained is correct for
all values of A except A = +2. That is, the resolvent kernel is
correctly given by (191) for | all such values of X, However, the
series involved in the equation preceding (191) conver ues only when
E A| <2 It happens that we are able to sum that series o xplicitly
in the present example, and that the resultant funelion corregbly
represents the resolvent kernel for aff values of A other 1han charde-
teristic values. Oy

4.11. Fredholm theory. It is possible to express thi Eomh(,nt
kernel T'(x, £; X) as the ratio of twe infinite series of Rmurs of A, in
such a way that both series converge for afl ralues of )\ The deriva-
tion of the basic equations, due origin: ally to i"l\llmim involves
considerable algebraic manipulation and is not\onsidered here.

If the resolvent kernel is expressed us 11‘1(\\"1L10
: D, §\’\) 192
T{zx, ¢ A) = 0y (192)
where .;.’
DG, &N = K, ) = 20, 6+ X b, 9 — -+ (99
and AN = I Allpl 4 g_' Com - o (194)

it is found that the €oefficients €, and the functions D, (x, £ can be
determined suct'es.shely by the following sequence of ealeulations:

C:= [ K(\m~dx, Dz, &) = i, 0 — [ Ko, 60K (8, © 255

Oz—f D (@2) dz, Dalw, §)= CiK(z, £) —2 [ K(z, 50D1(ks 455

Co= j;b Do 1(z, x) dz,

Du(z, £) = C,K(z, £) — [ " Kz, 1D (b, £ dbn
‘ (195)

The solution of the equation

¥(@) = F@) +x [* K, 9y d (196)
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is then obtained by introducing (192) into (189), in the form

[* G, & 0F d

y(a) = P@) + 3 T (197)

In those cases when K(z, %) is separable, this result is identical
in form with the solution obtained by the methods of Section 4.6.
The scrics (193} and (194) then each involve only a finite number of
{erms. N\

More generally, if the ratio of the fwo power series involyetin
(197) were cxpressed as a single power series in ) (by divisterr’or
otherwise) the result would reduce to the series (158}, \"Hﬁwevcr,
the result of this opetation would converge only fov:.émzi’ll values
of |2 ] (when |A| < | M [), whereas the separatq.s;&ms expansions
of the numerator and denominator in the last termn of (197) each
converge for all values of A x\\

The denominator A(\) vanishes only shen takes on a charat-
teristic value, in which cage either np\gelution or infinitely many
solutions of (196) exist, and (197) ig\ndlonger valid.

Despite the generality of the, %&ﬁ{ition just deseribed, the prac-
tical usefulness of the result isditited by the fact that the relevant
valenlations usually involve Q‘proh_ibitive amount of labor'uniess
K(z, £} is separable (andience the simpler methods of Section 4.6
are vsually prefera ({)j*’Neverthe]ess, the rigorous‘ dcvelopm?nt
of the underlying theotv has led to valuable information concermng
existence and u(ﬁ;mencss of solutions of (196). In the following
paragraph we gummarize certain known facts which gencralize
results alrea@y obtained in the special cases when the kernel 1s
either separable or symmetric (se¢ Reference 2).

Tﬁé;equat'io-n

PRI

O y(@) = F(@) +1 [, Kl 99 d& (198)

b), possesses one and only
\ which 18 not @ charac-
er of multiplicity T, that

where F(z) and K (x, £) are continuous it (a,
one continuous selution for any fized volue of
teristic value. If X, is @ characteristic numb
13, if the associated homogeneous equation

y@) =\ [ Ko Dy (199)
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poésesses r linearly independent nontrivial solutions ¢, P2y 0 0 . B,
then the associated transposed hemogereous equation

w@ = " K@ 2 de (200)

also possesses r linearly independent nontrivial solulions Vi, s, . - L,
¥r.  In thes exceptional case, (198) possesses no solution unless Fz)
is orthogonal to each of the characteristic functions g, s, . . W,

N

ﬁ Fa@de =0 (k=12 94D eo

Finally, if » = X, and (201) s salisficd, then the sggléfifbn of (198) s
determinale only within an additive lnear corrabi:i%-m}a c1p1 + cagpe +

- 1 &d,, where the v constants e, are arbitriie).

When K(x, £} is symmetric, equations (199} and (200) are iden-
tical and the preceding results reduce totHosc given by the Hilbert-
Schmidt theory of Section 4.8. x\

It is useful to notice the completdahalogy between the preceding
results and the corresponding a8sults relevant to esistence and
uniqueness of solutions of setsXf » linear algebraic cquations in n
unknowns (sce Section L.30}* Indeed, the plausibility of these
statements was first suggested by the possibility of considering a
Fredholm integral equgition as the limit of such a sct of equations
as the number n of ®quations and unknowns becomes infinite.

A Volterra intépral equation, of the form

AU = F) +x [T K, D) it (202)

N\ .
can be cobsidered as a special form of a Fredholm equation, with &
kernghgiven by the expressions

N>

™ 7 _Jo when =z < ¢, 203)
N\ (@ &) K(z, &) when =z = & (
However, unless K(z, 2) = 0, the modified kernel R(z, £ is dis-
continuous when z = £ The results of Seetion 4.9 show that if F (@)
and K(x, &) are continuous the Volterra equation (202) possesses ofé
and only one continuous solution, and that solution is given by the
sertes (169) for any value of . In particular, when F(z) =0 1.;he
only possible continuous solution of (202) is then the frivial solution
y(z) = 0.
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4.12. Singular integral equations, An infegral equatio;l in
which the range of integration is infinite, or in which the kernel
K(z, £} is discontinuous, is called a singular integral equation.
Thus, in illustration, the equations

Fl) = 7 sin @D y(®) & (204)
P@) = [," esyln dg (205,
= S_M__d : . "\\
and Fo) = | e ¢ b (206)

are all singular integral equations of the first kind‘.”"EXCeP’ﬂ in
certain special cascs, theoretical information congerring singular
equations is not yet present in the literature. <AS.will be scen, such
equations may possess very unusual propetlies. The three pre-
ceding cxamples were chosen here becga:l{ée.\of the fact that they
have been studied rather extensively A\,)

The function F(x) defined by the ight-hand member of (204)
may be recognized as the Fourger Sine transform of y(z). If Flz)

is piccewise differentiable w];e'rf;l.';> 0, and if fo | Fi) | de exists,

then it is known that eqﬁatién (204) can be inverted uniquely in
the form e
LY 0 (207)
y(x‘)’.%.}ﬁ sin (z) F(£) d (@ > 0)
AKX
This result deatls to an interesting property of the homogeneous
mtEgl'al{fjhﬁtion

O\ (208)

gy = j{;m sin (z£) y(8) d&
»&?Siééiated with (204), and obtained from (204) by rfzp]acing g‘v éﬁl

\b¥ 5(x)/», since the corresponding inversion of (208} 18 then o
form

e

vy = 2 [ eim 0w 8 (209)

Unless y(x) = 0, equations (208) and (209) are Gompatible only if

\ = i\'E' (210)
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Thus we conclude that if (208) possesses characteristic numbers,
those numbers can only be A = +/2/7 and A = — v 2w
That these values of A are actually characteristio values follows

from the verifiable relation

T .. r 2 L £
\/ﬁ"’ tarp Tt \/«f s @) Nz ’ irﬂHJdE’

ey
whenz > Oanda > 0. This equation stafes that when )\'\'=\"\\/2x_f‘ﬂ'
equation (208) is satisfied by the function \
nix) = Wr* N — (x >(}9 (212)
2 a* + zt ‘\ !
for any positive constant value of a, whercus \Qlen A= — +/3/x the
function D
= T ger TN 213)
a(2) \/2 o may E>0 (

is a solution for any positive va}fxé‘ of a. Thus, the two character-
istic values of A are here of infintite mulliplicity; that is, each value
corresponds to infinitely mefly independent, characteristic functions.
This situation is in conffast with the fact that any characteristic
number of a nonsingular Fredholm cquation corresponds only to
8 finile number of ifidependent characteristic functions. _

The function{x) defined by the right-hand member of equation
(205) is the Baplace transform of the function y(z). It is known
that, whig'zl}ét all functions can be Laplace transforms of other
functiong\there cannot be two distinct functions with the same
transigem. Thus for a prescribed funection F(x), if (205) possesses
asqlution then that solution is unique, and it can be determined by
known methods. In order to establish an unusual property of the
associated homogeneous equation

@) = [Tetymar > 0), (214)

We notice that, in accordance with the definition of the Gamma
Junction, we have the relation

LT et emdg < t@ae @ > o). (218)
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The result of replacing a by 1 — @ is then of the form
[Testpras =0 —apt @<L (216)

If (215) is divided by 4/T(a), and (216) is divided by +/T({1 — a),.
and if the resultant equations are added to each other, the truth of
the equation '

[ et/ a) -t + VTa) £ de
— VT =3 WA =0 et + vT@ 7 D

O<a< ,1) (217)

i established. This equation is identified with @Q&) by writing

o e K ok

and PAN

y(z) = /T(1 — a) x=1 —{—:,’\:'/ I:(a) T (z > 0). {219)
r a such that

It thus follows that for ax}y:'}aiue of the paramete :
onding to

0 <a<1a value of A isedetermined by (218), corresp
which (214) possesses ,adontrivial solution specified by (219).

In consequence of thxifl’eiltity
©<a<1)

Ij(a;)'rfl —0) = e

#

: 2. . .
equation, (248) can be written in the form
O -
A\ B \/sm o p<ae<l) (220

¢ .\’: 3
“from which it follows that oll values of A i the interval 0 < A 1/vrE
equation (214},

are characteristic values for the singular inlegral totd
This situstion is in contrast with the fac‘t that th‘? ch?‘};:'at?et(einzatllg
values of A for a nonsingular equation are disorelely distributec:

. . 1
cannot constitute a confinuous ‘ spectrum.

It can be shown further that all vatues offP\ in tlit?oilnt;t;:;l
! = 3 teristic values for equatiol .
e omaine Posdnolm eqat possess only discretely

Other singular Fredholm equations may
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distributed characterisiic numbers, or they may possess both a
digerete and a eontinuous spectrum of characteristic numbers,
Equation (206}, in which the range of integration is finite but
the kernel is unbounded, is considered in the following section.
4.13. Special devices,  In this section we present techiniques
which are useful in dealing with certain speeial 1ypes of integral
cquations. )
L. Pransforms.  H a relationship of the form \
N

b ¢\
y@y = [ [ vl 2K &, 9ute) deds P22

is known to be valid (for a suitably vestricted clug®f unctions )
and if the double integral can be evaluated s gl iberated integral,
then it fullows that if \

F) = [ K, 9y (222)
we have also \ ’
y(@) = [ T B dg (223)

Thus, if (222) is considered as@nintegral equation in 4, a solution
is given by (223), whereas if (;2,‘23) is considered as an integral equa-
tion in F a solution is gige® by (222). It ix conventional to refer
to one of the functions @8 the fransform of the second function, and
to the second funqt}t% ns an inverse transform of 1he first.  The
correspondence muy or may not be unique. Thus, for example,
the Fourler sipednitegral formula

’t\“ = =
.\:?Jz’x) = %ﬁ j; sin (&) sin (5,8) y(§) dédé

lea,.d&tg the reciprocal relations (208) and (207).

{ V2. The convolution. The function defined by the integral
e — oo as (224

is known as the convolution of u(z) and v(z). The known fact that
the Laplace transform of the convolution of w and v s equal 1o the
product of the transforms of w and » permits the reduction of the
problem of solving the special Volterru cquation

y@) = F@) + ﬂ, Kz — Hy(§) di (225)
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to the problem of determining an inverse Laplace transform. If we
denote the Laplace transform of a function f(x) by £7, the result
of taking the transforms of the equal members of (225) takes the

form
Lyx) = £LF(z) + £ K(z) 8 yl2),

and henee there follows

£ F(zx) AN
e &

The right-hand member of (226) is caleulable, and it rema.i‘ns only
to determine {by use of tables or otherwise) its mversa‘transform
Equations of the form (225) oceur rather frequentiy in’ practice.

3. Volterra equations of the first kind. It iy o‘ﬁaen possible to

reduce an integral equation of the form
a\/

P = [} Ko gl (221)

to an equation of the second kind,\ Such a reduction js desirable
8ince the method of successive xsubstltutmns is then applicable.
Under the assumption that the\ kemel is continuously differentiable
when £ <z, two different procedures are available. First, by
dlﬁ'f_rentla,t]ng the equal \members of (227} we obtain the relation

F’(:t) = Z}(x, niylz) + f aK%:ﬁ y(£) ¢t

x

H Rz, ) is n@vér zero, this equation can be put in the form

\~ ¥@) = F@) + [ K@ Hu® dé (228)
Wherem :
~O i - 1 K@ 8 (929
O "o -9 keo=-gzs & O
Alternatively, if we define the function
(230)

Y@ = [ v
€Quation (227) takes the form
F@) = [ K 970 &
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and an integration by parts leads to the relution

TAK(x, &)
aE

I K(z, z) # 0, we may rewrite this equation in the form

Flz} = K(x, 2)¥{x) — f Y& L.

Y@) = F@ + [ R oy (231)
where \
F ¢
Flz) = K((':,r})’ K o) = Ix(x x) " Efc & \(232)

The solution of (227) is then related to the solution, of ("31 by the
equation y{z} = ¥'{z). RS
4. Abel’s equation. The Volterra equation \/

— J(E) 233

F(z) \/;.: . :e (233)

is known ag Abel’s integral equation.\ It can be solved, under appro-

priate restrictions on the presunhed function F, by an indirect

method in which we divide bath sides of (233) by /s — z, where

8§ is a parameter, and mtegrate the results with respect to z over
(0, s}. This procedure Lesyds to the equation

* Fix) }:c= * = y(§) T . (234a)
f\/r_; L e v

If the order @Lmtegratlon in the right-hand member is inverted,

and the ]{ni‘bs of integration are modified accordingly, this equation
becomes’\

~N* Flx) a [ fo dz
- w . (284D)
.{\/3—2? /t;U;\/(x—E)(s“I]J(E #

The success of this special method depends upon the faet that
the inner integral on the right can be evaluated by elementary
methods* to give the constant value

s dx
fs V= Bs —2)

. 1 1)
* With z = (s — £)¢ + £, this integral takes the form l:] d@t/A/i{1 — )
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Hence (234b} is equivalent to the relation

Ty ar =1 [T F@_
ﬁy(s)s Tﬁ o

or, with # more convenient notation,

“aedr =1 [T FO_ 4 23
ﬁy(z)z w[,w_g”t @35

By differentiating this relation, we then obtain the desired solation
1a (" _F® 4. O s

y(x) =~ — o Nz —E N

Unless F is preseribed in such a way that the rith:bahd member of
(236) exists and is continuous, the equation (283)*does not possess
a continuous selution. A more direct deriu@t—fon of (236) can be
accomplished by the use of Laplace transforms (see Problem 62).

1t is of some interest to consider the mechanical problem which
led Abel to consider this equation.  Suppose that a particle of mass
" starts from rest at the time ¢ =0} and slides to the ground along
& smooth curve in a vertical plaiie under the action of gravity. If
the initial point is at height, % whove the ground and if the height
I8 £ at time ¢, then the gpeed at time f is given by +/2g(z — &),
regardless of the shape(of/the curve. However, the fime of descent
will depend upon this hape. If distance along the curve from the
terminal point at,;ti,nie t is denoted by (&), there follows

:"\’;.\“ g?g = -— 2g(3: - E)
N
and h&u@e the time of descent iz given by

~C S g @)
N e

For a specified curve, this relation permits the calculation of T asa
function of the initial height z. Abel considered the converse
Problem, in which the time of descent is specified as a function of
%, and the curve is o be detormined. Equation (237) reduces o
(233) if we write F(z) = +/2g T(x) and y(z) = &(@)-
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The more general equation
F(z) = f _d®) i 0<ac<, (238)
o (x — &

which was also considered by Abel, can be solved in a similar way
(see Problem 60).

4.14. Tterative approximations to characteristic fune-
tions. Methods analogous to those given in Section 1.23, for the
approximate determination of characteristic numbers :Lritlfu{mtions,

can be applied to the homogeneous equation O

Ny

N

v@ = [ K@ oy as, o8 @80)
\\

where K(z, £) is symmetrie. If this equatidw is written in the
operational form y = X & y, it appears that hére the parameter X is
analogous to the inverse parameter 1640 the mutrix equation
aXx = Ax of Bection 1.23, Consequeitly, whereas the methods of
that section tend to determine thezié,rg}cst characteristic value of A,
the analogous procedures in the .p’rﬁt.*S(fnt case tend to determine the
characteristic number with shailest absolute value. Except in
those cases when the kernel is stparable, the integral equation (239_),
with a symmetric kernel{possesses an infinite set of characteristic
numbers (see Probl.emi?it J, and it is known thut this set does not
possess & largest mém\)er, in terms of absolute value.

In order to ,aﬁproximate the fundamental characteristic fune-
tion we chogseén initial approximation y(z) and ealculate &
correspont}\ifzxg'approximation from the equation

O 5@ = [T K, vy di = o, 20

A Convenient multiple of f'(x) is then taken as a new approximatiﬂ_ﬂ

yP(z), and the process is repeated until satisfactory convergence ¥
indicated. In those cases when the kernel X (z, §) is contimuous
and symmetric, it can be shown that the successive approximations
¥ (z} tend to a characteristic function y1(x) corresponding to the
characteristic number X, with smallest absolute value unless it
happens that the initial approximation is orthogonal to that fune-
tion. Further, the ratio of the input ¥ (z) to the output f{")(z)
in the nth cycle tends to A1 as n increases. The proof is completely
analogous to that given in Section 1.24.
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Estimates of the value Ay in the nth cycle are éﬂarded by use
of any of the following formulas (see Problem 78):

[Pyo@da [um@re  [e@e

M o S '

[ro@a  [wer@e  [Uoer
(241a,b,0)

The approximation given by the ratio (241b) is in general roore
nearly accurate than that given by (241a), whereas (24192\'@ in
genera! still more efficient. [Compare equations (232a,b) of “Bec-
tion 1.24 ] by

If the characteristic funetion yi(x) were known @acﬂy, and the
next higher characteristic quantifies were reqqir@d} a sequence of
approximations tending toward ya(%) would He'abfained by starting
with an initial approximation which is xo@l‘fog{)nfﬂ to yi{x) over
(@, b). That is, we would choose & coiyenient function F(z) and
take "N/

y@) = F@) = o, (242)

where ¢ is determined by thef.’éciﬁatiﬂn
e . b
¢ [ o ds = [ Fom@) ax, (243)

g0 that ‘““the yl-coh&%)dﬁent of Fis aubtraeted from F.” ) Since y1($|':‘)
is not known cxabtly, its approximation must be s_ubstltuted for it
in (242) andx2 ,}3) Clonvergence t0 and y:(x) Wl?l gepera]ly theFl
obtain if Before each cycle the initial approximation 15 (approx-
mately)($cleared” of y.(z) before substitution into (23?). .er'cfi
s and\ye(x) are satisfactorily approxima’oed, the successive 1mt1ad
) Proximations in the next stage must be clearefi of both 11{z) an‘t
~Yslxc), and the process may be continued indeﬁnlifely. However, 1
is found that unless the fundamental characterisiic functions an;
determined to s high degree of accuracy, the accuracy &ll'd rate 3
convergence of following calculations M&Y be seriously lmpwrisg;
Information concerning the convergence of the })rgceflllag pr}‘;fgw_

in the more general case of a ponsymmetric kernel is limitec.

ever, in the case of the equation

y@) = [ 6, Hrioy® (244)



444 INTEGRAL EQUATIONS [$4.15

where  is symmetric and 7(2) is positive in (a, b), the basic theory
differs from that associated with (239) only in that the character-
istic functions corresponding to distinet characteristic numboers are
orthogonal with respect to the weighting Junction r(r} (see Problem
38). Theiterative procedure outlined ahove is accordingly modified
only to the extent that the weighting function r ix (o be introduced
into the integrals appearing in wquations {239y, (240}, (241), and
(243). [Compare equations (250a,b) of Section 1.23.] \

4.15. Approximation of Fredholm equutions by(sets of
algebraic equations. It has already been pointod it that a
Fredholm integral equation can be considered as th;;'}jﬁiit of a set
of n algebraic equations, as the number of (:quu.timmtinf’rnases with-
out limit. Use can be made of this fact to uﬁtﬁin approximate
solutions of such integral equations. \4

For this purpose, we recall first that u\\dfrfinite integral of the

form \

] &)
1= [rapae (245)

is defined as a limit of the form, 00
I=dim Y jz) (Ao, (246)
PR

where the interval (\1‘\6) is divided into n subintervals of lengths
(A2}, . . ., (Az)pyand w is a point of the kth subinterval. Ab

approximate eyaluation can be obtained by not proceeding to the
limit, and hente'by expressing J approximately as the weighted sum
of the or{l}iimm’es f(zx) at n conveniently chosen points €3, 22 - - - s

T of thGunterval (a, b):
4 .\" ..; L
m\’ . 3 I o D , 6247)
\/ kg\{ s

where Dy is the “ weighting coefficient’” associated with the point z:.

The coefficient Dy may he identified with the length (Az)x of
the subinterval associated with the point =, as is suggested by (246)-
However, when the points z;, x,, . . . , Z, are equally spaced, m_m'e
nearly accurate approximations are generally obtained by choosing
these coefficients in accordance with a formula such as the trapé-
zoidal rule or Simpson’s rule. More elaborate formulas are also
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available in the literature. If the points 21 and =z, are identified
with the end points £ = @ and z = b, respectively, and a uniform
spacing b ig chosen, so that

m—Lh=>b-ug (248)
we recall that the trapezoidal rule gives _
{.Dl’ Do, Dy, Dy, « + ¢, Dyucs, Day, Dy} A

=h{3 1,1, 4, L 1 %'}.'\5349)
According to Simpson’s rule, which is applieable only u‘\n is“odd,
the weighting coefficients are of the form N
{Dy, Dy, Ds, Dy, -+ -, Doy, Dz, Da} R '
= g (1, 4,2, 4,\\, 2 4,1}, (250)
whenn = 5,7,9, ... ,andare of theh;fm
Dy, Dy, D} & %’“’{1, 4, 1) (2508)

in the special case when n =.‘~°T:¥‘
In the same way, the integral equation

y@) =BG +» [ K by® e (251)
£ \‘,ﬁ
tan be appmxim@tq}in the form

£/ n
\J\int) = Flx} + A 2 DuK (z, w)y (@),
¢ k=1
O . .
where 3}*\5”130111138 3 are n convenjently chosen po.mts‘ in the fl;t:er\;:l
(e, t.’.}f.ﬁnd the eonstants Dy, ave corresponding welghting co:d ;:;e; d;
,.,I\f:"}}:e' now roquire that the two members of (252} .be equ
Vf; the n chosen points, we oblain the » linear equations

G=12" """
(253)

imating the
. *Tt is recalled that the trapesoidal rule results from &PP];E;“ g;a. striight
Wtegrand by joining the ordinates at successive d“}r:smnhpzuccmsive <ot 0
tines; Simpson’s rule results from passing parabolas thToug
three ordirates, and is generally more neatly acourate.

¥@) = Py + 2 S, Dk, 20)y(e)
P

pr
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in the » unknowns y(z,), . . . , y(z.) which specify approximate
values of the unknown function z{(z) at the « points.
It we introduce the abhreviations

: = :’)’('Ut'); Fi = F(.t'-,‘), KI'J' = }\'(J‘,, -rj); (254)

where K ; is hence the value of K(z, £ when & = £l E = g, this
set of equations can be written in the form
N
i = lf‘i + A Z K"kl)kyk (7' = 1) 2) T :75);\‘\'(255)
k=1 o\ K

Thus, if we consider the numbers ; and F, us (:omp}‘;ﬁ?fnts of the
vectorsy and F, and define the matrix K = [A,], thp.set’of equations
(253) can be written coneiscly in the form A\ N

y =F+AKDy. \

Here D = [D; §;] is a diagonal mzmtrix,,;iflii\t.he product K D is the
matrix obtained by multiplying successive columns of K by sucees-
sive weighting coefficients. Hence, t}e required set of equations is
of the form LN

ay=F whéfé a=1-—)\KD, (256)

and where I is the unit m@trix of order n.
To illustrate the Um*&\of this approximate procedure, we apply
it to the solution of'the integral equation

29@) =z + [ K, oup) as, (257)
where thg](é}ﬁél is of the form defined by (23),

O ,
& _ ]2l — & when x < 258)
A\ Kz 8 = I 81 —x) when =z > & (

}T;I;t'his particular example, the integral cquation can be regh%ced
the differential equation d2y/du? + ¥ = 0 with the end conc!ltmns
w(0) =0, (1) = 1, so that the exact solution is obtainable in the
form
singz (259)
v(z) sin 1
For simplicity, we take n = 5 equally spaced points, so that
(260)

T =0, =%, zi=3% z4=2% x5=1.
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The corresponding matrix K is then easily determined in the form

o 0 0 0 0
0 &% % % 0
K=|0 % & % 0F _ (261)
0 &% % 1% 0
o 0 0 0 0

If the weighting coefficients of the trapezocidal rule are used with™
h = 1, the matrix of coefficients of the linear equations correspends
ing to (256) with A = 1 is then obtained, in the present specisl vage,
in the form I — 3K. The required equations then follcm{:l‘\

S

’.!;1-_—0, AN
o

51 1 1 1
$iye — ¥zYs —welt T D

—aye - TEYs — S =5¢1\ :

S

(262) -

1 BN B
—gsdr — d5ls T sl D
»." ":!,f,r, = 1

. > 3

The solution of this set_ ofs é(iuations, when the resulis are
rounded off to four decimal places, is obtained as follows:

74,

=0, y, =02043, sy = 0.5702, ¥s = 0.8104, s = 1.
2 < ‘ ’ (263)

\\
r.l[‘hese approxima&; Nralues of the solution y(
T %,’ 2 and Niay be compared with the
obtained fr‘\n'g}t (259) as follows:

+) at the points = =0,
true values which are

e ) : .

\”_\ \“Because of the presence of a corner in the graph of the mtegfand

fi (257), when x = &, it happens that in this case the use of Simp-
son’s rule is found to give less nearly aceurate rfasults. 1

The preceding method can clearly be applied equally wel do

| equations of the first kind,

the approximate solution of integra

and to the treaiment of characteristic-oalue problems. 'In the Iattei‘
case, a corresponding problem of the type consic?ered in Chapter
1s obtained, and the iterative methods developed in that chapter are

applicable.
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It is important to notiee that the present method is particularly
useful when the kernel K(r, £) is not given analytically, but is
specified by empirical data. In this case, the matriv K iy precisely
a table of values of the empirical influence funciion.  An obvious
disadvantage of the method consists in the fuct thut the approxi-
mate solution is obtuined only for the » points #y, . . ., x,, and
must be determined at intermediate points by interpolation or by
merely plotting the calculated ordinates and juining them3y a
smooth curve, or by evalusting the right-hand member of, (252).

4.16. Approximate methods of nndetermined cooflicients,
Other numerical methods for obtairing approximatd, solutions of
integral equations also generally consist in r{\.(h,ufiﬁg the problem
to the consideration of a finite set of algebrajgatiations.  In par-
ticular, the solution of the equation '

AY;

b A
y@) = F@) + [ K@ By d (265)
may be approximated by a lincar ,(;();ﬁf)inzltion of n suitably chosen
functions ¢y, $2, . . . , ¢, of theform
Y > > Apu(x), (266)
Ewl

A . |
where the n constantsvof combination are to be determined in such

8 way that (265)(1s satisfied as neaily as possible (in some sense)
by (266) overghéinterval (a, b).
The requirement that (266) approximately satisfy (265) takes
the form 7\“
A

n 3

2,580 ~ F@) +2 3 4 [P K@, poup de @Sz SH:
{F\;l.. h= 1 (267)

With the convenient abbreviation

%) = [ K Hon®) ds, (268)

this condition becomes merely

kZ‘ Addu(z) — N By(2)] ~ Flz) (@asz<b). (269
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The cocfficients Ay, . . . , An are then to be determined by a set
of n conditions which tends to reduce the two members of (269)
to an equality over the interval (g, b). Several procedures which
lead to such scts of conditions are outlined and illustrated in the
sections which follow. _ '

In practical cases, advance information eoncerning the nature
of the behavior of the unknown function y{x) is frequently 2t hand,
and the choice of the approximating functions is motivated by this,
knowledge. It is frequently convenient to take the approximatioh
in the form of a polynomial of degree %, so that ¢«(z) is ident:iﬁgi
with 2*. Tlowever, if it happens that one or more of the end yalues
y(a) and »(b) is known in advance (or obtainable by~inspection
from the integral equation, as indeed was the case i the example
of the preceding section), it may be desirable to tal;}e the assumed
approximation in the form \
# o::\\'
y(@) ~ @) + AT,

it assumes the known end

where ¢, is chosen in such a wa;xjﬂiat
o vanish at the cor_respond-

values, and the remaining ¢’s arenade t
ing end or ends of the intervaly .

The dependability of fiie ypproximation obtained ean be judged
to some cxtent by ¢a paring the resultant left-hand Ipember of
(269) with the rightshand member. It should be pointed out,
however, that situstions unfortunately exist in which a lerge change

in the functiong)(r) may correspond to a small change in the function
£ '\ ..

\\"\ y@ — [ K, 9y 4t
In sudlt cases, it may happen that the integral ‘equatlor} is very
nearly satisfied over the interval (o, b) by 3 ‘approximation of
#), in the sense that the difference betweel the two members
(269) is then everywhere small relative to gither of those men;lb:ri;
b‘(lt)ne"f:rtheless #{z) may differ appreciably from the exact Sofubio
¥ir) over that interval. e =
A somewhat more satisfactory estimate of dep‘?nda?lhtyitlﬁ
obtained by comparing the result of an n-%erm approximation twnts
the result of an (n + 1)-term approxjmation, Wl}ere 1.;he co;:s ) -
of combination are determined by the same technigque 11 both cases.



450 INTEGRAL RQUATIONS 5417

4.17. The method of collocation. If we introduce the
abbreviation

B = &) — 2 &) = e — [ K@ D ag, e

the requirement that (266} approximately satisfy (265) can be
expressed in the form

&EAmmme (@ <z <), 10

A set of n conditions for the determination of the n cénstants of
combination can be obtained most simply by roquir‘iﬁgfthat (271)
be an equality at n distinet points in the intervél™e, &), If we
denote these points by =, ¢ =1, 2, . . ., n)'\'t}ic resultant con-
ditions are then of the form QO

iAmwo=mm @#&2--um. (12

The matrix of the coefficients of the A s in this set of equations is

*

then given by N

f= [fsf],;x%.iiere fi = Lz, @73)
that is, the set of equations ean be expressed in the matrix form
N fA=F @14

whereA-{A}a}hF {F.}.

To illustraté.the method, we again consider the integral equd-
tion (257), where K(z, t) is defined by (258). For simplicity, e
assume a\three—term approximation of the polynomial form

Q Y(z) ~ Ay + Apr + Aot )

Wlﬂj $1=1, ¢» = z, and ¢; = 2, and with the notation of (268),
\'“\there follows by direct integration

1 =32(l —z), & = do(l —2%), P2 = Hhe(l - z). (70

Thus, with the notation of (270), equation (271) here takes the fore

41[1——(1—9;)] [xug(l—xf)J

+Aa[$e_1_“’2(1 —3:3)] cr (O=2z2D @
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If we require that this relation be an equality at the three points
r=0,z =% and z = 1, we obtain the conditions

A4 =10,
T + 5l + ds = 3, 0 (278)
A1+ 4.+ 4: =
The solution of this set of equations, with the results rounded %o
four decimal places, is then given by O\

Ay =0, 4,=12791, 4s= 02791, (" (279)
50 that the desired approximate solution is of the fOI'ﬁ:IT.}’

y(z) ~ 1.2791z — 0.2791% N (280)

A comparison with the exaet sclution is pqstponed until Section
4.19 (page 458). .‘.“\ g

In those cases where the integralg) d{a}hﬁng the @’s in (268) are
not readily evaluated, or where K(z\28) is defined empirically, the
integrals may be evaluated appifoximately as weighted sums of
ordinates (see Problem 89), o33

4.18. The method oflweighting funections. A second
method of obtaining = £onditions for the determination of the
constants, which is Qﬂﬁe} associated with the pame of Galerkin,
consigts in reqwrjng‘t@éi; the difference between the two Irflembers of
(271} be orthogofial to n linearly independent funetions ¥i()
=1, 2, .. xﬂ) over the inferval (¢, b).

Thus, theieénditions obtained in this way are of the form

# Y
Zm}efbmdx = f"w*dx G=12 - ,n), (2B
“’k}fl “ @
af Squivalently,
4 ]
8A =¢ where gy = j:yb;j}dx and ¢ = L yF do. (282)

The procedure actually consists in weighting the two membfill's
of (271) by each of the functions y:(z), and requiring that the
Wtegrals of the weighted members be equal. A P'Mmculiﬂy oon=
venient choice of the # weighting functions is the set 1, % 2% - berf;
"L In this cage the graphical representations of the tw0 mem
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of (271) are required to determine areas with the z-axis which are
equal, and whose first n — 1 moments are equal. It iy desirable to
choose the funetions ; as #» members of a complete set. of funetions
(see Section 1.28), since then the relation (271) must necessarily
tend to an equality over (g, b) as n increases without limit. It is
often convenient to identify the wetghting functions ¢, with the
approrimating functions ¢,. )

In illustration, the application of this procedure to the exan}ple
considered previously, with the weighting functions 1, g(and 2%,

leads to the conditions £\
t2d. + 3140 + & ds = 3, ‘ 3
A+ Ay + 1A = (283)

Tood: + #3540 + ‘rg%zslﬁ-’l?g \f‘i
4

These equations are obtained hy multiplying the two members of
(277) successively by 1, z, and 22, and)équating the integrals of the
results over (0, 1). The solution isfound to be

Ay = —0.0088, A, ='12968, 4, = —02798,  (289)
leading to the approxima{ﬁon
() x\éefooss + 1.29682 — 0.2798z (285)

A comparison with-the exact solution, and with the approximation
(280), is presented in Section 4.19 (page 458).

4.19. 'Ilfg;\;nethod of least squares. The accuracy obtained
by the procedures of the two preceding sections will in general
depend\upon the choice of appropriate points of collocation or
we;gbﬁfng functions. A method which avoids this dependence
\uf:roh the judgment of the computer is next presented. _

In place of requiring that the integral ecquation be satisfied
exaclly at a number of points equal to the number of undetermined
coefficients (Section 4.17), we may require that the integral of the
square of the difference between the two members, over (g, b), be
as small as possible. 'Thus the basic condition is of the form

f [kz:fl Aifu(z) — F(x)]2 dz = minimum, (286)
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with the notation of (270 and (271). In order that (286) be satis- °
fied, the derivative of the left-hand member with respect to each
parameter 4; must vanish, so that we must have -

Lbfg-(x) (Y 4uie) — F(:c)] dz=0 =12 ",n). (287
k=1 '
These conditions take the form
S oA [ pan = [[iFdr (=120 (@89
p e @ AN

and hence are equivalent to the conditions (281) where the weighting
functions ¢ (x) are identified with the functions ﬁgaz)t'3«,Thus it
follows that 7f the infegral equation is to be saiisfied as el as possible
oer (a, b) in the least-squares sense, the weighlitg Junctions of the
preceding section mus! be identified with the functidns f(x).

In many practical cases, the functions;%'are such thaé t:he
integrations involved in (288) are not feasible. Therefore, 2 modifi-
eation which incorporates most of thé “advantages of this rrfethod
over the colloeation procedure, Wiji};L only a small incTease 1 the
amount of caleulation involved,§now formulated. ) :

If the integral in (286) andy{287) is approximated by & v_velghted
sum of the relevant ordinz€gs at N conveniently chosen points, the
resultant minimal condiiﬁ&;s (287) take the form

1

N & '
g’l D.filx.) [Z'Akfk(xr) — F(:z;,)] -0 G=1,2" """

it (289)

O _ )
where the fmbers D, (r = 1,2, . . . , ) are &ppmpnate’ weight-
. , 2y involved

%Ilg coeff{dients, associated with the points 21, %2 - - - 150 be
n ﬁhﬁ.’ﬁpproximate integration. These conditions can als

papressed in the form

N N . e
20 4] 2 D) ] = X DteFE) €= 1 2,

H n)'
(290)
. f con-
. In spite of the rather formidable appesrance -Of thlst?iflsowhjch
.dltions, the coefficients in the seb of linear algebl‘ﬁic_ equalti lication,
it Ieprescnts can be obtained very simply by matx ’
8 18 next shown.
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Equation (290} can be written in the abbreviated form

2 Akat‘k = ﬂi (1' = 1: 2: Ty, ﬂ), (291)
k=1
N
where aw = 2 Dofufu (292a)
EE |
N O
and Bi= 2, Defukis, A (B02b)
F=l 2 AN
o\
and where we have written \
fi = filws) : 3 (293)

&
in aceordance with the notation of (273). Witli:‘a\uch:mge of indices,
equation {292a) can be written in the forn\ \
Xt\ 4

N '€
g = 2 T fus {7, _}"=’ ;2,0 -, ), (294)
il )

and hence can be expressed by,.th{é:hmtrix equation
&= 7 Df (205)
where e = [}, £ = [, IE"1fi(z)], and D = [D; 3,]. In the same

way, we obtain alsq ¢\
X B=—f'DF (296)

where B = {ﬂ;}\and F = {F,}. TFurther, since D is a diagonal
matrix, thepe follows also

Q¢ D = (D",
so thaf\(205) and (296) become
~O° «= (D6t §=(DHTF. (297)

If we notice that f is the matrix of the coefficients of the 4’s In
the equations

n

2 Aefilzs) = F(x) =12 ---,N) (298)
kel
it follows that the matrix of coefficients « in (200) can be obtained
by multiplying the matrix of coefficients f in (298) by the transpose
of the matrix D f, and the column of right-hand members B in (290)
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can be obtained similarly by multiplying the corresponding column
Fin (208) by the same matrix.

This result leads to the following procedure for determining the
n linear equations represented by (290):

1. Choose N points @3, &2, . - - , ®y in the interval (g, b) and
write down the N equations (208) which would require that the
integral equation be satisfied at those points.

9. Denote the N X n-matrix of coefficients in this set of equas,
tions by f, and form an associated “weighting matrix” £* = Df
by multiplying the ith row of £ by the weighting coeffioient)D:
associated with the point x; in an approximate integration scheme
involving the N points. R%

3. Multiply the qugmented matriz of (298) by, the ‘transpose of
the weighting matrix £¥. The resultant matrix 18 the augmel}ted
matrix of the required set of » linear EQanons which determines
the constants Ay, s, . . ., An D

We may notice that, since (200} i;’}lomogeneous in the P’S,
these weighting coefficients may be ‘multiplied by any convenient
common factor in the formationcef £ Thus if the formula ?f the
trapezoidal rule is used, the guéééssive coefficients are conveniently
taken to be merely 4, 1, % . ., 1, L & 50 that the elerr}epts
of the first and last rows of'f are divided by two and the remalmng
entries are unchanged.) Similarly, if Simpson’s rule is used, the
coefficients can b;&ken as+,2, 4,2, 1, .-+ 1,24 ,

As may be expected, this method leads to a set of equatl;ns
equivalent to’the original set when N = n, thatis, when the num Zr
of chosen gfgints z: is equal to the number of A’s to be determr-let'
Howevgrpsvhen N > n, it permits us to choose 2 nulmbel' of p‘(:;;
greatenthan » and to require that the integral equation be Ba'};dl teit
ag-dtenrly as possible at those points, rather than to require b t: D
{be-satisfied exactly at m points. The weighting coeﬂi.c on th‘
Weight the errors committed in failing to satisfy the equation gﬁnatg
Tespective points # in proportion to the influence of the %h;reas
ab r; in the integration of the squared exror over (@ b?' dure
the N equations (208) are in general incompatible, this proce
affords the ““best possible’” solution in a least-squares ESms{i\g‘ted A’

It should be noticed that, by suhstitution of the calcudsja.ﬁemnce
into the left-hand members of the equations (298), the d1

- adil;
between the two members of the integral equation can be readily

7 %G
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caleuluted at the N chosen points, to give an indication of the
dependability of the solution. In physically motivated problems,
1t is of ten clear from the nature of the relevant physical phenomenon
that small errors in the satisfuction of the integral cquation
necessarity imply also smull errors in the unkuown function.
However, as was mentioned earlier, this situntion does not always
exist.

The present procedure differs from the collocntion progedure
of Section 4.17 in that, first, more than # equitions ave\formed
mitially; sceond, a weighting nudrix must he tlvt(-mﬁn\ﬁd; and,
third, an additional matrix multiplication is involvedy MSince addi-
tional equations woulkl be needed in any cuse faiiTe purpose of
investigating the degree of satistaction of I-h,;;'\iiqivgr:].l cruation,
this feature involves no additionn] culenlatibn. As was shown,
the formation of the weighting maltrix necdhhvolve only multiplica-
tion or division of certain clements in ti&? wriginal coeflicient matrix
by a factor of two if the fm‘mul:tr_f ‘O'f‘l.hc trapezuidal rule or of
Simpson’s rule are used. The printipal souree of inereased labor
is involved in the matrix nllll,,t‘if[';[i'f‘:lti()ll. However, the relevant
operations are particularly welbadapted to the use of wutomatic desk
calenlators, each element_ofthe product matrix heing determined
by a single continuous s@qltence of machine operalions,

In those cases whé'.V is lurge (so that the matrix f POSSesses
a large number of roi 8} it 1s often inconvenient to actually write
the weighting matix £* in transposed form.  In such cases it may
be preferable ;tﬁ}rhertzl}' write the matrix £* to the left of the original
augmented fmatrix, without transposing its rows and columns, and
to det-ek@i\ne the product by columun-into-column (rather than
row-into-column} multiplication. The element in the 7th row and
Jth-gelumn of the product matrix is then formed from the ith column

\'(")’fs;tlie first factor and the jth column of the second factor.

It is useful to notice that it follows from (204) that

Gy = oy, (299)
so that the coefficient matrix of the final set of equations is sym-
metrie.  This means that all slements below the principal diagonal
of @ necd not be calculated directly, but may bhe written down by
symmetry once the remaining elements have been determined.
The symmetry of the coefficient matrix also permits an appreciable
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reduction of labor in the actual solution of the corresponding set of
equations {sce Appendix, page 504).

To illustrate the procedure just considered, we again deal with '
the example of the preceding sections. If we choose the five points
z = 0,4, 1, % and 1 as the points 2, the five equations corresponding
to (298) are obtained by equating the two members of (277) for
those five vulues of 2, in the form

4, =0,
B+ Bisde + rdhds = R
PRI S

234, + B4 H%r4s
:11 + As + Az = 1

%

N
g
Q
7/
&

I five decimal places are retained in th “éalculations, the ang-
mented matrix of the required set of threg'eguations is then obtained
as follows: I

®)

0.50000 0 0 Trigs o0 0 0

1.81250 042188 0.08308 ©.90625 0.21094 0.04199 0.256000
0.87500 0.43750 0.21354 |~ 0.87500 0.43750 0.2135¢ 0.50000
1.81250 1.30062 1.052744 | 0.90625 0.69531 0.52637 0.75000

¢.50000 0.50000 0. o@of 1 1 1 i
2 52539 1.71700 2.75000
.[5.05078 o

2 52530 1.74731 1.,34312 1.86718
1.71700 1.34312 1.10326 1.41732

g

a&
The second.fhctor in the product is merely the gugmented matrix
of (300)..‘?\%11 forming the weighting matrix which precedes if, e
ha"?'éigéd the weighting coefficients 521,23 c01'msmmhn-g o
theformula of Simpson’s rule. The corresponding set of equations,

N\
5.05078 A, -+ 2.525394, + 1.717004s = 2.75000,
2.525304, 1 1.747314, - 1.3431245 = 1.86718, 17 (302)
= 141732

1717004, + 1.343124 + 1.1032645
then is found to possess the solution

| 03
A, = —00079, A, = 12939, 4s= —0.2783,  (303)



458 INTEGRAL EQUATIONS 184.19
leading 10 the approximation
glz) = —0.0079 + 1.2430r — 0.2783.0% (304

In the following table we compare the results of (A) three-point
collocatibn {equation (280)], (B) use of weighting functions 1, z, and
2 [equation {285)], and {C} five-point least squares with Srapson’s
rule [equation (304)], with the exact solution given by equation
(259): \

e S
Approximate Solutions Y ’
e (A) () Gpn 9@
o — e RN — _

0 0 IO —0.0088 <0/ 0074 —0.0090
0.1 | ose ! 01251 0. 1181 N 0. 1187 0.1180
0.2 0. 2361 02446 0.2304 " 02308 0.2303
0.3 0.3512 | 0.3386 0,450 0.3552 0.3550
0.4 0.4628 | 0.4670 04051 04652 0.4652
0.5 0.5607 | 0.5648  _\0.56uG 05645 0.5697
G.6 0.6710 0.6670 O\ 0.6685 0 6683 0.6686
0.7 0.7656 | 0.75860\° 0.7618 0.7615 0.7619
0.3 0.8526 0.8ME% 0.8445 0. 8441 0.8496
0.9 0.9309 | 0/M231 0.9316 09312 | 0.9316
1.0 1.0000 JX...;\OOOO 1.0081 1.ooT7 1.0081

N

For the purpose of further comparison, there arc included in
the last column:of the table the values of the parabola § = A+
Az 4+ Asxﬁwhlch gives the best least-squares approximation to the
exact s%"tmn itself, over the interval (0, 1}. The coeflicients

were de mined in such & way that the integral
2N 3y '[sin 2 e
\ ) L [sin 1~ (A 4+ Az 4+ A 33;)] dx
takes on a minimum value, and are defined by the equation
§lz) = —0.0090 + 1.2976zx — 0.28032% (305!

The example considered was choscn for the purpose of simpliety,
and also for the reason that the exact solution is known and can
be reasonably well approximated by a parabola over the relevant
interval. It may be noticed that approximation (B) agrees very
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closely with the best possible parabolic approximation 7, that it
aflords a better approximation to the exaet solution y than does
‘the collocation approximation (A), and that the five-point least-
squares approximation (C) is only slightly less accurate than (B).

Because of the simplicity of the coefficient functions fi(z)
appearing in (277}, in the present ease, the formulation of equations
{(283) was very casily accomplished. Indeed, the amount of
relevant caleulation was less than that involved in the formation of~
the approximate least-squares equations (302). In more involved
problems, in which the integrals involved in (281} frequently minst
be evaluated by approximate methods, the modified leastisguares
procedure of the present section is usually preferable~beéausc of
the fact that the relevant numerical calculations arg f;arried out in
& systemalic way.

In view of the fact that the integral equatiahspecified by (257)
and (258) implics the obvious end conditiong4(0) = 0, y(1) = 1,
it is to be expected that a three-parameterapproximation of the form

y(z) ~ @ + a(l — =) (B Bw -+ Byr?)

would lead to much more nearly‘@ecurate results. )

When polynomial approxigistion is used in connection with the
wethod of collocation, or the modified least-squares procedure, th_e
ealeulalions involved canbe further systematized if t‘he'&PPle‘
mating polynomial is\‘g)ipressed in the so-called Lagrangion form.
Details may be fouttd in References 5 and 6. ) ]

4.20. Appresimation of the kernel. As was mentioned in
Section 4.6, ib9¢ sometimes convenient to 3,ppr03f1mate the keﬁlzjel
of g Fred.{ol’m integral equation by a polynomial in 2 and £, or Jt’
& separable ?"ce-mel of more genera.l form, and to SO}VG the resultan
approgimate equation by the methods of that section. b
~Thus, for example, the kernel (258) could be apprommai;e }1:
a$liree-parameter polynomial, of the form A: + Az 2—]— Asz 01; ]f
the more appropriate form z(l — x)(B:1 + B + B )’. where 616
413 or B’s are determined as functions of & by three-point cfoiloci:
tion, the use of appropriate weighting functions, or the use of leas
Square techniques.

To illustrate the procedure, we
of the form (306)

Kz, £ ~ Ba(l — )

agsume & crude approximation
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Notieing that the approximation s cxact at the end-points 2 =0
and z = 1, wa determine the coeflicient B in suels w way that the
integral of the kernel over (0, 1} is equal to the integral of its
approximation over that interval:

1 1
]; Kz, pde = B [ 201 ~ 2) d. (307)
Direet caleulation then gives the determination A\
= 3t — &), ({ &)8

and the introduetion of the corresponding l.])pl{)\ll‘n‘lfe kernel )nto
(257) leads to the approximating infegral equation < ”‘;

yo) =z + 82l ~ 2 [ 21— .E)a;(éj}:lé. (309)

Following the methed of Section 4.6, we l\ﬂf roduce the abbrevi-
ation \

e = ['a(1 - g;j@%) dz, (316)

and rewrite (309) in the form ':::'."

any

y(z) ¢ + 3ex(l — z). (311}

N\
In order to determinec ﬁve multiply the equal members of (311) by

z(l ~ z} and mtegrat\ the results over (0, 1), to obtain the con-
dition

¢ -.\fl (1 — z)de + 3¢ f 221 — x)* dz,

and the e%}tﬂ‘uatlon
N e = & (312)
AN
Hénce the desired approximate solution (311) ig obtained in
the form

y(@) = 2 + Fx(l — ) = 1.2778z — 0.2778z% (313

The approximation very nearly coincides with that of (280). o
More generally, it is easily seen that a kernel approximation ¢
the special form

Kz, &) = 281 — 2)(1 — Pay + asxt + a8+ - )
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rould lead to an approximate solution of the form
Yz) = x4 2l — D)o+ ow+ ot £ v )

1 the case of the present example.
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'i..\’\
\\‘PROBLEMS

eclion 4.1,

1o (a) Tf " (aphE F :c), and y satisfies the initial conditions y{) = e

nd 3'(0) = yi, oY that
ANy (z) = f *(p — PF(E) dE + yiw T Yo

Notlcc tha't ¥z = A F(z) dzx -+ 4, and use (10}).]

\ (b} Verify directly that this expression. satisfies the
ifferenting equation and initial conditions.

2. (a) If y'(x) = F(z), and y satisfies the en
td (1) = 0, show that
y(a) = f (o — BR(E dE — 2 f 1 - OF(E) dk.

so that (1) = 0
e y’&mwn in the form

preseribed

4 conditions y(0) = 0

3¢t 4 = 0in the result of Problem 1, and dete o
(b} Bhow that the result of Pﬂﬁ' (a) can
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T _
yle) - f] N, BIFEY dE,
where K{x, £ s defined Ly the relations

tr — 1) when

Kz, £} = { :(E — 11 when

WoOA

£,
-

e e

(e} Verify directly that the expression obtained satisfies the
preseribed differentisd equation and end conditions,

Seetion 4.2, \

3. (a) Bhow that, if y{x) satisfies the ditferentinl equationg '\3\
N

N/

7
<

I'. + ey =1 s.}"

and the conditions y{0) = () = 0, then ¥ alse k\{l\fm, the Volterra

equation
ylr) = f £E— nyd) rf&.Q‘

{(b) Prove that the converse of ‘t}u:‘ pr(‘v{\tiing stitement Is also
true.

4. Buppose that a sequenpe u,f\uppmum.ttp solutiong is obtained for
the integral equation of Problen 3 ithe (n + Dith approximation ¥t ()
being defined by substitution ni"tlw nth approximation into the right- -hand
member: ’

J("H}(w{)'\* [ EHE — oyy™) di +5 a:’

(a) Takm;‘ ym](f) = (), ohtain the functions
.{“’( ] =g2? and y¥{r) = gx? — Py’

as the two s"}cceedlm, approximations.
“Obtain the first two nonvanishing terins in the power-series
SOlUtIOI’L of the problem considered in Problem 3¢a), in the form

o) ¥z) = a0+ mzx + @z + -

}ma compare the result with thut of part (). [\(Jtu ¢ that we must have
@0 = & = 0, to satlsf:, the initial conditions, and determine the remaining
a’s by suhstltutlon in the differential egquation.]

5. (a} Show that, if y(:r) sutisfies the differential equation

dyy
a?e TR TEYS2
when z = 0, and if y, o, and " are finite at z = 0, then there must folo¥
y¥'(0) = 0. [This conclualon follows directly from the differential equatiol:
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Further, the most general solution which is finite at ¢ = 0 is found to be
#(z) = 1 + ¢ Jolz), where Jo(z) is the Bessel function of first kind, of
order zero.  1n virtue of the fact that Jo(0) = 1 and J{®) = 0, the value
of y(0) can be arbitrarily prescribed, whereas 1'(0} cannot be prescribed,
This situation is o consequence of the fact that © = 0 is a singular point
of the differential equation.]

(b} Show that the integral-equation formulation of equation (13)
is not applicable to the problem of parb (a), if the initial conditions are
-preseribed at point # = 0. [When the equation is written in the form of
equation (11}, the function A(z) is not finite at z = 0, and hence the right-
hand member of (14b) is undefined. The integration by parts which led{
to (13) was not legitimate in this case.]

: . . O

6. By integrating the equal members of the dlﬁerer}tlal eqt&a@o‘mof
Problem a(a) twice over the interval (0, 7}, and simplifying the mt.egl_‘als
Iz de and [ z 4 dx by integration by parts in successive steps, show

that y(z) must satisfy the integral equation R,
A ¢

x 1 b 4
zylr) = j{; [E(5 — 2) + (&) tjl-',‘\\-l-g %

of the “third kind,” regardless of the prescribe:d\injtial con_dition. [Notice
that this equation hence must possess infiralgly many solutions, ?ﬁc_h of i_;he
form y(z) = 1 + ¢ Jo(z), where ¢ is ap Arbitrary constant. This situation
is a consequence of the fact that, whem this equation ig written in the form
{13), the kernel K(z, £ becomes infinite when z = 0.

7. Obtain an alternatiyé intégml‘equaﬁon formulation o{fr fileup;(;b(i

lera described by equatiolel) and (12), by firat setting ¥
showing that ¢ N/

N
sl | e — Du® e+ uile =) T

\<&
where () satisfles an integral equation
Y
) = [ (6= B — A@NE &+ P,

~CB. Show that the application of the method of Section 4.2 to the
W pplication of the
fagblom g 4 4y By = 0, y(O) = y1) = 0, where A ond B

1
constants, leads to the integral equation ¥(z) = j; Kz, Dy 86

Btl—x+Az—4 when £ < %
Bzl —H+4s when £ > #-

(Notice that the kernel obtained in this Way is nonsymISC;
eontimuous at; £ =gz unless A = 0.]

where Kz, £ = I
and dis-
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{(b) Divide the interval of integration in the left-hand member
into the subintervals (a, £) and (£, b) [so that Green’s formula of Problem
18(a) applies over each subintervall, and show that the reseltunt expression

~ [f6uts, & Ly dz — [ G Ly i,

can be written in the form
N\
4 661(.‘3, E)

y(E)] A
=k '\..\

6 ral b
+ p(8) [Gz(f: ey (e — i;é_; £)

7'\
|é_~.}gf('.§)] = %(®)
{c) By appropriately changing variables; 'de}{ﬁce that y{z) must
therefore satisfy (36). ’

15. Suppose that a funetion Ulx) satisﬁe%\%hc cquition Ly =01
an interval (g, b), where L is the self-adjoint dperator defined in Problem
13, and also satisfies certain homogenenifg conditions at the ends of the
interval. Prove that the equation L y % = 0 cannot possess a solution,
valid everywhere in (g, b) and satisfying the same homogeneous conditions
at the end points, unless ®(z) is “‘eithogonal”’ to U'(x), that is, unless the
condition ™

f P U @)b() dw = 0
L8

is satisfied. [Assume that’such a solution y(z) cxists. Multiply the equal
members of the rglation ® = —L y by U(z), integrate the resu%ts over
(e, ), and use Green’s formula of Problem 13(b}.] Also, verify _thls regult
in the case ofdthe’ problem 3" + ® = 0, ¥'(0) = /(1) = 0, with & = 1
and with ¢ =22 — 1, noticing that here U(z) = constant.

16. 'E,}‘g’renefalized Green's function. Suppose that a problem, ¢0D-
sisting (0f the differential equation Ly = (py)’ + ¢y = 0 and h_omoci
gengous ‘conditions prescribed at the ends of an interval (s, b), is satisfie
by function y = U(z), so that the Green’s funetion defined bylpm})emes

1464 of page 388 does not exist. The generalized Green's funetion is thcg
\deﬁned as a function H which, when considered as a function of z for a fixe
number £, possesses the following properties:

1. H satisfles the differential equation

LH=CUxz)U(¥)

in the subintervals (g, £} and (¢, b).
2. H satisfies the preseribed end conditions.
8. H is continuous at x = £, 1 8
4. The 2-derivative of H possesses a jump of magnitude ~1/[p(€
the point ¢ = £ is crossed in the positive z-direction.
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5. H gutisfies the condition
b
ﬁ Hiz, HU) dx = 0.

Show, by the following steps, that (if such a function exists) the function
b
H hag the property that, if ® is any funetion such that j; Ubde=10,a

golution of the equation
Lyt & =0 A
subject to the same homogeneous end conditions, is of the form A\ ¢
{ N\
b N\
vw) = [ Hz, 538 d. O

A

{a} By writing # = H, when ¢ < t and H aﬁz when z > §,
show that there follows "‘\ '

x ) \ v
¥z) = f Hafs, HO(E) dt + [ H, oo di,
a z LW

|
NV

a8l ' H,(z,
yix) = f %, 8 gy de;gr’f P D i) a,
and a v‘: \ .
* 9tH, S oG, ) 1
y'(x) = ﬂ 6_5;;3:;@ q:&gj d& + ﬁ —vﬁ— ¥(® d ~ B(z),

8
[Make use of propertifg 8 find 4]
(h) Verify that

$. '} b -
Lye) - .)Cf\L H, £15(8) dE“”L L Hi{z, H1D(E) df — B()
:“\:;~ h

[ 10 v v aE — 2@
AY = 2. wtion
NN 1 - .
\%ﬂl‘ak e use of property 1 and the restriction on ®. N onlcg ;;mt satisf

of Property 5 is not necessary. (See, however, Problem 19. 0 in the

. . . L ¥ = n

. 17. Buppose that U(z) is a solution of the equation

interval (g, Ig), and th&ig %D’(m) satisfies certain prescribed fﬁll(;];lgﬁenn:l?:ﬁ
conditions at the ends of that interval. Let () denote & function such
thet L u(z) = U(a) when @ < 2 < £ and let o(2) denoteh&t 1?:::) satisfios
that L p(z) = U(z) when § < x < b. Finally, suppq&;:it 9;:he prescribed
the preseribed condition at z = a, wheress v(z) satisies
tondition at 4 — b,
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(a) By setting f = U and g = % in Green's formula [Problem
13(a)], show that

qu (L))t dz = pE[U(EW(E) — (s,
(b} In a similar way, show that
j;b (L) de = —p(OIUER(E) ~ C'(He()].

fe) Deduce that
RS\

PO I(E) = DIT® — @) — @17 ®) = [ e,

N\

18. With the terminology of Problems 16 nnd 17, &erify that, if the
funetion '(x) is normalized in such a way that ‘O

fb{("(.i:}]?d;u —,
then the function ) ,:\\:
) HE U AN C(E) whenz < &
e, 8 = a®)Ue) + | 9 ERV@CE :
u(é}{-‘(:cj;—}— v(x)U{E) whenz > £
satisfies properties 1, 2, 3, and 4 ofo’l?i‘(uljlelli 16, regurcdloss of the form of

the function «(£), so that thelfequired generulized (ircen's funetion
is obtained by determining «(EPby condition 5, in such o way that

:“’ﬁ Hizx, £)U(z) dz = 0.

[Use the result of Prome\t{lﬂl? in investigating the satisfaction of property 4.

19. () By shibing f(z) = H(z, ») and glz) = H(z, §) in Green's
formula [Probla}i} 13(a)], where H (2, £) is the generalized Gireen’s function
relevant to p!\é@pemtnr L in {a, b}, show that

N\
]; b%{fx ) Lz, §) — H(x, s) L Iz, r)]dz = H{s, v} — Hr, 5}

,,“’.0 b F— & — .
N[\W’the j; = L + ];4_ + ﬁj and reeall that ¢77(x, r)/dz has & Jump

Nof magnitude — 1/[p(r)] at & = r, whereas d17(z, 5)/dz has a jump of
magnitude —1/[p(s}] at & = ) .
(b) Bhow that the left-hand member of the preceding equation
can be written in the form

¢

N

U(s) f ", DU de — Tl) [ P Hi(r, 9 U() dv,

and hence vanishes in consequence of the satisfuction of Property 5. Thus
deduce that the generalized Green's function is syhimetrie:

Hiz, £) = H{¢, 2).
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[Notice that this proof applies also to the conventional Green’s funetion
(with 7 = 0}, although symmetry in this case is obvious from the explicit
form (30).] )

20. Prove (by methods similar to those used in Problem 14} that the
differential equation Ly 4+ Ay = 0 with associated homogeneous conditions
at the ends of the interval (a, &), together with the requirement

[ v@y@ & =0, LN

where I/{x) is u function satisfying LU = 0 and the boundary conditi{)n%s,
implics the integral equation O
b % "/
@ = [ He prov© s, o\
where 7 is the generalized Green’s function, \\
21. Determine the generalized Green’s funetion,welevant to the end

conditions ¢/(0) = ¢'(1) = 0, for the expression L2 d*y/dz*, in the form

" N
3" wh < &
Hiz, ) = 4+ 3& + £) —:;J 2 et

[Use cither the basic properties of }’fibiﬂ'em 16 or the formula of Problem
18, with U'(z) = 1.] Deduce algoithat the problem

P g0, O =y 1) =0
dx’ imx

Is transformable to thé\'ért‘ééral equation
O 1
27y =2 [ G, pule)

A%/
'\“ d L d
22. Eof the Legendre operator L = e [(1 - %) &] there follows

Pz :.'}'\_ #%, and hence p{£1) = 0. Thus appropl:iate end cqndltlons
for th@exproession L y in the interval (—1, 1) consist in the reqmrement:
tb\’f’t}(“l) and y(1) be finite. Noticing that the function .U(z) = C‘};‘;‘iﬁzﬁ

\%trsﬁes the equation ¢ = 0 and these finiteness conditions (so & " e{‘i
tOnventional Green's function does not exist), cbtain the generali
Green’s Function in the form

e [(1 + £(1 — g)] when z < £
gg [[EI — 51 + 2} when z > &

— —

1
H(z, ) =log 2 — 4 ~ Iz
- Deduce also that the problem

4%y dy ~ g, g(*1)finite
(I'_xg)@_%dx_l_)\y )
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transforms into the integral equntion
1
v@ =\ [ G By a

[Notiee that one must take 1'(2) = 1/ \.'/;.E, if the result of Problem 18 is
used,}

Section 4.4, O\

23. Obtain an explicit solution of the problem y"(r) F(Bulz) = 0,
in the interval (0, 1), where d,00) vanishes outside the iptewend (£ — ¢
£+ ¢) und ig given by 1,02¢) inside that interval, anil whepdg{) = 0 and
(1) = 0. ([Determine the general solution in earh o Wi subintervals
0,8 —e, (E—¢ £+ €, and (£ ¢ 1), and theterufine the six constants
of integration by satisfying the end condifions :m.h}qui:'ing that y and ¥
be continuous at the transition pointe]  ShowMBt the solution is of the

form ..\\;
(1 — 8 when 0 << £
r — )
y(z) N z-‘;:E B IE N f - (r ‘16 ;‘f."\\'h(,n ‘E - e < T < E'{— €,

(0 — 2)f when £ 42 z < 1,
and notiee that this form t(rmfﬂf‘tu' the relovant Green's function of Ly =
dy/dx?, subject to the progecibed end conditions, as ¢ — 0.

24. Suppose that. (}i(:r,\y; £, 9} is the Gireen's funetion for the Taplacian
expression Vuw in a siplé region R of the xy-plune, relevant to the require-
ment that w vunisbalong the boundary €, so that the solution of Poisson’s
equation Vp —I—.~‘15x(~$‘, ¥) = 0, subject to that boundary condition, is of the
form AW

X'\."" = r - i}
A0 wt = [ 6ty & mde  agan
andwt}l'e\ corresponding  solution of the equation Viw +Aw =0 also
sx}x@ﬁ‘e’s the integral equation
N\

N/ wz, y) = A f[k Glz, v & muw(t, m dE dn.

1t ¢un be shown (by a method analogous to that used in I‘mb_lem 19) that
G s symmetric in (2, y) and (£, q), o that Gz, y; £ n) = G 75 % ¥
Assuming this fact, obtain a further useful property of the Green’s fune-
tion, by the following stops;

(a) By applying Cireen’s theorem of veetor analysis, in the fort

d¢ d¢
ffR {$1V%: — ¢, V2,) dd = 553 (¢’1 ",3',: - ¢ Fn) *,
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to the region B’ of the &p-plane in Figure 4.2, with ¢: = Q(z, y; &, 7} and

@2 = ¢(£, 9}, where the interior of a gmall circle Ce of radiug ¢ about the
point P{x, y} is deleted from R, show that

- ¢ 9@
ffﬂ G Vi ~ ¢ V2G) dEdy = 560 (Ga an) ds

dep aG
* éc! (G% B ¢5§) P

2 2 N ¢
where here W2 = 6—8-5 + %, and where the normal differentiationgs.with
7 O
respect to the eoordinates £ and g, L\
7 D

N \ Figune 4.2

(b) Supipnée that ¢ satisfies Laplace’s equation, V3¢ = 0, every-
where insi e:R\.I’j?Noticing that also V@ = 0 except at the point P, and
that the ng} mal derivatives ealculated along €. are along the énward
normal gglative to €, show that, as ¢ — 0, there follows

.\’ >3 P a0
2\ 8¢ aG =i f (G % - ¢ _) rdf,
\/ 9SC(G%*¢675)(£S 0 Jo or dr

where r denotes radial distance cutward from the point P (go that 8/dn =
—8/dr on (), and @ denotes angular position along C.. Show also that
the limit on the right is given formally by qﬁ(x_, ), 11} eonsequence of the
properties of the Green's function. [See equation (617).]

(2} Deduce that, since G vanishes along the boundary C, there

follows

oG
9@ 9) = — §, o5,
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where the normal differentiation is with respect to the snordinates £ and g,
50 thut the value of ¢ at au interior puint of & is (hus oxpressml in terms
of preseribed values of ¢ ulong the boumdary ¢ with (1w help of the normal
derivative of the Green's function alowg € aoed the solation of the Dirichlet
problem for the interior of the region £ s obtained.

25. Suppose that o fuoction fz) of the complex vaviable 2 = 2 + {y
ean be found with the following properties (Figure 4.3

h{ N

Mﬁ\ Frovas 1.3

L. f(z) is analytie t-\{;(;i"_\"\\'lu-.rn inside a region R of the ry-plane and on
the boundary ¢, N\

2. 1f@) | = 1aball points of Candjfiz) < 1 in=ide C.

3. flz) posselses a simple zoro at the point (& 7)), that is, at the complex
point & = £, and differs from zera elsewhere in K and on €.
\Qj:\ﬁhm\' thuat the function
l\ v

W\ 1
A\ Glo,ys &, ) = — o~ log 1 J(2) |
0N -
~O
\ } 1
= — — R, [log f(2)]
P

is the Green's function of the Taplacian expression ¥ relevant 10 the
requirement that w vauish along the boundary of R [Reenll that the
renl and imaginary parts of f(z) satisfy Lapluee’s equation at P‘““t's_“"hem
Jl2) Is analytic, and that log fiz) is anulytic when f(z) is analytic am
Jlz) # 0. Also notice that here we may write f(2) = (z — a)ela), whers
$(2} is analytic und nonzero everywhere in R and on €] -

(b} Show that the function Ji} defined in part () has t.he_pl'ﬂpefﬂ'[f:9
that the relation w = f(z) maps the interior of into the intenor of th
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unit ircle | aw | = 1 of the w-plane (Figure 4.4), with the pointe = E4- 49
being mapped into the origin. [Notice that the requirement that iz

Figurr 4.4

: | 413t 7/(2) 7 0, so that the
Mapping is indeed one to one.] " Qg

26. (a) Verify that the mapping ¢\
zva’,_’_.:':. g% g —

bossess only & simple zero at 2 = @ insures

= gio =
Y= T e as-ija

where o = Et+iganda =& x:;}_a:*ag and a Is any real constant, maps the
boundary and interior of thé wnit circle in the z-plane into the boundary

and interior of the unit gisele in the w-plane if & ig Inside the unit eircle
(that is, if ] < 1Y, lg@hﬁt the point & maps into the origin.  [Calculate
Wiz, and show that w;‘ukm [ w|?is unity when 22 = |z [* = L. Also, show
thut the point 1/ 8g)the image of the point @ in an inversion relative o

the unit eirele (3e8(Pigure 4.5) und hence deduce from the seeond form of w

> Y

\i:\;s. Q‘

A
R\ P o E
AN Z.(: Q9
w\’ w 4 (=2
\ 3 1 X
- 0

00-5Q' =1

TGURE 4.5

that | w | < 1 when 2 and « are inside the unit circle, recalling that jz ~ o)
1s the distance between the points 2 and ]
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(b) Deduce that the Green’s funection of ¥t for (he interior of
the unit circle, relevant to the requirement that w vanish along the bound-
ary, ig of the furm

1 2z — a
Gle,yi b,m) = = -l 7 M..l,

wherea =t +in, & =§(—~1inandz=1rx4 1y,
27. (s) With the introduction of the polar reprosentations N

=pd? o= B RSN

sothatr = peos 8, y = psind, £ = feos ¢, nnd g = 8 sin Q‘,\sh()“" that
the (reen's function of Problem 26 tukes the form AN

) !

L, 1 —28pcos (8 — ¢<I—'~;3*p'ﬁ
. . = --—l r A 4 .
o, 6; 8. ) 4w 08 B2 — 28p con (RX ) - pt
(1 Deduee that the formal solution of shie problen Wi -+ & = 0
ingide the unit cirele p = L, where ({1, 8) —{T \ of the form

mmm=ﬁd@[0mﬁﬁmwswm

and that the formal solution of the 111‘1 ichlet problem Vi = 0 in the same
region, when w(l, #) is prLscnbed r& of the form

48

T —p?
= . (1 d .
2:: o 1 =2pcos (8 — @)+ p? w(l, ¢) dé
[The last I‘ESUU\‘JS ‘t.]le well-known Poisson tntegral formula, relevant to the
unit cirele.) . 4

28, %pose that an analytic function F(z) maps the interior of &
region.R into the interior of the unit eircle, but does not necessarily map
thepoint z = @ = £ + iy into the origin. Use the result of Problem 26
Q‘sh’ow that the Green’s function described in that problem is of the form

1 2) — Fla
6o, v b m) = — - log| L DL |,
27 1 — Fla)F(z)
[Let the relation ¢ = F(z) map R into the unit circle of a t-plane, so that
z = a maps into ¢ = P(a), and map the t-plane into the w-plane by the
mapping of Problem 26(a).]

29. (a) Verily that the function

w(p, 6) ] w(l, ¢) do

[

-
f(2)=6 z___:
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where @ ia a Teal congtant, maps the upper hali-plane (¥ > 0) into the
interior of the unit circle when o is in the upper half-plane, and deduce
from Problem 25 that the Green’s function for the upper half-plane is of the
form _

1, Je—e| Ly |e-9tiw—n
G,y b = — gl | S5 = TR B |[G— +iw T 1)

L o (z — '+ @+’

Ir -+ lw—n N
{b) Deduce that the formal solution of the problem Viw + R = 0

in the upper half-plane, where wiz, 0) = 0, Is of the form L

'I',U(.’E, y) = f-—”m dé Lm G(ﬁ?, ¥ E: 7})@(5, ﬁ) ({7?: "}«'\

and that the formal solution of the problem Vi = Oif\ﬁ‘h"’ same Tegion,
where w(z, 0) = ¢(x), is of the form \/

=° A
w(z, ) = f [5(9%] (BlE) dé

— A
b }
NN

_y f © (g > 0.

———t—
= T IR

Sce Problem 24(c). Notice thap the ouward normal,
upper half-plane, i in the negatite y-direction.] ¢
N : ; the interior of &
30. Suppose that the sbalytie funcion F(z) maps
region R inlizg the up{ 1'.l'h’a.lf-plaa,ne. Use the result of Pro}:llem ZtQéa)tﬁg
show that the Green'sMunction for Vi in the region E, ; evant w
requirement thai‘rfwaia:nish on the boundary of R, 1 of the tormn
Piz) — Fle)
Fig) — 1\

Q.
& 1
:“\Q Gz, 45 &1 = 37 1% | pa) — F@

the boundary of R is poly-
e the Sehwara-Christoffel

relative to the

!

wher‘e,fz'\__ stiyanda=ET i ' b
gogad, “the function F(z) can be determined bY
~tfasformation.]
3

Wwection 4.5. )
31. (2) In a certain linear systom, the effect ¢ ab time &, due to & uni

v X d time { — 7+ 1i the
cause st o time 7, is a funchion only of the elapse Y
sysfem is inactiw; when ¢ < 0, sho® that the couse-effoct relation 38

Volterra equation of the first kind, of the form
elt) = E Kt — elr) dr-

[Equations of this form are considered in Section 4,13.]
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(b} Shew that the cquation of part (a) ean also be written in the
form

e(t) = L’ K(me(t — 7) dr,

by replacing r by £ — v, [Notice that A {7} ean be considensd ws the effect
at time 7 duc to a unit cause at time ¢ = 0.

(e} Noticing that the corresponding homogeneous Voltere equa-
tion of the second kind, ~

t .
e(t) = )\f K(t — m)e(r) dr,
1} £\ *
o\
expresses the requirement that the effect instantaneoosly @htmlliee the
. . . . . - N/ .
cause at all times, within a constant multiplicative Gy, .fonsider the
possibility of existence of nontrivinl solutions of sueh apSgibition,
32. Figure 4.6 is a schematic representation of Sulopticat system in
which a distribution of Hlumination emanating’tfenr o vne-dinensional

ST R
o\
\+$ 5"}

7

"\\ Mo
A @ ("": \&-IT_" 8
LaN Lt 4.__{ b
"
A\ I'regre 4.6

object B.Q;a(@\ﬁhe line AB passes through a refracting lens and is projected
into a gme-dimensional (reversed) image along the line 4A’B’. With the
notatiémof that figure, the light intensity at a point z, due to a unit source
at£018 found to be a certain symmetrical function of the difference @ — &
With'a maximum at the point z = £, for a given lens. o
\ (a) Formulate the problem of determining the ohject illumination
distribution I,(£) over an interval ¢ £ ¢ = b, corresponding to a pre:
scribed image distribution I;(z) over the interval ¢ £ 5 = b asan integral
equation, ,
(b) Formulate the problem of determining these object distribu-
tions over ¢ £ £ < b which are magnified (and reversed}, but not dis-
torted, when projected on the line 4A’B’.
33. (a) If heat radiating from a unit point source is constrained o
flow in & plane (asin a thin plate with insulated faces), show that the tem-
perature T at a distance r from that point is given by



INTEGRAL EQUATIONS 477

i
-~ 5% log # + constant,

where K ig the thermal conduetivity of the medium, in the absence of
other sources or boundaries.

(b) Suppose that heat sources (and sinks} are continuously dis-
tributed along the closed boundary C of a region B in the zy-plane. Sup-
pose also that the net heat supplied per second along the entire boundary is
zéro, 50 that temperatures at interior points of B do not change with fime.
Show that the steady-state temperature T(x, ¥) at an Intericr point Pz 7}

can be expressed in the form A ¢
2\

i e
Tlo, 1) = = 5o B, ) Yog (e, ;) do + 4, O

where & represents distance along €, from a reference poifihd 0 a point 9,
at which point heat is being generated at the rate g{g)ealtries per second
per unit length of are, where r(x, y; o) represents theHistance f_rom Pt
(Figure 4.7), and where 4 is an undetermined qngsdtant. {Notice that the

7

WV Freure 4.7

pl‘esericé}f A ig in accordance with the fact that 2 w:‘.'.ifarm t%emlperat;x;;
dis“*‘ibﬁﬁﬂﬂ in R ean be maintained without supplying heat along

bon ;

AN ) ndar}(cc)?.)Suppose that glo) is not preseribed, but that _the temz{?;sctl%;‘:
of each boundary point Ps, at a distance ¢ from 0 along C, is preseri :
f(2). Denoting by r(s; =) the Jength of the chord P40, show that glg) mus
satisfy the integral equation

fle) = - Eqéﬁéc glo) log 7(s; o) do + 4,

. . = 0.
where the constant A is to be determined in such a way that 950 gds
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34. By appropriately specializing the results of Peoblen 33, show that
the steady-state temperature T(p, 8) ut a point x - p cus 6, % = psin 8,
ingide the boundary of a cireular plate of radiug @, with center nb the origin
(Figure 4.8}, can be expressed in the form

1 2x N . . _
Tlp, 8) = — 21ff£:ﬁ q(¢) log \/p"’ — Zup cos (0 — ¢) + atdg + A,

where, if the tempersture along the boundsry s proseribied s Ta, Q{=
J(8), the function g{@} satisfies the integral equation '

1 ix . 8 — Q‘) o\"\.
Jie) = ~ g -/; g} log sin® g e -4 .iir\;} v
v Q

}
Ny
}

C
\\"’ Freumne 4.8

in which 4 is to be deétermined in such & way that the condition

O

O St ae =0

is Batisﬁe%\:‘
By consfdering the result of integrating the equal members of the integral
equation’ever (0, 2r) with respect to # [und using symmetry to show that

thentegral of the coefficient of g(g) is independent of ¢], show that A must
th“a}!r’bc taken as the mean value of the preseribed function f(#) along the

&)oundary,
2w
A=i/fm%
21‘( 0

and verify further that 4 is also identified with the temperature (0, ) ab
the center of the circle. [In the case of a circular boundary, the Dirichlst
problem can also be solved directly by use of the Poisson integral formula
(see Problem 27). However, in the case of a general boundary, & formu-
lation unalogous to the preceding one (bused on the results of Problem 33)
is well adapted to numerical caleulation,]
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25. (¢) If o unit heat source i3 present ab a point @, show that the
rate of heit flutw ab a point P, per unit length of are, across a curve ¢ passing
through P, s given by

L aT
—K an

10

_19 deosnr)
P 2w dn

log r 57

n

P

where the differentiation is in thie direction of the normal to € at the point
P, where r denotes the distance from @ to P, and where (n, r) denotes the
angle between QF and the normal. A\

(b) In the formulation of Problem 33, deduce that the net rafe
of heat flow into R across € at a boundary point Py i8 given by oL\

aT| 1 1 cos [nls), rig; o)l O
Gnlm "2 q(8) —~ 35— 5‘60 O 50 4%

where the angle involved in the integrand is that botwegn the veotor from
the p(}int @ to the point Py and the oubward normal ﬂ,t,Pb [The first term
on the right corresponds to the fact that only one halfof the heat generated
by the source at Py enters B; the gecond term subtracts the nek rate of flow
outward at I, from the remaining sources along 0. Notice that, in this form-
ulation, when K 0T/ 0n is prescribed along ¢ thesource distribution g18 hence
obtained as the solution of an integral gauation of the se?ono} kind. Mokics
also that the right-hand member of thepreceding equation 18 net the result
of differentisting the right-hand miember of the equation of Problem 331?)3;
under the integral sign, and evaluating the resu_lt at the bound:mﬁ_ 1l
that the additional term q(é))2 is present. Inside C, howesen thelm'te-
grand does not become infitiite, and differentiation under the integra sign
can then be justified, fn'general.] i
(e) ]In the dea: \gof a circular boundary (see Problem 34), vteigfﬁ
that the integral imvolved in part (b) vanishes, 80 that q(qb)f K ig iden ﬁgn
with twice the boyndary value of 97/8n in thig case, and the first e(}ua fon
of Problem 8#'then gives the solution of the Neumann problem ﬁtgil.;ient
cirele explicitly, with 4 an arbitrary constant. [Show that tl;e coe
of gle) ifnbhe integral of part (b) is then given by the valuo ©

K

N . _'__'_'_._'_,_.—-—'_'_'_._

O Zatllog \/-‘;2‘2a,0¢03(9'¢)+a2
Q) P

When p = a, and that this expression has the constant va}ue 1/(2a).]

Sections 4.6, 4.7.
36. (a) Show that the characteristi

y(z) = A ﬁf’" gn (o + B v(B d§

. satie functions
ate \; = 1/rand A, = —1/m, With corresponditl chara(()::e;mtlc un
of the form yy(z) = sin x + cos @ and ye(z) = 80 &~ 008

¢ vahues of A for the equation



480 INTEGRAT EQUATIONS
(b) Obtain the most general solntion of the equation
#z) = A L T uin (B () dE + )

when Flz) = z and when F(e) = 1, wider the asgumption that A ¢ $ 1/,
{¢) Prove that the equation
yix) = - f sin (z + £ y(®) dE + F)
TJo O\
pussesses no solution when F(r) = x, but that it possesses infinitely pany
solutiong when F(x) = 1. Determine 1]l sueh solutions, e\
() Determine the most general form of the |lI'uﬁ{'r1|:§d function
F(z), for which the integral equation \ ¢

27
 { ‘:

[ sin @+ oy ag - P, (O

of the first kind, possesses a solution,

37. Obtain an approximate solution of theﬁ\{\}'égml equation
I, s“x
v = [ sin (=6) yfEDdE 4 27,

by replacing sin (z£) b v the first two Qe’lfnhs of itz power-series development
'.(J’. 5K

sin () = (af)— S

Section 4.8, RA

38, Buppose that kerncl K(r, £) of Section 4.8 is not necessarily

syminetrig, but is expressible in the form
@7 K@ B = (66, ),

where r{f) is cpxﬁ;iﬁuous in (a, b) and does not change sign in {g, b), and
where G(z, Essymmetric. By appropriately modifying the treatmenis
of that sec\QQn;’ establish the following results: )

) _JQ") Two characteristie function Ymlx) and y.(z), correSPOHd{ng
to dr;t,-{nﬁt characteristic numbers A, and X., are orthogonal over (a, &) with
respeet’to the weighting function r{z):

[ r@yn@v@) ds = 0.

(b) The characteristic numbers of K (x, £) are all real. L.

(e} If equation (122) possesses a golution, then that solptmn 18
given by {130} or (130", where the weighting funetion r(z) is to be ingerte
in the integrands involved in (119} and in (131) or (131°). . s

(d) If equation (132) possesses a solution, then that solution 18
given by (144), where the weighting funetion #(#) is to be inserted in the
intesrands involved in (119) and (140).
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30. A complex kernel K(z, £) [such as ¢=~] which has the property

K(E: x} = K(ﬁ, S)r
where K(x, &) represents the complex conjugate of K(z, £), iz called a
Hermatinn. lwrnel, By appropriately modifying the treatments of Section
4.8, estublish the following results:
- (1} Two characteristic functions ya(z) and y.(z), eorresponding
to distinet charneteristic numbers Ay, and A, are orthogonal over (g, &) in
the Iermitinn sense: 1

[ n@ate) dz = 0. A
a 2\AN
(b} The characteristic numbers associated with & Henni,‘gian\kemel
over {a, &} are all real. N
(e} Let the characteristic funcéions be normalized jnjthe Hermitisn
sense: N

[T onla) da = 1.

Z ¢ 0\ ’ L3 > {
Then, if equation (122) possesses a solution, thit sofution is given by (130,
where (131) is replaced by the definition AN/

b No
fo = ﬁ ¢3,~.¥9: TF(z) dz,
or by (1307}, where (131) is rgp}zlééd by the definition

o )
Fa f ’ yA(Bya(x) dz = _L vale)F(z) de.

14 \ N
\ then that solution is given by

v

{d) If {132 gossesses a solution,
(144), where 7, ig defifed in part ().

40. 1If u(;eiiis’ s characteristic fune
{which necdndt’be Hermitian), correspondin,
over {a, bland o(z) is a characteristic function 0

conjugafrsg kernel K (£, z), corresponding to 2 characteris

tion of a complex ker_nel Kz,
ding to a characteristic mumber A
f the transposed complex

tie number g, show

that. S
~\D b
\ ) ]; ulzio(r) dx = 9,

Hseq — djoint of K(, ). Notice
5 fi. [The kernel K{{, ) is called the oty are sdf‘aéjmm‘}

at real symmetric kernels and Hermitian kernels v0 which
4L, When' ) is nearly equal to & characteristic numi)}fj;tha;e suﬂ;:ltion
there corresponds only ope characteristic fnction, show
*Pthe equation

y(w) = Fz) + 2 [ ® Kz, H(H) 4§



482 INTEGRAL KQUATIONS

where K(z, £} i3 symmetrie, is given npproximately by

b
ylx) = Flx) + ?\m):“ N (ﬁ F g, !h‘) bl

where ¢n(2) i8 the corresponding nonmnalized eharicteristie function,

42, Assunie that a symmetrie kerned K, £ eancitsolf be expanded in
# series of its orthogonalized and normalized chureteristie limetions,

= O\
Kz, £) = 3 wiBeale) =2z,

=] :‘\“\

where K is considered ns o function of » for fixed values of {}

() Assuming also that termi-ly-termn integrating s permissible,
show that the coefficient functions ) must be of L Serin
1 &

an(§) = x, PalE), \
where A, is the nth charwcteristin miniher, ':‘LLDI hence obtain the so-called
bilinear expansion of a symmetric kerngh(y

Kz, &) = E ¢"(f"}?§£‘(£) fa £ x 25
"'u?\n
A= l’ ~"~ >

Itis known that this series coiiverges (ubsolutely and uniformly) to Kz &)
in (a, b) if K(z, £) is continttous and symimetrie, and if 21! except a finite
number of itg c]mmt-.;e?"is%.ic numbers are of the sume sign. In most
physically motivatec oblems, it is known in advunee that all character-
istic numbers are natnegative, so that this result is then applieable.]

(b) Dedu¢e’ that u continuous symietric kernel whieh possesses
only a finite nii¥er of lingarly independent, characteristic functions must
be a separablp\Nernel (in the sense of Section 4.6). i

(Q}:Verify the result of purt (u) in the ense of the kernel involved
in equ t’hl (88),

Sgci'z:‘tm" 4.9,
P \\./
N 43. Consider the integral equation
1
w@) = [P iy dz 41,

(a) Make use of equation (166) to show in advance that the
iterative procedure of Section 4.9 will converge when [ A | < 3. he

(b) Show that the iterative procedure leads formally to t _
expression

AAT Al .
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{¢} Use the method of Bection 4.6 fo obtain the exaect solution
of the problem in the form

ylg) =1+ 2—(33}% »

[Notice that the leading terms in the scries expansion in powers of A are
given vorrectly by part (b), and that the estimate of part (a) happens to
provide the actual convergence limit on LW

44. Deal with the integral equation

y@) = [ @+ DD g+ ©

ssin Problem 43. Show also that the estimate afforded by (lzﬁﬁj‘.i s slightly -
conservative in this case. K7, \ A

45. Show that, for sufficiently gmall values of |?'{{ . approximate
solution of the cquation v

yx) = ¢ L el Ey(§) dfzﬁ\k’
is afforded by the expreasion N \
y@) ~ 1+ ¢ [2 g e el
46. {a) Apply the method of.Seéjicm 4.9 to the equation
y@) = i+ Bud dE L

« of three successive gubsti-

A # 8).

taking y™(x) = 1, and ,Qﬁg\aining the result

tutions. is equivalent to that gpeci-

\z .
3 idered
(b} Show tha} the problem congidere 3y = 0 and the initial con-

fied by the diﬁere{‘l'tja.l cquation ' — 2% y -
ditions »(0) =’\1;.yr(0) 0.

Section 4: 0’\‘ .
47 Determine the resolvent kernel associ.at-efi with K(z, 3] ;1 iji: 151;

the imfarval (0, 1) in the form of & pewer series 1 A, obtaining the

tkl{ée.:terms.

\ ’ 48. Proceed as in Problem 47, for the kernel K(x,' H=z+& )
49. Determine the coefficient of A in the expapsion of the resolven

kernel associated with K(z, & = ¢—e—t in the mter.val (@, a). e et
50. Suppose that the resolvent kernel in {189} is aggumed, as the

of two power series in A, in the form

3, Nile, OV

n=0

3, 4
n=0

T(x, &M =
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fa
fa) By replacing y{x) by Fle) 4 X ﬂ (e, & MFIE dF in the

basie cquation (I86), and clearing fractions, 11(-..11100 formldly that the
relation

@

f Nal (£} dE — (2 ;i,.?\") f’ K(x, BFIE dE

=il

O\
_ N.Hf [ Kix, 8N (&, E)!-(r)dskdé-o

nuu .\\

must be satisfied identieally in XA wnd #,  [Assuime that the, mx}{,r of inte-
gration and summation can be interehanged ] ”’3«,
(b} Show that this requirement implies the relpfinn

»~\
Na(z, £} = AK(x, &) + f K, 80Nt 8 (=12 -9,
N
together with the initial condition \

Nofx, £) = Anh(ﬂ' E)

(e} Verify that the precedigg dctumumtwn leads to the resolvent
kernel defined by cqultmn (18818 we take Ao =1 and A, =10 when
n 2 1. [Whereas this serics contdiges only for ' A | < | A, |, the constants
A, can be so chosen that thehumerator and denominator series both coll-
verge for all values of . Fhis result, which is discussed in Section 4,11, 18
of basie importance illﬂ&z"fﬁlenrv\' of lingar integrul eguations.]

N\

Section 4.11. 5\

¥/
51. Verifg 4bat the Fredholm form (192) of the re:-_‘.rle(_-Jnt kernel
satisfies theféquirement derived in Problem 30(h). [Here Nafz, & =
{(—1)=D, ﬁ\”.\g/n and A, = (— 10"/ nl]

52\ Obmm the resolvent kernol associnted with Kz, §) = 2£in (0, 1),
by the method of Section 4.11.

”\ .
\ )53, Proceed as in Problem 52 for the kernel K(z, £) = & + §In (0,1
54, {a) Obtain the solution of the equation

y@) = A [" K@ Oy di + Fo),
where Rz, H) = wlz)o(8),
f K(x, HF(E) dE

in the form y{x) = F{x) + A - —
1 — )\f Kz, ) d
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by theb methods of Section 4.6. [Write y(z) = Acule) + Flz), where
¢ = L w(E)y(E) d¢, detexmine ¢, and identify the result with the form

given.]
(b) Obtsin the same result by the methods of Section 4.1%.

[Notice that the single characteristic number is d; = 1/ j; ’ K(x, z) du.]

Section 4.12. ~
55. Show formally that the Green’s function Glz, & associatcd.wish
i € N
the expression F% — y over the infinde interval (— =, ), subjechte the
] : N

requircment that y remain finite as z — £ «, I8 of the form g
G, ) =3t N

56. (2) If Ix) = f_: ol HB(E) dE, verify Hhnt 17(@) = 1) —

20(z) for any continuous function ®(x) whigh_is’dominated by el as
B — i e, N N ]
(b) Use this result to show that apy continuous solution of the
integral equation : o

yo) =\ [ altyo et + 7@

must algo satisfy the dil’fereﬁti?a.l cquation
Y@= 2pe) = 1) — 1

57. Suppose thdt F(z) = 0 in Problem 56. _
(a) In thelvase when 1 — 2A is positive, and hence we Mmay write

I — 20 =a? 0'1(}5. e (1 — a?)/2, show that the general solubion,

& -
A\ y(x) = 016% + 0™
of t-hefﬁ@mngeneous differential equation, also satisfies bhe hgmogen;?;:
integtal equation when and only when | a| < 1. Deduce that any;]iand )
846 of A of the form A = (1 — @?)/2 (and benoe any » betwien t»eristngc
is¥a characteristic number of multiplicity o, with the cnarac

functions gto=, . )
{b) In the case when A = {, verify that thle solution ‘g(rl(xl)lbia
t1 + csx satisfies the integral equati;mz s;) th?t A i—— aidlsz also & do
characteristic number, with characteristic functions . )
(c) In the case when 1 — 2A is negative, and hence wctle }r:m};e w;lnt,;
A = (1 + B?)/2, show similarly that any such value of A (andi el;o o3
A > §) is again a double characteristic numbe}',_ goTrespon f;gand i
cog Bz and y = sin fz. Thus deduce that all pomtwe.mlues of A,
those values, are characteristic numbers.
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(d) If only functions which remuin finite as x> + » are aecepled
as characleristic functions, deduce that only those values of A for which
A 2 § are then charaeteristic numbers, that the number ) = ¥ is then of
muitiplicity one, and that all values of M greater thun 4 e of multiplicity
two.

58. Suppose that F(z) = sin uz in Problem 56,
{n) Show that the differential cauation ndmits a beunded solution
if and only if A = (1 + u3/2, where g > 0, and that his solution must
be of the unigue form N

e SIr ,\:\
— 27 L
whend < . Verify that this expression tlso satisfies t]mjnf:g:g’rnl equation
for all values of X such that A 5 (1 4 »%,2, ‘

(b} Deduce that the integral equation S

yz) = X f_: eIy k) dE,$;“i“ LI

Posgegses a unique bounded continuous solu‘tbn

when X < 4, a single infinity of8iteh solutions,

JTEa
. Bl uz 4 ¢y,

\\ "~ u
when A = 4, and a (fouble infinity of such solutions,
1+ g2 Nl . . ——

ylz) = W.‘z_’\ sin ux + ¢ cog (\/2h — 1 2) + g sin (W22 — 1 &),
when ) ?%but A #= (1 4+ p%/2, and that it possesses no continuous solu-
tion (bounded or otherwise) when A = {1 4 u*)/2. [Notice that, whereas
all valwes of X = L are characteristic numbers, so that the homogeneous

‘quition is then solvable, the nonhomogenecous equation here is also solvable
}mless X coincides with a particular characteristic number which d?p‘?“‘.is
upon the right-hand member, rather than on the kernel itself. This is in
contrast with the situation relevant to nensingular equations, where (for a
symmetric kernel) solvability of the homogeneous equation precludes solva-
bility of the nonkomogeneons equation unless F(z) is orthogonal to the
corresponding homogeneous solutiong.

59. {(a) Show that the equation

v@ =\ [ 7 K2 - £hyd ag,
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}n which the kernel is a funetion only of |« — £], can be written in the
LIT ATt

v@) =) 7 Koy + ) + vl — )] du.
(b) Show that this equation is satisfied by
ylx) = ¢, cos Sz + e sin G,

if X 18 of the form
1 O\

A= e :
ZL K(u) coa fu du O\

NS T
Deduce that all values of 8 for which the integral involved exigts.give rise
to characteristic values of A, for which solutions exist which“ake bounded

48 T — =+ oo, AN
{c) In the special case K(] x — §]) = ¢ =¥, considered in Prob-
leme 56 to 58, show that the preceding result is ig\decordance with the

result of Problem 57(d). N

Section 4.13. S\
60. Obtain the solution of the gengrﬁii;éd Abel integral equation

_ ? y(.f).‘:.”:“ 0 <1
Flz) = ﬁ G~ B at  O<a<l)
S ar d [° F(E)dE

s

YOS @ oo B
W ; s and proceeds
by dividing both sideg of the given equaltxon by (¢ — =)*"* and proceeding
as in Section 4,1§4J). [Notice that L (1 — et dt = P(1 ~ alle)
= w/sin anw \j{hi;‘,l‘;g < o< 1]
61. Lét the Laplace transform of a function f(z) be considered as &
functior{df*a new independent variable p, so that

in the form

T

O ofs) = F@) = || fta) .
N (a) By making the substitution p& = u in the integral defining
the transform, show that

1 .
L2 =D —a)p*y P pg ST

when 0 < & < 1.
(1) Fstablish the property

1 x
-?;ij(x) =££ HOX:22
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62. By making use of the resuits of Problen 61wl of the convolution
property
£ L! $1lr — BYp(8) dE = £ $ )L pulr),

verify thut the solution=of Abel's integral equation,

Flx) = [ (r — &) ‘y(d) dt,

ean be vbtained by the following steps:

O\
_ !
Ly =Lz M8 y(0); Lyle) = 1, pHeFE); A
g} \)
'S N
l,ﬁ?() 1 ll:( _I\r,ri:!r() 2\",
- r) o= o v AV S S HE N
» Y e~ " N

’ e IO\
(5 dE = - (x — &) “PEDdE:

M) T Jo
A T R

ylr) = — -
Tdr JoX ¥y — &

63. Obtuin the solution of [)I‘I)hlc.l'l'l‘ﬁ’() by the method of Problem 62,
64. (n) If y sutisfies the cqu\:gt&’giii

i

Ky
F) N e~ e g,
show that y ulsa s:ttisﬁg.{ﬂ}c equation
HOYD = ) — Jome = oo ag,
and that Y(;)\:%}'ﬁr y(E) dE satisfies the equution
i

.{&" HOY(2) = F@) — [* ' — DY (© ak,

X

87 (b) By formally integrating the equal members of the first equa-
~bion/of part (u) over (0, ) with respect to z, and formally interchanging
fe order of integration in the resultant right-hand member, obfain the
relation :

Lo re ar = [T e au [y a
65. Suppose that y(x) sutisfies the ecjuation
¥@) = Flo) + 8 7K, by di,

where K(x, £) is continuous, but not necessarily symmetric.
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{n) By multiplying the equal members of this equation by X(z, t),
and integrating the results over (g, b) with respect to x, deduce that there
follows also

0= [P RG wen ak - [ ke 07O @
[ [ K oK o was,

after an appropriate relettering of variables. ) ) &
(b) By multiplying the equal members of this equation by A, snd
adding the results to the corresponding equal members of the¢dnginal
equation, show that any solution of that equation also satisfies the gquation
] & "~ }g
pa) = f() + 2 [ Kile, DD dE N0
& ) '\'\.

] N

where f@) = P} — A [ Kt DFOBY

R

and where K,(z, £) is the symmetric kernel '
Euz, &) = Kz, ) + K&, x)’fglﬁ K, K0, § dt.
66. Buppose that y{x) satisﬁestg}’eléquation
ria) = Kte, Doce) dt

wh i > wily symmetric. ) _
ere K(x, £) is not necessprily sy et s by K(z, 1), and integrating

(a) By multipliing the equa b
the results over (g, b]&%l?h respect to @, show that y{z) also satisfies the

equation O b
N R = [ Kt 9 38
:t\..~
whore §\ Fiw) = [ (& aF () dt
md"iﬂ{ére Ki(z, £ is the symmelric kernel
\w\} l Kz, &) = fb K, x)EG, 4t

(b) In & similar way, show that y(x) also satisfies the equation
Pa@) = [ Kals, 08 &
Fulw) = [ Ko OF@ 3

Kulx, £) = fab Kz, i)K(Es £ dt.

where

and
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[Notice that the methods of Section 4.8 {puges 418 421 are applicable to
the new equations.]

67. Let A, and ua(z) denote corresponding characteristic quantities
for the symmetric kernel

Kz, £) = f "R, o)K@, ) dt

over (a, ), so that
N
.\:\’
{8) By replacing R by its definition, ntl interchingiiyg the order
of integration in the resultant double integral, show that ;lg::re"fullows

b
Uun(2) = Ao f Ki(z, §)ualb) dE.

un@) = Ao [* K 2 Valt) dt, L0

where Vilz) = Lb K(zx, E)un({).@f?

AN ]
(b) By multiplying both membgrg Jof the integral equation by
ux(x), and integrating the results over [m.B), show that

j;b [u,,(x)]’dx'—-'cxk,. fb [Fa{z)]? dz,

and hence deduce that the characleristic numbers A of Ki(z, £) are positive.

(e) By writing vn(‘s::) = 4/, Va(z), show that the equations of
part (a) can be expresse{‘in’ the symmetrical formn

@) = VA [ K Do) ds,

2N/

O B
7w = VA [ KG Hu® ds,
and tha}y%éi‘; then follows alse

e b b
N\N®Y f untdzs = f a2 dz.
a7 a o

‘ (d) Show that the result of introducing the first relation of part ()
into the right-hand member of the sccond one is of the form

ta(x) = A f " Kz, Bua(d) dt,

where Kuz, &) = f " Kz, OK(E 0) d.

Hence deduce that the auxiliary kernels Ky and Ky, associated with a not-
symnetric kernel K(x, £), possess the same characterisiic numbers, that these
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numbers ure «ll positive, and that the respective characteristic funclions u(z)
and v,(x) corresponding to N, sobisfy the simulloneous equations of part {¢).
[Notice that the two sets of characteristic functions thus associated with a
nongyinmetrie kernel are orthogonal sets, and that, by putting the equations
of part (¢) in a symmetrical form, we have ensured the fact that one of the
sets is normalized when the other set has this property. Notise that the
characteristic numbers A, are nof, in genersl, characteristic numbers of
the kernel K(z, £ itself]

: b . .
68. The Caucky principal value of an integral, ¢ﬂ flz) dz, in Whlqh\
F{z) becomes infinite at a point # = ¢ inside the range of integratiim, is
defined us the limit o

10 do =t [ [ Sy o+ [} s d“‘]’.};‘:\ '

when that limit exists. When the separafe limits on thelxight exist, the
integral is convergent in the striet sense and the symhol ¥ may be replaced

by the usual symbol . O
{2} Verify that AN
¢2 .C?E == ]0g~2;.x\
x O

2 ~N dz
but that [ de does not exist. [Reeall that f il log ja| -+ €1
-1 & 1 j‘ .

A [* ax Vo 5
(b} Verify that neither e ¢—1 P

69. The Hilbert fafegral representation of 4 suitably zegular function
¢(6), over the interghl 0 < 8 <, ig of the form

N/ 14"
0®) =.1§9f'; 67 K6, 90K, diol#) 36109+ 2 ﬁ o(4) do
"\

wherg N\

in g

" * ( ) (4] [ﬁ — (OB 6
5 pImCI BII ¥V ré necessar? bec&uﬁe 01 the Stlﬂng Smgu—
C B P alues A

\{a:

tity of K(8, ¢) when ¢ = 0] Show that,
J6 = £ Ko, ooie) 86
a

there follows

T

1
90) = 1§ Kib, (@) B0t 2 j; o(#) 9,
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and hence deduce the vulidity of the simultaneows equadions

Uope uin #
Ji) = : 4”5’“#} e 8 — cos ¢ b

1 S(fr sil it
e . ( }H !(J] i ()]
g(g) T llf 4} KR [’J — s H‘ e w _/H " } ddj-

[The funetion fis often ealled the [ et transform ol g over W, mLJON

0. (9} Yerify, by direet enlealation, that KoY
A\
q‘\'r d(b - 0‘ ’ ;‘s\..}
Bros 1 -- ens e} ( ”S

(b} Dreduee from equation (515 of Cly ey .:'g\ﬂllt

¢,. tOs N dd - - .‘il.‘ll n{l Nb 0, 1.2 - ).

Oros @ — cous ¢ sin ¢ O
W

(e} Let a function go he |[i‘li|n-:1 Ir’}'\‘ the Fonrier cosine series

giBy g z r:w \”'11‘1 ?if} 0 < < m,

u—!

Assuming the validity of QY rt in mtm:h ange of order of summation and
integration, deduce that le Hilbert transform of g{0) is of the form
e
SO~ D aasinnd (0 < @ <)

nwl

"/
[In particul: wxinftun that the Hilbert transform of a constant is zero.]
l;}\ff J(8) iz definesd by the preeeding equation, verify that 9(61
is given e Feetly by the last cquation of Problem 68, flixpress the produc
of t\\u’% 108 us the difference between two coxines. ]
(31
N\ W

N

and writing

(&) By making the clunge in variables

ros i =1, cos g = &

fleos L0y pigy, de0sTE) ey
v P — ot VI —a?

in the relations of Problem 69, show that the solution of the singular integral
equution

Py =2 wn % (c1<a<n



INTEGRAL EQUATIONS . 48

is defined by the relation

—— 1 1 i

VI= iy - T TRy E 1/ y(8) dt.
w1 z—§ wJ_

[Nlotice that the solution is not unique, sinee the value of the integral
f_l #(£) dF may be prescribed.]

(b} If it is required that y(—1} be finite, show that there must
follow : A

i i . dé .
fly(s)ds:L VPO e

and verify that the solution of part (a) can then be written in Zhe form

i 14z 12 i_-:"é E\\ .
y(@) = ~\j 95 —:\/w—z P z—‘& ¢

ryl—=z
{These results are of importance, for example, in the serodynamic theory
of airfoils.] O
‘\
Section 4.14. OO

72, Obtain two successive appm’ﬁm&ﬁﬁns to the smallest character-
istie number and the corresponding ebaracteristie function of the problem

: N K LA

¥(@) = A L K(z, Eim) i wheo K, ) =1y o5
starting with the i 't’ié,;’appmxim&tion y@ =1, [Show that fI =
(22 - %), and th&t%uations (241a,b,c,) give the estimates A, = 3, 3,
and 2.5, respectively. With y® = 2z — ¢% show that there follows
7% = & (8z -M# 4 %), and that (241a,b) give the respective sstimates
M = 25 und\2 471, (BEquation (241c) gives the estimate 2.46?_7.) By
plotting thefunetions 2 () and A #f¥(z), show also that the difference
between-fhe input and cutput in the second cycle ig less than 3 per cent of

the mﬁg}imum value.]
{73, Show that the integral equation of Problem 72 is equivalent to
ﬁ"g “problem g 4 Ay = 0, (0) = ¥'(1) = 0, and deduce that the exach

aracterigtic numbers are of the form %(gn 1 Y i
characteristic funetions proportional to sin £(@n — Lymwe.  [Notice that

A= 7Y4 = 24674

74. Obtain an approximation to the second charecteristic mumber
and eorregponding characteristic function of Problem 72, assuming {for
gimplicity) that the fundamental eharacteristic function is given w.lth
sufficient, accuracy by y,(z) = 2« — z% and taking ¥(z) = & in equation

(242). [Show that, neglecting an arbitrary multiplicative factor n g,

2r?, with eorresponding
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we may take y¥ = 2522 — 18z, and so obbain fO = £(—8z + 36z —
25z7), Bhow also that equation (241a) here fails to catimate A" whereas
(241b) gives A" = 23.3. (Equation (241c) would give a more nearly
accurate result.} Notice that the true value is A, = Or2/4 = 22.2, in
accordance with the result of Problem 73.]

75. Let N, denote a characteristic number associated with Kz, £
over (a, b), and denote by ¢.(z) a corresponding normalized characteristic
function, go that

Gul@) = n [ " Kz, H¢a(8) dt D
O\

and [ 1@ de = 1. S

{(a) By multiplying both members of the first rclz;fion by @alx),
integrating over (a, b), and using the normalizing co;ld\iti(m, deduce that
N 1 )
M= f * K¢ ( W At
[ [ K 9utarsygiile as
(b} By making use of the Schw@ts incquality (Problem 87 of
Chapter 1), deduee that
1 BB i _
o1 = V[t o e = 4,

so that | A, | £ 1/4. [Thisresult establishes equation (66).]

76, If K(z, £) is a &y)&imtric kernel, and X is the integral operator '
such that e\J

&
N X5 = [* K, 709 a,

the form &>
£ Yh b b

Jlyy=> " dz = Kz, (&) dz £

WE] vory@a = [* ' K6 dyeu® d

in knovga%a‘é; the quadratic integral form associated with the operator X.
[Notigs that this definition is in complete analogy with the definition of the
quadratic form associated with a symmetric malriz a, as the scalar product
'ﬁ'fs} wvector x and its transform a ¥ (see Section 1.13).]

N\ {a) Verify that the varistion of the functional J(y) can be ex-
pressed in the form

o =2 [*] [" K, puit) it | s s,

with the notation of Section 2.4, .
{b) Deduce that the requirement that the expression

1) = [0 [ Kee, oy@p@) drag — [P @pas+2 [ vore i
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be stationary, for arbitrary small confinuous varistions in the function
y{(z), leads to the requirement that y satisfy the integral equation

v =\ [ K, Dy(e) d + F(@)

= \X y(@) + Flz).

77. Deduce from Problem 76 that the characteristic numsbers of the
operator K are stationary values of the ratio

L Loera  [re
[ [k ovev@aa IO 7
or of the retie O
k= 1 =j(170~z;\“‘

[ [ kG vowowzds

where ¢ is subject to the constraint {normalizing dﬂn\fition)

[ orde = 1NV

a . \J
and that the extremals are the corr@sﬁmding characteristic functions.
[Compare equation (69) of Chapter2)and Problems 33 and 75 of that

chapter, The smallest stationary ‘yalue can be shown to be a minimum.

. b .
Ience, of all continuous functions ¢ for which j; ¢* dz = 1, that function

¢y which maximizes J(¢) is"ﬂé characteristic function corresponding to X,
where 1/Ar 2 1/ A 2. a2 /M 2 ..o and A = 1/J(¢1). Ofall func-
tions ¢ which are netmalized snd which are also orthogonal to ¢, that
function ¢, which(inaximizes J(¢) is the second characteristic function,
corresponding 4 M= 1/J (¢s), and so forth. (Compare Problem 77 of
Chapter 1, n;{f@ﬁﬁg that X here ig a:naltbagous to 1/A in Chapter 1.)]

78. () Noticing that /® (&) = f K(z, Hy™ (8 dt, verify that equa-
tion (Mijb) can be obtained by replacing y(z) in the ratio of Problem 77 by
an approximation y™(z) to & characteristic function.

"N (h) Recalling also that & conats.nt_multlple of
SIE\ faken as the input y=2{z) in the following cycle, verify
{241¢) can be written in the form

f ? D gy (2) dz

I S A o
ﬁ b f b Kz, £)yo @)y (@) dz dk

i i forded by (241c) carresponds to that
iy 3 ot e he );at.io of Problem 77. [Notice

obtained by replacing y? by ¥™y™* in

f the output f™(z)
that equation

)

‘4\125
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that the estimates of (241b,e) are obtuined without the necessity of explie-
itly evaluating a double integral. A still better approximation (but one
requiring such an evaluation) would be obtained by replucing i by ™ in

[
. | .
the ratio of Problem 77, to give Xy = T £ ] Lfo (e de

79. An oporator X, associnted with o (read) symomedric kernel Kz, £),
whose gquadratic integral form

Jy) = f y(x) K y(z) dr = f f’!{(;, E(p(8) de dE « O\

N
is nonnegative fur any (real) function y, is enlled a positive integraloper-
ator. If, in addition, J(z) is zero only when y{e) is the :f,m;t}\fuﬁction,
then & is sald to be pesitive definale. A\

(a) Use the result of Problem 77 {or of Problemw(i) to show that
the characieristic numbers corresponding to o posilive mi@fcg’ml gperator are
postlive. 9

{h} Show that the operators involving the Kernels

9.\
Kz, &) = f TR KE B, Ka@d®E f b Ko DK 6 &,

associated with a nonsymmetric kernel K (::r.; £}, are positive operators.  [In
[ i T
the case of K, show that J(y} = f, ‘{f K2, 2)ylx) dw} dt.)

80. A kernel which hus theSreperty

Ko'n) = —KG@, b

. P
is called a skew-symimet 1gkérnel.
(a) If K{z, 5)%‘ skew symmuetriz, show that the equation

Ny = [ K, o) de
implies the egiition
A @ = - TR D s

N v (b) Use the result of Problem 79(b} to deduce that a skew-sym-
eirie kernel possesses no real characleristic numbers.  [Notice that a non-
mogeneous equation with a continuous skew-symumetric kernel (0"?T a
finite interval) therefore possesses a solution for any continuous pl‘CS-'.‘-l"led
function F(z).] .
(¢} Verify this conclusion in the special ease of the kernel Kz, &
= g — £, associated with the interval (0, 1).

Section 4.15.

81, Obtain approximate values of the solution of the equation

1
%(x — 2" = [ Kz, £)y(E) dE,
0
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where K (z, £) is defined by equation (258), at the points z = 0, 0.25, 0.5,
0.75, and 1, by the methods of Section 4.15. Use the weighting coefficients
of the trapezoidal rule.

82. With the notation of Section 4,15, show that approximate charac-
teristic numbers relevant to the problem

y@) =\ [ K, 9o d

are afforded by reciprocals of the characteristic numbers relevant to they

corresponding matrix K D.

83. Determine approximately the smallest characteristic valuﬂ\' of X

for the problem « \/

gy =\ [ ety b

by the method of Problem 82, using the ordinates ab ﬁh?}fioints z=10
0.5, and 1, and the weighting coefficients of Simpsons rule_. Determine
also the approximate ratios of the ordinates of the gorrésponding character-
istic function ai those points. [Write & = 6/AL nd nse the iterative
methods of Chapter 1, retaining three significgftt ures.]

Nos/

Section 4.16, N
84. (s) If K(z, £) is of the form¥y
i whenwz < &
G f)\m-% l £ whenz > &

+ ) ;
show that the assumptik\@fx) o~ Ay + A+ 4a2° reduces the equalion

y(z) = Py A [ K, uyde 0 <z < 1)
N/ 0

to the requirg\ﬁié;ﬂf
441 — )\(x&*’%ﬂ] + Az — re — F2¥)

4 Al — Az — 1] ~ Flz) @ <z< 1.

can be reduced to the

™
¢

P
“\\ (b) Show that the problem of part {a)

[}Ob;lem .
¥ (@) + Aylz) = Fr), y(©) = F@), ¥ =FQ-
85. (a) Show that the assumption
i 8 <)
(f) = >, Aysin ko <
w0 =%

reduces the integm-d-iﬁemntial ecuation

cdy(9) 4 p<o<m

y(8) = F(6) + A f(6) o dp cosb —cosd
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to the requirement

2 Ay l:l + Awk 1{{118)9] sin k@ = F(#) {0 <8< m.
&

[The symbol & denotes the Cauchy principal value, See Problems 068
and 70(h}, With a suitible interpretation of the syvmbols, this equation
ig one form of the basic equation of the Prandt! {ifting-fine theory of
aerodynnrmies.)

(b In the specinl case when f(8) = sin 8, show that the forimal
solution of the cquution of part () is glven by N
¢\
AN

133 . \,
¥ = ; I_-i—_ﬂk sin k@ 0 <8< TI'),‘.;.

2%
<

where a; is the kth cocfficient in the Fourier sinc—scrﬁ;s‘ ;1ex'elopment of
F(8) over {0, ). [Notice also that the numbers < liw, —1/2m, . . . are
hence characteristic values of A when f(#) = sin QL

9, N\

Section 4.17. A

86. (a) Obtain an approximate snlqtfﬂj}r of the special case of Problem
84(a) in which F(x) = z and A = 1, using‘the method of collocation at the
points z = 0, 0.5, and 1, N

(b) Compare the appmxhﬁnie solution with the exact solution,
obtained from Problem 84(b), af*the points z = 0, 0.25, 0.5, 0.5, and L.

87. (a) Obtain an appredimate solution of the equation
#8J

GO,
s =ﬁ K, Hu® ds,

where K{x, &) i3 lefined in Problem 84(n), by ussuming y(z) = A+
Az + Aax"',“@ﬁ'hsing the method of collocation at the points z = 0, 0.5,
and 1. \J

('b\} Compare the result with the exact solution 1r? sin gwz ab
pointg%s= 0, 0.25, 0.5, 0.75, and 1.

Py _

~\\88. Obtain an approximate solution of the speeial case of Problem
Eﬁ(ﬁ) in which f(6) = F(§) = 1 and A\ = I/, assuming & three-tern
approximation of the form

y(8) = A,sin 8§ + A;sin 30 + As sin 56,
and collocating at § = 0, /4, and 7/2. [Thc exact solution'is not knowt.

Notice that, if f(8) and F(6) are symmetric with respect to ¢ = w/2, only
harmenies of odd order need be considered, and recall that
i sin k§ k]

#—g 5in &
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89. (1) Suppose that the quantities
b
Bie) = [ K, 06@ & (=13 ,m

(ciannotbbe conveni_ently evaluated by direct integration, but are to be
etermined approximately, as weighted sums of the ordinates at & set of

N points £, £, - . . , £&y. Show that the matrix ®, for which
&,; = Bs{w:) i=12“"*,mji=12°*",n
can be obtained by matrix multiplication, in the form N
® = KDis \\\
where K is the n X N-matrix & "}1.\

[K(x;, £) - - Kz £N)jl \‘

v

K ;s W} 't K by .
(%, 1) (x'x:i:()

and §; 1s the N X n-madtrix R
¢1(51) S ‘:‘én(f:)

‘i’f e ’r:. W]y
d1{En) \% ' ¢ﬂu(§1v)

matrix such that the diagonal element

the point & in the
¢ obtained by

and where D is the diagonal N X¥-
D; = Dy; is the weighting coefficient agsociated with
num(_arica.l mtegrations. Eﬁﬂ&ﬁce that the matrix KD is hene
multiplying all elemenés(o $he jth column of K by Dyl

(b) Deduce pm the matrix of coefficients of the A’s in equation

{272) can be expressedin the form
</

:“' f=—‘¢,—*RKD(I)E,
where, in :ﬁl:ftflon %o the matrices defined in part (a), the matrix ¢ in the
square X n-matrix

\ M 1351(231) s ¢n(51):|
) do=]
} GilEn) - ¢n(ﬁn}

90. (a) Verify that the application of the procedure
the approximate solution of the equation

1.

1 (teint(z — & @) 3¢,
with the assumption y(z) = 4: ¥ A, with approximate integration
involving the three ordinstes £ = 0, 0.5, and 1 according to Simpson’s
rule, and with collocation at # = eads to the equations

of Problem 89 to

¢ and =1, 1
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specified by the matrix relation f A = F, where F = {0, 1}, and where fis

evaluated as follows: _ _
. [1 u] 1[ L0010 0.7 [ ) ': 0 } v
= — 33 s ¢ ) 2
U] Tmeres ome 0 oV
(b} Obtain the eorresponding approximate solution. ~

Cfosiz —oo0s
“loos17 0882 |

Section 4.18. N
(\D
91. (u) Obtain an approxinude solution of the integral equition con-
sidered in Problem S6{a), determining the parnmneters by LI:%C:()T' the weight-
ing funetions 1, r, and x=. RO
(b) Compare the results so obtained with the data of Problem
86(H). N
92. (a) Apply the method of weighting fusdetions to the equation
treated in Problem 88, first multiplving hotddgtties of the approximate
relation by sin 8, and then using the welghtifgfunetions sin 8, sin 36, and
Ein 56, A\
{b) Compare the results \\‘itll .!;}]t?.k:(? of Problem 835,

Seetion 4.19, '\

=

93. (a) Apply the modifieditethod of leust squares to the integral
equation treated in Problem{8(n), using the points x = 0, 0.23, 0.3, 0.75,
and 1 ns the points =, :;m}usiug weighting coctlicients curresponding 0
Simpson’s rule. ¢ \

{ ('Jumpn.r,e\the results with those of Problems 86(b) and (91).

94. (1) Prycgodvas in Problem 93 in dealing with Problem 88, intro-
ducing the two@dditional points § = m % and 375,

(b)'\(;'blﬁpnrc the results with those of Problems 5% and 92

95. fapApply the modified method of loast squares to the treatment
of Prohlent 90, introducing the one additional point z = 0.5, [Iirst obtain
the thlite equations corresponding to (208) by the method of Problem 89,
takidg n = & = 3]

\J/ (b) Compare the results with those of Problem $0.

Section 4,20,

96. (o) If K(x, §) = x when z < £ and K(z, & = £ when 2> %
determine the coeflicients in the approximation
Kz, £) = A, + Asx + Aax® 0=2z=1)

28 functions of £, in such a way that the two members are equal at
and at 2 = 1, and that they possess equal integrals over (0, 19)
obtain the approximation K(z, £) = drf — 3z — 32% + 32

= 01
[Thus
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{b) Use this approximation to obtain an approximate solution of
the problem #(z) = z + j; ' Kz, 9y(® dt, and compare the resalt with
the exact solution. {Sec Problem 84(h).]

In 2 —_
97. By replacing Kz, £} = %_(:x_?f) by the first two terms of ils
expansion in powers of (z — £),

Kz, ) =1 -3 - ¥ +H—-0+
obtain an approximate solution of the probleﬁl SO\
y(:c} =2+t [ S‘I, E)y )dE, (‘:}"
and compare the result with these of Problems 90 and 95\‘

: 93. (a) Dectermine the constants A, and 4. in dheh a way that the
integral of the squared difference between the two membem of the relation

SR L A4 At to<\u <1)
1.{‘.

oo/

is ag small as possible. [Ev'aluate*fl —-du numencaﬂy; by use of

scries or otherwise.]
(b} Treat Problem Q7 by replacing K(x, £) by the c(l)lriispondliﬁ%
approximation 4, + A,z 8% and compare the result with the res
of Problem 97. \‘
99, Obtaln an esmnate of the smallest characteristie value of X for the

problem y{z) = K (z, E)u(E) dE, where K(z, £) is defined in Problem

07. :'\“
160. S‘}’QPGSG that y(z) is the required solution of the integral ‘equation

y(x) = F@) + A f Kz, Hy(&) df;

"\ ’ tmatin
d What 5(x) is the solution of the equation obtained lg) HEJI;‘E)’;H?H thg
K(Z, £) by a separsble kernel Kz, £). If the eﬂ?{ y&) in the approxi-

solution is denoted by &(z), and the error £{z, 9 txthe true solution is

mation to the kernel is denoted by A, £, show tha

of the form y(@) = #z) + 8l)

where z(z) satisfies the equation

) = B0+ [ K@ 09 25
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in which

B(z) = A f "Alr, B)§E) dE.

[Notiee that this equation is of the same form ns the original equation, with
the preseribed function F(x) replaced by the caleulnble function ®{z),
Thus, if K{x, £) is again approximated by K, £) in the integral equation
for the correction &(x), the linenr algebraie equations which are then to be
selved differ only in the right-hand members from those alrendy deters
mined in obtaining the first approximation.  The Tunetion &), :m(i\t-he
relevant integrals involving that function, may be eviluated by pymerical
methods, extreme neeurney usually bun;, unnecessary if the lv(]‘ﬂl error

Az, §) is smull over (g, b).] Ke

/‘s:’ N

A

b 2

3
o)
N\
N\
7
4%
o
¥
AN
. i“}
L ¢
‘::::‘
B
A\
N\
, N
O
©
A\
LD
Py o
O
Y
\,/
N\
»3\
g



APPENDIX

The Crout Method for Solving Sets

of Linear Algebraic Equations
: N\

N

The method of Crout, for solving aset of n linear algebraic eqpa\ﬁiﬁns\m
n unknowns, is basieally equivalent o the method of Gauss (seesivotnote
to page 4). IHowever, the caleulations are systematized "in‘sﬁ.ch 8 way

that they are conveniently carried out ona desk caleulator; ’vgij:h 5 minimum

number of separate machine operations. Furthermors{ayvery considerable

saving of time and labor results from the fact that the fedording of auxiliary

dats is minimized and compactly arranged. 2 N o
Only a deseription and illustration of thp, method is given here; an

b\

analytic justification is included in the originel paper.”
The calculation proceeds from the gugimented matrie of the system,

“ N

G Gz .":':". din ir &
o @al® T G 0| phlc), (1}

M= T . -

E{mg\aﬂm LT a‘mic"

which may be congid&e}i;s partitioned into the coefficient matrix & and
the column vector & po an auziary mairic

N/ r r LN
RS gy G T GmiG
. :'\"‘ r ! —— a! \ [:; I 2)
\:..\,, M = thay  Gao o =[a'i¢'], (
” v ' i !
R\ O ahy Gne Gz | On
< : 3 . . or
of €he same dimensions, and thence the required solution veck
X
\ / F#1
Ty
£ = {3
Tn

! element of any glement to the

It is convenient to define the dmgw_waa that element of the prineipal

right of the principal diagonal of & matrix

* See Reference 7 to Chapter 1.
503
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diagonul which lies in the same row ns the given element. The disgonal
element of any element befuw the principal dimgonal is delined 1s that
clement of the prineipal dingonal wlhich les inc the saine rolewnn as the pgiven
clemment.

With this definition, the procedure for obtaioimg the dlements of MY
from those of the given mstrix Monay be deseribed by the four rales whieh
follow:

1. The elements of M7 wre determined i the foilowing order: (:lcnmn\ts
of the first column, then eleents of the first row bo the vichit of thésst
column; elements of the second column below the first row, then, €dwients
of the second row to the right of the second colunng and 2o giySaitil all
elements nre determined. G by

2. The first column of M is identical with the st colnihg 6f M. Each
clement of the first row of M’ except the first is obtaifed by dividing the
correspording element of M by the leading elemendsgy.

3. Each element o) on or below the prineipal difgonal of M7 is oltained
by subtracting from the corresponding t'l(’ml’af{;}:{, of M the sum of the
products of elements in the ith row and c@@ponding elements in the jih
column of M, all unealeulated elements %:sviing imagined to be zeros. In

symbols, we thus lave N
=1y v
’ NY T P .
a; =, — E iy, (&= (4)
By

4. Each element r::,- to tienright of the principal diagonal is ealoulated
by the procedure of Rulelfolfowed by a division by the dingonal element

;. .
a; in M'. Thus thewe h\m‘rm's
\ i1

o\ [
.\ 3 T;; — LT

O Bl .
O ay = ' : (T <) )
."\1. ay;
In t}lseihﬁportant cases when the coefficient matrix a is symmetric

(a,: = wy)) it ean be shown that any clement afj- to the right of the pm'ncipfil

rli”rggﬂ’r‘t&! 2 cqual 1o the reswll of dividing the symmetricatly placed efement &
elow the diagonal) by its dingonal element i This fuet reduces the lahor

involved in the formation of M’, in such a case, by a factor of nearly 60,
since each element below the dingonal may be recorded as a Iy-product
of the raleulution of the symmetrieally placed eletuent, before the final
division is elfected. ]

The procedure for obtaining the final solution vector x from the mafrix
a’ and the vector ¢/, into which M’ is partitioned, may be described by the
three rules which follow:

1. The clements of x are determined in the reverse order Ta, Ta-t;

., &1, from the fast element to the frst.

2. The lust element 2, is identieal with the last element ¢ of ¢’

Tnds
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3. Each element z; of x is obtained by subtracting from the correspond-
ing element ¢; of ¢’ the sum of the products of elements in the {th row of g’
by corresponding elements of the column %, all uncaleulated elements of x
being imagined to be zeros. Thus there follows

=c;— @y 6

T = ¢ k-§+-1 o ®)

The solution may, of course, be checked completely by substitutita
into the n hasic linear equations. However, if desired, a check column May
be carried along in the calculation to provide a confinuous cheglt.oh the
work., Hach element of the initial check column, con'esponcyhg to the
augmented matrix M, is the sum of the elements of the cogr&é;pondiug row
of M. If this column is recorded to the right of the apghented matrix,
and s treated in the same manner as the column ¢, gériesponding ch{?ek
columns are thus obtained for the suxiliary matrix M%,and for the solution
vector x.  Continuous checks on the c&lculatiy\\a}‘e then afforded by the

two rules which follow: ot u

1. In the auxiliary mairix, any element}of thfe check co!umn. shoul
exceed by wunity the sum of the other el¢mefits in ity row which He & the
right of the principal dingonal, R\ . . )

2. Each element of the chock\golumn associated with the Sﬂllllt_loh
vector should exceed by wnily the ‘corresponding element of the solution
vector, o _ .

The preceding checks §erve, not only to display numermsn’l eT;‘OIS; 1;}‘:’9
also to give an estimate ’«(;}:f’the effeat of round-off nirrars resulting from the
retention of insufficiently many significant figures. .

The simplicity @i efficiency of this procedure Gaﬂ_f}f 1%91;3";?;2?1&12’
when it is appliefito specific problems and compared wi hO ‘:c Pme cited)‘

It is of seme/Intercst to notice that {as is shown in the re el;‘ethe gec)

f etpistions which would be obtained by the direct use o

the set .
reductio%ﬁ?ould possess the augmented matrix

|

. L
’, 1 G;s P a,}“i'(}}
~O S L AL A @
\3 T I:’
o 0 - 1]

o i rincipal
which differs from (2) only in the substitation of otr};es slélt tcﬁeeiuatigns
diagona! and zeros below it. The tr:‘mmtmn fmﬂ:-reg eond oo the “back
representod by (7) to the solution (g??xfci?ne;ai?mcgs of Iz)ke Crout procedure

Ton’? cedure.
solution” of the Gauss pro 1t & small diagonad element

tere: :
* Appreciable loss of aceuracy may be eneoun Such a situation may often

appears in M’ at an early stage of the C&]cu?;‘:;nt;nknownsn
be remedied by recrdering the squations an
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i8 achieved by recording auxiliary dote in the spaces of M which wodd other-
wise be occupied by onex and zeros.

The tth diagonal element of a” happens to be the cocdficient hy which
the fth equation is divided, hefore that equation is used to eliminoate the
tth unknown from succeeding equations in the Gauss reduction.  Sinee all
other steps in the reduction do not affect the detersminant of the coeflicient
matrix, it follows thut the delerminand of a is cquet to the product of the

diagonal elements of a’,
[ ’ p
ia | = dggfay 07 Uy YS)

Thus the Crout procedure is useful sl in evalunting rln-tsw'rnim;ms, the
columns ¢ and ¢, us well as the final vector x, then heing :mli\fb(ael,'

In the reference cited, it is shown that the method eap e extended to
the convenient treatment of equations with comples mf\ﬂia"u-nts, and to
the case of m equations in n unknowns. ..,'\“

In erder to illustrate the procedure numericallyy wedpply it Lo the system

554.11 £, — 281.91 z; — 34. 240805 273,02,
—281.91 7, + 226.51 z; + 38W0c; = — 3. 965,
—34.240z) + 38.100z. + 80221z, =  31.717,

with the augmented matriz (and sssoeiated check column)

=\ Check
554.11  —28la01° —31.240 273.02 510.98
M =|—-281.01  226'8L  38.100 —63.063[ -80.965

~34.240\'\"38.100 80221 34.717 118.80

The auzitiary mafrrz/(and associated check column) are obtained in the

form O\
N Check
N\ 015
N ﬁ‘%ml_l —0.5087G —0.061793 0.49272 0.92216
M/ =\ —281.91  83.385 0.24801  0.89870 [ 2.14668
LN L —34.240 20.680 72.976 0.45224 | 1.45228
\pfi the solution vector (and final check column) are found to be
Check
0.92083 1.92080
x = 10.78654; 1.78650
0.45224 1.45228

if all ealewtated values sre rounded off o five significant figures throughout
the calculation. Thus there follows

xx = 0.92083, =z. = 0.78054, =z, = 0.45224,
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where reference to the final check column indicates the posgible presence
of round-off errors of the order of four units in the last plaee retained.
_Such errors would he decreased by retaining additional significant figures
In the formation of M and x. .
‘ The elements of the first column of M are identicsl with the corTespond-
Ing elemnents of M; the elements of the first row of M/ following the first
element arc obtained by dividing the corresponding elements of M by
35411, The rematning elements of M’ are determined as follows: N\
O\
7'\

Gay = 226.81 — (~281.91)(—0.50876) = 83.385.
@3y = 38.100 — (~0.50876)(—34.240) = 20.680. .

‘~

’

2 83.385

_ 88.100 — (—0.061793)(—281.91)  20.680 N\
- T 83.385 9'3?\801'

—63.065 — (0.49272)(—281.91 s
& = 5 (0.49272)( ) - o080
83.385 ) \ &

ags = 80.221 — (~0.061793)(—34.240) £ (9:24801)(20.680) = 72.676.

34.240) & (0.89870)(20.680) _ /o0
72.976"

The Inst slement of x s identical with ¢j. The remaining elements of X
are determined as follows: im’\

22 = 0.80870 — (0.24807)(D.45224) = 0.78654.

T3 = D.AO272 — (—0:5PR7G)(0.78654) — (—0.061793)(0.45224) = 0.92083.
A X )

d that, because of the symmetry of the coefficient

It may be ;roiieé .
is 0% etually necessary to caleulate ag, and s mdepe;ndenﬂy.
be recorded as agy before

matrix, it ig u
If gy, is Caa}l;\uiﬁted, the pumerator (20.680) may
the final ivision is effected. N o
Thé\',’a,tiva.n’t.ages of the procedure (and the addltat?nal mmpllﬁcatlon;
intfodiiced by symmetry of the matrix a) increase with the number o
equations involved. )
! It is particulsrly important to nofice that {:,he caleulation of each
element of either M or x involves only & siﬂg{e :_:ofwmuog.s wmaching apgmt%gn
{a sum of products, with or without a final d_msxon), without the necessity
of intermediate tabulation or transfer of suxiliary data. "
Tf the deferminant of the coefBeient matrix were required, it would

obtained as the product of the diagonal elements of &'
" la] = (554.11)(83.385)(72.476) = 33718 X 10.

o BATIT — (040272)(~
3 '\—-‘




Answers to Problems

Q]
Chapter 1 A
¢\
L@ a=1,2=—1,o =1 N 7
(b)) 2o =2 — e, 2= —3 + 3,3 =2 A \/’
2. (a) [3 —2 3] (b) [o 0T, (@ farbs -+ asby +,5 34 axbel.
o 1t ol 0 0 O
(d) a]b1 ﬂ.gf)l CNCI anl_ (e} [616@11 F\Q&‘
ﬂ'-]bz apby - -+ Tuba . £atlz1
e e e e e e e e e s 'x:\.\"
aIb,, agbn L Gubn o W
(f) [Clﬂu Csau]_ "N\
Crltgr iz iw’

5. 0.319, 0.363, 0.462, 0.587, 0.724. O\
8. x=11x =1, —1, 2{; ;x-mﬁ x=¢:3 9, —2}.

10. & g gt 1 [
il ot Lol yz ._
[ Fa® ways pet

% Taln yﬁ

\
t6. “_,1 1 -2 —~1
al' = 1»/ Adja=]—-2 2 2|
1 -2 -3

1
7

&_1 ai ] — _1].
1 3

=N —F 1 L3
1{”‘+5f = 0.
) x = (8,8, 00 +old ~3 1) =46 +o 2305
22, (b) A = 1:x = {2, 1,0} +ea{—1, 0 1
A= —8:x =efl, 2 ~1}
B @) r=5 M r=3 r=
T ANY €-

27. (b) Tho set ax = ¢ possesses a solution fo

= 1
() x = (2/(6 — W), 1/(8 LN if A ;élorﬁ If?\ ~‘2 T here o i
tion. If A =1, the solution is T = (% +e¢ ¥ 20

arbitrary.

509



510 ANSWERS TO PROBLIIMS [Ch. 1

31. If e, is taken as & maltiple of the first vector, and e; a combination of the

first two, then
12 /2

1 2
gy = ig{lyo’ 2) 2];63_ i_ﬁ_i213s _21 1},0:“ iTt2: 1r2! -3;-

33. 1 0 0 1 00
T - .
0=]o i yvi| Qae-jo 20
0 0 4
0 V2 — V2 ~
{Columns may be interchanged.  Also, the signs of all clements ndany
column of Q@ may bLe changml) ,\:\’
34. With Q as defined in unswer 1o Problem 33, F = 17 4 220 1;{}41::'.

36. =[0 1] =.[1 2]_ N
P=l; ol @ 01 s

AN
2 \ 2 ] .
3T.y=11e, = :t——{]“‘\(_ll + 4, —1l; ke = 10: e = 15124—21,1}.
w\/
4L. F is not positive definite. \‘\
42. With 21 = o + «s), 12 = S, — afinthere follows A = o + 2o,
B =a? + at. (Other sign ('(lIIl]lin.{lfiﬂ‘llS are possible in the definitions

of z; and r.) N\
43. 7; 10, &N

ad

44. a is not positive definite.

45. (a) All characteristiv nuinbers must be negative.
{b) Discriminants \\‘i@w?dcl subscripts must be negative; those with even
subscripts mu;t\c positive,

46, ¥’ = i\/a, 0, {.};..p

Ve vz o] (s 3 -3 V2|{v2 32
Ty =V2 vz olizp=|s ¥ off of=13VE
~ 0 0 144 0 0 1 1 1
52'~@):bhnructcristic nitubers: —1 and &; corresponding characteristie vee-

"\ tors: multiples of {1, —1} and {1, 1}, respectively.
\ (b} b ia not positive definite.

3100 + 1 Jwo _ 7

s3] 2 2
3w — ] guo 4 )
o2 2

5T, = 812 multiple of [0.229, 0,631, 1.000}.

58. The vector |0, 0} is inevitably obtained after two iterations. The only
characteristic number is » = 0.
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Successive approximations oscillate. The characteristic numbers sre
complex,

A = 8.200: multiple of [0.347, 0.653, 0.879, 1.000};

Xz = 1:multiple of {1, 1, 0, —1}.

M o= 0: multiple of [1, 1, I, 1}; k¢ = 0.586: multiple of {—1, —0.414,
0.414, 1}; s = 2: multiple of {1, —1, —1, 1}; %« = 3.414: mult:ple of
{—1, 2414, —2.414, 1}.

il

65. % = 1: multiple of {1, —2}; Ag = multiple of {4, 1}, O\
66, M = [ 3 E\/Z] e
—% %r‘\/_ e\
(Columns may be interchanged. Also, the signs of all eleménts in any
eolumn may be changed.)
67. With M ag defined in answer to Problem 66, x = M\as leads to desired
forms with »; = 1 and A = 3~ .
69. a1 = 0: ey = ei{l, —2], e =c}!1,1}; AY;
N o= 1ie = all, ~1}, g = &2, 1) \\
2. w1 = 0.518 4/k/M: x = ¢1[0.268, 0.732, ~1},
wy = 141~ k/M: x =eil, 1, 1}
wg = 193 k/M: x = c2f8.73, ._.273 1}
T3 w1 = 0.404 &/ M x = al{o'zss 0674 1};
wr = 1.30 VE/M: x = .:.3{1 79, 2.36, —11;
ws = 1.91 \/k/M x =é\c3{9 53, —6.33, 1].
74. w;=0 x =05} \U,
wy = \/E/, s x = ef1, 0, —1};
@ = 1. 73 \/@/M £ =cll, =2, 1)
75w = 0: gy=ai {1, 1, 1{;
wy = Q.«S&*\/k/k x = ca{L.56, 0.44, —1};
X 87 %/ M: x = ¢:12.56, —4.56, L}
96, "\{h 2 . (This cxpression car also be written in varicus other
o’ Mk(] T cos ps)
\ } forms.)
O~ 2 sin pet 0 <z <1}
- ———
I ©®) 1) = D) i & con )
k=1
Chapter 2
3in
2. Lengths a/+/3 in the z-direction, 8//3 in the y-direction, and c//3
the z-direction. rmj“‘
2. Bquares of semiaxes are 2fa+ oy Evid - ]
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4. y = 4(52* — 32).

7. (b)Y T(e) = 2 + 4e.

B.{a) " —uw =0 (b) 2y = 1. (&} 2¢" -+ k¥siny = 0,

d) e’y +by =0.

9, Az 4 Bo = C.

10. Ar = B sec (8sin a + C).
18, Acot ¢ = Beos 0 + € sin 4. I\
B f VIt fe \t\

12, As cdr + C.

r \/,-z_ e ‘\
18. I(z) =+/2; I(cosh z) = ginh 1. ~\
14, (a) 2. (b)) 3e ’
"\

15, AF = Fe + The?; 81 = %e N
18. Euler equation: (u ") + (b 'Y +cy = 0. _

Natural boundary umthtmm L e y") + M ﬁ\w ] = { oy 5;;’]:; = 0.
21. Euler equation: (¢ 1), -+ (), + e ,* 0

Natural boundary condition: ®,

o\
du OIS
56 4 — ¢Os P +»{y,—’*- fin » ) Suds = 0.
¢ or L dy

23. Euler equation: te.er + 2:1“”‘—1- Mpppw = ¥'u = 0.
Natursl boundary condltm@s

[{—— viu + (I - &&&;’,: Eu]

[lﬂy v, + (t = a)uuy} 6:1} - |:(u,,,, + er itgz) 5;;,} "

26. (z — ’&7}— (y — k)2 = k2 + T, where & sutisfies the cquation
(4 F"1) cot! 2k = 44 + 2%.

N L
O j; E T sint 2% s

‘6.” fuy A —— - —— .
FAd £ ., A ;
](; £ Hin L dx

k'.'(lfe - :-C:I) - k[II, tofa = ka(l‘;; — 2:2} — kz(lh - II):
‘—ka(Ig - '.Cg).

To

= [(Nxx b tyy,) ﬁa:,] =0,

Ft
2 Fal

42- m1:B1
Mgty

43. Equation of motion is 4. = 5 g.

1 1 T
82. H —2—( . _E__npsi) + V(). # = 2, 4 = __3;
T m

Be = pfmrt — V'(r), 55 = 0.
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86 (1) mE b D klilliz + may + mz) =0,
wmy -k 2 kondle +may + ni) =0,
wE 4 2 koneller + may + niz) = 0.
6L o' — g(d + Cla? + ¢2(AC — B =1,
64. () V = 295 —EQ T =1LQ*, F =%RQ”;
LG4RQ+ 2B =0 =;F= \j

o @u)? Lt - L
C;Pm%;—~EﬁuT y(@+-ﬂa
\}

F = 'ERIz(QL — Qz}”
L+ Q1 + o (QI — Q) +RH(Q\1:>~\Q) B =0,

i

) V =

3
7

Lo + 5~ (@ — Q1) + Ru(@z‘— N =
Cl:z .:s"'.
Frgew® — .%.. _— _}:}: _.1__
AR Cie e
1
N A
¢ ’:\(?12 (4T
b 3 dz = (s
69. § [ (:r’y %m“z@ — a4 2oty — 2t T dln + 23¢aiy2
¢ \)

6. ¢ = 'ﬁ.'\&ﬁ?? oy = —l—g = —2.69,
7. xlw\q”}é; MO & 14.42, M0 = 63.6.
O
Chapter 3
.\ 3 |
\ (ﬂ) yz=2c05a,y3==4ccs?a-1 w = 8costa — 4cos e

2, n = 0, .\/-
3. (b) fu = wh(k + 1); fie = 5050.

4. Awyres + (Br — 24809601 T (T, — Be + Ae}ys
B T4 e

= .

1L 7y =22 — 4, Ts = #° —

(- 5) (525

13. (a) wi = 2% 4- 2 3
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(b) e = €1 + 2%es + oak).

wh k rk Ank
{c) wx = c1co8 "y + 2 8in Wl" + 3 vos E— b ooy sin "

wh nk
(d) yu = {c, + k) cos o A ey b k) sin N

(Ch. 3

k1
18. (a) wa = o1 4+ ek + N oo 1,
(a —1)2
eHEED
b)Y =) + ek + @ (h » 0. ,\\
: I3 i"\\ ”
© wmentek - E L e, a7
21— ros o) . '\”ﬁ,
{d) w =1 + rak - gk, ) ¢O
(@ wo= o+ sk o+ JA, \\,
bk 1} p \\,
O N (G ERD (6 0,
X ’x
G if ks, o\

20. = k = : T =

Ye = &1 + ek + ‘f» ik, } \",:l‘itn'ﬂ dir

< S 3
24, pm =m/(m + n). Ny
‘K: I'Irr "Z:;

26. () wo =2 . — =12 ...,N);

(a) w \/ sin 2(\ 4\1) (n ) 2, )

Zni = O, 58in -—--S\\}\r’n% {wnd + Ha).

45. (a) S = in(n +\L)1(n + 2)(n + 3).
N \Q l
Sy ==~
®) -;\\?(n + ])(n. T 2)
W 1
© 595~ sar 5
(d) 3,. = inin + 1321 + 7).

56:\y E min (22: ;—1 wk) [An cos waf + Ba sin w.f], where

nw]

2N+1E'”'" AR A &
R I
w..(2N 1 E”""m aNFIT )
-1
'I _2 —r— —_— .
\/Mh sin ( S 2)

A,

B,l:
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ANSWERS TO PROBLEMS

i
1) e 8, ’l_

59. Tt = g e
(a) Ti(t) = sin (N—i-

N
) 24, nrr pr
(b} 1’ f = E 7 _13 “’t
x(t) N+1 smN+1mn-—+ &Y %,
n—‘=-1
nrk
e} TWif) = o E ot i T
o 2(N + I
(ﬂodd.l
66. (o) 5|0 02 0.4 0.6 0.3 1o Oy
y |0 020 0398 050 0.768 0,921
@ “ |o o2 0.4 0.6 0.8 Lo\ 7
y{0 D217 0.432 0.641 0.834 1000
67. (o) ° la @2 0.4 0.6 0.8 ,‘:\‘f,o
Y | 0.200 0.398  0.590 0.76%Y 0.919
@ ._»c_ ¢ 0.2 0.4 0.6 08 1.0
0 0217 0.433 0.64 \0 834  1.000
6B. A = 16; M, = I7.0, M0 = 63.9.¢
69. 1.208, 1.211, 1.209.
70, After 10 hours: v'{:’:‘
2| 0 02 04V06 08 1.0
T 100 128 54 174 189 200
71. After 1 hour: \'\‘"
] 0 a2 o4 06 08 1.0
T | 1801 198 200 200 200 200
72. After wﬂioﬁrs:
N 0 02 04 06 08 1.0
ﬂ“l 122 144 163 178 180 200
T3 \Temperatures at points 4, B, ¢ of Figare 3. 18 (page 297):
o) 3 4 5
\ 3 Time thr) | 0 1 2
Pomt 4 |00 100.0 9.0 93.0 91.8 9L3
Point B | 100 ®7.5 71.9 67.2 65.2 64.;1
Point & 100 87.5 71,0 68.0 668  66.
74. Temperatures at points 4, B, € of Figure 3.18 {page 207):
Time (hr) | i 3 3 4 52
Pomt A 1100 100.0 96.9 91.4 86.3 8?.8
Point B | 100 g7.5 719 856 610 gg.s
Point ¢ | 100 g7.5 656 52.4 449 .

515



518

7. 0
25

50

75

100

7%, 0
25

a

75

1060

79. ()

100
100
100
100
10}

100
120
135
145
148

81.

50
6y
b2
104
125
Y
i
81
103
125

0

072 0
IS8 0
SA29 0.

[ R e
= o o

!

100
110
118
122
125

100
122
138
118
151

100
112
125
138
150

104}
10+
NE!
1130
tab

100
124
138
[44
1ot

100
130
1-i8
158
{61

ANSBWERS TO PROBLEMS

150
156
162
164

170

150
137
18
152

175

0
RUTH
. 258}

02y

148
b
171

175

145}
168
176
178

200
200
200
206
200
200
156
1-Ki
1t
200
0
0.072
0,188
0.2
I

200
200
200

200
200,
2 S\

0
0
0

{Ch.3

82. (b} Values of u ='1€f\\ﬁ\$f?}a’:
o 0 o0
0 68.7 78Y 1 b8,
0 87.4N\NIM2 ¢+ 87..
0 6873 7.4 K.

iﬁ 0 0

(c) ‘Bpﬁqhttml nse of Sinpson's re givcsﬂA ¢ A = 0.05335a%

=1 &= =1
oo oo

33,.\‘6’31”)1;;!3 of 1w/
\/t 00 0 0
0 0.07 0.
0.27
0.63
.00 0.
170 135
172 136
I8+ 172
1"y 18-
M2 188 B/

431
T
13

i

@ oo

= R e

- =

(LU [
=02

oo o

84, {c} 200
200
200
200

A’ 200
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0.

36.

31.

42,

81.
83.
33,
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Chaptor 4

M) y(x) =2 f Gz, HE (D) dt,

2rin? 2
{hy F Y = i _— :
YR =ay Sa e +w’l\’—- i + .
Flr) = Try = 1. '
() Flx) =19 =1 3 ¢lcos = - sin z). -
() F(z) = A cos z + B sin . N\
y = 0.3637 + 2° — 0,0395%, <O
@ 1 —3pe - Y3 ZDVBA-9 (-390 -390
B 2 -3 /‘s"
A\

12nz + 61 + A2 ¢
=] - . by e Ve o
p=1+ T V3. s\

Estimated convergenee limit: [ A ] < \/—/ 2/7 = 0-?26-
True convergence limit: | A | < 4 —\/5 — 6 =04

i

. (@) () =1 + §22 + Fot + goet NS

Téx, £; ) = z£(1 + 2 N X -).u‘

s T, £ 3) = ($+EJ+R'3'+‘2‘(J3‘+a 8 + z4]

Y N T D

(1+¢— x)e""v §[e‘(*“9 A B G I
Kalw, &} = { (1 b — )qu.; — Ligt® 4o erti) (2 > 8.

Tz, £ A) =' — A\\ g

1204 9 + 3t — 6 + 9 + 1208

. F(x E;}\)E' - 12 — 12x — A

‘

Iixaet seyLlitmn is y(x) = L
. ‘h,\k\z4 y(5)/9(0) ~ 0.801, ¥(1)/y(0} = 0.656.

7;(“&“}%0541 sin & + 0,031 gin 3¢ + 0.007 sin 5.

N
90\h) y(x) ~ 0.131 + 1.0122.
- Ny = 1.06.



Index

(Iialicized figures In parentheses refer o problem numbers)

4

Abel’s formula, 389

Abel's integral equation, 440, 487 (0-63)
Ab;;orption, thermal, 289

Adjoint kernel, 481(40)

Adjoint matrix, 14, 17

Augmented matriz, 18

B
Backward differences, 230
Basls, 26, 32
Beam:

rotating, 180

vibrating, 207(84}
Bending stiffness, 185 \
Bessel’s inequality, 91 Ny
Biharmonie squation, 204(29), 313"
Bilincar expansion, of kernel, 482(42)
Block relaxation, 298 &)

. \\

Caleulus of variations-120°
direct methods o)\ 167
semidirect methddsPof, 197
Canonieal forms! 38, 45, 47, 77, 172
Caponical matrs, 61
Catenary, JAON"
Caunchy pringipal value, 491 (85}
Cayley-Hamilton theorem, 64
Cegﬁml\dlfﬁ'erences, 231
. ntr'jfuga.l foree, 157
Chuagacteristic equation, 31, 64
reduced, 64
Characteristic functions, 95, 267, 408,
442
expansions in, 98, 270, 414
orthogonality of, 86, 413, 481(40)
Characteristic numbers, 31, 44, 8¢, 95,
94, 267, 448
dominant, 68
minimal properéies of,
208(37), 495(57)
mwltiple, 32, 34, 58, 76
Chuaracteristics, 323, 327

113(76-85),

£/
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N
RSN

Charaeterizstie-value problemss,
algebrain agquations, 20,75, 81, 123
numerical methods, 68, 70, 80, 82
difference equations, 287, 281, 312
differential equations, 95, 145, 281,

312
integral equations, 408
numeris rethods, 442

Characteristic’vectors, 30, 44, 75, 79, 81
Coeffeient\matrix, 18

Cofaghorg1l, 23

Cogradient variables, 48

(allgeation, 450

Oimpleteness, 92
\@onduction, thermal, 289
Cone, motion on, 160

Conformal mapping, 317, 472(25-30)
Congruence transformation, 42
Copjunctive transformation, 46
Conservative force, 149, 152
Cangtraint, 138, 162

nonholonomic, 164
Continued fractions, 349(1.2), 357(81-33)
Clontragradient variables, 58
Convergence in the mean, 93

Convolution, 438
Coordinate transformations, 53, 57

Coriolis inertis force, 158
Cramer's rule, 12
Crout reduction, 4, 508

b

Defect, 3, 26
Delta, Kronecker, 15
Delta funetion, 366
Determinants, 10
sofactors of, 11, 23
Laplace expansion of, 11
miners of,f 1113
roduct of,
Diggonalimtion of matrices, 37, 45, 56,
80, 77 |
Difference equations, 227
nonlinear, 370(68)
order of, 227
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Differenco cquntions {eont.):
sirnultancous, 353(19)
stability of, 328

Difference operators, 230

Differences:
backward, 230
central, 231
forward, 227

Dilferentiation, of integrals, 383

Biffusivity, thermal, 2090

Dhgamma funetion, A62{560

Diriehlet prablem, 139, 183, 242, $76{34)

Diseriminants, 51

Dissipative forces, 173

Dyad, 103(20)

E

Bigenfunctions, 05, 408
Eigenvalues, 30, 408
Eigenvectors, 30

Elementary operations, 18, 42
Elliptic differential equations, 320
Euler equation, 127, 136, 137
Euler's constant, 267

Extremals, 128

F

Factorial powers, 262
Factorization, of difference operators,
277
Fibonauel numbers, 3567(29)
Filters, 350{(35-59)
Force potential, 149
Forward differences, 227
Fourier constants, 89
Fourier series, 99
Fourier sine transform, 335
¥redholm integral equatibn, 381,
406, 411, 423, 482
Fredholm theory, of Jutegral equations,
432 o
Functionals, 180} "
Function sp'a\\ee: 87, 117(86 51}
linear\dépeudence in, 89
nora iy 88, 04
.. Hérmitian, 94
orjh’ogoxmlit.y in, 88, 94
\Sca.lar product in, 88, 94

a

Galerkin, method of, 451
Gauss-Jordan reduction, 1
Gauss reduction, 4
Generalized accelerations, 156
Generalized coordinatey, 150
Generalized foroes, 152
Generalizod momenta, 156
Generalized velocities, 151
Generating function, 353(21)

*»
N,
{

~

387,

INDEEX

Cieorlesios, 202(8 1.2)

Golilen menn, 3537(.29)

Gradient, minimization uf, 138

Girmndnn, 25, U429

Green's formuala, 165(§1}

Green's Nutetion, 385, 3494, 501
constraction by conformal inapping,

AT2{ 2 2

peneralized, S0, d060ie k)

ir

Hamiltoninn funetion, 210048 Q
Hamilton's canotdeal e ions, ‘;31 N9
Hamilton's principle, 147 2
Heal flow: 2\
one~tlimensional, 282, 328 _367(EN
two-thimensionad, {'3 ,':’.
differenes-eoand g f|1|51m|l.'ll.irm, 289
Hurmitinn form, 43,540
Hermitian k('l'lll’lm-?ﬁl{b’f))
Hernitian maleiseat), 42, 61
Herniliat 1Ry, 0t
II(.‘I‘II]i'.Il.'lIIxx'\.l]rHT procduct, 24
Hilbert-elunids  thearsy,  of
,ie’:;‘\at.i:ms. AL
HillsstMranstorn, HI1{H5)
Hypeetolic differentiul equations, 321,
RS

intogral

I

Y Inertin coefficients, 174
Inertia forces, 157
Coriolis, 158
momental, 157
Influenee funetion, 401
Integral equations, 381
Abel's, 440, 48T{60-63)
approximuate solution of:
by iterative approximations, 421,
442
by kernel approximation, 459
ue limits of sets of algehraie equa-
tions, 444
by methods of undetermined coeffi-
cientz, 448
collovation, 450
least squares, 452
weighting functions, 451
of first kind, 382, 418, 438
Fredholm, 381, 387, 406, 411, 422, 432
of lifling line, 497 (&%)
of second kind, 382
singular, 435
of third kind, 382
Volterra, 381, 385, 425, 439
Integral operator, 423, 425
positive, 496{75}
positive definite, 496(78)
Invariants, 49

&



INDEX

Inverse mutbrix, 15
Irragnlar boundary 302
Irregular net point, 302
Tterated kernel, 429

J
Jordan canoniesl muatrix, 61

K

Keurnel, 381
adjoint, 481040
auxiliary, 490(67)
bilinear expansion of, 482(42)
_Hermitian, 481 (35
iterated, 425
reciprocal, 430
resolvent, 430)
self-adjoint, 481(40)
separable, 406
skew-symmetrie, 496(80)
symmetrie, 387, 412
Kinetic energy, 148, 150, 169
Kinetic potential, 150
Kronacker dalta, 15

L

Lagrange multipliers,
162

Lagrange’s equationg, 150, 169
for electrical nebworls, 217(63)

Lagrangian funetion, 150 N

Laplace expanaion, 11 i

Laplace™s equation, 138, 183 2281),

Lan] 292, 205, 4T0(24-30) 4
aplace transform, 436 ¢ ¢\

Latent roots, 30 \\

Least-squares approxipiation, 90, 452

Length, of vector, 24) 76

Llftmg-h_ne equamm} 497(85)

Linear algebraj quutmns, sots of, 1
augmented. {r@ 1ix of, 18
(-hara.cte\smc-value problems, 29, 76,

88, 70, B0,

121, 140, 143,

numencd.l methods,

o J\}OBE.CleDt matrix of, 13
\(_“}ramcr s rule, 12
Crout reduction 4, 503
defact of, 3
Gauss-Jordan reduction, 1
Gauss redaetion, 4
homogeneous, 12, 22
transposed, 20
nullity of, 26
solvability of, 21, 29, 33, 45
trivial solution of, 12, 22
Linear dependence, 24, 89, 260
Linear transformation, 4

N

~

C XY

521
M

Matrices, 4, 170, 270
addition of, 8
adjoint, 14, 17
augmented, I8
canpnical, 61
cocficient, 18
complex conjugate, 24, 43
conformable, &
diagonal, 15, 37, 45, 56, 60, 77
differentiation of, 110{56)
diseriminants of, 49
elementary operations on, 18, 42
equal, 9 2
equivalent, 42 A\
~ funetions of, 62 \
Hermitian, 30, 42, ﬁL‘ \Y
invariauts of, 49
inverse, 15
latent roots ofy Sa\
modal, 39, 45 76
normalizddN39, 45, 76
mult.lphc }wn of, 6, 7
ortho; né 39
pagtitioning of, 9
positive definite, 46, 76
. Thnk of, 19
Vigéalar, 15
% singular, 13
gymmettic, 30
trace of, B0
tranapose of, 13
trianguiar, 41
umit, 14
unttery, 46
zero, 18
Maxima snd minima, 126, 200{0)
Membrane:
deflection of, 181, 198
vibration of, 181, ,‘L".-)f)‘f . oristic
roperties, of character.
Mlmmilun?bmi, 113{76-85), 208{37},
405(77)
Minimal surfaces, 128, 137
Minor, 11
prlnClpial &0 20
odal column,
i&adal matriz, 30, 45, 76, 171
normalized, 39, 45, 78
Momental inertia force, 157
Momentum, 156
N
Natnral boundary conditions, 128, 147,
178, 181, 182, 186

Natural coordmates, 172
N:tural trensition conditions, 218(64)

Watural vibration modes, 84, 171, 255
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Negative dofinite forms, 107 (45)

Neumann problem, 183, 202,
470(85)

Neoeumann series, 429

Noncongervative fiolds, 154

Norm, 88, 95

Hermitian, 94
MNormal coerdinetes, 168, 174
Nullity, 26

303,

a

Order, of difference oquation, 227
Orthogonality:

of functions, 58, 04, 280, 413

of vectors, 24, 756
Orthogonalization, 34
COrthogonal matrix, 39
QOrthogonel set, 89
Orthogonal transformation, 42, S

P

Parabolic differential equations, 320, 328
Partitioning, of matrix, 9
Pendulum;
compound, 153, 174
simpla, 152
Plate, deflection of, 185

Poisson integral formula, 474(27) s\
Peigaon's equation, 153, 312, 400 R

Polsson's ratio, 186 NN
Positive definite forms, 46, 4%, 170~
FPositive definite integral opﬁg’rator.
460(79) e
Positive definite matrix, 4 o™
Positive integral operator, 496(79)

Potential; £
force, 148 £
kinetic, 150 £\

Potontial energy{ 149, 160
of deformedsbearm, 181
of deformed \membrans, 183
of defnqme plate, 186
of deférmed spring, 213(55)
of deformed string, 178
Feduced, 163
lg’t{néipa.l axes, 124
Principa! minors, 50
Principal value ol integral, 401(68)
Product, continued, 275
Psi function, 266, 362 (46-60)
Pulley, 164

Q

Quadratic forms, 35, 170
canonical, 36, 45, 47, 77, 172
diseriminanta of, 51
Hermitian, 43
invariants of, 40
positive definite, 46, 49, 170

INDEX

Quudratic integral forne, 40:2(70)
Quadrie surfnee, 36, 123
principal axis of, 124

i
Rank, 19, 26, 28
Ruyvleigh's dissipation funetion, 173
Rayleigh's prineiple, 147
Heviprocnd kernel, 430
Deviprociny relwtion, 400
Hedueing factor, 220{75) N\
Reduction of arder, of differencee equs-
Ui, 2706 & \\
Region of dbhternomation, 324, TP
Relaxation methumlbs, 2035, HUQ\
bounrlery comditions, @G04 ;
Residunl, 243, 310 “( N
Resistutiee: +$2)
mwechunieal, 10
therml, 20058 )
Resistanee coslficients, 174
Resolvent k Mhpel, 430

Ritz mul{inl‘, 18T
Root wituh square value, 11883
Rut.nl?i{n.{.:jh:xft, L&t
Retaving string, 177, 231, 404
W
) 8
Bealar product:
of funetiong, 85, 943
of vectors, 23, 73
Schmilt orthogonalisation procedure, 35
Sehwarz inequality, 1IT{87;
Secular eguution, 31
Self-adjoint differentinl equations,
201 (73), 420
Seif-adjoint kernel, 4851040}
Separable kernel, 406
Bhifting operator, 231
Similarity trausformation, 42, 53, bb,
Gl
Simpson's rule, 10104}, 444
Singularity funetion, 395
Spanniug, of space, 26
Sphere, motion on, 159
Spherical coordinates, 168
Spring, potential encrgy of, 213(58)
Stability, of differcnee cquations, 328,
334
von Newmann criterion, 339
Stable equilibrivm, 168
Stationary values, 120
Stiffniess coefficients, 174
Strain energy, of plate, 186
String:
deflection of, 177, 233, 249, 402
rotating, 177, 251, 404
vibrating, 147, 207(35), 254, av2
Sturm-Liouville problems, 95, 144



INDEX

Summation, 257, 269, 347(8)
by parts, 2568
Sylvester’s formula, 67

T

Three moment equation, 347(8)
Traece, of matrix, 50
Transformations, 4, 42
congruence, 42
conjunctive, 46
coordinate, 53, 57
orthogonal, 42, 55
similarity, 42, 53, 55, 61
unitary, 406
Transforms, 56, 438
Trapezoidal rule, 444
Traveling waves, 358(3.4-37)
Triangular matrix, 41
Trivial funetion, 89
Tschebycheff polynomials, 349(11},
361{14)

Undetermined coeficients, method of,
943, 448

TUniform eonvergence, 425

Unitary matriz, 46

Unitary transformation, 46

Tnit matrix, 14

Tnit singularity function, 385

Unit vector, 24, 76 ,\”\
N
A »
79 N/
A/
(N
O
,\\../
R\ _
.\’:; :

523
7

Varistion of parameters, 246
Vauristions, 130
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Hermitian prodoct of, 24
length of, 24
generalized, 76
linear dependence of, 24
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zero, 24
Vector space, 23, 27, ¢
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