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PREFACE

The authors’ aim has been to present, between the eovers of a single
book, those parts of mathematies which form the tocls of the modern
worker in theoretical physics and chemistry. They have endeavored to
do this by steering a middle course between the mere recording of facts and
formulas which is typical of handbook treatments, and the penderous
development which characterizes treatiscs in special fields. . Therefore,
‘as far as space permitted, all results have been embeddediin-the logical
texture of proofs. QOeccasionally, when full demonstrations are lengthy or
not particularly illuminating with respect to the suhjeet at hand, they
have been omitted in favor of references to the literature. Except for the
first chapter, which is primarily a survey, proofs\ha.ve always been given
where omission would destroy the continuity of freatment.

Arbitrary selection of topics has been n@éesary for lack of space. This
was based partly on the authors’ opiniongas to the relevance of various
subjects, partly on the results of gdnsultations with colleagues. The

- %

degree of difficulty of the treatmentd3such that a Senior majoring in physics
or chemistry would be able to AN R PR &t U ook with under-
standing, -

While inclusion of largédollections of routine problems did not seem
conformable to the purpose of the book, the authors have felt that its
usefulness might be @gmented by two minor pedagogical devices: the
insertion here andvligre of fully worked examples illustrative of the theory
under discussioiyyand the dispersal, throughout the book, of special prob-
Jems confirming, and in some cases supplementing, the ideas of the fext.
Answers $Q the problems are usually given.

degree of rigor to which we have aspired is that customary in
carefill 'scientific demonstrations, not the lofty heights sccesgible to the
pute’mathematician. For this we make no apology; if the history of the
exact sciences teaches anything it is that emphasis on extreme rigor often
engenders sterility, and that the successful pioneer depends more on
brilliant hunches than on the results of existence theorems. We trust, of
course, that our effort to avoid rigor mortis has not brought us danger-
ously close to the opposite extreme of sloppy reasoning. _

A careful attempt has been made to insure continuity of presentation
within each chapter, and as far as possible throughout the book. The
diversity of the subjects has made it necessary to refer oceasionally - fo
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chapters ahead. Whenever this occurs it is done r_eluctantly and in order
to avoid repetition. ' R

' As to form, considerations of literacy have offen been given secondary

and brevity, and no great attempt has been

rank in favor of coneiseness > gr 3 ha
rtificially uniformismg the

made to disguise individual authbrsh‘ip by a

style. - ' ' .

The authors have used the material of several of the chapters 1n & num-
ber of special courses & d have found its collection into & single volume
¢onvenient. To venture a few specific suggestions, the book, if it were
judged favorably by mathematicians, would serve as & foundatiof, for
courses in applied mathematics on the senior and first year graduate level.
A thorough introductory course in quantum mechanics could be based on
chapter 2, parts of 3, 8 and 10, and chapter 11. Chapters’lﬂ.}‘l‘() and parts

- of 11 may be used in & short course which reviews thermodynamics and

. then treats statistical mechanics. Reading of chapte,rs}ﬁl,\ 9, and 15 would

prepare for an understanding of special treatments da)ng with polyatomic

molecules, and the liguid and solid state, Singesbility to handle numeri-
csl computations is very iraportant in all brandhés of physics and chemistry,

» chapter designed to familiarize the readerwith all tools likely to be necded

th such work has heen included. N '

The indgx, hag been. made suffic sently complete so that the book can
serve 88 3 ready reference %oyd%ﬁifﬁons, theorems and proofs. Graduate
st:udents and scientists whogenmemory of specific mathematical details ix
dimmed may if'lnd it use{ul\m review. Last, but not least, the authors
ha..ve had m mind ﬂ_l venturous student of physies and chemistry who
wishes o 1mpr0ve“h'1§'mathematical knowledge through self-study.

HenrY MARGENAU
Groree M. MURPHY
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CHAPTER 1
THE MATHEMATICS OF THERMODYNAMICS

Most of the chapters of this book endeavor to treat some single mathe-
matical method in a systematic manner. The subject of thermodynamics,
being highly empirical and synoptic in its contents, does not contain a very
uniform method of analysis. Nevertheless, it involves mathematical
elements of considerable intercst, chiefly centered about partial differentia-
tion. Rather than omit these entirely from consideration, it seemed well
to devote the present chapter to them. Of necessity, the treafment is
perhaps less systematic than elsewherc. It is placed at thesbeginning
because most readers are likely to have some familiarity v,\i(’{b\the subject
and becausc the mathematical methods are simple. (A'rea;ding of the first
chapter is not eszential for an understanding of the rem@inder of the book.)

1.1. Introduction.—The science of thermodyndnigs is concerned with
the laws that govern the transformations of ener:g;g\o‘f one kind into another
during physical or chemical changes. These changes are agsumed to oceur
within a thermodynamic system which is cowmpletely isolated from its sur-
roundings. Such a system is deseribed by trcans of thermodynamic variables
which are of two kinds.  Eutensive vagiitbles are proportionat to the amount
of matter which ig being considercdyiygheatpsezeplos gra the volume or the
total energy of the system, Variables which are independent of the amount
of matter present, such as pressure or temperature, are called intensive
rariables. (\J

It is found experimar}m ly that it is not possible to change all of these
variables independently, for if certain ones of them are held constant, the
remaining ones aré attomatically fixed in value. Mathematically, such a
situation is trga@a&fby the method of pariiol differentiation. Furthermore,
a cortain tyhé{if differential, called the exact differential and an integral,
known ag :t}le line integral are of great importance in the study of thermo-
dynpgnidé;.’ We propose to describe these matters in a general way and to
apply)them to a few specific problems. We assume that the reader is
familiar with the general ideas of thermodynamics and refer him to other
sources! for a more complete treatment of the physical details.

1j Williard Gibbs, Transactions of the Conn, Acad. (1875~1878); ¢ Scientific
Papers of Willard Gibbs,” Vol. 1., Longmans and Co. Some recent texts are: Epstein,
« Texthook of Thermodynamics,” John Wiley and Sons, New York, 1937; MaecDougall,
¢ Thermodynamics and Chemistry,” Third Edition, John Wiley and Sons, New York,
1039; Steiner, “ Introduetion to Chemieal Thermedynamics,” McGraw-Hill Bock
Co., New York, 1941, Zemansky, “ Heat and Thormodynamies,” MceGraw-Hill, N. Y.,
1937.

3



gg .. s aETios”OF THERMODYNAMICS

43 Diﬁerenﬁatl on of Functmns ofSeveral Independent Variable;.—lf
2 13 A s}nglé—va.lﬁed function of two real, independent variables, = and ¢,
e )
- it functior ¥ The relation between the
is said to be an explicit function of 2 and . 1!
:hl:eewvg;:blez :;ﬁg repgéented-by plotting z, y and z along the axes of a
b Cartesian coordinate system, the result being a surface. If we wish to
i study the motion of some point {x;y) over the surface, th?re are thl:ee
: pomlbleca.ses (a) = varies and y remains constant; (b) y varies, x 1'(;1{18,11‘:-
" ing constant; (¢) both z and y vary simultaneously. o .
- hgﬁthe ﬁ;-st( gnd seoond. osses, the path. of the point will be(along the
mm‘eaproducedwhen planes, parallel to the XZ- or YZ—mor@mate l?la.nes,
o intersect the original surface. If z is increased by the s:m_gll quantity Az
7. and y remsins constant, z changes from f(z,3) to f (J:"-I- Az,y), and the
i ’.pdrﬁd_dérimtiue_:oi 2 with respect to « at the point (Z).18 defined by
e @+ Ary) ~JEw)

L) i A@\"

The foﬁdwing alternative notations are ;oﬂ:.eﬁ uged

L L) = ?@(x:yi)f'; (Ef;) B (ﬁ)y -

ERN . w_ww,dbraulibl'ary\ozf'gzin _

- where the constancy of y is indicated by the subseript. Sinee both z and Y
- .are_gompletely ‘independefit the partial derivative is evaluated by the
- usual method for the @ﬁérentiation of a function of a single variable, y
“ being treated as.a qoﬁst,ant. : :

. Defining the partial derivative of z with respect to y (z remaining con-
- gtant) in & simildr way, we may write

¥ 2is a function of more than two variables
N :
£ \' Do N .

£ 2 = f(-’cl,ﬂ?m."‘ -,a:;,) -
. the simple geometric interpretation is lacking, but such s symbol as: -

..: ) . . . . axl mg.,n,.'..,xﬂ
}'ﬁﬂl means that the fuaction is to
- the,ususl rules, all other variables being considered a3 constants.
- Smﬁethg partial deriva,t.-ives are themselves functions of the independent
3 Vill’hbla, they may be differentiated again to give second and higher

be differentiated with respect to z; by
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derivatives

oz \oz o

d fae %
fzﬂ e B

az \dy dxdy

8 faz o% (1-3)
o= 5 (5) e

a [ a2 3%z ~
e 22 e \

dy \oy dy N

2+ AN

It is not always true that ., = f,.; but the order of diffefentiation s
immaterial if the function and its derivatives are continuous., Since this is
usually the rase in physical applications, quantities such as Jow Jyz o7
Jewys Jayns fyze Will be considered identical in the presen‘h’breatment

1.3. Total Differentials.—In the third case of see)N"2, both # and y vary
simultaneously or, in geometric language, the point moves along a curve
determined by the intersection with z = f (x,y}so‘f a surface which is neither
parallel with the XZ- nor YZ- eoordinate ‘plane, Since x and y are inde-
pendent, both Az and Ay approach zerd as Az approaches zero. In that
case the change in z caused by mcrements Az and Ay, called the tofal
differential of 2, is given by WW dbraulibrary.org.in

©ur@e e

If it happens that z ah.d y depend on a single independent variable « (it-
might be the are Length of the curve along which the point moves, or the
time), O

§\ z = floy); ©=F); y="Fsw)
then, f}'gr:@l: “)

£\
de _ (o) dz_ (02) dy _
N du ( ) du + (ay), s (1 5)

For the speéiai case,

z =f(zy); z=F(y); yindependent

dz dz\ dzx a2 :
===} =4+{— 1-6
dy (ax)y dy + 6?1)== (1-6)

An important generaligation of these results arises when z, ¥, - « - are not
independent variables but are each functions of s finite number of independ-
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ent variables, %, v, -+ *

f =1y )
&= Fl(u,ﬂ,W, n )
¥ = F?.(u”v!w! o )

................

and from (B) o\

@, @ )..°
Sy en NOT/ g s \BUS o 1, i, N
d a K7, NN
+(—f) (-?i)\ Foee (8
GLTTIPRRRAN 3 A S

with similar expressions for (3f/8v), (8f/dw)and When these are put inte

Then, from {4)

(7) we obtain M
_[afox | 3foy ] [afglzf” of 3y ‘J
df_[axau+6_yau+ duf. :'a_mav+6_yau+ do+
e wwagdbrauli bl'ajya_:ﬁ; SR éa?j oy af
= | — d —_— d e - —= _ —_— e | — .o —-9
Zgu 4 do ":axi[audu+avdv+ ]ay+ (1-9)
Since u, v, - - - are ig:ld\eﬁg;ndent variables, we may write
p.\ N\ ax dx
L > dx=—-—-—d’u,+—dv+...
% du dv
’\:“: / L , (1-10)
SO i Y
2\ = = = .
§ % o ou + ay &+
qu\n’}jaring coefficients in (9) and (10), we finally obtain
~V o, .o
d = —d — s - 1
\ f =@t t (1-11)

The differenice between (7) and (11) should be noted: in the former equa
tion the partial derivatives are taken with respect to the independent va
riables, while in the latter, with respect to the dependent variables. The m:
portant conclusion may thus be drawn that the total differential may b
written either in the form (7) or (11): that is, df may be composed addi

. d
tively of terms —a'—;: dz, - - -, regardless of whether z is a dependent or &I

independent variable.
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1.4, Higher Order Differentials.—Differentials of the second, third and
higher orders are defined by

&f = didf); & =dd@); - &Y =d@)

If there are two variables z and g, we obtain from (4)

d% = d(df) —d( f)dx+( !)d(d:c) +d( f)dy+( f)d(dy)

However,

d 3 {a dfa & 3 A,
d (69 __ dz (5 &+ dy (@J) 4y T ot 2de + axay\dy“~\

\ W

N

ﬁﬁth & similar expression for d (ﬂ) , hence K N
a2f 262f f f\\ f
0 = o5 (@) + T dedy + o5 @ BT At
% \\~

If x and ¢ Ema independent variables, d*z X d\,stc it o= dy =0,
and the n-th order differential becomes O

) o Ff g
drf = f L a + @ aTay i a“"‘ﬁ(( )w"‘a d

\ 1y 2 d 1-12
-+ n\a a —; dzdy + Y ( )
\\
where the (n) areth.ébinomial coeflicients, (n) = ( " ) = nl/kl(n—k)!
k N k n—k

(Cf. sec. 12. 27\\
Exame~ ‘Calculate dp and d’p for a gas obeying van der Waals’
equation’

w\“\ . -
\ } p = ¥V — ﬁ V2
(6;0 RT n 20
( ) v -V
o: ( 2RT  ba
(aTz) o aV2> v -—-87 v

] (6;0) R =i i;?)
aV oT TV —82 AT \aV
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R Za RT
R Ll kv L

. . 2RT G 2 2R .
p = [(V L V‘*](m 7

1.5. Implicit Functions,—In the preceding diseussion, the dependence
of one variable on another has been given in explicit form, as £ = f(y)-
Let us assume the relation between the variables to be given in implicil
form such as f(z,y) = 0. If it is now desired to compute dy/dz, ane could
solve f(z,y) = 0 for y and then differentiate. 'This procedur®, “which is
often needlessly complicated, may however be avoided,for,“according
to (4), \ >

0,
"

df = (%!)y dz -+ (;;%)x dy =Q‘\ (1-13)

X7\
(),
dy _ . \9%),
www.dbl'aulibral'y.m{g’.’in :9;
) x

If the equations for s “circle, a® +¢® —a® =0, or an ellipse,
2%/a® + y?/b% — 1 = Q@ke taken for f(z,y) =0, the advantage of using
this method to obtain‘derivatives is at once evident.

If an implicit,r{:lation is given between three variables, F(x,y,2) = 0,
any one may be eensidered to depend on the other two, for there are three
possible relgﬁ}ehs '

Az =iy =9@e); 2 =hizy)

and’

I :beé' taken as the dependent variable, then
N/ dF = Fodz + Fydy + Fdz = 0

At constant y, dy = 0, so that

oz F,
(.é;)y - "F: . (1-14)

- fox F
&), --7 (1-15)

at constant z, dz = 0, hence
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A third possibility arises if two relations are given between three vari-
ables

f(x,y,z) =0
' glzyz) =0
Then :
df =fodz + fidy +Jdz =0
dg = gdz + gdy + g:dz = 0
Solving these two equations, we obtain (see sec. 10.9) ~
Sole | [l [ fady O\
dedy :dz = : : AN
iy d: {Jz Gz Iy by

Turther examples of the properties of implicit funetions, a;nd thelr deriva-
tives will be found in the discussion of thermodynamic qn:&ut-ities.

1.6. Implicit Functions in Thermodynamics.—¥he simplest thermo-
dynamic systems are homogeneous fluids or soﬁgi,s,%ﬁbjected to no exiernal
stresses except a constant hydrostatic pressupe.\ Investigation shows that
for all such systems, there is an eguafion of stgte or characteristic equation of
the form ’ ~.’:." ¥
fie, T‘,\;i%h.db?‘aulibrary,org,jn (1-16)
where p is the pressure exerted by the system, V is its volume and T, its
temperature on some suitable @le. From (16), an equation of the form of
(13) may then be obtained.()

N\ }
&f = (8ffopyom dp + @F/3V);x dV + (3f/0T),y dT = 0
Setting dp, 4V, dT 9q'ua:1"tofzero, successively, there results a set of equations
similar to (14) 31)&“(15)
(%V (‘EK) o WDy _ L
W\ aT/, (@ffoVY,r  (8T/8V)p

O° oT\ _ (ffopdry _ _ 1 )
A (6‘;)v T (of/oT) v (9p/0T)y (1-17)

(_@g) ENC/C

av/r. @f/op)ry . (@V/op)r

Three possible products may be found by multiplying any pair of these
equations and removing the common terms. A typical one is

ap ¢ T EE B
7). G, -G, -1
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The product of all three derivatives js

These resulis are of considerable importance since they are verified by
experiment, the derivatives being proportional to such physical quantities
as the coefficients of eompressibility, thermal expansion and temperature
increase with pressure.

1.7. Exact Differentials and Line Integrals.—It is often required, in
thermodynamic problems, to find values of a function u{x,y) at two})oints
{z1,41) and (z2,y) by integration of an equation O\

dulwy) = Mey)ds + Naydy O (1-20)

7%
S

between the limits 1y and ua.

. ¢ ’\” ¥
The attempted integration results in such a-syﬁ%ol as f M (z,y)dz,
Ea

which iz meaningless unless y can be elimirfé@?d by a relation, y = f(x).
This is equivalent 0 specifying the path’ ifi\the X Y-plane along which the
integration is performed, hence integrals\of '(20) are known as line integrals.
There are many of these paths, the%alue of the definite integral differing
in general, foweaehlbr{ihbrityasigaias particularly simple when du is a fofal
differential, or, as it is often called, a complete or exact differential. Com-
parison of (4) with (20) shows that in this case

M(azkgm)’= du/ox; N(zy) = ou/dy (1-21)

Moreover, since the erder of differentiation is of no-importance, it follows
that - <O : S
AN aMjoy = 8*u/oxdy = aN/dz (1-22)

Inspecti of\ (21) shows that « may be found by integration even when a
functignal relation between z and y is unknown. In other words, the line
igfuggﬁalis independent of the path; it depends only on the values of x and
g@t the upper and lower limits. The function  isthen said to be a poind
Fhetion, . _. o }

In thermodynamies, it frequently happens that the upper and lower
limits are the same, that is, the integration is perforried around a complete
cyele. Tt the differontial du is exact, then the value of the line integral is
zero; if du is inexact, integration around a closed cycle gives a result not
equal to zero.

1.8. Exact and Inexact Differentials in Thermodynamics.—Examples
of exaet and inexaet differentials are readily found in thermodynamies.
Consider a mole of an ideal gas, whose equation of state is p¥V = RT. Let
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the initial conditions be ¥y, p; and 7' and the finsl conditions be V3, p2
and T Caloulate the change in volume and the work done in going

TJk
C/;Yﬂ,pﬂ .
N\
O
'S 0
W
. A 2 .“.'\t A
/Tl,PI \:»\\\'
K7\
\ \ :_
.‘ P

%
P
L >
N/

lel~

from the initial to the final state, thgqm@g;ﬁggﬂbbwg)ﬁg two different
paths in each case. Since V = f(n,7),

’ oV
(&) ar d
dV\\(aT) or + ap) P
O B Ezdp (1-23)
P P

x«\;m
Let the first équtitlon of path (AC in Fig. 1) be

~\
{\‘lvT Fl_(.—,—-
\"‘\)z =

Then dT = %I dp and (23) becomes
L

AT dp ( AT \dp Apo]
V=rl{Z® _(1y-—p ) —-—-F
¢ R[Ap P PR ap

(P—m)*—(p*m)

or, on integration,
R(Tapr — poTi)

Ve — V1 = AV =
? ! PLp2
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The second path will be considered as consisting of two parts: AB and BC
(cf. Fig. 1). .
Along path AB, T Ty, dT = 0 and along BC, p = p3, dp = 0, hence

day = —RT;-—2 —dT,
y P2
or
R(Top, — paT1)
P12

The change in volume is thus the same for these alternative paths
A similar conclusion might have heen drawn from the test forexact.ness

AV =

M =R/p; N = —RT/p* X C
M R _ON ON
ap p* 3T N

which shows that (23} is exact.
The mechanical work done by an expa\tﬁhg gas is

dW = paV (1-24)

regardless of the shape of the contai’ﬁer"a,nd provided that the expansion is

performed revermhly in the therfnﬂdynamw sense. Combining (24) with
(28) we obtain braulibrary . R

N[OV v
dH(XP (6T) T+op (ap) dp
&

RT

= RdT — — dp (1-25)
Y P
1t 1s clear t"la:a‘ii:"dW Is inexact since

N RT oM aN R

N M=R N=--22. &2 . oy o _ &

N ’ p’ dp 07 T v

AN
\’Bypath AC,

AT dp AT
dW=R[dT—(T—-—- . 2 ]
1 Ap?l P Apdp

and, on integration,

AT
Wo — Wi = AWy = R(-—pl 7 Y m 22
Ap "
2 Here and elsewhere in this chapter, we assume that sall processes are performed

reversibly when such requirement is needed for the argument. TFor discussions of
reveraibility, texts on thermodynamics should be consulted.
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Along paths 4B and BC,

dW = R[~T1df+ dT]
ar.

AW, =R[ Tlln;-f-AT]

Comparison of AWy and AW, shows that the ‘work is different along the
two paths. N\
Heat absorbed or evolved in a process, d@, also depends on the path.
The expression for the inexact differential with p and 7' as mdepéndent
variables is A O

aQ = (@) dT + -9) dp AN
a7 » ap/r '\'\'

= C,dT + Agdp \% (1-26)

where Cp, and A, are the continuous functions of Md #, known as the heat
capacity at constant pressure and the latent heat of change of pressure,
respectively. £

Problem. Connsct the points p3, V1 and‘pg,V 2 of Fig. 1 with & circular arc. Inte-

grate (23) along this path.
.www dbraulibrary . org.in

1.9. The Laws of Thermodynamlcs —There are obvious advantages in
expressing the laws of therquynamws in terms of quantities which are
independent of the path3¢ ‘A% we have seen, both d@ and €W are inexact,
but the difference betwee}\}hem, a function known as the énternal energy

>~ AU = dQ — dW " (1-27)

AX
is an exact djﬁem'?htial. This equation® often serves as a statement of the
first law of t@e“z\'niodynamics. By combining (25) and (26) we may also
write O

AN ? av]
~ <\ _ T — - _2
. dU [C paT:Id +|: pap dp {128}

Y

with the additional requirement of exactness from (22)

8 av 3 vl
2 et A, — p— -2
ap [Cp paT} BT[ i pap] 1-29)

3 This fact was recognized by Clausius, “ The Mechanical Theory of Heat,” trans-
lated by W. K. Browne, Macmillan & Co., London, 1879, who discusses the laws of

thermodynamies from this standpoint.
4 Note that +dQ means heat absorbed and 4-4W work deme by the systern, Minus

signs indicate heat evolved or work done on the system.
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These two equations are a more satisfactory definition of the first law .tha““
(27) since they show the essential fact that the internal energy, dU, is an
exact differential. The inexactness of d@ and dW is sometimes indicated®
by stating the first law in the form of (27) with symbols such as 4@, D@,
or 4 on the right.

The second law of thermodynamies is based upon an attempt to find a
function of d@ which is an exact differential. From (27) and (24),

4Q = dU + dW = dU + pdV (1-272)
but U = f(V,T), hence ~
a a \
w- (RGO
aﬁd ”"} by
15 ] N3
(% =Y aw 1-30
a0 = (32} ar + (v + o) 47 (1-30)

In passing from an initial state, V1, T, to a findl'state, V3, T3, the integral
on the right of (30) cannot he evaluate,d’,%Ithout further information,
since the second term contains both pand V. In the special case of an
ideal gas where pV = RT and (3U) /(@V)r = 0, (30) becomes

ETAN RTAV
www.dbl‘auﬁg'a?)(gg'ﬁ;u} dT + T (1_31)

The first term on the rightref this expression is the heat capacify at constant
volume and depends pgrl;‘he temperature alone. If therefore we make the
further restriction of ‘eohstant temperature, that is, assume the process to
be isothermal, thegntegral may be obtained. The form of (31) suggests that
if we divide by, &) the resulting equation

N aQ 1{9 RdV
‘\\ ) T T (az)v T + Vv
mayealso be integrated when T changes. The more general inexact differ-
gtial (26) when divided by T is also exact, the quantity & so defined being
Nhe entropy _
a G,

_dQ _ Gy Ap | |
a8 = = aT + 7 dp (1-82)

The eondition for exactness

HORIG e

] ¥'The question of a suitable notation for use in thermodynamies hag been discussed
by Tunell, G., J. Phys. Chem. 36, 1744 (1932); J. Chem. Phys. 9, 101 (1941),
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together with (32) serve as basis for a statement of the second law. Our
arguments concerning the first and second laws are intended only to show
their property of exactness. The moet satisfactory formulation of these
laws i= probably that of Carathéodory. We consider this subject in
see. 1.15.

The functions dU and d8 may be combined by using (24), (27) and
(32), to give

Since U =787V) (1°35)
KQ
and dU is exact, we may also write O -

aU) 3 N

di,ﬂ = ] — —l-— —_— V A —

(6 VdS (3V sd S (1-36)
\J/

Comparison of {34) with (36) shows that
{

aly [«
T= (Eé_)v’ P =:_t‘x3§’}:)3

The importance of (35) artses from thqia;ét that if {7 is known as & function
of two independent variables, 8 and ¥, it &% Dpossible g(qogﬁlgglate nume_rical
values of p, T and U for any thqrﬁmc‘fynamlc state when & and V are given.
A quantity like U thus furnithes more information than the equation of
state, for the latter will gnl% give p, V and T'; in order to obtain U and S,
the heat capacity as a function of temperature must also be given. Itisnot
necessary to choose S.and V as the independent variables in (35) or (36), in
fact any pair of theset p, V, T, S (or of the functions to be defined immedi-

ately) may be tdken, but the resulting exact differential is simpler when S

and V are seléét\éa.ﬁ

When t}l'e\conditions of a specifie problem suggest another pair of inde-
pendent:vatiables, it is more convenient to define additional thermodynamic
funftions. These are given in the following relations, where the symbol as
us&‘ by Gibbs precedes the one now customary., :

The heat condent or enthalpy, x = H = U + pV
dH =dU + pdV + Vdp = TdS + Vdp (1-37)

The work content or Helmholiz free energy, &+ = A = U — T8
dA = dU — TdS — 8SdT = —8dT — pdV (1-38)

& Qibbs preferred S and V as independent variables for reasons given in loc. cit.,
{ootnote on page 34.
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and often used. It will be described only briefly since it is & special ease
of a more general procedure which we give in sec. 1.13. It is unnecessary
to compute the 1019 relations because any one of them could be obtained if
the 720 first derivatives were tabulated in terms of the same set of three
independent derivatives. The particular choice of the three is arbitrary,

a T L ) Y 9T ) \

because these are directly obtainable by experiment. One could, then pick
any four derivatives, write them in terms of the chosen threesand’eliminate
the three derivatives from the four equations. The result wistild be a single
equation containing the four derivatives. AR

The 720 derivatives could then be classified inal4en groups by holding
one quantity constant and varying the othet nime. Within the group

‘containing derivatives at constant z, PN

7
S

(5’-‘?) S (“%) (1-40)

' 3y ,: v f oy
www . dbraulibrary ofgiin 5‘?{1
N s 2

which follows by Writing”z{e"cording to {11)

P {

\ \\ Nda: = (i%>dw + (a—x)dz
O o0 gz

| (1-41)
7. {3y oy
\\“\ y Cdy = (aw)dw + ( Bz)dz

setﬁ\iiggo dz = 0 and dividing one equation by the other. It should be
~sémembered that even if 2 and g are not functions of w and z it is still

N\possible to have inexact differentials of the form of (41), henece the present
-arguments apply to d@ and dW as well as to the remaining eight thermo-
dynamic funetions. Upon adopting the abbreviations

iz :
aﬂ)z = (32

any derivative at constant z may be written in purely formal fashion by
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taking the ratio of the proper pair, or
(_a_x_) _ (32’:),
_ /s (8y):
The task of computing the 72 derivatives in this group is thus reduced to
calculation of the nine quantities {(3z)s, (8¥)s ' ++. The latter are easily
found-when several of the derivatives (3x/0y), are known in terms of the
fundamental three for it proves possible to split the former into numerator
and denominator by inspection.

If each of the remaining groups were treated in a similar way, 90 express
sions of the form (9%):, (3y)s, (8%)y, - -+ would be obtained but in every
case (9z), = — (dy), so that the final list need contain only 45 relatlons,
they are given by Bridgman (loc. cit.) in convenient tables.® The{ollow-

ing examples show their use. Let it be required to ealculats (6T/ap)H
From the tables, (8T)g = V — T(8V/8T),, (0p)m = —C,, thus

(Dol

Many alternative forms are easily found, for exa.mple,

O\

@T/38)p = T/Cp; (8T /3p)s = 6"3(‘;—,}‘2) @S/ap)e = —V/T

W dbraulibr ary.org.in

(), -, G,

Add1t1onal examples, tables\fbr a few of the second derivatives, and exten-
gion of the method to ifichude mechanical variables other than pressure
have also been given by-Bridgman.

A further amphﬁlsa“tmn of the method has been presented by Goranson®
whose tables indlude the following cases: (1) one-component unit mass
systems (consta\nt total mass); (2) one-component variable mass systems
or two—component unit mass systems; (3) two-component variable mass
systewid\or thrée-component unit mass systems; (4) three-component
variable’ mass systems or four-component unit mass systems. Lerman'®
has shown how the construetion of such tables may be simplified.

1.11. Thermodynamic Derivatives by Method of Jacobians.—A more
general method which is based on the properties of funciional determinants

hence,

8 Abhreviated tables may be found in several places, for example, Slater, “ Introduc-
tion to Chemical Physics,” MeGraw-Hill Book Co., New York, 1939.

S Qotanson, Roy W., * Thermodynamic Relations in Multi-eomponent Systems,”
.Carnegie Institution of Washington, Washington, D. C., 1930

10 Lerman, J. Chem. Phys. 5, 792 (1837).
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_or Jacobians has been described by Shaw.!’ The mathematical basis on

which it is founded will be discussed in detail in order to explain the con-

struetion of the required table and its application to specific examples.

1.12. Properties of the Jacobian.—The Jacobian'? of 2 and y with

respect to two independent variables, « and v, is defined by :

T@y/un) = 9(zy)/a0up) =

az dx

G). G, 3
-0
au L av u av L ¥ U v

(éz) (a_v) ~\

du/y \Ov/, : >\

When the independent variables are discertiblé from the context, the
Jacobian may be abbreviated as J(z,y), the second form of (42) being

"reserved for cases where it is necessary golgive the independent variables

explicitly. The following properties e obtained directly from the defi
nition of the Jacobian: D :

www,dﬁir(cl%ln:r;c{g{?g) =1
J(2,x) io;";f(k,x) = 0; k, any constant (1-43)
J(z,\{)?q(y,—x) — J(=y) = —J(y2)

A further important property of the Jacobian arises if = and y are explicit
functions of z'and w, which in turn are explicit functions of w and v. Writ:
ing 3{x,y) ﬁiéz',fw) and 9(z,w)/@(u,v) in determinant form, using the rule fo
the nﬁ?}ﬁﬁcation of determinants, the abbreviations (dz/dz),, = =z, and
50 off,\Wwe have .

T Tw By Ry T2y + TuWy Tolp T Tipthy

X

Y. Yo | W Wy

Ye2u + Yulbu Y2y + Yultly

A typical element of the product

e () (3), (2,9 - 2
92/ w \0u/, dw/. \au/, du/,

:; Shaw, A, N.‘, PRil. Trans. Rey. Sce. (London) A234, 209-328 (1035),
The properties of determinants, which are used here, are diseussed in Chapter 10
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the last form resulting from (R), hence

_ Ty Ty
dzy) |, 3w) _ _ 3=y (1-44)
Toa(zaw) T aluy) a{u,v)
i Yu Yo
In the important special case, y = v,
Ty Ty |-
a{x, dx O\
2ey) - (2) %)
a(u,y) v A
Yu yﬂ' A "

N/

for

' 3y ' &y O
= _— = 1 a]]_d yu = (—-—-) :m@\\'
Y (ay)x au )y >

Since many thermodynamic functions are of tht;:Qsp’m f(a:,yzz) = 0, where
any one variable is determined by the other tw6, ‘we may write from (4),

az 2N\
= | — dx RNy e d
o (63:) ¥ % '_"?"(ay)z 4

or using (45) .:‘v:\"\";'i'\'-dbl'auljbrary,org,in
_dby) . 2ea)

. \<‘~~}a (xry) a (‘y’ﬂl)
| Expressing each of tHese variables in terms-of two new independent vari-
ables, r and s, and! dsing the abbreviations J(z,y) = A(zy)/a(r.s), ete.,

(44) enables qgi’t?o"Write
A Tew) TG,
Ty )

\'
Ti Sgemultiply by J (@:¥),
J (e y)dz + J(z2)dy + J(ya)de = 0 (1-46)

i ( ' 43). If two more variables, « and #,
since J(z,y) = —J @), ete., from ( e
are rela(ted to r and s in the same way, (46) may be dlwde.d by du at con-

stant », giving

i} i N
J () (ﬁ) + J(z,2) (‘a;)v.'l' J (4,%) (au),, 0
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B So. that finally, again because of (45)
I ey)d @2) + Jm2) T (p) + J(yz)J(2v) =0 (1-47)
. Problem. If r, s are funetions of z, y, z and the latter in turn are funetions of the
independent variables 4, » show that :
Jors/up) = J@s/e )l @y/uwe) + Jrs/yel (gefwp) + T (r8/2,2)J (22/w0).
1.13. Application to Thermodynamics.wThis last equation is the
important one which determines all of the thermodynamic partial deriva-
tives, for if two independent variables, r and s, are chosen whjgh coms
pletely determine the others, #, y, 2, v, then any one Jacobian, fof\ekample
J(z,y), 18 given in terms of five others. But if r and s are taked from the
seb x, ¥, 2z, v, then J{z,5) is given in terms of only four pthei-s, since by
@n J(rs) = a(r,8)/a(rs) = 1. \*
Let us choose p, V, T and Sfor z, y, zand v, resgegﬁvely, 50 that
. S
JTV)I@,8) + I (pT)I(V,8) + JG(T,8) = 0 (1-48)
One mere reduction is possible since from g.?@ )

©@U/oV)s = —p; (dULoS)y = T

Ny
7

and :
(2°U/a83V) = @F/0V)s = — (9p/o8)y
In Jacobiad nQletoRe ory orgin’
_ J(T,8)JWS) = ~JT(p,V)/I(8,V)
Finally since J (V,8) == (5,¥) from (43), we obtain
SN I@s) = I
When the fgl}qvéing abbreviations

Q7 o= I,
\% | b= J(p,V) = J(T,8)
. ) .\': .:" c= J('P;S) (1-49)
~O -
A o
- n = J(T,8)

are gubstituted into (48) and (43) is used to change the signs, we have

b2 — -
+a—nl =0 (1-50)
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(43). The entries for the lower left-hand corner of the table are obtained
by writing the definitions of dU, dH, ete., in Jacobian form. For example,
gince

dlJ = TdS — pdV

J(Ug) = TI(8,2) — pd(V.2)
where z is any required variable. Hence, if z is taken as p and then as V
J(Up) = TIS,p) — pJ(V,p) = —Te + pb
JU,VY = TI(8,V) — pJ(V,V) = —=Tn

the last forms following from the part of the table which is already\ﬁlled
or from the definitions in (49). The upper right-hand corner may v be filled
at the same time, without further ealenlation, by changing all'signs. The
table is completed by using relations already found, as for, exXample

X
J(4H)

QY

—J(H,A) = —8J(T,H) - \pIV,H)
- - —S(Th— VD) — p(Tn\-h’%)
| —T(Sb + pm) + VA 20)

The final result is shown in Table 2 The use of it iz typlﬁed by the
following, examples.

Example 1. Ervaluate (aF/aT)V &n \g’e?d?ggag lbﬁfé;yp BB derivatives with
T and V as independent vamables In Jacobian notatwn and from Table 2

(aF/aT)V = J(F, V)/J(N»f) = — M = —8- Vb/a

il

But s \ 3
bja = TG/ (V,T)

]

—J@VIITV) = —@p/eT)
- hence, &f'\ X '
AV (@F/eTw

..\’

-8+ V(ﬂpﬂ”T)v

Ekample 2. Transform the result of the preceding evample info deriva-
tives with p and S as independent variables. If the previous result is used,
the term a causes trouble, since with p and S as independent variables, we
obtaim & = J(V,T) = a(V,T)/d(p,S), a relation which cannot be reduced
to a single derivative.” In general, as we'have shown, any partial derivative
may be expressed in terms of not more than three other derivatives of
thermodynamic functions. We therefore use (50), which gives a =
(nl — %) /¢, or,

(OF /6T)y = —8 ~ Vbhe/(nl — b%)
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But .
b=JpV) =a(pV)/a(8p) = —(8V/38),
¢ =J(@:8) =a(p8)/o(8p) = —1
L= J(@T) = a(p,T)/3(8,p) = —(3T/88)p
n = J(V,8) = a(V,8)/a(S,p) = —{8V/dp)s
hence,

@v/a8), ]
(8T/38),(a8V /ap)s — (8V/0S8)2]

This procedure may be repeated using other quantities, such(a:s"}’ and
S, V and p, and so on, as independent variables. The difficulty irl choosing
the proper form of the original relation may usually be.fembved in the
following way. Referring to the definitions of «, b, cJQJ\and n, it is seen
that each can be reduced to unity by a proper choieéaf the independent,
variables. For example, if the latter are chosen as'W and T, ¢ = 1, smee
a = J(V,T). In the previous case, ¢ = —1, A1t was found advisable
to use some quantity other than a. The sif@dtion may be summed up in
the following direetions. In case one of the létters in the top line of the set

r /oy = —8 = V|

in
I:a ¢ E:l equals unity, do not use 1}119 one directly beneath it but trans-

c amn
¥ L
form to another by means of {5019 \y n lsalévga)lr'? ‘the li%s{fltmg expression

will usually contain only thrce\dlﬂerent partial derivatives. The omission
of b from the sbove list arises¥rom the fact that even if b = 1, only single
derivatives will oceur.

Example 3. Solyefor (9p/9T)y in terms of Cy, Cp and p = (oT/0p) 7,
the Joule-Thomson fetfiicient, Problems of this sort frequently arise where
it is desired to exp'}*ess a partial thermodynamic derivative in terms of other
quantities, v;?h{ch are measurad directly. The usual process of obtaining
the rela.tlon\hlp is techous and complex. ¥From the table, it-is found that

o) G, — (@Q/aT)y = Tn/a
V- ¢, = (9Q/3T), = Te/l
~ (aT/8p) = (Tb — VI)/Te
(@0p/oTHv = —bla

Since there are three relations given and only two letters in the last deriva-
tive, it is convenient to write this in the form

(op/oT)v = —b®/ab
and to solve for a, b and b in terms of Cy, Cp and . Using (50) to obtain
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a relation between €, and b%, we have
C, = Tl — ¥¥)/dl
¢ = Tn/Cy; B =1Ma(Cy — Cp)/T; b =1L+ V)/T
and finally ' .
(ap/8T)v = (Cp - CV)X(CPP + V)
Example 4. Determine (aU/0V )y for a gas obeying (i) the ideal gas
law, pV = RT; (ii) van der Waals’ equation, (p + a/V*)(V — 8) = RT.
Tn problems of this sort, the resulting formulas usually contair xig'more

than one partial derivative instead of three as in the earlier cases.” Irom
e
Table 2, £\

?E) - = --{I-—ré —_ ~..’~ N
14 T - a P \ 3

If p and V are taken as independent variables, \\

) __ (o)
V,T) = - —
YD = 5wy T Ty
V a ‘5':X
0) a=-z (a—ﬁ,’)?ju
i W W bbb ol 1:1:1 au = RT =
() ‘ébg“"‘bﬁ‘“ﬁ“@f* (aV)T “-p P

In Shaw's paper (loc. cit.), alsiliary tables are given to simplify the caleu-
lations for the following\ehses: the ideal and van der Waals’ gas, the
saturated vapor, bla::vkgmdy radiation,

The Jacobian anethod has been extended by Shaw to include second
derivatives and 1;(\) apply to systems of variable composition. For these
applications,.a8 well as more detail on the use of the tables, the original
paper sh?@'dr be consulted.'®

Problem, Prove the following relations:

O e= (L), - 2[(Z), -]

8 \2 v
o 60 (2) /().

1.14. Thermodynamic Systems of Variable Mass.—The development
of thermodynamics up to the time of Gibbs may bhe briefly summarized by
the equation of Clausius (34) which combined the two laws. The subject

o
I
—
=1
]

13 The Jacobian method has also been described and illustrated With numerous
examples by Sherwood, T. K. and Reed, C. E., “ Applied Mathematics in Chemical
Engineering,” McGraw-Hill Book Co,, New York, 1939. :
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was thus confined to systems of constant total mass. Gibbs showed how
- this equation could be extended to include systems of variable mass.}* If
we consider a system composed of several substances whose masses are
My, Mg, -+ - We may change the internal energy not only by varying the
entropy and the volume but also by varying the relative masses. Thus in
place of (35) we have

U= U(S.‘VlmlsmEJ' ' ':mn)

and in place of (36) O
al .\:\
= | -— S av 2\

U (as)y,m_m,,. a5 + (ag)s_m,,,... O

Y4 U RO

— d ( ) dm 4 N 1-51)

+ (6m1)8 Vime - 7 + Bmz 8,V.my,» * .m.\\ (
If we write O '
ot ) Ve \d
=u {4 1-52
(3m£)v gy v #l\ ( )

we have )

AU = TdS — pdV + mdml \p padmy + - (1-53)

If d¥7 is eliminated from (53) by umng\,mbmm, maugtiensid37), (38) and
(39) we obtain '

¢ oF
) oy
o/ s DL, T, \ am; VT omy i, om; Ty, e e

The partial derivativey deﬁned by any of these equivalent expressions were
called by Gibbs th'e\ Shémical potentmls We may also convert (53) into

the equation N\&
\Q’ ‘= —8dT + Vdp + mdmy + pedmg + - (1-55)

At const.an’t. temperature and pressure and for a reversible process, as we
have«@awn, dF = 0; henee according to (55) the eondition for equilibrium
reads

dF = wdmy -+ peding 4+ --- =0 (1~56)

From this equation we may derive the celebrated phass rule of Gibbs.
Let us understand by phase a homogeneous part of a system separated from
the rest of the system by recognizable boundaries. Thus a mixture of ice,
liquid water, and steam is a system of three phases. The number of

14 Hig results also inelnded other variables such as electric, magnetie, and gravits-
tional fields as well ag surface phenomena.
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components is the least sumber of independently variable constituents
required to express the composition of each phase. In our previous exam-
ple there is only one component. In a system composed of an agueous
solution of sugar there are two components for it is necessary to specify
the amounts of both water and sugar present. Finally we need a definition
of degree of freedom. 1t is the number of variables (such as temperature,
pressure, composition of the components) which 1s required to 'describe
completely the system at equilibrium. For example, liquid water in the
presence of water vapor is a system of one degree of freedom, for ave may

“yary either the temperature or the pressure but we cannot change both

A

simultaneously for then either the licuid or the vapor disappedrs.)
Suppose a system contains € compaonents and P phasesithen an equa-
tion of the form of (55) will hold for each phase. Since F'like Sand Visan
extensive variable, it follows from (55) that the chemical potentials must be
independent of the masses, so that we may intégrate (56) term by term
obtaining

. . ) \ N
A .
F = pymy + pammg L85 setie (1-57)

Differentiation of this equatioﬂ results W)
www.d%{i’a:-l_i r]‘lafli :tnl + “édmz LI + P(,‘dmc '
_ + mlagio,‘r}g’%lzdm + - -+ medug
When it is subtracted frglq"(!)ﬁ) we geb
m\déi' 4 madps 4+ - - 4 medue =0 {(1-58)

Equilibrium ecan e Jestablished only when an equation of this form holds
for each of the'P{phases. But there are C + 2 variables T, p, 1, k2, " * 5
pe, hence the’pimber of degrees of freedom f is '

§ f=C+2—~F {1-59)

Thigsitnple equation has been of inestimable value in the study and inter-
‘Drétation of heterogeneous equilibrium by the chemist, physicist and
Wetallurgist.'5 :

. 115. The Principle of Carathéodory.—In most textbooks of thermo-
dynamics, the order of presentation parallels the historical development
of the subject. For this reason, considerable attention is paid to several
kinds of ideal or imaginary machines. The customary procedure is o0
cite, first of all, the impossibility of constructing perpetual motion machines
of various types; when this is granted it is possible to state the conditions

16 Such applications are discussed by Findlay, A., “ The Phase Rule and Tte Appii-

eation,” Bighth Edition, Longmans, Green and Co., 1838; Desch, “ Metallography,”
Longmans, Green and Co. :
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under which real machines may operate and to derive the whole body of
positive assertions which are incorporated into the science of thermo-
dynamies. The critical student may feel the need of a more logieal and
{ormsl approach, and this will now be given.

We have attempted to emphasize in see. 1.9 one important mathe-
matical consequence of the laws of thermodynamics, namely, that fune-
tions such as 4U and dS are exact differentials. We now wish to discuss a

‘more fundamental mathematical property of these laws which was dis-
covered by Carathéodory. His arguments™® are derived from the geometric
behavior of a certain differential equation and its solution. As a result, he
is abie to obtain in & purely formal way the laws of thermodynamicgiyvith-
out recourse to fietitious machines or such objectionable concépts as the
flow of heat. We cannot reproduce here the complete theory®” but shall
only give the mathematical details of his treatment of the’séeond law.

Let us assume that a thermodynamic system is comﬁoé’ed of n separate
parts, each one of which is characterized by its pressute'and volume. Fur-
ther, suppose that the whole system is surrounded by adiabatic walls or
thermal insulators while the individual parts.sf ‘the system are separated
from each other by walls that are perfect gonductors of heat. As a result
of experiment, it is found that there is 10, observable change in the system
(i.e., equilibrium has been reached) when ‘the following conditions are met:

frEL V) = falpe VYV ALGHEr O ) (1-60)

The relation f:(p;,V.) = F (@) for the i-th part of the system is, of course,
an equation of state, and\az\ié' the temperature of the whole system on some
suitable empirical scale?y, According to the first law (see eq. 27a)

O d=av+pav -0  (1-61)

the whole sﬁ@iﬁ being adiabatic. Moreover, a similar equation holds for
each parj:'pf\bhe gystem

~O dQ; = dU; + pdV: (1-62)
and./
dU =X dU; dQ =X d@; (1-63)
=1 i=1

As we have shown, €@ is not an exact differential. However, it de-
pends on only two variables, and under these conditions an infinite number

16 Cgrathéodory, C., Math., Ann. 67, 365 (1909).

U7 (lgrathéodory’s theory has been reviewed by Born, M., Physik. Z. 22, 218, 249,
282 (1922) and by Landé, A,, ** Handbueh der Physik,” Vol. IX, Chapter 4, J. Springer,
Derlin, 1926,
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of integrating denominators exist.'® Hence eq. (62) may be converted into
. an exact differential, Let an integrating denominator be §;, so that

dgi = dQifts (1-64)

" s exact. Clearly ¢; is then a funetion of the state of the system, hence we
may change (61) in such a manner that the independent variahles are &
and ¢; instead of U and V. The result of this transformation is

: n T (ol oV, PYag avi) ] .
st (0 0 Y e - (S 4 2 —0 65
10 = B[ (52 +0e ) dos+ (T +0a55) 30 ] = 0 - queed

The quantity dQ is not exact, nor is it to be taken for granged Hat it can
be made exact by the use of an integrating denominator if” d€} contains
more than two variables. As a matter of fact, the pgdcedure is possible
only when the differential equation d@} = 0 (knoy.r{i,'as a Pfaff equotion)
possesses a solution, as we shall show in sec. 2.18: Tn that case (and we
shall here be interested in no other), there is s{mintegrating denominator {
such that : \ <

o = dQe” (1-66)
is exaet, even when there are n variables. More important for our present
needs is the‘ﬁﬁﬂéﬂfiﬁéﬂ@féﬁﬂ‘{ﬁ&ﬂﬂsimple geometric considerations that if
there is an integrating denominator, then there are in the neighborhood of
any point P many other points which are not accessible from P along the
path dQ = 0. This %ﬁnaﬁl mathematical eonsequence of the properties
of the Pfaff equatidn is known as the principle of Carathéodory. It is
exactly what we ]{le:ed for thermodynamics. Consider, for example, a gas
at a given preséure, p; and volume, Vy. We may expand or compress this
gas adjabapi(;ahy (i.e., along the path d@ = 0), but the final state of the
system wQLbe characterized by variables ps, V> which we eannot choose at
will, .~'Ifhere are many values of p and V which we are not able to realize
adighatically. _

. JWe refer the reader again to sec. 2,18 for the conditions under which
equations like (65) have a solution, hence an integrating denominator.
We proceed here with the physical results which may be obtained when we
know that the integrating denominator exists. In order to simplify the
situation let us assume that the thermodynamic system is composed of
only two parts.. This restriction does not mean that there is any loss in
generality of the final results sinee all our arguments could easily be
extended to cover a system of any number of parts. Withn = 2, it follows

e 1?'- The proof of this fact as well as other mathematical conclusions reached here
are given in sec. 2.18.  Except for the proofs, the present section is complete in itself.
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from {63), (64) and (66) that
¢ = tydp) -+ todd (1-67)
If we take as in (65), ¢1, ¢z and ¢ as independent variables we see that

o _h, % _B O

oty 1 aga 1 a8 0 (1-68)
The last equation of (68) shows that ¢ depends on ¢; and ¢ but not on &,
so that according to the other two equations of (68), the ratios £/t B.IQSI
1o/t are also independent of &:

3 [t O
a\t a9\t S

This result may be written: |

———————— RN (1-69)

Now #; is a function of the state of the first meml}er of the system dand there-
fore could depend only on ¢; and 8, while fo'could depend only ou ¢ and &
However, the first equality in (89) indigdbes that ¢; and i, must actually be

functions of ¢ alone, and we may write:
d1 a1 ‘;"WW{\%f‘ldet'auljbrary.'org.in
Tt f,] n s il . : .
i lup T do o) (-70)

where g(#) is a function wh}h is common to all systems in thermal corifact,
not dependent on any, special properties of the substances which compose
the system. Integtating (70), we obtain '

- .’\ ..

: ,\\:\ . Int = fg(z?)dé‘ +In A{$) .. (1-71)
where #he' integration constant In A depends only on the quantity ¢.
Note ¥hat we have dropped the subscripts from ¢ and ¢ so that eq. (71)
refers to any thermodynamie system and ¢ is the appropriate integrating
denominator for the particular system under consideration. We see from
(71) the important fact that this .denominator can be separated. into. two
parts, one depending only on the empirical temperature & and the other
only on variables of the state of the system such as ¢ whose differential is
exact.
Let ug rewrite (71} in the form

(1-72)



115 THE MATHEMATICS OF THERMODYNAMICS 30

and define the absolute temperature T' by the relation

7(9) = ce " 1)
The eonstant C relating ¢ and T may be determined by requiring that
between two fixed points, say the boiling point and freezing point of water,
T shall increase by 100 units. It should be noticed that there is no additive
constant in (73), so that if C is positive, the smallest value of T is zero, and
there is no upper limit for T

. If oar thermodynamic system eontains only one part, we may {ise (72),

(73) and (66) to write O
| 40 = tdo= T‘éd“’ O T (1)
Also, if we put w\:\ 0

| -2 [ + cont (1-75)

we obtain the well-known expression for: th\second law of thermodynamics
which defines a change in entropy, dS

dQ = TdS : (1-76)

The entropy"is"'lﬁ&tﬁ&iijﬁﬂyb%ﬁéﬁ tE‘- be a funetion of the state of the system,
constant along an adiabatigpath (dQ = 0). Itis determined except for an
- additive constant. Weialso note from (76) that the absolute temperature
is an integrating derfeminator of the inexact differential da.

When the system is made up of two parts which are in thermal contact,
. eqs {67) and (74') nay be combined to give

\'.\“ Adp = Ayddy + Aadgs (1-77)

We knw{\t.hat Ay is a function of ¢; and that A is a function of ¢;. We
wantwbo prove that 4 is a function of ¢ which in turn depends on qb; and
Py \Iﬁt us assume that A = A(¢). Then

A | %_%@;_M'&Aatﬁ
: 31 Op Oy’ Opy O Oy
If we ehmmate dA /8¢ from these two equations we obtain
oA 0p  3d 3¢
—_—— - — 0 .,
Oy Od2  Odo I¢py (1-78)
This result is often written in the Jacobian notation of sec. 1,12

J(A1¢X¢11¢'2) =0
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It tells us'® that if A is a function of ¢, J(4,¢) = 0 and conversely if
J(A4) = 0, then 4 is a function of $. We can easily prove in our case
that the Jacobian does vanish. Differentiation of (77) results in

A 3_‘3"__ =4y %— = 42
ddy Bz
sAdp  , 9% Ao, ¥ g

0,360 T obiden | 0 OdnodL | OdadbL

henece by subtraction we obtain (78). Thus A is a function of ¢. . Under
these conditions we have an equation similar to (76) for each part of the
thermodynamic system, and since 4Q = 2dQ; we finally eqin‘@u?ie from

(75) and (77) that dS = ¥ d8. e
19 This result which may be applied in the case of n variables is Stten useful. If the
n functions ¥, Yo, -+ + » ¥s 8e OO independent of each other &P{Qﬁébobian vanishes; if
J = 0, then the » funetions are related by some equation f{Bu s+ g} = 0.
D
~Nx\ i
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CHAPTER 2
ORDINARY DIFFERENTIAL EQUATIONS

2.1, Preliminaries.—The customary classification distinguishes two
main types: ordinary and partiel differential equations. The, former
contain only one independent variable and, as a consequence, total deriva-
tives. They represent a relation between the primitive of the “dependent
variable (y), its various derivatives, and functions of the independent
variable (z). Partial differential equations, whose Study ‘will be reserved
for Chapter 7, contain several independent var;a,bles and hence partial
derivatives. Concerning terminology, the fglowing is to be noted in
connection. with ordinary differential equati

The order of a differential equation is tlse order of its highest derivative;
its degree is the degree {(or power) of thevderivative of highest order after
the equation has been rationalizedy I'e., after fractional powers of all

derivatives have been removed. , Thus the equation
www.dbraulibrary. or, g\m

A2y N (d
&2'!’(?;) oy =0

3 \
is of the second ordeba,nd the first degree, while

¢

0 +\/-—I—a:y -0
N

is pfithe second order and the second degree. If the dependent variable
and-all its derivatives occur in the first degree and not multiplying each
\ther, the equation is said to be linear. The solution of an equation of
n-th order involves, in principle, the carrying out of » quadratures or inte-
grations. Since each of them introduces one arbitrary eonstant, the final
expression for the dependent variable will contain » arbitrary constants.
However, a solution in which one or more of these constants are given
specific values, for instance the value zero, will also satisfy the differential
equation. In view of this consideration two types of solutions of an ordi-
nary differential equation of n-th order may be distinguished: (1) the
eomplete or general zolution whmh contains its full complement of » inde-
32
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33 THE VARIABELES ARE SEPARABLE 2.2

pendent! arbitrary constants; (2) particular solutions, obtainable from
the general one by fixing one or more of the constants. In addition to
these, differential equations of degree higher than the first frequently possess
solutions, known as singular ones, which cannot be formed from the general
solution in this manner. An example of these will be discussed briefly in
sec. 2.6; they are rarely of interest in physical or chemical applications.

FIRST ORDER EQUATIONS

An equation of the first order can always be solved although the solu-
tion may sometimes not be expressible in terms of familiar or named
functions. Maethods of solution applicable in the most frequently ogburring
cases will now be given, and the diseussion of each method will be followed
by a list of problems, arising in physics and chemistry, ‘Whih’h lead to
differential equations solvable by the scheme in question. 1 3

9.9, The Variables are Separable.—This is true_when the equation,

. Y\, .
which may originally appear in the form f; {,2) ‘d_z 3- folzy) = 0, s re-
: 7

ducible to : o
@)z + gly)dy =<0

Such an equation can be integrated at onee and leads to a relation between
# and . \

° }iim;w_dbraulibl'ary.org.in
Examples. N
a. Organic growth; radiqaofb‘ve decay.
Bacterial eultures in an wlimited nutritive medium grow at a time rate
proportional to the nuinber of bacteria present at any moment, Hence if
the time ¢ is regarded @5 independent variable and A, the number of bacteria
present at time th dependent variable,
N\ AN
\\ 7 =N

« bgjpg"{hg rate of growth per bacterium. This may be written

Y ' %:adt

1 Arbitrary constants are gaid to be independent if two or more of them cannot bs
replaced hy an equivalent single one. Thus the constants ¢; and ¢z in the functions:
ax + 614 ¢ and ¢ 165% gre not independent because these fumetions may be written
az + ¢ and ce?, respectively.

Thie distinction is elementary. A more adeguate analysis would focus attention
upon independent, solutions of the differential equation rather than independent con-
siants. Solutions are independent when the so-called Wronskian determinant fails to

vanish, This matter is treated in sec. 3.13.
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which, on integration, yieldsIn N = of + ¢, or N = Ce™. If the original |

number of bacteria at ¢ = 0 is Ny, the constant C must have the value N,
to gonform to this physical condition.
Radioactive atoms decay 2t a rate proportional to the number of atoms,

N, present at any moment, . Hence dN/dt = —AN, which has the solu-

tion N = Nge™. The disintegration constant A measures the time rate
of decay per atom. It is a fundamental quantity characteristic of each
radioactive substance.

b. Flow of water from an orifice. ~
A vertical tank of uniform cross-section A is filled with water to fn initial
height k. Water flows out through a hole of area a. It is .Qé?s'i?ed to find
the height of the water, &, in the tank as a function of the-time, ¢. The
volume flowing out in time df is avdt, where v is the yelotity of the water
at the orifice at time {. The loss of helght in the tan is dk, hence the loss
of volume Adh. Therefore

avdt = — Adh

But the velomty is related to the height by~ Tomcelll sformula: » = c\/2gh
The empirical constant ¢ would be unlty if there were no obstruction and no

‘vena contracta” near the onﬁce, for ordinary small holes with sharp
edges it is 0.8, ThM8librar ¥ Ol'g‘l_l'l

ac\/2ghdt = —Adh

or
O an a
X \\ -\/—i = —Cz'\/2—gdt
On integrating t.hxs "we have
2 ) _
\2“\‘“ \/h = V/— E a— \/—g
.\\ - : 24

where “the constant of integration has been so adjusted that h = kg at
s 0

7

¢, Heat flow.

When heat fiows through a body the temperature, 7T, is in general a compli-
cated function of the coordinates within the body. In simple cases, how-
ever, it may depend only on a single coordinate, # (distance from a heated
plane, or distance from a point source of heat). In that case, the rate at
whlch hieat crosses an area A perpendicular to z is given by

a7

E=—FA o (2-1)
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and R is constant because of the continuity of flow. The quantity k is
known as the thermal conductivity, '

() If the body is a slab with plane parallel faces, one of which is
maintained at a temperature T, integration of (1) leads to
_Be
k4

z being the distance from the heated face. From this one obtains the
elementary relation Q)

T -

Ty — Ke
B =ka T2 S
for the heat transfer across a plate of thickness d. N
(8) If a heat source is placed at the center of a sphere; the temperature -
is a function of ralone. Here 4 = 4xr%, and (1) reads —4&#({31’/{3?‘) =R,
which gives O
po LB o (D7
T 4wk v ‘::x\
In this case, the temperature is not a lingaf function of the distance from
the source as it was in (a). '
(y) At constant external tempezature the thickness of ice on quiescent
water increases as the square root 0f thextimbbra@libshopdhidwe write (2)
in the form (S _

N

A\

L) dH AT
’ W= i kA .
where x now represeiits the thickness of ice and dH the quantity of heat
transported awayo(mm the lower surface of the ice in time df. This, how-
ever, is propertional to the thickness dx which is added on to the already
existing layerin time df. Hence dz/df = C/z, C representing a constant.
From thigtit follows by integration that

2\ \ ' xz ~

X

d.” Salf dissolving in water.
When z, grams of salt are placed in M grams of water at time ¢ = 0, how
many grams will remain undissolved at time {? The rate of solution,
dx/dt, is proportional, (a) to the number of grams, z, undissolved at time ¢,
(b) to the differenee between the saturation concentration, X/M, and the
actual concentration, {xo — =)/M. (X is the number of grams of salt
that would produce saturation.) Thus :

—-d-—x—=k:c-£rx°*)=%[(~’f—zo)x+x2] (2-3)

dt M




- 22 ORDINARY DIFFERENTIAL EQUATIONS

To solve, we write

dz _ 1 (@f _ dx ) _k o

_(X—:cg)a:-I-a:Z_ X—.’.U[) x X—I{]—i—a? Af . 3

, X—2+2 X-—ux :

Integration then leads to: In —xo—m +c= T{) Kt Wheni

the constant ¢ is adjusted so that & = x5 at { = 0, the result is %

. - 1' X —2p+2)xs X — o :
n

= k
zX M y

™\

. . . 1 1 \ L
If 25 = X, then the solution g — = (k/M), as one may, ez{sﬂy verify |
0 ¢\, ,

g W

by going back to equation_ (3). . O _f
e. Atmospheric pressure at any height. R N |
 The increment of pressure between two points in j‘ik‘ke’\aitmosphere differing .
in height by dh is dP = —pgdh, if p is the denbiby’at height i. But pis
related to P by the expression Pp? = Pypg Y, Which is valid for adiabatic
expansion of air if ~ is taken to be 1.4.2 "I\"héquantities Py and pg are the

sea level values of P and p, Thereforg O

PX
E) " oat

www.dbl'aulibral'y_m%.in:’& Lo

. . 3" -1 v —1 pogh
and this, on integration, giyes (?) Y =1—-— ;—: the constant
0 L 0
of integration being, a,{%jpgted go that P = Py at h =0.

f. Homogeneoud\gas reactions.

Chemical reactiérs involving but a single phase are said to be homogeneous.
Among theggt.here may be distinguished unimolecular, bimolecular, ter-
molecular/tegctions and so on. In the unimolecular cage, the number of
molecules undergoing a chemical change is at any instant proportional to
the mumiber of molecules present. The decomposition of nitrogen pentoz-
..i,qe:tnto oxygen and nitrogen tetroxide (2N,05 — O, + NoQ,) is an exam-
ple of this kind, the differential equation being similar to that describing
radioactive decay (Example a).
In a bimolecular reaction, of which there are numerous examples, sub-
stances A and B form molecules of type ¢. If @ and b are the original
concentrations of A and B respectively, and z is the concentration of C at &

given instant, then
: dx
i ke — 5)(d — 2)

% 4 is the ratio of the specific heat at constant pressure to that at constant volurme.
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. . . . 1
To integrate this equation, the expression -————— is resolved mnto
{a — z)(b — 1)

:l . We then have

1 dz dx
a— b (b—:c‘a—x)=fkdt

1 1

the partial fractions o 1 5 [

whence

aibln::2=kt+c £\
Since:cIOatt=0,c=—1~—]nE,sothat. : ‘:\

a—b b O
bla—2) = plo—Dkt . 9}‘:
alb — ) M'\"\

From this, the reaction rate is seen to be W/

L1 bla — o

TiHa—b)  abga)

The concentration of substance C is O

T oa(l _gf@*b)kt)

=t
(1’—0?&3\(’%?‘1 ulibrary.org.in

When the original eoncent;-@:tq?bns a and b are equal, the expression for k
becomes indeterminate, it on putting b = a + ¢ and letting ¢ approach
zero, an expansion of ttie logarithm yields

¢ C} J B _1 z
..\ ;,\ ) T da—=z
which is algoQEEn to be a solution of the differential equation
N\ de
RN =k — 2
= —ka—2)

Other types of reactions will be dealt with in the problems on p. 40, As to
terminology, we note that a rate law for multimolecular reactions of the

form

O A R R )™

is often said to describe a reaction of the n-th order, where

: &
ﬂ=?ﬂi
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g. Clapeyron’s equation.
Any phase change of a substance which takes place at constant pressure and
temperature conforms to Clapeyron’s equation:

a1
aT T TV, = V)

Here [ represents the latent heat of the process, V; and V,; the volume per
mole of the final and the initial phase respectively, and P the pressure.
This equation may be applied to the process of sublimation, vidlding an
approximate expression for the vapor pressure as a function of phe-tempera-
ture. In that case I, the latent heat of sublimation of the-dalid, is nearly
constant over a range of temperatures, and V;, the volurtre of the solid,
may be neglected in comparison with that of the vapdr, ¥;. The vapor,
though not a perfect gas, will be taken to satisfy V; & RT/P. Clapeyron’s
equation then becomes \/

P 1P N
dT = RTZ\"

which on integration gives O ’

_ P; —/RT

www.dbraulibl'ary.org.‘if\"

an equation often called the CI&usius—Clapeyron equation. This result is
found to be valid over small ranges of temperature, for the vapor pressure of
both solids and ]iquidsajbl more refined result may be obtained by intro

ducing for 1 o more ddequate approximation.

h; Centm)'ug{’@réblem.

When a eylinder of height 4, filled with fluid, is rotating about its axis, the
pressure within the fluid will not be constant but will depend on 7. Con
sider aseylindrical shell of fluid of thickness dr, the surfaces of which are
cog.xi@l with the rotating vessel. The net force pushing jnward on this
s}:ieﬂ 18 2evhdP. This must equal the centripetal foree due to the angula
\gpeed w, namely maw?r, where m, the mass of the fluid, is given by 2arhdr - ¢

‘Hence '

2arhdP = 2arhpdr - wir

(a) Tf the fluid is a liquid, the density, p, is constant and the solution i
P =1p™? 4+ P,y

N (8) If the fluid is a gas, P = ¢p (since PV = const. ), the solution i
en

P = Pyttt
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i. Soap film.

If a soap film is stretched between two circular wires, both having their
planes perpendicular to the line joining their centers, it will form a figure
of revolution about that line. At every point such as P (c¢f. Fig. 1) the
horizontal force aeting arcund a vertical section of the film is the same.
Hence

27yT cos 8 = const.

F1a. 2-1

where T is the surface tension of the film. But

- —1ia0
cos B = I:I—l—(dy) \\

»—1}'2
+ (o
[ + (d:c) w, dbl. auhbral y.org.in

T being a constant. Solving for the denvatlve,
_ d’yx\ (yz )1;2

which leads to

AN/ x4+ e
AN % = ¢ cosh + !

7'\NW .
The constagnt}&”;md ¢; may be expressed in terms of the distance between
the wiresand their radius. The longitudinal seetion of the film is seen to
be amte}ﬂary
¢ examples above seem sufficient to illustrate the method under dis-
cussion. The problems leadmg to sepa.rable ﬁrst order equations are very
TUMErous. :

so that

Problems.

a. Helmholtz equation.
If & circuit hes resistance R and induetance L, the current I in it obeys the differential
equation

dl |
—+RI=F
de-l-
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where E is the impressed or external electromotive foree. Show that the growth of ¢
Qurrent (E = const., I = 0stt = 0)is described by

I== (1 e—(R/’L)l)
and the decay (E w0, ] = Igati =0) by
I = T~ B/D

b. Solve the equation for termolecular reactions:
dx

——k(a—z}(b—x)(c—z) N L
.u\

A R e

‘¢. Bolve the equation for oppesing unimolecular and bﬁp@é‘ecular reactions;

(:;: kila — =) — k\,

P2
under the condition z — 0 ati =0. . \ ‘
1k
Ans, E=kAcothAk2t+% »where A =— ( + - =
z 4k,
Show that, wheneqiilibmum- wmbgakpd (t = =),
z2 _ iﬂ
,\ a—x ka
“d, Solve the equat.is@\far eonsecutive unimolecular reactions of the type
“.’ kL k2
_ ¢ A— B
thatis, N .
\Y dn. dng

al
\$

N . ) . . ,.-..,. - .. ) k2 kl
NAns. N = . 1 — —hit ka2
W o ny = (n: +M+ns){ kg—‘klg +ka-—k1e }

whera ny = amount of C present at {.

.-e. A projectile is fired vertically into the air with initial velocity V. (1} Findi
speed ai any height; (2) find the time at which it will have traversed a distance
Note: the differential equation to be solved is

dy dﬂ _gR?

& 'E r:
where g = scceleration due to gravity, £ = radius of the earth.

S S}
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(@) ¥ V2> %R
;
= (V2 — 2¢gR)™ {[(Vﬂ - R + 2g_er g V]r

2y 12
' ‘2ng (V“ — 2R + %TR) + (V% — 2R , ]
pa— — 1 —
' T R T e e Jk
2.3. The Differential Equation is, or Can be Made, Exact. Linear
Rquations.—A differential equation, written in the form

Adz + Bdy = 0 (2=4)
[IA

Xe
where A and B are functions of z and ¥, is said to be exact if the left<hand
side is an exact differential. The necessary and sufficient conditioh for this
to be true was shown in sec. 1.7 to be equivalent to the Cauchy :{*eiatafbns

oA 9B o

dy oz

¥

The equations eonsidered in the foregoing section?‘qxhére A was a funetion
of  alone and B a function of y alone, are exact in the trivial sense that
34 /oy = aB/jox = (. R e
-Differential equations occurring in practice are rarely exact, but every
squation of the form (4) can be made:eit\'%c(fb@n _then integrated. The
Jevice for doing this is to multiply HBY & SHELHE ¥abEFHown as the
integrating factor. For instance, khe equation
dp <1 2
2 Pp{-—=)dzr =0
G ¥ _
s not exact. It becordeexact on multiplication by wy. For it then takes
the form \\“ -
%" d(:z:y-—-:-cﬂ)=0
R\ 3
which hasjﬁﬁé’solution:
. 4 : pn
B A const.

While an integrafmg factor exists for every equation of the form (4), it
s not always eagy to find. If the equation is finear, however, that is if it

san be written
%-i-f(x)y = g(z) e
S '

w1 integrating factor is always available. Ttise On application of
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this factor eq. (5) becomes

2 W) = o

where the abbreviation Flz) = f f(£)dE has been used. The solution is,

g = [ [ o + c] & (2—6;_'.';,_;

N o :
2N 3

clearly,

Ny
& ™\

frequent. A
Examples. O

a. Cércuit containing induciance and resi;:ﬁez:,,:e (Helmholtz’ equation)'_
This problem has already been discussed, Iiuﬁ'it. may be instruetive to solve':_g
+he differential equation also by the méthod of eq. (6). We have "

Thiz result is most useful, for the occurrence of linear gqil}ztiéns i very-_ii
i
k

;

ORI _E
‘ oy = (2-7)
. . \-{ww,dbrauhbrary,og‘gifn L L E
Thus O
R
\{i‘xi and F=%t; g=—EI:
sothat N\ 2
9.\
& E E :
OY - —um,):[f_ RIL) ] TR 1) AT
‘§ € 7€ dt + ¢ 2 + ce

) an‘gi'fhis agrees with our previous result (Problem a).
V

The present method involves the solution of eq. (7) when Eisa funection ©
the time, in which case the equation can no longer be separated. Let
assume that

b. Circuit with inductance and resistance; variable electromotive foree

E = Eo SiIl wi
"We then have

| B

R .
= H F=—i =__q
f b 9=7

8in wt
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Hence?

g RiL)A
I = E fem"m‘am widt + cg— BIL)E

E 1
= "I—j] sz-l-_é (w" Sin wl — o o8 wl) + ce— (BILN
w

where «' has been written for B/L, a quantity having the dimensions of a
frequency. To fix the constant we assume that 7(0) = 0, in which case
E 1 . O
I= f TEL (o’ 8in wf — w cos wt + we™@?) \ \)

The last term represents fransien{ eurrents which disappea@";i.s “soon a8

1 :
i>>.,_’. m\\.
@ .

¢. Radioactive decay of mother and daughter mbsﬂbﬁc@s

Let A be the number of atoms of the mother su}stance (eg., Ul and B
the number of atoms of the daughter subﬂtan,ce (e.g., UX,)at time £, 4,
being the original value of A at{ = 0. JetA, and Ap be the deeay con-
stents as defined in sec. 2.2a. The tw'o«subﬂg%n Tlgatlsfy the two differ-

Tarytorg.in

3Here and elsewhere, there nc{urs t.he integral f ¢t gin widl. This is easily
evaluated if the sine is written aiaa Jexponential:

\ —i
{NEiny = — G‘I—G )
d 2&(

3

Thus

N \ /
f et sin w’\' 2 f [oferiedt — oo
O

Y 1 {e‘“""‘“’}‘ e[m'-—-s@)t} e“‘"{(m’ — et — (u + m)e—m}

oY -l - F TS
\‘ oot P
=T 5 (o sin @l — o cog wt) = - Wﬂﬂﬁ(wf-l-.@)
!
o
g =tan™1—,
[+

Similarly:
f“"coswzdtu-—e—-—(w cos wt 4 o gD wl)

e 3

= Wmﬂ (et + 8)
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- ential equations

dA dB
) i — 8B + Ay

When the solution of the first, A = Ag¢ 4% is substituted in the second
there results

dB

— 4+ AgB = M Age 4t

at O\

~ an equation which is linear in B and can be solved by formuyla, {6). Th
solution is: ) \ N '

\

B = e_“B‘{f N A et a Ay +c}:‘

\ AN\

A " A ) 4

h— a0t Y
if we assume that B(0) = 0. Note that; B‘ will reach a maximum at timi
,_Imh—indg

ST A — g : RS

LN
&\

Probl&m:ws&,cthmﬁﬂjbmnﬁagjmsnpﬁjhcitance C, resistance R, and is subject to =
electromotive force E.  Caleunlate the instantaneous value of the electric charge q on th
condenser, noting that it satis{es the differential equation

O dg g
R Batc=%
Ans. For E 7—:’~Eﬁ‘sin wf,
RS
»\‘L; R_m {w' 8in wt — w cos wl + w9ty o = EIE

. g,%;’iquations Reducible to Linear Form.—Of some mathematica
wym:rest is an equation of the form

vV d
- i@y = gy (28

because it can be made linear by the substitution y = w2*" This con
verts (8) into S

du

e T+ (1 —n)fu = (1 — n)g

which can be solved by the method of the preceding section. Eq. (8) ¥
often called Bernoulli’s equation, & . Eq. (8)
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2.5. Homogeneous Differential Equations.—A first order equation is
said to be homogeneous? if, the equation being written in the form
) Adz + Bdy = 0
A and B are homogeneous funections of the same degree, i.e.,
Alzty) = (*A{zy); Blztly) = 1*Blx,y)
If this is true we ean substitute ¥ = vz, obtaining
Ay) = A@wm) = #A(1p); Blry) = 2*B(1y)

The original equation, A
w4 A
= B N
is converted into AN
~\
& Alp) O
R T A O
N
by this substitution, and this equation is separablé, yielding
b _de O
fo) —v &N

Example. Lines of force i dbraulibrary org.in

An equation closely related to the ]}OI;:{dgeneouS type, and tractable by the

1 A remark on the use of the wog‘d’“‘?humogeneous " in mathematies seems in order,
For the term is used with several di{é(éht meanings in different contexts, The following
definitions correspond to the chief usages.

1. Homogenecus functioms ¥ (1,22, - i) is said to be homogeneous in all its vari-
sbles if, for any parameterys, F{te1,1xs, - bxy) = (7 (21, %8, « *Tx). «is the “ degree ™ of
the homogeneous funetioh,™

2, Homogeneouié&uﬁtions: A set of sirnultaneous linear algebraie equations of the
form s\

® .0 Lid
..\'.:' 'Ea,-,-x,-mc,-; i=12 .- un
m\J i=1
in Which}he‘a’s are constants is said:to be homogenecus if all ¢'s are zero.

3. Homogeneous differential equations: (Two usages of the term!)

.. 8. A first order equation of the form Adz + Bdy = 0 is said to be homogeneous il
A (z,5) and B (z,y) are homopeneous functions of the same degree. .
b. In genersl, Piz,y,y,4 ", + ) = Oissaid to be homogeneous if F is & homogeneous
function of ¥ and all its derivatives, not necessarily of z. Thus
o]
1) T fmsl) Tt o Sil) = 0
s homogeneous and linear.  If the right-hand side of this equation were not zero but
squal to a function of #, the equation would still be linear but ne longer homogeneous.
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substitution here deseribed, is the differential equation for lines of force,
A line of foree is defined as that curve which is tangent, at every point
through which it passes, to the force at that point. The present analysis
is applicable to attracting mass points, attracting or repelling electrie

f+0-}< L

P (zy)

Pkt

{~a)d

T

e 2-2

charges, and maietid5aHkRraR R T ik desired, for example, to find the
lines of force due to twodtharges, ¢ and ¢q, a distance 2a apart. (Cf
Fig. 2.) If werestrict g{i‘g\:onsideration to the plane containing the charges
and the point P, then, for every point in this plane, the definition of a line
of force requires that

A</

 { > q
2 Su+a+5w-o
v 3 2

A

B
F, N

. (2-9 )
2
=R

&

p \\ - .

\If’a were zero, this would reduce to dy/dz = y/z, an equation which ha:
for its solution all straight lines through the origin. These, a= is wel
known, represent the lines of force due {0 a point charge. In general
however, eq. (9) reads

%{mdy ~ (@ + a)dx] + 9—; edy — (y — a)de] =0 (2-9

This equation misses being homogeneous by the presence of the quantity a
But a simple artifice will help. If we introduce two new dependen
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variables, 11 =y + ¢ and yo =y — a, so that dyy =dys =dy; n =
(2* + yyE e = (% + )% eq. (9a) takes the form

@ ey — iz | adys — yadv
(x? + y1)*? (x? + 3)%*

each part of which is homogeneous. Now put y; = "1, Y2 = t27 80 that

w2dy = ady — ydr
"The result is then simply
dt'l . dﬂg A
=0 O\

LT U AN
When this is integrated, we immediately obtain the equatiogiéf"the lines
of foree due to the two charges: : \\

%2 s Q@‘ = ;rzonst.

L SR S
PATHE T EQEDT T b

9.6. Note on Singular Solutions. Clairau’§ Bquation.—A first order
equation of degree higher than the first may haye a special kind of solution
which is not obtainable by specifying the.donétants in its general solution.
Thus eonsider A\

dirs® [y ¥ w.dbraulibrary .org.i
y = 2N (_y’) FEY-ORR g 109
dr o \de
This equation may be _solve\fbsf .the following artifice. Differentiate once

more, thus converting it {0 a second order equation, which, however, can
easily be handled by the/methods already discussed. The result is

o\ 2 .
W~ dy  dy a<y dy dy
"
) o E -4 g &
PO Fe = Ry
or ’r ‘;’ . . . . oL R
~O aNdy _
O | (_x+2£ 50 m
If now the first fa.c‘ooi be cém_neélied, t__hé equéﬁdn 1s ' -
| &y _
de?

and has the solution ¥ = &% + 2 This, however, is too general a result
gince it contains fwo constants of integration, a circumstance brought
about by the arbitrary procedure of converting the original first order
into a second order equation before solving. To satisfy eq. (10), it is
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- necessary to substitute this solution and adjust ¢; in conformity with itg '

demands. It is then seen that ¢; = ¢, and .
' y=a+d

is t-hé genera] solution of eq. {10}, ;
‘But eq. (11) ean also be satisfied by equating the first factor on the left
to zero. This leads to

dy z* .
x+2dﬂ:=0’ or y—_4+c \
This will satisfy eq. (I0)if ¢ = 0, Thus & )
__= ~A\
T4 N 3

#%4

N
is another solution of the original differential equaﬁ;n, but one which is not-
derivable from its complete solution. It is“ealled a singular solution.
Inspection will show that it represents the enwelope of all the straight lines
which correspond to the complete solutigh,® This is generally the mecaning
. of singular solutions. ) O
An equation of the form N

R
N

Sy d
y;ﬁ£+f0%
www.dbraulibrary® gin dz
is known to mathematicidnk as Clairauf's equation. Eq. (10) is a specimen

of this type. Clair L&t"s’equa.t.ion can always be handled by the method
here used and hagithe general solution :

NGO y=cx+f©
N
\ EQUATIOKS OF HIGHER ORDER

_ A~.géaem1 method for solving certain differential equations of higher
og'ckgr’wm be presented in secs. 2.10-12. It seems appropriate, however, to
\”&gscuss first a few special types of differential equations which can be solved

by elementary means. While the theory given in this section is applicable
to equations of any order, emphasis will be placed solely on second order
equations because of their prominence in mathematical physies,

2.7. Linear Equations with Constant Coefficients; Right-Hand Mem-
!JBI'I Zero.—In diseussing this type of equation it becomes convenient to
troduce a new notation; we write D = d/dx. A symbol such as D,
which is meaningless unless applied to a function of x, and which is there-
fore not a mathematijcal quantity in the usual sense, bears the name
“ operator.”” - In thé present connection D may be regarded agnothing
more than an abbreviation. Later, however, when the mathematics of
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quantum mechanies is to be studied, it will be found that operators such as
D are entities of eonsiderable significance which give rise to an operator
algebra quite different in many respeets from ordinary algebra. For the
present we merely observe that a differential equation of the type under
discussion in its most general form may be written:

D4 asD" Yy 4 aD" 2y gy = 0 (2-12)

The o's are constants; the order of the equation is n. Consider now the
differential equation Q)

D=r)D—r) - D—m)y=0 (2213)

which must be understood to mean that the successive applidation of
d/dx — ., d/dzx — r,_y, ete., upony is to yield zero, the #’s being eonstants.
It is clear that (12) and (13) become identical when the r’s g,rE; ehosen to be
the roots of the algebraic equation )

e + a;_'r"_l + azrn—2 + - ...I_ a“S:O ) (2_14)

Let us then attempt to solve (13). A particula.r‘so‘:hition of that equation is
easily found, for if ¥ satisfies O\

(D — r)y =0

it will also satisfy (13}, since further differentiations and multiplications by
r will leave the right-hand side unchanged. "B ulbyr-owwiis the
solution ¥ = ¢,e™?, hence this is & particular solution of (13).

Furthermore, we obserye: that the order of the “factors ” (D — ny)
appearing in (13) is insign?[%ﬂnt. Hence any factor may be written last,
and this means that ¢, ¢ '% is also a particular solution, and soon. On
adding all particular \s?hltions, i.e., on putting

N\ = aTi% _
‘§ y. gc,e (2-15)

there resultd a solution with n independent arbitrary constants, and this
must fcheﬁe?ore be the complete solution. To summarize: in order to solve
(12), fixst determine the roots of (13), which is known as the auxiliary
equation, If these roots are denoted by r;, the general solution is {15).

One point is to be noted. If the coefficients a appearing in (12) are
functions of z, the decomposition into factors leading to (13) cannot be
made by solving the auxiliary equation. The reason is that then the #'s .
will also be funetions of z, and

(D~r)D—r)y# D —r)(D—n)y

as the reader may easily verify. This state of affairs is expressed suecinctly
by saying that the operators (D - r1) and (D — rp) are commutaiive only
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if the r's are constants. For variable 's the order of the factors in (13)
is also essential, so that the whole method of solution here discussed mugf
fail. . _

Returning to the case of constant coefficients, one minor difficulty must
be considered. Suppose that two roots of the auxiliary equation are equal,
If they are called 7, the supposedly general solution will contain the part
(¢ + e2)¢™ which is equivalent to ce™. One arbitrary constant has been
lost and the solution obtained is no longer complete. To remove this
fault we consider the two factors of (13) which gave rise to it ﬂ.{td study the
eguation oA

D-r)y =0 O (@8

One solution is certainly ¥ = €. Let us look for a gﬁﬁéﬁal solution of the
form y = f(2)"®. On substitution of this intog (@B) there results the

N AN
following differential equation for f(=): 8

\ 2 \
d_;f =0 IR
dx R

Henee f = ¢;2 4 co, and the completd sblution of (16) reads

¥ =, .@154‘ ea)e"” .
This shows that, when two rbotf- of the auxiliary equation are equal and
have the value ¥ e NS E R S @it ion {e1 + €2)€™ oceurring in (15)

must be replaced by (ere =t c2)€™.  An extension of this argument leads

to the general resulf:{If r; is a g-fold root of the auxiliary equation, the
complete solutionof (12) is |

¥ = e’ +02€,m Tl o + e -+ Bga2P1)eE 4 .-

PAD
Examplege &
a. ¥ iole harmonic motion.
When ‘the force on a particle of mass m movin
\*: %y, Newton’s second law of motion reads;
2

d%
T M

g along the y-axis is equal to

Here %, the force per unit of displacement of the particle, is known as the
stiffness of the oscillator. If we denote the positive constant k/m by «?,
the equation becomes dPy/d? + w*y = 0. The roots of the auxiliary
equation r® + o? = Qarer; = iw, 1y = — g, Hence by (15) '

Y = 16t 4 ggiwt

The constants ¢; and £x May of course be complex. This resylt may be'.'
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written in two other, but equivalent, forms. On expanding the exponen-
tials in sines and cosines we obtain

¥ = {e1 + c2) co8 wl + {6 — e3)7 5in wl = Cy cos wt + 'y sin wi
This last result may also be stated as follows:

y = Asin (@ +8) = A" cos (wt +8) _

where the new constants 4, 8, and A’, 5’ are related to C; and C,
by Asiné = €1, Acosd = Ca; A" cosd’ =y, —A" sin & = Cs, or gon-
versely A2 = A’ = (7 4- (5, § = tan™1 (1 /Cs, & = tan™ Cs/Ch..

AW

b. Chain sliding ever a smooth peg.
The chain (cf. Fig. 3) is sliding over the peg, the
right end moving downward. Let the displacement N *
of this end from 0, the point it would oceupy in equiz -\ \/
librium, be . If the linear density of the chain isN\%
and its total length [, the mass to be accelerqted T

is I\ 'The resultant force is 2\yg. Hence| from
Newton’s second law, \Y;

&’y & 2»“" !
D\F Mgy, or ?g-79“ 20 i Tt
. www.dbraulibrary.org.in z
The au:uhary equation has the roots +v 2¢/1, leadmg +
to the general solution wa\= cle‘/z“'_ﬂ‘ + e Ve, Fra. 2-8

The constants may be ﬁke\d by supposing that, when § = 0, ¥ = yo and
dy/dt = 0. Thenc1+c2 =¢o; &1 — ¢ =0; and

y"é 2 (VN 4 —th) Yo cosh\/_t

c. Damp'&l szmple harmondic motion.
When tiesmotion of the oscillator considered in example (a) is damped,
o is"present, besides the restoring force —ky, a damping foree propor-
e\a.l (at small velocities} to —l(dy/ dt), the negative sign indicating that
the force refards the motion; { is known as the damping constant. The
differential equation describing the motion is o
w+@b YLy =0 . @-17)
if b is written for the constant quantity I/2m. The auxiliary equation has
the roots —b - V5% — «? 8o that the general solution becomes

¥ _ce(—-b-l- vae)t_{_ce —b—VE Bt
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To adjust the constants in conformity with physical conditions we suppose ;:
that, at ¢ = 0,y = yp and dy/dt = 0. Then with the use of the abbrevia. -
tion B = V2 — o?

Yo _ g E /] __E —R!] _ |
yzEeb[(l-l-R)eR—l-(l R)e (2-18)

Beveral special cases are of interest in this connection.
(@) b > w. R is then real, but smaller than b. Hence botlrterms of
(18) represent an exponential decrease. The motion is net oscillatory. .
() b =w. Then R =0, and y = yoe™®. The motion{is pot oscilla-
tory; it is said to be critically damped. O
(v) b <w. Then R is imaginary and may be“written R = 4,
w'? = w? —~ B2 Eq. (18) now reads \\
Y = e (cos w't + i, in w’t)
ke N4
or, in equivalent form, ' o\

"

Y == -wj go€ Thsin (w't 4 5)
PN

where § = tan™ «'/b. Thiswepresents a damped sinuscidal motion of

period T = 2«/\@%@&%&5‘%% decreases exponentially as ¢ .
\

d. Natural oscillct\ﬁins’ in an elecirical cireust.

In a circuit contaiing R, L, and C, the sum of the * partial ” electromative
. forees due to inflyttance, resistance and capacitance equals the external
emf. If thf\?lgmtter is zero (natursl oscillations) we have
¢\

A\ 4 g _
Q Lo tBI+Z =0
orf remembering that I = dg/df,
i Py Rdg 1
atTatiee=0

This ecuation is of the form (17); the constants are b = R/2L,
@ = (LCY ™2 The solutions are already given in the foregoing example,

In particular, if oscillations are to take place, w > b, ie, 2VL/C > R.
In that cage
R*C\~12 Y
- _ b —(R{ZLYE s - a
d (1 '4L) e Sm( LC 4L2t+s)
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and

§ = tan™ ALy

=B NeR

The initial conditions here are that at ¢ = 0, the condenser has a charge
go and there is no current.

2.8. Linear Equations with Constant Coefficients; Right-Hand Mem-
ber a Function of x.—We now restrict our considerations to differential
equations of the second order. In terms of the notation”of the foregoing
section, the problem s to solve O\

(D? + aiD + a)y = @) O E19)

Tf the roots of the auxiliary equation are ry and g, this equg@ﬁiﬁ‘n takes the

form A
(D — r)(D — ro)y = f@) (2-20)

Put (D — ro)y = u, 80 that (D — rw = (). ‘B‘tﬂs is a linear first order
equation which can be solved by the methodofiset. 3. It gives

w o= ¥ fe—nzf(x)dx + c}f{!’f'; grw((ﬁ‘(x) + Cl)

if we define f TEf(E)E = @R I thisH dEpaiita i@ tnto the
o 4
definition of u, the result ds,\\(D — r2)y = "% {p(x) + 1), an equation
which may again be treatisqxiﬁ aceordance with formula. (8). Hence
y = 2 e lo(o) + s+ ™
..\’t\'"'
"x.ﬁ: P f % (2)dx +

Q.t

On chaﬁﬁi’r’l‘g the meaning of the constant ¢;, we write the solution of (19)

N\

€1

n* 4+ CQGM
r1T— T2

y = & f g(”l“'ﬁ‘”ga(x)dx -+ cle_flz + coe™* . {(2-21)

The form of this solution is interesting. The last two terms are identi-
cal with the solution of the homogeneous equation. They are called the
complementary function, while the rernainder, €** f e, (pYdy, s

known as the particular intégral. Thus the inhomogeneity 7’ of the
equation, f(z), mekes iis appearance in the particular integral only. Itis
sometimes possible to find the particular integral of an equation like (19)
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by inspection, that is, by selecting any function which will satisfy the equa- ;
tion. When this is available one can make use of the fact just noted and 1
form the complete solution by adding to this funetion the general solution f
of the homogeneous equation. Usually, however, the straightforward cal-
culation of the particular integral is hardly more difficult.

The particular integral can be written in a form which is often more |
convenient in practice. On performing a partial integration we find '

;

(rr—ra)z (r—m)z
e o e de ;
fe("““)”tp(z)d:v-= ___,__(2 — f__ = dx N\
L — g ry ~ ra dz N .
(r—ra)z (\) ;

e
= 1 — Fe fe f(a:)da: - f?"] OTOT;)-(x)dI

because do/dr = e "*f(z). The particular ipteéfa.l then becomes

L {e f e () ~ o f e*”"f(x)dx}
P —"r AN
and finally \)

X 3
NN

v = = [ gt o Jert@aad + o 4 e
1 — T2 ™

www,db}‘;ix;fibral‘y,org,jn (2-22)

Examples.

a. Forced oscill\azﬁ}ns of a mechanical or electrical system. :
The equation .to\be considered is (17) but with a funection of ¢ instead of
zero on thesight. In most applications this junction, which represents the
impressed foree divided by the mass of the oscillating system in the mechan-
ical cgqe,\i'é & sinusoidal function of the time. Hence we are dealing with
the,‘{.iiﬁérential equation

N d*y dy

“:\. . -52+2b—+w2y ‘-=f[)8inaf,_. . (2—23)

dt
As in see. 7, example (cl), the auxiliary equation has the roots
o= b+ VH— W = bV 3

If again we denote V% — o? by R, the particular integral is

e(—H—R)t T e—(b—f—RJ#
PL =" f_e(b-m*fu sin atdt —

f eCHRIE G s

. “The integrals here may be evaluated by means of the formulas on p. 43.
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When this is done and the terms are suitably collected,

: fo{[ b—R b+ R ]
PIL =22 _ _
w G Rt GrRE+ETY

[ 3 5

b—RPt+E GFRI+ az] cos “t}
_ Jo

= (w2 _ 02)2 4+ 4&352

[(e® — o) sin od ~ 2ba €08 atl

To obtain the complete solution we must add to this the solution of (7).
Hence : P
RGN
y= i {(“’2 — o?)sin ot — 2ba cos at} s O '
(w? — o?)? + 4a%* ~\
+ e ae™ —Ké'ge“‘ﬁ‘) (2-24)

It is seen that the complementary function decays exponentially with ¢
and will be damped out eventually. It is therefore of little interest in
physical applications. = The amplitude of the okcillations,
f(] ¢ o\
(0 — a?)? $de’b?

has & maximum when the Mpressad"(é,flgul\%r) er%qenq has the value
NN ww.dbraulibrary.org.in

2,8 (w2 — 252)1!‘2

N\ .
This ie said to be the co{Qit'ibn of resonance between the impressed force
and the vibrating system: If b is zero there oceurs what is sometimes
referred to as the “J\reéoilance catastrophe,” for in that ease the amplitude
is infinite when o(= .

(@) Mechanacal system. _

The preseqb\\bhebry can be applied, for instance, to a mass m held in equilib-
rium by @\8pring of stiffness & and damping constant . We then have, as
in see( 76,

\ )
! 2
Resonance oeceirs when

k 2 \1f2
«= (= 3m)
(8) Electrical system.

Tor an electrical system with an impressed electromotive foree Eo sin ot we
have (cf. seec. 7d}, b = R2L, w = (LCY M2, fy = Eo/L. Resonance
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1 RE i/2
“T (E - §P)
The solution (24) represents the charge, ¢, residing on the condenser at any :

instant. The current I is obtained by differentiating ¢ with respect to the
time. Both terms in braces then become positive, and '

oceurs when

I = A[(w® — o?) cos at + Zba sin ad] ~

where A stands for Eoa/L[(0® — a?)? + 4a?%]. The poywés, ‘expended |
T L ..

in the ecircuit is f EIdt. This integral contains two terms, one with the ,
¢ £\ i'

integrand sin of ¢os of, the other with the integrand sinat. Tho first of
these is O provided T is taken large enough to inglude a great number of ‘1

T

cyeles 27/, the last gives f sin? etdt = T/Z.\ Hence the power expended ;

o, 79 .\ k

is "G 1
AbaT

The part, of the current proportional ¢ eos af causes no power consumption;

it 15 a ** wattless ” current which ig,always out of phase with the impressed

electromotive forc\:fai.\f w.db raulblﬁ];"ary .org.in

b. Electrical pola?‘?,'zatio\ff. ;f
An equation like (_23%83150 describes the response of ordinary matter to an
impinging electroms, WBtic wave. A light, wave, for instance, which is
polarized in such.& way that its electric vector is along y, when incident
upon an electror-inside a refracting medium, will exert a force equal to -
el sin ot upor this electron. Here E, is the amplitude of the electric
vector qf\th“é light wave, ¢ the charge on an electron, « the frequency of the
light ’(gséumed monochromatie). fo in (23) is then {e/m) By, m being the
electron mass. The solution is given by (24). y represents the displace-

(ment of the electron under consideration at the time £. This gives rise to a
tHipole of moment ey. By “ polarization ” is meant the dipole moment per
unit volume of the material, and this is obtained on multiplying the dipole
moment due to one electron by the number of displaceable electrons per
unit volume. If this number is N , then the polarization

p = V¥Eo { (0 — o) sin o — 2ba €05 ot}
: m (@0? — o?)? + 44%2

Further considerations of a physical nature® show how the index of refrac-

®8ee, for instance, Page, I

: - “ Intreduction to Theoretical ics,”
Nostrand Co., p. 532 et seq. Physics,” D. Van



57 OTHER SPECIAL FORMS OF SECOND ORDER DIFFERENTIAL EQUATIONS 2.9

tion and the conductivity of the substance may be deduced very easily
from this expression for P.

2.9. Other Special Forms of Second Order Differential Equations.—
a. An equation of the type

j—i% = f{x) (2-25)

can be integrated by the method of sec. 8. If this is done, only formula
(21) is applicable, for the seconed formula (22) involves the quantity

A N\

Fia. 2-4 %3

r, — ra, which is zero, the auxiliary,eq gation cort;iaﬁponding to (23_) having
equalroots: 7 = 7z = 0. Thegolutionis ™" aulibrary.org.in

Yy = f‘p(_x)dx +\<fm—f>03x = f [ff(x)da:] + 01 + e

This procedure is here wery artificial, of course, for this result could have
been obtaned de{@TY by integrating (25) twice.

Examples, (Suspension bridge.

Consider phﬁ}art of the cable hetween A and the variable point P. It i8in
equilibyigmn’ under the action of three forées: the horizontal force, H, the

tengion) T, at P, and the weight W of, or supported by, AP, which of course
ne:z%‘not act at the middle of the segment. Hence we have
& w
Tsing=W; Tcosé=H . .tant :Eg , -4

This relation is true for every point P, provided W is the load between A
and P. It is generally more convenient to write the equation n terms of
w = dW /dz, i.e., the load per unit horizontal distance; w = w(x):

dy _w®)

R (2-26)
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In the case of the suspension bridge, the load is uniform along x, henee
w = const,
Solution:
2

Y= %{% + 12 + 2, a parabola

b. Equations not containing y.
If the equation to be solved is

ON
&y dy A
7o =f(ﬂ?;35) :.\"“.\
introduce the new variable p = dy/dz. The resulting @tﬁ%ation

‘j—z =flzp) O
can then he solved by one of the methods alreidy discussed.

Example. Cable hanging under its gzz}n}uez'ght.
The equation describing the cable i3 (26), but w is not constant. Iu this
- case 1t s dW/ds, the weight per uinit length of eable, which is constant,
provided the latter is uniform. . }}ﬂft dW/ds = A, Then

ww@bzuﬁb@rioifjw

dg Y Hdx H dz

From this dp/\/.l. k2 = (W H)dz, so that
&~

¢ - A
o b p = =2 + oy
:»'\: &

If the q{@ﬁ_’i& chosen at the lowest point of the cable, ¢; = 0, and

Nty oA H A H A

’“\: \: -_— == Smh —_— ; = — : e = — o —
\\ s Ha: Y RGOSth+c )\(COSth 1)
This curve is known as a caltena.ry.
e Eguations not containing x.

d’y ay
| do? =f (y; ELE_)
Again we put dy/dr = P bu_t how we write
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The resulting equation
dp
r dy = f (%P)

is solved for p, then integrated once more.

All linear homogeneous equations of the second order with constant
coefficients discussed in see. 2.7 can be solved by this method, but the
treatment of sec. 2.7 is usually simpler.

Example. Anharmonic oscillator. . \
Differential equation: PR N
‘;Tsz +wf+rf =0 ~.f"""~ ’
Solution: : .w}\\
pip = — @A NP, P = = (o P — B

S

The integration of this equation leads to an elliptic function.®

Preblem. Solve the equation for the an};gtﬁhonic ogeillator by successive approxi-
mation, assuming that Ay <€ w ™

Ans. ™
3 e www.dbraulibrary org.in

4 = & cos (wzf<j'—%[1—§m2(wz+e)]
+8 3

™
II}I'EGRATION IN SERIES

A type of dlfferentla,l equation occurring very commonly in physics has
the form “\".\“
A ¥+ Xay' + Xay =0 (2-27)

where Xynd X, are funetions of », the independent variable. Here and
in thefollowing, primes denote differentiations with respect to z. The
methods developed in the preceding sections of this chapter are suitable for
solving (27) when X, and X3 have special forms, but are far from yielding
sohitions of that equation in general. In faet, such solutions are frequently
not available in closed or finite form. For certain regions of , however,
they may be found in the form of convergent series by a proeedure to be
studied presently.

8 8o Peirce, B. O., “ Short Table of Integrals.” Introductory treatments of elliptic
integrals may be found in * Higher Mathematics,” by R. 8. Burington and C. C. Tor-

rance, MeGraw-Hill Book Co., New York; * Higher Mathematics for Engineers and
Physicists,” by L. S. and E. 8. Sokolnikoff, McGraw-Hill Bock Co. New York,
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2.10. Qualitative Considerations Regarding Eq. 27.—Betore turning to
the consideration of exact solutions of (27), a few remarks concerning thej
qualitative behavior in limited domains of x may be of value. 1 survey
their behavior, it is often advisable to remove the first derivative ouenrring.
in (27), which is always possible by means of a simple transformation of the
dependent variable. Instead of ¥, we introduce », related to y by

y —— vg_ifxldu‘.

When this is substituted into (27) and the exponential factoris then
cancelled, there results an equation for v: a
2 A
kX -3 X - 3P =0
from which the first derivative is absent. This reprgsém;s essentially a
relation between » and the curvature of » and may beZwritten

v = flz)

v (@)

> Fia. 2-5

~&
) 0ng'§ct is at once apparent: provided v is finite, it has a point of
mﬂg:xjgn wherever f(z) = 0, Furthermore, in regions where f{z)} > 0
m'foffﬁcts are to be noted: If » is positive and has a positive slope, the slope

continually increase as x Increases, eausing » to grow rapidly; if v is
Positive and has a negative slope, the positive »”" will continually diminish
1ts steepness, causing ¢ to approach the z-axis and then in general to turn
upwards again. For negative v the words positive ” and “ negative ”
in the preceding sentence should be interchanged. This qualitative
behavior is most easily remembered if we think of the special case in which
f(z) = const. = w® > 0. The solution is then

U = 016" 4 gpe7

which typifies the foregoing remarks,
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1f, however, we consider & region in which f(z) < 0, the slope of positive
» will be continually diminished. Thus if » starts out with positive slope
this will soon be zero and then decrease until v = 0; as v then becomes
negative its negative slope will increase until it is horizontal and v turns
back toward zero. In shors, ¢ is oscillatory. This again is easily remem-
bered if we consider the special case in which f(z} = —w? < Ofor it hag the
solution » = ¢ sin {wz -+ 8). .

Fig. 5 illustrates these facts. To the left of A, v oscillates; at A it hasa
point of inflexion; to the right of A it is of exponential behavior.

2.11. Example of Integration in Series. Legendre’s Equation>
To illustrate the method of series integration, let us postpone fund@gtqntal
matiers and start by studying a specific example. An equation of consider-
able mterest is Legendre's; it has the form A

(1— 2y — 2oy + 1T+ Ly =0 .\gf b (2-28)

in which [ is a constant. We attempt to find a solution which is a series in
positive powers of . If the lowest power occurrip\g\;s &, this solution will

7

have the general form R

y =% oD’ (2-29)
=1 ey

Solving the differential equation thenSBmoynts, g, detepmir 'n% thj? coeffi-
cients . Whether the series converges can be taste aff‘ely thif Hhs been
achieved. At present it will bg &usumed that this is the case, and that (29)
may be differentiated term by*term. When (29) is substituted in (28)

the result is X LA\
); an(x + )\)(\“}')\ - D2 — ;ah[(x +NE+N—1)

A 20N — 14 Dt =0 (2-30)

G
This equatic‘n%'nmst hold for every value of z, and this can be true only if
the coefficiént of every power of x is identically zero. Since A cannot, by
hypo,theﬁis; be negative, the lowest power of = oceurring in (30) is 22,
and\it js present only in the first summation of (30). Thus we find, put-
ting » = O to obtain the term in question, ;

g — 1) =0 ~(2-31)
ag is the lowest coefficient in our summation and hence not zero. Equa-
tion (31) therefore determines x. It is often called the tndicial equation.
Clearly, two values of « are permissible:

k=01

Next, we see what further information eq. (30) will give. According to
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k
the foregoing, the coefficient of 2™+ must vanish for every positive integer 5 j ‘
Now the term corresponding to the {x + J)—th power of z is obtained in the

first summation by putting A = j + 2, in the second by putting A =j.
Hence ;

tie(e+ i+ Dk +i+1) =afe + 0 +j+ 1) -1+ 1)

g+ DNk+7+1) 10+ 1) |
Sy ) B R
Thus, if a; i3 given, a;42 can be computed from this relat.mn\ Starting
with ag, (32) perxmts us to obtain, successively, az, a4, etc. A, do, however, is :
arbitrary; it is one of the two arbitrary constants a,ppea.‘nng in the genersl]
solution. of a second order differential equation. On the other hand, if ;-
is assigned arbitrarily, all coefficients with odd subscﬁbt.s are deducible from
(82).
Chotce 1. Let us take x = 0. Eq. (32) then reads

.?(.7+1)*3(?+1)

AR R (2-33)
On takmg ap and a; as arbitrary cm&sﬁa,nts the solution becomes
(- Dy dbgaulifiecy . I + 1)
y"-(l 2 RNID g ot )
+(z+’ z(z 11\x§+ z(z+1) 12—2zéz+1) 4. )
I+, 1) I—2)+ 1)1 + 3)
=(1 o 2 + m 4 ..
+ ﬁj@—z) (l-2r+2)(1+1)---(l+2r—l)z2,
(2r)! .
)ao
- A +2) -DI-3)+ 2+ 4
+( a7 .1:3+ )éf )( + ) 5
L L A=10-3 -2+ 1(+2)--- ¢+ 27
fr( 1 N TEeT 2PrH
+---)'01 - @34)

Choice 2. letustake x = 1. Eq. 5 then reads
G+ODGE+2)—1¢+ 1)
G+2)(G+3)

Gite =

a;
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If now we take again go and a; as arbitrary constants, we find

9 I+ 1 2—1l+1) 121141
y=z(1+ (6 ) 4 (6 ). 2E}+ R P
6 —11+1) 6—10+1) 2011+
+""(‘”+ 12 @+ 12 30 “’5+"')“‘
=:.r:(1—— (s—1)3<'z+2)x2+(z—1)(zﬂ3)5<::+2)(z+4)x4+_“)a0
1—2)d+3 —A -+ +5 \
-I-x(a:—( i; ):c3+( ) :)320 X )x5:|'-‘-\-- ay
AN -35")

The terms multiplying g in (35") are seen to be identical wgi.t&i.those multi-
plying a; in (34"); hence these two particular solutions ar@'the' same, The
second part of (35"), however, does not agree with thefirst of (34'), both
of which represent series in even powers of z. It might seem, therefore, as
if we had obtained altogether three indepen@ep}éolutions, which is, of
course, impossible. But closer inspection would show that the second part
of (35) is not & solution at all. This is seén ‘gt once U, after assuming any
specific value for I, we substitute it back into the differential equation.
The trouble is that, putting « = 1 and\dy = 0, we have carelessly discarded
any constant term which might B,ppear W%%ﬁ?ﬂhﬁﬁ?&ryghﬁ present
example indicates clearly that-the solution of a differential équation is not
an altogether mechanical matter and that caution must be used at every
step. Summarizing, We\Q%QeWe thet the significant parts of (34') and
(35") are: N

y 2[1_z(z+1);;;_'_1(:—2)(z+1)-(z+3)z4+__,+(_1),

20 4!
- -2+ 0+ G2 = 1)
o (@r)!
& ,‘;]ac (2-34) v~
1— 1) +2 -1 -3 +20+1
y=[_( )3(1 )_x3+( )( )5(1 W+ 5,
O-DE=3) =2+ D+ C+20) oy
+ =D @ +1)! @
'.,....]a1 @-35) +

‘Problem. Show that the equation ¢ 4 ¢ =0, if integrated in series, has two
particular solutions. ane of which may be identified with the cosine series, the other with

the sine series.
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One further point should be observed. When any one term in (34) ig'_%
zero, all succeeding terms vanish also and the series becomes a polynomial,
The conditions under which infinite series like (34) reduce to polynomials
are of great importance in many physical problems and will be discussed
more fully later,

The work thus far has only established the fact that the serics (34) and.
(85) are formal solutions of Legendre’s equation, that is, they would
satisfy (28) if substituted in it. Whether the solutions are of any,interest
depends on their convergence properties. A series converges if thévratio of
the. absolute values of two successive terms, e\

NS ¢

~

[ 12 I 3
| us | N\ )

is smaller than unity for large 5. Now this ratieis' c\eariy

I Qir2 ! =2 ’::\\:
[a;] &~
But AV
| 242 I

vj':La:' |

is immediately obtainablauliprar(3).inAs j — © it becomes 1. Hence
the condition that (34) and‘(35) converge is that 22 < 1, and this is truc as
long s | 2| < 1. qu.\té;hles of zin the range —1 < z < 1 our solution is
a significant one; for“ether values it fails, Is it possible to construct a
solution valid for [@% | > 1? This is indeed not difficult,

Let us suppese’that y, instead of being given by (29), has the form
Yy = §a>\:ﬁ‘j\’.‘.’:\'Eq. (30) will then read

'\\\~ ;a;\(x — N = = 1)zF2

AN —-?a;\[(x— Me—~r+1) -0+ D]z =0

)
\xnow denotes the highest power occurring in the series. The indicial equa-

tion is obtained by putting the coefficient of the highest. power of z equal to
zero.  Thus

k(x+ 1) —I0+1) =0
whence

k=1 or =]—-1

As before, the coefficient of 7 must vanish for every positive integer J.
This implies

@2l = § 4+ 2 (e = § + 1) = aj{(x — j){x ~ j +- )=+ 1)
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or, on replacing § by 7 + 2,
k-Nk—j—1

fors = .
e e T T L
Choice 1. Let us take x = . Tq. (36) then reads
by A= DE—i=D
TG -A+D
If ag is chosen arbitrarily, the series becomes
— — — — .\
y :xz(l_Mx_zga DE=DC=3) «_ .
2021 — 1) 821 — 1){2 — 3) A\

-+ —-—2r+2)--- 1 — DI _, ) O
g er . a N~ (9
2@zt D@D A% &8
The series formally obtained by putting ao = 0 is of r.l“'iﬁterest since it
violates the assumption, previously made, that «, L.€% i, represents the

highest power of the sequence. We shall therefo;e\omit it at once.
Choice 2. Let us take x = —! — 1. Then O

, , ~N
I E2ESVCEN =20
TG @k
If again we put a; = 0, there results the':particular solution

y = g1 (1 + +0nd+ 2)2:_:2 SN 1”)’(‘!'%’—@3’[?@@?(”‘?%1

n-" -
22 +3) A T Siary@+6 +

+ @+ 1 (1420

2.4..-20(2+ 3 N2+ 2+ 1)

s ) ao (2-38)
The two solutions (37 yand (38) are independent, hence their sum repre-
sents the general sdlution of Legendre’s equation. It is easily seen to con-
verge if |z | >4 unless I has such a value that the denominator of one of
the coeﬂicierg&%in the series vanishes. This case will be studied shortly.
Weare adw in possession of two forms of solution of eq. (28). The firsl
(egs,.34 and 35) converges when |z | < 1, the second (egs. 37 and 38)
when, P:c | > 1. Under special circumstances, however, (34) or (35) as
well as (37) or (38) may become polynomials, which remain finite for every
finite value of . It is interesting to see what happens to the various par-
ticular solutions when this contingency arises.
Eg. (34) reduces to a polynomial when [ is an even positive or an odd

negative integer {or zero).

(—1yr

a. Tet I be even and positive; [ = 2k.  (34) then becomes

y=a0f}a;DxL+”4_Dm30_2}“2GIH“'W—DJ)
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On the other hand, (37) becomes under these conditions

-1y _
= axt A A E
y—a:z:(l 2 1):6 +

e 1! _
=1 z(z—z)---z(z+1)--—(2z—1)z)_

These two solutions become identical if the second is multiplied by the
constant factor

=220+ 1) -2 —1) \

—1)" \
( Il (\)

_ Hence the particular solution (34) coalesces with (37). \ O

b. Let I be odd and negative. Inspection shows thaf (34) now becomes
identical with (38). \

" Eq. {35) reduces to a polynomial when I is an odd positive or an even

negative integer. N
e. Tf 1 is odd and positive, (35) rea,dsﬁ:x\
I— 1 +2 \
y = ( '(—‘-'——?3'(1_“‘_) 5] + . -‘

~1) ‘&r‘_"’i?'ﬂrff"b‘”fﬂ’éi 82042 @
+ (=1) 1 IE) '

while (37) becomes ,x.'::\

oy MmN
y = oz’ (1 221 AW e
\{' (— l)u_lm i e ]
\O -+ @-n”

N
These j;’wo expression? become identical when the Be
cond i
'l'.he coefﬁ(:lent of its last term in parenthesis. is multiplied by

\ 4. If Lis an even and negative integer (35) turns into (38).

Having established these iraportant relations between solutions (34)-

(38) we now return to the consideration of (37) and (38). Solutions (37)
and (38) for integral values of [ are of great importance in math : tical

- physics. 1f the constant ao in (37) is chosen to be ematica

@nt  @-1n@E-3).
24 T

the resulting polynomial of degree [ is called g
Legend .
Legendre coefficient or “ zonal harmonic ™). 1t is usuali.; ngmtzzug, J(;))r
1
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For purposes of reference we write it down again:
1-8-5---@2—1
1
[ M=1) oy W -DE=2C=3) y
" T 2@-1) 2.4(20 — 1)(2 — 3)
The series here is to be continued down to the constant term. On the

other hand, (38) with the constant o chosen to be 2HINZ/ (2 4 1),
I being a positive integer, is often denoted by Q. It is an infinite serieg™

= 4! —11 (5 - 1) I+ 2) —1—8 O
& 1-3---(2z+'1){:° + 202 + 3) 2 N\
+ A+ 0+2) \
2-.4---2r(2+3)--- @ +2r+1)

Pi(x) =

. } (2-39)

e X ] Y (240
.‘\' ,.’ 4

The following facts will be noted: )

When [ ig a positive integer, (37) is & polynomia%but (38) is an mfinite
series. The general solution of (28) 18 a linéat combination of (37)
and (38). _ PNY;

When [ is a negative integer, (37) is_aninfinite series, and (38) is a
polynomial. The general solution of (28) is a linear combination of (37)
and (38). : SN . "

When 2 is equal to some positive dd integ:r:fs\gﬁlz?{gﬁm(gﬁrﬁ% erates
into (38). To see this, supposdn2l = 9n — 1. There will then appear 2
vanishing denominator inthe goeflicient of z'~2" and in every subsequent
term of (37). To remove these infinities one may multiply the entire series
by (n — r), which causes all terms of order higher than I — 2n to vanish
while the others remain finite. Hence the series begins with the power
22 = g1, and inspection shows it then to be identical with (38).
Tn this case, Qu* tnethod has yielded but one particular solution, and this is
an infiniteséries. Procedures leading to a general solution are discussed in
treat’iges’iin'])ifferential Equations.”

When 21 is equal to an odd negative integer, (38) degenerates into (37)
in a manner similar to the above. Tn that case also no general solution can
be obtained by the present ‘method.

Having now given a fairly complete mathematical analysis of the solu-
tions of Legendre’s equation, we state some conclusions of practical impor-
tance. Jn aimost all applications (ef. Chapters 7,8, 11} the independent
variable & appearing in eg. (28) is the cosine of an angle. The functions of
interest are therefore those which rematn finite for all values which ¢ = cos &
can assume; these values include & = 4+1. Suchb functions exist only when

7 See Forsyth, A. R., Difierential Equations,” Macmillan Co., London, 1914,
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I is & positive or a negative integer, as we have shown. But when !isan
integer, consideration may be limited to solutions (37) and (38), because

the others reduce to these. Moreover, inspection shows that solution (38)
with [ replaced by — (I + 1) is the same as solution (37). Hence we may

T

,further limit our consideration to pesitive values of [ {including 0} and
retain only (37) as a significant solution. Finally we note that (37) is

identical with (39). Hence:

In physio-chemical problems, where = cos g, the only solution of

Legendre’s equation which is of practical interest is £;{cos 8).

Problems, (\H

a. Prove that, when ! is an even negative integer, the express;Qn‘s (? ) and {38)

become identical.

b. Prove that, when 2 is an odd negative integer, expressmns (37) and (38} become
identieal. \\

Differential Equation for Associated Legendre Fuﬁcﬁons, or Associated

Spherical Harmonics. N

An equation snmlar to Legendre’s pl&ys b conmdera.ble role in mathe-
matical physics. It is®

2
(1 — z%)y" — 22y’ + I(I + 1) — = 2] y =0 (241}
W dbrauhbva,r Torg.in -

where [ and m are both mtegers, and has a particular solution:
)

\\y (1~ xz)m”(%ﬂ(x) (242}

The other pmincular solution is related to @, and is rarely of intcrest in

a,pphca,tlonS\JI‘o construet (42) by the method of series integration is
perfectly (feagible, but we shall here use a simpler method based on the
foregoing results. If Py(x) is a solution of

N

o) =2y’ — 2y +10+ Dy =0
\’Gbén
ar
7 L 1®)
® The equation cccurs mors semmonly in the equivalent forms
%y dy m?
d32+“°t8— [l(l-{—l) 29]3;-;0
or

HFICYE) M

which reduce to (41) on substitution of cos @ = g,



W ’

69 CONSIDERATIONS REGARDING SERIES INTEGRATION 2.12

for which we shall write P{™ (z), satisfies the equation
(1 — )P — 20m + DeP[™' 4 LA+ 1) — m(m + P =0

(2-43)
as s scen when Legendre’s equation is differentiated m times. Now let
P (z) = (1L — =)y (2-44)

and determine, by substituting this into (43), what differential equation ¥
will satisfy. After substitution, (43) will read

a- 22y (4r¥e? - 2r — o)y — 4r(l — 2wy’ + (1 — 2%y W
_2(m + 1 - Day’ +4rm + Dy +PC+ D O\
— m{m 4+ 1)1 — 2y} =0 O
1f here the special valuer = — m/2is chosen, this equation red‘ucés to (41).

We have shown, therefore, that (44) is true withr = —m/2and hence that
y={1~- 2P (z)

as was asserted.  The function P{™ whichisa po'(sﬁmmial of degreel — m
and which satisfies eq. {43), i3 sometimes efetred to by physicists a8
Helmholtz function. The function (42) is foown agan associated Legendre
funetion, or more frequently, an assaciaté?j.’ spherical harmonic,

2.12. General Considerations Régarding, Serigs, Integration. Fuchs’

Theorem.—Before continiing, whe"ré:ader will wish to k o theitifhits of
applicability of the method :aq:zplied in see. 2.11, and in particular what
propertics of the solution\\'g‘ne may read directly from the differential
equation. Tirst, then, Jet; us ask the question: Will the method described
in gee. 2.11 always ny’i-k‘? In preparation for the answer, we consider the
differential equatieo\h’

& ’" 2 =0

O ¥ oyl =

N\ .
On putting\r = T o it is seen that
PRONED > NCE 10 2 D2 = —Ta
\ ) A by
The indicial equation,. obtained by putting the coefficient of the lowest
power of x equal to zero, simply reads .
. t =0
and does not determine & Turthermore,
a1 = —(x+ D& +j— ey

g0 that ay — —do{x — Dk Qince ao = 0, this means that either x = = or
a, is also zero. In neither case do we get any solution at all
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Equally instructive is the equation

) r
yff_i_y?:O

Tts indicial equation yields « = 0. The recurrence relation between -

* coefficients is
G-

iy =
i+1 J+1 a4

. N |
Thus we have apparently determined a solution. But let us apply 8 COD-

vergence test. Denoting again the terms of the series by u. ong 8ees that
i Lt | Lo b n = O
A= ‘u‘ﬂ.i T lan\ Tired @ n+1~:“

This is greater than 1 asn — w for every finite valupof %, so that thereisno

range of z af all in which the series converges. Again, the method fails.
To enlarge our outlook, let us now return, o’ the general form of the
equation we wish to solve, that is, to eq,.27). As a rule there will be
values of z for which one or both of phe-functions X; and X7 become
infinite. If £ = xp is such a value, { heﬁ %y is said to be a singular point
of the equation. It is at such mngu‘la.r points that the method of integra-

tion in series may,hrealaglawnby aﬁ'yacb%more specific, a solution of the form
y = Ea;\ (x — )™ may ngt exist at singular points zq.

_ In dealing with Legqna:res equation, a power series development was
attempted about the*pemnt zo = 0. It succeeded because, after writing
the equation in the, form (27), neither Xy = —2z/(1 — :t:2) nor Xg =
(I + 1)/(1 — x%) becomes infinite at z = 0. But the points z — 1 are
singular pointsief the equation, and it is for this reason that the general
solution \obtdined breaks down at these two points. Agsin, the two
equatiofis.just considered, ¥’/ + 2% = 0 and ¥ + z2/ = 0 possess &
singular point at & = 0, and this is the cause of the failure of the present
method "
’ But while the method often fails if the differential equation has a singu-
lar point at the place where the power series development is attempted, it
does not slways do so. For instance, the equation

¢+ Yy - y =0 .
may be developed in the form y = ;a}.a:""‘  despite its singularities at

= 0. The indicial equation yields x = =1. When the positive sign i3
" chosen, the coefficients must satisfy the equatlon

[(J + 1)2 - ]-]aj =
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which is no longer a recurrence relation but serves to determine the eoeffi-
cients just as well. For it says that every a; = 0, except forj = 0.
The corresponding sohrtion is ¢ = age. For x = —1 we have

[G—1®—1e; =0
and this indicates that all coefficients must be zero except that corre-
gponding to j = Oand toj = 2. Hence the solution is
y = (ap + a27°)
The constants g and a, are arbitrary, which implies that the solution is an
general one, including y = const. xasa special case. Obviously, then, it 8

important to settle what kind of singularities do, and what kind douript,
permit an integration in series about the singular point. )

This issue is settled by an important theorem due to Fuchs, :whit;h states
the following: . ¢ D
If the differential equation ')

y” + le’ + Xy =90 \\

possesses @ singular point @b T = Zo, then o conbergent development of the
solution th a power sertes about the point = =7y Raving only a finite number
of terms with negative exponents is mevriheless possible provided that
(x — x0)X1(x0) and (x — 20)” X2 (%0) réwiorn finile

\ www.cibl'aulibral'y_org_in

This clearly is true for the equation”
rH s . P,
y +{: y -~z y=0
at 7o = 0, but not for \\
\ I —a
KO IR 4+ % =0
Thus the results jist obtained are accounted for. The proof of Fuchs’
theorem is a matter of some length and will not be undertaken here.®
In conformitMth the theorem singularities in Xi and X, occurring at
T =1 whi’éh are removable by multiplication by the factors (z — =)
and (™ 'z;)? respectively are called non-essential singularities of the
différential equation; all others are essential ones.'® All regular and non-
essentially singnlar points are sometimes referred to as regular points of the
differential equations (German: “ Stellen der Bestimmtheit ™). An
equation which has no essential singularities in the entire infinite complex
plane is said to belong to the Fuchsian class of differential equations.

9 See, for instance, Schmidt, H., * Theorie der Wellengleichung,”” Leipzig, 1931.

10 Whether the point at infinity is an essentially singular one cannot at once be seen
in this way. To examine it the transformation £ = 1/z must be made, One may then
show that the point at infinity is essentiolly singular if X1 or X922 becore infinite there;
it iy non-essentially singular if 2z — X 2% - © or Xgz* — o0; otherwiseitis regulsr.
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A fina) remark on the nature of the solutions obtained by the method of
integration in series is in order. Even if the point at which the develop.
ment is made satisfies the Fuchs conditions it may not be possible to obtajy
two independent solutions which, when combined linearly with the use of
two arbitrary constants, will yield the general solution. If this process is
to produce a general solution, further conditions must be met. Sinee
general solutions are not often required in physical and chemical applica-
tions, this matter will not be considered in detail here.!'  We noie, how-
ever, that two independent solutions in the form y; = Xa, (2 L)y
andy; = Tan(x — o)™ can always be obtained when the twoaoots of the
indicial equation, « and &, do not differ by an integer or lgy\'z?n:}x

SPECIAL EQUATIONS SOLVABLE BY SERIES Il:IT]fGRATION
2.13. Gauss’ (Hypergeometric) Differential Eqfiation.—
(@ =2}y + (1 + o + Bz — 4 F asy = 0 (2-45)

The parameters a, 8, v are constants, and it ‘Wil be assumed that v is not
an integer. Eq. (45) has singularities at\d, 1, and o, but they are all non-
cssential.  On development about z =0, the indicial equation reads

ek — vl)’vi-“ wy =0
hence v = 0,1 -—WW@Hﬁﬁﬁﬂgﬁ?ﬁoD,&% obtain the recurrence formula
PN CRTICEE) ‘
TG DG En Y (240
and hence the parti.cu'g' solution
[ L o e+ 186+ 1)
= 1 — —_—— " T2
v ""_ +,@-f“ RSy
et @t r~1)-6B+1) - (841 - 1)
B . XS F TR
o Tyr+ 1) - v+ 1) i (2-47)

Thg’ Eei'ies in { } is known as the hypergeometric series, It converges if

_<.-1. Fora =1, 8 = v it reduces to the ordinary geometric serics;
hence its name. It is customary to dencte the hypergeometric series by
FloBy:x). With this abbrevidtion, then, this particular solution is

Y = aF(aBvix)
Next, wetakex = 1 — Y. The recurrence relation reads
(a~7+j+1)(ﬁﬁv+j+1)
_-_-_"_.'_‘—ﬂ_-‘_'_'_‘_‘—‘——-—
G+DG+2-7y) ¢

1! For particulars, see Bécher M., " Regul i i i i i
, , M., gular Points of Linear Differential E HoTs
of the Second Order,” Harvard University Press. e Buations

Bit1 = i (2-48)
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When the new constants: o’ —a—v+ 1,8 =8-ry+ L+ =2—n
are introduced in (48) it becomes
G +DE D
! G+DG+YY
that s, it takes the same form as (46). The particular solution corre-
sponding to (48) may therefore be written
' Fla—vy+LB—7v+1,2—7;%)
We have thus arrived at the following general solution of (46): \
y = AFP(aByx) + Be' T Fla—v+ 1, 8- +1,2—7;2) ,{2§49)

whose range of ¢onvergence is x| <1 O
There is an intercsting and sometimes useful relation between the "
solutions of Gause’ and those of Legendre's equation. Leb 115 introduce in

(45) the new independent variable £, given by \
z=2(1-% \
2 N\

£

5o that 1t takes the form _ L
2 NS
(1 _52)%5%‘1‘[14"&'{'3—27‘“ (« +8F 1)6]3%— afy = 0 (2-50)

This reduces to Legendre's equstion (28) if ye,epatify.fhs.sepsiapy © b
o =l+].-.r ~'180= _'_lr Y = 1
One particular solution of Legendre’s equation is therefore
& L
y‘;\aﬁ' (5 +1, -1 1; —z—g)

NS
From the fact thﬂ:{f; %his solution, expanded m powers of ¢, starts with a
eonstant te (35 clear that it must be identical (aside from a constant
factor) with “4). Tn particular, if 1 is a positive integer, 1t must be P;.
This h.‘a.Qpé:rls to be true, as the reader may verify, even with respect to the
cor{ta}ht’factor if P; is defined as in (89). Thus
Pif) = F(l +1, ~4 1;1——2—"é (2-51)

An equation known 0 mathematicians as Tschebyscheff’s results when
in (50) we specialize the constants as follows:
o = —f8 =mn, animbeger; ¥ =%
The equation then reads:
' &2y L dy
-y =0 2-52
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A N S

Its solution is clearly ;

. . — 12 - |
v©) = 4F (n-n 31 5 + 8(5) P (n 4 nt 1, 7))

A a0

2 2/
(2-53)
The first particular solution here written is a polynomial known as the

Tschebyscheff polynomial, of degree n. If multiplied by the proper factor _}':
it has the alternative form: :

¥ N\
_ontf an___ T n—2 M A4 __
Talz) = 2 (’: HZs Tt gt O\
nin —4)(n ~5) x)’(‘
sizp Tt (@-54)

- The function F(o,8,v;z) reduces to a polynu)ﬁial when o = —n,
n being a positive integer, as may be seen froninits definition (47). The
resulting polynomial, which is of degree n, is knbwm as a Jacobi polynomidl,
defined ag follows: W

In(p,g%) = F(—9+ n, ¢; 7) (2-58)
Tt satisfies the differential equation %
- [ gl —n(p+a)y =0 (2-56)
. . www dbraulibrary .org.in
in which ¢ must satisfy g> 0. Substitution of « = —n, 8 = p + #,
¥ = ¢ into (47) shows tl:itai‘s\2

Talpg) =14 &L~ _
o (MY P+ Etn+ ) (phat+r—1) \
El:(“.‘l)h(l) glg+ - (g+r—1) :

Problemw\'ﬁd the solution of (45} about the point z = 1; i.e., find solutions of
the form \\ "/

R\ ¥ = Za(r — 1)+
D ”
Ny = AR @ats ybl; 1=2) 4 B3Py 5, 1, 1—amp i 12)
2.14. Bessel’s Equation.—
2y oy + (@ -ty =0 (2-57)

n I8 & constant. Sinee the equation is regular at 5 = 0, its solution may
_ be developed as a power seriga about that point. The indicial equation

&~ nPag = 0

* Ct. eq. 12—2 for the definition of (:)
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bas the two roots x = =m.  According to the remarks at the end of sec. 2.12
we can obtain two independent particular solutions if 2n is not an integer;
" if it is, the method may allow us to determine only one. Taking & = r:
one finds : :

72 _ 8
= anz®i1l — - ..
v "‘“"‘{ 2@n+2) 2 4@ T D@+ D)
2r
+ (-1 z »
( )2-4---2r(2n+2)(2n+’4)---(2n+2r}+ }(258).
For x = —n '
2 z* N
= ager ™11 . o\
y = ot |+2(2n—2)+2-4(2n—2)(2n—4)+ \
. ¥ N
+2-4---2r(2n—2)(2n*—4)---(2n~—2g')‘:\+{“‘} (2-59)

When the constant ag in (58) is chosen to be'® 1/[2°T'{#ty+ 1)], the resulting
expression O '

W

. (- 1)}‘. \ ~\ 2\nt2
y = Ja(2) EJEDI'O\ + 1)1‘~()g."-|-"?'1 + 1) (-2—) (2-69)

is ealled a Bessel function of order n, o3% wewar dbraulibras ]
When (59) is multiplied by the safte factor i becomes  —a (%) FHence
the complete solution of Bessel':ae?:guatiou (when n is not an integer) is

5B @ + BT (@) (2-61)

Inspection of (58) and, (59) shows that no difficulty arises when = is balf-
integral, although the‘difference of the roots of the indicial equation is an
integer. But if,,e\-.-,:m“an integer, J_n is no longer independent of J,. For
in that case ¢ \sicoefﬁcient of z2% in (59) hag a vanishing term in the denomi-
nator, and_evety subsequent coefficient likewise becomes infinite. Multi-
plicatiop-by the vanishing term makes every term preceding the n-th zero.
Thedsenias then starts with z* and is seen {0 be identical (except for a
constant multiplier) with (58). For integral n, therefore, we have obtained
only one solution, namely J5 (a;).“1 By choosing the constants A and B of

1$ The (3amma function appearing here is & generalization of the factorial n! which
is defired only for integers (and geto). 1f nisan integer, T'(n + 1) = nl. In general,
Tz = fm ot 1dt; it is easily seen to reduce to n! whel z =n. Moreover, this in-
0 : : ‘

tegral defines the * smoothest ” function which takes on the values =! at the integers.

Ct. sec. 8.2. s . :
11T second particular solution for integral » is derived in Forsyth, * Differential

Equations,” Macmillan, p. 182.
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(61) suitably, several particular solutions of Bessel’s equation (such
Neumann’s and Hankel’s functions) having useful properties may be co
structed. 'They will be discussed in sec. 3.9, :

2.15. Hermite's Differential Equation.— -

¥’ — 2ey’ + 2oy = 0; « = constant (2-62)

The roots of the indicial equatibn are « =0, 1; the recurrence relations
between the coefficients |

o~

2k 4+ 7)) — 2a . Q)
Giys = - - :
U GHiFDG+i+DY A
~ For « = 0 we find the solution O
2 — 3 _ o
y=%(1_25$2+2a(a 2)24__2a(a 2)(.1: 4)xﬁ+---
2! 1! 61\\
+(_2)‘_a(a—2)--.(a——2r+2)xzr+:’”) (2-63
@)1 D
while for x = 1 \
— 92 (o — AW —
y=aox(1—2(“, Doy (a,.. e —3) 4
3! Q¥ B!
,(a*l)(a*—3)~}&”(a—2r—|—1) . :
+ (=2 www,dbral{librégy,_?;rﬁ,}'{l 4. ) (2-64)

The general solution of Hermite’s equation is a superposition of these. If
o 18 an even integerish, “(63) reduces to an even polynomial of degree ».
On choosing for gg\the value '

(—1ye
.'\’.. . n
| ot (5)1
tbiqul?%fuial hecomes
L0 Hae) = o - ne D (e
QO |

+ n{n — 1)(n2—!- 2){n — 3) 2z~ ... (2-65)

and this is known as the Hermite polynomial of degree n, If a is an odd
nteger, , (64) reduces to an odd polynomial of degres n, In fact if we
choose for ag the value :

(—pyo~va_ 20!
!
2
$hat particular solution also takes on the form H,(2).

g
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An equation very similar to t.haﬁ of Hermite is
¥+ (1 =2+ 20)y = (2-66)

For if we put ¥ = ¢ "%, so that. ¥’ {(x? — 1o — 2’ + o},
the equation turns into

m’+2m_o

which is identical with (62). Henee the solution of (668) is simply any
solution of Hermite’s equation, multlphed by ¢ 72 O\

2.18. Laguerre’s Differential Equatlon — A
oy + (1 — o)y +hy =0; a=constant  ((2767)

has a non-essential singularity at the origim. Developing“'é,iiﬁut =0,
“the indicial equation has the single root « = 0. Only ond solution will be
abtained, this being of eonsiderable importance in pilysics. The recur-
rence relation reads: \,

a3‘+1=(3+1)2 \{’ \

hence o\

| e — 1 “‘..
y=a.0(1—aa:+ (2‘2)3:2—--
2n N www.dbraulibrary.org.in

ale = a—7r-+1) -
e (,,,gz tHpp) e

Thiz expression becomes akolynomlal when & = n, a positive integer. On

rufting "
oD w= (ol
and for mte 1~n i becomes the Laguerre polynomial of degree n:
n n’? n—1 Mf‘—a_'....
Ln(:\v} ( N*{z" — 1 !x T+ 2
N\ 4+ (—1)"n !) (2-69)

A differential equation at once reducible to Laguerre’s is
2y + (b + 1 —2) + (@— By =0 kaninteger 20 (2-70)

It results when (67) is differentiated k times and y is replaced by its k-th
derivative. Henoce a solution of (70) for integral and positive « and % iz

Yy .= fw Lﬂ(ﬂ&') = Lﬁ(z)
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This is sometimes called the associated Laguerre polynomial of degres
n —k,

A third function closely related to the Laguerre polynomials satisfi
the differential equation :

k-1 z k- 1] |

' 4 —_— 2 - 2_ 5

Y + 2% + [n 2 n = |Y { 71)

If we substifute in this equation y = ¢~%/2; *~1)/ %y, then v is seeftho bea:"}
solution of A i
o+ (k+ 120 + -k =0 D

\

Comparison with (70) shows, therefore, thaty = Lﬁ'(a:}:f;Hence :) pa,rt.icu-..f‘
lar solution of (71) is D ;
y = s—z;’:’x(k—l);"‘!_.;_fl]{cl (.‘B) "‘\ (2_72} ;

k

This function is known as an associated ng@::re function; it is of great
importance in the theory of the hydrogenatom. We observe that if n in;

(71) were not an integer but any constant’e, the corresponding solution of
(71) would be y ™ |

")

g = Tffié%k"l)’2jikLa(x)
www.dbraulibrary.org.in dz |
where L, is written for _bhe series (68); provided, of course, that & is
positive integer. This ‘sdlution would no longer be a polynomial in #:
multiplied by ¢*/2, but an infinite sequence.

217. Mathig;;:s Equation.—In the previous sections attention has
been given todifférential equations in which X; and X,'® were algebraic
funotions “C{f:\m . Eouations sometimes arise in which these funections

are periodic/ The simplest instanee of these is Mathiew’s equation, usually
Writtgl;p in the form . :

N® . - d*

S

of 52 + (a + 16b cos 22)y = 0 (2-73)

where a and b are constants, Its general solution may be obtained by the
method of integration in series if the substitution

£ =cos?z

. is made. (7_3). then reads

| & d
4(1 - g) Ef + 201 — 28) f—é + (e~ 160+ 32y = 0 (2-74)

15 Defined by eq. (27).
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This equation has & non-essential singularity at £ = 0 and can therefare be
developed as a power series about the origin.  On inserfing

¥y= %GLE'JF A
in (74) we obtain .
ZF(K + A) (2 + 2x — Do — ?[4(;: 4+ 0)2 - a + 16Bjapt ™
+ 3WEagHH =0

" Here a feature arises which was not encountered before; the equation
contains three different summations instead of two and will therefore Jead
to a three-term recurrence relation between the coefficients ax instgéd\of the
~ two-term relations that oceurred in the former instances. This;yhowever,
* requires no modification of procedure, except that it will force’us to advance
step by step in the computation of the coefficients, Onl¥ 'ﬁh} first summa-
tion can contribute to the coefficient of £, which must'be zero. Hence
the indicial equation is formed as before: , x\\ '

(2« —1) =0 :":."

whenee we obtain the two choices: & =, ﬂ;:.%? Next, we equate to zero
the coefficients of £, to which the first #nd second supma ions _eogt.ribute.
This leads to RN\ : y.org.in
2k + 1) (2« +m{)"al = (4x? — a + 16b)ag
s 3 .
so that ™
\ 1 42 — o + 16b
W =TT T e 1 19 g
P, (x + 1)(2x + 1)

from which al,m}a,}r“_be determined when the arbitrary copstant ag 18
assumed. ()Qéqimting to zero the coefficient of £+ to which all three
summatio;xsl;:contribute, one gets

\"2{;\{ 2)(2x + 3)az — [4(x + 1)? — o + 16ba; + 32bao = 0

a relation permitting the caleulation of ag, ete. Inlthi_s way two geries can
be constructed, one for x = 0, the other for «'= }, linear composition of
which vields the general solution of (74) and hence of (73). Investigation
shows that this solution converges if el <t L )

This general solution, bowever, is rarely of interest m physufs and
chemigtry, for it is not periodic in z. In most Qroi?lems leading to
Mathieu’s equation, % is an angle, 80 that there is no significant distinction

between = and z - 2nw, Where 7 i8 an infeger. Thus the solutions usually
" sought must have the property that y(@ + 2mn) = ¥(2)- The general
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solution here found, which is of the form :
Lo + £7Z0e 2-15)

does not possess this periodicity, as closer investigation would show, !
Qualitatively this defect is apperent from the fatlure of the solution to
cooverge for £ = +1, which excludes the values x = nr from considers-
tion altogether, as well as from the existence of a branch point ef (75)
at ¢ = 0 (arising from the factor £'/2). A\ 3

In fact it is impossible to obtain solutions of Mathieu’s.¢qiiation which :
are periodic and of period 27 in 7, unless definite restrictions are placed ;
upon the constant ¢. It turns out that the latter must be a complicated -
function of b if the solution is to be periodic.’® (¢ -

Flogquet's Theorem. An important theoretn eoncerning the genersl
solution of Mathieu’s equation, or indeed of anyylinear differential equation
with periodic coefficients which are one-valted funetions of z, will now be
established. Suppose that y; (#) and @4() are two linearly independent
solutions of (73), so that any pa.rti(;lﬂa.i- solution ¥ may be eompounded
from them by means of two const{a,nﬁs ‘4, and 4, as follows:

e

y= Ay + Agyy (2-76)

www.dbraulibrary.org.in
Now 1t is clear that, if y{{») and y»(z) are solutions of (73), y;(z + 2r)
and ya(x + 2x) Wil\cliso’ be solutions, for the substitution of z + 2r in’
- place of x causes wo %-ange in the differential equation. This must, of
course, not he interpreted as implying that y(z + 27) = y,(z) and
y2(2) = yalx \+"qu) ; but it does mean that

iz '%f)‘= oy (E)} + e (@); 12(z+27) = asyyy () + sy (2)

the q’é: being constants. Similarly, using (76)
N\®

VY @+ 20) = A (z 4 20) + A + 20)
= (Aren + Az ) (=) + (Arera + Agagg)yg(x)
We observe that the constants « are fixed by the choice of y; and ., buf

Ay and A, may be chosen at will and still leave y a particular solution of the
equation. It is possible to choose them so as to satisfy the equations

A + Aosagr = kA Ayoys + Azags = kAo (2-77)

where % is a constant not within our control, for if eqs. (77) are to be satis-

18 Cf. Whittaker and Watson

.. ! , “ Modern Analysis,” for further details regarding
periodic soiutions. .
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fied then k& must be subject to the equation

ap —k o1
=0 (2-78)
53] oy — k
But if (77) holds then
y(z + 2r) = HAw(2) + Aspa(2)] = ky(z) (2-79)

In other words, there exists a particular solution y(z) such that, when z is/
increased by 2, the solution itself is multiplied by the constant k. Ifk

were unity, this solution would be periodie. ¢(\A
This result may be expressed in a different way. On putting O
k=, y(z) = #°PR) WO
eq. (79) reads R4

F @I P (g + 7)) = ¥FTHEP (x)

_ AN
so that P (x) turns out 1o be a periodic function. T Wit is seen that there
exists a particular solution of Mathieu’s equation(of the form

y = FP@R\ (2-80)

where P is periodic. From here it is gnl:yf % simple step to obtain a general
solution of (73). The differential equation isvinsErcbivel dyraheceghbatitu-
‘tion of —x for . Hence ¢ P <L %)} must also be a solution. Moreover,
it is an independent solution,(since it is not & constant multiple of (80).
The complote solution is,therefore, a linear combination of these two:

’ =0 P(x) + e M P(—T) (2-81)

This result, know(l;}éf Floquet’s theorem, is of interest in some astronomi-
cal application{xém’d chiefly in the quantum theory of metals.?

Problem, “Show that the Schrédinger equation
TN

m 7

\ - d2'j, -0
V LA+ V@ =0,

in which A is & constant, and ¥ is a periodic function of z such that Viz + 1) = Viz),
has solutions of the form '
¢ = e*%(z),

where pis also periodic: #(x + 1) = v{z} - s
This is sometimes called Bloch's theorem.

17 Qe Seitz, F., © Modern Theory of Solids,” McGraw-Hil Book Co., New York,

1940, Chap, VIII.
18 Bloch, F., Z. f. Phys. 62, 555 (1928).
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2.18. Pfaff Differential Expressions and Equations.—The equations of}
thermodynamics are peculiar inasmuch as they usually occur in the form:
aW = L. Xrdo, (2-8)

A= ;

where the X, are functions of some or all the independent vuriahles :q
While (82), which is known as a Pfaff expression, is not a differcential eque-
tion of the customary kind, its importance in chemistry and physicsaequires:
consideration. It is for lack of a more adequate place that this Mnaterial is
inserted n the chapter on differential equations. Some of \tl\p materdal
which will be developed from a mathematical point of v1e\v‘m this section

has already been used in Chapter 1, to which reference<should be made for

further applications. The equation R O
Z Xydny, = 0
r=1 \

is sometimes called 8 fofal differential equa\.ﬁlon or, more generally, a Pfaﬁ'
equation,

Clearly, the expression dW, eqq. (82), can be integrated along any path
in n-dimensional space, but the.ifitegral will in general depend on the path
of integration. \{SeanPiabordsy predh; also the example in sec. 18)
When f dW depends o{n’;&ile path of integration, it is said to be incomplete
or inexact, B\ )

The condition‘that (82) be a complete differential is

NS/

'\w dW = df(zyze -+ - x,) (2-83,

for thqry“ dW = f(rz) — f(r;), independently of path. Now
ol n

'.\'.

O ' of
ms g d
O f = g 5 kdaa
Comparing with (82), we find
| _
A o

To state this relation without explicitly introducing the function f, ¥
differentiate it with respect to &, p ¥ A

aX;, azf

dr,  Omdzx,




83 PFAFF DIFFERENTIAL EXPRESSIONS AND EQUATIONS 2.18

But also

3z, 9,97

X, _ &

Hence the necessary condition of “ exactness ” may be written in the form

Xy _ 0%,
dr, am =l (2-84)
The reader who is already familiar with vector analysis will note that, if
the X, are interpreted as components of a vector R, (82) may be written \
dW =R-dr @82
and the condition of * exactness "’ becomes \ O

aX aY 9X a4z aY 9z ~

or N\
VYXR=0 AN (2-84")

These results are of importance in vector anqu}e.% where they are usually

expressed as foltows: The condition that the\line integral of R (expression

$2’) around any closed eurve shall vanish isthat R be the gradient of some

sealar function, and this is equivalent-{o*condition (84'). (Cf. see. 4.17.)
We refurn now bo the general sitition: www.dbraulibrary org.in

dWhis not exact
T 28 3
and distinguish two cases® (N

A The equation d’= 0 has a solution.
B The equatioh ¥ = 0 does not have a solution.

A, The {ation dW = 0 possesses & solution. Leaving aside for the
moment all Gousiderations as to when such solutions may be found, we ghall
first, skepchthe consequences of the existence of solutions. The equation
aw, 'ﬁ\ﬁ\assigns to every point a direction, of, what amounts to the same
thirﬁ; an element of surface. (From the point of view of vector analysis
this is immediately clear because the relation R - dr specifies at every point
(21 - - 2n) the direction df which is perpendicular to the vector R.)

When integrated, the equation dW = 0 leads to

$(Tz " Ta) =€ (2-85)

which represents a one-pararaeter family of sul_‘faces in n-dimensional
space. These surfaces consist of the elements specified by dW = 0.

"We now wish to show that fhere exists an infegrating denominator,
tzy - -+ 2n), Such that AW Jt is an exact differential. The proof is as follows.
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Along the surface ¢(z; - - - %) = ¢ (cf. Fig. 2-6), we have both d¢ =90
and dW = 0. The same is true along a neighboring surface ¢ = ¢ + de.
Suppose we wish o go from A to €. The change occurring m ¢ is de,
no matter whether the crossing is made at By or at B,  But the change dW
will depend on the path. The important point to note is that no change
oceurs in W as we pass along either curve; a change ean oceur only at the
crossing: dW = function of the point at which the crossing is made. (If
dW # 0 along the two curves, then it would depend on the whole path, not

' merely on the point of crosging!)
Hence dW = {(B)d¢, wheve B 18
the point of crossing. Henge dW =
t(xl e xn)d¢s or s.\
aw T
W t

AN

But d¢ isjan exact differential.

Along the eurves ¢ = const., the equatiqn‘l%ﬁ('cb) = const. will likewise
be satisfied if F represents a unique, single-valued function. If, then, we
use F(¢) in place of ¢ in the preceding amalysis, we are led to

dW . 3 dWw
www,ibfﬁljb’ggggggggﬁ = _t

Sinece, however, dF = (dFquS)R:::; we see that T = t/(dF/d¢) is also an
integrating denominator. Iivis clear that, if there exists one intcgrating
denominator ¢ for a P a@ .expression, an infinite number of others can be
formed by the above ruie.

Only the points'en the surface ¢ = ¢ are connected with 4 by paths
along which W 0. It is clear that in the neighborhood of A there is an
infinite numbe}of points not connected with A by such paths, Hence the
"fatir’ !i}mpbttalnt in thermodynamics (though somewhat trivial geometri-
cally 1}« _

' ,Iﬂthé inexact differential dW possesses an tntegrating denominator t, then
&hexe exist, in the neighborhood of every point P, innumerable points which
cdnnot be reached from P along paths for which dW = 0.
‘We now consider the question of how to find the tnlegrating denominator.
1. Case of two variables. TFirst solve the equation

dW =0; Xdz+ Ydy = 0 (2-86)
The solution is :
¥y =f=e), or ¢(zy) = ¢ . {2-87)
Along the curves (87), ¢.dz + ¢,dy = 0, hence
ay 4,

dr _;; ' (2-88)
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But from (56)

oy __X
da Y
so that
o 7' T X =7 = «G) (2-89)
Now
aw :
d¢=T=¢adx+¢udy-ude+quy=udW A\
Hence OV
’ 1 X Y ',.:\\"..'
fm= === O
% e Py ,.:}‘ (2-90)
by (89). ,~;Z '
9. Case of three variobles. First solve \’:}\
dW =0; Xdz + Yy + Zdz, <0 (2-91)
The solution 18 \ -

¢(:c,y,z) =="'§ :.f v
Along these surfaces, Az + Py, 4{:¢=dz = (), hence

dy ¢, dzl8N 9 WH{’\-de’auh‘bgary,opgin
%;F-%’{@y ¢: e s
But from (91} \\\}
ay| N & X & T
dz |2 Y dvly Z' dyls zZ
Hence \ .
O s X s X e 2
“:.\ ¢y Y, 2 Z, ¢ Z
or O :
A\ ¥
\’) .¢3- r.by ¢s
: —-=-—='=u:v,,z)
x"Y Z (e
Now

s = W _ odn -+ buly + bude = ulXde + Yy + Z02)
t

Therefore

Similarly for more than three variables.



2,18 ORDINARY DIFFERENTIAL EQUATIONS 86
We now congider the condition that the equation
dW =0

shall have o solution. (Condition of integrability.)
Suppose & solution of ZX»dr, = 0 exists in the form
A

$(By- - Tp) =¢
Then
LI ™\
w(zy - zn)X =g 1=12-n . (2~92)

O\
Let 7, §, k, be different indices. It follows from (92} that R O

4 N

8 e K2
-— (uX;) = uwX;
ax; WX ;) dz.82 ( )\
whence _
(6X ; oX; au \.X; du
ul— - — -
_ or;  9x; a \ ¥ o
Similarly, Q
6X ;93X .63 _’X 533 _ au
www dbraulx}u MEry.org.in axt 333};
ou a
iinl A 4. N i — Xp—
6.’0 i \ aa:k 0% 3z ;

Multiply the last thrae%quatmns by Xi, X;, and X, respectively, and add"
axX; 3 aX; a X axX;

X;,( aX"+ ( —X—")JFX( E_ -0 (2-93)
ax; 3%3 O ax; o% dxn

By closet:%nalysm this equation may be shown to be both necessary and .
Suﬂici‘g»rﬂg " 1t represents the condition of integrability for the Pfaff equation
dW(=0. In three variables, eq. (93) takes the form

N _ R-YXR=0

provided R is interpreted as the vector having components X, Xz, X3
The total number of equations of the form (93) is equal to the number of
triangles that can be formed with » given points as corners; it is therefore
In{n — 1){(n — 2). These equations are therefore not independent.

It is to be observed that, in the case of two variables, eq. (93) is always
satisfied. Hence every Piaff equation of the form

Xdx + Ydy =0

possesses a solution.
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B. The equation dW = 0 does not possess a proper solution, i.e., eq.
{93) is not satisfied. For simplicity, we consider only ‘the case of three
variables, where the solutions can be visualized easily in ordinary space.
(ieneralization to more variables introduces no complications. I% will be
seen that “ improper ” solutions of eq. (82) are still possible, but that they
represent a greater variety of functions than the proper solutions considered
in the preceding paragraphs.

We now choose an grbifrary velation

¥(zye) =0 (2-040\

and impose this upon eq. (82), thereby effectively eliminating one degﬁsn of
freedom. From (94) and i differential form N °

Yoz + Pdy 4 Pz =0

the variables z and dz are obtained in terms of z, ¥, d, dy,\a.‘nd these solu-
tions are substituted in eq. (82). It will then be of the'form

Xdo+ Ydy =0 O
olzy) =9 (2-95)

The improper solutions of (82) are sa@@t}i;j be those curves which satisfy (94)
and (95) simultaneously. They représent,  therefore, o escribed curves
upon arbitrary surfaces. Further ' mveatiga.tic\rn would g%‘&gvy {H& bvery
point in the neighborhood o{«a\given point can be reached by a aontinu(?us
curve satisfying (94) and g5 from the given point, the state of affairs being
guite different from thert, deseribed under A.

N

and this has a solution

\/ . ) 2
Problem a, Le(dw = z(ds + dy). Compute the integral Lw dW slong two
y ;
paths: { \
Lz f"\ﬁzyl — Tzyr-
2.z~ Tiyz — Tole ) _
Shdw that the two results differ by the area enclosed by the two paths of integration.

&r;fblem b. Show that the expression
4 = —yds + 2y + ke =0
where k ia o constant, does Dot pomeas an integral.®
19 3o¢ Born, M., Physik. Z. 23, 250 (1921).




CHAPTER 3
SPECIAL FUNCTIONS

3.1. Elements of Complex Integration.—In the prescnt chabtefﬂ‘i:
nore common functions appearing in physical and chunut::tlf 1\-!}&'0"3' Wl ol
listed and their ghief properties will be deseribed. It f\*ﬂ' tic 3315_’“mm_
that the reader is fimiliar with the simpler notions of tln‘ (:ul{:uln.t's of ¢o .
plex variables, in partic with the meaning ?f thfifArgulml ri{{_xgri!ﬁeal
complex plane. As to notaMes. the symbol z will be“ised for u hmg‘thout
variable, while z denotes x T+t pe'®. Weshall al‘su assurne malytic
proof the famous theorem of Caych Nghich states that, if f(2) is an an

point z = a, and if f denotes

O, 0 ; . d the
the line integral along a closed contour Within this domain taken .roun
point ¢ in a counter-clockwise senSe; then

www .d brauli b :f‘y(gi §z”:= 0
N g

function of z1in a certain region including

and

3

N1 e

E,,.;f z—g
N\

From these t%“equations_it 18 possible to derjve the theorem of resi

which will R0W be stated,

Suppose that the function f(z) can be expan,
in the néigitborhood of the point 2 ~ 2y in the form
N a_,, a

dz = f(a)

o) < S - v
et TR tetae-6y
where m is some finite integer.! Then

f f@)de = 2ria_, (3-8
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at which the function has residues b_y, ¢_g, - -+ -,
Fr@ = mita + b+ eyt o) (3-3a)

These theorems are proved in books on complex variables.

Ezample. To evaluate the integral

I= ) dé
B _sa+ beosgp +csing 2\

Let z = ¢®; ¢ = —i log 7, d¢ = —i(de/z). Then oos ¢ =3+ 27", sin g =
(1/2i)(z — 271). : X

'\
\v/
dz %

nd
2%
%

L ¥

I—-if — -
R — fa? _
az+2(z _+1)+2£(z 1)

5.

the contour being the unit eircle about 0. The denorninator ei\he integrand may be

written ) .\\,,

A
30 — o)t Fas + 30 +ic) =30 - ‘ic;l[f;\—-b—_;c {(—a+ R)]

< W

- — k- R)
KLF T b= el

) www.dbraulibrary.org.in

S g

provided we putb ~
£ — b - =R
. 4 \,l_ .
If o — b2 —c2>0tl:{ep\
‘\,. i . (_.a.{-R) <1
) \ > b — e .
The other roo 5\,:1: “arid lies outside the unit cicele. 'The residve of the integrand at
z2="{—a . %I} — i) is
{ ~J);Q . R
7\ =3

W) 1

. A\ ¥ 1 T S R)]

Therefore I = —i- 2ila® — Bt — oB)li
2 .

“Vaop- o

01 ‘. function is a generalization of
9 Gamma Function.—The gamma ; ) _
theaf:cto?ial n for non-integral values of #; .11;1!0"3 f{’?ﬁ’fg::g}; gl?lé%ﬁﬁ
chosen tha, if n is an integer, T(#) = (n— L)%
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" tion, due to Kuler, states

, 1-2:3---(n—1) . .
e N M T (3-4)

Several important properties of the I'function follow at once from this
definition. Since from (4)

1-2.--(n—1)

T 2+1 )
1ﬂ(zﬁlhl)_mh_rf'«,(z+1)(z-+-2)-°-(z+n)ﬂ' N\
' \ zn 1:2...(n—1) RSN
= . * Fa I' 3‘5
T +1).= lim == 2zt 1) etn1) O ® (-9
On the other hand, (4} also shows that ~‘ b
nl N
I'{l) = lim — = ) (3-6)
e B!
A\,
Trom (5) and {6) it is at once apparent}@at\, if n i8 a positive integer,
T{n) = (n=1)! (3-7)

as was stated above. It is also evidéht from the definition (4) that I'(z)
becomes infinite at 2 = 0, —1, ~Zete., and that it is an analytic function
everywhere else. ~ www.dbraulibirary.org.in

_ It is often useful to repréSent I'(z) by means of a definite integral. To
achieve this, we considgg'"fhe function

:}}(z,n) = jo‘ " (1 - -:;)nt"‘ldt (3-8)

AX
wherein n standsfor a positive integer, and the real part of z is taken to be

grester tham ‘zero in order to insure convergence of the integral. The
transfo: ion = t/n converts ¥ into

N 1
A0 Flan) = n*f (1~ )"y
. o

X

’j-_‘he integral appearing here may be evaluated by repeated partial inte--
grations:

fol(l N [(1 - T)nﬂ: + ;fol(l — )iy

The integrated part here var;ishes at both fim

' . its, and the remainder may
again be subjected to a partial integration

» yielding

n e LI
- | B R — = —_ yn—
Ha-n HJﬁkauﬂzﬁﬂ
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The integrated part is again zero. By continuing this process we find

7 =.__'n(n-—'1)...1 e . 1.2...m z
(zm) z(z+1)___(z+ﬂ_1)nfofﬁ+ ldf=z—————r——(z+1)m(z+ﬂ)n

As n approaches infinity, this expression becomes identical with (4); hence

E Fizn) = T(2) (3-9)
On the other hand, since ¢ =lim. (1 + 1/p)” and therefore
_ p—re )
& =lim {1+ 1/p)? = lim (1 + /)" \
pp =+ §j o=t 8 N

O\
the quantity (1 — ¢/n)" appesring in (8) approaches the limit 5 We
conclude, therefore, that in view of ¥8) and (9) \O

ol
NN
< 3

j; ¢ ldt = T(2) \ {3-10)
This result is valid, we recall, when the real part‘o& is greater than gero.

A definition of the I-function, or rather itg-reeiprocal, by means of an
infinite product has been given by Weierstrass.) "Since it is a useful one, we
shall here derive it by simple steps (the rigetiof which is not always obvious)
from Buler's definition (4). We ﬁrs@.pfité 1‘.3&1: the product

ww.dbraulibrary.org.in
n—1

9
z z+:1>‘z+2 z+n—1

S \" 1 "n—i
which appears in (4), ma3>be written — Ima+ z/m)—l’ go that (4} be-

2 m=1
comes \ N ' 1
O 1 il AY
~C Y gim eIl (14 =
\" P(Z) Zﬂllfnwnrll( +m)
or N . | '
A 1. n 2
~O SRR "ﬂ(l + —)
\ / P(Z) ? n?‘” " 1 m,
I we multiply the right-hand side of this equation by unity in the form of
. n
. aagereime | lim IIe"“’“‘]
[m £ Lot
we obtain
1 T akee “‘1“‘“)’][ lim i (1 + i) e_ﬂm]
T(z) ? ﬂhinm ‘ oo "
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Now the infinite series: lim (143 +--- I/n — log n) = C converge

n—o

it has the value ¢ = 0.5772- -+, known as the Fuler-Mascheroni constag
Hence .
1 ey ( z)
—_ _ kS 1 ¥ —zin _
TG ! + oy (3-11
which is the Weierstrass definition. Tt shows, again, that I'(z) has pol
atz =0, —1, —2, ete.
A further important property of I-functions, namely the réldtion

T O\
T ~2) = L -1
(T z) - A 3
is readily derived from the Weierstrass definition. First, we recall t}
theorem: o ¥ . K7, N\ .
. w7
sin wz d 2N\
= 1 —_— 2 - E
T2 1 ( 2) (3-1

which may be preved by an expansion of thé\ixlﬁnite product as a sum
powers of 22, (The details are left as ah kxercise for the reader.) Froi
(11), ' L '

Ne/

. 1’”»&"” -1 -1
TE)(—2) = — 5ll (1 + f) (1 - f)
wwrw dbraulibraeytord.in 7 n,
w 1 ﬁ 22\ 1
\— _ =) 1 (I - ;;é)
\\5,0’ . . w

N == (8-14
4 .- 28nh w2 ’

the lagt stepoke(:‘b.ﬁae of (13). But in view of (5)
NS !
A Fi—s) — _ L .
‘\s.« _ (—2) T 'l —2)

andj;l'ijs, when inserted in (14), yields {12).
~(Several other formulas for the derivation of which the reader
\{e}er to mathematical treatises,? will now helisted without proof,
| C TETE+H) —2=dtng) g
An infinite product of the form o i
o lma 2-a 3¢

shoul

1-5- 225 " 373
may be expressed in terms of I'functions:
- “n—a T(l-—b)
mr—e rd—-»8. _
in~b TQ-a - 318
2 Cf., for instance, Whittaker and Watson, p. 235.
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Al=o, '
= nla+b+n) T+LHTE+1D)
y @+n)+n) Tletb+l)

If m and n are positive constants, not necessarily integral, we have
m )
Vo rg)r (3
2 f cos® xin™t ads = ————— (3-17)
Jo (m + n)
. T )
2 \

"This relation may be modified a8 follows. Putm =2r, n = 2¢, and
introduce the new variable of integration cos®z = u on the left, The
integral will then be converted into % N

(3-16a)

7%
< 3

1 9 -
f ur—-l (1 = u)a—l du . .m'\\
0 N )

which is a*function of r and s known a3 the Eulenlcgn\iwlegml of the first kind,
or simply the B-function, and denoted by B8, “Ea. (17) may therefore
be put in the form : AV

' T {(gT{s '
= = 3-17
B(T,s) .It(r'+ 8) ( )

The logarithmic derivative of e T-fushrigndb vty y org.in
& @ f o=t —zat
9y rgz)'éf  _ 2l (3-18)
dz N\ o \tr l1-—¢

if © = real part'of 23 :O, as was shown by Gauss. .
From this result.jt’is possible t0 obtain an expression for In T (z) which

iz useful in ev’a@}ﬁing T(z) for large values of 2:
o \ N 4 1
R\ §111 r{z) = (2 — Hnz—2z+ im@n+0 (;) (3-19)

AN .
wiere 0 (1 /z) represents 2 series of terms which vanish for'large z 8 least as
sirofgly as 1/z. For real 2, (19) takes the form of Stirling's series, when

written for T' instead of its logarithm:

T(z) = : .
1 1 139 1 . } 3-20
Em 12 (2 )2 [1 4 o + e ——-'51840:03 + 545832074 + ( }

It is valid when z is large. This expansion may be used for the approximate

evaluation of factorials of large numbers:
N! = NT(N) = e NNY @ee 21+ - (3-21)
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