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PREFACE

From several years’ experience in teaching classes in statistics and
giving adviee at various times to experimentalists, I have come to the
conclusion that there is a distinet need for more than one type of fext-
book. On the one hand there are many who are interested only in
knowing something of the theory and principles. In this class we find
students who are endeavoring to obtain a broad knowledge of all sub-
Jeets related to science and art, practicing technieians such as dogtors
of medicine and technical advisers in agriculture, and adminisfrators of
research activities. It would be idle to set students of, t.h,ls type to
work on laborious practical examples. It would proba’bly discourage
them at the start, and by absorbing time would reduge-bhe possibility of
.teaching them some of the very attractive phllosophlcal phases of the
subject. In a maze of caleulations the principles'might be lost sight of
completely, and the student would emerge with % technique for mechan-~
ical operations and no ability to solve acthal’problems. At the begin-
mng it is not training in actual methodg\that is required, but the build-
ing up of a sound knowledge of fundafitental principles.

On the other hand, we haty@mgmﬁﬁlg%w}}pr of students who,
hawng had some elementary traifing in statisties and some experience
in research work, come fo the point finally of requiring a practical
knowledge of methods of analysis and some facility in the devices of
caleulation. There igsno'denying the fact that two or three years spent
in studying the principlés and theory of statisties will not fit the student
to solve practical(problems. To do so is to ignore the many complica-~
tions that are m\%lved and that training in facility is necessary in order
that statis 'b@l ‘computations may be attacked with determination and
completed in 2 reasonable length of time. One of the objections very
often raised to the use of statistical methods is the time necessary to do
thé r()u_tme work. Frequently this sort of thing can be attributed to
insufficient training in the actual methods that should be employed and
a lack of organization of the work.

The basis. of this book, therefore; is the supplying of a textbook in
statistics for students who have passed the elementary stage; who have
studied a fair amount of theory and prineiples and now wish to equip
themselves for actual statistical work in their own field of research
activities. The experiment station agronomist, the cereal chemist, the
plant breeder, and the economic entomologist are all examples of research
workers who require a- practical knowledge of statistical methods, and
undoubtedly there are many others in the same class. It has been my
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vi I - PREFACE

" experience that to aequire this knowledge the student must work
through a comprehensive series of actual examples, and these' should
not be miniature examples ag they are likely to give him a wrong impres-
sion of what will actually be required of him at a.later date. Most of
the various examples and exercises in this book are therefore of actual
size, but every effort has been made to keep them within such limits as
-will enable the student to work through a representative set in one
academic year. S _ ~
This is not to say that a course in statistical methods should ever\be
. given without emphasis on prineiples, and this applies p_a.rticg}a,tly to
the principles of experimental design. When studying practical ‘meth-
ods, the opportunity is prime for the student to acquire a solid ground-
ing in-this important phase of the subject. The diséngsions in the
. greater part of the book, therefore, are worked-out, so-that they have a
- direct bearing on the principles of the design of experifnents. The first
half, for example, while containing material that\ihvolves a repeiition
~of elementary work that has already been covefed; is nevertheless written
8o that, in reviewing, the student is brought-into contact immediately
with the structure of actual experiments..” Also in this portion of the
book are certain routine caleulations, which are designed mainly to give
the student some facility in %a.}m)f%}iior} before he comes to the heavier
‘problems in the latter Wld LMgEraly orgn
. There are many to whoni 1 'owe thanks in the preparation of this
~ book, but in the first A must acknowledge a very great debt to
Professor R. A. Esherjhm has been mainly responsible for the develop-
ent of the methods that are set forth. - Furthermore, he has been very
generous of his owh,time in explaining how new problems may be solved
and in clearing G doubts as to the exact application of previously estab-
lished methiods. I wish also to thank the staff of the Statistical Labora-
- tory at Am)s, Towa, for advice and suggestions, especially Dr. G. W.
Bnedcaor, who in addition has given me permission to use, wholly or in
partyany of the tables or material in hig excellent new textbook, ‘‘Sta-
tistiéal Methods.” Thanks are due to many who have called attention
to errors in the preprint edition, and to ways in which the explanations
and examples could be improved. This applies particularly to my stu-
dents, who have taken a special interest in suggesting improvements of
this kind. - They have also taken a particular interest in checking the
qalc}llatic_ms in order that the book should be as nearly perfect as possi-
hle in this respect. In typing the manuseript I must acknowledge the
-untiring assistance of Misses E. J. Stewart and M. G. White.

Febniary, 1939, C. H. GouLpen.
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METHODS OF STATISTICAL ANALYSIS

CHAPTER 1
INTRODUCTION O

1. The Logic of Statistical Methods. Applying statistical fnethods
to experimental work involves the use of certain logical ideas. appropnate
to experimental procedure. The problems of statistics are{therefore, not
entirely mathematical problems; in fact they are very largely problems
based on the technique and requirements of the ressarch worker. This
1mporta.nt point has not always been clearly understood and hence we
find, in the history of the development of staiistical methods, various
attempts to solve the problems of the expemménta.hst by the application
of purely mathematical methods of ressofung and derivation. Thus we
find prodigious attempts being made to 2pply the method of inverse prob-

ability to the testing of the mgmﬁggpggl,gﬁa\;e;@tg obtained in experi-
ments. This theory has to do with the evaluation of the probability of
the occurrence of certain spegified events on the basis of what has bap-
pened in some previous event: For example, if 8 balls are drawn from
an urn containing black<and white balls, and are found to consist of 3
white and 5 black balld, to derive from this result an exact statement of
the probability of\obtaining & white ball in drawing another single ball
is a problem injnverse probability. Everyone will agree that, on the
basis of the ratig of white to black balls in the sample drawn, in drawing
another ball\bne’s expectation tends towards black, but very few will
agree thatthis expectation can be put in the form of an exact statement
of math‘ematlcal probability. On first thought, one might be inelined
to ‘think that this type of problem is the same as the statistical one of
taking samples and reasoning from these samples to the populations
from which they were drawn. We shall see, however, that there is a
very essential difference between the two situations; thai to regard
these two situations as the same is merely to misunderstand the true
nature of the methods of obtaining new information by experimental
methods. To illustrate these points in further detail we shall follow
through the procedure of operating a very simple experiment, in which
the statistical method will arise as a natural consequence of the efforts
of the investigator to get the most out of his experiment.



2 o INTRODUCTION

2. A Simple Experiment in Identifying Varieties of Wheat. This
hypothetical experiment is modelled after the famous tea-tasting
experiment described by R. A. Fisher (1), but in some respects the pro-
cedure is simplified. Fisher's hypothetical experiment will mdoubtedly
remain as & classic in statistical literature, and after following through

 the experiment described here the student will do well to make a similar
study of the tea-tasting experiment as it discusses certain aspects of this
type of problem that cannot be presented here. : _

A wheat expert claims that, if he is presented with grain samples.of
two particular varieties which we shall designate as A and Bphe can
distinguish between them. e does not claim the ability to identify

. either one of the varieties, if they are presented to him separately, and
further there is no special mention of an ability to differénitiate between
these samples at all times and under all conditions with perfect accuracy.
" The claim is for a certain power of differentistion,and we must proceed
in the planning of the experiment accordingly;\‘that is, we must plan
the experiment in such & way that any reasonable power of differentia-
tion possessed by the operator will be" demonstrated. With this
knowledge we can prooeed to set up thé éxperiment. o
Tt will be obvious with a little study that, in order to plan the experi-
ment correctly, it will be necessary to anticipate the possible results.
Buppose that we presﬂﬁfh’diﬁféfﬂ{ﬁ‘iﬁ‘ﬁﬂrpﬁﬁﬁﬁ only one pair of samples
and he classified them eorréetly. Without any knowledge whatever of
wheat varieties he could;\by pure guesswork, name the varieties cor-
rectly in 50 per cent of the cases. - This follows from the fact that there
are only 2 ways of classifying them, and if the operator has no power of
differentiating thein, these 2 ways are equally likely. Thus in about
half of the casta he would place them correctly, and in the remainder of
the cases incorrectly. Our conclusion must be that 1 pair of samples
would pofibe sufficient to produce a clear-cut result, regardless of the
efficiency or the inefficiency of the operator. What will be the effect of
in¢reasing the number of pairs of samples? Obviously, the operator
Swould be much more unlikely to place several pairs of samples correctly
than he would just 1 pair. Can this statement be put in more definite
terms? . Let us assume that 6 pairs are being used and see if we can
calculate the probability of a correct result, or, in other words, the
p}'oportion of the cases in which the operator, without any power of
dlﬁ’e'rentiation of the ‘samples, could be expected to reach a correct
p-lacmg. If there are 6 paira of samples, each pair may be placed either
rightly or WTO’}EIY: 8o that there are just 7 different kinds of results.
- These ate: 6 right, 5 right, 4 right, 3 right, 2 right, 1 right, and none
right. The pairs may be thought of as being presented to the operator
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one at & time, so there are 2 ways of placing the first pair (right or
wrong), 2 ways of placing the second pair, and so forth for all the pairs. -
Each result for a pair may occur with either result for another pair, so
that for 2 pairs we would have 2 X 2 possible combinations of placings.
These are: both right; first pair right and second pair wrong; second
pair right and first pair wrong; and both wrong. Continuing with this
reasoning, it turns out that for 3 pairs the possible number of combina-~
tions of placings is 2 X 2 X 2; and, finally, for 6 pairs the total number
is 26 = 64. * If now the operator places all 6 pairs of samples correctly,
we are in a position to place an evaluation on this result. There ig only
1 way of placing all pairs correctly, so that if the operator has ng'kffowl—
edge whatever of wheat varieties he would be expected to, place them
correctly in only 1 out of 64 trials. This would be a ratherodd chance,
and we would therefore be inclined, in the event of a suegessful placing,
to atéribute it to the ability of the operator in\differentiating the
varieties. Another way to regard this is to considenthe consequences of
adopting as a standard, in the examination of,-a%.rge number of opera~
tors, that all pairs muast be placed correctly; “Then in 1 out of 64 cases
we could be expected to attribute to the opérator a power of differentiat-
ing the varieties that he did not actually\possess. This would seem to be
a fairly safe standard. In fact it vetid undeuhiedly be argued from
the standpoint of the operators ‘being tested that the standard was
much too high. In general praetice, it is usual to adopt a ratio of 1/20
as an arbitrary level for dgcﬁminating between real and chance effects.
That is, an event is not\\regarded a3 significant unless it would only
oceur by chance variafion in not more than 1 out of 20 trials. )
We now have td/tonsider the interpretation that would be made if
the operator wergd.fo obtain such a result as 5 pairs right and 1 pair
wrong. In the above case there was only 1 way of placing 6 of the
pairs corrgq@,"but the situation is different now in that any one of the
6 pairs may be the one that is incorrectly placed, making & total of 6
ways, x{ﬁi’of the grand total of 64, in which the samples may be placed
5 tight and 1 wrong. Then, in considering the experiment from the
standpoint of the possibility of its indicating a power of differentiation
on the part of the operator, we must also take into consideration the
number of ways of placing 6 pairs correctly. That is, we must enumer-
ate the number of ways tn which the operator can place b pairs of samples
correctly, or any other result more favorable to his claim. This makes
a total of 1 + 6 = 7 oui of 64 ways in which such a result or one more
favorable to the operator could oceur, and if the operator has no power
of differentiation this result will be expeeted to oecur in just that pro-
portion of the cases. In approximate figures the ratio 7/64 is equal to
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1/9; and we note that this is larger than the ratio 1/20, which, as pointed
out above, i sccepted as a general level of significance. To accept
the ratio of 1/9 as indicating a power of differentiation would be to
take the risk of being wrong in 1 out of 9 similar trials, and this would
probably be toc great a risk for most investigators to accept. 1t might,
however, be taken as a safficient indication to justify further experi-
" mentation.

It will be found conventent, in experiments of this type, to set up in
the form of a table all the possible results with the corresponding
number of ways in which each can oecur. Another column of the table
may be used to show the ratio that we have taken above to indieate the
gignificance of each result. The figures for this experiment are given in
Table 1. Why do we not give more values in the third@olumn?

. ¢
TABLE 1 Y
Possiens Risurts, NumBen of COMBINATIONS, AND HATIO- OF SIGNIFICANCE,
FOR A BmapLE ExprriMBNT ¢ DIFFERENTIATING)SFX PatRs OF SAMPLES

Posaible Results | No. of Combi;n:stibns Ratio of Significance
g rl%}lt 2 W%w,d breil:l%j’t;f-éry.org_in ;igi
4 ir 2 i - e 15 zzxm
3 i 3 13 % m .
2’ it 4 T} , " ’\ 15
1 s 5 AN - 6
0 v 8 f‘,\ 1
Tofah....... 64
I

I -

The procedure in this simple experiment may now appear to be
gy;ﬁe,‘ el?a.r and appareptly straightforward in every respect. The
mader will -then be surprised to learn that we have been guilty of a very
serious omission. We have said that, if the operator has actually no
power of\ differentiation, the 64 ways of arranging the pairs ‘ate all
_ equally hkely. to occur.  Suppose now that the samples are présented to
tl}e_ t?perator in paire with variety A to his left hand and variety B to
his right band. On the off chance that there may be such a systematic
arrangement of the pairs, the operator decides to guess this order and
then adhere to it throughout the experiment. The result is that the
most probable arrangements are 6 right, or 6 wrong, and our theory as
to the probable frequency of the different possible results is completely
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broken down. Another possibility that we have omitied to consider
so far is that the 2 samples may show differences as to weight or quality
which are actually guite mdependent of the variety characteristics.
Here again the operator may, by guessing, obtain a result that is either
all wrong or all right. We could go on and point out 8 number of factors
that would tend to upset our caleulations, and in the end the reader
might despair as to the possibility of earrying through any experiment
that would léad to valid conclusions. Why not take into consideration
such factors as we have mentioned and work out the theoretical fre-
quencies of the different combinations accordingly? A litile ﬁhought
will show that this is quite impossible. The vagaries of the, minds of
operators, for example, in taking advantage of certain orderly arrange-
ments of the pairs, would be quite beyond the possibility of definite
enumeration, The situation is not hopeless, howéver, as there is
always at hand an extremely powerful method o overcoming this
difficulty. The method is to arrange all fact{)rs that may enter into
the results, completely at random. Thus, in{ presenting the pairs to the
operator, a random arrangement would & followed that would be
determined beforehand by throwing coins, drawing cards, or from a
book of mndom numbers. It couldthén be stated w1th absolute con-
fidence that, on the hypothes%tdmlﬂmg no knowledge of
dlﬂ'erentmtmg the samples, all. possible arrangemen: would be equally
likely to ocecur. It would{(be possible, for example, to use different
colors of trays as containersfor the samples. In each pair 1 tray might
be red and 1 blue, angd, if the varieties are assigned to the trays at
random, it will still'be true that all possible arrangements are equally
likely. Of courséa word of caution is needed here. Different eolored
trays, or any other disturbing influence on the ability of the operator to
differentigte the samples, are not recommended, as they tend to reduce
the efficiehcy of the test; but at the same time if such factors are properly
randorhized they do not affect the validity of the test of significance,
3, \Defmmg Some Statistical Terms. In describing our simple
éxperlment statistical terms were avoided as much as possible. Such
" terms are, however, a kind of shorthand and will be found very convenient
as we proceed to the consideration of more intricate problems. The-
6 pairs of samples of grain constitute in themselves a sample in the true
statistical sense. We were not particularly interested in what the
operator did with the 6 pairs except iz so far as it indicated his ability
to differentiate the varieties in general. In other words, we were trying
to obtain an estimate of what would happen if he were presented with a
very large group of such pairs. This large group containing an indefinite
number of pairs might be said to constitute the population that we are .
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sampling. The general problem of statistics, therefore, is the estimation
of values for populations by means of determinations made on samples
drawn at random from these populations. Assuming that the final
result of our experiment was 5 pairs of samples placed correctly, the best
estimate we would have for what our operator might do with a very large
sample is that he would place § of the pairs correctly. This value is the
mean number of successful placings that the operator would make in a
population of similar pairs. A value such as this, calculated from a
sample, is said to be a stafistic. The population value of whickithe
statistie Is an estimate is referred to as a parameter. Statistics dze sub-
ject to variability in that we will get different results with\different
samples. The populations sampled are regarded for conyenience as
being infinite; and therefore for any one variable, such a8.the number of
successful placings, there is only 1 value of the para.n:geﬁtgerl
In all experiments there is a hypothesis to betested. It will have
been noted that in the description of the simple expériment we repeatedly
used the words “if the ¢perator has no powQx of differentiation.” This-
points to the fact that the hypothesis we Webe testing was just that. In
statistical parlance our hypothesis is now; owing to the pertinent sug-
gestion of Professor Fisher (1), referréd to as the null hypothesis. This
null hypothesis was the basis for the caleulation of the number of ways
out of the total that céituifiHEsUlRSFEHIN B bbtained, it being assumed,
owing to randomization of Alie experiment, that all the possible WAYS
were equally likely, i o)
~ 4. Summary of Pringiples. We have now worked through an actual
experiment, which, githough it was extremely simple, has introduced us
- %o the main prindiples of the statistical method and has allowed us to
obtain an eagy, jntroduction to many of the common statistical terms.
- It will be gefivenient after this discussion to return to some of the gener-
alizations'of Bection 1. '
It willhave been noted that the logic employed in tests of significance
_ ’ia\gflghrly that of the experimentalist. This is true whether or not the
experimenter has any knowledge of mathematics. Always, if he is
cri_tical of his results, he asks himself whether or not they could have
arisen a8 a chance variation, and on this basis arrives at some conclusion
as to their significance. The statistiesl method, therefore, does not
. mtro@uce anything new in this sense, but merely supplies him with the
t,echmql'xe for planning his experiment so that it is justifiable to ask such
8 question, and then furnishes him with a method of measuring the
eonfidence to be placed in the findings. .
 The results from one sample are not used to obtain a statement as
to the probability of obtaining a given result in drawing another sample,'i
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‘but they are used to obtain an estimate of the population from which the
sample was drawn.

A test of significance is, essentlally, the use of the data prowdecl by
the sample to test any hypothesis that may be set up. In such tests we
do not always realize that a hypothesis is involved, but nevertheless this
is true. When we ask the question, “Is my resuit due to. some real
effect or to a chance variation?”’ we can answer this question only by
getting up the hypothesis that there 1s no effect, and determining whether
or not the resulis agree or disagree with the hypothems

The mathematical derivations involved in statistical tests, arise
from attempts to state the proportion of cases, aceording o a given
hypothesis, in which the results obtained will oceur. Thus in the
experiment described above, the hypothesis was that the operator had
no power of differentiating the varieties; and on this bssis we inquired as
to the proportion of cases in which a result of 6 righbwould cecur. The
order in which the samples were presented ha been randomized, it
was possible to state that all placings were e ﬁf likely; and hence we.
were able to derive by strictly mathematmal 'methods the proportion of
eases in which a given placing would oceur:

5. The Functions of Statistical Audalysis. The chief functions of
statistical analysis as applied W&Hﬁ%ﬁ}ygpgeﬁum may now be
" enumerated as follows:

{a) To provide a sound basis for the formula.t.mn of experimental
designs. \\ ™
(b) To provideymethods for making tests of significance and
trustworthy esumatlons of the magnitude of the effects indicated
by the results\
' {e) ’RQ prowde adequate methods for the reduction of data.

The\ dlscussmn of the previous sections will have given a reagsonably
cleanpicture of the manner in which the principles of statisties are made -
‘uséhof in designing experiments. Since this is the most recent develop-
ment in this field, it is natural that it is with respect to experimental
design that the beginner is most likely to err.  Frequently an elementary
knowledge of statistics, eonsisting merely of an outline of the faets of
variability and the various methods of measuring this variability, is
taken as a sufficient knowledge for applying statistical methods to
experimental work, The results of this practice are often disastrous.
It is the reason why the consulting statistician i frequently presented
with a set of data collected from an experiment which has been very
"badly designed. At the best, in such an experiment, there will be a loss
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of precision and information; but in addition there may be a decided
bias in the results and as a consequence the whole or at least g part of the
data may have to be discarded. It is not exaggeration, therefore, to
_state that to the experimentalist a study of statistical methods is futile
~ unless he endeavors to apply these methods not only to the analysis of
-. data but also to the structure of proposed experiments.
| The necessity for tests of significance has already been dealt with,
but very little emphasis in the above discussion was placed on methods of
estimation. It was pointed out, however, in the hypothetical example,
© that, if the operator’s result was 5 right placings out of a posgible 6, this
would have to be taken as the best estimate available of theproportion of
correct placings the operator could be expected to make if\presented with
a large series of samples. Obviously the experiment'was so small that
this may not be very close to the proportion'that the operator would -
actually accomplish, and hence in this respect 'the experiment was not
sufficiently extensive,. The methods of statistics are concerned very
vitally, therefore, with methods of estindation; and here again we cannot
avoid noting the importance of experimental design, in that by careful
~ design we can very largely determitie'beforehand the acouracy with which
a particular estimate can be made.
" The necessityfobthel itediigtion. of data is perfectly obvious, but it
may not be clear as to the various methods employed in statistios for
bringing this about. _(It\is impossible to list these here, but we can
classify them into three general groups: viz., tables, graphs, and stafistics.
- The tables are ugtally prepared first, and from these we draw graphs to
Wustrate the.main features of the data, and calculate statistics. The
statistics are-single expressions such as the mean or average which
express the general characteristies of the samples studied.
N

e
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CHAPTER II

THE ARITHMETIC MEAN AND STANDARD DEVIATION—
FREQUENCY TABLES AND THEIR PREPARATION \J

1. The Arithmetic Mean. Thisis our first example of & statistie. Tt
is called & statistic because we regard it in statistical practlce as.% value
caleulated from a sample, and an estimate of the mean of thé populatmn
from which the sample was drawn. Values for the meanslof samples will
be expected to vary from sample to sample, and are theréfore not essen- -
tially different from individual variates in that regpect. It is for this
reason that i§ is not eonsistent terminology to ap 2k of ‘the mezn or any
other statistic calculated from a sample asa{éonstant. The only con-
stant values in statistical theory and practice.dre the values representing
the infinite populations from which the samples are drawn, These, a3
we shall see later, are usually referre%,bla L;lnblcgobd%gé ﬁatlstlcal litera~
ture as paramefers.

Tt is often said of the anthmetlc mean that it is the best single value
that ean be applied to the san}ple a8 & whole. Thus we find that the
agronomist refers to the average yield of a variety, and not to the indi-
vidual y1elds of a serieg ¢l plots. Many other instances of this kind could
be cited; in fact, it ig@h everyday usage and needs no further explana-

tion. o\
For a of N variates where z; represents any one variate, the
mean £ is glve\l by:
A smtmtmt ot ait o+
\™ T = — -
) N
which for the sake of abbreviatipn is written: .
| 2(z) |
. . 2 1
=y (1)
If the values for three variates are 6, 8, and 1, the mean is obviously: |
6+8+1 15 _ 5
3 ’ 3

9
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Using the short formula means simply that the summation of the three
quantities is understood, and, instead of writing out all the values and
connecting them with plus signs, we merely write 15}3 5. Acoordmg

{0 strict mathematical usage, Z(x) should be written E(x), to show that

N values are summated, but the simpler form may be used when the
number of summations is obvious.

One of the most interesting properties of the mean is that the sum _gf
the deviations of all the individual variates from the mean is zero.
AFaiT fepresenting an individual variate by z;, an individual detation
from the mean will be (z; — £). Then summing all these we get:

Se—F =@ -8+ @~-8+...+ (z.,,-f—":i‘)
= @i +z2-...F xa) ~ NE N

A.ﬁdéince .
N@i+zat... 4+ &)
N O

Nz =
Jt is clear that
- Z—%) =0 N
.__..':Usmg the summation wmmhmﬂ}e@]gebm we would have =
' 2@ - &) = E(z) @) = 3(z) ~

And aineé

L%
7

\_\_. NZ(z)
Ne ==

Itlsa.gmn cleart,h@t
E(x — :':) =0

2 Ihe \Standard Demtlon. In using the wean of a sample to
repreaem ‘the sample as & whole, it must oceur to us that the reliability
of this' method will-depend on the degree of variation among the indi-
V_l(hml_mm.tﬂs_thai;-make_up‘lhgﬂamgg. If there is no variation the
mean would represent the whole zet perfectly, but as the variation
becomes greater the eingle value of the mean is less and less descriptive
of the entire group, and it becomes more and more necessary in order to
describe the sample completely that we have some measure of variability.
The average deviation from the mean wmight suggest itself, but we have
seen that the sum of the deviations from the mesan is zero, and from this
1t follows that the mean dev;at.lon is a.lso zero. For thjs reagon the sta-

< B3 £ : = oot t mean

- W " The
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formula for the standard deviation, which is usually represented by the

Greek letter sigma (o), is:
2z — 3 '
-y ®

The direct method of ealeulating the standard deviation is to find all the
deviations from the mean, square them, summate, divide by N, and
then extraet the square root. For example, if we have the three figures
6, 8, and 1, for which the mean is 5, the standard deviation would bed™\

P13 +4 [ ©
3 “\N3 RS

When there dre more variates in the sample, and espeéally when -the
deviations contain decimal figures, a much shorter thethod can be used.
"The main part of the work is to find the sum of S(kua.res of the de\natlons,
and it can be shown very easily that

2 : :
Sz — ) = 3z 3) [E\(x)] (3):“3‘ :

Applymg this to our n:uma,‘r,ur‘ﬁ"”ér brfe"%té‘ ﬁé(rolg tn
2 -2t - @+ 8 1 12) — 15%/3 = 26

This formula is espemallx\lseful for machine caloulation and is now used
almost exclusively in Statistical labaratories.

We now have toconsider a point which is very important in the prac-
tical applicatiomof- statistical methods, and one over which there is often
a great deal 6f eonfusion. It was pointed out above that the mean of a
sample is faken as the best possible estimate of the mean of the parent
populatlon This practice of estimating values for parent populations is
the mam objeet of calculating values for samples. With a little thought
this point should be quite clear. We determine the reaction of a crop to
8 given fertilizer on a sample of plots which may not be more than 6 to 10
in number. It cannot be stated, even by the wildest stretch of the
imagination, that we are primarily interested in the reaction to the
fertilizer on those 6 to 10 plots, What we are atfempting to find out is
the general reaction to the fertilizer under farming practice, and hence
we must picture a very large population of plots for the mean reaction of
which we are trying to obtain an estimate. If we let this population, for
purposes of clarity of thinking, be regarded as infinite, it follows that the

¥
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mean and the standard deviation for this population are fixed values a:nd
hence we call them parameters. If the mean of the paren!; population
is denoted by m, then Z, the mean of the sample, is an estimate of the
parameter m. Similarly if ¢ is the standard deviation of the parent
population, the value which we calculate from the_ sa,mpl.e must also be
_the best possible estimate of . Actually this estimate i3 nof._ the root
mean squsre deviation that we have defined above. This arises from
the fact that, if m is the mean of the parent population, the best estimate

of o is: X
,E(:c — m)? <\ A\
N N

but since we do not know m we use £ instead, and it cap be shown by a
simpie algebraic derivation that the best estimate of ¥33 given by:

Tz —2)2 o
R TR ®

wherein we put this expression equal tog\in that it is not ¢ but the best
possible estimate of 0. 'We keep to bhig 8ymbolism throughout in order
to distinguish the Btmmdjgxéaﬁéﬁbgleugs&ed from a sample from the
true value which is a parameter of the parent population. The divisor
(N —=1) is known as the .@n&ber of degrees of freedom available for
estimating the standard(deviation. We shall learn more of this term in
later chapters, X
3. Standard Degihtion of a Sample Mean. If we take a series of
gamples and detefmine a mean for each one, it is obvious that the means
for these sampleswill vary from sample to sample, and that the degree
of variatiq:ta.mong these means will be related to the degree of variation
among the\individual variates. If one particular sample is taken, the
exact relation is given by the equation: ' )

&

=TV ®)

where s; is the standard deviation of the mean of the sample, s is the
standard deviation for the sample a3 4 whole, and N is the number in the
sample. The standard deviation of a mean jis therefors inversely
proporticnal to the square root of the number in the gample. .
4. The Frequency Table. This is a table which shows, for the
sa.t_np_le of variates studied, the frequencies with which they fall into
. eertain clearly defined classes, If the sample is very small the frequency
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. table may not be necessary, and even if prepared may not mean very
much; but for moderately large samples it is usually desirable to begin
the reduction of the data with a table of this kind. The frequéney table
provides the values for easy graphical representation, and from it such
statistics as the mean and standard deviation may be calculated with
much greater ease than from the original set of individual values.

6. Selection of Class Values. Frequency tables may deal with
either continuous or discontinuous variables, A’ continuous variable is
one in which s single variate may take any value within the range’of _.
variation. Thus the yield of a plot of wheat may take any value Wlthm
the range from the lowest-yielding plot to the highest. A dxsconﬁmuous
variable can take only certain specified values. For exa.mple,sm tossing
5 coins we can have 5, 4, 3, 2, 1, or 0 heads, and no other valiiey ean oceur.

A frequency table for the number of headsin tosmng.&’) coins 100 times -
might be as follows:

Class Values Frequency
9. N
5 heads \ & 3
4 heads \ yv 16
3 heads @, 28
2 heads R\ 31
1 heads \

WW’W,.C“?T‘EII‘.II ibrary .01;l % in

0 heads

N Total = 100

AN .
The class values to be seleeted for such a table are obvious, and this iz
usually true for discomtiniuous variables. In some examples, however,
it may be necessary $o-form the class values such that the class interval
is greater than umty In tossing coins 20 at a time, we might use the
classes 0-2 heads, 3-5 heads, and so forth,

Tf the variable is continuous, the classes for which the frequencies are
to be determmed must be chosen arbitrarily, the choice depending on the
accurat}y requu'ed in the computation of statistics from the table, the
rafge of variation—which is, of course, the difference between the lowest
and the highest value of the sa,mple—the number in the sample or total
frequency, and the facility with which these classes can be handled in
computation. In the first place, the greater the number of classes the
greater the accuracy of the caleulations made from the tablé. * But there
must be a limit to the number of classes we can handle conveniently,
and these two opposing factors must be balanced up. A good general
rule is to make the class interval not more than one-quarter of the stand-
ard deviation. Of course we do not as a rule know what the standard
deviation is before the table is made up, but it is possible to make a
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" yough estimate of its value from the range of variation. Tippétt €3)-
has published detailed tables on the relation between the range _of varia-

* tion and the standard deviation, and these have been summarized in a
short table prepared by Snhedecor (2). The following values :.a.re.t.aken
from Snedecor’s table after rounding off the figures to two significant
digits..

TABLE 2
VaLues oF THE Ratio, Ranee DvipED BY THE Sranparp DeviaTion ($D),

y FoR SampLE Sizrs FrOM 20 TO 1000 N
: "\ *
Number in Sample | Range/SD || Number in Sample R:a{lgeXSD

20 3.7 200 Py 6.5

30 4.1 800 o[ 5.8

50 4.5 400 5.9

75 4.8 B0\ ) 6.1

100 5.0 700> 6.3

150 5.3 21000 6.5

Now suppose that we have a sam,ple:_éf 500 variates and the range of
variation is 0.25 to 2,63, dTheitifleense, in 2.38, and if we were to
divide thig by the standard deviation our table tells us that we would get
a quotient of approximately 6.1. In order to make the standard devia-
tion about one-quarter of the class interval, it is clear that its magnitude
will have to be about 2.38/6.1 X 4 = 0.098. It is more convenient to
‘have an odd numberdor a class interval than an even one, sinee it means
‘that the midpoint-of the interval does not require one more decimal
.. place than wehave in the values that define the class range. In the end
- we should\probably decide in this case on an initerval of 0.11.  In making
up the Blasses it is usual to begin with the lower boundary of the first
clagaslightly below the lowest value, so that our classes and midpoints
(¥onld finally be set up somewhat as follows: '

: Class Value, or Midpoint,
Class Range of Claas Rang
0.19t00.29 0.2¢4 .
0.30 to 0.40 0.35
0.41t0 061 ° ' 0.46
0.52t0 0.62 . .. 0.87
etc. ' . ete.

. By fOl_lOifilElg the above rules we ensure a sufficient degree of accuracy
in any statistics that are ealeulated from the frequency table: but, if
the frequency table is required mainly for the preparation of a graph as
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described below, this method may give classes that are too small, in that
some of the classes may contain only very small frequencies or perhaps
none at all. It is desirable in such cases to make the class interval from
one-half to one-third of the standard deviation.

In statistical literature one may come across references to Sheppard’s
corrections for grouping. These are designed to remove bias from
certain statistics that are caleulated from grouped data instead of from
the individual values. Thus, in ealeulating =(z — £)2/N — 1, it has
been shown that the bias is positive and equal approximately to 1/120f
the class interval. In the tests for abnorma.hty deseribed in Chapter
ITI, and in eertain other specific calculations, it is necessary to rqake the
adjustments, but in gencral practice they are usually ignored’ and in
many tests of significance it is more correct to omit them dltogether.

The student should note carefully at this point that Sheppard’s cor- -
rections are for the purpose of removing a definite bia8 and in no sense do
_ they make allowance for inaccuracies mtroduced\hy using groups that
are too large.

6. Sorting out the Variates and Formatwn\of the Frequency Table
Sorting is greatly facilitated by writing the value of each variate on ecards
of a convenient size for handling. The'elass ranges are first written out
on cards and arranged in order on 2 }gtglgh Lo Lhe sorting can then be done
rapidly, and after it is finished 1t § is'very eas to%un through the piles-
and obtain a complete check of‘the work. It is very important to lave
perfect accuracy at this po;mf\ In a series of studies a misplaced card
may give a great deal oi\g\ouble at & later stage in the work., The fre-
quency table is finally;made up by entering the frequencies opposite the
corresponding clasg values,

Table 3 is a pample of a frequency table. It represents data on the
carotene content of the whole wheat of 139 varieties. The class values
are in partg'peér million of carotene in the whole wheat. In this instance
a great deal of accuracy in the caleulations was not desired, and it will
be nqted that the class values are Iarger than they would be if the rules
for'thé formation of these values as outlined above had been followed.
Check this point by reference to Table 2. :

' '_I"ABLE 3

FreEquENcY TaBLE FOR ParTs PER MILLioN oF CAROTENE IN THE
WaoLe WHEAT oF 139 VARIETIES oF WEHEAT

Class Values. ..l 4o | to| to] tof to| tof to| tof tof| to| to| to]| to
0.95; 1,06 1.17| 1.28| 1.39] 1.50 1.61| 1.72| 1.83] 1,94] 2.0 2.16] 2.27

lo.sa .96 1.07{ 1.18) 1.20 1,40 1.51] 1.62] 1,75 1.84] 1.94 2.02] 2.17
Frequenc_\'.‘...i 2 & 14 2t 24 a7 13 10 4 3 2 2 1
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7. Graphical Representation of & Frequency Table. Graphs of two
types are in general use. The best type of graph.acnd the one_most.
commonly used is the histogram. It is a diagrammatie representation c:f
a frequency table in which the class values are represented on t!le hor.l-
zontal axis, and the frequencies by vertical column‘si erected.l_n their
appropriste positions on the h_erizontal axis, Thff hlsfsogram is most .
. useful when a curve for some theoretical distribution is being ﬁ'tted. The
pature of any disagreement between the theoretical dist.ribufslon and tfl}e
actual frequencies can be located readily when the theoretical cury€ ie
A\

7'\
\

40

AN
35' 4 N ‘.

FREQUENCY
8
I

p B0 D1 L2 123 134 145 156 157 178 189 200 211 222

~& . CARTENE - PARTS PER MILLION

o "§“ Fre. 1.—Histogzam for the data of Table 3.

supérinposed on the histogram. As an example the histogram for the
daga of Table 3 is shown in Fig, 1. :

The other type of graph is usually known as a frequency polygon. A
‘straight line is erected for each frequency at the midpoint of the corre-
sponding class value, and the ends of these connected in sequence by
- straight lines. It does not give as accurate a picture for the gample as
the histogram, but tends in its shape towards the smooth curve of the
population from which the sample was drawn.

8. Calculation of the Mean and Standard Deviation from a Frequency
Table. After the frequency table has heen formed, we add two more
columns as indicated in the small example given below;
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Class Value _ - Frequensy Frequency
or Midpoint of | Frequency Multiplied by Multiplied by Square
~ Class Range Class Value of Class Value
: {z) F I X (2) FX (%
1 2 2 2 ‘
2 4 8 18
3 -7 21 63
4 6 24 9% AL
5 T 6 25
: AW,
Totals. . ........... 20 =N 80 = Z(z) 29g;"z(z=)

On summating the last three columns we get N, E(xk@nd E{xz), which
are the values necessary for the calculation of the méin* and the standard

deviation. The mean is given by:

and the standa.rd deviation by:
! ft?} — [Z(x) /N (6)
www braul}far‘n‘!ﬁ org.in

Tt will be noted thai the numerator of the standard deviation is

Z{x — %)%, and that to obm it we have made use of the identity given
in formula (3). & ™

The class values are Very frequently numbers containing two to four

digits, in which casg a-great deal of labor can be saved by replacing them

by the series of, laa.tura.l numbers 1, 2, 8, 4, - .- etc. By this method we
obtain a mean{nd a standard dewatmn that. we shall deslgnate by &

and ¢, > etively. These can be converted into the true values by
means ofitke following identities: :

~O 5= (& -1+ Xy o @
_\ / g = ¢t {8)

~ where ¢ is the class interval and X is the first true class value.

9. Coefficient of Variability. This is the term applied to the stand-
ard deviation when it is expressed in percentage of the mean of the
sample. It is a statistic of very limited usage owing to the difficulty of
determining its reliability by statistical methods The formula is

obviously:
. s 100
C (coefficient of variability) = s (?) 9)
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10, Eﬁerciées.

1. Substitute the natntal pumbers 1, 2, 3, - - + 13 for the class values of Table 3,
and caleulate the mean and the standard deviation. Convert the ealeulited values to
actual values using formulas (7) and (8).

¥ — 5507 5=1406 o =2196 s = 0.2416

2. Table 4 gives the yields in grams of 400 square-yard plots of barley. Make
up a frequency table and histogram for these yields, using a class interval of 11, a{d
make the first class 14, to 24. _ .
8. The areas in arbitrary units of 500 bull spermms are given in Table 5.t .F(f,pare
the frequency table and histogram, using 16 classes, making the first class 1230 125.
" & Tor either one of Exercises 2 and 3 above, calculate the mean and the standard
deéviation from the frequency table, using actual clags values. 'Then ‘replace the
actusl class values by 1, 2, 3, 4, ---, and recaleulate the meqnjand the standard
© deviation. ' : RS

15160 <a'=2880 s =3168
14456508’ = 2.576 3 = 7.728

5. For the data in Tables 4 and 5, determine the.class values that should be used
. to give a high degree of accuracy in the caleulations.
8. Prove the identity: A\

BEx.2 & = 13-.955 z
Ex. 3 & =7852 z

Fim e B y-dB N/

{\'TABLE 4

Yisine v Gn&é«{ 6F 400 SquaRE-Yarp Prors oF BARLEY

185 | 162 | £86 3157 | 141, 030 | 120 [-176 |17 | 390 { 157 | 147 | 376 | 126 { 175 [ 124 | 180 | 180 | 180 [ 128
160 | 205 | 120 117 { $44 D125 | 185 1 170 [ 153 | 186 | 164 | 123 { 165 | 203 256 | 182 | 164 [ 176 | 178 | 150
218 {154 | 184 | 203 466°] 155 | 218 | 100.| 184 [ 204 | 194 | 198 | 162 | 148 {174 | 188 | 171 [ 181 | 158 {147
185 | 157 | 180, $85%'127 | 286 | 133 1170 134 1177 | 109 | 169 | 128 | 152 | 165 | 130 | 146 | 144 | 178 | 188
133 | 128 | 181, [M80) 167 {156 | 125 | 162 [ 128 [ 103 | 116 | 57 | 123 | 143 | 136 | 119 | 181 | 174 | 157 | 188
196 | 180 | 458 [M139 | 130 | 168 | 145 [ 1es | 118 [z7r{ 143 {132 {126 ¢ 170 | 176 d 1a5 | 165 | 147 | 186 | 157
187 | #7472 [ 191 1 165 | 160 1139 ja48 (130 { 146 | 150 | 164 L 160 | 122 1 275 | 156 | 179 | 135 | 116 | 134
157 VI88 1°200 | 136 [ 153 1160 | 142 | 17 (125 | x40 | 171 | 186 | 196 | 175 } 190 | 214 | 160 | 68 | 164 | 205
40108 | 118 | 140 | 178 ] 171 | 151 | 192 | 2a27:) 148 (158 | 174 | 19t | 134 [ 388 | 2as | 164 | 206 | 185 | 192
AT 178 L 189 | 141 (173 | 187 | 167 | 128 | 239 | 152 { 167 {131 {203 | 23x (214 | 137 1 1e1 | ied 121 b1et
124 1130 1112 | 1221192 5155 196 | 179 | 106 | 156 | 131 | 170 {201 | 122 207 { 189 | 184 | 131 [ 211 [ 172
170 | 140 | 166 | 189 | 181 { 181 | 1601 184 {154 | 200 | 187 | 189 { 155 | 107 | 142 ] 145 { 190 | 176 | 182 | 123
180 | 104 | 146 | 22 (160 ] 107 | 70| B4 1112162 124 1156 {138 1oz | (381411143 | 135 | 163 | 183
091118 3250 | I51 | B3 {136 ) 470 | S04 | 1653164 1 98} 136 ) 115 | 168 | 130 | 111 ) 136 [ 129 | iz2 | 120
1791172 1192 | 171 [ 3BT |-142 | 183 [ 174 | 146 | 180 ] 140 [ 137 | 138 | 194 | 100 | 120 | 124 | 198 | 126 | 147
1159148 | 105 154 } 149 | 530 | 163 f 118§ 126 | 127 | 139 | 174 [ 167 | 175 1 170 | 472 | 174 | 167 | 142 | 160
BA2 | 163 | 144 | 147 1 123 | 160 | 137 [ 161 | 122 | 101 ] 058 { 103 [ 119 | 184 | 112 | 57| o4 [1oa | 132|122
164 | 142 11551147 | 116 | 143 | €8 1 386 | 183 | 167 | 960 | 138 | 190 [ 133 | 180 | 156 | 122 | 111 [ 153 | 148
103 1131 1980 ¢ 142 | 182 £75 | 146 | 981 | 380 ] 100 | 154 [ 176 | 168 [ 175 | 175 | 148 | 148 | 167 | 106 | 123
120|158 048] 91| 83 744233 | 7931 )v19) 96| s0] 97| ve |06 107 69| 86| 041190

-

!Data b ' . o
of Mo ;h: court»(-h!)’ of A. Bavage, Department of Animal Pathology, University
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TABLE 5
Apeas v ArRBITRARY UnITE OF 500 BurLL Srarms

140 i3% 140 140 140 139 138 | 138 138 138
133 132 140 146 138 139 139 145 145 145
147 147 147 149 149 155 160 159 159 160
139 143 142 142 141 141 145 145 144 146
140 148 147 147 149 148 148 ‘148 149 149
153 153 153 1563 155 141 149 149 149 - 149
149 149 149 148 147 147 148 159 161 161
158 157 157 141 141 143 143 143 143 42
141 141 14} 139 138 159 161 155 137 136
144 144 145 144 144 146 145 145 144 /N 146
138 149 149 148 148 148 182 162 1530 N 3153
144 144 144 146 145 1456 145 146 140 143
134 124 124 134 132 | 136 137 125 1128 134
146 146 139 138 138 138 140 140 /™146 139
139 139 152 150 150 150 152 I5)pn 149 149
149 149 149 154 154 | 153 155 1495/ 149 149
161 160 159 135 164 164 . 154 JN1B65 154 154
142 141 141 141 141 142 142 42 142 141
136 138 135 137 136 136 13& N 137 137 137
146 146 146 145 140 140 140~ 138 138 140
156 154 153 153 153 153 | 41563 153 153 185
143 142 142 142 147 147 {54 152 - 152 150
134 131 130 129 131 1307129 129 134 134
140 139 139 139 127 137 ™ 134 132 133 133
148 148 147 147 147 147 147 149 148 147
149 149 149 149 149 b égl He 146 | 146 145 146
137 136 136 A37 | ™ ." TG iQraggory-iggg 135 129
139 139 152 152 162 152 151 150 152 152
136 136 137 145 ~144 146 146 145 145 145
153 163 155 | 135 {\I58 158 157 157 157 158
150 150 150 150 N\ 151 151 150 150 152 151
133. 133 134 %gzg 130 141 143 142 141 141
134 132 127 | > 128 1256 136 141 143 143
147 147 169 165 162 162 149 144 144 144
146 145 145144 146 145 144 146 146 146
135 137 1375 127 134 132 135 135 127 126
151 148 &42 147 147 149 149 149 150 151
145 144 {‘1 146 144 143 143 143 143 142
157 16688 137 137 137 137 136 137 135 133
150 150 152 162 152 152 152 152 152 151
141 | A4 143 142 142 142 138 140 140 140
143 143 144 144 144 144 146 146 140 139
144415 146 145 145 145 138 140 139 138 163
1463 ] 146 146 146 146 1 145 145 145 144 145
134 135 157 156 166 | 157 157 157 1567 156
151 151 i51 150 150 150 150 150 150 152
142 141 142 141 141 142 142 142 141 143
135 133 133 150 151 149 139 139 139 138
138 140 140 153 153 148 147 147 156 158 °
158 152 141 141 142 141 [ 143 | 139 139 139
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CHAPTER III
. THEORETICAL FREQUENCY DISTRIBUTIONS

1. Characteristics of Frequency Distributions of Biological Variates.

A frequency table may be used to furhish an estimate of the frequency
distribution of the population from which the sample has .begh‘té‘.ken.
For example, we could take any one of the frequency tables of Chapter
" T and draw a smooth curve through the upper ends of the ¢olumns of the
histogram. We would draw a smooth curve because thelparent popula~
tion is assumed to be infinite and each. point on the base line could be
- represented by & frequency, or, to be more specific, the height of the
perpendicular line from any point on the bagé/line to the curve would
‘represent the proportion of the total frequ(;ne} of the population having
the value represented by the point. Thi& method, however, would not
be very satisfactory, as the position of the curve would be, to a consider-
-able extent, a matter.of ndividualdi nf.  Also, the sample studied
might indicate, pwing to errors-Of sampling, certain irregularities and
lack of symmetry which might be entirely absent in the population.
Furthermore, to be conaistéﬁt'in our logic, it follows that we are not 80
much interested in drawing a curve-that fits the sample as we are in
setting up a theoretical curve as a hypothesis and then determining
wheth'er or not theldata of the sample agree with the theoretical fre-
quencies. In getting up our theoretical curve, it is of course natural
that we sof Gp One that is likely to agree fairly well with the date of the
sample, aiid this is only saying in other words that we should set up &
reasongble hypothesis. We could set up a whiole series of theoretical
9111'?9:3, the majority of which would have no resemblance whatever to
the histogram of the sample; but obviously this would be a mere waste
.E{f time. Tc: 'dfef:luee & theoretieal distribution into which our sample is
tah?ef;llg; ';21'?;;;113018.300_889?;:0 study the chgracteristics of the frequency
setting up thegltheovr:tlr}aﬂ 88  whole and work out a logufal theory for
Chapter II for three daﬂ‘e values. If we examine the histograms of
thoy have certai chara:trent klnds of biclogical variates, we find that
varintes occurcm bmnwith much‘mu:: m common. Close to the mean, t}le
tance from the mean: but_tirea redr fr?qu? ney than they do at some dis-
. tothe e tails of the dxs: reduction in the frequencies from the mean
extrem _ nbutu;:: 18 not upiform, with the result that
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if 2 smooth curve is drawn through the tops of the columns of the histo-
graros it is seen to resemble an isoseeles triangle but with a rounded top
and very much flattened base. A curve of this type is found to resemble
very closely a definite type of mathematical curve; but to understand
more easily the reasoning behind the derivation of this curve it is neces-
sary for us to look into the charaeteristics of another theoretical dis-
tribution that is appropriate for discontinuous variables.

2. The Binomial Distribution. . In Chapter I we derived a theoretical
distribution for the experiment on identifying varietiea of wheat, \This
will be found in Table 1.  Each theoretical frequency was derived by the
direct application of elementary theorems of probability, ard if, instead
of dealing with specific numbers of pairs of samples, we'hed dealt with
the problem as a general one for any number of pai¥s‘of samples we
would have derived the binomial distribution. Thus the theoretical
frequencies of Table 1 ¢an be written out at onge.ffom the terms of the
expansion of the expression (3 + 4)5. Theseare:

1 8 15 20 15 6 1

64 64 64 6e. O 84 64 84

whersin we note that the theoretital frequencies are stated 88 propor-
tions of the total number and gxpress divgetly. the prababilities of par-
ticular combinations. In general for similar problems where there are
alternative possibilities such.'as right or wrong placings of pairs of
samples, heads or tm]a*}gthe tossing of a eggn, an ace or any other num-
ber in the throwing of\a die, etc., the theoretical distribution can be
written down directly by expanding the binomial (p -+ ¢)*, where = is
the number of events in any 1 trisl, p is the probability of the occurrence
of the event inv1 way, ¢ in the probability of the occurrence of the
event in the alternative way, and p +¢ = 1. If p = ¢ we obtain
symmetrical distribution, but if p is not equal to ¢ the distribution ig
asymmetrical or skewed, ) :
© "\ Fhere are many applications of the binomial distribution in statistica}
analysis, and one application of particular interest will be dealt with in -
Chapter X. For the present it is sufficient to note that the form of the 3
distribution is somewhat similar to the actual distributions of Chapter
II, which we have concluded are fairly typieal for biological variableg
general. However, the binomial distribution is not suitable as a the
ieal distribution for contimuous variables, as in itself it is esseng
discontinuous; so that if we make any use of it for continuous varjajj
it must be as a stepping stone to some more general type of distribyiil
The biclogieal variables we have studied indicated from the. samp
which histograms were made that the parent populations were |
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ks Z(:- . ) .

."'\ ially: _'f etrical. . The comparable “situation for the binomial dis-
N tibutipn, wpuld ocour when p =g¢. Starting from this point, therefore,
!etflg,s’sup joge that » is infinitely large; and, in graphing the histogram

o

,. _f_dﬁi_'/the_-i goretical distribution, the columns which will also be infinite
"¢ i nuribey- are represented by vertical lines only. The result will be a
" smooth curve, and by carrying through this procedure algebraically and
"makirig certain approximations we can arrive at an equation for a
- 'smooth curve. ~ This is the expression for what is commonly known as
" the normal frequency distribution. A~
3. The Normal Distribution. Most variables dealt with in biological
statistics show in their actual distributions only minor devistions Mbm
. the theoretical normal distribution defined by: O
o (Y ) -
v=(om)¢ . W

a\

 where o is the standard deviation of the population,\N is the total num-
ber of variates, ¢ is the base of the Napierian s§#tém of logarithms, and
¥ Is the frequency at any given point x, where z is measured from the

FREQENTY (¥} '__

$

T

-3 . 2o - o o +2er 1o
_MEAH

F16. 2.—8ketch of a normal curve, the base line mesasured in units equal to the
o standard deviation (a).

mean of the population. The curve expresses, therefore, the relation
‘betw_een y and z, with y as the dependent variable. Figure 2 i3 a sketch
of a normal curve. It illustrates the measurement of z from the mean
of the population which is located at the point where the dotted line has
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been erected. For the value of x taken, y is the perpendicular distance
from that point to the curve.
Equation (1) may be written:

(o’ _ 3-‘%(5)2 i __2)
¥ N ) V2 '
and putting z for y (s/N) we have: .
ST
2 =

‘ | V2r '
and since z/¢ varies in actual practice only from 0 to 6, the viﬂues of z
have been tabulated for all the values of x/a from 0 to 6 praceeding by -
intervals of 0.01, Any given value of z can then be tra%néformed toy by
multiplying by N/o for the particular populatiomwith which we are
dealing. In other words, for a given population for'which N and o are
Imown, we can proceed with a set of tables to glot\the theoretical smooth
carve. N\

A smooth curve plotted by the above’method is an estimate of the
form of the infinite population from which the sample has been drawn;
but what we often require is the, M%Mﬁpggy@ﬁgistﬁbution corre-
sponding to the actual frequencydistribution of the sample. That is,
we require the theoretical normal frequencies for the arbitrarily chosen
class values of the actual distribution. Fgg this purpose, if N is taken
as 1, equation (1) becom{e\ik )

&)

'

V=

K72 . .
which can | {integrated from £ = minus infinity to z = any assigned
value, Thlé‘ gives the area under that portion of the curve, and we will
represent. it as 1(1 + «). The integration is started st z = minus
infifiity; because the normal curve never actually touches the base line
altheugh, at z = — 6, y is an exceedingly small value. The reason for
expressing the area as £(1 4 a) or § + o will be seen from an exam-
ination of Fig. 3. For any assigned value of & the area within the
limits of 42 is represented by . ~Therefore, from x = minus infinity to

z = any assigned value, if the total area of the ¢urve is 1, the area is
¥+ da -
The tabulated values of 2z and (1 + a) for values of 2/¢ from 0 to 6
_ are given in Sheppard’s * Tables of Area and Ordinate in terms of
Abscissa.” These are commonly referred to as Sheppard’s tables of the
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'prébabﬂity integral. | The detailed application of these tables to a prac-
tical example is deseribed below under Section 4. '
4, Methods of Calculation.

4]

FREQUENRCY

f q.l___,L....__'...__._..-_.__I_R_..-_._...-_....__

|

Valray
Fio. 3—Bketch of a nbint Ghres ibS#iRg oiflithtes erected at z/o =+ 1, and
/¢ =—1. The unshaded ares = o, and the shaded area = (1 — a).

+$ )

" Example 1. The _cslgl}k\tio& necessary to fit & normal ewrve to an actual
" frequency distribution.and to determine the normsal frequencies corresponding to
the netual frequencles@ie given in Tahle &, The data are for the transparencies of -
400 red blood eells;ta'ken from a patient suffering from primary anemis (4). The
trangparency jg'taken as the ratio of the total light passing through the cell to the
ares of theeell” For this distribution 2' = 7.06 and o = 2.45.
The caleulations can best be deseribed by considering each eolumn of the table.
The gdlunins have been numbered at the head of the table for convenient reference.
N ) Column (1): The clasg ranges are as described in Chapter II.  Note that
unit class intervals have been used. This is necessary in obiaining y, but makes
no dﬂgenoe te the remainder of the calculations. After setting up tbe class
ranges,'the actual frequencies may be entered as in column (10), but, it is of no
consequence when these are entered as they are not used in the caleulations.
Colums (2): In order t6 understand clearly the meaning of the class limits,
refer to any histogram as in Chapter 11, Fig. 1, or Exercises 2 and 3. The limita
correspond with the lines bordering the columns of the histogram, The mean of
the sample is placed according to the elass range in which it falls. In this case
the mean is 7.06 and must be placed opposite the class range 6.6-7.5. The limits
are then entered by passing in both directions from the roesn. The class in

which the mean falls will have two limits, but for each of the others we take only
the yfﬁe farthest from the meau.
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TABLE 6

CarcursaTion oF OspINatee FoR Frrong A Nomwar Cunve, Anp
TEHEORETICAL NORMAL FREQUENCIES

(1} 2) (3) ) (5) (&) (T (8} @) (1)
: ¥= 0. w Theoretical
Gl L) SRR R S (1§ [OOSR £ T ey Mt
) ¢ Frequendies A\
.56 { 3.80 | 0.0002 } ©.03 | 1.0000 | 400.00 - N
"8.66{ 3.49 { 0.0000  0.15( 0.9993 | 399,02 0.08 ¢\
7.56| 8.08 | 0.8035 ) 0.57 | 0.8990 | 399.60 0.32
6.58 | 2.88 | 0.0110 ] 1.80 ] 0,9063 | 398.52 1.08, h
0.6- 1.5 1.5 5.56)2.27) 0.0303 ; 4.85 ) ©.088¢ | 395.36 3.16.3 4
1.6- 2.5 2.5| $.56| 1.86) 0,0707 } 11,52 ] 0.9686 | 357 44 7,52 11
2.6- 8.5 3,5 8,56 | 1.45] 0.130s | 22.76 | 0.0265 | 370.60 | 1§,8¢ 17
3.6~ 4.5] 4.5 2.506| 104 0.2323 | 37,02 | 0.8508 | 340.32.}'30.28 20
4,6- 55| 5.5 1.56| 0.94 | 0.3251 | 5308 [ 0.7380 [ 295.65\\/ 44,78 43
5.6- 6.5 ) 6.5] 0.56| 0.23 ) 0.3885 | 63.43 | 0.5910 [ 23640\ 59,16 56
6.6~ 7.5 | 7.06] 0.00 | 0.00 | 0.39s0 | 63.12 | 0,5000 | 260000 | 64.96 58
7.8~ 8.5 7.5} 0,24 0.18 | 0.3925 | 64.08 | 0.5714 [¢228756 | 60,40 63
86— 0.5 8.5 1.44)0.50 | 0.3352 ) 54.72 | 0.722¢")288.98 | 47.50 a1
9.6-10.5] 9,5 2.44 | 1.00] 0.2420 ) 30,51 | 0.8413\) 336,52 | 31,16 2
10.6-13.5] 10.5 | 3.44 | 1.40 ) 0.1407 | 24.4¢ | 00002 [ 367.68 | 18.2¢ | . 20
11.6-12.5 | 11.5 | 4.44 | 1,81 | 0.0775 | 12,65 [4039848 | 385.92 8.80 9
12,8-13.5| 12.5] 5.44 | 2.22 | 0.033p | 5.53\["0.9868 | 3p4.72 3.86 4
13.6-14.5 | 13,5} 6.44 | 2.63 | 0.0126 |+,2096 dl brosskiliizasyzeqg.im 24
- : 7.44 | 3.04 | 0.0039 | 0.6+ | 0.9088 | 290,52 0.36
S.44 | 3,44 [ 0.0011 | "0.28 [ 0.9997 | 399.88 0,08
D44 [ 3.85 | 0.0002 b 0.03 | 0.9999 | 309.96 0.04
10.4¢ | 4.26 | 0,0000°[ 0.00 | 1,0000 | ¢00.00
W\ Total | 400 100

Columnr: {3); T]Je deviation of the clags limit from the mean. Note that th)s
corresponda N :: in the discussion above.

Colu 4») Figures in previous column divided by the standard deviation.
The Iatter m‘% caloulated using Unit class intervals, and from the formula -

| = r

Column  (5): Values of 2z from Sheppard’s “ Tables.”

Column (6): Corresponding 2 values multiplied by ¥/«

Column (7}: Values of 3{I + ) from Sheppard’s “Tables.”

Column (8}: Corresponding 3(1 4 =) values multiplied by N.-

Column (9): Differences between conseeutive values in column (8). Begin
at 400 at each end and go towards the center. At the cenber the two differences
are added. Note that the theoretical frequencies are not kept in line with the
values in column (8), but are lined up w:th ‘the corresponding actual frequencles
in eolumn {10). '

Column (10}: The actual frequencies.
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- 5. Probability Calculations from the Normal Curve. We have
observed from the previous exereises and examples that most biological
wvariables tend to follow the normal distribution and that methods sre
available for making, for any particular sample, an estimate of the form
- of the normal distribution from which the sample was drawn. Since
the normal distribution can be expressed by a mathematical equation,
the area of any section of the curve cut off by an ordinate can be deter-
mined readily by integration of the equation, and for all practical
problems this work has been performed and tabulated in Sheppard\’s

"N\
N

Vet = g772 Lo(i-=)= o228

%

¥ T
+l +2 3

|
, I\t t
=3 @y o

Fio. 4—Sketeh of Afefmal curve showing the proportions of the total area below
X »&nd above the ordinate erected at d/r =+ 2.

“Tables.t Mt remains to show how these facts form the basis for tests of
significanee in statistical problems.
< “*Bf‘. f’s yarisble i normally distributed and the mean and standard
dev:ah.op- of the population are known, we can draw the curve and erect
_an.ordmsite a_t any point. Suppose that such an ordjnate is erected at a
point which 1'8 at a distance, on the positive side of the mean, exactly
equal to ,tv:rwe the standard deviation. Thus d/s = 2, a.x’ld from
Sheppard’s “Tables” we find that (1 4+ a) = 0.9772. Taking the total
area of the curve as 1, th_e area o the left of the ordinate is 0.9772, and
that to the right of the ordinate is (1 — 0.9772) = 0.0228. 'Ass'u}ning
a pppulatmn of 1000 variates, it is obvious that 22.8 of these variates
i wguld be gl'egter.th.aa,n the mean by an amount equal to 2 or more times
thg.__staimdard demtlon.:%}ieme if one variate is selected at random from
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the 1000, it is obvious that the probability that this variate will exceed
the mean to the extent of 2 or more times the standard deviation is
22.8/1000. Reference to Fig, 4 will make this point clear, '

Leoking at the same problem from another angle, we inquire as to
the probability, in selecting a variate at random, that this variate shall
fall outside the limits of plus or minus twice the standard deviation.
We erect two ordinates, one at d/¢ = — 2, and one at d/¢ =+ 2; and
our problem is to find the area. in both tails of the curve. Obviously
this will be [1 — 3(1 + )} X 2 = (1 — 0.9772) X 2 = 0.0456. The
probability that a single variate selected at random will deviate by an
amount equal to or greater than 42 is 45.6/1000, or approxititely
1/22, D%

Probability results are sometimes expressed in terms of édds. If the
probability is 1/22, the odds are 1 out of 22, or, as usually stated, 1 to 21.

For the case above, where the deviations in both\directions are eon-
sidered, note that the probability is given directly by [1 — 21+ )] X
2=1—~a Theoddsaregivenbyea/(1 — o) ;1"

Bome examples follow that should make the whole procedure per-
feetly clear, : X :

Example 2. The mean (m) of & population.is 26.4, and the standard deviation (¢)
is 2.0. Find the probability that s mm;rm'ﬁ]eﬁhqpsfgtgmdom will be 25.4 or

ater. ™ i
81‘eThe deviation (d) = 20.4 — 264 = -}53.0. Hence d/e = § = 1.6. Fordfe = 1.5,
3(1 + o) =0.9332. The probabilify.(P) = (I — 0.9332) = 0,0888.

Example 3. For the abave population, find the probability that a single variate
selected at random will deviafbe\\fmm the mean to the extent of 3.5 or more. '

42135 4_36 a5
o s 2

A _
For dfa = 1{5}.&(1 +a) = 0.959. o = (0.4509 X 2) =.0.9108

Hence P (1 — @) = (1 — 0.9188) = 0.0802.

Ex&mp}e 4 Determine the value of d/s corresponding to P = 0.05.

V P=( —a) =005 ‘

e = (1 — 0.05) = 0.95
(1 + &) = (0.5 + 0.4750) = 0.9750

From Shepp_ard’s “Tables,” d/o'= 1.96.

8. Tests of Departﬁre from Normality.* The »* test of Chapter
IX, Example 19, on the goodness of fit of actual to theoretical normal

* Students studying statistics for the first time are advised to pass over the
remainder of thie chapter and come back to it at a later date.
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frequencies is a general test of the normality of a distribution, and, by
noting those classes that make the greatest contribution to x*, we ean
~ come to some decision as to the type of departure from normality. The
test described here is one that involves the calculation of two statistics
that are direct measures of the type and degree of abnormality, Fisher
Q). .
 Types of Abnormality. Frequency distributions that depart signifi-
cantly from the normal may be divided roughly into three classes:

(a) Skew Disiributions. The degree of skewness of a given distribu-

. tion is indicated approximately by the measure N
' Mesn — Mode N
Bkewness = — D

where the mode is the posiiion on the base line, or.8.drdinate, of a per-
pendiculsr Line drawn to the maximum point\of the curve. This
. messure is obviously zero for the normal distribution, as the curve is
symmetrical and the mean and the mode eéincide. When the mode is
greater than the mean we heve negative skewness, and when less than
the mesn, positive skewness. A\
() Platykurtic, or fla tomd., {The shoulders of the curve are filled
out and the tails dgﬁ&c&ra 1’ :Faljy.ol—g_ln |
(c) Leptokurtic, or peaked.">At the center the curve is higher and
‘more pointed than the norial, and the tails are extended.
" In certain distributions we may have skewness as well as kurtosis a3
indicated by (b) and (8). :

. Test for Abnopmality. The type of abnormality of a distribution can
be determined directly by caleulating two statistics known as ¢ and ga.
These are galenlated from the k statistics k1, ks, ks, and kg, that are in
:l];m n;i:;lig@d'fmm thre sums of the powers up to 4 of the deviations from

& .

’ (One of the most convenient methods for the caleulation of the &
(statistics is to obtain first 2 series of values a4, - - - a4, defined as follows:

a = “‘E% ) a3 = -—?—%—-32
2z . :

' F'rpm ay - a4, We 'ca.lc_ulat.a a serles of statistics known as the moments
{v1 + -+ vy), which in this form are uncorrected for grouping in the fre-
quency table, C '
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9=
2
g =2 — @
3
s ={13—331¢12+201

vs = ag — 4dayas + 6afay — 3af

The k statistics are then given by:

ki =m S
ka =(N{ 1)02 ' ‘\\\
N2 .'(”}"
b= (Gr=ha=D)” &C
hy = N? [(N + Lps =3V — 1)»3]
- W -2 EGE

Two of the k statistics k2 and %4 reqmre correctlon for the interval of
ouping of the frequency distribution® For a unit interval the cor-
f::-ctelc)i Vilues are gn:én byy wwwdbrauhbl ary.or'g.in

by = ky — —lzf, and by =k + 139
+€ 3
Corrections for other m’be@wa,ls will, of course, not be necessary; as it is
always possible to use sunit interval for the purpose of calculating the %
statistics. "
The measur&s\uf curve type g1 and ge are given as follows, with their
standard errofss

kg ’\ BN(N — 1)
“ = SEg: =\/<N—2) CESNEE)
S .
Vi ~ 2AN(N — 1)?
2= SEg2_\}(N—3)(N—2)(N+3)(N+5)

For normal distributions both ¢, and g2 are zero. The former is a
measure of symmetry and has the same sign as (mean — mode). Figure 5
illustrates positive and negative skewness as indicated by positive and
negative values of ¢1. A positive value of g indicates a peaked curve,
and a negative value a flat-topped curve. These two types are also
illustrated in Fig. 5 (see page 31).
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"Example 6. We shall take asan example to which to apply the test for normality
the frequency distribution given in Table 7, which also contains the necessary cal-
culations: We get: _ '
- g1 =+ 0.i84 SEg, = 0.227

g2 =+ 0.0188 . SEgs = 0.451

The signs of g1 and gy indicate that the curve departs slightly from normality in

_ having 3 slight positive skewness and in being slightly peaked, but the values of
“g1 and g are very much less than twice their standard errors so we conclude th\at
there is no evidence of a significant departure from normality.

~ ~ When the number of classes is fairly large it is desirable to caleulate the k statistica

- using an assumed mean. 'We measure z in terms of the deviations from the fssumed

mean and proceed exactly as in Table 7. Table 8 is an example of thé.galeulation

of the & statistics by this method, using the same data aa in Table 73

7

© W AR W N R

(v
TABLE 7 \/
CaLouLATION OF THE k Sm;n’gﬁés
_ _ ~N
Frequeney = o\ iy 2t
1 1 A 1 1
6 12 o\t 48 96
B yww ,dbraﬂlﬂg dary orplih 361 1,053
25 100 5% 400 1,600 6,400
30 150 750 3,750 18,750
22 PRt 792 4752 28,512
N3 B '\‘..‘53 M“r 3,087 21,609
5 . \% 4 320 2,560 20,480
o 2 O 18 162 1,458 13,122
: N
2(@) ... 2@ (1\,’\=“ 113) 555 3007 17,607 110,023
o1 .. ny \:”}.” 4.911,504 26.6106 | 155.814 973.655
O _ —24.1229 —392.004 —3061.124
N - 236.959 3851.545
PR e : L —-1745.739
Nero..ve 49115 2.4877 0.679 18.337
ki .k _C 49115 2.5008 0.697 0.103
Corrections _ —0.0833 " 0.008
k' ke ' 4.9115 2.4265 0.697 0.111
06
n= W =+40.184 SEg = 0.227

-0.111

g2 = YT =+ 0.0188 " 8Egy; = 0.451
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F——

| NS

NO ME ’ NO
POSITIVE SHEWHESS NEGATIVE SNEWHESS
LEPTORURTIC

Fio. 5 —Hlustrating types of abnormality in fregqlenby distributions.
MO = mode, and ME = m@m

¢‘ N

TABLE §
CALCULATION OF k Smnsﬂgﬁﬁ%%@%’sﬂﬁﬁiﬂ Mzaxn

o
2

Deviations (d)

from Assumed _
z f Meag\\ " fd . JE 2 fat
1 1 X& -4 18 - 64 256
2 6 N— ~18 51 162 486
3 1B M2 . —26 52 —-104 208
4 25 ANV -1 —25 25 ~ 25 25
A —

5 . 311
6 2z 1 22 22 92 2
7 AN 9 2 8 36 72 144
8 O b 3 15 45 : 135 405
o Y 2 4 8 32 128 512
Zd)... 2D (N —113) —~10 282 2 2,058
@i... g _ —0.088,406  2.4956 0.017,699 18.212
—0.0078 0.662,562  0.006
-—~{.001,386 0.117
=0.000
va...0 2.4878 0.679 18.336
Be. . kg ete. 2.5008 0697 0.103
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7. Exercises.

1. Caleulate the ordinates (3} and the theoretical mormal frequencies for the
frequency distribution of either Chapter II, Exercise 2, or Chapter II, Exercise 3.
Totalling the theoretical frequencies will provide & check on the caleulations.
2, Make two graphs far Exercise 1.

(a) Histogram of actual frequencies and smooth normal curve.
(6) Histogram of thearetical frequencies and smooth normal curve.

3. Exnmine equation (1) in Section 3 above, and show how the value of « affects
the shape of the curve. N\
4, If the mean of a population is 21.65 and » is 3.21, determine the prolaabi]jty
that s variste taken at random will be greater than 28.55 or less than 14.75.
5 - : “F = 0.03.
8. If, for the population deacribed in Exercise 4, the standard @}ri‘zztion of the
mean of 8 aample of 400 variates i3 o/+/30, find the probability, that the mean of
any one sample of 400 taken at random will fall outside the limite'21.33 to 21.97.
: P = 0.045.
8. Determine ¢/ values corregponding to the P valueg'oh\0.001, 0.01, 0.02, 0.10,
0.20, and 0.50. : w\,/

7. Test the following distributions for departure E@n} normality.

@) .. 1 2 3 4 5 & 7 B8A9/10 11 12 13 14 15 16
fo.1 B7 185 217 177 126 87 5480 20 14 11 13 5 1 2
® z..1 2 3 4 5 6 708 9 10 11 12 13 14 15 16
L2 3 4 wywdbraulibeggyswEn 34 21 10 7 5 2 2
©@ 2.1 2 3 4 5 837 & 9 10 11 12 13 14 15 16
-1 7 13 19 23,42 27 28 26.24 22 17 14 9 4 |1

(6) g1 = 1.360, g2 = 2.143; Q{g{{ =—0.327,9: = 0.939. (¢) g1 = 0.107, g = —0.766.
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CHAPTER 1V
TESTS OF SIGNIFICANCE WITH SMALL SAMPLES

1. The Estimation of the Standard Deviation. In Chapter II, SRc-_
tion 2, it was poinfed out that the best estimate of the standard deviation

of a population from which a sample has been drawn is V' Z(z = 'm)?/N,
where m is the mean of the population and ¥ is the number in the sample,
Bince we never know the value of m, we use Z instead; butthe substitu- .
tion of Z in the above formula will not give us the best, fossible estimate
of o; actually it will give us an estimate that is.tpo'small. In other
words, if we take a large number of samples and\¢aleulate a standard
deviation for each one, the average value of ourstandard deviations will
be low, and this will be true regardless of how many samples we take.
As a matter of fact, if we take a large enoughinumber of samples, we can
prediet with accuracy the extent of the\negative bias in the average of
the standard deviations. To ‘;hﬁdmm atil}egggfﬁpts often appear
someéwhat mysterious, particularlyd the fact that the bias, in our estimate,
can be removed, as pointed out i Chapter II, by using the formu]a.
VEz—-23N -1 It may seem peculiar that the bias can be
removed in so simple a¢manner. Now, it is easy enough to work out
this proposition algebr;ﬁally, but this does. not settle the question
necessarily for the be.gmner, as it is quite possible to work through a
derivation and féllow all the steps without really understanding the
situation. Consa]uently, we shall not use the algebraic method here,
but will try-ustead to point out why & bias should exist and why it is
reasonabla that it should be removed by dividing the sum of squares of
the demtlons from the sample mean by 1 less than the number in the
samPle

In the first place, we have noted already that the sum of the dew-
ations from the mean of a sample or of a population is zere (Chapter II,
Section 1).  We shall now note that the sum of the squares of the devia-
tions from the mean is a mindmum. I the mean of the population is m
and we take a large number of samples of size N and in each case we-
determine Z(z — m)Z, it follows that the sum of all these will be the
same as if we had merely gone through the whole population without
considering any portion of the variates as a sample. Then, on dividing
this total sum of squares by the total number and extracting the square

33
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_ root, we would have the value of o for the whole population. It obvi-
* ously does not matter whether we divide the population into samples
" and determine o for each one and then average, or merely take the whole
~ _population as one sample. However, this procedure is possible only in
*theory; as m is actually unknown. For each sample, therefore, suppose
- that ‘we caleulate V' =(z — £)?)/N and then average. Now, since the
gum of the squares of the deviations from the mean is & minimum, the
" use of 7 will give a minimum value for the sample; but, since the values
- “of  viry from sample to sample, it is perfectly clear that Z(z — )2 for
- - any one sample will be as large as Z(z — m)? for the same sample only
 if Zhappens to be equal to m. No matter how slightly Z varies from m,
- ‘the sum of the squares of the deviations from the mean of the sample will
~ . be smaller than the sum of the squares of the deviations)from the popu-
lation mean, and hence the value of the standard deviation is under-
- estimated by the formula which has N as a divisoex” Now let us con-
- sider the extent of the bias and how it may be yemoved. There are N
. -valdes in a sample, and in theory each of the’ N variates contributes
" -equally to the estimate of the standard’deviation; but in calculating
" Z(z — %) we use one value, 7, which js détermined by the sample, and
hence the effective weight of the sample is equal to N — 1 instead of N.
All the values of ome wathphebkayrieilarge, and if we could calculate
Z(z — m)? these values would contribute more to the total sum of
- “squares than a set of valyég'in another sample which are closer to m.
-Actually, since we take the/deviations from the mean of the sample, the
- -first-sample would nef hecessarily contribute any more than the second
sample. This brings/out the idea that the mean used is fixed by the
* sample and to the'éxtent of reducing the effective weight of the sample
by L Thu..a‘ygé have the term introduced by R. A. Fisher, “degrees of
_f}'eed(?m._’,’\\'When a sample of N variates are used for purposes of estima-
tion, mar:weight is only that of the number of degrees of freedom. For
every statistic calculated from the sample and utilized in forming the
.eé’t;matg, there is = loss of one degree of freedom. Thus, in the present
- example of estimating the standard deviation, the statistic calculated
- from the sam‘}_)le 1s Z, and there is a corresponding loss of one degree of
. freedom. This principle will be found to hold throughout sll statistical
- procedure, - '
2. Terminology and Symbols for Populations and Samples—
_ Intr::]dumg the Term Variance. As pointed out above, we Spif&k of
I.:?;w?i?ﬁ%ﬁf:?j; I:;}z;:;hf :(;r:l :ﬁue and undeviating valfxes, and
105 > &St » from the samples, of the population para-
meters. The statisties we have discussed so far are the mean % and the
standard deviation s; and the corresponding parsmeters are  and o.
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Very frequently in statistical procedure the square of the standard devia-
tion, usually referred to as the variance, is the more convenient of the
two statistics. Most tests of significance ean be made by means of the
variance, in which case the extraction of the square root in order to-
obtain the standard deviation is an unnecessary operation. In general,
all discussions of methods of estimation refer equally to the standard .
deviation and the varianee, and consequently in Example 6 below we
confine our attention to the variance.

Before proceeding with Example 6 it may be of assistance to sime
marize the symbols and terms that have been used up {o this pointy and
any others that have not been used but are relative to those a.lrea&y dis-

eussed, This summary is as follows; ~\
PARAMETERS STA’!‘&S’EICS
Mean.................... m Mean, ...... «NCY. AN &
Standard devistion.. ... ... o Standard devw.taon. e s
Standarddeviationofamean. o, Standard ;dﬂ}iatmn or stand-
Variance, ..., ............ stor ¥V ard erforiof a mean. ... ... 5z
Varianceof amean......... g OF Vim Variahcelor mean squaze. ... s° 0T v
. Varfanee of amean......... s or 65
‘ _Nupiber in sample.......... Nora
N db%‘?ﬁﬂ?t?ﬁa‘?%ffﬁﬁélﬁw ......... no-

Special notice should be taken of the term standard error, which is coming into
general use in place of the sta.nda{d deviation of & sample mean.

Example 6, The Use f'\btggrees of Freedom in Estimating the Variance.
In Table 9 we have a set of tandom numbers taken from Tippeti's tables (6), srranged
in 10 groups of 20 numberg éach. The variation in these numbers may be assumed
to be made up of twonpbrtions: (1) within the proups, and (2) belueen the groups.
But if the numbers h@vé been selected at random these two sources of variation will
be equally balalmed They would he unbalanced if, for example, some groups had
all small n \ecs and the other groups all large numbers. The random selection
of the numberg ‘ensures that this shall pot be the case. In terms of wariance, the
above stgteﬁient with respeet to variation ig simply that the variances for within
groups, ketween groups, and the total variance will all be equal within the limits of
randopi sampling, Now, if for a particular set of numbers, as in this set, the variance
for between groups is adjusted until it is almost, exactly equal to the total variance,
it follows that the variance within groups must also be almost exactly equal to the
total. We can determine, therefore, the variance within each group, and if our
method is correct these should give an average value very close to that for the whole
gample..

The calceulation of the variances within groups has been performed in Table 10
by two methods. There are 20 numbers in each group, g0 that in each group we
have 19 degrees of fresdom for the estimation of the variapee. In column (7} of
Table 10 the sums of squares are divided by the degrees of freedom, but in column (8)
they are divided by 20, the number in the sample. At the foot of the table the total
variance is again caloulated by two methods. In the first case we divide by 199 and
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TABLE 9

4 B c D E F q T I J

1 o0 | 45 | 14 | 26 | 11 | 47 [ 28 [ 35 | 18 | 25
) a5 | 30 | 40 | 32 1 32 | 36 | 24« [ 27 } 16 | 30
3 6 | 20| 20| 18] 8| 2| 10| 18 | 34 | 24
4 37 | 11 | 81 | 28 | 44 | 36 | 27 | 44 [ 18 | 30
5 50 V12| 19 ] 20 28 | 3 | 11 | 25 | 30 [ 24
6 0 | 37} 20| s | 0| 21 | 2! 33| 290 "8
7 26 | 44 | 49 | 41 | 27 | 40 | 22 | 49 [ 35,4 31
8 w | 15| 1510 ] 28] 2 [ 30 11| 388M10
9 o | 50 | 11 | @8 |27 | 17} oar | x| @2 13
10 10| 14 22 ] 19| 11| 5 [ 338 | 39450 | 43
11 1022125 |10} 4 [ 30 | 44| 280721 | 27
12 48 | 20 | a1 | 183 ] 21 | 30 | 32 €2 § 11 | 20
13 22 46 40 81 44 21 23\ 16 45 39
i4 18| 14| 12] 45| 16| 46 | 2] 47 | 18 | 30
15 28 | 21 | 39 | 30 | 38 | 22.¢ o7 | 10} 31 | 18
16 32 15 | 43} 23 | 42 | 3an["16 | 20 | 26 | 11
17 |10 | 37 ] 31 [ i1 | 12 [Nse/| 20 | 12 | 34 | 46
18 11 | 26 [ 3¢ | 22 | 48 M3 | 47 | 42 | 22 | 43
19 130 | 20 | 49 | 35 ! 300 46 [ 3 [ 50 | 24 [ 44
20 37 | 22wir8dbraulbrhigtork.id7 | 12 | 34 | 42 | 24

W,

Totals....| 507 | 548 | 608 | 558 | 621 | 702 | 528 | 584 [ 581 |57

B % 7
in the seeond ease by 200. \We have, therefore, four determinations of the variance
a3 shown below. No_tfa. that the last line is ealculated independently and does not
come from totallin\g‘tv@e'\"ralues ahove except for columns (2) and (3).

By the first méthod we obtain for the average variance within groups a value
that is 99.94%,?1\1;113 total. By the second method the average variance is only
95.43% of thedotal, and therefore underesiimates the true value by 4.67%. Where N

is the nlupikr of variates in » sample, it follows therefore that the correct estimate
of the yariance is given by Z(z — £)*/N — 1.
7 .

/3. The Distribution of the Estimates of the Standard Deviation, If
a large population is being sampled and each sample contsins 100
variates, we will get a series of varying values for the standard deviation
caleulated from these samples. But, if, instead of taking samples of
100 variates, we {ake samples of 10, it is to be expected that in the second
Ezse we will get values for the standard deviation fluctuating more widely
ofatl.lh in i;he ﬁrgt case. Th.ls is the same a8 saying that the distribution
¢ e standard deviation is dependent on the number of degrees of

reedom in the sample. In this respect it is very much the same 84 a
mean. In order to obtain from one sample & value for the mean that
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TABLE 10

CALCULATION OF VARIANCE VALUES oF Figures 1w Tasie 9
BY Groups oF 20 AxD FOR WHOLE GROUP

(D @& @ 4 6) (6) M 8)
T, | Bl 2 TN | 2~ | Z(z-5%19 | S@-2)%/20
A | 807 [16,150| 25.35 | 12,852.45 | 3,306.55 | 174.0289 165, 3275
B {548 | 18,110 27.40 | 15,015.20 | 3,040.80 | 162.8842 1547400
C 608 [21,602| 30.40 | 18,488.20 | 3,118.80 | 164.1474 165,900
D | 558 )18,620| 27.90 | 15,668.20 | 3,051.80 | 160.6210 | .35%:5500
E {621 22,180 31.05 | 18,282.05 1 2,806.096 {1 152.0874 | \145.3475
F | 702 |27,208| 35.10 | 24,640.20 | 2,567.80 | 135.1474™{" 128.3900
G | 528 | 16,132 26.40 | 13,939.20 | 2,192.80 | 115.4105 109, 6400
H | 584 [ 20,308 { 29.20 | 17,052.80 | 8,253.20 | 171.2210 162.6600
T | 581 |19,043] 20.05 | 16,878.05 | 2,164.95 | 1130447 108.2475
J | 577 ]19,045] 28.85 | 16,846.45 | 2,308.55 | 126.2305 119,5276

7

Awl=147.6642 | 140.2810 -

” 7 | 2@ | N | Bk | Se-n299 | 2217200
J 5814 | 198,414 | 160,012,908 20,401 .02 147.7438 147 0051
‘.;-":\’ dbraulilas- yarg in
A Method (1) Method (2)
<N Using Degrees Uring Number
\‘ } of Freedom in Sample
Average within Grc}p ....... 147 .66 ' 140.28
- Total ...yt 147.74 147.00

is quite cloae to\tlhe mesan of the parent population, we must take a large
sample, ill samples will give us unbisssed estimates; but they will
be more”v).nable estimates,

NQw in Chapter I we observed that, if a population is normally dis-
tributed and we know its standard deviation and mean, we ean make a
diréct caleulation of the probability of drawing from that population a
sample with & mean of a given magnitude. This is, in a sense, a test of
the significance of the mean of a particular sample, since if the prob-
ability is very small we.should conclude that the sample was not drawn
from the population in question, but from some other population.
However, the standard deviation of the population cammet be deter-
mined, and the only value we have is the estimate s which has been cal-~
sulated from the sample and varies from sample to sample. This
brings us therefore to the general question of making tests of significance
fromn the dats of samples of any eize.
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¢ 4 Tests of Significance. The method of Chapter II for making
 probubility determinations arose from our knowledge that the ratio of a
. mean of a sample to the standard deviation of the population from which
" the sample is drawn is normally distributed. This follows, of course
because, if the mean is normally distributed and the standard deviation
" i constant for the population, the ratio of the two will also be normally
" distributed. Suppose, however, that we take the ratio of the mean of a
" . sample to the estimate of the standard deviation's. Since s is more~ari-
- able for small samples than for large ones, the ratio will obviouslyhave
- a distribution that is dependent on the size of the sample, and,dn.drder to
"' détermine the probability of the occurrence of any pa.rtipuIﬁr value of
- this ratio, we must know its distribution. This was woerked out by
© ““Student” (4) in 1908, and for the first time practicdlstatisticians had
.. placed in their hands a tool which could be applied in tests of significance
- for samples of all sizes. “Student” gave first\a'set of tables for the
- distribution of /s, which he designated bY\\the letter Z. Later he
| prepared a table based on the distributionief , which is Z/s;. Fisher,
_ in “Statistical Methods for Research Workers,” gives a compact table of
- tfor degrees of freedom varying fromtto 30, and the probability levels
- P =001 002 0.05 0.10, and 0,90, "These are the most convenient for
- general use, and are repradncadiip, pers in Table 94.

. ‘Example?. Two varietiea of wheat sre compared in 4 pair of plots, there being

- T plot of each variety uﬁf\éh peir. Referring to the two varieties a8 A and B, we

. determine the difference inv yield A-B for the 4 pairs of plots, and the resulta are as
-follows in-bushels parfacre: .

O aBe '
NS PR 2 4 4 6

. The differences are all positive snd are therefore in favor of the variety 4; but we
. wish.3o make & test 20 a8 to be able to state whether or not the data are in agreement
£ ﬁ;th any hypothes.is that we may set up. The obvious hypothesis here is that the
varictics are 1ot different in yielding quality, and consequently our theoretical dis-
tribution is bult up on that basis. If the varicties are not different, the data will
be expected to give a value of ¢ that is not improbable. Tf they are different, we will
expect the data to give & value of ¢ which will ocour by random sampling in only a
ma;lv proportion of the eases. Let us proceed to the caleulation of £,
dem; :;o:.e ?ratm thad; t.he mmean difference is 4, and that the sum of the squares of the
o of the individual values from the mean is 8. We then have o = 8/3,
_ n}lmerat-o-r_ bemg the number of degrees of freedom available for estimating the
stg;m_rd deviation 3. Then s = V'8/3, and sz = V873 X 4, which simplifies to
3 Fndlyt - 4 X V/372 = 487. 'Now if we examine Table 941t is observed
 Thew V:l ¢ ol ¢ for-3 degrees of freedom is 3.18, and the 19 value of ¢ is 5.84.
.- s te value of ¢ given by the data would occur according to the hypothesis in
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tess than 5% and somewhat more than 1% of the cages. Our conclusion is that the
difference observed ie due to a real varietal effect, and is not a chance cecurrence.
It may be argusd that in an example such as the above we are not actually
testing the significance of the mean difference, because we are basing it on the distri-
bution of ¢, wherein an exceptional value of ¢ may be due to extreme deviations in
either the mean difference or the standard error. This point is actually only of
scademic interest, because in either case the two samples are proved to be different
regardless of which fastor brings about the exceptional value of & When we consider
the actual problem of testing the difference in yield of two varieties, it is obvig
that a real difference in the variation of the yields from plot to plot is po unlikely
factor that in general we can disregard this viewpoint, and assume that the signifieant
value of { ia at least mainly due to a significant difference in the mean ﬁgl\dat‘ }

0. Fiducial Limits. Stress has already been laid on tl;e@rinciple of
estimation; and we come now to & method of setting uplimiting values.
according to given probability levels, such that it\eap be said with a
reasonable degree of certainty that the true valug\which is being esii-
mated lies between these limits. In the examplg-above, the difference
between the yields of the two varieties was fousid to be significant; but
no attempt was made to set up two limiting'walues, one on each side of
the mean difference of 4 bushels, and to\state that according to a given
probability level, the true mean @itfémnee was between these limifs,
If we can perform such an operation’ it #ill;phyiougly ke of great prac-
tical value, because in the end we areatbrif};ﬂ ;gﬁ;?lilgcemed with being
able to say only that one Variety is a higher yielder than the other.
Unless we can make a reliable estimate of this difference our experiment
18 not, contributing inferniation of value in actual prastice.

It was emphasized-in Chapter I that a test of significance involves

" getting up a hypothésis and determining the agreement between the
hypothesis and'the data of the experiment, and furthermore that any
hypothesis whatever can be set up. In the example above, the hypoth-
esis was that the mean difference in yield between the varieties was zero,
and whab we actually did was to find the value of ¢ from the expression
{(£(=\#)/s;, where m, the mean of the parent population according to
the hypothesis, was taken to be zero. We can, however, take m equal
to any value that we please, and we might choose for example to take m
equal t0 2. Then { = (4 — 2) X V3/2 = 2.46, and this value is less
than the 59 point. The inference from this test is that there is no
definite evidence that the true difference ig greater or less than 2. We
begin to see therefore that, though our difference is significant, we cannot
specify very closely the range within which the true value lies. Suppose
now that we can locate a lower limit such that, if we substitited it for m
in the f test, the value of £ obtained would be exactly equal to its 5%
point, and we determine in addition & similar upper limit. The observed



40 TESTS OF S_IGNII"iCANCE WITH SMALL SAMPLES

difference could then be said to differ significantly from either of the
limiting values, and we could say with a reasonable degree of certainty
that the true value Lies between these limits. The procedure is siple,
as all we have to do iz to set up the equation for £ with m as an unknown
and ¢ equal to its value at the 5% point. Thus:

818 = (4~ m) X VE

Solving for m we get an answer of 1.40, and our limits are 0.60 to 340
It is now clear that, although our experiment gave a significant, feault, it
did not enable us to estimate very accurately the true differed¢e'in yield
between the two varieties.  These limiting values have b,een very aptly
termed by R. A. Fisher the fiducial limits, and in the pyejsent example we
would describe them as the fiducial limits at the 6% peint.

6. General Methods for Testing the Significanice of Differences.
One of the most common problems in statistics isthe testing of the sig-
nificance of a diffefence between two means’” The reasoning behind
such tests involves picturing an infinitepepulation of differences for
‘which the mean is zero. We have two sam;:les for which the means are
different; and we wish to know in what proportion of the cases on the
average, in the procedure.of taking pairs of samples, we will get a differ-
ence as large ag oﬁ]ﬁg@é’tﬁﬂﬂ‘tﬁ%‘ﬁﬂ& Bh8erved. Tests of this kind fall
-into two classes: RS

(¢} Samples are distinet’and the varmtes are not paired in any way.
If there are two bloclgsﬁf d and we take the yields of & group of plots
from each block, and.we wish to test the significance of the difference
between the meansfor the blocks, we have a problem that falls into
. this elass. Thénumber of variates in the two samples may be either
the same OKdlﬂ'erent. Let the samples be designated as 1 and 2; then:

3 £ = mean of sample 1.
. 7\ .
I %2 = mean of sample 2.
£, — Z2 = mean of difference to be tested.

n1 = degrees of freedom for sample 1 which contains,
therefore, ny + 1 variates.

ny = degrees of freedom for sample 2 which contains,
therefore, ﬂz 4 1 wvariates.

The ealculations are ca.rned out as follows

Z{xy — 1)* = sum of squares for sample 1.
Z(z2 ~ %)% = sumof squares for sample 2.
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o= P =2+ 3~ m)

71 + n2 B

_ 1+ ng + 2
% = S\K(m T+ D) @
{ - (%1 — Z2) (3)

5

We enter the table of { under n = nj3 + ns. If the samples contdin an

equal number of variates, we have: N\
m+D=(+1)=N
e1 ~ #1)® + Z{zg, S5
; - =,
an : 2N — 1) ®
\/'2‘ D
- = — .
= 8yg (5)

The table of ¢ is entered under » —.—7’»2“(1\? — 1)

Example 8, Let %, = 196.42 and@ﬁ_dgm;ibfhpy&{sg_mfg) =240. The
sampleg are taken independently, apd‘o@ﬁsequently there is no resson for asquming
that x; and zp are correlated. In sample | we have taken 9 variates, and in sample 2
we have 7 variates. Henee rgi"% 8 and ne = 6. We caleulate first Z(z) — £1)%

and Z(zs — £2)%.  We will as{ﬁgﬁe that this is done, and we get:

"e Zla —21)% = 26.94
.\ ) Z(xy — 22)* =18.73

A —
N\ Total = 45.67
Then: ,\\
/45.67
N ¢ = —_— =181
e ] 12 1.8
and” \ ™
V L P
1.81 V18 ’

Entering the table of ¢ under n = 14 we find that a  value of 2.62 ceorregponds almost
exactly with 3 P value of 0.02. Between the means of the two samples a diference
of 2.40 would oceur by chance in only 2 cases out of 100, - ' '

(b} Variates are paired; that is, each value of z: is associated in some
logical way with a corresponding value of zz. 'Thus, if two varieties of a
field crop are being tested in pairs of plots, each pair containing one plot
of both varieties, we would have a problem of this kind. There will,
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of course, be the same number of variates in the two samples so that,
if there are N pairs, there will be N — 1 degrees of freedom available

. for the comparison, This follows logically from the fact that we are
" now dealing with individual differences and there is one difference for .
" each pair of variates.

" The caleulations are:

| — N
R R e TET

5 7
RV RS @
E — &2 N

= , same ag formula (3)

o

- If the student should be confused to find\later that s as computed
above is not the same as when obtained by the analysis of variance, it
may be just as well to adopt the following method, which is identical
with that of the analysis of variance.” The value of ¢ obtained by the
two methods is, of course, the same:

E

" wuwydbraulibraty.org.in
N N _— 2
$ = \f[%z(g:afs\- 22)® — (T—zﬁ]/}v -1 (8)
S
A0
% TAVA _ ©)

y t\ o
\§t“\= same as formuls, (3).

Ex&nple 9. In this example assume that the variates are paired, as in a feeding
' expetiment where a series of animals are paired up according to initial weight,

QQS_’“,M“I in each pair is given ration 1 and the other one ration 2. -There are
10 pairs of animals, and the difference hetween the mean gains per 100 pounds of
feed at the end of the feeding period s 1.42 pounds. We shali assume that

[%E{ma -y M:I =15.08

. ' P
Then - _ N
’ 15.08
§ = *——q—-— =1.30
and ! _
_Lla fio
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Eniering the ¢ table under » = 9, we find that the P value is between 0.05 and 0.02,
baut closer to the former. We can take P = (.05 as approximately correct, so that
the difference between the two means counld only oceur by chanee in about I out of
20 trials.

7. Exercises.

1. The figures below are for protein tests of the same variety of wheat grown in
two districts. In distriet 1 the average for 5 samples in 12.74, snd in district 2, the .
average for 7 samples is 13.03. If these are the only figures available, test, the,
significance of the difference between the average proteins for the two districts.

(\A
Protein Results AN
Distriet 1........... 126 13.4 119 128  13.0 4\
District 2........... 13.1  13.4 12,8 135 13.3,,N217 124
£=1.04 P <8, approximately.

2. Mitchell (2) conducted a paired feeding experiment\with pigs on the relative
value of limestone snd bonemesl for hone development{'\The results are given in
Table 11 below. O :

Q"

TABLE 11 \.J

Asm Conrent 1y PERCENTAGE OF BeAPULAs oF Pams or Pros
Frp oN LIMeapqne i BosENTabr g.in

Pair . ’\Limestone Bonemeal
1 w2 51.5
(2 53.3 54.9
\“L 50.6 52.2
AN ¢ 52.0 53.3
A\ 5 46.8 51.6
N\ 6. 50.5 54.1
R\ 7 52.1 54.2
R\ 8 53.0 53.3
V Mesn....| 50.04 53.14

Determine the significance of the difference hetween the means in two ways: {1) by
assuming that the values are paired, and (2) by assuming that the values are not
paired.  On the basis of your results, discuss the effect of pairing,
{1} Paired: {=4.42, P = lessthan ¢.01.
(2) Unpaired: ¢ = 2.48, P = approximately 0.02.

3. In a whest variety test conducted over & wide area, the mean difference
between two varieties was found to be 4.5 bushels to the scre. The standard error
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of this difference s; was 1.5 bushels per acre, and was determined from 100 paire of
plota. Bet up the fiducial limits at the 5% probability lsvel for the mean difference
in yield between the two varieties.

" Note that { can be taken as 1,98, then fiducial limits are 1.56 to 7.44,
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CHAPTER V
THE DESIGN OF SIMPLE EXPERIMENTS

1, What is Experimental Design? In Chapter I some ideas relative
to experimental design were presented, but in view of what we have
now learned of the ¢ test it should be worth while at this point 1:6*~répeat
some of these ideas, and at the same time introduce any new. concepts
that have arisen out of later discussions. An experiment{tan be said to
have a definite design if it has been carefully planned jn@advance, and if
due aftention has been paid to possible results and'their interpretation.
The latter point is probably the most frequently\neglected. A great
deal of time may be spent on the various details\of procedure, and full
preparations made for carrying the experimasnt through to eompletion.
This may be assumed to be sufficient to ensiire a successful experiment,
but a long list of such experiments that,contribute neither positive nor
negative information is good evidufige! thiaytarefiiloplayvming of the pro-
cedure is in itself incomplete. QOnly by thinking in terms of the various
types of results that an experiment can yield is_itpipossible to obviate
some very costly mistakes,~ If these possibilities are thoroughly worked
out it is seli-evident that‘a ¢omplete failure is impossible.

2. Planning to Remove Bias. _One of the commonest mistakes in .
£experimental design(is the failure to guard against biased results. ~ Such
experiments may give good results but their great weakness is that they
are not beyond eriticism; and regardless of the truth and importance of
the resultq'}ﬂsﬁained the investigator may néver feel quite happy about
presenting them with convietion. Let us examine hypothefical plans of
experifhents that are subject to & bias of some sort.

\Suppose that we are to conduet an experiment on the value of feeding-
milk to sehool children, There are two neighboring schools, and milk is
given to the children in one of the schools and not to those in the other.
At the end of the experiment the children are compared on the basis
of height, weight, etc., by means of the ¢ test. The children from the
school in which milk was given are found to be significantly heavier than
those from the other school. The error in design is so obvious here that -
it is searcely necessary to point it out. 'The experiment has shown that
the children of the two schools are significantly different in weight, but
this might easily have been the case if no milk had been given or even if
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r of giving the milk had been reversed. In fact the experiment
all what it seemed to be at first. It consists actually of just
ates which are the two schoolg, and no determination of the
-error of such an experiment is possible.
" Now let us endeavor to improve the plan, and we will confine the
. giving of milk to pairs of boys or girls, one getting the milk and the other
“not. The pairs are selected at random, and in each pair the milk ig
given to the younger and not to the elder child. The reader will object
‘that we are agsin introducing a bias in that the difference observed miight
easily be due to age and not to the effect of milk in the diet., ('This is
-~ perfectly true, so in order to overcome this defect we decide togivé it to
-7 -the younger child in one case and the elder child in tk}e,‘;}ébond case,
alternating in this way throughout the entire group. New the experi-
- ment seems to be perfect, and in truth it is much iynfn‘mred, but with a
- . little thought it should be clear that we have sucde¢ded in removing only
the gross defects—those that are obvious to usab the outset and which
. anyone can remove with p little thought and<é~general knowledge of the
.. problem being investigated. The chief trouble with our design is not
- that we have knowingly allowed some factor to bias the experiment, but ~
that we have not planned it in such a'way that it is impossible for bias to
-%A definite, mmethodiBeaayeilghle for this purpose, which has
B already been referred to in Chapter I. It involves merely assigning at
- fandom which member of eath, pair of children is to receive milk. Thisis
a simple deviee and onKW.hich is absolutely trustworthy in the matter
of removing bias. | "\ : _ ¥
. N‘_mlerous examples may be cited of experiments that are designed -
. 8 tha,t bias may'ehter in. One of the most common is the field plot test
in wh:_ch_th'q_‘ym'ieties or treatments are arranged systematically in the
. _blockﬂ Ulf‘&ll]_ic?;tid_ns. It is not possible to diseuss this particular prob-
i';m 313"}‘&?&1 with it fully until we have made a study of the methods of
w16 gyl yeis of variance, but we can consider the simple type of experi-
Menbin Whl_ch'only wo varieties or treatments are being tested and they
:11'; arranged in pairs of plots. Here we are dealing with a series of
_ &Eﬂgs’i:nfoxﬂs?t 1:]1: :" %ypoth_eais as, for example, that the mean
hypothesis we gun dety stributed abOU:t zZeTo. 011. th(_a basis of tlps
ference 55 groat as orermme _the proportion of the trials in which a dif-
validity of our test do _grec{':?!' than the one observed will occur. The
esis i true the distriliﬁ:? 0;1 1111'.3 being designed so that if the byp Cfth—
will be normal and will h;m of the results from a large number of trials
a little thought say of s.live & mean 9f. zero.  What would anyone -afi-;er
being tested are-actuall experiment designed so that, if the varieties
: ctually equal in yield, the result twns out according
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to a large series of tests, either definitely positive or definitely negative?
Yet this is just the kind of result that may be expected if the principle
of randomization is not used in setting up the experiment. This applies -
particularly to the position of the varieties or treatments in the pairs.
3. Designs that Broaden the Scope of the Experiment. This is
another subject thak‘cannot be treated fully at this stage, but a few of
the general principles may be pointed out. Suppose that the all-inclu-
sive subject of the experiment is the effect of milk in the diet of young
animals, Most of us would reject this as a proper subject for experi-
mental investigation at once, because we can see that it is one for,which
there is no possibility of obtaining a result that will be of practical Value.
In one group of animals the milk may be beneficial and in another group
it may be of no valie or even harmful, so that unless the‘experiment is
repeated with all possible kinds of animals and the results with each
kind studied separately we cannot expeet to gathet: any valuable infor-
mation. The decision with regard to an experiment of this type is likely
to be that we should select one kind of animal in*which we are partieu-
larly interested, and then confine the tests'§0)a limited age group. In
the first case the subject of the investigation’called for an experiment of
such enormous scope that the entire préposition was absurd. Now we
have limited the seope of the exmgg};mh% we haye not gone as far
a8 we might. Let us suppose that‘the investigator %emdes Ol Pigs a8
the kind of animal to be tested then he decides to use pigs of one age
within the limite of one week and finally that they shall be from the
same litter. He has now gone to the other extreme and has set up an
expermment such thatho matter how significant the results, they will
not be of any value€xcept within a very narrow range. It eannot be
assumed that theyresults will apply to other age groups, to other breeds,
or perhaps evefi'to other litters, as it may easily be that the litter selected
is peculiar iffgome respect with regard to the reaction of the individuals
of the httér tomilk in the diet. Noamount of mathematical knowledge
wﬂl help 'the investigator over the difficulty encountered here, of setting
up ap/experiment that will not have too great a scope but will at the
same time give results that can be interpreted on a fairly wide basis.
Only his own experience and general knowledge of the problem that is
to be investigated will give the clue to the correct form for the experi-
ment to take. In this instance there may be one breed of pigs that is
predominant in the area in which the investigator is interested, and eon-
sequently it s quite justifiable to confine his experiment to this breed.
Again, there will be a definite range in age at which farmers will be con-
cerned with feeding milk, and only this range need be represented. It
will not be wise, however, to use only pigs from one litter; in fact it
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would seem to be desirable to have as many litters as possible represented

in order that the experimental material will be representative of pigs as

a whele in the area in which they are being raised. An obviously de-

sirable plan will be to take pairs of pigs of nearly equel weight and con-

dition from s number of litters, assign the alternative diets at random
t0 the members of each pair, and then feed the pigs individually so that
individual records may be kept of food eaten and gains made.

: 4. Replication and the Control of Error. The value of replication
in experimental design is easily understood. In the first place, replica-
tion increnses the accuracy and scope of the experiment; in thesecond

 place, Tt enables us to determmne the magnitude of the uncontrolled varia-
tion that is usually referred to as the error; and in the third place it

 allows for designa that give uS an efective control over giror. 'Lhe in-
creasé I accuracy due to replication ig expressible in tefms of a mathe-

_ matical equation. In Chapter II, Section 3, we natéd that the standard
deviation of a mean is reduced in proportion to.the square root of the -

number in the sample. In ordinary experi nis any one treatment is
represented by a sample which is made up.of one unit in each replication.
Therefore in general the accuracy of an expériment, as expressed by the
~ standard error of 3 mean of any one treatment, is increased in proportion

~ to the square root \gﬁﬁbgmhﬁ,%{ﬁgg%ﬁom. This statement should

* mot be interpreted to mean that-results of twice the value are obtained
by multiplying the replications’by 4. This depends on what we mean

by the value of the resuli€, ) In terms of work done or energy expended -
on an experiment to bring about a given reduction in the standard error -

this is true, but it may be that the expenditure of additional energy in

order to inerease thé accuracy of the experiment is unnecessary, in which

case the value gfthe results is not enhanced. More will be said on this
subject latet; but for the present we should note that replication is the

primer;t’éo at our disposal for inereasing the acecuracy of the experi-
~ mentaliresults. '

{ \ .
¢ Another phase of the increased aceuracy due to incressed replication -

avises from the distribution of ¢ for different-degrees of freedom. From
Table 94 we note that, for 1 degree of freedom, ¢ at the 5% point is
12.706 while for 60 degrees of freedom the corresponding value of ¢ is

2.00. Tn the first case & much larger difference would be necessary to
represent a significant effeet than in the second eage. In a paired ex-

penme?t the number of degrees of freedom available for estimating the
exrror of the experiment is equal to 1 less than the number of pairs. Sup-

pose then that we have one experiment wi :
with 10 pairs.  For the first cxporiment s o ELOURT 000

; . . xperiment we would require for significance
a difference that is 4.30 times the error, and for the second experiment a

g
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difference that is 2.26 times the error, these being the values of ¢ at the -
59, point for 2 and 9 degrees of freedom respectlvely It is important
for the beginner to note carefully that this increase in accuracy due to
increased replication is entirely distinet from that discussed above which
results from dividing the standard error of the experiment by the square
roct of the number of replications in order to determine the standard
error of a mean. Both factors act together and in the same direction
but they arise from different sources.

The manner in which replication increases the scope of the experl-
ment will be evident from the discussion of Section 3. In the exawmple
discussed there it was decided purposely to make the rephcat.mns some-
what different, in order that the results might be of general apphcatlon
The importance of this is sometimes overlocked, and we ‘wﬂi find field
plot investigators looking for an exceptionally umfomr patch of soil on
which to carry out an experiment and putting all thereplications on this
same patch. No criticism is offered of this procedure provided that the
mvestlgator 13 not under the impression that by deing so he is necessarily
improving the experiment. Within each rephcatmn it is desirable to
have as much uniformity as possible, but between the replications it
does not improve matters to have a great deal of umformlty, and from
the standpoint of increasing the mgga%ﬂ the nf it may even be
harmful. To put these ideas into-eonerete form Jet ug assume that two
scil treatments are being compared in paired plota. On the field that
is available for the expenmeﬁ there are several types of soils, and we
shall assume for the pufpose of argument that all the soil types are
present that occur in théarea for which the results of the experiment are
to apply. The mvestlgator has three choices. The pairs of plots ean
be placed all on gne-soil type, an equal number of pairs on each type, or
at ra.ndom r’the field, Placing the pairs all on one soil type and
close togetlierin the field has in its favor compactness and economy of
space; bub the results obtained on the one type of soil may not apply
to thq other types, and consequently to get full information on the
problem a separate test must be planned for each condition. This
may be beyond the scope of the facilities of the investigator, so he turns
his attention to the other possibilities. Placing an equal number of
pairs on each soil type has decided advantages. For example, if there
are at least four pairs in each location it is possible to regard each set -
a3 an individual but very rough experiment, capable of yielding an
approximate measure of the particular reaction of the two treatments
on the soil type represented. The average yields of the two treatments
over the whole field will, however, be representative for the whole area
in which the results are to be put to practical use only if in that area
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" there are about an equal number of acres belonging to each type. This
statement, of course, implies that the treatments will give different
" results under the various substratum conditions, but experience tells us
that this is very likely to be the case. We turn now to the third method,
" that of randomizing the pairs of plots over the whole field. The process .
- of randomization will ensure that the various soil ¢onditions represented
in the field will have an equal chance of being used in the experiment.
" As nearly as possible, therefore, we are obtaining a random sample, of
-~ the infinite population for which we are endeavoring to obtain an\un-
. biassed estimate of the difference between the two treatments,) The
only possible eriticiam of this method is that some of the soil types will
" not be represented, and hence certain information will bé lost. The
answer is that with a given type of experiment we capfiot perform two

- functions at once. Without enlarging it considerably. we cannot design

an experiment- that will give us a general averagpg.result for the whole
_ areaunder consideration, and at the same time give us detailed informa-
- tion on the reactions of the treatments under Varying conditions. In-
- formation regarding the whole area is net\lost, but gained, by placing
the pairs at random and perhaps missing some of the types. On the -
. assumption that the field is representative of the larger area being sam- -
pled-it gives us a more dggﬁ%@%ﬁpﬁqnthan if we assumed without
- proper information that each of the types is equally represented.
© .- 'This somewhat theoretical'discussion does not bear precisely on the
‘practical problem 'with~w@icil the investigator is faced, because it is im-
- -possible to obtain -a.ﬁg}i that is really representative of a large area. .
However, it servey #0-bring out some very important points that may
be put into pracfive in tests of this kind. Any investigator who gives
- the pmblem:sgn})us thought will take note of the limitations of one test
: can::ed op%umler very uniform conditions, and at the same time will
- realize the-importance of replication in widening the scope of field plot
experitients. o -
< _Thie second important function of replication is to enable us to obtain
& measure of the experimental error. This follows directly from the
principles of the ¢ test. 1f there is only one plot of treatment A and -
- one of B there can be only one difference, and the number of degrees of
_ freetoio?j available for estimating the standard error is zero. In non-
statistical terms there-is only one value, the difference between the two -
plots, and this difference is the only measure we have of both soil varia-
t.z?n sf,nd the effect of the treatments. We cannot compare a difference
W’_th ltgelf; therefore, we say that there are no degrees of freedom avail-
able f?l' estimating the error of the difference. This defect in an experi-
ment.ls obviously overcome as goon as we introduce replication. Even
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if we have only two plots of 4 and two of B we have at least one degree
of freedom available for estimating the error, and by means of the ¢
test an unbiassed comparison of the treatments can be made.

The third function of replication has to do with the control of error.
Another hypothetical example will make this clear. Again we can Sup-
pose that two soil treatments are being compared in paired plots. The
measure of error is determined from the variation in the differences
within the pairs. Suppose now that the plots are all distributed &t
random over the field, and the pairs are made up simply by takipg the
two plots of 4 and B that happen to fall together in another fardom
selection. This can have only one effect, and that is to incrense the
variability of the differences, and consequently the accura¢y of the test
is reduced. A question that may be asked here is whether or not the
method that increases the variability of the differencss will also increase
the average difference between the two treatmenfs™" Yes, the average
difference will also be increased but it must be témembered that this is
due in actual practice to two components.N A part is due to the real
difference between the treatments and a p;a,ft: $0 the variability of the soil.
The latter component will be increasediin’ the same proport.ion as the
error, but the former will not, and ‘tonsequently the precision of the
experiment becomes correspondmglgrbﬂ@&ﬁbﬂﬁ-yt&% ierror component

mcreases

The benefits to be obta,mq\d from the arrangement of treatments in
replications wherein each\rephcatlon contains one of each of the freat-
ments is fairly well kndwn to experimentalists, especially in agronomie
research. Variety\$€i3ls are therefore arranged in compaet blocks so
that the plots wmly.n the blocks are as nearly alike as possible. There
are, of course, mgny applications of the same principle in other types of
experlment.a:én but this subject will be discussed more fully under the
heading of\the analysis of variance.
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B

LINEAR REGRESSION

1 Genessl Observations. In the previous discussions emphasis.was
placed on the varintions that oceur in any one variable, such as ‘gh@ vield
of wheat plots, the weight of animals, or the height of studentss. “Some-

- _ times the values of one variable are classified in two or gp,o‘re ways, in
" which case we may be interested in the joint variation of the pairs or

groups of values so formed. For example, in Chapte;i',V a problem was

- discussed in'which pairs of plots of two varieties were arranged in differ-

ent’ways over « field. - The interest there waséa.rgely in the differences
between the members of pairs, but it was dlse pointed out that if the
plots were close together they “would ténd’to yield alike, or in other
words they would vary together. The present chapter, however, deals
with examples wherein there are paired variates but of two different

- kinds of variables, sndsirtgendiblonecufshe variables may be regarded

as independent and the other ad'dependent. In a study of the effect of
‘rainfall on yields of field efops, we would have a typical example of a
dependent and an indepéndent variable, in that the interest would lie
in the degree to which rainfsll, acting as an independent variable, would
have an effect on.yield, the dependent variable. It would be useless,
of course, to think-of this problem in any other terms, as we could not
imagine the yield of field crops having any effect on rainfall.

_ Itis debdifficult to see that, for any set of data for paired variates,
it ghould Be possible to obtain a measure of the physical relation between
the two’ variables, Suppose that the dats are arranged as in Fig. 6,

(Which shows graphically the average yields of groups of plots of Marquis

whez?,t for given percentages of infection with stem rust. It would not
be difficult to draw a straight line so that it would represent the general
trend of decreasing yield with increasing percentages of infection, and
we could then read off the approximate decrease in yield for a given
mncrease in infection. This, of course, would be a very erude method,
ﬁﬁthe E;;tt.mg- 0.f the Iine would be purely a matter of eye judgment and
Th:zezo (lj]:dnrdu?h ﬁolﬂd plg.ce the line in slightly different places.
pen o de :(:; v:(}: vml'nb‘ihe graph o general expression for the relation
at e the o ariables, from which the line could be reconstructed

y time and which could be us:zd for predicting the effect on yield
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of given percentages of infection, it would be necessary to draw out the
graph very accurately and make an average of a nrumber of measure-
ments. . In order to arrive at a more precise method of fitting the line,
recourse is had to the “ method of least squares.” This means that
& line is fitted such that the sum of the squares of the deviations of the
points in the graph from the siraight line is a minimum. It gives us
a statistic known as the regression coefficient, which expresses the in-
erease or decrease in the dependent variable for one unit of i Incregse
in the independent variable. = From the regression coefficient we csnsét
up a regression equation, which can be used to make predlctlpnb,, and
elso it defines the straight line known as the regression siraeght km &
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Fia. 8. —Rzgxesmon graph for yields of Marquis wheat on degree of
P\ mfect.mn with stem rust.

The esq&}mal difference between the treatment of different kmda of
variables that are thought to be related and pairs of variables that
merely Vary together will now be clear. In the first case our concern is
to determine a function, in the present case a straight-line function, that
will express the average relation between the two varisbles. In the
latter case the function will obviously not be of very much value; we
will probably be better satisfied with some expression giving the com-
bined effect of the variables on each other or perhaps, if we cannot think
in such terms, the degree to which both variables are acted upon by
outgide influences that cause them to vary together. Of this second
condition we shall learn more in the next chapter.

2. Fitting the Regression Line. Let the two variables be l“epleauuwu
by # and y, where z is independent and y dependent. Then, if the -
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relation betweon z and y can be represented by a straight line, the equa~
tion of the line will be of the form:

RO Y=a+bs (1)
~ - shere ¢ and b are constants and ¥ represents the values of y estimated
‘from the equation. For any one value of z, say zy, the corresponding
value of y estimated will be ¥y, and the error of estimation will be
(yi-—Yi) ‘The value of y: would be represented on the graph as in
‘Fig. 6 by one of the points, and the corresponding estimated valhie. Y
-would be a point on the straight line. To fit the line, it is required that
“the sum of the squares of the errors of estimation S(y — Y)?shall be a
_mminimum. - It is best to begin with z and y measured from\tkeir means,
80 that our-regression line is actually: B, \ R

WepmatbE-H0" @

enoe the error of estimafion is given by 2[(¥' — ) — (y — 9! =
Ly — Y); the same as before. Minimizing-by the method of least
-squares for Z{y — ¥, we obtain the equations: !
S0 Ne+ 3k - b= 3y - )

e = fa ok R = 20 — iz - 8)
and solving we have: . (N
AN ' .
AN L - DE = 9

O TS T R 3

e Suation (8) we ote the expression 2(y — g)(z — %), which is
ususlly . At &4 the sum of products. For two variables, it is the

B mies. feormsponds to the sum of the squares of the deviations
. fvxl\m}‘ia.bh ;sfn_man__ " Yegl‘;yn?-.vanabie. Wg knov_v that the variance for a single

" and now we learn that the covarne

- 0w leam that the coariancefo two variables s given by
SRR s e o N : (4)
S

-ealeulus, - Tt 1’ 8- confusing tou:;;y i due ste any good textbook on elementary
: mmnﬂonm, PN Iite 0ut ohe or ese methqu.to expressions containing the
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In (3) if the numerator and denominator are divided by N — 1 the
equation becomes:
Covariance (zy) :
_ Covariance (zy) )
Varlance (x)
Going back now to (2} above:

Y—45=08z-23 ~
and: Y=g+ bz — %) _ L\ (@)
or: Y =(F~0b) + bz N\ N
the last being the form in which this expression is most _ftéquently used.
It 15 known as the linear regression equation, and b in the’equation is the
regression coefficiend. )

3. Properties of the Regression Coefficient:’ In the equation
¥ = g + bz — &), b expresses the probable f8lation between z and Y
in terms of the values in which z and y arewdegsured. The coefficient in
this equation is usually represented as.b',,;; which means that it is the
regression coefficient for the regression’of § on ; and thus in any sample
of paired variates studied it represents'a kind of average of the increase in.
y for a given increase in z. ThugHby dbtaulHularpergdfe and « is tons of
fertilizer applied, b, is an estimate of the increase in yield to be expected
from one ton of fertilizer. <\

* For every example where we study the regression of y on xz, there is
also the theoretical pogsibility of studying the regregsion of « on y; but as
stated above the thé€dry of linear regression is best confined to examples
where we can th_iQk‘clearly' in terms of the effect of one variable on the
other, and conséquently the investigator is concerned with only one
aspect of tlge\\ré'gression.

"The ;ﬁgression coefficient is a measure of the slope of the regression
line, bt only relative to the class values of the two varisbles and their
ranige of variation. Suppose that, in a study of the effect of rainfall on
yield, the rainfall varies from 0 to 9 and the yields from 20 to 30, and
the mean yield is 25 and the mean rainfall 5, In a graph such as Fig. 6
the units could be of the same length for the two variables, and if the
regression coefficient is 1 the regression line would go from one diagonal
to the other aud would have a slope of 1; that is, it would lie at an angle

of 45 degrees. However, if rainfall varied from 0 to 20 the slope would .

be less than 1, even for the case where yield is completely dependent on
rainfall. ' : T s

4. Tests of Significance of the Regression Coefficient. The sam:
pling error of the regression coefficient is related to the error of estlmaﬁwﬂ :
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“measured by Z(y ~ ¥)2. Thus we have the standard error of estimate

given by: i
' _ /E(y — Yy
- TNy oe ®

" and the standard error of the regression coefficient by:
8 = 8/V Z{x — £)? ‘ ~(9)

The value of Z(y — Y)2 can best be calculated by equatingt fo
(y — §)° — B2z — %), or 3y — §)? — bE(y — Pz — ), depend-
ing on which form is the more convenient at the time. = Iniiitese equali-
ties it is understood that the regression coefficient is bysy

Then to make thie test of significance ¢ is given by{ &

_be bV ZE(@ — 2R (10)

8a L o"\

. S\
and the table of ¢ is entered under N — 2'degrees of freedom. There are

N ~— 2 degrees of freedom because both 7'and by, are statistics calculated
from the sample. N

*

The test for the significance of the difference hetween two regression

" eoefficienis is based on ggeigm‘mndard errors. For the two
regression cqeﬂiciexﬁg,ﬁ'f angd bz, with standard errors caleulated as in (9)

above, the standard eQ{i-.o‘f the difference would be: '

- : O se=Vsd+g (11)
and ) -

r SO t= &by (12)
\“ -812

e :
The two coefficients may be caleulated from different numbers of paired
values, so that there would be a total of (Ny — 2) + (N2 — 2) degrees
ob freedom available for the comparison of the coefficients, where N1
and Ny are the numbers of pairs respectively from which & and by are
caleulated. ' '
A a;_)ecial case arises when there are two sets of values of the depend-
ent variable. If these are y1 and ys, there are two regression coefficients
_ b".s and’ by,e; and it may be necessary to.best the significance of the
}i;ﬁn;re:t:ezetwe_e% 1th:m. The simplest and most direct method is to
. variable from — ' i
e tasted b the opdintrs WS;:' #2) and caleulate by, _,,, which may

@) sy ethods of Calcutation. It will be remembered from formula
the numerator of the regression cobfficient is the sum of products
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of the deviations from the means of the two variables, and is expressed
algebraically as Z{y — #)(x — £). The denominator of the coefficient
is the already familiar sum of squares of the deviations from the mean,
for the independent variable usually indicated by z. Qur problem,
then, is to learn the most convenient method of caleulating the sum of
products. The method follows from the identity:

TzTy
N

N\

2y — P — 7 = Sy — (43
.'\. N

where Z(zy) is the sum of the products of the origina,fvalues«i,f% and y,
taken of course by pairs, and T’ and T', are the totals for aliheé original
values of z and y, respectively. 'The latter are somewhatumore conveni-
ent symbols for the familiar =(z) and Z(y). Givén a'peries of paired
values, therefore, for which a regression coefBicienb.ds to be calculated,
the first step is to determine 7', and T, Thenedeh value of z is multi-
plied by each value of y (or vice versa), andvihe sum of the products
accumulated in the machine. This gives Uy Z(zy), and if we subtract
from this T.T,/N, the remainder is the(required sum of products of the
deviations. Z(z — )2 ig, of course, alculated in the manner indicated
in Chapter II. wiww dbraulibrary org.in

In many examples the labot'of calculation can be reduced by coding
the data. This involves githe subtracting a uniform quantity from the
values of each individual vartate or dividing by a constant quantity, or in
certain cases both deyices are employed at the same time. Supposing
that the actual valjesidre as given below on the left; the values on the
right are examplgag\of how the coding may be carried out.

UxcobEn \§ J Copep - N
T ¥l x ¥
2402 278y 240 278 Dividing by 10 and rounding off last figure.
Y™ 40 78 Subtracting 200.
198 106 8 6 Subtracting 190 from each value.
195 193 i} 1
256 274 5 74 Subtracting 200. It is quite permissible to
229 198 29 -2 have negative values, but usnally they compli-

eate the ealeulstions alightly and if a machine
is mvailable for caleulation most workers avoid
them. '

The regression coefficient having been calculated, the next step is_to
determine ihe regression equation, ¥ = (§ — b&) 4 bz. The portion
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(§ — b%) is constant and is computed once and for all. Putting the
“yesult for this portion equal o ¢, we have the working equation:

from which all the ¥ values that are necessary can be obtained.
. Tt must be remembered that, if the regression equation is calculated

" . from coded data, the resulting equation itself must be decoded before it

can be used for prediction purposes. If the data have been coded by
" subtraction only, the only correction required is to the means of zand y
and this correction must be made while the equation is in the fofmgiven
_in equation (7). If in the coding the z and ¥ values are ditided by a
different constant value, then s correction must be made to.the regression
coefficient as well as to the means of zand y.  For exaniple, if z has been
divided by 4 and y by B, then the regression coefficient calculated from
the coded data musi be multiplied by B/A.

. 2.\

~ Exzample 10. Calculation of the Regression Cp’Qﬁcient and Regression Equa-
tion from a Smell Series of Paired Values. In 8 Bypothetical example the values
from 10 pairs of variates are a3 given below: _ \.)

ER 9 8 7 7 66 3 3 1 I T,=5
Yorrenns 9 v dbrallibharyforghn 8 1 1 Ty =152

Values for the totals are given at'the end of each line and N = 10. To find the sum
of products, and the suna cfgqt.ﬁrea of z, we proceed as follows:

: E{zy>={9xg)\|r\iéx9)+(7XS)+--- +(1X 1) =335.0

T.Ty/N = (50 X 52)/10 = 260.0
Differenga\= Ely — oz — 1) = 75.0
ZDEN AT TS b 12 = 324.0
TRIN = 50%/10 . = 250.0
ﬁ;ﬁereme =Xz — £? = 74.0

Thefbys = 75.0/74.0 = 1.014. £ = 50/10 = 5.0. 7 = 52.0/10 = 5.2.
Agoa = (5.2 — 1.014 X 5.0) = 0.13. '

Finally the regression equationis ¥ = .13 + 1,014z, '
; .In order to use this equation for predicting values of y from given values of 2,
?a}li onlfy ;ece;‘sary to 1;11mrt:f the required value for z and determine the resulting
e of Y. For example, if we take i
0.13 + 1.014 X 2 = 2.158. ® saval 0 2 the ealeulated value of ¥ 12
' Exemple 11. Calenlation of the Regression Coefficient and Regression Equa-
tion from a Large Series of Paired Values. When dealing with large numbers of
variates, we found that it was convenient to make up & frequency isble in order to
. summarize the data and reduce the labor of ealeulating the mean and the standard
deviation. Similarly, iu regression studies, if a large series of paired values is avail-
 able it ia desirable to mako up a teble which is a combination of the frequency dis-
tributions of the two variables. From long usage such a table hag become known 8
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a correlation table, and we shall see in the next chapter that it is likewise of value for
ealeulating the correlation coefficient.

To prepare a correlation table the best plan is to copy the paired values on cards
of a size that ean be handled conveniently. Thus, if we decided to make up a table
for the yields of plots in adjucent rows of Table 4, Cha.pter II, we would make our
cards as followa

z 185 z 169
First card Second card ~
y 162 : ¥ 205 .

N

7 '\. A

and proceed until all the pairs had been entered. After desiding on t};ed\a.sa values
in very much the same manner as deseribed in Chapter II, Section Spwé would dis-
tribute the cards for one of the variables and then distribute each/ple for the second
variable. Table 12 is the final result of distributing &l the cai'd's for the vields of
adjacent plots as taken from Table 4. The classes here aresomewhat larger than
they should be, in order to save space and to make the ta{!tl‘e more convenient to use
a8 an example. The eards were first distributed for z, giving the frequency distribu-
tion as shown in the last row of the table. The 4 earﬂsYa.lhng in the first class were
then distributed in the vertieal column according\te the values of ¥, and o on for
each pile. When all the piles were distributed,\the cards in each small pile were
counted, and the frequencies entered in the tsl')le Notice also that the natural num-
bers have been inserted in the table to re[ﬂnoe the class values. This is the device
introduced in Chapter II for reducmg [‘ﬁ{%% ¢, jpean and standard
deviation from frequency tables. It, msy be used here in“the Sare way, in order to
reduce the Isbor of caleulating the fegression coefficient. It will be noted that thisina
form of coding, and eonsequent.ly e regreagion coefficient and the regression equa-
tion will require eorrection iT\@:ey are calculated from a table of this kind.

The next step is to prepare Table 13, in which the first four columns are entered
directly from the correlatlon table. For the column h * totals for y arraya ”
Wepmceedboobtmthetotals for each array as follows, where the firat array of y is
the dmtnbut,wn i the y classes of the varistes that fall in the first class for z.

1st EXNFAXE+AXE) -20
2nd'&}Tay CXN+UXDFEXBDFAXBFAXT) =

The Qota} for this column is obvioualy T',, the grand total of . In the same way we
proceett to obtain the totals for the z arrays and T, the grand total of z.  There are
two columns headed E(zry), the object being to caleulate Z(zy) in two ways so as fo
have & complete check on the ealculations. The entries in these columne are obtained
by multiplying the totals for the y arrays by the corresponding class values of z, and
the totals for the « arrays by the corresponding elass values of y. Summating st the
foot of the columne we obtain Z(zy).

Finally from the correlation $able we have to calculate Z(z%), and the method ia
the same as in Chapter 11 for any frequency distribution. Tabulating our calenla~
tiong we have:

Z(zy) = 5448
2@ = 3052
T, = 850
T, =1246
N = 200
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Then: Ty — Pz — ) = 5448 — (B50 X 1246)/200 = 152.50
- And: Z(x ~ £)? = 3052 — 850%/200 = 33%.50
The regression coefficient is.given by by, = 162.50/339.50 = 0.4492

TABLE 12

CoRRELATION TABLE FOR THE YIELDS OF ApIACENT BarLEY PLoTs

x _ "\
Assumed | 2 3 4 5 6 7 ¢y
Claeses N\ |
4 Fre.
] 4"}} quency
Actual | 68 89 | 112 | 135 | 158 | 1810\ 204 ¥
Classes| 88 | 111 | 134 | 157 | 180 | 203% 226
20 1 \
LN ) N !
c7<\:
43
2| g5 ] g 1
3 g 2 2 N _ 6
ww w.dbraulifrary org.in
] =8
41 0 ’ LS M 3 2 1 14
O
112
_5 3 | QL 5 n 4 11 3 34
gl O\
13500
i 1~5\7\ 1 1 12 15 17 5 2 53
3 ’\ .
P58 | -
LAY 1o 1 12 16. 13 11 2 85
N | —
Bl o3 1 1 9 13 4 2 30
204
o1 a0g o 3 ] 4
227 |
104 29 K 2 2
Frouencyd 4 | 18| 4| 45| s0 | 2 | o | 200
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TABLE 13
CALCULATION OF THE REGRESSION CORFFICIENT

Frequency Frequeney Totals - Totals
3 z for y Z{xy) for = Z(zy)

y % Arrays Arrays

L 1 1 4 20 20 4 4 N
2 1 2 13 60 120 3 A 6
3 6 3 43 243 729 12 |, \"36
4 14 4 48 307 1228 445 I\ 192
5 34 ] 59 387 1935 132 ~h° 660
6 53 6 27 187 1122 228~ 1368
T 53 7 6 42 294 »‘2&7 1729
8 30 F N Y IR 143 1144
9 4 . T B O o2 189
10 2 s 7, \ 12 120
S

200 ... 200 | 1246 | N54ds 850 5448
N N Ty | Zap 7. Zlzy)

In order to set up the regressicn equajiof Hiﬁ'ﬂifﬁﬁgf &pyd gpre required.  These
are £ = 850,200 = 4.25, and § = 1246/200 =6.23, and the regression equation is

Wl‘ltt.ell \
= (6. 23,%— D.4492 X 4.25) 4 0.4492z

—43%9—04492:

Since the regression Qqu}tlon has been caleulated from coded values, the necessary
corrections must beapplied. To correct the means we apply formula (7), Chapter I7,
cbtaining: N\M
T AN §=(6.28 - 1)X 28 +31
N 2= (4.25 - 1) X 23+ 77
AN
Sinb\tﬁé class value is 23 for both variables, the regression coefficient does not
require any correction, so the new equation is:

= {151.20 — 0.4492 X 151.75) — 0.4402x

151.29
151.75

= 83.12 — 0.4492z

In order to plot the regression straight line, we require only two points on the graph,
preferably as far apart as possible. It is simpler to use the coded regression equation
to find any values of ¥ required, and also the graphing may be done in the coded
values and the actual values inserted when everything is completed. ‘The end
points of the line are

Y1 =4,3200 — 0.4492 X 1 = 4.77

Vg =4.3200 - 0.4492 X 7 = 7.46
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The graph is finally ae in Fig. 7. 1f such a graph is required in the final presentation
of the resuits, it would be necessary only to substitute the actual class values for the
apsumed values. 'The means of the y arrays are, of course, obtained by dividing the
totals for the y arrays by the corresponding frequencies. These may be converted

Means of
y arrays ™\
5.00
4,62 & \\
| 5.650)
| 4
| R
W 06,93,
2l 1' v T.00

YIELR

_YIELD Pa\d

Fra, 7.—Regression graph for yields of 'sdjacent plots showing regression
fine and meﬂ}fg‘s ‘of y arrays.
dbrai Jibrary.org.in . .
fo actual values by me\gn\g\%fi gui’cumn.ﬂay forgcorrecting means a8 described in
Chapter II, and used above fcn‘\’ﬁnding the tree values of £ and 7.
To test the significance {ﬁf“ the regression coefficient we find

= 1.3275

o PR — ‘j417.42 — 0.4492° X 330.50
N WV -2 108

(L BBE- D oumviEm _ 6.98
O\ % 1325

’[{qﬁ”:;fwhich it ig clear that the regression coefficient is highly significant. .

6. Exércises. _

1. Table 14 gives the resulis obtained in an experiment with 25 wheat varieties
on the number 6f days from seeding to heading and the number of days from seeding
to maturity. Caleulate the regression equation for the regression of days to mature
on days to head, and test the significance of the regression coefficient. Code the
data before beginning your caleulations by subtracting 50 from the days to head
and 85 from the days to mature. Tind the fidueial limits at the 59 point of the
regreasion coefficient, and decide as to the practicability of using days to head to
replace daye to mature or the basis of the data provided by thia sample.

Regression coefficient = 106.23/125.68. = 0.8373. (Coded data.}
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TABLE 14

Dars on Davs o HeEap Anp Davs 1m0 MaTure or 25 WaraT VARIETIES

Days Days Days Days

Variety to to Variety to to
Head Mature ’ Head Mature

1 60.0 94.4 14 58.2 92.4 A
2 53.8 89.0 15 58.0 91.6
3 59.0 94.0 16 59.4 9440
4 61.8 854 17 55.4 508
5 53.8 88.2. 18 61.6 \.95.2
G 57.8 93.4 19 83.0 M 9.2
7 57.8 83.6 20 60.2/), 94.6
2 §8.4 92.0 21 61.6 946.0
9 57.8 92.8 22 87,6 92.6
10 59.0 93.4 23 \,60 8 95.4
11 59.2 93.8 24 _4NV6L.2 094.4
12 9.0 92.8 25 \ §58.2 94.0
13 53.6 04.2 \%

2. Table 15 contains data on the carotene eontent determined by two methods for
139 wheat varieties. By one methodsatolens Fasidsieryingd, an the whole wheat,
and by the other method, on the flour. The figures for caroféne in the wheat are
lower than for carotene in the flout, which is of course the reverse of the actual
condition. This was due to & Wifferent method of extraction used for the whele
wheat which pave lower bu‘l\}elatnve results. '

Make out cards, ongor each pair of values, and prepare a correlation table,
letting the flour caroténs“Tepresent the dependent variable . In order to reduce
the Iabor of caleulationmake the classes fairly large; for example, let the firat class
for = be 0.85 to 085, and the first class for y be 1.33 to 1.49. Also do not forget to
replace the acfual class values by the natural numbers, beginning st 1, before going
ahead witk“the caleulations. Determine the regression equation and prepare &
graph similar to Fig. T. - by = 438.30/665.96 = 0.6583. (Coded data.)

ABiove: (@) 2ty - Dl — 1) = Zey) — TN,
®) Zly - V) = 2(y — 5 — BZle — 2%
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TABLE 15
Carorene CoNTENT or FLour anp' WHOLE WHEAT FOR 130 VARIETIES
Variety |Carotene|Carotene| Variety |Carotene|Carotene Variety | Carotene/Carotene
No. [in Flourjin Wheat] No. |in Flour|in Wheat|| No. |in Flour in Wheat
1 2.30 | 1.18 48 1.71 1.16 95 | 1.97 1.33
2 3.11 | 2.3 49 1.93 1.14 96 | 1.83 1.14
3 2.15 | 1.4 50 1.81 1.30 97 | 2.00 1.5%
4 1.96 | 1.42 51 1.80 | 1.32 98 | 1.96 1.28
5 2.02 | 1.50 52 1.65 | 1.32 99 | 2.00 133
6 1.76 | 1.25 53 1.93 | 1.28 100 | 2.02 | \M'32
7 2.10 | 1.85 b4 2.12 | 1.48 101 178N 1.17
8 2.12 | 1.24 55 2.25 | 1.50 102 | 1488 1.10
9 | 228 | 1.48 56 | 1.92 | 1.42 103 | 9198 | 1.22
10 1.86 1.35 57 2.25 1.66 104 .4 "2.14 1.44
11 2.60 | 1.58 58 2.25 | 1.63 108} 2.15 1.54
12 2.11 | 1.45 59 1.66 | 1.18 |[j\a08 | 2.13 1.46
13 2.30 | 1.74 60 1.63 | 1.14 107 | 1.97 1.40
14 1.80 | 1.42 61 1.70 122 108 | 1.83 1.11
15 2.00 | 1.45 62 1.61 120 109 | 2.10 1.40
16 2.05 | 1.87 63 1.83 |\ 110 | 1.84 1.18
17 2.09 | 2.00 64 1.60 {M"13 i1l 1.98 1.39
18 | 233 | 1.85 66 | 1.37\+ .92 [ 112 | 2.31 | 1.60
19 | 220 | 1.64 66 | 198 | 1.20 113 | 2.29 | 1.5
20 2.30 | L1.62.ufw 8Bralilibiéy org, b6 114 | 2.15 1.45
21 1.97 1.58 68 “\M1 .02 1.34 115 1.96 1,44
22 236 | 1.68 69 1.89 1 1.04 116 | 1.98 1.40
23 1.3 | 1.32 |30 1.99 | 1.26 117 | 1.89 1.30
24 1.72 1.4% 4™Wn 1.82 .98 118 2.08 1.33
25 1.70 1.‘@3\ 72 2.12 | 1.31 119 | 2.00 1.42
28 1.63 { 1(sb 73 2.16 | 1.18 120 | 2.06 1.44
27 1.93 048 74 2.14 | 1.04 121 1.96 1.36
28 1.50.4.01.25 75 1.63 .88 122 | 2.07 1.38
29 12700 1.33 76 2.7%6 | 1.9 1238 | 2.24 1.51
30 | 60 | 1.40 7| 207 | 1.9 124 | 2,15 | 1.38
31 231 | 1.40 78 | 1.67 | 1.07 || 125 | 1.88 | 1.18
3231 2.17 | 1.42 79 2.78 | 1.80 126 | 1.84 1.20
83 | 210 | 1.35 80 3.0 | 2.02 127 | 2.03 1.45
| 290 | 1.88 81 3.67 | 2.10 128 | 1.87 1.05
35 2.17 | 1.50 82 2.41 | 1.81 120 | 2,24 1.44
36 2.15 1.40 83 2.23 1.38 130 2.14 1.06
37 2,01 1.40 8 | 3.07 | 1.03 181 | 2.13 1.10
38 2.35 | 1.7 85 2.92 | 1.44 132 | 2.08 .98
39 2.34 1.62 86 2.55 1.58 133 2.25 1.31
itll 3(112 i.gg gg 2.12 | 1.39 134 | 2.38 1.08
o o | 0 s 1.04 | 1.927 135 | 2.00 1.14
- 2o | T8 0 1.95 | 141 136 | 1.80 1.41
. . 1.59 | 1.08 137 | 3.00 2.20
44 117 130 ) 91 | o200 | 130 | 138 216 | 1.7
Doy il 18 e {177 | 122 | 130 | 220 | 161
46 | 248 + 129 | 03 | 198 | ;09 1 N
47 1.86 | 1.28 04 1.97 { 1.30




CHAPTER VII
CORRELATION

1. Covariation. This is a term that is very expressive with respect\
to the fundamental situation regarding two variables, from which the
methods of correlation arise. In the previous chapter it was\'pointed
out that, when two variables are so related that one may, logically be
congidered as being dependent on the other one, the methot of regression
is completely applicable to a study of this relation; Jbub. when the two
variables cannot be considered in the light of dependence and inde-
pendence, the method of regression does not appear to be satisfactory.
Suppose that a study is to be made of the relaién"between the heights of
brothers and sisters. It would not be logiealto consider the height of
one member of the pair as being dependent’on the height of the other -
one, yet we may be fairly certain thaf there is a relation of some sort
and we may wish to estimate whﬂt)tf;’lsﬂ%mﬁﬂn‘isyﬁfhérquestion that is
asked with respect to two such, vatiables seems to be this. “To what
extent do the heights of brother and sister vary together”? Thus we
have the term covariatior\@(f the conventional statistic for the measure-
ment of covariation is the\correlation coefficient.

2. Definition of Correlation. In Table 16 there are three sets of
figures that may béytaken as measurements on two variables that we
shall designate.z@s\.f and . On examining these three sets of values it
will be noted\that the relation between z and y is different in each case.
In set 2 we have high values of z associated with high values of 3, and
in set 3%ve have high values of z associated with low values ofy. In
both cases there is an obvious relation but one is the reverse of the other.
In sef 1, on the other hand, there is no apparent relation between the
two variables. These sets may be regarded ss samples from infinite
parent populations of paired variates. In the population from which
set 2 is drawn, whenever a pair of variates is selected, we expect to find,
if the pair contains a high value of z, that there will be & high value of ¥
associated with it. In the population represented by the sample in
set 3 it is to be expected that high values of = will be found associated
with low values of . These two opposite situations are referred to as
positive and negative correlation. Set 1 represents gtill another sih_.ta.—
tion. High values of = do not appear to be associated with either high

85



66

CORRELATION
_ TABLE 16
Torer SaMpLks OF PAIRED VaRIATES ILLUSTRATING THE
PaENOMENON 0F CORRELATION
Bet! z.... 7T 7 1 6 & 3 8 9 3 1 Total=250
¥.... 8 8 6 1 3 1 9 4 6 8 Total=252
Bet2 z.... 9 8 7 7 6 5 3 3 1 1 Total =50
' ¥... 9 9 8 6 6 b6 4 3 1 1 Total =52
St3 z....1 1 3 3 5 6 7 7 8 9 Total=40)>
¥.... ¢ 9 8 6 6 5§ 4 3 1 1 Total =52
¢\

or low values of . In other words, we shall expect that, ihthe parent
population the two variables vary independently. A graphical picture
of the results with these three samples is given in¢Hig. 8. For each
~sample we have prepared what is usually known a¥(a)dot diagram.  The
values of ¥ are represented as-ordinates and theWalues of z as abscissae, -
80 that each pair can be represented by a dot\ orthe disgram. The final
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O\ , L
\ } - Fra. &—Dqt disgrama for the sets of values given in Table 18,

result is a figure which represents in a general way, by the scatter of the
dots, the relation between the two variabies, For set 1 the dots are
seattered more or less uniformly over the whole surface. For sets 2
and 3 there is a definite relation between the variables, as shown by the
tn?ndency for the dots to arrange themselves in g straight line aiong the
diagonals o_f the square. 'We are reminded here of ‘the regression graphs
of the previous chapter. The difference is that we are not now studying
the effeet of one variable on the other, but rather the degree to which
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the variables vary together owing presumably to influences that are
common to both. If such measurements represented heights of brothers
and sisters, it is apparent that this common influence might be the simi-
larity of their genes.

This rough illustration is sufficient to give » general idea of the nature
of correlation, but it is not adequate to give a complete picture of cor-
relation as it occurs in nature. The student who is specially interested
in this subjeet should make a thorough study of the references given.at
the end of this chapter. Each writer on this subject presents the sitha-
tion in a somewhat different manner, and after a study of several ¥iew-
points the student will begin to grasp the fundamental pgints“very.
clearly. We are concerned here mainly with the viewpoint that cor-
relation is a measure of the degree to which two variablesvary together,
as we believe this to be the most useful viewpoint {frem the standpoint
of the research worker. Since we have becomé\acquainted with the
variance and the standard deviation as measurgs.of variability, it is of
interest now to inquire how the combined variation of two variables can
be measured, and how much of the variabillty of one variable is tied up
with the variability of some other varighle:” In the first place, however,
we must consider a few points that gie fundamental to the methods of
_ measurement that will be employgdw dbraulibrary.org.in _

The dot diagrams given inJig. 8 will result from combining the fre--
quency distributions of two, variables. Since they represent samples
only, they give merely g estimate of the combined frequency distribu-~
tions of the two varigbles in the parent populations. The single or
univariate distribution® are represented by a curve, but the combined or
bivariate distributions must be represented by a surface. On extending
the diagrams of Fig. 8 to much larger samples it is evident that the dots
will begin 10-form into swarms of some definite shape, depending on the
degree ofj.:correlation between the variables. If the eorrelation is high
the swarm will evidently be of the greatest density along the diagonal
ofthe figure; if there is no correlation the swarm is likely to be almost
cirelilar in shape. The theoretical bivariate frequency distribution will
obviously be represented by a volume, in contradistinetion to that of
the univariate distribution which is represented by an area. These
points give us some clue as to how we may obtain a measure of corre-
lation. _

3. The Measurement of Correlation. Figure 9 illustrates the shape
of the swarm in a correlation surface for three different degrees of cor-
relation. The cireular swarm at (a) represents zero correlation. In (c)
the swarm falls entirely on the diagonal and must represent perfect
correlation. In (b) we have a condition between the other two extremes,
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Now each surface is divided into quadrants by lines erected at the posi-
tions of the means, and in each quadrant are plus and minus signg that
represent the signs of the products of the # and y deviations from their
means. Thus in the upper right-hand quadrant (1) the deviations of
2 and y are both positive so that the produet of the deviations is positive,
Therefore we have positive produets in quadrants (1) and (3} and nega-
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Fra. 9-—Correlation surfaces showing the variation in)the shape of the swarm
with inereasing correls.t'g@’n.,

tive products in quadrants (2) and (4). \Now if we obtain the sum of
the products it is obvious that in (g)%thé plus and minus products will
. caneel each other &n%mmﬂhéfﬁﬁ%_mh (¢) all the products will
be positive so that their sum will'be & maximum, In {b) the eondition
is intermediate between (o) atid (¢). The plus products are greater than
the negaiive products; hemice we have a positive but not a perfect
correlation. : N

Let us consider wdw the sets of figures in Table 16. If we calculste
the sum of the proéfuéts Z(x — &){y — ) for each set we should find an

agreement with.the theory outlined above. To earry out these calcula-
tions we slﬁﬂ\make use of the identity:

e — By ~§) = Z(y) -

3
:‘\.

T.T,
N (D

whete 77 is the total of the z values, T, the total of the y values, and A is
the number of pairs. Our caleulations then come out as follows:

Z{zy) TTy/N 2 -2y —~ 7
Setl......... 262 260 2
Set2........, 335 260 75
Set3......... 186 260 —174

The result is in perfect agreement with the th

B eory that the sum of
products is a meagure of correlation. -
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The sum of products is an absolute measure of corpelation but will
not serve as a relative measure, since it is dependent on several factors
that have nothing to do with the correlation between the two variables
with which we are concerned. It depends on the number of pairs of
measurements or variates, on the units in which the two sets of variates
are measured, and on the variability of both of the variables. ‘The first
objection can be overcome by dividing by the number of pairs of vari-
ates, and we now find that we have Z(x — &)y — 7)/N, which was
defined in the previous chapter as the eovariance cv of 7 and ¥. Thq
covariance, however, is still not a relative measure of correlation, as itis
affocted by the units of measurement and the variability of x and y yTo
overcome this difficulty it is clear that the covariance must be divided by
some factor which measures the variability of z and y an.d,ia \expressible
in terms of the units in which these variables are mea@ured The first
factor which suggests itself is the product of the two sj:a}xdard deviations,
and this actually gives the formula for the correlation toefficient, usually
designated by the symbol ». Thus we have:’g\\

__Ee-aw f,g))fN @
Gz* 0'# \/
Another formula can be given using, th ces of z and y in place of
their standard deviations. This mu& Ié%‘t‘lfse g:Orgin
e — B — /N _ @)

¥ =
T Vs

N\
where v, is the varia.pss;kf x and v, is the variance of . Formula (3)
shows also the alge]\:raic relationship between the regression coefficient
by and the corre]{l,ﬁiron coefficient. Since:

o %

L 3 cy [+
A Toy = and by = —
A\ § il b4 Pz ¥y v Vs

it follows thas:

= (@) ) =)

and = " ¥ is obviously the regression coefficient b, where z is taken as the
v

dependent variable instead of y. Of course in all regression problems

there are two regression coefficients, although, in the type of pro.blem we

have referred to in the chapter on regression, one of these will be of

theoretical interest only. The correlation coefficient is finally:

rﬂ=m ' ' (4_)
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In other words, it is merely the geometric mean of the two regression
coefhecients. ' '

A Yrief inspection of the formula of the correlation coefficient will
show that it has & maximum value of +4-1 and a minimum value of —1
under conditions that we would ordinarily take to represent perfect

" correlation. (1) Let y; = kx; where y; and x; represent any pair of
" values of y and 7, and % is a constant. We have therefore a constant
positive relationship between z and .

Then )
L (v — 9 = (kei — k2) = h(w — 3) (O
4 sad o . O
o (s — 9)as — 2) = hla: — 22
Hence AD
Z(z — By — §) = K2z — 87
Also ' !

o 3y — 92 = B2 -
Therefore - ' S\
“’ = ko'g ;‘t o

And finally

R

2@ ~ &) BB Eors BN _ 2

OOy ,k"'i :

“qbﬂl HqNI

(2) Letys ~— kzz., i',IFI\ei'ta we have a constant negative relationship
between 2 and . Tl?ez} '

:;';':"’ s — 8 == (ke — k&) =— k(z: ~ 5)

and PAD
| O — Dl — 2) = — kg — 22
Hence.g\\" ' “o®
N (@ — D)y — §) =~ kZ(x — &)?*
AL |
N/ 2y — 97 = 2@ — 2?2
Therefore '
_ oy = ko,
Finally '

I — By — Q/N _ — ki — #)*/N %
Ty ko? =T z =-1

These two condif,ions that we have postulated are those for which we
should expect_ a satisfactory coefficient to give us a maximum value of
+1 and a minimum value of —1. Between these two extremes we
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should expect the coefficient to give us values varying between +1 and
—1, and thisis what it actually does. Our proof as given above indieates
this also, but it is not a rigid proof in that particular respect.

Having satisfied ourselves thai when we have perfect positive corre-
lation the coefficient will be +1, and when we bave perfect negative
correlation the coefficient will be —1, it remains to decide how the
coefficient will measure correlations that fall within this range. As a
matter of fact it is easy to state this proposition, but quite difficult to
explain it in a simple and satisfactory manner. Perhaps the best inter-
pretation arises from considerations that actually are more (tlosely
related to the theory of linear regression than that of correlation.” For .
example, if we take y to be the independent variable, then we'tan work
out the relation between the correlation coefficient and the two vari-
ances, the total for y, and the variance of the errorg of éstimation. As
pointed out in the previous chapter, the sum of sguares of the errors of
esfimation is 2(y — Y)?, where Y represenis L@pts on the regression
straight line corresponding to each value oky. The variance of the
errors of estimation is therefore given by :)\\) : :

. T By —vXP?
\/ ¥, = (y :‘. ) (5)
w%wfdlg'aulibral'y,org_in
Now the variance of y is related to the above variance in the manner
indicated by the following ?q\uations:

L 2w - g2 ©
o' N-1
\ X
1 — )2y — §)7*
7 = (1L -2y — ) ™
\"‘ N-2
’\'\ - -
From which'it follows that the ratio of the iwo vanances is:
N
~\J v N—~1 .
} 2= - . 8
o= =Py ®)

On tne same basis, if we examine the relation between v, and the variance
due to the regression function, the latter being given by:

— 72
vy = bLE(z — £)2/1 or ,3[2_:_(31_9’2_] 9

we find that:
| 2 o (N - 1)

Uy

(10)
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Finally, the ratio #:/v, is given approximately by:

Lo r2
w0 =75 (N -2 (11)

Yy

The variance v, is frequently taken as representing that portion of the
variation in y which is independent of z; hence we note that from this
standpoint equation (8) is the most important. If v, is expressed in per-
centage of v, then it is clear from (8) that this percentage is almost pro-
portional to (1 — r%). This is another way oi expressing the commonly
known fact that differences between high correlation coeﬂjéie]it-s are
much more significant than similar differences between .smdll correla-
tion coefficients. As a measuring stick for general usé™#t is therefore
much more convenient to think in terms of 72 than itterms of ». For
example, if we have a correlation coefficient of 0.5, ¢he ratio ve/vy = 0.75,
and the ratio does not fall to 0.5 until r reaches 0.%5.

Considerable space might be devoted toffurther viewpoints on the
interpretation of the correlation coefficient} and the student who is
especially interested in this phase of stafistics should refer to the discus-
sions in the references cited at the end of this chapter, Special notice
should be taken of the discussio s by R. A. Fisher (1) of the distribution
of the correlation coéﬁi’c\fé%%sfa}b} G*W."Snedecor (4) of the relation

“between “common elementg™ and the correlation coefficient ; and by
A. E. Treloar (6) of many-phases of the entire subject of correlation.

4. Testing the Significance of the Correlation Coefficient. R. A.
Fisher (1) has showa\that for small samples the distribution of r is not
sufficiently close, t¢’normality to justify the use of a standard error or a
probabls error. %o’ test its signifieance. A more aceurate method has
been developed by Fisher, based on the distribution of . For a correla-
tion coefficient:

N rvn
N = — Y0

¢ = 12
'..\\;": .‘11_"2 ( )

where n = the number of degrees of freedom available for estimating the
correlation coefficient, The degrees of freedom can always be taken
equgl 1".0 N — 2, because there is a loss of one degree of freedom for each
statistic calculated from the sample in order to obtain r, These are §
and by, (the regression coefficient). Although b,, may not actually have
been caleulated, it is involved in the formula of the correlation coefficient
through the sum of products 2(z — z)(y — §). This point will be

clear from a consideration of equation (8) which shows that the ratio

¥./ty 15 a function of the correlation coefficient. Now v, measures the
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discrepancies between individual values of y and the corresponding
values of V estimated from the regressicn equation. It follows from
this that the correlation coefficient can measure only that portion of the
relation between r and y which is represented by the regression equation.
Since the use of ¢ provides a correct method of testing the significance
of a correlation coefficient regardless of the size of the sample, in general
practice one uses this method for samples of all sizes. For large samples
one might calculate & standard error of r, but even this procedure would
be subject to eriticism if the value of the correlation coeﬂﬁcient W
high. ' 2§ H\
For testing the sagmﬁeance of the difference between two com'efa.tlon '
coefficients ¢ is not suitable, and Fisher (1) has developed, an ‘Aceurate

method which involves transforming the values of r as foll‘ows
\

7 = $Hlog.(1 4+ r) — log.(1 — DI :~ (13)

The values of 2’ can be shown 1o be normally (jist\ri'f;)uted even for small
samples and with a standard deviation given-by*
1. ¢ “ N :
Op = it (14)
N—3
W vdbraulibrary.org.in-
To test the significance of the djﬁerence between two correlation coeffi-

cients r; a.nd T2, we proceed as\follows
FHbeL + ) — log1 — )}
2y = '-gfloge(l + 1) — log{l — r2)}

L
Ii

—.'sf-{~= difference
\:"\l. /
ANy 1 1
Ovoyoy = ' 15
AN g \N1—3+N2—3 (18)

¢

AN S _
whére\N1 and Nz are the numbers in the two samples from which r; and
r2 respectively have been calculated. Finally:

;= 2y — 23
7i-s,

The table of { is entered under N3 + Nz — 6 degrees of freedom.

5. Calculation of the Correlation Coefficient. From the previous
chapter, the methods for calculating the sum of products
Z(z — £)(y — §), either directly from paired values or from a correla-
tion table, will have been noted. It 'is sufficient therefore to note that
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the formulae giveﬁ in (2) and (3) may be written as follows in convenient
form for calculation.

. Z{zy)/N — i (16)
L VEEH/N - BEP/N -5
Toy = E(xy)‘ - TSTIF/N (17)
V(Z@?) - THN (@) — TN N
NE(:cy) i TsTy "\?\ (18)

T VED) - e -

Formula (17) is the most direct, but (16) and (18) are/perhaps betfer
~suited to machine calculation. In (18) there are no,divisions in either
$the numerator or the denominzator; and after all th'e:preliminary caleu-
Iations of the values of Z(zy), 7., T,, Z(z?), and\Z{y?) have been per-
. formed, each of the three factors in the formula may be obtained without
removing any figures from the machine and-recording them elsewhere.
The methods of calculating Z(zy), Toy'T,, 2(22), and () will of
eourse be the same a8 described in Chapters I and VI. They may be
ealculated either from the correlation ‘table or directly from the paired
values. For N = 50 or legs it is\probably. to proceed directly, as
setting up the correlaﬁ"fé"'nw:g?% o g??:?ﬁ'?]i?kg Ee:: save any time. When
the numbers are fairly largeGtis nearly always best to have a correlation
* table, as we shall learn @&r of  test to determine the agreement between
the actual data and the'straight line fitted by the regression equation,
-and to carry out ﬁhésitest the correlation table must be set up.

"\

Example 1./ Difect Calculation of the Correlation Coefiicient from Paired
Values, For the'sets of paired values given in Table 16 the caleulations of Z{zy)
were perfq{m\ nd the results given in Section 3 of this chapter. Let us assume
that wewuah to ealeulate the eorrelation coefiicients using formula (17).

- Bebl Z(oy) — ToTy/N = 262 - 260 = 2.0
/ 267 — TN =324-9250 =74.0

2 - T{/N =350 — 270.4 = 79.6

2.0
Fog = =~ -} 0,026
| T Vieoxtes T
et 2. Z@y) — TTy/N = 335 — 260 = 75.0
207 —TyN o[ oSl
. . 5.0
- g = T
T Vieoxtos T
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Set 3. Z(zy) ~ T=Ty/N = 186 — 260 =— 74.0
) — TN = '
]Ssme as Set 1
ZGH - TN =
. —-74.0

oy = e = — 0.964
V710X 79.6

To caleulate ro for Set 2 using formula (18) we would write directly:

, 10 X 335 — 50 X 52
V10X 324 - 60710 X 360 — 62 )\
and performing one operation with the machine for each factor we obtghi:: > M

S,

750 ) : O
.. S
/140 X 798 ' C &K
By une more operstion we find the denominator and have: ’
Fxy = o7.58 =< 0,977 '\*

Example 13, Calculation of the Correlation.(foeﬁcient from a Correlation Table.
Suppose that we wish to calculate the correlatifnicoefficient for Table 12, Chaptes VI.
The firet step ia to prepare Table 13, whi.qh:’we have already used in Example 11 to
calculate the regression coefficient. From ig table we. ]-lcﬁ?g:in .

E(Ey) = 5448 ] T, = 850
Z@Y {i-.faoaz T, = 1246
20 = 8180 '

And making use of fomu]a (18) above we caloulnte:
O 200 X 5448 — 850 X 1246
A5 0 x so62 — 500 % 8180 — 12409
N\ 30,500 20,500
M\f D - V67,900 X 83,484'“ 260.58 X 288.94
}x;mple 14. Tests of Significance, Although the correlation coefficients cal-

culated in Example 12 were for only 10 paira of values, the ¢ test will give a reliable
measure of their significance. The £ values are determined as followa:

0.026+/8
1. . =40, f = e = .07
Bet rzy = 0.026 - _\/.1___0..._
0.977+/8
Het 2. Tay - 0.977 im= ﬁ = 129.7

0.964+/8
Set 3. Ty ™ — 0.964 i m

= 0.4051

= 102.5
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Turning to Table 94 we note that for s = 8 and P = 0.05 the value of ¢ required
18 2.306. The coefficient 0.026 is therefore quite ingignificant, but the other two are
highly sigaificant. _ '

Ezample 16, The Significahee of Differences between Correlation Coefficients.
In & study of the relstion between the carotene content of wheat fiour and the crumb
eolor of the bread, Goulden, et al. (2), obtained the following results with 139
varieties. ’

Carotene in whole wheat with crumb eolor, r1 =~ 0.4951

Cargtene in .ﬂour with crumb color, ra =— 0.5791 ~

The most accurate method for this test is to make use of Fisher's ¢/ trgn‘afor‘mation.
For the 2’ test we write: )

- 7 = ${log, (1 + 0.4951) — log, (1 — 0.4951)} N
= § (log. 1.4951 — log, 0.5040) \

1.4951y .
= % log, (0‘ 5049) = % log, 2.0812 = log,'.,z;sﬁm ¥ 1.1513

_ = 047147 X 1.1513 = 0.5428
=} (log, 1.5701 — log, 0.4209) ("

1.5701
= }loge g0 = Flog. 3.7510= 0.57423 X 1.1613 = 0.0611

% — 7 = 0.6611 - 0,535 L ALTRRgIPTr Y orE

ad,—d, = Vg + 13 s % w= (,1213
AN S
Bince the difference is less than its standard deviation it is not significant.
_N?te that in weiting out the formula for 5 we pey no atfention to the sign of
as it is the numerieal difference between the coefficients that we are testing. :

NS

6., E:xercises.

P _

£\ 3¢ The figures in Table 17 are the physics and English marks ! for home economics
students in the Univeraity of Mamitoba. Determine the correlation coefficient for
the relation between the marks in the two subjects. Use the direct method, and
test the significance of the coefficient. r =4 0.705.

2. For the same 50 students the corvelation coefficient for the marks in art and

clothing is +0.7300, and for art and physies it is +0.6491. Is this a significant
difference? ;

8. Determine the correlation coefficient for days to head and days to masure of

25 wheat varieties, using tho data from Table 14. Fin ial limits at the
5% point for thia coefficient. ¢ @ the fducial :] TE: ; . 946.

' By courteay of the Regigtmr, University of Manitoba.
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TABLE 17

Maggs 1% Pavsics anp Ewauisa or 60 StooenTs Ivn Home EconoMica
OF THE UNIVERSITY oF MaANITOBA

Student! Physics | English Jj Student | Physics | English || S8tudent | Physics | English
1 20 21 18 26 29 35 23 260\
2 25 26 19 24 a7 36 26 27
3 24 27 20 19 26 37 22 (%

4 22 24 21 25 25 38 26 7NN 25
5 27 21 22 18 20 39 2 21
6 26 28 23 20 24 w0 | <20 26
7 26 24 24 23 24 41 ({028 19
8 2 26 25 22 20 42\ 20 19
9 22 24 26 23 26 43 [ 23 30
10 27 26 27 31 27 JNAd 33 32
11 22 23 28 24 25 (| 45 21 19
12 22 26 29 28 o\l 46 28 30
13 22 24 30 25 e8" 47 24 21
14 20 30 31 26 [\ 82 48 26 28
15 26 30 32 24 [V 25 49 24 22
18 24 28 33 2N 30 ] 30 25
17 25 29 34 |ww2g'dbrauBibran org.in

A

)
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CHAPTER VIII

PARTIAL AND MULTIPLE REGRESSION AND
CORRELATION ~

1. The Necessity for Dealing with More Than One Indépendent
Variable. In many regression problems the investigator i$yeoncerned
‘purely with the effect of one variable on another, and.this holds true
regardless of other complicating factors. Suppose that a new rapid
- method has been developed for determining the protein content of grain
- samples and this method is to be compared with atholder and thoroughly
tested method which is known to give very ageurate results. The two
methods are used on a large series of sample and for the entire series
the linear regression equation is determihed for the regression of protein
by the old method on protein by the wneis method. Regardless of how
these two variables are related, front the practical standpoint of studying
the efficiency of the new method 3&'a substitute for the old method, it is
clear that the investigittr'id YoWbRESY $3Ret}y with the closeness of the
relationship between the {wo variables. The new method may not ac-
tually measure protei Qbﬁtent but some other factor that is so closely
associated with protein‘content that if we know one we know the other.

- Hence, although therelation between the two variables may be indireet,.
it is the total rela}_ﬁon with which we are concerned, as we require merely

a meagure of ¥he accuracy with which we can predict one variable from
individuahmeasurements of the other variable. In examples of a some-
what di;fe}ent nature it may be quite misleading to study only the total
relation between two variables. Suppose that we find a correlation of

P60 between the yield of wheat and temperature. Can we conclude

_ {rem this result that, if all other conditions remain constant, there will
be an inerease in yield with inereases in temperature? The answer is
o be.eause temperature may be associated with some other factor in-
ﬂ“e‘{mng yield and this second factor may be the one that ig actually
caumng.the. variations in yield. Suppose that the second factor is rain-
fall, which is probably the most importent of the meteorologieal factors
%ni.iuenmng the yield. If rainfall is itself associated with temperature,
1t is clear that there must also be a correlation between yield and tem-
perat-ure. Ti}e Ia.tt_er correlation, however, does not provide us with
any mfonnatlpn of a fundamental nature with respect to the actual
78
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changes in yield brought about by changes in temperature. What we
require here i a measure of the association between yield and tempera-
ture when the rainfall remains constant. To the extent that the rela-
tiona between the thres variables iz & problem of this kind cen be ex-
pressed by linear functions, the measure that we require ean be obtained"
by the method of partial regression or partial eorrelation. ' Thus the
partial correlation of yield and temperature will measure the degree of
covariation for these two variables with a constant rainfall. The paréial
regression coefficient for yield and temperature will give the actual in-
crease in yield for one unit of increase in temperature when the rainfall
is constant. If the correlation coefficients for the three vamables are
as follows: . "N

' rye (vield and temperature) =+ 0. 60

rye (yield and rainfall) = + 0 82
' ry (temperature and ramfall{ $+ 0.78

the partial correlation coeﬁiclent for y:eld and temperature w1th ramfa.ll
constant may be represented by ry..,, inwhich the variable placed after
the period is the one that is held constant. Applying the partial corre-
lation method ag illustrated bemwmrﬁgﬂbm’.y & ir0-09.  Therefore
the actual eﬂ‘ect of temperature when rainfall i8 constant is practically
nil, ~N

It is just as well totemphasize by means of this example that the
method of partial regression and partial correlation as we are considering
it here has to do only with the linear relation between the variables. If
the effect of t rature on yield is not the same for a constant low
rainfall as it is-f6r a constant high rainfall, then the linear measures are
inadequate. Qexpress the actual relation.

2. Deﬁvatlon of Partial Regression and Partial Correlation Methods.
The, method of simple correlations is derived from the regressron equa-
tion: )

Y = F = bulz — 2

where b, is the regression coefficient. Similarly, when there are three
variables y, z, 2, the regression equation is:

¥y — 7 = bulz — &) + bulz — 3)

In order to simplify the Wriﬁng of these equations we use z for the
dependent variable and zz, z3 --- 2, for the independent vaﬂable?.
Algo by represents the regression coeﬂieient'for_xl on zz, and to abbrevi-



80 PARTIAL AND MULTIPLE REGRESSION AND CORRELATION

ate further we write z; for (z; — #) and 22 for (22 — #2). Hence the
general regression equation for n variables is:

x1 = biews + bigas + bigza + - + biazs (1
The error in estimating #: from this regression equation will be:
(X1 — bizwz — braxs — - -+ — biats)

.y - . . . ™\
and it is required $o find values of the regression coefficients such that
the sum of the squares of these errors is 2 minimum. That is, (We must
find values of the regression coefficients such that O

2@ — brawz — bista — ¢+ — b2\ D

is a minimum, For 4 variables this leads by matl:i’é,hiatical treatment
to the following “Normal Fquations”

A \J/
. 9. N
Z(z1ze) = b1aZ{z2)? + blaz(zzifla)j\-’!'- b1aX(zoz4)
(1) = 122 (wazs) + biaZ@)? + biaZ(zsza) @

Z(@izs) = bioZ(wawe) HBs(razs) + braZ(ra)?

For a set of n variables, thexthandlifrary by gimultaneous equations for
which the sums of squares/and sums of products are known, and by
solving these we arriveg aixf]% values for the regression coefficients.

Any partial correlg;i‘iq\n can then be determined as follows:

225 n =Vhigs 0 Xborg.. (3)
For three v@héém, T2, x3, the normal equations are as follows:
. }.‘.'\ (z1w2) = b12Z(22)® + brsZ(was)
~C 2(x1ws) = buaZ{zoxs) + b1aZ(23)?
1% which it can bo proved that

Fi12 — T13°T23

WS
'.\'.

Ti2.a =
- VA - Ay — )
Similarly
T13 — ria-re3
Ti5.2 = 4
VL~ D)1 ~ 1) ®
and

28 — ¥13-T13

Vo md =

¥23.1
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This is the most rapid method of obtaining the partials for only
three variables, For four or more variables it is best to make use of the
fact that the normal equations can be written as follows, taking as an
example the equations for five variables:

iz = f1z + Buares + PBuarea + Pisras

r13 = Biaraz + Bz + Brarza + Basras

T4 = PBrares + fisraa + Bua + Bisras N
ris = Biares -+ Biarss + fraras -+ Bis R ~

The correlation coefficients are the known values, and the heta ‘(ﬁ) values

the unknown. The latter can be used as illustrated beIOW to compufe

the partial correlation coefficients,
Tabular methods of solving these equations for the beta values have
been devised which reduce the labor to a mlmm}tm The beta values

&

are defined by:
biz.a. ( 2) 19123 : (6)
and .
bors - g W(fﬂ}rﬁw@r@ryﬁm-g.m @
-
Hence, on referring to eq\s@mn (3) above, we find that:
B1za...a .13313 == (0)512-3- - X(d)bua
RS ! ¢2
= blza\\ PB2E . n = Figes e n (8)
And henae:: |
’\/ﬁlz 3-;-nf21.8-.-n = 1230 n , (9)

N/

In order to obtain all the beta values, it i¢ necessary to rewrite the
normal equations in different ways and solve. For example, in order to
obtain 821, the equations for five variables must be written.

ro1 = B - Basria + Paaris -+ Besris
rz3 = fairiz + P+ Bearsa 1 Barrss
r2¢4 = Parria 1 Posras + Pau -+ fosras
res = fairis + Basras -+ Paaras - P2s
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Correlation coefficients are often referred to as coefficients of the
pth order, where p is the number of variables held constant. Thus the
simple coefficient 712 is of zero order, and the partial coefficient ry2.345 is
‘of the third order.

3. Exampls 16. Caiculstion of Partial Regression and Partial Correlation
Coefliclents. The simple correlation coefficients in ‘Table 18 were obtained in a study
(2) of the effect of the physical characteristics of wheat on the yield and quality of

Bour. _ N\
TABLE 18 .
SmrLE CoRRBLATION COEFFICIENTS FOR THE S )
RELATIONS BETWEEN S1X VARIABLES <\
1 2 3 4 N 5
6 | o.6a12 —0.3190 —0.4462 ~0.3611 —0.3092
5 |-0.3123 0.2861 0.1467 91883
4 [-0.304r 6.0420 - —0.0855 )
3 |-0.5812 0.3114 O
2 [-0.4580 - N\
where 1 = yield of straight grade flour. 3% ) 4 = per cent immaturity.
© 2 = per cent bran frosw_w,dbradﬁbrary,org.jn 5 = per cent, green kernels.
3 = per cent heavy frost. { ' 6 = weight per bushei.

; o + )
In order to use the abov‘e\méthod to determine the effects on yield of flour of any

one of the forms of damage or of weight per bushel, it is necegsary to determine the
partial correlation coefficients:
¥

\’im-m. T13.2¢56, T1d.2856, T15.2346, Y16.2546
For which we ill Tequire
. R\ W Bi-Bat, Pu-Bs, Pu-Bu, Bis-Bu, PusBar
We solvis fc;r‘ these by the method illustrated in Table 19. It is a tabular method of
solving- the simultaneous equationa and is beat understood from a study of the table. -
Note that _the calculations of Table 19 give Bz, B3, Bis, Bis, and Sig, and that in
order {0 chtain the other beta values the simple correlation coefficients must be
: !‘eﬂmnged and the caleulations repeated. Tha rearrangement in the order 6: 5§, 4, 3,
1, 2, will give f, B2, Bus, Hus, Bas. - The next logieal rearrangement is 6, 5, 4, 1, 2, 3,
giving B33, By, Bis; Bz, B35  We continue rearranging the simple correlation coefficients
until all the beta values have b.een caleulated, Then they are put together in a table
The following truest:ary mﬁ‘l’rgel' to give the required partisls.
wing instructions will be found useful i i
method of solving the equations. . ' cartying through the tabular
- {1) Rule & shest: of paper as in Tabl: 19,
(2) Enter all the correlation eoefficients ag indieated in lines 1, 3, 7, 12, and 18.
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(3) Sum the correlation coefficients to obtain values given in column S.
Note that the first sum, line 1, is a1 -+ rez + rea + #a4 + res + res, the sum in line
38751 res + r5g + r6s -+ ros o+ rus, thesum inline 7 i ryr + reg +ras +raa
4 ray + rag, ete.

The 8 column provides a check for all the preceding work. The values 1.0662
and —1.1789 must check with the sum of the values in lines 5 and 6 respectively.
There are similar checks in the 8 column of lines 10 and 11, 16, and 17, and 23
and 24. All these checks are approximate, and therefore the values obisined in
the check column will not agree with those calculated fmm the body of the table\
to the Iast decimal figure.

{4) The last value calculated in line 24 i3 812 with its sign changed:\ .H: is
written below in line 1 of the reverse with the correct gign, and also in{ colunn 2
line 1 of the reverse. The remaining values in column 1 come from lmés 17, 11,
6, and 2, of the same column but with their signs reversed. ~f

In colunn 2 the values are: . & /

P *

X (17-2 )
81z X (17-2) ’.,\\,

Brr X (11-2} \

X )
X

CPaX (62 )
B1a X (2-21"?

In line 2 (reverse) add from nghtmfqug lmlm B then the remaining
values in column 3 are: ‘
x"-".&“ X (11-8)

KB X 63
O uxX @9

. \ 4
In line 3 (revema) "add from right to left and obtain 814, then the remaining
values in colunit\#are:
O\ Bu X {8.4)
A\ Bu X (2.4)
o)
\Iﬁ: line 4 (reverse) add from right to left and obtain ;5 then the remaining
value in eolumn 5 is:
B1s X (2.5)

In ling & (reverse) add from right to left and obtain 8is.

After eompleting the caleulations as in Table 19 the correlation coefficients are
arranged in the order 8, 5, 4, 3, 1, 2, in a pew table and the calculationa carried out as
before. For 6 variables there will be 8 tables to caloulate, each tabla giving 5 of the
total of 30 beta values.” When the latter have all been calculated they ean be tabu-
lated, and all that remains is to work out the partisls. It is convenient to make a
table such sz Tahle 20 for entering the beta values and the corraspondmg‘ pariisl
correlation coefficients.
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TARBLE 20
BETA VALUES AND Panrian CorpprLaTioN COEFFICIENTS
Subseript L} Subseript 8 r Bubseript r
12 —0.2575 21 --0.5844 12.3456. —.388
I3 | - 31 13.2456
4 | ... 41 14.2356
. ~
56 65 56.1234 ()
o

4. Tests of Significance. The ¢ test is applieable tq pamal correla-
tions in the same way as to simple correlations but, thie, degrees of free-
dom are different. If p is the number of variables held constant, for
partial correlation coefficients we have PN o

r . 4 N
t = —=——=—VN >p+—
m N 3 “p 2 (10)

5. Multiple Correlation. In oqrj’é;(zimpla, if we consider not the
separate but the total effect of vﬁ;éiﬁm‘ik'ﬁbﬁgﬂél wrdethe different forms
of damage on the yield of flour,the problem is one of multiple correlation.
Since g1l these variables have some effect on flour yield the more infor-
masation we have on the {he’more closely we can prediet the flour yield
of a particular samplésof wheat.

A simple con*ela\tibn coefficient measures the relation between a de-
pendent and one(ipdependent variable. A multiple correlation coeffi-
cient meagures.th combined relation between a dependent variable and
a series of\iﬁdependent variables. :

eqia!{ion (n:

' 21 = bizka + biaxs + braxe + - + binZa

is in reality a multiple regression equation as it may be used to predict
values of z; from the known values of 22, 23, 24~ - * &n.

8. Calculation of Multiple Correlation Coefficients. Two methods
are in use for the calculation of the multiple correlation coefficient.
These arise from the two equations (11) and (12) below:

1_ —Rim...a= (1)1 — 2320 (1 = r2408) (1 — 1350234} - - -
| (1 = rlezs . vn-) (11)
R? = fi2-riz+ Biz-rizs + Bueria + ..o+ B1ntia (12)
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Method (11) can be used only when all the partial correlation coefhi-
cients of the first, second, third, to the (n — 2) order are known, and
hence it is impossible when the pa.rt.ia.]s have been obtained by solving
the normal equations. It is very useful, however, when only three
variables are being studied. For three variables we have;

1— Rls = (1 — )1 — risa)

- Method (12) is direetly applicable when the partial correlation coeffi-
* cients have been obtained by solving the normal equations for the Deta -
values,

7. Testing the Significance of Multiple Correlations, Ikshould be
noted that, in equation (11) sbove, any one of the factors such as
1 = r2;3.2 cannot be greater than unity, since the squaré ofa correlation
eoeﬂiemntc&nnotbelessthansero Hencelfwecompare

(1—Rlas....) aod (1-#,,)
1—Rin ..<1->\r§,

giving.
Riga... —1>i-’g—1

WW\Rglgwhbrg)@{g in
&mﬂarly for any other fa.ctor on the right of the equatxon, hence:
| R’in \ >?'212,f233;-- Flam oo m

. The multiple cortelation coefficient is greater therefore than any of
the constituent ooeﬂiclents and its minimum value is zero and not
-1, as is the cgse with a stmple or partial coefficient. For this reason
a gpecial 4‘{ 2"must be used for testing the significance of multiple cor-
relationg’\" The calculation of £ values, standard errors, or probable
errors ‘will give entirely erroneous regults. Two tables that may be used
j srq in the references given below.

or

S.Exerc:ses.

1. Complete the ea]eu]aﬁon of the partial correlat.mn coefficients begun in
Example 16. Thefoﬂnwwgvaluaswﬂlmtinchenkjngthework
rivaug = —0.3177
rig.aus = 0.3387
ris.ies = —0.0303
Toe1mq = —0.1373

‘Aﬁestmdasodhedmohapmmwatisbmdontheamlysisofmmnce
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2. If ¥ is 36, determine the minimum value of a fourth order correlation coefficient

that is significant. Put r in terms of { and the number of degrees of freedom.

The value obtained should be 0.3493.
3. Calculate the multiple correlation coefficient B1.z3e56 for the same data as in

Example 16, and determine its significance. R = 0.7936.

4. ‘Write the simuitaneous equations for three variables in the same form as (6)

above. Then prove:

p—

.

fm;s o m= 713723 "\
V=) - A
_ ' R\
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CHAPTER IX
THE x? (CHI-SQUARE) TEST

: _ Q)
1. Data Classified in Two Ways. On reviewing the types of prob-
lems that have been presented in the previcus chapters, it will bexeealled
that they have dealt with data of two kinds, In the ﬁrat riace we
studied an example in which an operator attempted to“elassify grain
samples according to variety. The samples were placed either rightly
or wrongly, and there was no intermiediate condition. The power of
the operator to differentiate the samples was therefore measured in
terms of the number of samples placed correqtly}’ With a little thought
it will be clear that a great many problemsmnst oceur in which the data
are of this type. Thus, in describing the health of a population, an
obvious criterion will be the proportiomof the population that are ill, or
perhaps the percentage.dying mz&hmmgfm%rm Again, a set of varieties
of & cereal erop may be differentiated by the number of seeds that are
viable, and so forth. In further examples the data were of a different
type as in the case of ylelda\of wheat plots, weights and heights of men,
and degree of miectlot\\ “We may be reminded, by these remarks, of
the elassification of rariables as continuous and discontinuous, wherein
the distinction hetween the two is fairly clear cut. Will data arising
from discontipueds variables always fall into the first class mentioned
above, and data from continuous varigbles into the second class? The
angwer ig'that they will not be so easily separated in this way, as we can
easily imagine a situation in which data for & continuous variable may
b&tréated by the two methods. We may take as an example a com-
Papison of the yields of two varieties of wheat. In the first place, if
there are a sufficient number of plots we may compare the two varieties
according to the number of plots that fall into an arbitrarily determined
low-yielding class, or an arbitrarily determined high-yielding elass; or
better still we may compare the numbers of plots falling into both
classes. In the second case we may simply compare the average yields
of the two varieties on all the plots, Which method shall we use? This
question is also very easily answered, as it will be clear that the first
method applied to an example of this kind is cumbersome and unwieldy,
and will be used only when the numbers are fairly large and the method
88 .
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of classifying the plots according to yield is only approximate. For
example, In a comparison of two varieties as grown by farmers it may
be impossible to obtain acenrate yields, but it may be possible to classify
the fields quite aceurately into the groups low-yielding and high-yielding.
Then, with a fairly large number of fields to work with, a good com-
parison of the varieties may be made simply by determining the number
in each group. For discontinuous variables, on the other hand, com-
parisons will usually be found to be most conveniently made by the ﬁ,\st
method, and this is particularly true if the character with which welare
concerned is definitely not measurable in a quantitative manner.( Thus
people may be classified only as dead or alive; and although there'may be
a theoretical situation existing for a short period in which this classi-
fication is uncertain, it is certainly of no practical significance’in describ-
ing what has happened to two populations as a res‘tﬂt say, of their
having received two different treatments.

In this chapter we are concerned mainly with methods of applying

- tests of significance in examples where the dsi{ia, are in the form of fre-
quencies as in the first class mentioned shove. Snedecor (4) has very
aptly used the term enumeration data to describe data of this type.

2. Tests of Goodness of Fit. In‘many problems the test that is
required is a comparison of a set oﬁrmmbfm\tjmencgesﬂgmh & correspond-
ing set of theoretical frequencies.™ Thus in experiments in genetics an Fa
population may be classified énto two groips, as in & wheat experimeni
in which the F» populatio of 131 plants is classified as 106 that are
resistant to rust and hat are susceptible. The predominance of
resistant plants can béexplained by the well-known theory of dominance
of ‘the genes for rusf-resistance coupled with the supposition that rust

_reaction is detern}med by only one pair of genes, one parent having con-
tributed the.gene for rust resistance and the other pa.rent the gene for
susceptibility: This is plainly an hypothesis which gives a general’
explanaﬁoil of the results, and as such may be subject to testing in the
samemanner as the familiar null bypothesis of Chapter I. The pro-
cedure of this test follows from the following eonsiderations,

In a population for which the hypothesis is true, if a large number of
samples of 131 plants each are taken, these will be found to vary around
a mean valye for the frequencies of resistant and susceptible plants
which will be directly calculable from the hypothesis. Thus in the
present example it is easily demonstrated that the mean of such a popu-
lation will be 98.25 resistant planis and 32.75 susceptible plants. In
taking samples from this population, it is to be expected that owing to
random varistion some of these samples will exhibit quite wide varia-
tions from the mean of the population, but a large proportion of them
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will, of course, be faitly close to the mean of the population. If we
knew the theoretical distribution of such samples around the mean, we
could caleulate for samples the same size as ours the numbers of resistant
and susceptible plants which would occur as the result of random varia-
tions in only 5%, of the trials. This would establish for us the 5% level
of significance—that is, if our actual sample fell outside of the range of
‘this 59 level we would say that the data did not substantiate the
hypothesis, in fact it is fairly convincing evidence that the hypothesis is
not true. If our sample fell well within the 59 level we would, then
say that there was good agreement between the data and the, h,ypothe-
- gis, but the hypothesis would not necessarily be proved. Now the dis-
tribution of the samples can be caleulated directly by methods similar
" to those used in Chapter 1, and we shall see in Chapter X that if the
sample is small it may be advantageous to proceed on ‘this basis. How-
ever, for general application a much easier method is available. This
method invelves the calculation for the dataof the sample a statistic
known as x? (chi square) which is distributed ilr a known manner depend-
ing on the number of degrew of freedom ‘available for its estimation.
~ Forthe general case x? is given by: A '

— ézﬁmlﬂ{gﬁw%i} M

where ¢ repregents the actual frequencies and ¢ the corresponding theoret-
- ieal frequencies. ‘i the present example the actual frequencies
are 106 and 25, and corresponding theoretical frequencies are 98.25
"~ and 32.75. The; two ‘values of ¢ — ¢ are therefore both equal to 7.75, -
and 2 =17, 7{/98 25 4- 7.75%/32.75 = 24451 The number of degrees
of freedom-atailable for the estimation of x2 is 1. In this respect the
problem@sunﬂar to the 2 test for the differences between paired values.
Here me'have two pairs of differences as represented by the two values of
e a <\t and consequently there is only one degree of freedom. Another
¢ cohcept of the degrees of freedom arises from the fact that there are
only two classes, resistant and susceptible. The total number in the
sample being fixed, if the number in any one class is fived the number in
the other class must also be fixed.. There is therefore only one class
1 For simple ratios & direct formiﬂa suggested by F. R. Immer for calculating
x ms.ybeuwd Thir formuls, is: -
& - oz
aN

. where the theorstical ratiois z : 1, a; ie the actual frequency corresponding to .
and os i¢ the setual frequemy eorrespondmg to 1. XN is the total frequency.
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which can be arbitrarily assigned a given frequency, and this means that
there is only one degree of freedom.

The next step in the test is to examine the tables that give the dis-
tribution of x2 and find the value at the 5%, level for one degree of
freedom. We enter Table 95 and find that the value of x2 at the
5%, point is 3.84. Our conclusion is that the data do not disagree
significantly with the hypothesis. Of course, we can if necessary go
further and determine approximately in what proportion of cases such
& result as ours would be obtained. The x? value of 2.445 falls between
the two values of X that correspond to the 10 and 20%, levels of P)\ By
interpolation our value is found to correspond to the 139, point, and
‘consequently we can say that a sample showing a deviation from the
theoretical as great 4s or greater than the one observed would be expected
to oceur in 139, of the trials. The observed deviation is therefore not
very important and does not in any sense disprovedhe hypothesis. -

It should be noted at this point that the pgssibfe deviations from the
theoretical may oceur in both directions, and that in the test of signifi-
cance both these possibilities have been'\faken into sccount. Since
there is very often a good deal of confusion on this point, it may be just
as well to emphasize here that it iswbsolutely necessary, in testing the
hypothesis set up, to-fake mtwmgungﬁi@%r%gﬁaﬁons in both
directions. Our hypothesis involves picturing & population deviating
about a mesn of 98.25 regigtant to 32.75 suseeptible plants. Aecord-
ing to the theory, devia eﬁs of 7.75 in either direction are equally likely, -
and in our sample the’deviation happened to be positive for the resistant .
group and negativefor the susceptible group. If we should determine

the proportion Q{,the triale in which a positive deviation as great as or
greater than theéone observed would oceur, it is clear that this proportion
would be gﬁcﬂy half of the proportion determined above, or about 63%-
But this\would not be a test of agreement with the hypothesis, any
more(than it would be to determine the proportion of the frials, say,
in'which a deviation of 4-7.75 to + 8.00 would oceur.  The proportion
would be very small, but it would in no way indicate disagreement with
the hypothesis. Another way to consider this problem is to examine
the possible consequences of accepting as & test of significance the 5%
~ level, taking into account positive deviations only. On a large series
of samples the investigator would expect to classify 5% of the samples
as giving a significant disagreement with the hypothesis, even when the
hypothesis is true. If positive deviations only are considered he would
clagsify only 239 of the samples in this way, and consequently would
not be setting up the level of significance at the 5% but at the 23%
point. In certain cases, as we shall see later in the next chapter, it is
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legitimate as a test of significance to take into consideration the devia-
tions at one end of the distribution only; but these are special cases and
not comparable to the example given above.

Examgle 17. In a cross of two wheat varieties, Reward and Hope, the following
resulta were obtained for the frequencies of resistant, semi-resistant, and susceptible
plants in the F; generation.

Resistant 111

Semi-Resistant 232
Susceptible 1181

N
2\, N

The theoretieal frequencies according to two hypotheses are as followss,

Single Factor | Two Complementary
Difference Factors-and an
Tohibitor
Resistant 381 AT 119
Semi-resistant 762 o 288
Susceptible 381 a N 1167

5

If we wish to test the twoshypottissesbbreonpeeingthe actusl with the expected
frequencies in each case, the workuxigy be set up and earried through as follows:

Single Factor’ “\ Complementary and Inhibiting
Hypo ig < ™ Factor Hypothesis
" Actual | Theorétical | (6 — %/t | Actusl | Theoretical | (o — 8%/t
i | 101.3 111 119 0.5378
232 \\J 762 368.6 232 238 0.1513
1181¢ 381 1679.8 1181 1167 0.1680
GAS92307 ne=2 P = 0.0000 = 0857 n=2 P =065

We have two degrees of freedom in each case, and we find for the first cese that such
# large value of x? is not given in the table, The largest value under 5 = 2 is 9.21,
which corresponds to a P of 0.01. We can conclude, therefore, that the probability
of obtaining deviations, due to chanee variation, as great ag or greater than those
abserved is too remote to be considered. In the seeond case, x* = 0.857 and this
corresponds approximately to P = 0.65. The fit here is very good since deviations
as great as or greater than those observed may be expected in at least 509 of the
cases. The final conclusion is that the single factor hypothesis is quite inadequate
to explain the type of segregation observed, but there is good evidenee to support the
second hypot.hesis_haaed on & pair of complementary factors and an inhibiting factor.
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Example 18. In an assumed cross between parents of the constitution RBec and
BHCC, the Fp population is classified as follows: '

B¢ B 6 & Total
1280 _ 626 610 b 2500

According to & theoretical 9:3 ;3 : 1 ratio, the theoretical frequencies would be:
BC Be %3 & Total

1406 489 460 158 2500 ~

The actual results differ very widely from the expected as indieated bycalculating
«%. Tn this case we find x? = 256.60 and referring to Table 95 and ‘ehtering at
7 = 3 we note that 11.34 is the highest value given. It is clear that the fit is very
poor; 80 we proceed to analyze the data for the source of the distushance, and develop
a hypothesis more in accordance with the facts. In the first 'pls,ce'the assumption is
made when the 8¢ 3 : 3 ¢ 1 ratio is built up that the ratio of Bto b is 3 : 1, and that of
€ tocisalso3: 1. A discrepancy in either one of these ratios will result in a poor fit
to the 9: 3: 3 : 1 for the whole set. Consequently ‘m,ro}et. up the two actusal ratios

and calculate x2 for each. "N
B O K3
1885 615 1870 630
& = (1885 — 3 X 615)%/3 X 2500 VL ibrary 830/ 3 X 2500
= 0.2183 Y —o0638

Now x? values may be ak%\lag}tker or separated into components. In this csse we
can add the two x? values)\obtaining & new x* of 0.2666. Similarly we add the
degrees of freedotn, obfaining n = 2. On looking up the tablea we find that the P
value is between 0.95@nd 0.50 but closer to the latter, hence the fit is good and the
discrepancy of theaetusl from the theoretical 9 :3:3 : 1 ratio is not due to the pegre-
gation of the indi¥idual pairs of factors, but to the behavior of the factor pairs in relat-
ion to each&her. In other words, there must be a tendency for the factors to be linked
in inheritance. It is & common procedure in such cases to caloulate the linkage
int.enﬁiﬁy." An approved method (1} for examples of this type gives 9% of crossing
ovén, and on that basis we can determine a new set of expected frequencies. These are
sdtudp below with the actual frequencies and snother value of x* determined.

Classes Actusl Theorstieal | (a8 — O/t
Frequencies | Frequenciea

BC 1260 1255 0.0199
Be 626 620 0.0403
B 610 820 0.1613
cb 5 5 | o0.0000

x? = 0.2216
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" The theoretical frequencies in this table have been caleulated on the basis of 99
crossing over, a value which was determined from the sample itself. Therefore, we
lose one degree of freedom snd must enter the table under n = 2. In this case we
find P = approximately 0.90. There is a very close agreement hetween the two sets
of frequencics, but it would not be correct o consider this a very satisfactory fit.
Such close agreement could only oceur by chance on the basis of the hypothesis
being tested in 109 of the cases. However, the agreement is not sufficiently close to
prove that the original data were selected to give a good fit. If we had obtained a
P of 0.95, it would bave been worth while investigating the dats to determine the
reason for the very unusual agreement. ~

Example 18." The goodness of fit test may be useful in determining the\agree-
ment between actual and theoretical normal frequency distributions. In Clghpter IIL,
Example 1, we caleulated the normal frequencies corresponding to the\actual fre-

" quencies for the transparencies of 400 red blood ceils. In Table 21, ‘these two dis-

tributions are repeated, and the third column gives the calculation'of x*.

TABLE 21 &

AN

Actoar AND Normasn FREQUENCIES FOR TRANAPARENCIES
oF 400 Bep Broop CeLLs, AND CALQU\{@TION OF *

K
Actual T’;“Effﬁ 0D @-ow

4 www.dbrép%ral",r_org_in 0883

1 92 1.1978

17 ~ 16.84 .0015

20 1\ 80.28 .0341

43, D" 4478 .0692

56 X\ 59.16 .1688

B8, 64.96 45T

K% 60.40 L1119

(e 47.56 3.7980

PR 31.16 12178

AV 20 18.24 _ .1608

O i 8.80 0045

R\ 4 5.28 .3103
O

)Y 400 400,00 x? = 7.0377

In connection with a test of this kind, two important- points should be noted.

{1} At the tails of the distribution the theoretical frequencies and corresponding

actual frequencies are grouped. The object is to avoid very small theoretical values

which, if present, o some extent invalidate the x? test. The general rule is to avoid

- having theoretical frequencies less than 5. This point is digeussed in greater detail in

the following chapter on tests of goodness of fit and independence with small samples.

(2) The theoretical frequencies are determined from the total frequency and the mean

and standard deviation of the sample, so we fmust deduct one degree of freedom for

each. Thus three degrees of {reedom are absorbed in fitting, and since there are 13
classee wo have 10 degrees of freedom for the estimation of 2.
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In the present example we enter the x? table therefore under n = 10, and note
that a x® of 7.9377 corresponds approximately to & P value of 0.65. Conseqmﬂy
the fit may be considered a very pood one.

3. Tests of Independence and Association. From a cross of two
wheat varieties 82 strains were developed and tested for their agronomie
characters. One set of data for these strains is given in Table 22. On

TABLE 22

Crassprcamon or 82 STraNg oF. WHEAT FOR A
YreELp AND CHARACTER OF AWKS

Yield Classes—weight in graina 4
151-200 | 201-250 | 251-325 | /Total
Awned 6 7 21 '3
RN
Awnless 18 21 ¢*9 48
N
Total 24 28 N\ 82

o,’

examining the frequencles in the 3% X %bﬁaﬂfé?%e%g'tg lﬂla.t there seems
to be a tendency for the awned t‘ypes to give higher yields than the
awnless ones. To test the ignificance of such a result, we have to
determine the probability of’ its occurrence if the two cha.racters are
entirely independent. \For this particular problem we have to find the
percentage of cases inywhich the above distribution, or one emphasizing
still more the differépte in yield of the two classes of varieties, would be
obtained if t];e;:q\v"vere no tendency whatever for awned varieties to
vield higher bivlower than awnless ones. Such a test could be applied
by calculating x? if we could obtain the theoretical frequencies for each
eell rqp{eéénting complete independence of the two characters. A
reagondble basis for the ealculation of these theoretical frequencies is to
assurtie that, if the disiributions are independent, they will be distributed
within the table in the same proportion as they are in the totals. Thus
in the eell in Table 22 contsining 6 strains, we should have, on the basis
of complete independence, x straing where z :24 r:34 :82. Hence
= (24 X 34)/82. In the cell below, x = (24 X 48)/82. In the same
mamner all the theoretical frequencies can be calculated, and then we
can proceed to the calculation of 2. This is the direct method of cal-
eulating x2, but a shorter method for general use is given below under

Section 5.
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4. Degrees of Freedom in x? Tables. In goodness of fit tests where
the theoretical frequencies are determined according to some chosen
hy'pothems, the degrees of freedom can usually be equated to (N — 1)
where N is the number of cells in the table. In certain cases, however,
as in Example 19 above, additionsl statistics caleulated from the sample
are utilized to determine the theoretical frequencies, and one degree
of freedom must be subtracted for each of such statistics.

In tests of independence or association, the subtotals of the classes
into which the variates are distributed are used to determine the thebret-
ieal frequencies, and obviously these must be treated as statlstxcs, 80
far as they themselves absorb degrees of freedom. Examlmng Fable 22,
we note that originally we have 5 degrees of freedom in the\table, but 1
of these is absorbed by the awning subtotals and 2 for the yield sub-
totals. Therefore we have finally only 2 degrees of fré¢dom left for the
estimation of x%. Another method of determininig the degrees of free-
dom is to make an actual count of the number. of cells that can be filled
up arbitrarily. To do this we must m@é that the subtotals are
‘chosen first. Then, as in Table 22, any.$&?9 cells such as those contain-
ing 6 and 7 may be filled up a.rb1tranly but all the rest are fixed. The
two cells that can be filled arbitrazily represent 2 degrees of freedom.

In m X n-fold tables thibrdeiiees phifreadom can be equated to
(m ~ 1)(n — 1) for the general'¢dse with which we are desling. Special
cases will of course arise where this rule will not hold, but usually it is

_ easy in such cases to arrive at the correct number by some such method
as that described sbove>

B.  Methods of Calculation for Independence and Association Tests.
(a) For (m X n)\fold tables. The generalized x? table may. be repre-
sented as follows

.\~' e
o\ W\ i 2 B ocrrieneenn n
) 11 12 13 In | Tm
221 2 Tp
B3 Tps
efc.
n TB:N
Tex Teor  Togeororrrrers Tew | T
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In order to determine x? we must ealculate the theoretical frequency for
each cell. For cell 11 we find t = (Tei-Tp)/T, and for cell 12,
t = (Te2-Ts)/T, and so forth for all the cells. We then set up the
theoretical frequencies with the corresponding actual frequencies and
caleulate x* = Z(a — 1)2/1).

{(b) For (2 X n) fold tables. A table of this type may be represented
as follows:

1 B R 5 .
™\
b bt bg  bgreeeseerines ba T, .
)
[ €1 [ Cgrrvrrereansa Cn Tc AN .
Tg  Ts  Taeorvrvoronns Ts l 7o )
N\

We can ealeunlate x? for this table in exactly the <afne’ manner as for the
{(m X n) fold table above, but a short-cut method giving x directly
without caleulating the theoretical frequenciesis given by Brandt and

Snedecor, as follows: A\ .
2 3 T
@ = [y - Ly @
TbTe 'Ta
wigditdb "aulibrary org.in

Each frequency in either of the rows is squared and divided by the cor-
responding subtotal. Th?se\ are summated and the correction term
subtracted as shown irjthe’formula. The remainder is multiplied by
the quotient of the square of the total frequency by the product of the
two subiotals on the”right. This formula shows as each value of
b2/7, is ca.lculate\d: the contribution of each pair to the value of %2

(¢) For (8.X'2) fold tables. Representiug the (2 X 2) fold table

as follows :‘.\\_ ™

¢ \' ,.' b.'l bn .Tb
\ ’ ) €1 c2 T,
T™Hn T T

(bicz — c1b2)2T @)

x2 is giveh by ____—Tl oW

We multiply diagonal frequencies and find the difference between the
two products. The difference is squared and multiplied by the grand
total, and the result is divided by the product of the subtotals.
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6. Coefficient of Contingency. It will have been noted that the
methods employed in tests of independence and association are com-
parable to the method of correlation, with this essential difference, that
in the former the categories are either descriptive or numerical. If the
categories are numerical and of equal magnitude, we can calculate a
correlation coefficient for any of the tables to which we usually apply »*
with the reservation that if the categories are very broad we will get
only an approximation to the true value of the correlation coefficient
even if corrections are made for grouping. The necessity for the(use
of x? arises, therefore, from material which can be classified, af least
for one character, only in descriptive categories, or in numerical’cate-
goriea that are not of equal magpitude. For tables to which only e
methods can be applied, some investigators feel that in dddition to the
x2 test, which is essentially a test of significance, they(should have some

" measure of associalion comparable to the corrélation coefficient. A
messure of this type is Pearson’s coefficient of g&gﬁingency (C) given by:
L\ .‘\
, NAX

where N is the total numbér S c‘lBgéWaafﬂiﬁ' £d8t the number of classes).

Since it is a function of %2, the significance of the coefficient of con-
tingency must be the samefas for x% It is not necessary, therefore, to
have a standard error Kf\’Cﬁih order to test ils significance.

C=

7. Exercises, /5™

N

1. Test the gogdness of fit of observation to theory for the following ratios:

\

§ . Observed Values Theoretieal Ratio

"}.’ A - @ A a
WOV 134 36 3 1
L {2) 240 120 '3 1
3 76 56 1 1
{4) 240 13 - - 15 i

The x? values you should obisin are: {1y 1.32

@) 13.33

(3} 3.03

@ 053

2. In an Fy family of 200 plants segregating for resistance to rust, if resistance is

dominant and susceptibility recessive, find the ratio that gives a P value of exactly
0,05 when fitted to & 3 1 1 ratio.

There are two possibilities, the ratios being 138 : 62.or 162 : 38.
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3. In & certain cross the types represented by BC, Be, bC, and be are expec{.ed to
occurina 9:3:3:1 ratio. The actual frequencies obtained were:

BC Be e be
102 16 35 7
Dietermine the goodness of fit, and if the fit is poor analyze the data further o dis-
close the source of the discrepancy. :
+? = 9.86; P is less than 0.01. Hence the fit ia poor.
In further analysis, test the segregation for each factor separately. : )
4. Test the goodness of 5t of the actual to the theoretical normal frequenciéa for
either of the distributions from Chapter I, Exercise 2, or Chapter II, Exereise 3.
Watch the grouping of the classes at the tails of the digtributions in ordo:r\' that’ the
theoretical frequency in any one class is not less than 5. O
Tor Exercise 2, x> = approxifnately 10.
Yor Exercise 3, x> = #pproximstely 2.6.
5. Table 23 gives the data obtained during an epidemie of cholers (3) on the
effectiveness of inoculation ss & means of preventing the disease,/ Test the hypothesin
that in the inoeulated group the number of persons atta &d\is not significantly less .
than in the not inoculated group, and the number no¥ Atticked is not significantly
greater. Note carefully how this hypothesis is worded

. TABLE 23 \J

W
FREQUENCIES OF ATTACKERAND NOT ATTACEED
1 INoGULATED ANP NOTINOCULATED GROTUPS

N3P ueshgeulibrakstsoigedn

Inoculated ,'z*x\ 192 4
& "
Not inogulated it 34
6. Caleulate x2abd locate the approximate P value for Table 22 given in Section

3 above. O\ ¥ = 15.87.
T. The‘q&i’n Table 24 were obtained in & cross between & rust-resistant and a
susceptible\variety of oats. The F; families were compared for reaction to ruat in
the”g?gd{}'ng stage, and in the field under ordinary epidemic conditions.
V. _ TABLE 24
CLASSIFICATION OF SEEDLING AND F1ELD REACTIONS
“oF 810 Fy Faurries or OATs
Seedling Reaction
Resistant  Segregating  Susceptible

Resistant 142 51 3

Tield Reaction Segregating 13 404 2

Susceptible 2 17 176
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Teat the signifiesnce of the association in this table, and caleulate the coefficient of
eontingency. :
= 1127.87. (This result will vary according to the accuracy with which
the & values are calculated. To check approximetely with the value given here
calculate the ¢ values to at lenat two decimal figures.)
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CHAPTER X

TESTS OF GOODNESS OF FIT AND INDEPENDENCE WITH
SMALL SAMPLES
N\
1, Inadequacy of the %2 Criterion and the Correction for Contmuity
The method of x is based on the smooth curve of a continious distribu-
tion and, when the numbers are large, gives probability results.that are
very close to the true values. When the numbers are small) and espe-
cially when only one degree of freedom is involved, the’® method is
quite inaceurate. One reason for this will be clear fférh an examination
of Fig. 10, representing the distribution obtairkecl by expanding the
. N

Iibrary.org.in

FREQUENCY

9 t 2 3 &4 5 & 7T &
.\W’Ug 7 6 5 4 3 2 1 ©

Trg. 10. ———Frgquency distribution of (§ + $)* and corresponding smooth curve.
~ Bhaded areas indicate the veed for a correction to x* for small samples.

N
\

bino\mml & + 4)%. Given a theoretical ratio of 1 : 1, say, for the sue-
cess or failure of an event, the binomial distribution as in Fig. 10 would
give the theoretical frequency of the successes through the total range
from O to 8. If we wished to determine the probability of obtaining
. 6 or more successes in 1 trial of 8 events, we would find the ratio of the
dotted area of the figure to that of the whole, A %2 test of the § ;2
ratio, however, would be based on the smooth curve shown in Fig. 10,
and the probability would be the ratio of the eross-hatehed area to the
whole. The cross-hatched ares is obviously less than the dotted area,
01
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by an amount equal approximately to one-half the area of the 6 : 2 ratio
column. Congequently the x? test will give a probability result that is
too low.

" In order to correct for the above-mentioned discrepancy in the x?
test, Yates (8) has suggested a correction which he proposes to call the
correction for continutty. In the ordinary case x%is given by Z{a — £)2/t,
where g represents the actual and ¢ the theoretical frequencies, Yates's
correction is applied by subtracting  from each value of (¢ — &), $ut it
must always be subtracted in the direction that reduces the pumterical

. value of (@ — &), In Fig. 10 the application of the correqtﬁm would

result in extending the cross-hatched area to the line bordering the col-
umns representing’the 5 : 3 and 6 : 2 ratios, and mus{ obviously bring
about an improvement in the estimate of probability.

¥4 should be noted in connection with tests of Jsignificance applied
to Tatios that the x2 method is exactly equiy ivalent to the use of the
standard deviation to determine the si ince of a deviation from-
the mean. Likewise the correction for.eontinuity must be made when
the numbers are small. As will be evldent from Fig. 10, the correction
is simply a matter of subtracting 4. from the deviation from the mean.

To test the significance of a 6 : 2.3atio when the theoretical is 1: 1 or
4 : 4, we would take thﬁ\“deﬂﬂﬁﬂﬂtﬁauﬂom % —4—3) =15 The

standard deviation of & binomiial distribution is Vpgn = V 21X §X8=
1.4142, and we can test nﬁhe usual way, using tables of the probability
integral.

The »® test for.fakios is also inaccurate when applied to samples from
‘populstions havihg a definitely skewed distribution. In the case of
ratios of sucdelses to failures where the theoretical ratio is not 1 : 1, this
' madequaﬁsy of the %2 test becomes obvicus. Table 25 gives the frue

probabi‘hﬁes calculated from the binomial distribution of obtaining from
16 j;op successes when each frial consists of 16 events. These are worked
Gutfor two cases: (1) when the theoretieal ratiois 1 : 1, and (2) when the
tWeoretical ratio is 3 : 3. The corresponding 3P values obtained by
caleulating x? with and without Yates’s correction are given in the same
table. "For the symmetrical binomial distribution it will be noted that-
the $P values for x" with Yates’s correction agree very well with the
correct values except at the extreme tails of the distribution where x
tends to overestimate the probability. For the asymmetrical distribu-
‘tion the agreement is not good anywhere in the range. In both cases it

i 3P is used here to indieate that the probability is caloulated from the area of
only one tail of the distribution. As the problem iz stated in terms of “15 or more
succeases,” ete., it is obvious that only one tail of the distribution must be considered-
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will be observed that x2 uncorrected gives a very decided underestimate '
of the probability through practically the whole range.

TABLE 25

PROBABILITY OF 2 SUCCESSES IN A4 SAMPLE, OF 16 Evasts

Distribution = (3 4 36 Distribution = (3 + 1)t

N\
Corrected { Uncorrected| Corrected | Uncorreeted

Successes | P (Bin) | 1P (D) | 2P GD (1P Bin) | 3P WD | 4PGOD
0.000,015 | 0.000,088 | 0.000,032 | 0.010,023 | 0.021,856 | ‘0.010,481
0.000,577 | 0.000,233 | 0.063,477 | 0.074,457\ 0.041,638
0.002,980 | 0.001,350 | 0.197,112 | 0.193248 | 0.124,100
0.010,635 | 6.012.224 | 0.008,210 | 0.404.988 0,386,408 | 0.281,337
0.038,406 | 0.040,059 | ©.022,750 ANV

0.105,056 | 0.105,650 | ©.066,307 0.369,812\ (386,406 | 0.281,837
0.227,248 | 0.226,627 | 0.158,655 | 0.189,663,]°0.103,248 } 0.124,109
0.401,809 | 0.401,294 | 0.308,538 | 0,079,556 | 0.074,457 | 0.041,638
Q027,120 | 6.021,656 | 0.010,461
0.401,809 | 0.401,294 | '0.308,538 10,007,460 | 0.004,687 | 0.001,946
0.227,248 | 0.226,627 | 0.158,655-1°0.001,644 | 0.000,748 | 0.000,266
0.105,066 | 0.105,650 § 0.066,807 | 0.000,285 | 0.000,087 | 0.000,027
0.038,406 | 0.040,050 | 0.0293801HQAN0,638,| 100,008 | 0.000,002
0.010,635 | 0.012.224 | 006,210 | 0.000,004 | 0.000,001 | 0.000,000
0.002,000 | 0.002,980_1{0.601,350 | 0.000,000 | 0.000,000 | 0.000,000
0.000,250 | 0.000,577. [ 0.000,233 | 0.060,000 | 0.000,000 | 0.000,000
0.000,015 | 0.000,088 | 0.000,032 | 0.000,000 | 0.000,000 | 0.000,000

b e
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In probabﬂlty\tests applied to 2 X 2 frequency tables, the same
difficulties s ywith regard to the application of x? as for testing the
goodness of of gimple ratios. Since only one degree of freedom is
involved,\the rumber of possible combinations of the frequencies of
unlike pmba.blhf.y is relatively small and the theoretical distribution iy,
therefore, definitely discontinuous. The error is not slgmfica.nt when
the {requencies are large, but with small frequencies it is very decided.
The skewness factor is not so important for 2 X 2 tables as for simple
ratios, as the x? curve adopts itselfl within certain limits to the shape of
the theoretical distribution. After correction for continuity the remain-
ing discrepancy may be regarded as due to the comparison between a
histogram and a smooth curve which gives an approximate fit. .

The method of making the correction for continuity is to determine
the larger of the two products bicz and beei, and for the larger subtract-
ing 0.5 from the two factors, and for the smaller adding 0.5 to the two
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factors. After making these corrections the usual formula may be
applied.

Table 26 has been prepared to show the relation between the values
of 3P calculated for the 2 X 2 table:

12 0
8 8 O

N

O.\ \\

using (a) & direct method for determining the exact probablhty, ) x*
without correction, and (¢) x'2, or that obtained by usinig the correction
for continuity. 'The direct method was devised by R.(A. Fisher (1) and
will be described below under “Methods of Calclation.” The prob-
ability value for the modal frequency has beel\om;tted since it may be
considered as belonging to either tail of the bribution.

It will be noted that at the extreme €a{ls of the distribution x° tends
to overestimate the probability, but that.in the range where significance
may be in doubt ‘the agreement is faifty good. On the other hand, as
indicated by the 2P values for X% Uhless the correction for continuity is
made there is a very deci&é@f\ﬁiﬂféféﬁmmamdflthe probability through-
out the whole range.

For 2 X 3 frequency, t\bles, the correction for continuity is not so
important as for 2 X S.tables, With 2 degrees of freedom the number
of possible combindtions is much greater than for 1 degree of freedom,
and the agreemént.between the smooth curve and the histogram must be
much better./»With more than 2 degreea of freedom the correction for
contmmty\wbuld hardly be necessary in any case. It must be remem-
bered, ho\vever, that the tendency, especially when the numbers are
sma.].lz i8 to underestimate the probability; and it may be necessary in
gertain cases to check the probability by direct calculation, or if this is
ilnpractical, by an analytical study of the larger table made by breaking
it up into parts or condensing it into a single 2 X 2 table. The direct
caleulation of probabilities, even in a 2 X 3 table, is slightly complicated;
so that in most cases the best practice is to endeavor to make an applica-

* tion of x® such that we are reasona.bly sure of a fair approximation to the
true probability.
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TABLE 26
PROBARILITIES FOR ALL THE COMBINATIONS OF 4 2 X 2 TabLE
1 P Caleulated by
Combination Direct . ' .
Method x
12 0
6 8 0.00192 0.00082 0.00325
111
77 (.02828 0.01087 (.03084
1{83-3 0.18585 | 0.07460 | 0.15475)
o
938 \Y
i 0.43707 | 0.27756 | 040346
AP
84 M\
10 4 v/
75
113 0.24577 v.:O,‘1'3251 0.24557
122 0.06124% Y o BERsY bFany sugin
5 7 .“5\ .
¢ 000741 0.00241 0.00%35
131 ‘1\\ .
48 () '
791 0.00032 ¢.00012 0.00059
14504
'"\QO
2. Methods,%gsﬁalculation. Example 20. In a study of the blood groups of
some North American Indians, Grant (2) obtained the results given in the following-
table: A\ )
\”‘t Blood Groups
) Bsand of Indians
G Al B | AB
Fond du lac 18 ] 53 0 29
Chipewyan 13 0 1 ¢ 14
3l 8 3] 0 43
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It appears that pure Indians tend towards a very high percentage of individuals
having the blood group 0, but the group at ¥ond du lac had an obviously larger
percentage of white blood as indicated by other characteristics. The essential prob-
lem in this case is to test the significance of the distribution of the two bands into
two main groups, O and not 0. We form, therefore, 8 2 X 2 table, =3 below:

0O netO
Fond du lac 18 11 29 A
, Chipewyan 13 1 | 14 A
2 )\
31 12 | 43 O

ol
S Y

. Either the x? test with the correction for continuity or the diréet, probability method
would be applicable to this table. In order o indicate theumiethods of esleulation we

shall apply the teat in both waya. \
{a) x* corrected for continuity. H a2 X2 tapte\\;h'represented as follows:
R

b b?::"Tb

61 o 02 T,

WWW. lhf@fllibrf;’y o g in

} e\
the corrected value of x? i{ﬁgi*}en by
N Ty?
2 2

PN\ X =
RS Ty-Tg-To- T
v_vhere T/2salways reduces the numerienl value of (bics — eiby). This is of course
equivalgx\ the method deseribed on page 103.

(1

%j:bplymg the corrected formula to our example, we have

W a\Y (13X 11 — 18 — 48)2 43
<Y 2 : -
N\ K= Ix X oo

Using Yules table of “P for divergence from independence in the fourfold table”
{9), we look up

2 =30 P =0.08326
=3l P =0.07329

Difference = 0.00497
and by direct interpolation P = 0.08077 and £ P = 0.0404,

In order to obtain P more accurately we can make use of the fact that the dis-
tribution of x® is normal for one degree of freedom, and ‘\/; = { the value for
entaring tables of the probability integral. Here VaZ = V/3.0400 = 17464, and in
Bheppard's table of the probability integral we look up
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t= 174 3+ e) = 0.9590705
(=175 {1 +a) = 09509408

Difference = 0.0008703

and interpolating directly for ¢ = 1.7464 we bave (1 + a) = 0.959,6275. Bince
we want § P we take § P = 1 — {1 + «) = 0.04087.

() Direct probsbility method for 5 2 X 2 table. Representing & 23X 2 table
ag sbove, R. A. Fisher (1) has shown that, for any perticular combination of b,
by, €1, ¢z, the direct probability of its oceurrence is given by ~

(m Tal Tyl Tl ( 1 ) AN @)
T Byl byl eal 02! (M

"\
The eagiest method of performing the caleulations is by means of’a table of
Iogarithms of factorials. The different combinations that ean occuf &re as follows:

: r&!
17 12|18 11 19 10 | 26 g’
\ and so forth
1“4 o)1 1|12 2{1up8

all other combinations having the same probability‘and occurring with equal fre-
quency with one of the above. In this ca.sg,.ft}erefore. we require the sum of tha
separate probabilities of the first two combinations. These are given by:

311><12!><29{><;,\j;@'_5kb- ol 3}1
B 180X 111X 13}

[311 X 121 28! X 141 1 ]

\\gﬂ X 170 141 X 121
When a series of such termis are to be ealculated, labor is saved by first caleulating
the logarithm of the constant factor. The logarithms of the terms are then obtained
by subtracting the logarithms of the factorials in the pumerator of each term.
In this examplé, Jog constant factor = 31.701,1503
The logs igb\{:a’aubtmcﬁed are 33.201,7770 and 34.171,8139, giving:

ANV logterm1 =2.400,3823  Term 1 = 0.081,678

¢

O log term 2 = 3.528,3¢54  Term 2 = 0.003,338

p \ W

Total = }P = 0.0349
The values of P obtained by the two methods are in fairly close agreement.!

L The student may use this example in order {o atraighten out in his-mind the
reason why for certain tests it is correct to base the desision on the value of 1P
instead of P. Actually the hypothesis being tested here is that Indians having an
admixture of white blood do not contain a greater percentage of individuals with the
bicod group O than Indians that are relatively pure. If the hypothesia 1o stated
differently—jor example, that the two groups of Indians are random samples drawn
from the same population with respect to the distribution of the bload group O—
then it would be neeessary to use the full value of P in order to make the test. The
test based on the value of § P arises from the knowledge that the Fond du lse group
had an obviously larger percentage of white bleod than the Chipewyans.
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Exampls 21. For & certain disesse we will assume that it has been shown that
recovery or death is a certainty and that without treatment about half of the patients
recover. A new treatment tried out in 16 cases gives 12 recoveries and 4 deaths,
Is this a significant demonstration of the efficacy of the treatment?

Thia problem can be solved by the direct caleulation of probabilities according
to the binomial distribution, or sinee the theoretical distribution is symmetrieal the
«2 test corrected for continuity will give a fairly close approximation. Both methods
will be used in order to demonstrate methods of ealculation.

{&) »f corrected for continuity. For ratios the short formuls for determining
+? ag in Chapter IX, Section 2, is modified as follows o correct for continuity. /A

(a a mﬁ"l“ls ‘s\
. 1 2 T2 2\ AN

= "N
x N C (3)

where the theoretical ratio is z : 1, a1 is the actual frequency corrésﬁénding to z, and
az is the actual frequency corresponding to 1. N is the totaLfijequency or (au-+ as),

1 }
and % always reduces the numerical value of (21 — aa2)\In the present example:

A \J
2 —4—1¢ 40 0%
x2 1% 1% = 3:0625

From Yule’s table of P we find % P = 0.0401. “The odds are about 25 : 1 against the
oscurrence of a 12 ! 4 ratio due to chance-alone.

. (b} Direct probability from t%g bmi:%l Let p represent the probability of
recovery and ¢ the probabili{y &F Gekf We kaSWthit p = ¢ = 4, and we require
the first five terms of the expanaion of (p + )" where n = 18. The expansion of
{r + @)™ is given by: R

@+ " -'Rp"\“ # ACip" g + 2Cop™ % + - oCug® #
where C=u(n*-1)(n-*2)---(ﬂ—r+1)n n!

NG 1-283-.-r  (n — 01
In our example (e..have:

1 ONOYTINS s\ 161 /1N | 161 f1\* (1 1
(2 +..s')\\"(2) +15I(§)‘ +2:141(§) *ar 13!(5) T E)

Igeébh'term we have the constant factor ()%, We determine the logarithm of thie
{actor in the ordinary way and proceed to determine the logarithms of the coefficients
bY means of a tsbls of the logarithihs of factorisls. ‘The work is as shown in Table 27,
which is self-explanatory with the possible exception of the last column. The term
values give the probabilities of obtaining in one trial the number of recoveries (or
deaths) ghown in the same line. Tn general, however, we do not ask that question.
We inquire, for example, as to the probability of obtaining 12 or more récaveries in &
sample of 16, and hence we must add the probabilities for 12, 13, 14, 15, and 16
recoveries. These summations have been performed and are given in the Iast column
under the heading 4P. Again, since we have summated for one tail of the distribu-
tion only, we represent the probability by 3P.

The answer to our problem is given in the line representing 12 recoveries. The
t:orreaponding value of 3P is 0.0384, snd this compares reasonsbly well with
P = 0.0401, obisined by the x* methody :
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TABLE 27
CALCULATION OF PROBABILITIES FROM THE Bivomial (§ + )6
: Log Log Log 1
Recoveries . ey Term Term ; P
16 5.183,5200 | 5.183,5200 0.000,015 0.000,015
15 1.204,1200 “ 4.387,6400 | 0.000,244 | 0.000,259
14 2,079,1812 o 5.9262,7012 | 0.001,831 | 0.002,090°\
13 2.748,1880 o 3.931,7080 0.008,545 0.010,635
12 3.260,0714 « Z.443,5014 | 0027771 | 0.038,406
N
Example 22, In the example above, let us assume thai withouft"t'i‘eatment the

ratio of recoveries to deaths ja 3 : 1 instead of 1 : 1, and in the graup of 16 patients
receiving treatment the actual ratio is 14 : 2. Test the signifiesince of the treatment,

This problem differs from the ﬁrst in that the theoretical distribution is skewed,
and what has been said about the x* method being rem ‘k@l'ed it may be taken for
granted that x* will not give a good approximation fo t{ e trye probability. We must
solve this problem, therefore, by a direct calculatwn, of the probability from the
binomial distribution.

Since the ratio of recoveries to deaths iz 3} ..1, p = 3 and ¢ = 1, and we must
calculate the first three terms of the expa.nsxolf of (§ + 1)1, Using the formula given

have: -
we have (§+]__ " (3 15+16l 3 dbrauhblar?f ( 'ﬂ
- 151 4

2! 141
Noting for convenience in ¢ Inﬁon that:

15 15 15 3 14 _1 1] 1 16 14
) and z) (Z) = (a) 3

The factor (;)“ m.cbnstant, and when several terms are to be calculated this trans-
formation resultd ih & saving of labor.

The caleulsti ns sre given in Table 28. In the 2P column representing 14 recov-
eries we have §P = 0.1971, or the odds are only about 5 : 1 that the treatment is
beneficialy, “This is an indication of a beneficial effect but it cannot in any sense be

' TABLE 28
CALCULATION oF PROBABILITIES FROM TR Bivomtat (3 + )¢
. Log Log Log 1
Recoveries O, -  Perm Term P
16 Z.000,0808 | Z.000,9808 ; 0.010,023 | 0.010,023
15 1.204,1200 | 5.523,8505 | 2.727,9795 0.053,454 0.063,477
14 2.079,1812 | 3.048,7382 | 1.1250194 | 0.133,635 | 0.197.112
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considersd a proof. It would be sufficient evidence to warrant further investigation,

" but the practical aspect of such a problem must not be lost sight of, in that the actuat
gain in recoveries is very small and further investigation might best be directed
along the line of triale with other treatments.

'8. Selection of Method for Tests of Significance. Some confusion
may arise as to when to apply x? and when to apply the direet method
of caleulating probabilities. Also when applying x* the question arises
‘whether or not the correction should be applied. In general these points
can be made clear by the consideration of some hypot.hetical.m(\amples.

Example 28. The following is 8 2 X 4 fold table of frequencieg O
A B C D pN)
L ¥

1| 28 | 48 | 83 | 126

.\:
4 e

| es 12 (01

=

The numbera are large, and the thgorﬁt.ics.l frequencies in each cell are large.

The x? criterion may be applied to the\whole table, and no correction is required.

Example 2¢4. If some of \th&dlhmﬁdlbmtgmvg 4rfold table are small, a3 in the
table below, the table must be rearranged

II 94 18 1 4

"\ W
NS
Obvigusly the elassification of the I and II frequencies into C and D is meaningless,

and \*the’ rearrangement is eithier a matter of adding these frequencies to B or elimi-
»natmg them altogether. Assuming that they ean be eliminated we have a 2 XX 2 table

4 B

I 1] 26 | 8

I 94 18

To this table it is perfectly legitimate to apply the x? test, and, although the numbers
are fairly large, the correction for eontinuity will improve the results alightly. Obvi-
ously it would be very laborious to make a direct caleulation of the probability, so we
would not even eonsider the method in this case. '
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Example 26. We have a 2 X 2 table in which the numbers are smail:

A B
I 8 2
I 4 12

For this case the direet method ia the most accurate and is not difficult.

Example 26. Given a theoretical ratio of 1 : 1 for the occurrence of 4 and Bina
series of events, we obtain iz 100 trials 60 A's and 40 B’s. What is the signifiesnce of
this resuit? AN

The numbers are large so that the direct caleulation of the probability will be
very cumberome. Therefore, we use x* with the correetion for continity, or we
caleulate the ratio of the deviation {(also corrected for continuit{)\to its standard
deviation and get the prohability from tables of the probability integral. The cor-
rection for continnity is not impertant, but it is bound to giveaslight improvement.

Example 27. In a test of the goodness of fit of a ratie, we have a vary skew
distribution. For example, the theoretical ratio of mcge&'to failyres is 15 ; 1, and
the actual results are 5 failures out of 160 events. The'diTect method is the only one
that will give an accurate probability result in this Ease, and we must caleulate the
last six terms of the expansion of {15/18 + 1/161"®. When the numbers are large,
the calculations sre somewhat laborious, but in¥nost eases it is sufficient to determine
whether the result is or is not signiﬁcan&; Angd it will only be necessary in working
from one end of the distribution to caleilate enos YoFAes 00 it their sum 3P
is 0.05. If the observed deviation is within that range it is not significant. If the
deviations in hoth directions are #0'be considered, we work from both ends of the
distribution until the sum of th&: terms at each end is equal to 0.025.

Example 28. The theore'.’big\al'mtia gives a skew diatribution, but the numbers
are small. Caleulate the probability by the direct method as in Example 27.

. "¢/

4, Exermses." ™

1. (2 Expa{'d:iiae binomials (3 4 1% and (¢ + 12, and caleulate the value of
each term. O\ )

(b) If theré is an equal probahility of the bifth of male and female rabbits de-
termine{the probability in a litter of § of the oceurrence of 2 femalea and 6 males.

{0) Plot the histogram for the expansion of (3 + 1)% A bag contains white
and black balls in the ratio of 3 white to 1 black. Show that, if & sample of 12 balls
is taken at random, the probahility of obtaining 12 white balla is different from that
of ohtaining 6 or more black balls, althoiugh both cases represent an equal deviation
from the expeeted 9 white to 3 black.

() In order to check the work add all the terms and the sum should be

very close fo 1.000,

(%) P =0.1094. (Note that this is not a test of significance. It is merely

8 question of determining the probability of the oecurrence of one particular ratio.)

(¢} Hlustratesthe problem of making tests of significance in skew distributions.

2. Koltzoff (3) performed an experiment on the control of sex in rabbita. Sperms

wete placed in a physiological solution in & tube and an electrieal current passed
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through the tube. A female impregnated with sperms taken from the anode produced
-6 females and 0 males, and another female impregnated with sperms from the cathode
produced 1 female and 4 males. Teat the significance of this result.
Using the direct method P is 0.0152.
2. From a study of the posiiion of the polar bodies in the ova of the ferret,
Mainland (4) gives the frequencies in the following table:

Bimilar Different

0uapert.............. & 1 ~
More than 104 apart. . .. 1 6

A\

Test the significance of the apparent association between similaritg'\and' position

of the polar bodies. 4P = 0.025 calculated by the direct method.
4. Neatby (6} studied the association, in a random sample af\ines from & wheat

cross, of resistance to different physiologic forms of the stgal(’ﬂist organism.. Two

tables from his results are given below. Test the signifiddneé of the association in

each case.

Form 21 ,~\\: Form 21
SR 8 A 8R S
Form R........ 28 s} Foim R........ 4% 40
27 SR........ 17 15 | 2857 S 0 16

www'dﬁ?(ggi‘gttigg{)y‘?S‘ﬁ(;sgmi-resistant) S {susceptible)

=083 /A 2 — 13.50
X i“’,\ X
6. Twenty-two anima".l{\ai'h suffering from the same disease, and the severity of
the disease is abou{ the’same in each ease. In order to test the therapeutic value of a
serum it is adminigtetedto 10 of the animals and 12 remain uninoculated 39 & control.
The results are s¢ follows:

~ Recovered Died
AN Inooulated........ 7 3
N Not inoculated. . . . 3 9
o\’ $

\Qefﬂrmine the probahility in such an experiment of obtaining this or & result more
favorable to the treatment. By the direct method $P = 0.0456.
8. An experiment i3 conducted similar to that in Exercise 5 but no uninoculated
animals are available for a contral. Previous results, however, indieate very strongly
that the proportion of recoveries to deaths without treatment is 1 to 3. Again, the
result in 7 recoveries to 3 deaths when 10 animals sre treated. Test the significance

of this result, and explain why it differs from that obtained in Exercise 5.
1P = 0.0035.

Inl the problem of Exercise 5 the theoretical ratio is itself estimated from the
sample. :
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CHAPTER XI
THE ANALYSIS OF VARIANCE

- 1. The Heterogeneity and Analysis of Variation. If we consider
the variation in such a character as stature in man, it is obvigus.that
this variation in general is not homogeneous. Two races may differ
decidedly in their average stature, and the individuals of efch race will

" vary around a common mean, Also, with reference fo-the variation
within each race, thiere are regional and genetic differégiees between cer-
tain groups so that even within the race the variation is not strictly
homogeneous. In actual fact we can conclude with a reasonable degree

of certainty that variation cannot be strictly>omogeneous unless it is

purely random, _i.e;Lg_ag&dhyaI_n_lthiplicitﬁof minor factors that cannot
be distinguished one from another. In experimental work the hetero-

~geneity of variation is usually predetermined by the plan of the experi-

. ment. One set of results is o taiixlag’,_for example, under a given set of -
conditions and another under.dstnctly ditféréht conditions, the object
" being to compare the two groups of resulis. Here the heterogeneity of
the variation is the factor\that is being tested, and the degree of its ex-
pression determines the. significance of the findings of the experiment.
It would seem to bié's necessity, therefore, in studies of variation, to be
_able to differentiate the variation according to causes ot groups of causes,

“especially inexperimental work where such differentiation is an essential
part of the analysis of the results. _The analysis of variance supplies the
mechaxidm for this procedure and in addition sets out the results in a

 Torm$0 which tests of significance can be applied.
N The points mentioned above may be made more obvious by the con-
sideration of a theoretical exafple. Suppose that, for two races of men
that we shall designate as A and B, the mean stature of race A is 66
. 'inches and that of race B is 68 inches. Histograms are prepared for
e iigiirequency distributions of stature for the two races, and one histo-
- gram is superimposed on the other. The two distributions will undoubt-
edly overlap, but are very likely to show two distinct peaks at the means
of the two populations. The variation over all the individuals com-
prising the two races could then be fairly definitely described as hetero-
geneous. We might now endeavor to picture what the gituation might
be if we were dealing with several races instead of only two. There
might be a number of peaks, perhaps as many peaks as there are races;
114
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but it is more likely that some of the groups will so nearly eoincide as
to be indistinguishable. Now that we have in mind several races, how-
ever, it is probably easier fo think i terms of the fotal variability of
all the mdlwduals concerned belng divided up into two portlons _Qm
_ portmn 18 tha,t which ceours withan all t.he races o get a 2 mental pic-
ture of this, we might suppose the frequency distributions for all the
races superimposed on one another in such a way that the means of the
different races would coincide. The resulting distribution would bg a
sort of average of all the separate distributions. The second porfion
of the variability would be that resulting from the differences hetween
the means, and if we had a sufficient number of these means“we ¢ould
make up another frequency distribution for them. . For m&h type of
distribution a standard deviation or a variance could be; c;a.lculated and
it becomes clear at once that.a.comperison of two such statistics would
be valuable in coming to a conclusion as to the degree of heterogenelty
To make this point still more obvious, let us imggine a series of samples
being taken from a homogeneous pop‘ll]atl@{l As we have already
learned, these samples will have differenp\means, but these differences
will result merely from random samphng They will be large or small
according to the magnitude of the varigéion ir: the population from which -
they are drawn. This is a very m&xﬁﬁ@n@r@;ﬁ%{w and one which
is fundamental to an understanding of the analysis of variance. If the
original population has a verxsmall variation, the means of the samples
drawn from it will also have 8 small varistion. If the population has
a large variation, it is to Be expected that this will be reflected in the vari-
ations of the means of the samples. In fact, without going into the in-
tricacies of an algeBraic proof it seems ressonable to assume that, on
the average, thé/variance of the means of the samples will be equal to
that in the original population, provided of course that we multiply this - P
variance by e number in the samples. Thus, if the variance of the
populaigon’ is », the varianee of the sampie means is expected to be v/n, e
wﬁere. # 18 the number of individual determmatmns entering mio each.

mesn’ ——
The next step in the development of these ideas is to conmderm %= 2

the situation would be if, in taking a series of samples, we did not know «
that they were being taken from s homogeneous population. Thé.. .-
variance of the population is unknown; hence it must be estimaied -
from the values in the samples. The most logical estimate is that aris-

ing from the variations within each sample, from its own mean. Sup-
pose that this esiimate is v; and the estimate of the variance of the
sample means is v2/n.  Multiplying the latter by » we have v, which

we ghall expect to be very close to v, if the population is homogeneous,
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but which may be very much larger than # if the population is hetero-
geneoua “and this heterogeneity has corresponded with the method of
taking the samples. This suggests to us that there may be a technique
here for making a test of significance. The null hypothesis is that all
the samples have been drawn from the same populafion, and therefore
that v; does not differ significantly from v1. For example, if we take
the ratio v2/v1, 8 test of significance could be made if, for a given example,
we could determine the proportion of the trials in which a value aglarge
"as or larger than vs/v; would be obtained owing entirely to random sam-
pling fluctuations. We are indebted to Dr. R. A. Fisher for ma;ny of the
_ recent developments in statistical methods, but especially'for the solu-
tion of this particular problem. If there are only two simples it will be
‘noted that we have already discussed a solution, in that we may apply
the ¢ test to the significance of the difference betwéen the means. How-
ever, if there are more than two samples the ¢ test\does not apply, and we
must use the technique of the analysis of variamce as developed by R. A.
Fisher (3). The details of this techmqueére best learned by the con-
sideration of actual data.

2. Division of ‘“Sums of Squ:ma's”l and Degrees of Freedom. As
pointed out in previous chap ra rmnee 15 a meagure of variation,
and it consists of a sum O}V SO lf%s ELF ns from the mean divided
by the corresponding degrees of freedom In a set of observations, if
the total sum of squamgnf\the deviations from the mean can be divided
up according to somégehieme suggested by the data, and the degrees of
freedom can be divided correspondingly, it is clear that a variance can
be caleulated ferléach group as well as for the total. [tis through the
comparison of such variance values that we obtain a true picture of the
variation ifi'the entire set of observations.

With'respect to the division of sums of squares, the best way to ob-
serve'this and to follow the method is to deal with actual data. The
fighres given below are yields in bushels per acre of 6 plots.of wheat.
Three of these plots are of variety 4 and three of variety B.

+

4 218 224 234
B 12 188 185

The total sum of squares is made up of the sum of the deviations of the 6
plots-frotn the general mean. A logical division of this total is {0 sepa~
rate 1t into one part due to yariation within the varieties, and another

! “Gums of squares” written thus is an abbreviation for {sums of squares of devi-

3‘:‘;’;13 from the mean), but in general throughout this book the quotation marks are
omitted.
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part due to.variation between the varieties. Let the general mean be %,
which in this ease is 137.7/6 = 22.95. And the mean of 4 is £, = 27.8,
and the mean of B is # = 18.1. Then subfracting 22.95 froméeach
value, squaring and summating, we have:

S(z — 27 = 185.715
1

il
where Z indicates that 6 deviations are summated. Now, to obtain
1

the surn. of squares for within the varieties, we must repeat the/gabove
operation for each variety and add the two sums of squares.togéther.
Thus for A we subtract 27.8 from each of the A values and\square and
summate, This gives: G

Ky
~A\"

3
?(x — )% = 40.560

and for B we have AN
3 ¢
?(x — B2 = 4.020:\

Then EE(x ~ Z)? = 40.560 + 4.0200% 44.580, where the double

summatmn indicates the process»mfwddmgu hery the two sums of
squares, and &; represents the mean of one group.

The next step is to calcu{ate the sum of squares for between the
varieties. This is given b;{‘ 3

3 X [(278 =X 22 95)2 4 (18.1 ~— 22.95)%] = 141.135

Note that we obt‘qm the deviations of the means of A and B from the
general me afkd then square and summate, but we multiply the whole
sum by 3 ba : gach value such as 27.8 represents the mean of 3 single
plots. . :
AN 2
Theformula, for this sum of squares will be 3 ?(E,— — &2

Now if we add the sums of squares .

Within Between . Total
44 580 -+ 141.135 = 185.715

@w—£)*+3 E(fi — &= ?(x — £

e
L o b

we note that the within and between sums are exactly equal to the total.
That the sums of squares can always be divided in this wav is very
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easily proved for the general case. A set of observations classified in
' tion may be represented as follows '

1
1 Ty Tz T Z1n
2 o) Xz Tnecc Tin
Groups 3 X3 Te T} ZTan
' o
l; .\
Za T Tt TEn O\
e
'\ *

where there are k groups and = single observations in ea:clféi'oup.
For any one observation, say z11, we can write 7))
_ @y — &) = (znn — 21) + (51*\—‘ z)
" where & is the mean of group 1. Then N
i (x11 — £)? = (211 — 212 + (& —.i)":}“?(xn — 2)}(% — %)
And summating for all the values in .b’léup 1 we have

2 - 2 = 3G Wﬁ-}‘f‘?}?é-‘lrﬁmmoz};in;- 2081 — H3(z ~ 50

Fhe last term is zero because the sum of the deviations from the mean
must be zero and e{iir(h ‘deviation is multiplied by a constant factor.

. The second last térm is written n{Z1 — £)* because the factor {&, — £
is constant and(we merely summate it n times. Finally we have

A 4. 3
07 3@ - 22 = 26— &)+l — 8P

" No‘y}% repeat this for eachgroup, and summating over all the k
X grc(ups we have

B . - CEE

whieh is exactly equivalent to the equation given above with the actual

- sums of squares. :
The division of degrees of freedom corresponding to the sums of

" squares follows easily. In the example for two varieties we have 2
total of 5 degrees of freedom, for within varieties we have 2 in each

%t:up making a total of 4, and for between varieties we have only 1.
us

Total Within Between
5 = 4 4+ 1



In the general case as outlmed above the degrees of: freedom correspond-
ing to the sums of squares of equation (1) are - -~
Total Within  Between

(wk — 1) = k(n —1) + (& — 1)

ﬁ.

3. Setting up the Analysis of Variance. For the practical example
with two varieties we can now set up an analysis of variance as follows:

. N
Souree,of Degrees of Mean Square
Sum of Sqvares Sum of Squares | “preodom or VariAnce
e N\
Within varieties. ...... S 44 580 4 « N 14
Between varieties. ....... 141.135 1 CWl4td
Total........... 185.715 5 AN

As would be expected from the difference be &n the means of 4 and
B, the variance for between varieties is veryshigh as compared fo that
for within vanemes Reference to Chapter IV on tests of slgmﬁcance
with small samples will recall that thé wvariance for within varieties is
the variance which is convertecug\”o e, 8t dard error in order to test
the significance of the difference. between?nbﬁar%velémn This variance
can be termed, therefore, the aor variance and can be used as 8 measure:
of the significance of the vaﬁb.nce for between varieties.

4. Tests of Slgmﬂcané. In the typical analysis of variance we
have an error variance'with which we wish to compare one or more other
variances. StrictlyBpeaking, all these variances are esiimaies of the:
true value, and #lig’is, of eotgﬂe,,ﬂthe reason why to obtgin them we must
divide the sumis,of squares by the degrees of freedom. In order to under-
stand the telgl ‘of significance it is necessary to consider in the first place
the condition that would obtain on the average if the variance we are -
testmg)s subject to exactly the same source of variability as the error
variance. Let the sum of squares for error be represented by S; and
the sum of squares for the variance to be tested by S;. The correspond-
ing degrees of freedom are n.1 and sy, and the estimates »f variance are:

Si

¥ = =~ vy = — .
L -

and let F = va/0.

Suppose that v2 represents the variance for between the varieties
A and B as in the actual example sbhove. If there is no real difference
between A and B, the difierences biiween the means that occur will be

119
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due to soil heterogeneity which is the sole cause contributing to the
error variance. On the average, therefore, v1 = vp, or F = 1. But if
the experiment, still assuming that A is not different from B, is repeated
a number of times, F will be subject to random fluctuations and will be
distributed in some regular manner. Thus in any one experiment if
¥ = 2.6 we could judge the significance of this value if we could deter-
mine the exact percentage of cases in which an F of 2.6 would occur as
the result of random sampling fluctuations. The problem is therefore
one of determining the distribution of F and tabulating the results imsuch
5 way that they can be used to determine probabilities. R. A, Fisher (3)
has worked out the distribution of F and in tesis of sighificance re-
places it by z = § log, F. 'The distribution of 2. depenils entirely on
the degrees of freedom 1y and 7z, from which the va.rialicés dre estimated,
fts use thorefore does not involve any assumptions Tegarding the popu-
Lokion aud is equally applicable for large and Sinall semples. Tables
have been propared giving the values of 2 at the5%, and the 1 % points
for different values of #; and ng. In comparing #; and vz, if we find that
2is equal to the value given at the 5% peint; this means that the obgerved
F value would occur owing to randg;ci,sémpling fluctuations in only 5%
of the cases. S

Snedecor (11) has caltiAGRTHBIEDY #7 8P the 5% and 1% points,
and this enables us to makegest of significance directly without looking
up logarithms. Table Qﬁ}s a copy of Snedecor’s table of F.

B. Multiple C_lassigcﬁtion of Variates. In the simple example we
have considered, the, variates were classified according to variety only.
They may, howéver, be classified in several ways, and it is only rarely
that they are nét classified in two or three ways. ‘We shall consider
two-fold\{:‘l@ssiﬁcaticns first. 'The general case may be represented as
follows{\

N Classes
AN
P\ 1 2 3...1
1 rn | 2 | Zso-czie
2 2 o2 T2a- - ' Xon
Groups 3 31 3 Tz~ Xan
E Til | s | wege Tk

in which the variates are in k groups and » classes. The essential dif-
ference’ étween this_ arrangement and that illustrated under Section 2
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above is that the variates in any one class have something in common
in that they can be logically placed together and ; Tecognized s a , definite

unit. In field experiments the groups may be varieties and the classes -
blocks or replicates. In_a chemical experiment the groups may repre-
sent formulae and the clagses different temperature.or moisture condi-
tions under which the formulae are tried. In medical or nutritional
- work the groups may be different foods and the classes different quanti-
ties or times of feeding. )
The equations representing sums of squares and degrees of freadom

for the twofold classification are as follows: O\
Within Gmups Between Betwgen:\
Total and Classes Groups Clasges

Sums of

nk k " L
Squares 2@ ~ & = 2@ ~ &g = 2+ 8 + 8 22, — 8 jl,-xlc‘z;.tz.-, ~2 @)

el k= 1= =k =1+ k=D - 1)

S

where %, is the mean of a group and £, is the\mean of a class. Note that
in thig case the sum of squares for W)thlﬁ groups and classes is rather
complex and in corresponding form te equation (1) should be written
- with a triple summation. The forny diedyhoweyen; aoimore convenient
and expresses the idea successfuﬁy It is customary in analyses of
expenments to.refer to the\thhm sum of squares as that due to error
as it gives rise to the v@ée with which the other estimates of variance

can be compared.
In order to plcture & threefold classification, we e¢an assume that in
the previous example there are m classes and # subclasses, Graphically

the arrangementwill be:

\§ 1 2 3 m
N 1 2..m 1 2...n 1 2-.em 1 2-m
)
o’\‘“ 1
2
k

_ 'The analysis of data of this type introduces a new factor in the sums of
“gquares, in that we must consider the inferaciions of the three classes
with one another. This is best studied, however, from actual examples,
and the same applies to still more complex types of classifications,
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8. Selectfug & Valid Error. Significance is a relative and not an
ablolute term Differences are found to be significant or insignificant
in Tetion to the variability arising from a source which is arbitrarily
selected accHrding to the interpretation that is to be put on the resuilt.
To make these points clear let us assume that an experiment is being
- conducted involving chemieal determinations. Two kinds of materigl
are being tested; the method is to draw samples from each kind of
material, and in the laboratory each sample is being tested in duplieate.
obviously here we have two sources of error. The first arigessfrom
sampling the material, and the second from differences between the
results for duplicate determinations arising purely from errors in the
laboratory technique. These two sources of error are jhdependent and
. therélore may be of the same magnitude or widely different. If 20
samples are taken from each kind of material thé analysizs of variance
will be of the following form: \
' DF). Variance

Madterials (4 and B)........ A, O m
Between A samples......... o '19}38 a}a
Between B samples, ..... 8 .27 19 b
Between duplicates. ... 0w .. 40 d

Total. W WW. dhrﬂu'llb_r_apy_(ﬁQg,jn

For the purpose of this dxécussmn it can be assumed that the variances
a and & are of the sa.n\e\mqude and can be considered together, say
as variance s. Now, we wish to test the significance of the difference
between the t.wo,liir’ids of materials, and we will suppose that d is very
small in comparifon to s. It is not difficult to see that the variance m
iz contributed’to by the variability in the samples, or in other words
that ongthe average if there is no difference between the two materials
the vasiance m will be equal to the variance s. Since d is very small
lt.JB blear that to use it to test m is quite erroneous, as even when there
8,no0 difference between the materials the ratio of m to d will be quite
'large.  What will the situation be, however, if d is much larger than s?
With a little thought it will be plain that this would be a very unlikely
situation as s is in itself contributed to by the factors that result in the
variance d. Putiing it another way, if there i8 no variation whatever
due to sampling, s will on the average ge be equa.l to d. The question
{herefors has nio point, and we must consider the only other possibility,
and that is that d and s are of about equal magnitude, The inference,
then, is that s results largely from the differences between the duplicates,
and that the sampling error is in iteelf insignificant. The obvious
course here is to use d in order to test m, and at the same time we take
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advantage of the greater precision due to 4 being represented by s larger
number of degrees of freedom than s.

Another hypothetical experiment may be considered in which the
situation is sliphtly different. Again two materials are being compared,
but it ean be assumed that the material is sufficiently homogeneous that
the sampling error is negligible. There is a possibility of error in the
laboratory technique and also there is a possibility of personal errcr in
that no two operators can be expected to get exactly the same results.
In making out the plan of the experiment it is decided that six different
operators shall be used, all of whom perform exactly the same teat n
the same two materials. Also each operator makes his deterngingt
in triplicate in order that a measure may be obtained of the errqr m'-
technique. The analysis of variance for the results wﬂl be as follows:

Materials. ................... i m

Operatore......... e B \\ @

Error due to operators........ Y e

Error of determinstion........ za) d
Total. ... ... .. .‘} 35

The variance ¢ now requires somg mpaﬂegﬁﬁmllg e, to note its rela-
tion to the significance of the results. If we set up the mean results for
each operator in a table it v@l be of the following form:

¢ \nt Operators
\K 2 3 4 5 4]

a1 ap ay 1] a5 L ]

w0

Moterild)”
N

2 &

where &1 for example, represents the mean of three determinations made
byoperator 1 on material 4.
' Now the variance ¢ results from differences between such values as
(a1 — b1) and (@2 ~ ba). There being 6 of these values, there are
5 degrees of freedom available for estimating the variance. If each
operator gets the same result for the difference between A and B, the
variance ¢ will be zero; but if the operators get widely varying differ-
ences the variance e will be very high. Suppose now that the exveriment
is presumed to be a sample of a large population of operators making
singilar determinations on fhese same two materials, then the variance
m, which represents the difference between the two materials, wiil be
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contributed to by the factors that produce e; and hence, if there is ne
difference between the materials, m will be equal to e. In sampling
such a population, therefore, and testing the significance of the results,
it will be necessary to use ¢ as an error variance o test the significance
7of m. This fact may be more obvious if we consider the disastrous
“resulls of not using the variance e as a measure of error. The variance d
"may be quite low owing to extreme care in the standardization of the
technique as applied to any one individual operator, and we shall assume
that it is much lower than e. Using d as an error we find that, altough
m is very little greater than e, it is very significant if comparaa‘wit.h d.
The results are used therefore to prove that, for example) 4 gives a
much larger result than B, and on this basis the two materials are util-
ized in some industry for manufacturing purposes.  The manufacturers,
however, in utilizing the material may have to employ a large number of
operators; and hence the error that was negle¢ted in the laboratory
‘ereeps in and it turns out in actual practicg.tﬁa‘ﬁ the two materials give
the same result, and the so-called carefully controlled experiment of the
laboratory is discredited. This mistake'would have been avoided if the
investigator had carefully considered the exact nature of the population
that was being sampled and made, his test of significance accordingly.
Of course it might happén ThiPEHIY BES v kfeitor was used in the experi-
ment, in which case the reader will recall the discussion of Chapter V on
the scope of experimentsiahd will realize that this would -be another
esumple of an experiéént so planned that it did not have sufficient
scope to answer thehquestions that it was supposed to answer.

A point that §18Y now be raised is this. If the error resulting from
the determinations made by individual operators is not to be used to
test the significance of the difference between the materials, what benefit

ieto b‘?s‘iﬁ'\red from making the determinations in triplicate and includ-
ing the,variance d in the analysis? The answer to this is that if there
iz an)appreciable error in the determinations, the variance ¢ will be con-

“tributed to by this source of variation, and hence, if there is no variation
due to the operators, on the average e will be equal to d. The variance
4, therefore, enables us to apply a test of signifieance to ¢; and, further-
more, if d is appreciable, it reduces the precision of the experiment by
making its contribution to e. In the latter case, improvement in the
technique of the determination may result in a considerable improve-
ment in the precision of the experiment.

A variance such as ¢ in the hypothetical example given above is
usually referred to as an inleraction variance, It gets this name because
if it represents a fairly large effect it may be taken as an indieation
of an interaction between the two factors that are concerned. In conr-
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very,larze that the materials respond quité differently in the habdd of -
different operators. As a matter of fact, if we are willing to use more
than one word 1o describe such an effect, it might be more appropri-
ate to speak of an interaction as a daﬁ'erenzml response. Let us assume
that, in general, material B gives a higher result in the determinations
that are being made than material 4. This may appear more rea-
sonable if we assume that 4 and B are not different in quality but
in quantity, in which ease i is eustomary to refer to 4 and B ag repre-
senting two different levels of one of the interacting factors. N The
moare appropriate symbolism then would be to represent A @and) B by
such symbols as X; and X2, the same letter indicatiug that there
are no qualitative differences between the two, and“the subscripts
indieating that this factor is at two different levels. ¢ Now if X3 gives &
higher value in the determinations than X, thig"is plainly a case of
response to quantity, and if there were several levels of X instead of only
two the result would recall the phenomens ohserved in the study of
" regression. I is now easy to visualize whbt is meant by a differential .
response. Some of the operators may Beable to obtain the maximum
regponse whereas others may obtaia a much smaller response. Im
certain instances it may easily turn out that with some operators the
response will be positive and WNQPE‘P ria_tors it w111 be negative,
This type of effect would be likely to resui n & %&¥ large interaction
variance.

The meaning of in hctions will be discussed in further detail in the
consideration of actual'examples. For the present it will suffice for the
student to have g cleia.r'conception of the idea of differential responses,
and to realize thaf frequently an interaction variance isin reality a true
EITOT. VAianCe/ and therefore must be used to test the gignificance of the
results of ’blle expenment

Exa.mp,le “89. Simple Classification of Variates. Tablo 29 meal the yielda of

four Plots each of three varieties of wheat. We shall uge the a.n.slyms of varisnce to
det.ermme the significance of the differences between the varieties.

TABLE 29

Yirioe or 4 Prots Eacy or 3 VarizTies

Plot, Yields Totals
A} 202 | 384 | 224 | 276 115.6
B 382.7 39.3 23.6 29.3 126.9
[ 18.7 23.1 21.3 19.6 \82,7

Total - 328.2
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The first stop is to decide on the form of the analysis and {o allocate the degrees of
freedom to each component according to the acheme decided upon. In this case we
are concerned merely with comparing the variety variance with & variancs for error,
and the most logical error variance is one arising from within the varieties. The.

form of the analysis is therefore
BN Sum of Squares DF
Between varietieg. . ......o.0vvviie Serrrraaeaan . 2
Within varietiea {(error)................ U ! |
Total.......... ettt e 1

Q!

* The seeond step is to caleulate the sums of squares. The best plan is first tg obtain

the total sum of squares. A formula has been given above, but this is not\the best
formula for actual caleulation. It is much better to make use of the idedtity

3 7%
£

S By T8 “
E(z —2P= ?(:c’) ~ ok \ 3

¢ £
QM

o\

where T'; mthetotalofallthevalnmofzorz(z)

Therelore we merely square and summate the acj;ua‘.l values and subiract from
this sum the square of the grand total divided by\bhe number of variates. The
figures are

Total sum of squares = 9452 50 = 8976 27 = 476.23

The caleulation of the mmmﬁ;sdb&m]i@ﬁ w:aetws is carried out with the
assistance of a similar ldentlty ™

~

E(Tf)
ST T L ()
L) n nk

where T'; represents the tbfal for a variety. The formula consista therefore of squar-

ing and summating the-{otals, dividing by the number of variates entering into each
total, and then mbtrMng the same term as for the total sum of squa.res The
figures are 9\

Betwwn varieties = $269.16 ~ 8976.27 = 202.89

To determine t.he sum of sguares for within vanetles we can perform s separate

ca.lcu]at}onfor each variety: (‘*\ BT SRR A .;";'3.."3'5
4 '\: ™ Within A = 3441, 12 ~115.6%/4 = 100,28

B == 4200.23 ~ 129.9%/4 = 71.73
“ ¢ =1721.15 — 82.7%/4 =~ 11.33

Actually it was not necessary to ealoulate the 1ast sum of squares as we could have

obtained it by subiracting the sum of squares ror between varieties from the total.
Thus:

Total Between Within
476.23 — 202 80 — 183.34

However, when possible it furnishes 2 very easy check on the caleulations to obtain
the error sum of squares directly and fndirectly.
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The third step is to set up the analysis of variance and make the feste of mg—
nificance. This iz performed in Table 30.

TABLE 30
ANALYRIS OF VARIANCE
Bum of | Degrees ] .
Squares | Freedom Variance F 2log, F
Between varieties. .. . .. 292.89 2 146 .4 7.9 | 0:9863
Emor................. 183.34 9 20.37 : \ .
. . LN
Total. ......... .| 418.23 1t RO

In Fisher’s tables we look up the 5% point of ¢ for 51 = 2 and 7 = 9. The value
is 0.7242, g0 that the variety differences here are quite significant. Using Snedecor’s
tables of ¥ (Tahle 96) we find that the 5% point for ¥ is 426, and we of course reach
exactly the same conclusion. .\\.’

v Example 30. Twolold Classification of Variates{ b s swine-feeding experiment
Dunlop (2) obtained the results given in Table 31 'he three rations, 4, B, and ¢
differed in the substances providing the vltamms The animala were in 4 groups of
3 eack, the grouping being on the basis of hbter and initial weight. For our purpose

we shall agsume that the grouping is mem.ly a maiter of replication.
wiwut dbraulibrary.org.in

TABLE 31
GAINE 1IN WEIGET\()F Bwme FEp oN Rations A, B,
T \\‘ I I v Totals
4 1o 16.0 10.5 13.5 47.0
Ration B\ »14.0 15.5 15.0¢ 21.0 65.5
CO] 8.5 16.5 9.5 13.5 48.0
N 20.5 48.0 35.0 48.0 160.5
4 ~\' é N
Thei}orm of the analysin is
\ Sum of Squares DF

Caleulating the sums of squares we have

Total 2316.75 — (160.5)%/12 = 2316.75 — 2146.6875 = 170.0626

Rations = (47.0% 4+ 65.5¢ -+ 48.0%) /4 — 2146.6875 = 54 1250

¥« Groups = (2053 4 -+ + 48.07/3 — 21466875 = 87.7202
Error = remainder . = 28 2083
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_ This gives us an analysis of variance a8 follows:

4 | Sumof | Degrees | Variance | F | 8% Point
' Squarea | Freedom
& Rations. . 54.1250 2 27.06 5.76 5.14
5o | Groups....| 87.7202 3 20 .24 6.22 1,76
’ Errer. ...t 28.2083 L] 4.701

Total. . .[170.0625 11 Q)

The variance for rations is just signifieant. The meaning of the significance of
.. the variance for groups depends on the manner in which the classification into groups’
“ has been made. We have assumed here that the groups are mgtely replications, in
 which case the error variance is a result of varistions within groups not due to the
rations. It is therefors valid to consider this variance @8 an error variante with
which. the others can be compared. The group varianca, since it results from the

- plan of the experiment, is an expression of error contrel. 1f the arrangement had
Beon other than in groups we would have had a sizaple classification into within and
between rations. The variance for within rations would have been much laxger than
it is according to the present arrangement, sud>eonsequently the experiment would
‘Thave been less precise. - RPN,

v Examgple 81. Selecting a Valid Bispiylid se¥ipankl wheat varieties were grown
at 4 stations and baking tests made onl the flour. ‘A sample of each variety was taken

. from each station and milled into-flour. Twa loeves were baked from each sample.
“The error of determinstion wasgiven, therefore, by the differences between the loaf
volumes of the duplicate lohvés. These data were supplied by ecurtesy of the

Associate Committee on Giain Resesrch of the National Research Couneil of Canada.

@ TABLE 32
Durricare Loar VoLumes For 5 Vamiereg or WHEAT GROWN AT 4 Srarions
N\Y - {Loaf volumes in ce. — 600)/10
’..s o Stations
“':.\:t.' GRS In v Totals
NV gy :
) ¢ 1 .
1075 bas g.s 14.0 [ 16.5 14.5 | 19.0 18.6] 110.0
2 |12.5 132{20.¢ 13.5 150 14.0 | 23.8 24.4 [ 141.4
Varieties 3 | 7.0 1.0]|10.0 8.00155 14.0}17.8 185 1.8
4 | 1.5 2.0|13.0 150( 8. fg.ﬂ 14.8 16.6 | 80.4
§ | 28.0 20.0}19.5 16.010.5 12.0 | 2.0 2%.8 161.8
_ I
- Totals 106.2 149.5 129.5 203 5355 b

On examining th.ﬂ form that the analysis of variance wiIi take, we note first that .
we .must have a station variance represented by 3 degrees of freedom, end a variety
- variance represented by 4 degrees of freedom. Thers.must also be an interaction -

R T,
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effect which may be regarded as the differential response of the varieties st tha

" different stations. "“The rule for finding the degrees of freedom for an mtemctmn is to
pulfiply the degrees of freedom for the interacting factors. The mbemctlon 1anee’
raust therefore be represented by 3 X 4 = 12 degrees of freedom. There id total

of 40-determinations, so that there is a total of 39 degrees of freedom. The remaining

20 degrees of freedom must represent the error of duplicate detaemmsnons. and we

have a check on this because there are 20 pairs of loaves and since eaclpair gives us 1

degree of freedom there must be 20 in all. ‘The final form of the analysis is: i

F _ Variance LOF .
Btations. . ....... ... . ciiinnn - : "\
Varfeties .. ...........,. el 4

Interaction. . ., .

& 3
2 Y

. ._To obtm.n "’sagns of squares snother taéle ag given below xg reqmred This
tab!e glves sof (z ~ ¥} aad (z + y}, whEre x and g gre\dbaken to represent

I u IIL:\\."IV
¢
1| 0| 1.5 (20
2 | 07 | L&Y 1.0
3 { 6.0 ﬁ B
4 o.s‘i’?ﬂ’%: b f’”};'.]%‘a‘
51 1085 | 1.5
O° . D
% m m IV Tos
5 12.0 | 205 | 1.0 | 376 [ 10 |
27 2 | sss ) o290 | 482 f 1414 |
@+3l 3 80 | 18.0 | 29.5 | 36.3 | 1.8 ] -
! 3.5 | 280 | 17.5 | 31.4 | 80.4 .
SN 5 | b7o o355 | 25 | 488 | 1618
O
) :
Totals 106.2 1405 1205 200.3  585.5

The first half of this table may be used for ealonlating the ervor sum of squares. A
general rule for the sum of squares for differences within paired values is to use the
idemtity o .
" Total minus batween pairs = 1%(z — )¢ - . i s

. B Q 3 |J-.-
The two expressions on the left are 3(s%) — T,2/N and (s + y)’;'2 T,E/N On

i subtracting and simplifying we obtain  2(z - )2 The ca.lculatmns give

¢ ; . Within paira {error) = 2 (93.33) = = 4668 Yoladi t #4 %: %? _
oy
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3
From tlm seeond half of the ealculation table we determine L
: Between pairs = 2 40 . . :

A

= 10283.065 — 8570.256 = 1712.81

Stations - 9"513 03 _ $570.256 — 481.65
Fec

Varieties = m — 8570.256 = 578.07

Interaction = Remsinder = 653.09

N\
This procedure gives us a general rule for the ealcylation of mteractmn gims of

squares, In the table considered we find the total and subtract the sum ofsquares
for the two interscting factors. The remainder is the mt.eract:on, ot

Theanalymofvsmnce:sasfollown N
‘\‘ N
Bum of DF ) Variance
Bquares O
Btations. . ......... awres | B | 1605
Varieties . . ........ 578.07 |, \ 4 144.5
Interaction........ 653.09 MNNS 12 54.42
[ Brror............. : 46. 66 20 2333
Total........... 1750 a7
www . dbrawlibrary.org.in

‘We now have to decide whether we should use the variance from the duplicate ¥
loaf volumes or the interaction variance to test the signifieance of the differences
“between siations and ties. If the purpose of the experiment is to determine
which of the vatieties L%ve the highest loaf volume over the whole avea that the
stations sample, it wﬂl be necessary to use the interaction variance becsuse in thia
light; the stations\até merely replications of the experiment. The error from dupli-
cate loaf vob L %ill give an indieation merely of the accuracy of the laboratory
technique. 3 4t'is large it will reduce the significance of the differences, becauss it
raines the\alue of the interaction variance.

On, Mﬁparmg the variety variance with the interaction variance we get an F
value of 2.66; and since the 5% point is 3.26, we must conclude that, considering the

owhoie ares; being sampled, the differences in loaf volume are not signifieant. In other
worda the variation in the order of the mesn loaf volumes of the varieties, from
station to station, is 8o great that the differences between the means for the whole
area may essily be nocounted for by this variation.

The interaction varisnee i very much higher than that arising from differences
between duplicate loaf volumes. This means that the laboratory error is not an
appreciable factor affecting the precision of the results in this experiment.

8ince variety tests are conducted in replicated plots at each station, it follows
that if loaf volume determinations bad been made on esch plot another measure of
error could have been obtained. Thia arror would have measured the variation due
to aoil heterogensity; and, if the variety variance for the whole atea was significant
?rhen compared to the peoled error due to soil heterogeneity, this would indicate that
in general at each station the differences between the means of the varieties were

£
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greater than could be aceounted for by such sampling varistion, This would net,
however, alter our conclusion based on the test using the interaction ag an error.

Example 82. Threefold Classification of Variates, In testing out a machine
for molding the dough in experimental baking, Geddes, et al. {5}, used 3 ndjustments
of the machine, designated 4, B, and C, and tried them out on 8 geries of 5 flours
baked aceording to 2 formulae. The loaf volume data are given in Table 33.

TABLE 33
Loar Vorume Resurrs 1N A TSt oF A Macane ror Movpive teE Doven
o (Loaf volume in ec. — 500)/10 + O
o e,
' . ours AN
Formula. | ‘oo M Totals
TE o 2 3 | 4 EailE
4 7| 94 | 26 | 123 | sefiiss [ a4
Simple B I 9.6 3.1 13.0. | 43N\ 13.8 [ 43.8
c 9.6 27 | 2.4 | A8 13.0 | 39.5
Flour _ ‘.’ \’
subtotals | 28.6° 8.4 7@y 107 40.3 |126.7
A 137 | 218 JoMea lTizs | 245 | w27
Bromste | B 12.7 | ergvcdbrpwibiangarg.in 24,3 | 90.6
c 12.6 | 218" i 20.9 6.8 23.2 | 85.3
Flour ¢ \\ _
subtotals 39.K§ 66.0 60.9 30.7 72.0 | 208.6
Flour : ‘
totals 2}.<67.6 744 | 98.6 | 41.4 123 | 3943

»

N

On work;':q&ti’t the form of the analysis we find that there is an additional com-
plication hete'ss compared to those that have been worked out previousiy. The
6 rows in\T'able 33 represent 2 classifications, but for the present we shall consider
the:g.?:q 6 classes giving us a simple twofold classification. The form of the analysis

is thi
FIOUTB . .o ciieiannanannnen 4 DF
ClagBes. ..o oveie e i 5 DF
Interaction (@).............. 20 DF
Total . .......ccvinnneis 29 DF

Machine settings ABC. ....... 2 DF
Formulee SB...........cc.0n 1 DF
Interaction ABC X SB........ 2DF
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Hence mf.ers.etwn {a) in the first analysis is an interaction of the above three factors
with tﬁe ﬂoura " Reslizing this, we can then write out the form of the analysis in full:

CFlours (1 ... 5}virnroiereannns

". Muchine settmgs (ABC} ........ coies

 Formulae (SB).........oirenns

. ' " Int.eract.lon (?BC' X l§<B}ABC) ........

e xSB)..'.'ﬁI'.IIZZ
A 5 X ABC X 8B}..

BT e Totalsiainaionnns ererenn

Q"

Y. kﬂtm&mmtaon is known as a jriple interaction. In this case: lt represents the
the interaction of (ABC X SB) is different for the difi¢rent floura.
ABC’ CX 8B) s the same for each flour, the i.nrﬂe interaction will

To detm-mine the sums of aqusyes for the components set outabove it is necessary

“. to set up 3 ealculstion tables as below: m\
: : _ Flours N
Machine =
Machine [ | R | Totals
Sectings 17y ] 2 3 PO 5
A 21 [ 242 | sie\] 181 8.0 | 1351
B | 238 | 27| uggﬂﬁar L7 38.1 134.4
¢ | 22 ﬁ&ﬁi vl e 36.2 124.8
Totals...| 67.6 | '74{4 08.6 | 41.4 112.3 304.3
A ‘
- N A
A ) Flours
Formulae | O\ Totals
Y/ e 2 3 4 5
' _."\"L : .
soN e | osa | awr | 107 0.3 | 125.7
B% | 800 | 8.0 | 09 | 307 72.0 268.6
8+ B 67.6 74.4 98.6 41 4 112.3 394.3
\«;ﬂ"‘ B--1-104 | 576 | 232 | 200 | a7
_ ~ - Machine Setkings
4 B ¢ Totals
24 (. 438 30.5 125.7
93.7 90.6 85.3 2686
135.1 134.4 124.8 304.3
50.3 48.8 468 | 1429
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The ealcylations are!  * i H :
Total ' : = 6618.43 — jngn ?&1? 43 — 518242 = 1436.01
Flours (1---5) = 34,152.33/6 — 5_132 PRI { ’ 50954.
Settings (4BC) = 51,800.41/10-5182.42 = s (i
Formulae SB = (268.6 — 125.7)%/30 = Qa

Interaction (ABCXSB) = Z(8 — B)%/10 — 680.68 = 6817. S7/10 — 680 63 = 1.12
Interaction (1---5) X (ABC)

Totsl for table = 11,436.57/2 — 5182.42 = 535.88 _ ~
Flours (1-+-5) = 500.64
Settings (ABC) = 6.62 A
Remainder {1+ -5) X (ABC) = N 19,60
Interaction (1---8)X (SB) = Z(§ — B)’/6 — 880.68 = 5360.05/6 — 680,68 214.16
Interaction {1 --+5 X ABC X SB) = remaindar R = 419
The analysis of varisnce when set up in detail is as followaz~,
Sumsof | DF |Vastnce| F | 6%
Bquares ’ x\ Paing
Flours (1+«5)uunennnenenannnnn. 809.64 | & 1274 |281 | 334
Formulae (SB)..........couonn., 680.6840%1 | 680.7 [1200.0 | 5.32
Interaction (1---5 X SB)........ 24l fbrdulikr&§3 845 j02.2 | 3.84
Settings (ABCY. .o uvrerennnn.ns. o6l 2 3.31 6.31 | 4.48
Interaction (ABC X SB).......4 K. \' 1.12 2 0.560 1.07| 4.48
“  {---5X ABCY...L00 160] 8 2.450 | 4.68] 3.44
“  (1---BX ABC >‘<\BB) 419| 8 0.524
Tota].........\.',i' ...... 1238.01 | 29
e

. X

It is of inferest to make a detailed study of Example 32 from the
standpoinb ef the selection of a valid error. We note first that the
determmatlons were not made in duplicate so that we have no real
medSire of the error in the technique; and, if such an error is the one
that Should be used throughout for tests of significance, we shall have
‘to select one of the other variances that gives us a close approximation
of what the error of duplicate loaf volumes would be. In the second
place it must be remembered that the primary object of the experiment
iz to study the differences in the loaf volumes due to the different settings
of the machine and the differential responses due to these same settings,
For this reason the analysis of variance has been separated into two

1 Note the method used to calculate interactions for a series of paired values.
This will be explained in more detail in the next example.

LS

L

R

Lrd
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“portions. The three effects in the first group are of no particular in-
terest, as previous experience would have enabled the cereal chemists
fo predict that just such results would be obtained. The separation
 of these three effects into one group is not a resull of the data oblained in.
 the. experiment, but was preconceived, and it was decided before the
‘experiment was operated that this would be done.
" Considering the variance due to the settings, the first question to be
- asked is whether or not it should be tested against a variance representing
purely laboratory error or against the interaction of the settings #ath
~ the flours. The answer follows from the fact that we are coneerned
not so much with the interaction of the settings with the flours a8’ with
attempting to find out the best single setting of the mathitie for ail
purposes; and therefore we do not anticipate that, in differentiating a
set of flours, all the settings that have been tried.here will be used.
" Actually our measure of significance in this experithent must be based
* on the ususl experimental error of the laboratory; because, if the machine
eettings cause differences significantly greatet than those resulting from
experimental error, it is obvious that before the machine is used for
_general purposes the most desirable getﬁtig mpst be worked out. In
.other words we ought to see to it that-the machine does not introduce a
- greater error into the ﬂ@ﬁ%ﬂﬁﬁ%ﬂﬁ%"ﬁlﬂﬁy exists as the result of
* the ordinary procedures of the lahoratory.
On this basis it follows that the triple interaction is the most logical
_.exror to use, as it is the Jeast likely to represent a significant effect and
is not likely to be lower the error due to differences between dupli-
cate loaf volumes, ., The latter statement is the same as saying that, if
there is no actughbriple interaction effect, the variance will be equal to
the error that/Weuld have resulted from using duplicate determinations.
The Fvalues with their 5% points are given in the analysis, and with
their aid fhe results may be summarized very quickly. The fiour and
_ fo;-r;m}a ‘differences as well as the interaction between them are very
- large“in comparison to the experimental error and may be dismissed
with that statement. The primary interest in the experiment is in the
settings of the machine and the interaction of the settings with the other
factors. :I‘he settings are significant in relation to experimental error,
and glancing at the totals we note that this must be due to the fact that
‘the C setting gives a somewhat lower loaf volume than A or B. The
mters.ction. of 4 BC with the formulae (SB) is not significant, indicating
that the differences })etween the settings are reasonably consistent. for
both methods of baking. The interaction of the flours with the settings
18 significant, and we can conclude that the results with the fiours are
- toa certain extent changed by the machine settings. From an inspec-
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tion of the results this would seem to be due to flour 4, as for this figur
the B and € settings depress the loaf volume to a greater extent than
for the others. 4
7. Summary of Methods of Calculating Sums of Squares. After
the form of analysis has been worked out, the greatest difficulty that
eonfronts the student of the methods of this chapter is the calculation
»f the sums of squares. Most of the methods have been dealt with in
the above examples, but it would seem to be desirable to summarize

them under one heading, S N\
{(a) Total for & set of n single variates. 21, T2,--* Z». - 4
. . ﬁ .\‘ N 3
3@ — 27 = 3@ - * W
1 i . _ﬂ 7%}

We square each value and summate, then subtra.ct'ttite"a;qusre of the
total divided by the number of variates.
(®) For a set of k groups when each group is.msde up of n variates.
It there are k groups we can represent the tofals for the groups as Ty,
Ty, -+ - T;--- Ty; and the means for the groups’by 21, 2, - -« & -« S
=" -
- : E(T?) i
n3(& — 5)3@$_dbrauh ary.org.in
1 SR kn _

We square each total, summate, and then divide by the number of
variates entering into edeh\total. From this we subtract the square of
the grand total divided'by the number of variates.

() For a set of @ groups when the number of variates 18 not the
same for each grotp. If we represent a particular series with the corre-
- sponding anI’g‘er of variates in each group as follows:

. ) N\ )

’ Group totals Ti, T2, T3, T
" 4 \ J Numbers- a b ¢, d
We'ealculate;
T™ T T T2
1 + -2 + -3 + Z“; -

b - ¢ d e+b+c+d)

In this case we square each total and divide by the number entering into
it. The quotients are summated, and from this sum we subtract the
square of the grand total divided by the total number of variates.

{(d) For within and between pairs. If & set of paired values are
represented as follows: :
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1 2 3 4--n Totals
2 o 23 Ty T T,
Y n i Wi ¥ Tg
. T
The sum of gquares for between pairs is: ~
2 2n £\
And for within pairs it is: A
_ 12z — y)? O
&/
If each z and g value represents k variates we have )
Z{z + ¥
Between = 2% \* 21m
. 'E(:E d !l)2
Within = o ¥
ithin N

W dbrauJ LHI ar

(e) For two groups only. \The t.oi, %or the groups may be T, and
Tyasabovein{d). Thesim of squares 1a:
N\

) 2
\"Y - (Ts - r)
 § A \ . N
where N is the*ﬁbi:hl number of variates,
() Bimple interaction in a 2 X n table. The table is as in (d), in
which B{ch value of z and y tepresents & variates. The interaction
(1 2, 3 + ) X {zy) is given by:
~O 2@~y (T, — T,
N | 2%k 2kn _
(g). Bimple interaction for a 2 X 2 table. The followingisa 2 X 2 '

tablemwh:cheaehvaluaofzmatotalforkvanates '

A B

i Tz

| o =
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The interaction (AB X I1I) is given by

(1 + @3) — (w2 +20)P
4k

(h) Simple interaction for a & X n fold table. A table of this type is
illustrated in Section 5 above, and equation (2) shows how the sums of
squares and degrees of freedom are broken up. The sum of squares
for within groups and classes is the sama-as for the interaction and\can
be calculated by subtracting the two terms on the right from the ‘total.
The procedure therefore is as follows: )

'\

Total - =3z — T%kn "

For n classes = (T3 /k — T2/kn N\

For k groups = 2(T9)/n — Ta/kn "

Interaction = Difference :
)
{#) Triple interaction. In more compl 55~\a.na1yses it is sometimes

necessary to calculate triple interactions) \We shall illustrate the method
for the simple case of 2 X 2 tables:! | ™/

~

X A\ Y(:l ) ‘ Z
i B . WXW Brauhbrary.org,mA B
1 X1 Iz .,,,Q 1 I In 1 T1 Tz
11 xy Ty \\ ; 11 Ty I3 I T4 X3

The mteract]ol\to be calculated is (XYZ X 111 X AB). Assume each
value to lﬁﬁlﬁde up of k variates; then for each of the above tables we
have: - ¢

\ f; For X (I1II X AB) = (&1 + 23 — 22 — wa)?/2k

AN

\” Y(III X AB) = (u1 + 23 — 33 — 24)%/4k
Z(AIl X AB) = (21 + 2a — 22 — :m)z/fik

Surmmmating these gives us the sum of the inferactions of (I II X AB),
taking each X, ¥, and Z group separately. Next we find (I IL X AB)
for X, Y, and Z combined, having set up another 2 X 2 table.

LIf the three faciors have only two levels the triple interaetion is also represented
by only one degree of freedom and may therefore be calculated from a differenee

between two correctly chosen totals. The method of building up these totals wﬂl -
be clear after a study of the methoda of the. followmg chaptver '

oL
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B X+Y+2Z
I 20 T2
II| = 2

~ ForX,Y,and Z, (JII X AB) = (z1 + 23 — %2 — x4)2/12k, which,
when subtracted from the sum obtained for the three tables, abave,
- gives the triple interaction (X¥Z X LII X AB). <O
" According to the same principle, triple interactions may be selculated
for any three factors. Note that there are three differeng ‘ways in which
the caleulations may be carried out, ag repeated calcylations of any one
of the three simple interactions will finally give _th“é;.\triple interaction,
Always examine the three possible methods a,n{l ‘decide which one will

require the least amount of labor. AN
. : "
8. Exercises. O
1. Tabie 34 taken from data by ’t&;h and Hopkina (1) gives the gains in
weight of pigsin a mmparﬁﬁ%wf&%g]ﬁ!% "YRES Yts of pigs represent § different

 treatments, and there were 10 pigs iﬁ:bach lot. Make an analysia of variance for
the data, and test the significanceof the trestment differences.
()" TABLE 3¢

RN
GAINE OF })GS ™ A ComparaTIVE FEEDING TRIAL

ANS

Replicate /5| Lot Lot II Lot III Lot IV Lot V

1\\ 165 188 164 185 201

o2 156 180 . 156 195 189

NN 159 180 189 186 173

- {“3" 4 167 166 138 bl 193
_ \ 5 170 170 153 165 164
. 6 146 161 190 175 160
7 130 1m 160 187 200

8 151 189 172 177 142

9 164 179 . 142 166 184

10 158 191 155 165 149

: The error variance in this erperiment works oub to £43.6.

2. In a study of hog prices in Towa, Schultz and Black (9) have given prices by
months, years, and districts. The districts are obtained by dividing the state into 1.
A portion of the data is given in Table 35. After completing the analysis of variance
for these data, devize graphieal means of illuatrating the interction of monthe with
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years. 1t im not necessary in this exercise to make tests of significance of the results,
as it is being used here merely to show how the technique of the analysis of varianee
can be used to separate out the various effects in » set of data. i
' Sum of squares for months X years = 83.3413.

3. In agronomie trials of varieties of cereal crops it is desirable to conduct the
trials at various peints in the area under. consideration and to earry them on for a
period of 2 or more years. Tmmer, et al. (8), have given data on barley yields at
seversl stations in Minnesota over a period of 2 years. - Table 36 gives the yields at 3
of the stations for 2 years for § varieties. Analyze the results.

Note that the blocks are numbered 1, 2, and 3, but this does not mean that block
1 at University Farm has any relation to block 1 at Waseea or any other statiofn
Congequently the sum of squares and degrees of {reedom for blocks are worked outat
each station and lumped together in the final analysis. A common erragf sthat
beginners make in sorting out the degrees of freedom for an experiment of-thigkind
is to regard the blocks as a factor occurring at three levels and thus they have such
expressions in their analysis as these: N

Blocks X Stations ‘&%
' x Years o\
bl % Stations X Yearn

ete. WO

These expressions obviously have no meaning as the lqlqizk\numbers do not represent
definite levels that are uniform at all stations. The porrect; pracedure is therefore
to ealeulate the block sum of squares for each experiment and add all these sums of
squares together In order to show them in the final analysis. -
The following values for the sums of wuared wilidasish i choghing the ealeulations.

Total...ovenennenns AN 11,6041
Varieties. . ... ... SN 1,566.58
Varieties X St;m'oqc W ¥Years......... 230,58

o\{} TABLE 35
Hoa Priczs Paib, % Provuczrs Iv Towa 1928-29 vo 1930-31

1928-29° 1929-30 1930-31
Disfricts Districta Distriets -
AN
Agj\a c | plaljB|lc|D|A|B|C|D
7\
Octe[\9:48[ 9.46] 9.47 8.98| 8.90} 9.15/ 8.84 s.s:;J's.so 8.86
Nov.}/8.41 8.13 8.48 3.30| 8.34] 8.53)| 8.04] 8.23 8.17 8.45
Dec. | 7.91| 7.85 7.79 8.50] 8.44] 8.54|| 7.39 7.31) 7.32 7.34 "
Jan. | 8.14] 8.28) 8.12 8.60] 8.71] 9.02] 7.068 7.10 7.11) 7.%7,
Feb. | 9.14| 9.03] 9,00 9.50] 9.63| .82 6.44) 6.62 6.63 6.65 °
Mar.| 10.57| 10.61] 10.44 9 81| 8.78(10. 6.80; 6.87| 6.84 6.88
Apr. | 10.65| 10.53] 10.58 9.22| 9.26{ 9. 6.78 6.86) 6.92 6.92
May | 10.36{ 30.20f 10.07 9.10| 9.06/ 9.26/ 6.03} 6.1 6.06.6.30
June{ 9.05| 9.86] 9.97 9.17| 9.14} 9.38] 5.400 5.39 5.57| 5.60
July | 10.64| 10.47} 10.70 8.11{ 8.31] 8. 6.00] 5.806 6.16( 6.24
Aug. | 10.35( 10.34{ 10.34 8.52| 8.68) 8.75l] 5.91 5.66) 6.24 6.36 °
Sept| 9.37] 9.46] 9.40 0.52| 9.64] 9.73} 5.07 5.20 5.26) 5.88 .
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TABLE 36

Yierps IN BusesLs PER AcrE OF § VARIETIES oF BARLEY GROWN AT 3 STATIONS
v Eacr or 2 YEARs

Block | Man- | Gla- | Svan- | Velvet | Trebi | Peat- Station Year
No. | churia | bron sota land
1 | 202|448 330 367 | 41,2 ] 385
o | 25.0 | 39.1 ] 30.4 | 41.0 | 381.9 | 29.6 | University Farm | 1931
3 logs | 455|321 | 420 366 ) 302 N\
t | 197} 2861 2.1|2.3}193]2.3 N\D
2 | 31.4 {383 | 308 27.5| 22.4 | 30.8 | University Earm | 1932
3 | 206 | 435 | 31.4 | 32.6 | 45.5 | 3L.1
1 | a5 | 654|445 | 569 | 630} 412 | LV
2 | 5292| 53.4| 46.0 1 40.6 | 63.8 | 51.5 L\ Waseca 1031
8 | 469 ) 568 | 51.6 | 53.2 | 63.8 | 83.0°
A7)
1 {408 | 444 | 210 )| 446 | 53.5 .39
2 | 204 ] 349 | 41.1 | 41.4 | 44.2N\30.2 Waseca 1932
3 | 302339334 2.2 500 2.1
1 | 200 | 275 | 2wgvjdbrailibipty qraing
2 | 247255 | 215 [ 28003 42.5 | 20.5 Morris 1931
3 | 336|333 | 203 |22 467 | 354
“\
1 | 206 | 36.6 | 27.4.) 35.9 | 40.0 | 35.7
2 134113433y | w0l 460 a1.9 Morris 1032
3 | 394 | 34523 | 467 | 53.0 | 52.0
\ & _

| 73 |
4. Find the"b%, points of F for the following values of n; and na:

o\

o i,

O

n1

ra
51

92
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5. Prove: (1) That %{z’) — T = ’2:}(: — 23

(2) That the interaction for a 2 X 2 table is given by (o1 2z — %2 —
z4)2/kn.  See Section 7(g)-
(3) That the sum of squares for the two subtotals s and T is given
by (Ts — Te)%/N. Bee SBection 7{e).
(4) That in a series of pairs the sum of squares for within pairs is
given by 3 B(z — y)* See Section 7{d).
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CHAPTER XII

THE FIELD PLOT TEST

GENERAL PRINCIPLES AND STANDARD DESIGNS

1. Soil Heterogeneity. The fact of soil heterogeneity as it alfects
the ylelds of crops has been commented on by various writers. Sln the
agronomic test it is the chief source of error in comparing va.hetleS, soil
and fertilizer treatments, and factors of a similar type. ~Jf soil hetero-~
geneity was practically non-existent a single pair of pJots would be suffi-
ciont to make a comparison of two varieties, but even'then it is doubtful
~ whether that condition would be highly desitable. By a sufficient

"expenditure we might render a piece of soil-edbmpletely homogeneous,
but by doing so We would partly defeat th‘& purpose of the test which

~_ifto determine the behavior of varieties and treatments under a liited

range of conditions. We would have\selected one particular soil type
for our experiment ancbthemﬁnmﬂeﬁtmioj&d-ghﬁ area to which our results
- would apply. The ideal agronon;uc tegt is one conducted on a piece of
land in which the range in seil type, etc., is the same as that in the dis-
trict to which the results are ‘to be apphed Usnally agronomic tests are

© " - on soil that is much § wabject to variation than the surrounding dis-

~ triet so that in genepal the results from them are considered as applicable
over too wide ancarea. This is not to argue that more variable soils
- should be seleeted for that might again defeat the purpose of the test
by rendering the results insignificant, but rather to point out the limita~
tions of Qe“tests as ordinarily conducted and that the ideal cannot be
_ reached by any method of inereasing the uniformity of the soil.
(2. Replication. In order to obtain greater accuracy in field experi-

L 'ménts the most eﬁectlve method is to increase the number of replica-

Sing the | ize ig also effective, but increasing replication
wm;ﬂggm In prevmus pages it has been pombed out that the
-standard error of a mean is glven by s/+/n, where s is the standard error
of a single determination and « is the number of determinations averaged.
It follows, therefore, that, in replicating field plots, the decrease in the
standard error of t.he mean of one variety or treatment is proportional
to the square roof of the number of replications, This rule applies only if
. the variation due to the replicates themselves is removed from the error,
but, as will be pointed out below, this follows naturally from the plan of
the test and the use of the analysis of variance.

142
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A most important consideration in the use of replications is that they
furnish an estimate of the error of the experiment, and this estimate can
be obtained in no other way. The error of the experiment arises from
the differences between plots of the same variety or treatment that are
not due to the average differences between the replicates. From this it
is clear that, if there is only one complete set of plots of all the varieties
or treatments, there is no possibility of chtaining a measure of random
soil variability that can be used as an error in tests of significance. In
terms of the theory which has been emphasized repeatedly in the previous,_
pages, the variance of the variety or treatment means is subject to tests
ing on the hypothesis that it has arisen purely from random variations
in the fertility of the field. Since the only way in which we cap‘form a
reliable estimate of these r random variations is to rephcate $he experi-
ment, it follows that without replication tirere is posmyely né method
of making a test’ of f:.he mgmﬁcance of the" varlety o treatment differ-
ences.

3. Randomization. As pointed out ahove, théséstimate of error is
taken from differences between plots that_are ‘treated alike. R. A.
Fisher states that “ an estimate of error sonderived will only be valid
. for its purpose if we make sure that in the “plot arrangement, pairs of
plots alike are not nearemqggmlggjl%h%r apart than, or in
t way, distinguished from pairs of plots treated differ-
ently.” This point is ‘obvious if we'consider a simple replicated experi-
ment containing, say, 4 va.mt.leq, that we shall designate as 4, B, €, and
D, Suppose, merely for pu@ohes of argument, that the plots are squa.re _
and the arrangement of !;l}e plots in the field i» as follows L

I’l;ephmte 1 4 B ¢ D
/\Replicate2 A B ¢ D
()" Replicate3 4 B € D
O Replicated A4 B € D
The form of the analysis will be:

’ DF Variance
Replicates. ......... 3 r
Varieties........... 3 ]
Error.............. 8 e

Total . ... ..... 15

and now, if there are no variety differences it can be éxpected that on - -
the average the variance v will be equal to the error e, and unless our .
experiment is designed ta make this true it is unbalanced, or in the
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usual terminology it is subject to a pias. On this basis it is possible to.
picture the situation with respect to bias in this simple experiment, on
varying the location of the plots with respect to distances between plots
of the same variety and plots with different varieties. In the first place,
* guppose that the replicates are only 1 foot apart so that there.is for ex-
ample only a space of 1 foot between the plot of A in the first replicate
and the plot of 4 in the second replicate. Then between the plots of
different varieties thers are 6-foot buffer plots of some other crop. This
situation presents a very obvious bias in that the plots of different
“arietios are farther apart than plots of the same variety. The resulb 18
that, if there are no differences between the varieties, the variance » will
on the average be larger than ¢. This very proposition was fecognized
by agronomists at an early stage in the development of field plot tests,
and ag a remedy for it suggestions were made as to the dis:iti'ibution of the
plots in a systemstic manner over the whole field.«,These suggestions,
however, did not take into consideration the possibility of a bias in the
opposite direction to that of the design outlind-above. That such a
bias is a distinet possibility has been shown By Tedin (10), in an exten-
sive study of data from uniformity trials(’) A bias in the direction that
tends to make the error too large, and the variety or treatment variance
too small, is in effect just asiHinsdtnaus,as:she opposite type of bias, a3
it means that, on the average, tertain significant effects will be over-

A systematic type of Qis,ﬁ-ibution of the plots might be as follows:
‘ 4 B ¢ D

¢ D A B
A\ A B ¢ D
H" ¢ D 4 B

and it willbe noted that the plots of the same variety are scatiered
widely\over the field. This is the type of arrangement that is likely to
}-esyli‘m an error that is too large, but, disregarding that point, there
is_gnother type of bias common to all systematic arrangements. This
may be referred to as an intravarietal bias, in that comparisons between
different pairs of varieties are not of equal precision. For example, in
botp (?f the systematic arrangements that we have outlined above, the
varieties A and B occur on adjacent plots in every replication while
the vs:net.les A and D are on the average farther apart. This is a very
undesirable feature of such experiments, for if a single error is used for
t.hg whole experiment it means that real differences between the varieties
that are close together may be overlooked and other differences that
. actually do not exist may be judged significant,
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From the above discussion 1t may appear to the reader- that the
field plot test iz extremely complicated and difficult to set up in such &
way that there is no biss. Actually, all these difficulties may be very
easily overcome by the simple process of arranging the varieties at ran- .
dom in each replication. Thus, instead of either of the arrangements
that have been outlined, we would make up one as follows, in which the
positions of the varieties are -determined entirely at random.

D ¢ 4 B

¢ B A D N\
B ¢ D 4 A

A D B ¢ A

Then, regardless of the size or shape of the plots, it can be(proved either
mathematically or by actual trial that, in a series of such’tests, using a
different random arrangement each. time, the varian¢é 3 will on the aver- -
age be equal to the variance e.  Detalls of the mei{lods used for randomi-
zation are given in Chapter XVI. _

4. Error Control. In replicated 9xper1men\ts the differences between
the plots of any onetrea_tment are due in part to experimental error and
in part to the average differences between the replicates. The lafter is
not relevant to the comparisons’we/ Wittasd hmmliepsieach treatment, is
represented by one plot in each ,repﬁcate or block. The variance due
to blocks is therefore removedfrom the error, and, the larger the pro
tion of the lotal variability thebds removed, the mare accurate the exper .
This has a very importduf, bearing on the plan of an experiment, espe-
cially in relation to the'shape of the blocks and of the plots. The differ-
ences between long fdrfow plots, when they are placed side by side, are
usually less than those between square plots, and similarly for blocks,
and since we want the differences between plots as small as possible and
the differen ‘hetween blocks as large as possible, the idesl plan is one
which combmes long narrow plote with square blocks. Practical con-
siderations limit the shape of the plots, however, and consequently imit
alsb,the shape of the blocks; but, if we keep this fundamental principle
in mind in drawing up experiments, the greatest possible efficiency will -
be obtained. - ¥

The arrangements for error control by means of replication djﬁ;g.r
sccording to the plan of the experiment. There are two fundamen
plang, randomized blocks, and the Latin square. thers that wfﬂ??e

described later may be referred to as special types in that they are to a- :

certain extent modifieations of the fundamental types, and especially .
adapted to certain purposes,
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5. Randomized Blocks. This plan is the simplest of all the types in

_ which any messure of error control is obtained. It is illustrated in the

fo]lomng diagram, which represents an experiment with 3 treatment.s
in 4 blocks.

G A H D E D H A

FB CE G C

BHDF|GF ‘

L8 v )
CEAG|EDBH O

s ™

D,
N

7
<

sz In the general case let k represent the number of block:q h,nd n the number

~of treatments. Then the equation for sums of aquares is:
m @ e @
nk _ ¥ ns'l K
Zw— 2 =nZ@ - £ + k;f)\fi., — &7 + 2 L
where Z; is the mean of a block and :u,’is.i;he mean of a treatment. The

WWW, dbrauhi&l ary.org.in

last term on the right is actually E(:c — & — & + %)%, but is abbre-

" viated for convenience. mﬁlfhe corresponding equation for degrees of

L ireedomls

oo \\ @ @ @
k—l—(k“1)+(ﬂ—1)+(ﬂ—1)(k"1) (2)

_;.-’..":'fclll calculatmg\tﬁe sums of squares the following formulae are the most

.mnvement 2

1) o .21:_(x -2 = "z:(x%) — T2/nk T = grand total
AN for all plots
7 \ o . ) t
\(Q) Blocks - ﬂE(ma — 82 = 3(TH/n — T2/nk Ty = total for
. 1 one block
- (3)-Trentments k 2(8,— &) = z’::(Tf)/k — T%/nk T, = total for
one treat-
ment

-
- (48 Brror o ?(d”) =) - (2)— @) Subtract
' : blocks and
- treatments
from total.
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The analysis of variance is set up in the usual way.
The standard error of the experiment is given by

_ E(_d2) - %‘ L]
3‘\/<k—1)<n-—1) ® 3
and for the mean of one freatment

= | @,

6. The Latin Square. The following diagram illustrates a 5~>’< b
Latin square where the letters represent the treatments. X O

E B C D 4 L« ?‘“
A ¢ D E B s ar s

D EB AC \ o

¢ DA B E |0

B 4 E ¢ D"

Note that the plots are arr&nged in 5 rows a.nd 5 columns, and that there
must be the same number of Lreatraehts 48" FowS 818 colurans. The |
treatments are placed at random, sub]ect. to the restriction that a treat-
ment can oceur only once in any'row or column.

Let » represent the numibet of rows, columns, and treatments, angg e
the equations for the su}n} of squares and degrees of freedom are
follows:

7

B — a7 = n36 > o7 +nde - 27+ n3E -2+ RO

where Z, and} represent, the means of rows and columns respectively.
(n2. \1)*(?%—1)+(n—1)+(n—1)+(n*-2)(ﬂ—1) ©®
The\alcula,tlons for sums of squares are:

' n n? .
(1) Total S(x — £)2 = 2(a?) — T?/n? T = grand total of
! ! all plots

(2) Rows n%(:i, - F2 = lf:(T":) /n—T3n2  T,=total for one
row

(3) Columns ng:(:r:, — g2 = E:(Ti) /n—T3n? T, = total for one
1 1 X
column




s
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(4) Treatmentsn 2(2, —2)? = B(1%9/n~ T%n*  T.= total for one

treatment
nk
(6) Error d?) = (1) — (2) — (3) — (4)  Subtract, rows,
' 1 columns, and
treatments
from the’
) total.
The standard error in & Latin square is given by ~
Z(d? Ke
s = \/ @) R I )
(n—2)(n—1) O
- And for the mean of one treatment O
8 €%
= — PA\Y (8)
Sm a )

The Latin square gives error control in two’ directions across the field,
so that soil gradients are always taken ca.reaﬁ For a few treatments it
is a very efficient type of experiment, @bd it is very doubtful that a
better one can be devised. When the\ number of treatments are more

- than 8 the Latin squm‘isibmuhﬁmmenmd a point is soon reached
where the increase in aceuracys does not warrant the added labor.
Moreover, as the number of/treatments are increased the rows and col-
umns become longer in preportion to their width and a point is reached
finally where further anrmy through error control is not obtained.

Example 33, Ran,domued Blocks. Table 37 gives the yields of 6 wheat varieties
obtained in an experimient. consisting of 4 randomized blocks. The marginal totals
&re given in the thIe 8o a8 to facilitate ealenlation.

’\“\’ TABLE 87
R\ N YieLps v ByusHELS PER ACRE BY BLOCHS
AN ' OF § WHEAT VARIETIES
<\‘; N o Blocks Variety
1 2 3 4 Totals
A 27.8 27.3 28.5 38.5 i22.1
B 30.6 28.8 31.0 39.5 129.9
c 1o 22.7 34.9 36.8 122.1
Varieties D 18.2 15.0 141 18.6 64.9
E 16.2 17.0 17.7 ‘15.4 66.3
F 24.9 22.5 2.7 26.3 96,4
Block Totals. 143.4  133.3 148.9  176.1 | 601.7
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Caleulating the sums of squares we have:

Total (& — Ti/nk = 16460.05 — 15,085.12 = 1374.93
Blacks Z{T:t)/n— T/nk = 15,252.48 — 15,085.12 = 167.36
Varieties Z{T ) /k — T*/nk = 16,147.87 — 15,085.12 = 1062.75
Error = 137403 — 167.36 — 1062.756 = 144.82
The anatysis of variance is then as follows:
Sum of 5% Point
Sq DF Variance F of P
&\
Blocks. ........... 167.36 3 556.79 5.78 3,29
Varieties. ......... 1062.7b b 212.560 22.0 2.90
Error, . ........... 144 82 15 0,655 ‘:‘
Total......... 1374.93 23 _ o\
\’ £

The block and variety differences are seen to be signifieant, andl.if ‘we wish to compare
any two varieties we make use of the standard error. 8 )

&= VG55 = 8122 B = %E 1.561

The standard error of a difference between the ‘méans of any 2 varieties Is then
1.561 X +/2 = 2.21. Now suppose that we.ished to compare varieties D and F
for which the meana are 16.2 and 24.1 ‘t@l@ﬁéﬁﬁhﬁhﬂ lifberdifferpnicn is 7.0 and we have
?9
1= 2.21 = 3.57

From Table 94 we note that fof 1\5 degrees of freedom ¢ = 2.95 at the 1% point,
50 that the difference between\the 2 varieties is very significant. We take ¢ for
15 degrees of freedom correspondmg to the number of degrees of freedom available
for estimating the erroryvariance. Unless the degrees of freedom are decidedly
limited a short cut ogh, He employed for testing significance. From Table 94 we
note that ¢ at the 5% point is approximately 2. Therefore & significant differerice
will be 2 X V2 K ¥m = 2.82 #m. Roughly a significant difference is 3 sa.

Example 84" The Latin Sguare. The following is a plan of a Latin square
which wasg’ used to test the efficiency of different methods of dusting with mlphur -
in ordex t.B control stem rust of wheat. The key to the treatments is given with the
plafy, } )

Columne E=eY 10 TREATMENTS

1 2 3 4 A = Dusted before rains.

L]

I EDEAC B = Dusted after rains.

I C ARBRED C' = Dusted onos each week.
RBowe Il | D C A B E D = Drifting once each week.

v EB CD A
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All applications were 30 pounds to the acre at each treatment. Drifting means
that the dust was allowed to settle down over the plants from above. In the ordinsry
procedure the sulphur is forced down among the plantas by a blast of air. .

The plot, yields in bushels per acre are given in Table 38. The figures in the table
correspond with the position of the plots in the above plan.

TABLE 38
Pror Y1mLpg IN BUSHELS PER ACRE

Columns Row TREATMENT
1 2 3 4 b Totals Torassd \

4,32

I 4.9 6.4 33] 9.5 11.8 35.9 NS 17

| o3| 40 62| 51| 5.4 300 | (B3
Rows III 7.6 1164 6.0 6.0] 4.6 40.1 A NC 66.6
IV | 63] 7.6[18.2| 8.6] 49| 306 \'D" o .o
vioes|es|lusiisel| 7.6} 509 :

: E 246

Column

a\J
Totals \36.4 39.7 41.0 45.1 34.:3.\{96.5
" In order to obtain the {reatment totals we fhust select the yields according to
the position of the treatments in the plan. Thus for treatment B we have 4.9 + 7.6

+ 62 + 6.0+ 7.6 = 32. &rwﬁ@ﬂﬁaﬂl@b‘%ﬁ@ g],lgtm treatment totals as given in
Table 38.

" The calculations are as given helowﬁ

(1) Total E(x’) - g"}n’ = 1520.83 — 1544.40 = 285.34
A\
(2) Rows E(T*)f» — THy® = 1501.16 — 1544.40 = 46.67
__1- . £ N \ }

{3) Columns “E(T*)fn ~ T2/n? = 1558.51 — 154449 = 14.02

(4) ngmhn\ta E(T’)fn — T3/m? = 1741.10 — 1544 49 = 196.61

( )'“Error ' =)= @—-@ - =
en the analysis of variance is: -

"@" - Sum of . 5% Point

5 _ | Squares | DF Variance F %é,f F
BOWB.....ovvennns 46.67 4 11.67 4.99 3.26
Colurng........... ¢ 14.02 4 3.50 1.50 3.26
Treatments......... 196.61 4 48.62 20.8 3.26
Error........ PR 28.04 12 2.34

Total............ 285.3¢ |
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/ 7. Pactorial Experiments. As the name denotes, in factorial experi-
ments, an attempt is made to study the various treatment factors. Thus
an experiment designed to study, at the same time, rate and depth of
seeding of = cereal crop would be a factorial experiment in which the 2
factors, rate and depth of seeding, are represented at 2 or more levels.
We may use, for example, 3 rates and 3 depths, giving us in all 9 treat-
ment combinations. Usually, there are more than 2 factors, as it is
easily seen that the greater the number of factors the greater the scope.
and inductive value of the experiment. The experiment on rates and
depths, for example, might well be condueted with more than 1 variety;
as it is conceivable that resulis obiained with 1 variety might not,apply
to others. In factorial experimentation, therefore, the study of/the
interactions is a very important consideration and, until the advent of
the development of a suitable technique, was very frequently Corapletely
overlooked. LV

The introduction of factors is of eourse limited b space and the cost
of experimentation, and, in addition, it is easy t(\add so many faetors
that the analysis becomes rather complex. If sebave to study all the
possible combinations in an experiment withi fls\factors at 3 levels each,
we must have 81 different combinations. . Fhe addition of another factor
at 3 levels would increase the n%hﬁrdﬂ{‘ﬁﬁﬁpmaté?m to 243, gt which
point the experiment would becomeextremely uﬁwxﬁ&}, and sinee the
blecks would be very large, error control would not be highly efficient.

If all the factors are of equalNimportance, the obvious method is to
make up the total number ¢f \¢ombinations and randomize them indis-
eriminately in each black \We shall see later that with this plan con-
siderable increases in ptégision ¢an be obtained by a process of splitting
up the replicates infoéGmaller units and confounding with these smaller
blocks certain relatively unimportant degrees of freedom. In many
cases the facu{ré‘*ére not of equal importance and very efficient use can
be made of £he'splii plot design, in which more than one error variance
is obtained;%each one appropriate for testing certain comparisons. #

8 Spl\it Plot Experiments. An experiment was condueted in 1932 on
the experimental field of the Dominion Rust Research Laboratory, which
is a good example of the split plot type. This particular study was de-
signed to determine the effect on the incidence of root rot, of variety of
wheat, kinds of dust for seed treatment, method of application of the
dust, and efficacy of soil inoculation with the root-rot organism,

The plan of the experiment with the key to the treatments is given
below and is sufficient to indicate how the experiment was worked out.
Two varieties of wheat, Marquis and Mindum, were used. These vari-
eties were planted in 4 blocks, half of each block being sown to one variety
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and half to the other. The strips were then divided into 10 plots each.
With 5 different kinds of dust and 2 methods of applieation, dry and wet,
there were 10 different treatments, and one of these was assigned at
random to each plot in each sfrip. The plots were then divided length-
wise and on one half the seed was sown with inoculated soil and on the
other half with uninoculated soil. The final result was as shown in the
plan of the experiment. It will be noted that the disposition of varieties,
dust treatments, and soil treatments is purely at random throughout
the experiment,. \

In order to analyze this experiment it is necessary to sort‘gut the
degrees of freedom corresponding to the various components-of. the test.
In the first place, for the 160 plots there is a total of 159 dgg}ees of free-
dom. The 160 plots are in pairs, one of each pair being inoculated (1),
_ and one uninoculated (U). A convenient initial classification of the
degrees of freedom (DF) is to consider the field'as'made up of 80 pairs
of plots, and since there is one DF within eacb\\p,a.ir, we have

Between 80 pairs X x\ 79 DF
Within “ A 80DF ©)
wwwdbrau}iblﬁai’ygggﬁln 159 DF
Then, proceeding to the Spliﬁ,tiﬁg'up of the DF of these two components,
and dealing first with the 79.DF for beiween pairs, we note that the units
now are plots exactly wf\ée ‘the size of the original plots, and the DF can
be analyzed out without any reference whatsoever to the fact that ihe
plots are divided intoT and U portions. If the experiment is considered

first as & test of {Ddreatments replicated 8 times, the analysis would be as
follows: O

\§ Blocks 7 DF
i \ Treatments 9 DF (10
O Error 63 DF

\ W

Buit the experiment is not actually replicated 8 times, as 4 of these blocks

PLAN OF 4 Brrar Pror EXpRRIMENT

1 2 3 4 5 8 7 8 9 10

s 3lelr|11eo|w|2]|es
Ul|Unyvijuifivlui{tv|vurliu|1vo

o 6 | 218 ‘tiw] s
Mindum 4 1 7 5 9
: 1T(vrjvr|iv|vrlivlIivloilio|ul




SPLIT PLOT EXPERIMENTS 153

PLaN oF A Seurt ProT Exrerivent—Continued
1 2 3 4 b Li] 7 8 9 10

. 9 i10| 4tl2] 1|57 }16]|3]8
Marquis t1glyygiru|IU{UI|IUJIU|UI(IU 1U
II

. e lo| 2|5 |18 |w0}a]|3]|7
Mindum | oyl gr|1v|1vo|vI|1U| UL | UI[IU|UI

Mind wl|le|o| 17|52 838 4]8
indum | 'yl py | UI{UI{UL|UI{UL{IU{ UL UL|
- AT
Moreuis | 2|8 |2 |2 (8187 |89 10| 8"
q UI|1U|I0|UI[IU|IU|UT|UI ULy
.
Mindum | 2| 81 0 |5 |1 ]38 |10 PN NI
UI|UI|IU|UI|IU|IU{UI[AW]1IU|UI
' w

Marquis | 5. | JO 3l 2|4} s [\Df 1 |69
vr|lvr|ivitv|ul|{IU|[@I|IU|UL|UI

Key tmwgﬂﬁn@ylibrary.org.in

= Incvcu]a,ted soil.
U anoculat.ed soil.
1. Dry, Cer 2. Wet, Ceresan.
3 ¢ é@ 4, Semesan.
§. { D.uBay 6. ¢ DuBay.
7. ?“ Check, 8 ** Check.
9.8 CaCo;. 10. “ CaCos.

\s

are sown to N@m‘qu.is wheat and 4 to Mindum wheat. The 7 DF for
blocks contam, therefore, 1 DF for varieties and 3 DF for the interaction
of vanetles ‘with blocks, where the blocks consist now of two sets of all
the ﬁqea:tments, one set with Marquis wheat and one set with Mindum
wheat. The 3 DF for the interaction of varieties with blocks obviously
represent the error for determining the significance of the differences
between the varieties. The final disposition of the 7 DF as given in
(10} is therefore:

Blocks 3 DF
Varieties 1 DF (11)
Error (1) 3 DF

We take next the 9 DF as given in (10) for treatments. The key to
treatments shows that there are 4 different dusts and 1 check, so that
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we have 4 DF for treatments. Then each dust is applied dry (D) and -
applied wet (W), so that we must have 1 DF for D'W. The remaining
4 DF represent the interaction of dusts with D W, so that the 9 DF are
. finally split up as follows:

Dusts 4 DF
DW 1 DF (12)
Interaction . 4 DF

. The effect of the varieties (V) on the factors given in (12) must aliobe
considered; - therefore we must bave in the 63 DF for error¢given in .
. (Io): . o

N\

V X Dusts 4DF| \™
VXDW 1DF} N0 (13)
VX Dusts XDW 4 DF}.*

The 9 DF represented in (13) must obviously come out of the 63 DF for
error as given in (10), so that there are act ally only 54 DF representing
_ grue error. Finally the complete disposlit"i-ox of the 79 DF for between
pairs of plots can be shown as follows; \J

Blocks - 3 DF
VanstialPrenlibrary-orgin 1 DF i Group (1)
Error (1)~ 3 DF
Dusta )" 4 DF
DWW ) 1 DF
Dusts X DW 4 DF
NN X Dusts 4 DF} Group (2)
Y VXDW 1 DF
\r"}"_ VX Dusts X DW 4 DP
O Error (2) . 54 DF]
{\‘; J Total 79 DF

Error (2) is applicable to all the factors in the second group-

TABLE 39

Pror YiELps 1v a Seurr Pror EXPERDMENT
1 2 3 4 5 6 7 8 9 10

64686371627356_&77869676671.64647570666755

_7539'6‘_5727._5'81 T2(n|wirz(7aier 7‘2-70 72(85176|70 |7V |74
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Pror YieLos 18 & Serrr Pror ExperiMENT—Continued
3 2 3 4 5 6 7 8 9 10

66163 (63 (51|58 (6460|5755 60!53|61[73)5650]55]4758]64]55

54174173172 |73 [64[79/6868)72(|76(|69|66 78|67 )63|69(74{73 |76

83|73 68(60{82]79,73 81-.84.9477 76 (74777 (76]73160|70|75|88

5150 | 5715763160 |57 |61 [6365]64 61 (60|65 |56 |67 |61|74{73]85

- 4

X

63172 7218378 (6070|6660 )66 |68 7063|6864 |61 59"@3‘65 7

..

606960676752615661695862607257§£~58586465

Consadenng now the 80 DF for within pairs, the'first point to note is
that, since these 80 DF represent only differefides between members of
pairs of adjacent plots, they do not conthih any direct effects due to
blocks, varieties, or dust treatments. The differences between such
plots do represent, however, the effect ofLand U corresponding to 1 DF.
The first split up of the 80 DF is tlt’éféfdi'b"'ﬂmlbl‘ﬂ‘ y-org.in

1T p 1 DF
Bemamder\ - T9DF[ ' (14)

‘ S ot 80 DF

The 79 DF for the re}pamder must contain the DF representing the inter-
action of I mtlkaﬂ the other factors as given in Groups (1} and (2), :
hence we can sefy these down in order.

Y 1uxyv 1 DF]
31U X Dusts 4 DF
o\ ITXDW 1 DF :

’ IUX Dusts XDW ~ 4DFl (15)
10U X V X Dusts 4 DF :
ITUXVXDW 1DF

Total 15 DF |

Note that we have left out (I U X Blocks) and the quadruple interaction
(IU XV X Dusts X D W). The former belongs to error, and the latter
is very unlikely to be significant, and even if it might turn out significant,
s interpretation would probably be too complex to have any practical
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bearing on the use of the treaiments. The final analysis of the 80 DF
for within pairs can now be written down:

1T 1 DF)
IUXV 1 DF

I U X Dusts 4 DF

ITXDW 1 DF

IU X Dusts X DW 4 prl (Group @)
1U X V X Dusis 4 DF ,
IUXVXDW 1 DF ,
Error (3) 64 DF 2O\

Total 80 DF)

The three groups may be placed together as one cofaplete analysis or
dealt with separately. It will usually be found\{most convenient in
checking calculations to consider the three groups together in one com-
plete analysis. 4D

After completing the sorting out of the DF the next step is to draw
up the tables from the actual data that @re necessary for caleulation of
the sums of squares. In the first plaeé a table such as Table 30 is
required, giving the data foniheindividye] plots in a plan corresponding
to the plan of the experiment~Comparing the table and the plan we
can then draw up Table 40,hich is & series of small tables required for-
calculating the sums of ggares,

The following is ah outline of the analysis of variance for the whole
experiment, with fighres in the fifth column indicating the calculation
tables from whishdhe corresponding sums of squares are obtained.

From Table 89 we calculate the total sum of squares for all the plots.
Then frox%fhe calculstion Table 12, for the differences within pairs of
plqts,‘wné‘d termine the sum of squares for the 80 DF representing within
padrs. “Subtracting this from the total sum of squares gives the sum of

¢squares for 79 DF representing Groups (1) and (2).
\/ We proceed next to calculate, from the tables, the sums of squares 88
+ indicated in the outline of the analysis of variance, leaving items error
(2) and error (3) to the last. From the sum of squares representing
within pairs for 80 DF, we subtract the first seven items in Group (3)-
The remainder is the sum of squares for evror (3). From the sum of
aquares for between pairs (79 DF) we subtract the total for group (1)
and the first six items in Group (2). The remainder is the sum of
squares for error (2). :

Tht_a method of caleulation of triple interactions has been described in
& previous chapter.
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- Variance .
et | op | ot Ol
Bquare
BlotkS. o\ vvveiineieieninnnna. 980.6° - 329.9 1
Varieties (V)..oovovnnrenenrnnnn. 3638.6 1 3638.6
Brror (1), uuvenn e 6476 3 215.9 1
31 T 987.6 4 246.9 2 A
Dryve Wet (DW)....vvvinunnn. 117.3 1 117.3 2
Dusts X DPW....oooovivieann... 46.2 4 11.6 (3
VX DUstE. . o ooeineaaranns 148.7 4 36.7 1 ,.\%
VX DW. ot . 915 1 a5 .|\ 4
VX Dusta X DW............... 1481 4 3TON - &
Brror (). . 1059.1 54 196
AN
Inoeulated vs. Uninoeulated (I U). . 965.3 1 \965.3 )
TUX Vo 0.3 1. 0.3 6
IUXDusts.................... 370.8 ANT 95,0 7
IUXDW......cooiiiennn 889 | 17 [ 689 8
IUX DustaXDW.......o..... 268 N4 6.4 9
IUXVXDusts............... 11944 [ 4 208 10
IUXVXDW.....oovoirne.. ETN 1 3.9 11
';Ermr @)...... e Ww,ﬁﬁﬁiﬁl'aulibr&&-y_crg‘jri4.5 ‘
Total.............. I 103668 | 159
¢ :\
\'\ " TABLE 40
SERIER OF SUBTABLER FOR CALCDLATING SUMB OF SQUARES
Number MK ; Blocks
P\ | m v
e} L&a{\ 1351 1178 1229
My 1454 1408
Ma 4+ Mi 2805 2586 10,739
LN Ma—Mi —103 -230
N/ Ce Se De Ch Ca
@) D 1044 1059 1062
w 1039 1045
D+W 2083 2104 10,739
D-W 5 14
Ca Se Dy Ch Ca
@ Ma 970 088 | os7
Mi ins 1116
Me 4+ Mi 2083 2104 10,739
Ma —Mi 143 —128
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TABLE 40-—(Continued)
SERIES oF SUBTABLES Por CALCULATING SUMB OF SQUakEs
Rumber Blocka
D w
4) Ma 2408
Mi 2040
Ma 4+ Mi 5438 10,739 N
Ce Be Du  Ch  Ca\o
Ms D 482 487 4830 £\
W 488 501 s ™
&) D+W 970 688 A\ 3 4,088
' -Ww -6 -~14 (¥
Mi D 562 572 582 |
w 561 | 544 P \4
D+W 1118 1116 0\ 5,751
D-W 11 28 AWV
Ma Mi ‘:’,:; “
(6) I 2684 wi dbraulilrary.org.in
U 2394
1+U 4088 » 10,739
Ce B¢ Du  Ch  Ca
{7) I Wee | 1w [ 1054
: U NIO14 | 1034 :
140772088 2104 10,739
L\—U 55 36.
Y D w
N 2701
RN, \ ¢ V.7 | 2647 _
A0 T+U . sass " 10,739 -
. .
N _ Ce Be Du Ch Ca
DI 531 535 | 533 |
T 513 524
@ I+U 1044 1059 5,438
I-U 18 n
W I 538 535 | - 521
' U . 501 510 :
I+U 1089 1045 . 5,301
i1-U ar f 25
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TABLE 40— (Contintied)

159

Seris oF SuBTABLES For CALCULATING Sums oF. S8QUarxs.

Number Blocks
Ce Se Du Ch Ca
Ma I 498 507 | 480
f 472 481
(10) I+U 970 958 4,988
1-T 26 26
Mi I 571 563 574 O\
U 542 | 553 ~L
I+U 1113 1116 5,751
I1-vU 29 10 LY
Ma Mi “,'\i"
D. W D W
{i1) H 1289 15025\
U 1209 1438
I4+U 2408 4,988 \N2040 5,751
DiFFERENCES BETWEEN, Pisks or Prots
(12) 4 3 un 1 9,""‘:{31;"?‘_“”1"-5;” ey 2
T 6 B 1 398 2 13 &8 3
i'"$
3 12 6%XN38 5 8 17 4 1 @
20 1 o, 11 4
4]
$ 7 & =
:"\s.
\'\\ =
...\: J -
ABBREVIATIONS
Dausts: Varieties Soil Treatment
Ce (Ceresan) Ma (Marquis) I (Inoeulated)
Se (Semesan) Mi {Mindum) U (Uninoculated)
Du (DuBay}- Method of Applying Dust
Ch (Check) D (Dry) :
Ca (Caleium carbonate) W (Wet)
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CONFOUNDING IN FACTORIAL EXPERIMENTS

7 9. Orthogonality and Confounding. F. Yates (16) has given the
following definition of orthogonality. It is * that property of the design
which ensures that.the different classes of effects shall be capable of
direct and separate estimation without any entangiement.” Thus, in
& randomized block experiment, the treatments are orthogonal with
blocks in that the effects of each are capable of direct and separate esti-
mation, This orthogonality is accomplished in the design by seeing to
it that each block containg the same kind and number of treatments.
If by any chance some of the plots in one or more of the blocks.ake lost,
non-orthogonality is introduced, and special methods may(be' required
in order to separate the treatment and block effects. {Ehese methods,
which have been worked out and deseribed in somedetail by Yates,
require additional computation, and sometimes thewhole procedure may
be rather laborious. Consequently in designing.an éxperiment we make
every effort to keep within the requirements oferthogonality. In stmple
experiments this presents no diffieulty, buf\iti more complex ones for
which a new design is being worked out’itvis quite easy unwittingly to
introduee an element of non-orthogdnality. New designs, therefore,
require careful scmtinx%fgﬁ_mﬁg;é@g jpto practice.

In factorial experiments Invelying a fairly large number of combina-
tions, non-orthogonality is semetimes introduced deliberately, and this
process is now referred to g8 eonfounding. The purnose of confounding ™
n general, as we shall ge¢ later in more detail, is to increase the accuracy il
of the more important ‘eomparisons at the expense of the comparisons |
of lesser importance™ In many instances, however, although a certain '
portion of the in{(?rmation concerning the comparisons of lesser impor-
tance is sacrificed, the precision with which all the effects are estimated
is inereased $o a point such that even the partially confounded compari-
‘8ons are more accurately estimated. .
The student should at this point make quite certain of the meaning
- ¢f'oonfounding, and a few elementary illustrations may be of agsistance.
Suppose that three fertilizers A, P, and K are being compared at 2 levels
of each, so that we have 8 different combinations that we shall designate
by NOPOKU, NGPOKI, NnP:K{}, N1POK0, NOP1K1, 'N1POKl; NIPIKUJ
- and NP}y, where the subscript numbers refer to the amounts or dosage
of each kind of fertilizer. Since NoPeKy means that no fertilizer is
applied, and NoPoK; means that only K is applied, these terms may be
al.:obte-wat.e:d to 0, K, P, N, PK, NK, NP, and NPK. In these 8 com-
binations it will be noted that we have 4 without ¥ and 4 with N. If
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now we divide the blocks ordinarily containing 8 plots into halves such
that one half contains the treatments O, K, P, PK and the other half
N, NK, NP, NPK, then the effect of N which may be represented
algebraically by (N1 — No) is completely confounded with block effects.
The other main effects are still orthogonal with the blocks. For example,
in each block we have 2 plots containing P and 2 plots that do not
contain P. We would not consider a design of this type in actual
practice, as it defeats what is obviously one of the main purposes of
the experiment. Assuming, however, that accuracy can be gained by
reducing the size of the blocks, it may be worth while to examine all the
comparisons to sce whether certain of these may be deemed suffidiently
unimportant to be sacrificed in order to increase the preclmon ofthe re-

maining comparisons. AN
The treatment effects may be sei out as fo}Iows with, the correSpond-

ing degrees of freedom. O

N 1 DF O

P 1 DF  Main effects, 3 DF

X 1 DF %)

NXP 1DF -

NXK 1.DF Simpfe; interactions, 3 DF

PX K 1 DF Ww\:y:j:!'braulibrary.org.ln

NXPXK 1DF_“Yriple interaction, 1 DF

To the best of our ]udgment the triple interaction ¥ X P X K would
seem 10 be the least 1mpona\nt At least, even if significant in effect it is
the most difficult to intebpret in terms of actual fertilizer practice. We
shall decide, thereferé; to confound this one degree of freedom with
blocks, and it remains only to determine the distribution of the treat-
ments ih the blgeks in a manner which will confound this one comparison
and legve all'the others intact. Algebraically, all the treatment effects
can be rp\;jljésent.ed as follows—

)
£ kY

N=(N1—Nu) (K1+K0) (P1+Pﬂ)
= (N1 + No) (K1 + Ko} (P1 — Py)
= (N1 + No) (K1 — Ko) (P1 + Pg)

NXP=(N,—-No{Ki+ Ko) (P, — Pp
N X K = (N1 — No) (K1 — Ko) (P, + Pp)
P X K= (N + Nog) (Ki — Koy (P; ~ Py)

NXP XK= (N1~ Ny (K1 ~ Ko) (Py — Py)
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and on expanding the Iast expression we have—

NXPXE = l+NngK1 + NP1k + NoP1Ko + N1PoKgl| -
—NoPoKo — NiP1Ko — NoP1K1 — N1PoKy}

; ' {+K 4+ NPK+P+ N
or -0 — NP — PK — NK

This means simply that, if we let the symbols represent the actual yields

from the corresponding plots, .the sum of squares for the triple infer-
action will be given by

N
£ X
\

(¥ + P+ K + NPK) — (0 + NP + PK + NP

where k is the number of plots represented in each totakstch as (0 + NP
+PK 4 NK). Now if we divide each replicatiod-info 2 blocks and in
one of these put the treatments O, NP, PK, &K, and in the other,
N, P, K, NPK, then the above sum of squares will contain not only the
triple interaction effect but also the effect gf¢he blocks. The I degree of
freedom for triple interaction will haye\been completely confounded

- with blocks. The analysis of variange for the experiment, assuming
4 replications, will be of«the/ fdrquliBrary org.in

Blocks. .. ..pue i tiriniiiinanas 7 DF
Main eﬁecta\ ................. 3 DF
Simple interactions. .. .......... 3 DF
Error %N, oo 18 DF

Total. . ...l 31 DF

AX v

Since 7 DF haye-been utilized for error control instead of 3 as in an
‘ordinary randomized block experiment, with a moderate degree of soil
heterogeneily, it may be expected that the remaining effects will be
estimated ‘more accurately by the confounded experiment than by the
randomized blocks. '

0. Partial Confounding and Recovery of Information. The pro-
cedute illustrated above resulted in the complete sacrifice of the infor-
‘mation on the triple interaction, and it may be argued that, regardless
of the apparent unimportanee of the information saerificed, this is not
good experimental procedure in that the experimenter is taking too much
for granted in attempting to forecast a result on which he has no previous
: u%_forn__mtion, and using this as a basis for the experimental design. The
dlﬂ.icult.y can be overcome by a process known as partial econfounding,
' whu:h amounts to confounding different degrees of freedom in different
replications and using the results from the blocks in which the particular
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effects are not confounded to recover a portion of the information de-
sired. In order to partiaily confound the experiment described above
and at the same fime reeover a portion of the information on all the com-
parisons, we shall require at least 4 replications. In each replication
we can confound with blocks a degres of freedom from one of the inter-
gotions. 'The method of laying out the treatments in the blocks is ob-
vious if we expand algebraically each of the expressions for the infer-
actions. Thus
NION

K+NPK+ P+
I (NXPXK)=(N1-—Nn](P1—Po)(K1—Ko}=(1—0-_{- NPfPK.— ‘N
0+ NP+ K+NREY
I (VXP) ==(N1—No)(P1—Po)<K1+Kn)=(fo N o )
(+0+ NE+ fPJ}NPK)
—N— _ELNP- PK

K N+NPK
IV (PXK) =(N1+Nn)(P1'—Po)(K1—Ku)=(fg’-lé\;PKtht NK)

IIT (NXK} ={Ni—No)(Pi+-Po)(K1—Kp)=

Then. in the first replication we can confoung thé triple interaction and
conserve it in all the remaining replications.\In the second replication
we can confound the simple interactions¥* X P and conserve it in all
the remaining replications. Witft’i{‘i{eﬁﬂf‘&%ﬁﬁfwe‘m confound each
interaction in 1 replication and consesve it in all the others.

In recovering information Wﬁfl respect to the interactions it will, of
course, be necessary to maké the desired comparisons only in those
replications in which the pa}tl\cular interaction is not confounded.. Thus
if we are computing the gim of squares for N X P we omit replication
II entirely and make 4p our totals from the other three. The final
analysis will be of the-form:

;XBiocks. e ee e 7 DF

a Main effeets, ... ............... 3 DF

NN Bimple interactions,........._.. 3 DF
N> Triple interactions....,......... 1 DF
4 Error.. oo 17 D
Total .. ................... 31 DF

The restflt of thj_s procedure is to sacrifice one-quarter of the information
:‘n eaci;lnteractlon, but the main effects and thag portion of the informa-

ton with respect to the interactions that is i -
with greaton oo O recovered may be estimated

Using a set of figures from uniformy i
rmuty data the procedure for designi

and analyzing g partially eonfounded 2 experiment{ oo
trated in Example 35. . XEX e R e e,




164 THE FIELD PLOT TEST

Example 85. Partial Confounding ina2X 23X 2 Experiment.

TABLE 41

Prax oF FiELo Bzowmvg LocaTion oF TREATMENTS aNp CORRESPONDING YIELDS,
FoE & PaprrarLy Conrounpep 2 X 2 X 2 EXPERIMENT

Replication | Treat- | . Treat- | . Treat- | . Treat- | . -
No. ment Yield ment Yield ment Yield ment Yield N\
NK | 160 P| 153 ol 145 K| 18V
o| 1 [NPEK | 202 | PK | 191 P | er
I PK | 135 N|s8l NE| 300 N 180
NP | 130 K|w,2l NP| 240 | NPK | 305
¢
603 690 LGN BN 926 | 8,005
NPK | 185 N 191 0 {226 P 266
NP| 120 | NE| 188 K{ 450 || NKk| 300
I K| 15 P|1ss | NEK)| 240 | PK | 233
B 0169 || PK| 210 |, ‘WP | 182 N | 218
N 5
594 www.dby agﬁr l'y_org_inso7 1077 | 820
Pl &y P 186 N | 200
: NE| 71 || ~P\| 118 )| NPE | 173 E| @
111 0| 92 W | 15 o| | PK| 224
NPE | 128 VPE | 1o || NE | 213§ NP | 245
451 556 742 771 | 2,520
N X
| 113 pP|le || Pr| 182 E| 208
NOPE | 127 | NE | 197 0| 175 | NK| 228
IV (' NPK | 185 K|182 | NPE | 158 | NP | 248
N 0| 48 || NP| 212 N | 183 P| 268
Y 573 797 - 806 1036 | 3,082
B 11,852

Table 41 gives the location of the trestments in the field and the corresponding
yields. The latter were taken from uniformity data as the results from an actual
esperiment were not available. . Note that the replicate numbers (actuslly two

_ rep!lcatea) correspond with the numbers given opposite the expansion of the inter- .
sactions on page 163. Thus in replieate I the triple interaction N X PXK is con-
founded with blocks, snd so forth for the other interactions in the remaining replica-

- tions. Within each block the trestments are aasigned to the plots at random.

In Table 42 the treatment totals are arranged in a convenient form for the -

caleylation of sums of squares. For example, in calculating the triple interaction
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TABLE 42

TrEATMENT ToTars Ruqumen For CALCULATION
OF SUMs OF SQUARES .

All Minus Minga Minus Minua

Treatment Replieations Reph'lzatwn Replication | Replication | Repliestion
I 111 v
s} 1204 370 900 1032 871
N 1402 1089 933 1078 1108,

P 1624 1199 1170 1284 1219,
X 1392 1021 1082 1156, mr
NP 1505 1135 L1194 1141 A 1045
NK 1610 1151 T 1172 1320 “’ 1187
PK 1481 1155 1038 1078 P ur2
NPK 1544 1037 1149 1243“\ 1203

: "\ 2 '
N X P X K we must use the totals from the replicates i which this interaction is
not confounded. These are given in the third eolumn" d we find
N X PX K = (1021 + 1087 + 1199 + 1086 — 970 — 1135 — 1155 — 1151)%/48 = 88
Bimilarly the interaction P X K is calmﬂated @H;om totals in the sixth column
raulibor ary .ot H. in

P X K = (1219 + 917 + 1045 + 1187, 4— 971 — 1172 — 1106 — 1203)%/48 = 147

The main effeets are of course calculatad from all the replicates, so we make use of
the totals in the second column, ¢ \

O TABLE 43

CoMPLETR) ANALYSIS FOR PaRTIsrsy CONFOUNDED
N\ 2 X 2 X 2 ExpRRIMENT

o\’ .
\v .
A\, Sumsof | DF | Mean
';.‘ Squares Square
O Blocke.............. 112462 | 15 | 7407
N/ Nooooiiian . 1,139 1 1,139
P 3,249 1 3,240
| S 638 1 638
NXPooooooi ... 9 1 9
NXK ............. 3,781 1 3,781
PXE....ioooovvn.. 147 1 147
NXPXK......... 88 1 88
Error............... 61,805 41 1,510
Total. ......cconss 183,408 63

QY



166 _ THE FIELD PLOT TEST

11. Splitting up Degrees of Freedom into Orthogonal Components.

' Before considering the problem of confounding in experiments of a more -
. complex type, the student should acquaint himself with the methods
of separating effects representing more than 1 degree of freedom into
component parts that are mutusally independent and therefore may be
geparately estimated from the data. Thusif we have 3 levels of nitrogen
in a fertilizer experiment, there are 2 degrees of freedom represeniing -
the effect of nitrogen. These 2 degrees of freedom may be separated
with their appropriate sums of squares in an infinite number of ‘ways,
but unless the separation is a purely formal one we will probably wish
to separate them in some way such that they will represent definite’facts
relative to the interpretation of the experiment. In the gase of the 3
levels of nitrogen N1, Nz, and N3, the 2 degrees of freedom can be

~ expressed by &6
{(a) : Ns - M \
() 2N2—-N1—-N3j\‘

and in this form () represents the lineay effect of N on yield, and (b) the
quadratic effect. If the yieldy amesrepresented graphically, (b) will be
zero if the 3 points lie exactly opis straight kine. These two exptessions
merely bring out the fact that'any 2 points can be fitted by a straight line
function, and any 3 pointa-by a quadratic function. Any other division
of the degrees of freedomh, that we might make would probably not have
as valuable & meaning,as this one, although if one felt quite certain that
N3 was a decided(@verdose of nitrogen one might wish to measure the
linear effect by, W3 — N1, and the quadratic effect by 2N3 — N1 — N3
In general, kowever, the expressions such as (a) and (b} are the most
useful. O : ' )
If.we have 4 levels of nifrogen the 3 degrees of freedom may be
() 3Nz + Ns — N2 — 8Ny - Linear term
(d Ne—Ns— N+ N, Quadratic term
() Ns— 3N3s -+ 3N2— N Cubic ferm
The rule for writing out the expressions for the division of degrees of

freedom is to see to it that in each expression the sum of the coefficients is
zero,.and for any pair of expressions the sum of the products of the



SPLITTING UP DEGREES OF FREEDOM INT(G COMPONENTS 167

vorresponding coefficients is zero.  Thus, in the set immediately above,
the sums of the coeflicients are

© 341—1-3=0

{d} 1—-1—-1+4+1=0

(e) - 1-343—-1=40

Then multiplying the coefficients: ' ' )
(¢ X d) 3-1+1~3=0 . \
(¢ X &) 3-3-3+3=0 A
d X e) 1+43-8—-1=0 %

We must remember, however, that if we wish to write:\t\he polynomial
expressions as has been done here there is only Oue set that can be
written, | K7\

The sum of squares for any one of the ahove xpressions may be cal-
culated by means of a simple rule, For ezgﬁmﬁlc, if we have the expres-
sions (a) and (b) the sums of squares are), « '

ww}«!:iibr library.org.in
@ 5 (Vs = Ny D0 o (@Ns ~ Ky W
where the numerical portiqﬁ}»f the divisor comes from summing the
squares of the coefficients ‘within the bracket. The value of % comes
from the number of units entering into each subtotal. For example, in
(8), N1, N2, and Ng'tiay represent subtotals from 8 plots, whence the
complete divisorig48.

An a.ctua&a"?ai‘mple of the division of 3 degrees of freedom according
to the schefite‘outlined above is given by Yates (17). The figures are
for respczn;ée to nitrogen, and the results of the analysis are reproduced
belowd)

A\ ' DF 88
Linear term. .. .......... 1 19,536.4
Quadratic term. ......... 1 480.5
Cubicterm.............. 1 3.6
Total............... 3 20,020.5

When compared with the error of the experiment, the quadratic term
" turned out to be insignificant, and the cubic term was below expecta-
tion. Undoubtedly, this type of result is quite usual in agricultural
experiments, and since we can separate out not only main effects in the. -
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above manner but also interaction effects, it follows that if a portion of
the degrees of freedom for an interaction effect is to be sacrificed by
confounding if is desirable in general to sacrifice that portion that is least
likely to be significant. At any rate, it may be wise to cnsure that at
least the interaction between linear effects may be partially recovered
from the confounded experiment. )
If the interaction between nitrogen at 2 levels and potash at 2 levels
can be represented by (N2 — N)) (K3 — K;) it follows that, if there are
3 levels of nitrogen, the interaction N X K can be broken up mto two
parts:

s
¢\‘

(Kz - Kl) (Ns N}) a.nd (Kz el Kl) (2N2 _ N; S Na)

where the second expression represents the mteractmn of the quadratic
effect of nitrogen with potash. This point may bemore obvious if we
consider (2N — N, — N3) as representing deyiations from linear
regression instead of the quadratic response, aud hence the interaction
meay be written as K regression X N dewatlbn or K, X Ngs. Nowif we
have 3 levels of potash as well as 3 levels)of nitrogen the 4 degrees of
freedom for the interaction N X K mag\be broken up as follows:

Ne X K, (MWbeKQﬁbﬁW.org.in 1 DF
N. X Kas (Ny— N)@2Ks — K1 — K3) 1 DF
NaX K, (2N: — N — No)(Ky — Ky 1 DF
NaX K (2N =N — N9)(2Ky — K1 — K3) 1DF
NXK X\ 4 DF

and it may be of mterest to do this from the standpoint of obtamlllg
complete informatioh with respect to the interaction. Yates (17) has

given a useful@able for caleulating the sums of squares, which is repro-
duced belo\(m Table 44.

- TABLE 4
< ~ ) . Gumz rorR CALCULATING StrMs OF SQUARES FOR THE

a8 InrERACTIONS IN A 3 X 3 TaABLE

N: X K, N: X K4 NaX K, NaxX Kq

K Ks Ks K1 K2 K; K1 Ko K3 K Ks K
Ni| +1 -1 M| =142 -1 | M| -1 +1 Nii 41 -2 +1
Na : Ny N:| +2 ~2| Npf —2 +4 -2
Nel =1 41} Na| +1 =2 41| Ng| 21 +1| Ny| +1 —2 +1

k = Numbet of unita in each cell.
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To use the table it is necessary to get up a table of subtotals in the same
form as the above squares. The subtotals are added or subtracted
according to the signs in the appropriate table. Thus if the subtotals
are represented by .

x Z2 T3
n Yz ¥
21 2y Z3
we get the sum of squares for N a X K. by ~
1
igk Btk m —m = n = )

N\

In certain cases it may not be necessary to divide up the, degrees of
freedom into orthogonal components that have any definife. meaning, in
which case we refer to the division as a purely formal ohe, A 3 X 3
table, for example, may be represented as follows:\\ '

) Py P, P \\

and from knowledge that, h@s.t}een derived from a study of the properties
of the Latin square, Figl%r, (2), it can be shown that the 4 degrees of
freedom representing bhe interaction N X P can be split up into two
orthogonal components by making up totals from the diagonals of the
above square, ‘This 2 degrees of freedom of the interaction is repre-
sented by thedifferences between the totals (11 4- 22 + 33), (21 + 32 +
133, (31 +‘1\2 + 23}, and the other 2 by the differences between the
totals (13- 32 4 23), (21 4 12.4- 33}, (31 - 22 + 13). Asa matter of
factthis’provides a very useful method of calculating the interaction in
a 3 X3 table as it is a direct method and the total sum of squares cal-
culated independently from the same table may be used to obtain s
perfect check on all the caleulations.! The division of the 4 degrees of
freedom is, however, purely formal. In other words, we would expect
that on the average the two components would give us equal estimates
of the inferaction variance. ‘

! Note that the second eet of totals can be obtained most eszily by setting up the
numbers in the first three totals in the form of another square, and taking from this
square ihe same disgonile ag ‘were used in the first instance.

-



170 _ THE FIELD PLOT TEST

12. Confounding in a 3 X 3 X 3 Experiment. We shall now con-
sider the possibilities of confounding in a 3 X 3 X 3 experiment. The
3 main factors can be represented by N, K, and P, and since each
of these oceurs at 3 levels there are 27 different combinations. The 26
degrees of freedom for treatments can be subdivided at first as follows:

N 2 DF
K 2 DF ; Main effecta 6 DF
P 2 DF

: A
NXK. 4 DF
NXP 4 DF :Simple interactions 12 DF K\
KXP 4 DF A

Ny

NXKXP 8DF Triple interaction 8 DF

‘Now if we wish to conserve the main effects and the simple interactions
we must have at least 9 plots in each block. That'is, the 3 levels of
each fertilizer must each be represented by 3 plots; and the 9 combina-
tions of each pair of fertilizers must each be re’pﬁsented by 1 plot. The
required combinations to fulfill these confhifions are given by a3 X 3
Latin square in which the rows may be teken to represent the 3 levels
of nitrogen, the columns the 3 levels\of potash, and the Latin letters
~ (ere replaced by numbersy-sheaglievely ateplosphate. R. A. Fisher,

in introducing this solution, points out that there are only 12 solutions
.of this 3 X 3 square and thg{these 12 fall into 4 sets such that in any one
set the other 2 may be generated by cyclic substitution of the numpers in
the square. The ent.i’r§1\2 solutions are reproduced below,

. a b c
~’\ L ——, ——
A 1 2 3 2 31 3 12
NYT1 2 31 31 2 1 23
AN 31 2 12 3 2 3 1
N 13 2 213 3 2 1
~\ msezi1 13 2 21 3
\ 9 21 3 321 13 2
123 2 8 1 312
I 31 2 12 3 2 31
231 31 2 1 2 3
13 2 - 21 3 321
W 21 3 321 1 3 2
3 2 1. 132 2 1 3

To nflake' the meaning of these squares perfectly clear, suppose that we
consider the treatments represented by the square I (a). These are,
NiK1 Py, N1K3P3, N K3Ps, N3K1Pg, N:K2P3, etc.  In any one replica-
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tion we must have all the treatments of one complete set such as I, I,
111, or 1V, and within the replication the division of the treatments into
blocks is according to the division of the sets into (a), (8), and (¢). In a
single replication we have 2 degrees of freedom for blocks, and these
must represent 2 degrees of freedom of the triple interaction that have -
been confounded, as we have seen to it that the main effects and the
simple interactions have all been conserved, It follows also that it is
impossible, if the main effects and the simple inferactions are conserved,
to confound more than 2 out of the 8 degrees of freedom of the trigle
interaction. Such being the case, we shall still have, after confoundmg,
6 degrees of freedom for the triple interaction, which we may usé ta test
the significance of the residual portion of this effect. « M

The actual procedure of confounding in an experiment GFthis kind is
to set up the treatments and divide them into blocks according to one of
the cyclic sets. The same division of the treatm_eiits‘ into blocks is
retained throughout the remaining rep]icatio MNIn analyzing the
results, if set I'has been used for confounding, the sets 11, II1, and IV
are used to build up the treatment totals fromgv ch the sum of squares
for the triple interaction is calculated The ‘details of this are given in
Example 36, :

13. Partial Confounding in %@Eﬂa&iﬁraﬁ}ﬁ?ﬂ%ﬂm By the
methods deseribed above we are a:ble to divide the 8 dégrees of freedom
for the triple interaction into 4-gets of 2 that are mutually independent
and therefore may be separdtely estimated from the data. But these
sets represent purely fortnd ’diﬂerencea, and although we eonfound only
2 of them and conserve 6, we are not able to separate out particular
effects such as that mpresented by N, X K, X P, for pariicular study.
To do this we ust. adopt the method of partial confounding which
results from using each of the c¢yclic sets once, one for each replication.
We require; Qerefore a minimum of 4 replications. = Space is inadequate
here {o gomto detail regarding the method of separating out the particu-

lar comiponents, but the student interested in these further aspects of . .

confounding will be able to obtain further information. from R. A. .
Fisher's ““The Design of Experiments,” and from the monogra.ph by
F. Yates, “Factorial Experimentation.”

Example 3¢. A Confounded 3 X 3 X 3 Experiment. In the preparation of this
exsmple, data from a uniformity trial have been used. It serves therefore merely
to show the technique of sefting up and analyzing a 3 X 3 X 3 experiment in which
2 degrees of freedom from the triple interdction have been confounded with blocks.

As indicated in Table 45 giving the ireatment numbers and the corresponding
yields, the distribution of the treatments into the 3 blocks of each replication is
according to eyclic set I ag described above. In order to abbreviate, only the sub-
script numbers of the treatments are given, it being assumed that the three ingredienta
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guch aa NEKP are in the same order in each case. Within the blocks the treatments
are, of course, randomized.

Tahle 46 is obtained by collesting the plot yields from Table 45. It is used for
calculating the main effects and the simple interactions. At the foot of this table are
given the treatment totals from which the sum of squares for the 6 degrees of freedom-
for the triple interaction is calculated. These ireatment totals may be obtained very
quickly by the combined use of the cyclic sets as given on page 170 and the 3 X 3
tables for N and K, one for each level of P. Knowing that set I has been used for
confounding, we obtain our treatment totals for caleulating the triple interaction,
from the applieation of sete II, III, and IV, to the data given in Table 46. For
example, taking set II we note that the 1’s in group (=) correspond in Table 48 @)
with 1604, 1523, and 1912; the 2'a correspond in Table 46 (b} with 1863, 2030, and
1845; and the 3's in Table 46 (¢} with 1741, 1838, and 1917. Adding all theé.m?alues,
we obtain 16,303, Then to obtain the next total the same process is refeated, using
the square indicated by II (b), and finally the third square, IT (c)pgives the third
total. The sets ITI and IV are then used in a similar manner to opain the remaining
totals. The sum of squares iz ealeutated for each set of 3 totals anc! these are added
to give the sum of squares for the & degrees of freedom ‘af\the triple interaction.

Mainly as an exercige, the sums of squares for the individual degrees of freedom
#a represented by the regression and deviation from ;egx}ssion effects have all heen
caleulated and are shown in the snalysis of variancé\Table 47. These caleulations
are very simple if one makes use of Yates's diagfam,és given on page 168. A few of
the caleulations are reproduced below for furt}:gei-'g’uida.nce:

N, (15,393 — 16,900)2 A ) = 15,771.17
N, X K, (5403 + 5706 — m%’ijébi)‘ilj&m Y orean ~ 17,332.51
Na X P (2 X 5244 4 5057 + 5506 4812 — 5667 — 2 X 5207)2/288 =  16.06
NaX Kq (5403 + 5376 + 4 X ‘- 4804 - 5706 — 2 X 5520

— %5086 — 2 X 5818 — 2 X 5074)}/864 =  13.25

\\
METHODS FOIL TESTING A LARGE NUMEBER OF VARIETIES

S

14. Genera), Principles. In factorial experiments, when the total
number of combinations is fairly large, we have seen that greater accu-
racy can b&obtained by confounding with blocks certain of the degrees
of freedom'for the higher-order interactions. In variety experiments the
numbers are frequently quite large and we again meet with the problem
of insufficient accuracy owing to the large size of the blocks. In order
to overcome this difficulty Yates has developed methods that, by & pro-
cedure analogous to confounding in factorial experiments, enables us to
divide up the replications into much smaller blocks, and these are used
as error control units. Since the small bloeks contain only a fraction
of the total number of varieties, they are referred to as incomplete blocks.
Yates (20) in a preliminary examination of uniformity data concluded
that incomplete block experiments would give increases in efficiency over
randomized blocks of 20 to 50%. Goulden (6) arrived at practically
the same conclusion after » fairly extensive study.
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TABLE 45

TrEATMENT NuMmeERe 4ND CorrEsroNpmNg ProT YiELDS FOR 3 X 3 X 3 ExPERI-
weNT. TEA Sams Two Deareps oF FREEDOM FROM THE TRIFLE INTERACTION
CoNrounpED I¥ ALL LEPLICATEA

Troat- Treat- Treat~ Treat- Treat- Treat-
ment | Yield | ment | Yield || ment y Vield || ment | Yiald || ment | Yield || ment | Yield
No. Na. No, Ho. No. No.

212 156 131 153 121 145 111 189 232 153 || 233 210
321 179 311 02 || 233 191 122 272 112 228 132 225,
231 i3s 232 153 323 300 | 213 150 131 122 L 121 200
133 130 333 182 331 240 )| 318 305 a11 281 3124, 262
313 155 213 191 21 224 223 266 23 834 || BN ) BE9
111 129 112 138 312 159 321 200 833 208 381 150
223 151 221 188 [y 222 240 11 231 233 221 2764 113 267
332 159 123 210 113 182 ) 282 278 322 355Nk 222 338
122 154 322 143 132 186 133 209 123 24% 323 323

Block v
totsle | 1351 1380 1869 2212 %202 2434
122 7 213 i1 233 172 133 SR VLEL 303 132 71
313 22 I 112 115 132 170 azL 23 S 221 221 331 251
133 128 333 179 113 213 s3a N2 213 218 211 199

821 1s || 123 | 138§ aza | 1sa|| swsoheall 232 | aus| 121 | 120
231 | 127 am | 1ov | me | 17slf 1zaMoze || su | 260 | 23 [ sar
11 | iss|l 81 | sz 121 { 156 .23 s} 123 § 220 13 | 282
N2 | 48§ Sez | 212 213 r\g)a ! ﬁ% . gﬁr 33z | ssol sz | 303
2332 ] 215 201 § 120l 222 | RV UTYe9rg.iv || 233 | s00

283 132 232 162 331 N 019.2 212 326 112 314 ] 222 47

Block R .
totals | 1217 122 | AN 1ss2 2152 2541 2219

231 102 131 105\ \121 154 || 223 154 112 233 132 289
212 143 333 22| B3 145 133 197 311 267 323 285
a13 171 123 pa L 312 214 332 197 232 318 || 312 179
321 180 112N \480 531 219 321 227 131 250 || 233 191.
111 158 213\ 165 211 156 22 222 221 227 121 137
122 279 || 232 178 11z 187 111 230 123 197 || 28t 7

223 | 2254 811 { 1se(l azs | 248l 231 | s0e )l 322 | 181 211 | 102
332 | 1s0JN"S22 | 212f 202 | soelf 122 | 201 213 | s2s | 13 | 203
13 | s0¢f| 221 | =3¢l 113 | 26 313 | 251 288 | zar | 222 | 280
Black (i~
Cotale™ 1423 1670 1808 1882 2158 1852

813 124 213 276 323 27s || 212 228 221 260 || 233 388
133 138 833 265 132 225 513 293 311 18g (| 282 228
122 287 i 245 331 343 11 34 213 300 || 323 244
212 285 221 164 233 145 || 231 212 333 244 | 121 324
223 209 112 264 113 258 122 320 131 309 || L 421
111 180 311 b 121 194 133 325 322 25% 113 34
332 259 232 283 222 280 | 821 464 112 334 §| 331 834
321 215 [ 322 259 312 304 332 376 232 247 || 312 240
231 262 123 243 211 288 || 223 410 123 263 132 360

Rlaek
totals | 1947 2290 2310 2054 2393 2894
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TABLE 46

TrEATENT Torars CoLLEcTED FROM TABLE 45 FOR CALCU'L-ATION
oF SuMp oF SQUARES

Ky Ks K3
N1 1,604 1,520 1,679 4,812
(@) P N 2,031 1,600 1,523 5244 k=8
N3 1,845 1,912 1,910 5,667
5,480 5,131 5,112 15,723
~
K, Ks F.¢Y a
Nt 1,805 1,826 1,893 5,524 N
) Pa N, 1,651 2,030 1,808 5480\ K = 8
- Na 1,845 1,913 1,879 5,637
5301 5,769 5,580 | 16,650
K K» Kaw\\
\ N 1,904 1,741 1 320 5,057
(&) Pa N2 1,838 1,716 1743 5297 k=8
Ns | 1686 1,003 /9h917 5506
5,518 5,450, 4,952 15,850
K1  Ka/ K;
Ny 5096 £.804 15,393

(Pt+P:+PFs) N2, 5.074 16,030 k =24
N ¥ “’“p%m‘b%gs‘”‘g ing' 706 16,000

16, 299" 16,350 15,674 48,323

A Ky K
P, (155,480 5,181 5,112 15,723
(M + N2+ Ny Ba\[ 5301 5,769 5,580 16,650 k =24
F3 5,518 5,450 4,082 15,950
16,299 16,350 15,674 | 48,323
A
'\” 4 Py Ps Py
8 M 4,812 5,524 5,057 15,393
(EyhKa-+ Ky Na | 5244 5489 5207 16,030 k = 24
R\ Na 5,667 . 5,637 5,596 16,900
A\ N 15,723 16,650 15,950 48323
Vo Py P2 Py
: K 5,480 5,301 5,013 18,209
(N1 Na++Ny) Kz | 5131 5,769 5450 | 16,350 & =24
K 5,112 5,580 4,082 15,674

15,723 16,6560 15,950 18,323

1L 111 3
ga) 16,303 15836 15,831
b) 15720 16506 15764 k=72
(e} 16,300 15981 16,728

48,323 48323 48,323
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TABLE 47

ANALYETS OF VARIANCE FOR 3 X 8 X 3 EXPERIMENT SHOWING Sums oF SQUARES
For INDIVIDUAL TrREATMENT DEGREES OF FREEDOM

5%
DF S8 S8 DF| MS F Pat,
Blocks. ....... o3 | 548,407 | 548,407 | 23 23,844 | 8.83 | 1.50
ﬁr ------------ i 15{;{13} 1807 | 2| 7048 | 204 [ 385"
T ) A
Peooooo ol 1 358 205
Paooo 1 6,128} 6485 | 2| 3,243 | 1.20 48
- i 2,713 Ao
Xa " 1,223} 3,936 2 1,968 ) 023 3.05
N, X P ... 1 1,040 1 fs,
N, X Py 1 4,737
Nl . 16 5,900 4| 1,83%)| 0.55 | 2.43
NaX Pa...... 1 116 AN
N X Koo .. 1 7,332 {C
NeX Kaooo... 1 1,508 '
S B ! Vres|| 10619 . 4] 2655 | 0.98 | 2.43
NagX Ky ..... 1 13 . ».”‘
PeX Knoo.... 1 204 kot
P, X Ka 1 1,860 || ‘vwidbraulibrary.orgin
ARSI ) 7499 L1357 4 8300 | 1.05 | 2.43
PiX Kq...... 1 1,791 '
(2 3,131
NXPxK.| 2 %«04 14,631 6| 2438 | 090 | 2.15
2 .
Error......... 168 453 500 | 453,609 | 168 | 2,609
9 5’ 1,070,750
&\

15. Incomplete Block Experiments. There are a number of different
types; of incomplete block experiments, and only those are deseribed here
th&t Would seem to be of the greatest practical value in agronomic tests. '
The"type which can probably be regarded as the most elementary is
known as the two-dimensional quasi-factorial with two groups of sets. By
extending this type to three groups of sets we have a somewhat greater
degree of complexity, and this complexity confinues to increase with the
number of groups of sets until we reach the point of using all possible
groups of sets, wherein the entire process of analysis suddenly becomes
very much simplified. The latter type may be referred to as a symmet-
rical incomplete block experiment. Quasi-factorial experiments of the



176 THE FIELD PFLOT TEST

three-dimensional type are also possible, and one of the simplest of these
will be described.

In discussing the general principles involved in incomplete block ex-
periments we shall consider an hypothetical experiment with only 9
varieties. With such a small number of varieties it would probably not
be worth while to use these methods, but a small example of this kind
will be quite sufficient fo illustrate the general principles. First, we
take 9 numbers to represent the varieties and write them down in the
form of a square. These are two-figure numbers, the first figure rep-
resenting the row and the second the column of the square.

N

(NN

nm 12 s O
21 22 23 PAY
31 32 a3 N ¥

7

.‘\ \ "
If we suppose now that this square represents, imistead of 9 different
varieties, 9 combinations of 2 factors at 3 level$)as in a simple 3 X 3
factorial experiment, the degrees of freedom'\ba}l be divided as follows:

A (factor for which levels are indicated by first ’ﬁgure of two-figure numbers) 2 DF
B {factor for which levels are indicated by seeond figure of two-figure numbers) 2 DF

4 X B (interaction) — db]"'@dl:ibl:‘a]“y.ol'g.i;n 4 DF
Furthermore, since the 4 DE, for the interaction can be separated into

_two orthogonal components,»each represented by 2 DF, the total of
8 DF can he split-up i 1’@4 pairs, Then if the 9 combinations making
up a complete replisation are divided into 3 blocks, either one of the
above pairs of degréed of freedom may be confounded with blocks. If
we should decid®\té confound the A factor with blocks, the degrees of
freedom for,on replication will be apportioned as follows: '

R Blocks. . ............... 2 DF
'\n A B 2 DF
¢ ~\J ' AXB.......o.L 4 DF

and the method of confounding would be merely to put the treatments
together in the same block that occur in the rows of the square given
above. Similarly the B factor may be confounded by putting the treat-
ments in the same block that ocour in the columns of the square. Then
from our knowledge of the properties of a Latin square it is clear that
if the interaction A X B is to be confounded it is only necessary to put
the treatments together in the same block that oceur in the diagonals
of the square. In one replication we can confound only 2 out of the 4
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degrees of freedom. For example, in one replication the arrangement
of the treatments in the blocks might be as follows:

Block1............. 11 22 33
Block 2. ............ 21 a2 13
Bloek3............. 31 12 23

Blocks. ................ 2 DF
Ao 2 DF "\
;S 2 DF

AXB.... i 2 DF

N
Alternative to the above scheme 2 degrees of freedom from the inter-
action may be confounded with blocks by this arrangemefit®

7

Block 1........... 11 32 23\
Block2........... 21 12 33
Block 8........... B 72 003

Finally, it works out that in each rep]jca.tiqn\ja different pair of degrees
of freedom may be confounded with blocks,"in which case the analysis
of variance will be of the following fgljlri;

Blocks. . . .. “3AW.dbraulipyspy org.in
A N T 2 DF
B....Jd « SR 2 DF
AXB. 4 DF
Q@p ............... 16 DF

By a process of partial confounding all the degrees of freedom for the
9 treatment combinations can be recovered, and at the same time error
control has begfisimproved by the use of smaller blocks. The loss of
information, due to partial eonfounding is seen to be exactly 4, since
each pair.p%egrees of freedom has been confounded in 1 replication and
consery\éd"in 3. In other words, both the main factors and the inter-
acgion.are determined with § of the precision that would have resulted
if there had not been any confounding. The presumption, of course,
is that the error will be sufficiently reduced by confounding to more
than make up for the loss in precision.

Returning now to the testing of 9 different varieties, it should be
obvious that, if the varieties are designated by numbers and arranged
in a square as above, we can go through the same procedure of partial
confounding as has been outlined above for a 3 X 3 factorial experiment,
and theoretically the same increase in accuracy due to confounding will
be obtained. The method of anslysis will also be clear from these con-
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siderations, as we work it out in the first place as though it is a factorial
experiment and, after finding the sums of squares for the imaginary
factors and their interaction, we combine these to form the variety sum
of squares.

The fact that the variety numbers are first arranged in the form of a
square simulating a two-factor experiment is the basis of the term “ two-
dimensional.” The number of groups of sets iz based on the number of
groups of degrees of freedom that are confounded with blocks. In the
quasi-factorial 3 X 3 experiment, for example, the 8 DF for the 9 freat-
ments can be divided orthogonally into 4 pairs, and if we eonfotmd only
2 of these pairs, the experiment iz said fo eonsist of * two groups of sets.”
With 9 varieties we have seen that 4 pairs of degrees of freedom can
be confounded, in which case we might refer to the experiment as one
with ‘four groups of sets,” but as pointed out ahoyé it is usual to refer
to experiments of this type as symmetrical incompléte block experiments.

In a quasi-factorial experiment with only, t®We groups of sets it will
be obvious that all comparisons are not made with the same precision.
Suppose, for example, that the blocks axémade up out of the rows and
columnis of the square, in which case the-analogous factorial experiment
would be outlined as follows: - \\

www.dbradlibrary org.in

Blocks.......... B5'DF (assumirg 2 replicates only)
A s AN2DF o :
B 2 DF

In which the imaginary factors A and B are confounded in one replicate
and conserved\in the other, while the interaction A X B is conserved
in both mplichtes. The main factors A and B are determined with
only i&% precision with which the interaetion is determined, and
‘transférring these ideas to a variety experiment it becomes clear that the
watieties that ocour in the same row and in the same eolumn are compared
meore accurately than those that do not oceur at all in the same block.

Another point that we should note here is that in estimating the result
for any one treatment combination of the partially confounded factorial
experiment, or of one variety in the quasi-factorial experiment, it will
be necessary to make & correction for the blocks in which they occur.
Tl_le actual totels are partially confounded with blocks. One variety
may oceur mainly in low-vielding blocks and another one in high-
yrelding blocks, and therefore the actual yield of the first variety must
be increased and ‘the yield of the second variety lowered, in order to

make the two variety yields comparable. The details of this method
of correction are given.})elow.
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 16. Two-Dimensional Quasi-Factorials with Two Groups of Sets.
Assuming that only 9 varieties are to be tested, the first step is to take
9 pumbers to represent the varieties, as pointed out above, and arrange
thern in the form of a square. The next step is to arrange the varieties
in sets according to the rows and columns of the square. These are
given below and the first group of sets is referred to as group X and the
second group of sets as group Y.

Group X Group ¥ ) A
i1 12 13 11 21 3 5
"N
21 22 23 12 22 32, N
—_— N N
31 32 33 13 23 ¢ "33

The varieties in the sets are those that are assigiied to the incomplete
blocks, and each group makes up a complete replication, The varieties
occurring in the same block are, of course; {hose that are between the
same set of parallel lines in the above figure. The groups can now be
repeated as many times as we wish iziiic:m:ler fo bring up the replicates
to the required number. The vatieties are rendomizéll within each
block, but the blocks themselves mby be placed in any order.!

Figure 11 illustrates diagrammatically the set up of the experiment
assuming 4 complete re liq‘aﬁons. The yields may be arranged in &
form somewhat similap.to*this for convenience in calculation. After
setting up the origingbyields they must be combined for each group and
then for both groués\. The marginal totals are then obtained for each
group and for ,bt}th groups combined, and we are ready to proceed with
the ca.icula{i\iﬁf the sums of squares and the corrected variety means.

The galgulation of the variety sum of squares follows from the analogy
to a'i;a{ct(jria] experiment.

) DF
In Group ¥ A= Z(Y2)/np — Y2 /np? p-1
In Group X B = Z(X%)/np — X% /np? p-1

Group X + Group Y(4 X B) = 2(T5,)/2n — 2(T5.)/2np
- Z(T2)/2np + T2 /202 . (p-1)2

1Tn certain eases the experimenter may decide, even after conducting the experi-
mer.lt a3 a quasi-factorial, to use the actual yields or some other character of the
varieties, without correction. For example, he may wish to make quality or other
tests on composite samples made up from ali the replicates. For this purpose it is
somewhat bettet to have the incomplete blocks randomized within each replication.
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G_roupX Group Y
11 12 13 11 12 13 11| 12 ] 13 11112 |13
21 22 28 21 22 23 {eot1i22|2s 21 | 22|23
31 32 33 31 3 33 31| 32133 3113233
Xy. Y.
N\
m zme T | X1 yn yu v | Vi
T 2 x| Xo. vi Y Y ;i’\z-
zm w2 Im | Xa. yn Yz g;s | ¥Ys.
Xo) X Xo X5 | X, Y| X3Ys ¥olY.
oy

NS

Tn Tu »T13 T
W wgigl?rajqdbliﬂﬁy P, in

Tsl ng Tas | Ts.

x4
&N
‘ﬁ Ta Tae Ty | T..
Fig, 11. Representation of a miniature example of a two-dimensional quaa\ai—falstm‘iﬂ1
O experiment with two groups of sets.

't\u
where p§ §"the number of varieties in one set and n is the number of
repetitiong of each group.

Yates (20) gives a direct method of caleulating the sum of squares for

omn}at.les which is probably quicker than the one used above. Yates's
\formula is

Varieties (S8) = S(T%)/2n+2(X.. — Y..)z/znp+-2(x., — Y. 2np
~{X.. = Y. /2np? — [B(X2) + Z(Y2))/np -

We next calculate the total sum of squares for all the plots and for the
blocks, and obtain the error sum of squares by subtraction. The sum-
marized analysis is of the form

-DF
Blocks. . ............ 2np — 1
Varieties. ........... 2 1
Emor............... -2 —p—-1)

Total........... 2np? — 1
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Just as in the factorial experiments that have been confounded all
comparisons must be made within blocks. This means that to compare
2 varieties directly we cannot use the actual variety totals but must
prepare for these varieties ratings based on their behavior as compared to
other varieties in the same blocks. The least squares method gives us
as the best rating for any variety uv, the following expression which we
shall refer to as a corrected variety mean.

T 1 1 : ,
—_ oW . -— - — N\
tuo on + o (Xo - Y. + Pnp (Y. — Xu.)

N
¢\

If a large table of yields is to be corrected it may save time to st hp the
corresponding portions of the correction in the margins of the table. If

welet €., = 1 (X.o~ ¥ )and Cy. = L (Y. — Xcl);tilen .1 will be
2np 2np

~NY;
the portion to be added to all the variety meas i the first column, and
C:. will be the portion to be added to all the yariety means in the first
row. Y,

In this as in all other quasi-factorial @rrangements the error variance
must be multiplied by a factor depesiding b élibtypecfanperiment, to
give the variance for comparing 2 varieties by their corrected means.
If s? is the error variance, the ‘variance of the difference between the
corrected means of 2 varieti@'&\that occur in the same set is

&
¢ £ip+1
,\'.V(izx — i) = n( 2

N

A . .
For 2 variet.{a’n,ot having a set in common the variance of the difference
is s\

N\ : g(pt2
o) Vitez ~— 1) n( » )

y \ ™

The mean variance of all comparisons is

_Emp+3
V"_n(p+1)

and when p is vot too small we may use the latter variance for all com-
parisons without appreciable error.

Example 37. Two-Dimensional Quagi-Factorial with Two Groups of Ists.
Usaing uniformity dats and amsuming a teat of 25 varieties in 4 mpliuﬂm this
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example has been worked through in detail in order to show the methods of calcula-
tion. Setting up first the specifications of the test:
Varietiesimeach get (p)........ ..oy 5

Varieties (8) = poo..oo i 25
Beta (8) = 2P v i0

Replications of each group (n)............... ... = 2
Replications (r) = 27..........coveoeaio o = 4
Blocks (B) = 20p...00oivie o ginannns ..., =20
Total number of plots (W) =2np%............ ... =100
The variety numbers are firet written down in the form of a square:
N\ -

11 12 13 14 15

21 22 23 24 26 £\

at 32 33 3 3B <\

41 42 - 43 44 45 \

51 b2 53 b4 &5 Wy

~

and the 10 sets in 2 groups of & taken from the rows and columiin,bf the square, The
varieties in these sets are then randomized in the blocks as\indicated in Table 49.
Here the groups are repeated twice so that (n = 2) and {r’= 4), and the groups are
separated in the field. Yt might be wise if there is a m{rked difference in variability
in different parts of the field to randomize the bloclég’over the whole field instead of
keeping them together aa complete replications; but\in general this would seem to be
unnecessary and it is & decided convenience from'the standpoint of making observa-
tions on the plots to have all the plots in onie réplication together.

After obtaining the block totals andithe grand total the next step is to set up
Table 50, the construction"of wiiekastialarpreestmo difficuliy. Note that the
marginal fotals X, and ¥, are thaoge in which variety and block effects are con-
founded.

By the shorteat method t‘he‘sum of squares for varieties is calculated as follows—

2Tqen .. L\ S = 1,961,637.50
DX — Yu R8N e =  81,162.50
(X, — Y-,)i%p." .............. = 117,817.50
~(X. ~ Y.}y ... ... e =— 51,076.50 )
—{2@8) £ ZFD mpe = —2,058,800.00 (Groups + Sets + Meaa)
T;:@é Varieties (88)......... = 50,741.50

fljgla,'i:otal sum of aquares for sl plots is 630,266.00 and for blocks is 467,586.00. .
'Ha\v;ng obtained these, we can set ap the analysis of variance.

TABLE 48

ANALYSIS OF VARIANCE _
Two DIMENBIONAL QuUasi-Facrorial—Two Grours or SETs

88 DF - MS F 5% FPoint
Blocks......... - 467,586.00 19 | 24,6008 12.3 1.78
Varieties.,.....|  50,741.50 26 | . 2,1142 1.06 1.72
Error.......... 111,938.50 56 1,998.9

Total........ 630,266.00 9
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In order to obtain the corrected variety yields we caleulate

: 1
Co=—(Xy—Yyfors =1,2,345
- 2np

Cy = 1 (Ve — Xudforu=1,2,35,4,8
2np .

These are entered in the marging of a (5 X 5) table as in Table 51 and added to the
actusl means of corresponding cells in the table.
'Fo obtrin a further check on the sums of squarea for varieties we ean now caloafate

it in another way using the formuisa N\
e

Varieties (38) = Z(hy-Tus) — Sl Xu) — Z@o-Foo) O

where £y, for example, is the mean of all the ,, values in the ﬁrst‘mv; of Table 51; .

%7

and t. is the mean of the firat eolumn. LV
To make comparisons between the corrected means we miay ib we wish to be exact

take into consideration whether or not the varieties being comipared ocour in the same
set. To compare varieties 21 and 22, for examp]e we calq te the varisnce aecord-
ing to the formula

Vit — t) = > (" + 1) (1998*9 ) — 11993

SE(ly — tn) = V11993 —\v%@dbrauljbrary,org.in

161 50 - 123.75
. AL L
¢ {4‘ & 08
{ 3
To compare varieties 11 and\S\}owe would have

Vitn ~ m} == (” + 2) (199&9 —) = 1309.23
\

.sw{zu — ) = V139923 = 37.41

\ :~ 135.256 — 170.25
O ¥ A = ——— =},
AN i 3741 0.94

We would obviously not be very far wrong, even with & p value as low as 5, to use
for all comparisons the mean variance for the difference hetween 2 varieties. This-

would be
£ (p+3 19986 8
V,,.=—-(p+1) ( 3 Xﬁ)mlm.ﬁ

SE. = V13826 = 36.50

* The £ used here i, of course, the statistic defined by R. A. Fisher in “Statistieal -
Methods for Besearch Workers.” .
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TABLE 49

PosiTioN oF VARrIETIES 1N THE FI1ELD AND CoRREsFONDING PrOT YIDLDS.
Two-DiMENSIONAL QUABI-FACTORIAL EXPERIMENT
wite Two Grovurs oF BETS

Vari- Vari- Vari- Vari- [Vari-
Set _ Block
No. || & | Yield | ety | Yield | ety | Yield | ety | ¥ield | ety { Yield | oy
No. Ne. No. No. Neo. N
1y || 81 j 215 || 21 | 300 | 81 | 255 || 41 | 185 || 11 | 145, j 1,100
2y || 22| 160 || 12 | 50 |[ 52 | 45 || 82 | 105 |[ 42 | 156/ 505
By | 55 ) 125 | 85 ) a0 ) 16 ) 65 || 25 | 130 || 45 | \55 405
4y 147 85 || 34| 55| 54} 110 || 24 | 130 || as\"40 420
3y || 83| 45 [ 43| 45 || 13| 60| 23 | 15 F'BB -5 160
1y f 10 ) 210 || 2t | 200 || a1 | 325 [ 31 | 230\ &1 | 220 | 1,278
2y § 12 | 310 || 32 | 280 j 22 | 185 || 52 j. a5 | 42 | 245 || 1,135
By || 15} 315 | 45 | 215 || 56 | 160 | 25785 || 35 | 230 | 1,205
3y || 53 { 185 | 43 | 220 || 33 | 176 (\Ad\] 275 || 23 [ 185 | 1,040
4y || 14 [ 130 || 24 § 190 || 34 | 160 N4 | 110 || 54 | 155 745
1x || 14 | 140 [ 15 | 165 || 11 | @85 || 13 | 150 || 12| 180 [ 900
4x i 41 | 100 || 42 | rs6vi[dasedlibgpry.age.in145 || 44 | 205 775
3x || 33 | 250 | 31 | 160 || %S| 150 || 84 | 195 |} 32 [ 155 || 900
2x || 22| s 21 [ tos dhos (180 || 23 | 180 | 24 | o0 580
bx | 55| 40l 64 | 155|053 | 65 | 52 | 60 || ;1 [ 40 360
s\ J
g 86 | 115 | 54 K 5 5320 | 51 ] 120 || 52 | 125 785
1x || 11} 145 }§ 18 105 || 14} 50 |y 15 [ 130 || 12 | 135 565
3x || 32 | 160438} 115 || 34| 60 || 35| 110 { 31| 25 460
2x [ 21 5\P24 | 65 | 25| 70 28 | 60l 22} 20 220
x| 4l 307 42| 50 )| 43| 35 || a5} 200 44| s0 185
Fa Granad Total =} 13,720
O 3
4 TABLE 50
- Y1ELD8 OF VARIETIEE BY Guours, ANp Toran Yieups vor Born Grours
Values of 24¢
7
:\ 1 2 3 4 5 Xu.
1 [418 315 255 190 295 1,465
2 1110 95 240 155 200 800
Group X | 3 | 175 '305 385 256 260 1,360
4 L1220 185 180 255 120 960
5 | 160 i85 305 340 155 1,145
X, 1075 1085 1345 1195 1030 5,730

=X.
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TABLE 50—Continued
Values of #us

E
k1_2345 Yu

1 1355 360 835 215 380 1,645
s | 500 305 200 320 415 | 1,830
3 | 445 333 170 215 260 | 1495
W 1510 400 265 150 270 | 1,59
5
%

Group ¥

475 240 230 2656 286 1,495
- 2375 1640 1200 1165 1610

o1
=)
3
n
=4

Values of Tye

v Y
kl 2 8 4 5 - T R,

’ 1 | 765 675 590 405 675 3,110 - & M
Group X | 2 | 700 - 400 440 475 615 2,630 N
+ 3 | 620 640 535 470 520 2,785
Group ¥ | 4 | 730 585 445 405 390 2,666 L €
5 »
T.

635 425 535 605 440 2,640\
. 3450 2725 2545 2360 2640 11@20 =T.

v Xw— Yo T .
1 —1300 1 N\ 1580
2 — 555 2 N\ 1030
db bidr: .
5 _ 580WW ]‘:a}l. 5‘1 ary.ot gg@o
(X.. ~ ¥.) =—2260 . (¥.— X.}=2260

TABLB 51

CALCGLATION OF Comﬁ}r};n VArIETY MEANS (fuz)

<3 :
N\ 1 2 N0 3 4 5 Cy.
1 | 135.25  150.000 16375 11175 148.75 9.00
2 161.50 123.75 168.76  171.75 176.25 51.50
3 93.25 {135.50 144.25 122.25 104,25 3.95
4 149.25 39 150.25 '150.26  134.50 100.25 31.75
5 11,2600 96.00 158.50  170.25 98,50 17.50

Co —65.80 —27.75 7.25 1.50 —29.% 0

C.3 = —1300/20 = —65.00
CL = 180/20 =  9.00

17. Two-Dimensional Quasi-Factorials with Three Groups of Sets.
A possible criticism of the quasi-factorial method with two groups of
sets as described above is that there is too great a diserepaney between
the estimates of the error variange for comparing varieties in the same
and in different sets. This ; ly overcome by increasing the
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number of groups, and hence the type with three groups of sets is theo-
retically an improvement over the previous type. It requires, however,
more computation, and the number of replications must be a multiple
of 3. Details for setting up and analyzing such experiments may be
found in the reference of Yates (20).

' 18. Three-Dimensional Quasi-Factorials with Three Groups of Sets.
In the two-dimensional types the varieties were represented by two-
figure numbers corresponding to the two dimensions of a square. In
the three-dimensional types the varieties are represented by three-figure
numbers (uvw) corresponding to the three dimensions of a cube. . Thus
in & cube with p numbers on a side we can represent p° varigti‘esf; and
taking these numbers in sets of p by slicing in three directions we can
make up 3p® sets. There will be three groups of p* sets| each one cor-
responding to a direction in which the cube is sliced{> At this point
_ the student should draw up a cube, put in the pumbers, and practice
writing out the sets. It will then be noted that\the gets can be written
out directly for any value of p by expandinglﬂqé sets given below for
p=3 _ '

When the number of varieties is very.large, say 216 or more, there
are decided advantages in using thistype of experiment, as with any
other type the blocks would siill-baliather dape:

The details of setting up andi8nalyzing a three-dimensional experi-
ment may be obtained fromiExmnple 38.

3

Example 38, Three-Dimensional Quasi-Factorial Experiment with Three Groups
of Sets. 'The specifications are:

Varietien (v) = pF = 27

Hata(s =3pr = 27
Replications of each group (n) = 2

~ ,\Com lete replications {r) =3»n = 6
\“' Total number of blocks I\(r’b) =3npt= M
N\ - Tots! number of ‘plots (X) = 3np® = 162

Aftq'fﬁmmg the (3 X 3 X 3) cube we can write out the sets as follows:

< Group X(-n} Group ¥ (u-w) Group Z{ur-)
Bet No. ) Bet No. Set No.
1 111 211 311 1 111 121 131 1 11 12 13
2 112 212 312 2 211 221 231 2 121 122 123
3 113 213 33 3 311 321 331 3 131 132 133
4 121 221 321 4 112 122 132 4 211 212 213
5 122 322 5 212 222 232 5 91 222 223
6 123 223 323 6 312 322 332 6 231 9232 233 .
7 131 231 331 7 13 123 133 7 311 312 313
8 - 132 232 332 8 213 923 233 8 321 322 328
9 133 233 333 9 o 331 332 333

313 323 333
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Afier the distribution of the blocks over the field and the randomization of the
varieties within the blocks we have such an arrangement as is shown in Table 53,
in which the individual plot yields corresponding to the varieties are given. In this
cage the blocks are distributed at random over the whole field, but it would have been
more convenient to keep them together in complete replications.

The ealculations are carried out in tabular form in Table 54. The data are first
collected by groups so that the yield of any one variety in one group will be a total
of n plota. The marginal totals are obtained as indicated in three directions, and it
will be noted that Xw, Y, and Zu,. Tepresent the totals for the sets. The complete
variety totals represented by Ty, are entered next and all the margina] totals of these
ohtained.

For calculating the corrected variety means (fhuw) the most convenient fofmula is

Tume O
turw = "'3';‘ + Cowo + Caw F Cune AN
where AN ’
Cow = — @Tw0 — 39X e — Tore 4 3¥.02) AN
oy = ﬁnpz ww — Py o e )

p §

. 1 x’\\' :
Cuw = ﬁﬂ_p2 (PTu'w ~ 3p¥yw — T+ 3?\3) .

NN

1 ¢
Cu.,. = ﬁ-n_-pz (pT“ - 3pZ.W. - T“::,’-:!." 3X|‘. -}

=R

Thus N
waww . dbraulibrary .org.in

Cun = 1—_;—5 (3 X 2735 — 9 X340 - 9875 + 3 X 3635) = 57.176

1 L€ )
Ci1 = 108 3 X 33%—' 6 3¢ 1385 — 9645 + 3 X 3105) = —25.972

Cn = -1-10-é§3'§<'3305 — 0% 1185 — 0470 + 3 X 3180) = — 6.206
.’\ o

Having obtai;%d;;all the correction. terms, we check by obtaining the total, which in
this case coniés to --0.001. This is » sufficiently close check.

The coryected means are sbtained by adding the corresponding correction terms
to thegotial means. For example, 2111 =151.667 67176 —25.072 — 6.206 = 176.675.

'fq Shtain the sum of squares for varietiea we firsl average the corrected means in
threw/directions 10 give fow, tu.w, s0d fuy. To illustrate this:

f.q1 = & (176.575 + 190.001 4 164.728) = 177.100
f11 = § (176.575 + 102.222 4 224.028) = 197.608
ti7, = § (176.575 + 180.566 + 197.017) = 185.016
The sum of squares for varieties is then given l?y
Varieties (88) = Z{tum* Tumo) — Z(Xv0 Lo} — Z(Yuw-tuw) — Z(Zus-tuv-)

which in this case is :
5,847,432.06 — 5,754,971.44 = 92,460.62
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Then after calculating the total and block sum of squares from Table 53, ws can set
up the analysis of variance.
TABLE 52
Axavveis oF VARIANCH

THREE-DIMENSIONAL QUuARI-FACTORIAL EXPERIMENT
wrre TERrEE GROUPS OF SETE

~
SS DF MS F 5% Boint
Blocks............ 1,154,025 53 S\
Varieties. ......... 92,461 26 3556 1234 M 1.62
BITOT: covaeennsss 236,872 82 2889 N
Total......... 1,483,358 161 S\
D

The variancea and standard errors for mmparﬁqg‘ the varieties are aa follows.
It will be noted that such comparisons now fall juto three groups that can be de-

termined from the variety numbers. R
242 2% 2880 _

Vien—tm) =3 5 (p’-l-?-i-\},)h,w‘m J3mia0 SE =+/T301 =37.30
s o 2:9_.39

Vit —t) = g 2p*+3pL4) = 3 X 31=1658 SE=+/T658=40.72
s . ) 2889

V{toa—tay) = gt (20*43p+6) = 5 X 33=1766 SE =+/1766=42.02

AN
And the mean an‘q,,nce of all ¢comparisons is

& 2488 5p + 11 (2889 44
ﬂ;~(\?’+p+l ) ) ><13) 1630 SE = /1680

) _m\iﬁ'. Symmetrical Incomplete Block Experiments. It will be remem-
Bered from the discussion of Section 15 that, if all the possible groups of
degrees of freedom are not confounded, certain of the comparisons aré
determined with less precision than others. For this reason in using
the quasi-factorials we have two or more standard errors depending on
the * dimensions " of the experiment. This difficulty can be overcome
by confounding all the possible groups of degrees of freedom or in other
words by using all the possible groups of sets. We then have a design
that is perfectly symmetrical and not only do we have equal precision
for all comparisons but also the caleulations are considerably simplified.
The chief problem in setting up the design of & symmetrical experi-
ment is in writing out the sets. For this purpose we can conveniently
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TABLE 53

PosrrioN oF VARIETIES IN THE FinLp AND CORRESPONDING Pror Yreipa THEER-
DIMENSIONAL QUASI-FACTORIAL EXPERIMENT WITH Turee GROUPS OF SETS

St ||Vad-| . .. || Varie | 4,0 || Vari- Block || Bat || Vazi- Vari- Vati- Block
No.l| ety Yield || o Yield [l e Yiold ||yt | Noll sty Yieid || oo Yield [l 0 Yield [l oo

122 | 195 { 12 | 310 || 13z | 815 ;| 820
a3 | ns | asy | 330 || 282 | 270 || 618
g38 | 200 I 313 | 905 || 323 | 140 || 625
221 | ago0 || 131 | s10 |j sar | 23 [legud™\
stz | 255 || 322 | 875 || 332 | 308 || %98
491 1 255 || 331 | 238 || 2m; | 2800(y720
232 | ovs [ ozp | 245 || 212 gﬁn‘ 460
203 | 270 |} 222 | 280 || 221 L 635
999 | a8 || 22t | 245 || 223 (. 330 || @70
232 | 215 || 333 ! soo0 [[€asiy 285 || 770
213 | 185 | 313 | 146603 | 150 || 480
ass | &0 || 13345 | 233 | 106 || 200
332 | 155 || 328 J\a26 || %2 | aoq 8w
131 | 65 [ ssiN[Miso || 281 | 55 [ 250
te2 | ss Jhheg| 56 [ 221 | 110 || 280
gar | 130 oz | a0 ) 233 | a5 [ 28
13t | a6\ 182 | 6o | 13 | 18l 10
siph e || 212l 7o | n3| es 138
740
660
345
428

ox || 9121 815 |1 312 | 370 (| 112 | 360 | 1046
5y (o2 265 || 233 | 365 || 212 [ 346 )| o@d
oy liazz] 245 || sz | 1a6 || 382 | 180 | 590
By || 223} 285 || 233 | 355 || 213 | 240 || 880
oy (211 326 || 220 | 315 | 281 | 300 | 940
sx i 132 240 3| 3227 220 || 222 | 350  BIG
ox |to12| se0 i| 212 | 230 | 112 225 || 816
3y ||as1| 270 || a1 | =s5 (| 821 [ 170§ 685
az (1323 275 || 128 | 200 || 223 ) 330 §f 798
8c 323 180 || 123 | 275 7| 223 | 200 | V4
3y || s2t| 165 || 332 | 1s0 || 311 [ 160 || 49d
oy \|323) 120 || %13 | vo f| 333 [ 200 | 200
7y [1128] 100 (| 123 ] 170 || 138 | 66 i 335
ex jl2aa| 55| 83 | 145 |f 138 | 4o || 240
tx fhan| ss | st | 45| 210 | 85 ) 135
7y (| 123] 140 || 183 | 45.)| 113 [ 15 200
e fl111] ss | 2nn ! a5 s11 | 85| 205
t |{a12| so || 111 | 115 | 118 | 165 || 360
iy |[120]| 180 {} 1oy | 265 || 131 § 200 )| 725

PEREFNPRYSISTIESWNERY

223\ 288 || 213 | 270 B3] 18

sx || 2228 180 || 122 | 85 |l 322 | 0| =s6lity hemull a0 131 | 2686 || 121 | 185

gx |lza2| 230 Y 132 | 215 {| 282 | 185 i 300 (|apy~eil | es g 221 85 || 231 | 185

ar |[121| 20 [l 2o | w0 ff a2 | oo || 208 ihaat) 218 m 212 | 140 || 214 | 135

75 || 811§ 140 || 812 | 195 || 813 | 2tC¢ [ ¢ e ibyraryicor pdm || 113 | 325 | 825

4y || 132| 230 | 122 | 220 || 112 | 810 a0 4s | 201 | 230 3| 213 | 185 | 22 | 165 )| 580

ax |l13z| 245 || 133 | 315 || 13t | 2184\ a6 || 8 | 282 , 160 1 232 285 i 33z | 280 || &7

s |l232] i85 | 233 | 200 §f 282 ; aes))j 80 (| 7s g 811 | 215 313 | 185 || 212 | 130 || 560
ga || 373 | 156 ji 3:1 | 150 || 322 | 240 |; 546

25 fl1z1| 10 || 122 | 100 12\'\1111’ 460

>3

divide such experiniéxits into two types: (1) where the number of vari-
eties (v} = p?%; sud (2) where v = p* — p + 1. There are, of course,
other typesbiut the two mentioned are likely to be of the most value in
field expeﬁ}knts. Considering the first type, (v = p%), it is obvious
that the Srariety numbers can be written in the form of a square. Sup-
pogethat we have 9 varieties; then the square is

11 12 13
21 22 23
31 32 33

The first two groups of sets are written as for a two-dimensional quasi-
factorial, from the rows and tolumns of the square. .Two more groups
may then be written from the diagonals of the above square. These are

1 22 33 i1 32 23
21 32 13 21 12 B

31 12 23 31 22 13
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the second one being written from the diagonals of the first, This must
be all the groups, as we know from a study of the degrees of freedom in
a Latin square, and also from the fact that, if we repeat the process on
the last square written, the original square is regenerated. The maxi-
mum pumber of groups that can be written is always p + 1. On exam-
ining these sets we note that each variety oceurs once and onee only in
the same set with any other variety. Taking variety 11 the sets in
which it occurs are

(11 12 13), (1 21 31), (11 22 33), (11 32 23),

and in these four sets all the other varieties have ocourred ongey

If p is a prime number the above method of writing out: $1¢ sets will
work for the type (v = p%). If pis not a prime numbes wa “must makn
use of a completely orthogonalized square, if such a sqisre can be pre-
pared. For p = 6 the orthogonalized square is impessible, so that we -
cannot write more than three groups of sets. ThiSis the same as saying
that a Latin square is possible for any numbér of rows and columns,
but Graeco-Latin squares are impossible foi{cértain numbers, Fisher (2).
A completely orthogonalized 4 X 4 quaﬁre’ is given below, and further
squares are given in R. A, Fisher’s ‘tDéSign of Experiments,” 1937,

- Completely OrthgiiKitbaaid squsmeg in
111 ~234 342 423
222 {\143 431 34
388 412 124 241
321 213 132

Q"

N\

This square may. be lised to show how the sets for 16 varicties can be
made up. "\

The first #wé-groups of sets are obtained from the rows and columns
of the squaa%of variety numbers ik the usual way, and the orthogonalized
square is. ised to write out the remaining groups. Assuming that the
squarg"of variety numbers is as follows: :

’ noo12 13 14
21 22 23 24

31 32 33 34
41 42 43 44

and is superimposed on the orthogonslized square, we note, considering
the first of the three-digit numbers only, that 1 corresponds with the
variety numbers 11, 22, 33, 44; 2 with the numbers 21, 12, 43, 34; 3
with 31, 42, 13, 24; and 4 with 41, 32, 23, 14. These are the sets for the
third group, and we make up two more groups by using the second and
third figures of the orthogonalized square.
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To write the sets for the type v = p%2 — p + 1, it is only necessary
to modify the above procedure. Suppose that v = 13; thenp = 4 and

p ~ 1 =23 A convenient method of designating the varieties is as
follows:

01 02 03 04

1 12 13
21 22 23
31 32 33,

N\
and if the sets are written for the 9 numbers in the square, the setyfor'the
13 varieties are obtained by making one set out of 01, 02, 03, 04, and the
remaining sets by adding one of these to the sets of each group formed
by the other 9 numbers. The sets finally are as follows; { ™

01 02 03 04 ‘

o1 11 12 13 02 11 21 31 03 11 2243 04 11 32 23
01 21 22 23 02 12 22 32 03 21 3213 04 21 12 33
o1 3 323 021323 B 03 31\12 23 04 31 22 13

If the number of varieties is 21, the numbers would be written out as
below:

01 N 04 05
wwwlcibra 2111 arygorg. ify
21 "2 2 24

\31 32 33 34

o\ 341 42 43 44

and we would have t0'\use a completely orthogonalized 4 X 4 square in
order to make up\the 20 sets for the 16 numbers in the square, to which
the remaining mumbers would be added as deseribed above. '
Bpecial miéntion should be made of the fact that, as the gets are
written outbby the methods deseribed above for the v = —p+1
type, t.he ‘blocks cannot be arranged so that they form complete replica-
tiongl. ) There is & method of making up the sets (Youden's square) by
mogns of which all the blocks are placed side by side and all the plots in a
- single row from one end of the field to the other would form a complete
replication. This method is likely to be of considerable value in labora~
tory experiments, but in field plot experiments it is not likely that the
leng narrow strips one plot wide would be of any value in error control.

Example 39, A Symmetrical Incomplete Block Experiment for 35 Varieties and

6 Replications. The sets have been written out by the method described above, and
those for each group have been kept together to form complete replications. This
will be obvious from Table 55, and it will ba noted also that no attempt has been
~ made to randomize the blocks. All the randomization is of the varieties within
blocks. It ia convenient to enter on the plan of the field the individual yields and
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the block iotals. The variety totals are obtained by collecting the individual yields
a3 in Table 56. These are denotad by Tuy. The fipures in the column headed Ty,
are obtained by adding for any one variety the totals for all the bloeks in which that
variety occurs. Thus from Table 55 for variety 11 we have

211 = 257 4 181 4 177 4 265 4 271 - 303 = 1454

The second last column ie obtained as indicated, and this can be checked by adding,
a8 the total for all the (pTny — Zy») values is zero. The last column gives the cor-

rected variety means (fy,) which are given by the formula £\
Tuo — Zus L)\
oo = 222 Ry

v {
where m iu the generel mean of the whole experiment and » is the numbef of varieties.
The sum of squares for varieties is given simply by \\
. Z(PTus = Euv)z 4
Varieties (S8) = —— =\
o \.

7

The snalysis of variance can then be set up a8 a;\t the foot of Table 56. The
method i also given for caleulating the variance,, of 8. difference between two cor-
rected means. The general formula is o

N
Vo -=w2£e ?&I-')!-ra)hbl ary.org.in

where r is the number of replicatlc{ns.
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TABLE 56

LOCATION OF THE VARIETIES IN THE FigLp aNp COBRRESPONDING YIELDS. SyMm-
METRICAL INCOMPLETE BLOCE EXPERIMENT FOR 31 VariETIES AND § REPLICATIONS

Repiicate VI

PlobNo | 1 2 3 4 5] 6 7T B D101 12131415 16 17 19 19 20 | 21 22 23 24 2
Varisty | 52 84 28 11 43 | 12 44 35 21 83 31 13 54 12 45 | 41 14 32 23 55| 33 15 51 42 24
Yidds | &7 52 38 60 50 ] 31 3t 26 32 24 | 24 40 10 20 30 40 35 32 19 38| 36 44 46 57 €8
Block
totals 257 146 133 162 261
N\
X Replicatetatal = 549
Replicate ¥ e\
'\
PlotNo.l 1 2 3 4 6| 6 7 8 9101812131415 131713192:[3..2?’22232425
Varicty | 25 23 42 54 11 [ 33 52 14 21 45| 55 12 43 24 31 41 53 15 34 Q25 44 32 13 61
Yields | 54 30 28 40 20 | 14 11 10 24 19 [ 30 42 22 28 30| 32 38 26, 1670 {19 24 512 26
Block w\
totals 1% 78 162 132 b
x’\\' Replicate total = 642
Replicate IV & &
S 3}
PotNel 1 2 3 4 5| 6 7 8 20111218 815]1617181920 o1 91 23 24 25
Variety | 32 24 45 53 11| 34 13 31 42 55 | 52 23015 31 44 | 54 33 32 41 25 | 35 22 51 43 14
Yiclda |57 g9 2532 24| 723 18 24 26 3004216 16 23 | 25 30 35 13 21| 20 23 15 16 27
Blogk MY
totals m wygw dhgUlibnayy.org.in 138 01
{ Replicate total = 63%
£ N Replicate IEL
PotNo. | 1 2 3 & BN 67 8 10|81 12131415 16 17 18 19 20|21 22 23 24 23
Variety {33 44 2 g5 01715 32 43 54 21| 14 53 a0 25 42 [ 13 35 24 52 4l 12 23 34 5L 4B
Vields .| 74 57 30040051 | 45 43 31 44 40| 41 34 9% 8 16| 10 30 23 22 35|25 81 10 23 27
Black A\,
totals {265 203 120 129 125
Y
N Teplicate total = 851
“ j.’ Replicate I1
N
“PlotNo. | 1 2 3 4 5] 6 7 8 910111213 14 15 16 17 18 19 20| 21 22 23 24 25
\f{;ﬁety 16 8L 6L 21 41|22 12 42 52 32| 13 53 43 33 23 | 14 44 54 24 34 45 55 35 15 25
Yields | 52 57 40 79 42 36 33 24 44 32| 72 o7 11 18 32| 47 20 24 37 82 22 19 21 20 26
Block :
totals 271 169 B L 159 17
Replicate total = B26
Replicate 1
Flot Na, 1 2 3 4 5| 6 7 8 910111213 1415|1617 181920 p 22 23 24 25
Vasiety |12 14 15 13 11 93 22 21 24 25 | 34 35 32 31 33 | 45 &1 41 45 42| 53 5l 52 b5 &
Yields | 74 05 BA 65 46 | 48 57 37 44 55 | 33 35 37 38 30 | 40 72 57 62 89| 76 5t 55 76 84
Block .
totala 303 241 173 328 e

Replicate total = 1387
Grand total = 5204
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TABLE 56

SYMMETRICAL

VARIETIES AND 6 HEPLICATIONS

Varrery Torars, VALUES OF Zg AND THE
INCOMPLETE BLOCE EXPERIMENT For 25

| lup =
Vari- z
tf;;; VII VYV | IV|II | 117 I {Tuw| Zuw pT.,.,—E.‘,PTwu Zus 4y
11| 60| 20| 24| 51| 52| 44251 | 1,454 ~199 27.33
12 | 31| 42| 35| 25| 33| 74240 1,048 157 141.57
13 | 201 12| 23] 19| 22| 66|182| 860 50 37.79
14 | 35| 10| 27| 41| 37| 85215 932 143 41.01
15 | 24| 261 16| 45| 29| 54{214| 1,133 | —63 32.7
21 | 32| 24| 18| 40| 79| 37|280; 1,035 115 39,89
52 | 20! 20| 23| 34| 86| 57100 1,041] 91 B165
23 | 19 39| 42 31| 32| 48 211 | 946 109 |  '89.65
21 ! 68| 28| 30| 23| 37| 44]239| 1,118 76 J~) 38.33
55 | 38| 10 21| 8| 26| 55|167) 971 —136,K 20.85
31 | 24| 30| 16| 28| 57| 38|193| 9951 300} 34.09
32 | 32: 8| 57 43| 32| 387|209 973 | NV 38.17
33 | 36| 14| 30| 74| 18| 30}211| 1,015 40 36.80 -
34 | 52| 161 7| 19| 32| 833|159 942)\-147 29.41
35 | o8| B4| 20| 30| 21| 35|188| 84l 9B 39.01
41 | 40 32| 18, 35| 43| 57225 14584 33 33.97
2 | 57| 28} 24| 16| 24| 80 288\1452 38 36.81
43 | 50| 32| 16| 811 11| 46} 186\¥159 | —229 26.13
44 | 31| 24| 23| 87| 20| 721286 1,112 68 38.01
45 30: 10| 251 27| 22| 624087 956] 31 34.05
51 46| 11! 15| 231 40 “55;..,% 1181 | —226 gg.gg
57| 26| 30| 221 44 |63 Wi :
%3 | 54l 38| 32| 36| 274i76 1283 3“},‘3%“5““1‘%“ 40.37
54 | 10 40! 25, 44| 24| 84|236 | 1,158 22 36.17
55 | 36| 30| 21| 49 {19 75 233 | L146 19 36.05
Totals | 949 | 642 | 639 | 851 17826 [1387 5294 | 26,470 0
| X
D(pT w0~ Sur)? 324,054 5204 _
= - - 2504.83 m =Yg = 3529
Replicatidns  Z(z2)
A 883,531 2(Ty0)/5 = 1,088,406/5 = 217,690.20
SN 32,228 = 186,842.91
NI 34,039
LN IV 19029 Blocks = 30,856.29
O V19,568
VI 40,367
Total = 228,762.00
OT = 186,842.91
E(r — 2 = 41,919.09
i Analysis of Variance
88 pr| ms | F (5% Pt
Blocks.....| 30,856.20 [ 29
Varietios.. | 2.50483 | 241 108.12] 1.22 | 1.63
Frror......| 8467971 95| 8821
Total....| 41,019.09 [ 149
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Ve = 2B (9) = 35.28
6 b
SEps = V35.28 = 594
Example 40. A Symmetrical Incomplete Block Experiment for 31 Varleties in

8 Replications. The seta were written out by setting up the variety numbers as
follows: '

o1 02 03 04 05 06
I 12- 13 14 15 A
21 22 28 24 25
31 32 33 3 35 O\
4 42 48 4 46 D\
5 52 53 54 55, L

writing out the 6 groups of sets for the 5 X B square and addidig{to each, one of the
numbers in the first row. An additional set was then madé¥up from the numbers in
the first row, giving 31 sets in all. The blocks were arrafged as indicated in Table
58, after randomizing the varietiea within the blocks. ,’I‘&‘}ariety totals are collected
a0 in Table 59, and it is convenient for this purpose‘and for obtaining the values of
Zue to make up & table similar to Table 80 giving\the sets with their corresponding
numbers and block totals. Then, to collect the ¥ields of, say, variety 23, we can
locate it in each group, note the numbers 8fithe sets, and then proceed from the
table of individual yields to obtain the totaly Similarly to obtain Za; we add the bloek
totals in the same line as 23 VErsugbwaiiHeraitiepry.in

From this point the caleulations are exactly as in Example 39 for 25 varieties,
except that, gince this experimedit\is of the » = p* — » + 1 type, the variance for
the difference hetween two corfepted variety means is

N\ I 2
N Vg =— (%—)
N\ T\p~p+1
The snalysis f ¥ariance is given in Table 57.

\Y TABLE 57

\”\} - Anarysis oF VARIANCE

IncoMPLETE Brock EXPERIMENT FOR 31 VARIETIES IN 6 REPLICATIONS

S8 br M8 F 5% Point
Blocks.......... 1,083,491 30 36,118 10.5 1.53
Varieties. ....... 103,977 30 3,466 1.01 1.58
Error........... 429,756 125 3,438

Total.....:...} 1,617,224 185
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TABLE 58

Location or tae Vammreries Ix tee Fieip, CorrEspoNDING Pror YiELDs, awp
Broce Torars, Bymumereicar, IncoMrrErE BLocR ExperiMeNT wiTE 31 VARIETIES
AND 6 REPLICATIONS N\

2N
. SN
Betl| Varid ., (| Varid 0. Hverid oo i Varid ool varidd | Vari] 4. JL BGE
Nod| ety Yield oty Yield oty Yield ety Yield ety Yiejd ety Yield ’\[‘nta!a

11| 315 | 13 | aro || o1 j zeo f 1 | 265 | 12| 855 || 15 [ B8 20w
23 | 245 || 22 | 185 |} 21 | 160 || o1 | 285 || 24 | 355 || 257)\2u0 1,470
01 | 825 |1 33 | 315 || 32 | 300 || 35 { 240 || 31 | 220 || 33 (V350 1,750
45 | aco || 43 | 230 || 42 ) ze5 | 01 § g2vo || 41 | 2585°N42 | 170§ 15310
01§ 175 || 53 | 200 || 51 ] 330 || &4 | 220 || 52 | 220 M[\b5 | 265 1,500
31| 105 )} 11 | a0l 21 | 315 || 02 | 215 | 41 | 33p) 51 | 270 1,635
22 | 200 || 52 o5 || oz | 140 I 32 | 330 f| 12 [{40"|| 42 | 235 1,500
i3 | 255 | 23| av5 |f 43 | 305 || a3 | 255 )] 02 N235 | 53 7 230 1,658
B4 | 275 || 44 | 245 | 34 ] 140 || 24 | 270 |} 230 || 02 | 135 1,295
10 |j 45 05 || 85 ] 245 || o2 | 330 || &5 | 235 |\IB | 200 [ 55 [ 285 1,300
10§ a4 [ 180 {f 11 | 275 || 33 | 280 || &5 | r&sN[-03 | 180 || 22 [ 160 1,240

L-B - - L

127 03 | 120 (| 32 | vo|f 21 ( 200 (| t5 { 48Q') 43 { 170 [ 54 | &5 625
13 53| 550 42| 1a5 |l a1 | e0 25.)%8s [l 03| a5 ff 141 55 378
1llo2a | 10 13) 48 ) 35 | s |y digaphbiargsopgtin| 55 405
1645 | so || ea ] vis || 34 | 185 |08 85 [ 51| 55| 13 { 120 620

16 32 215 1 300 45 255 24 185 04 145 53 150 1,250

i7 § 13 a0 ¢ a4 45 55 105 1} 42 155 21 125 04 a0 510
18 ;i 23 685 15 | 130 44 | {565 31 85 04 55 52 110 500
19 | 25 130 || 23 40 [3LE AN 45 12 45 54 60 04 15 335
20l 35 5 04 70 22 [V 86 43 23 14 | 255 -3 &) S50¢
21 1 OG5 | 180 11 ¢ 285 2P | 200 42 | 285 35 | 270 54 185 1485
22 4 21 150 52 8641 14 il 45 | 210 33 | 265 a5 | 185 918
23| 55 130 || 24 | 295y 12 } 1las 31 8 B3 95 43 155 B15
24 1 156 | 210 41 700 53 85 22 | 180 23 540 [ 34 125 B20

25 || a2 140 05 '“\:}95 13 | g 51 § 195 25 130 44 1 285 1255
26 [ 11 | 210 \3( W 200 43 | 325 25 | 230 52 220 06 30 1,585
27 || 12 230 N 155 35 | 185 53 | 245 08 315 21 | 215 1,358
28 |f 13 180, 31 | 285 o4 | 230 22 | 185 45 | 220 06 178 L2565
20 || 14 [ 2T5%| 56 | 185 06 | 130 32 | no gl 42 160 23 118 LO50
30 15 '; 155 42 159 24 240 06 130 33 145 51 125 945
31 O\ ;220 65 | 215 06 | 195 03 | 240 02 285 04§ 230 1,395

34,050
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TABLE 5¢

Yirupa oF Bivawe Prors 8y Varigries, VARIETY TovaLs, VALUES OF Zy,, AND THE
CorRBCTED MEANS &y,. SyuMMETRICAL INCOMPLETE Brock EXPERIMENT wiTH 31
VARIETIES AND 6 REPLICATIONS :

Vari- ~
;Ity Single Plot Yields Tur Fur  [PTur— Zust \Nuo
0. A
01 [360( 285 | 8251 270 | 175 220 | 1,635 | 9,635 175 193.6
02 [ 216 1407 236 | 135 | 330 205 | 1,350 | 8870) {770 | 163.2
03 1180] 120! 45| 85 85| 240 | '755) 4,660/\-130 [ 183.8
o4 |146| 301 B85 15| 70| 230] 545] 44901220 | 148.6
05 | 180 185 95| 140 195! 215¢ 1,010{ 6,605 —635 | i67.
06 | 316{ 315 176 130 130 195 1,255 7585 -55 | 186.2
11 | 815] 310) 276 300 | 255) 210! 1,665N0N9,185( 805 | 214.0
12 | 365 410 120 45| 155 230 1% 6,665 1225 {227.5
13 [370[ 266 46| B0 30| 160 [ A2 ,000 50 |189.8
14 {2686 | 230 ) 46| 2585 S0 275 0130 6,145] 636 2085
15 [ 345 2003 100 130 | 210 | 155p\1,140 ) 6,2900) B850 | 205.7
21 j160| 316( 100] 125| 150 | 42151 1,065 | 6,5i0] —120 | 184.1
22 {185 200f 160 | 65 ( 18Q{I85] 1,045 6,785| —515 | 171.4
28 {245] 375] 115 85 % 110 ] 1,200 | 6,760 440 | 202.2
24 | 355} 270 ] 140 |85 Jbaaibraag graees | 6,210 2220 | 250.6
25 [ 240 235| 35| 130 130 | 230 | 1,000 | 6,410{ —410 [ 174.8
31 {2201 195 40! .85 651 285 920 6,360) —840 | 160.9
32 |30 330 | 70 l-215! 140) 190} 1245| 7,430 40 | 180.3
32 | 315 | 255 | 2004\ 40 | 265] 145| 1310| 6,840! 1020 | 220.8
34 |380| 140 18§ 5 45| 125 200 | 1,115| 6,580( 110 | 191.9
35 {240 245 | 45| —5 | 270§ 195 960 | 6,865 (1105 152.4
X
41 | 255 %gf' B5| 45 00| 160 935) 5755 —145 | 183.3
42 | 225 %5 145 | 1551 286 | 150} 1,195] 6,305 865 215.9
43 | 2304 170 [ 354 156 | 326 1,220% 6,720, 600 | 207.4
44 {170\\N'245 | 180 | 55| 285 | 155 1,000 7,155| —615 | 168.2
45 (360, 95| 80 255] 210| 220 1,220 6,940| 38 [ 200.3
5% 3301 270 551 807 195 ( 125 1,066% 6,465 —125 | i84.0
(52220 951 66! 1167 55| 220 6405 —1815 | 129.4
5% |200| 230! 55| 150 | 95| 9245} 1,065 ) 6,955) —565 | 160.8
54 220 275] 65| 60| 185 | 230} 1,0853 6,475] —265 | 179.4
B5 j265| 285 | 155 | 105 | 130 | 185 | 1,125| 6,585; 215 | 194.9
8215 | 7405 | 3680 | 3555 | 5400 | 6525 | 34,960 209,760 0
m =300 _ 1.0
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TABLE 60

199

SgTs ARRANGED IN ORDER OF NUMBERS WiTH (ORRESPONDING Brock ToTaLs.
TwcompraTE Ranpomizen Brocx EXPERIMENT

Set Black Set Block
No. Totals No. Totals
1V oer 11 12 13 14 15 2010 16| 04 11 32 53 24 45 1250,

2| 01 21 22 23 24 25 1470 171 04 21 42 13 34 55 (310

R\

31 01 31 32 33 34 35 1750 18| ot 31 52 23 44 15 500

4| 01 41 42 43 44 45 1510 191 04 41 12 33\ 54 25 335

5| 01 51 52 53 54 55 1500 20| 04 51 2248 14 35 500

N,
0x~\
¢
a1 02 1121 31 41 51 1635 21, (05 11 42 23 54 35 1465
ol oz 12 22 32 42 52 1500 | ez 05 21 52 33 14 45 91
e .dHiraulibrary.org.in

g| oz 13 23 33 43 53 1668 |° |23 06 31 12 43 24 55 845

9| 02 14 24 34 44 5.4.\{:1}95 24| 05 41 22 53 34 15 820

-\ :

10{ 02 15 25 35 4555 1390 95| 05 51 32 13 44 25 1256

W T
RS
O\

1] 03 12 38 4 55 1240 96| 06 11 52 43 34 25 1585
12 | gd 21 32 43 54 15 625 97| 06 21 12 53 44 35 1356
1303 31 42 53 14 25 375 23| 06 31 22 13 54 45 1255
14} 03 41 52 13 24 35 405 20 | 06 41 32 23 14 56 1050
15| 03 51 12 23 34 45 620 30| 06 51 42 33 24 15 945
a1 | 06 01 02 03 04 06 1395

Grand Total = 34,960
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20. Choosing the Best Type of Incomplete Block Experiment for a
Given Test. After a study of the various incomplete block experiments
it will be noted that each has certain limitations. On account of general
simplicity the symmetrical incomplete biocks are to be preferred to the
quasi-factorials, and in addition all comparisons are made with equal
precision. However, for the symmetrical tfypes we must have, when
v = p% p + 1 replications, and when v = p% — p - 1, p replications.
For a test of 121 or 133 varieties we require 12 replications, and if the
number of varieties is greater than this it is obvious that in genetal the
test will be more expensive than is usually warranted in suchitases. Af
a certain point, therefore, it would seem that the quasi-factorials should
be extremely useful. On aeccount of its relative simplicity the two-
dimensional quasi-factorial with two groups of sets\oiét preferable to the
three-dimensional type, but the latter will probably be the most efficient
if the number of varieties is quite large. These points can now be used
a5 a basis for seiting up a general schedule ,asQ'?o the type of experiment
best suited to a given number of varietigs.s For this purpose Table 61
has been prepared, taking as a basis thé nimber of varieties that can be
tested by at least one of three typese)

In Table 61 the dotted linesindicate the range through which the
methods are generally” “Ficdiitidiiaady oPH@ two-dimensional quasi-
factorial can be used at the point where the namber of replications for
the symmetrical type bgeomies too large. For very large numbers the
three-dimensional qudgsi-factorial is probably the most efficient, but,
since it can be applied easily only to numbers that are cubes, the two-
dimensional typéinust be extended to include fairly high numbers.

A possible ubjection o incomplete block experiments in general may

- be that certain numbers of varieties cannot be tested and hence the
experinepter may feel that it is still necessary to use randomized blocks.
Howeuer, it would seem to be desirable where possible $o suit the num-
bef “of varieties to the experiment even if it involves using “dummy"’

Syarieties. Also, for those who wish definitely to use other numbers than
those listed here, Yates (20), has developed methods for laying out and
analyzing quasi-factorials in which the dimensions are not equal. Thus
instead of a 12 X 12 quasi-factorial for 144 varieties we might use 3
12 X 11 for 132 varieties. These modifications, however, require addi-
tional computations and will be avoided if possible.
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TABLE 61

VALUES OF § AND ¢ REQUIRED FOR DirrErenNt NUMBERS OF VARIETIES
AND RANGES THROUGH WHICH THE THrER GENERAL TYPES OF
IncomereTe BLocE EXPERIMENTS ARE RECOMMENDED

Symmetrical Incomplete Two-Dimensional  Three-Dimensional

No. of Blocks - Quagi-Factorial - Quasi-Factorial A~
Varieties »* r v t P FAN
13 N 4 L\
16 4 5 4 2n 2 :..én\
21 5 5 \
25 5 6 5 o5 N
. S _ S L
31 6 8 O
36 _ 6 2n v
49 7 8 7 2n 8D
57 8 8 AD
64 8 9 8 27 4 3n
w9 L9 QY
81 9 101 9 N\
a1 10 10 N
100 - i0 11 Ot 4 .
ut 1 11 }%‘“{dera‘ﬁ%‘ [rY-oiEln
121 1 12 L\ 2n
125 {...\ 6 3n
133 12 12¢.¢\J
144 12 13\\ 12 Zn
157 13 KL
169 13 1e 13 2
183 14 \ 14
196 W0 15 1 2
211 J‘{\a 15 L
218 \ ] 3n
225 W5 16 15 2n
N”
gth(\;“' ete.

* 5 = number of plota in one bleck.
r = number of replicationa.
t Completely orth lised squares greater than (9 X 8) have not yat been writtem, and

therefory we cannot if we wighed go beyond this point at the present time.
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TABLE 62

YieLpg o QAT VARIETIES IN AN EXPERIMENT ON THE EFFECT
or SoiL InocurnaTioN witHE A RooT Ror Oreaniem

Replicates
i Soil o\
Veriety | Tregtment . o
1 2 3 TR
AL
I I 24.1 16.1 31.6) | 289
U 685.4 49.3 398 18.4
? §~'
II 1 30.6 51.7 (V81,7 2.5
U 51.8 74.8 N\ 765 56.6
. AN
E£14 I 39.1 974" 36.9 28.9
U 88.7 2420 81.6 57.3
v I 1201 2V °69.5 96.2 60.7
U 112.2 %y 88.8 102.8 85.0
[ww w, d b 'ulipral'y,org_in
v I 118.7 24.1 45.9 10.4
U (885 88.0 77.7 54.7
VI 1 %} 82 66.3 77.7 65.3
UM | 1091 91.5 124.1 96.9
vir | O 57.8 45.9 29.7 56.4
Wov 112.2 95.9 91.1 7.3
vigiNl 58.0 40.1 478 38.4
R\ U 127.3 6.3 77.0 63.4
\\. “1x g 81.8 23.6 31.6 32.1
U 100.3 3.8 81.4 52.7
X 7 85.3 78.2 9.4 85.0
U 81.6 94.3 96.4 77.2
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21. Exercises.

1. The results of a randomized bloek experiment are given in Table 62. Ten
varieties of oats were tested for their resction to root rot. The plots were arranged
in pairs of which one plot was inoeulsted with the root-rotting organism and one
plot uninoculated, Analyze the results. Btate in worde the meaning of a significant
interaction between varieties and the soil inoculation.

DF M8
Replieates. . . .........covveninns 3 2,042.08 -
Varieties. . .. .. .viiiniiennay . 9 2,654.19 ~N
Error (1)...coeoeiiiniiinannn, 27 27054 _
Treatments.......covevvnocirans 1 12,226.51 ¢ \.\ A
Varieties X Treatments........... 9 401.32 N
17205 o ¢ S 30 23230 ™

2. In a fertilizer experiment conducted 'in an 8 X 8 Latin aquare, the yields of
whest given in Table 63 were obtained. The fertilizer mmbipgﬁtimis are designated
N, P, K, NP, NK, NPK,O. In the table the yields are in‘the exact position of the
plots in the field, and above each yield figure is the fertilizer treatment which the
plot received. Work out the analysis of variance for tlﬁs\\axperiment, and, by means -
of the standard error, compare: S

(a) Yields for plots receiving N with those peceiving no N.
(B) Yields for plota receiving K with‘tliqae receiving no K.
(c) Yields for plois receiving P with flmse receiving no P.
The resulis for the sums of squares MM hRINDEAE30 P eheck on the work,

but the sum of squares for the treatments must be split up to correspond to individual

degrees of freedom. "
ha " \ 88 DF
BOWS . - e e eevanranennrernes 102.20 7
Columosd,. .. .ecviariarrannnsas 84.24 7
Treatments. .........ccvvueransns 513.7% 7
[ oy 5 4 SN 91.99 42

3. Complet‘e,’tl’ﬁ ‘anslysis of the split plot experiment described in Bection 8,
above, Amug’e“ihat. the plan of this experiment is to be rearranged so that the
moet accurga.tévcnmparison ia to be between D and W, and make the plan accordingly.

.Qhé.'sums of squares for the three errors as given below will provide a com-
/Blete’ check on the calculations.

Error (1) 847.6 Error {2) 1059.1 Error (3) 931.1

4. Assuming that the following séts of figures represent the response to fertilizer
at 4 levels, for each set work out the sums of squares for the total and then for the
linear, quadratie, and cubic responses. Graph the actual yield resulis a8 given below,
and then poeint out the relation between the shape of these graphs and the resulis

obtsined for the sums of squares.

i3 ng 3 iy
@ 22 65 54 78
()] 19 6l 58 27
© 24 58 13 41
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The sume of squares are

{a) (2] (e}
Linear............. 1232.45 22.05 . 1.80
Quadratic. ......... 90.25 1332.25 9.00
Cubic.............. 396.05 14.45 1155.20

6. Table 64 gives the plan of & field for a 3 X 3 X 3 confounded experiment,
with treatment numbers and plot yields. The numbers such as 123 and 321 represent
N3E:Py and N3EoPy. Cyclic set IT was used to confound 2 degrees of the/riple
interaction N X K X P with blocks. Work out the complete analysis of variance
for this experiment giving the results for treatment effects hy 1ndw1dua.1\deg‘rees of

freedom. "\
The following excerpta from the resulta for the suma of squa'res will assist in
checking the ealculations. ,,f
Total for treatments. .2,434.83 N
N RLIIITI i \
KaXProv'iivinenn.. 438.90 /
NXEXPoo....... 149.08 (fo&ohe pair of DF)
Error................ 5,770. 81

8, Table 65 gives the plan of the ﬁeld’wi‘gh variety numbers and corresponding
plot yielda for & two-dimensional gquasi-factorial experiment with two groups of sefs.
Maske a complete analysis theateHaﬂ@”ljbt "ary.org.in

~ The variety sum of squares is 253,638,

9. Table 66 gives the plan of‘the field with variety numbers and corresponding
plot yields for an incomplete b;ﬁt:\k experiment with 21 varieties. Analyze the results,
and make a test of the si@ﬁcance of the mean difference between the varieties
01 and 04,

8. Prepare plans for 'the layout of:

A\ ¥

(@) Two—d;m'}eﬁsionul quasi-factorial experiment to test 36 varieties.

)] imetrical incomplete block experiment {o teat 31 varieties.
(<} Three-dimensional quasi-factorial experiment {o teat 125 varieties,

N
%
\ )
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TABLE 63

Y1uins o WREAT Iv AN 8 X 8 Larty Square FERTILIZER EXPERIMENT A

P N NP X NE 0 | NPK | PFRD
188 | 122 | 183 | 158 | 1.4 { 11.5 | 19.4 [ (B0

X

N | xx | Pk | NPE| P K | NBND 0
120 | 7.3 | w4 jar2 | 197 | 120 | 090 | 156
NK | NP N P o | e PE | K
107 | 175 | 104 | 180 | 98 | 1867 175 | 143

~0\\\.
PE | kK |wPE| O N P | NK
183 | 126 | 142 | 122 | 1al) a5 | 189 | 161
|

NP o | nx | N JyPE | P K | NPE
17.9 | 12.8 | 13.3 | 1139 temulibibrg ofgia.9 | 16.7

K | Pk | o |Np |NPK| N [ NK | P
149 | 182 | 128 (N7.1 | 158 | 95 | 89 | 206

. %5, $ et
NPE| P K ‘| Pk | NP | NK 0 N

. o

ip.0 | 18.9 |7AW 17.1 17.9 8.6 10.2 14.5

o NPRY P NE K PEK N NP
17.6 (<2047 [ 208 | 16.4 16.8 18.5 13.6 | 23.0
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TABLE 64

Pran oF FIELD AND PLOT YIELDS FOE A (3 X 3 X 3) ConrOUNDED EXPERIMENT

Variety Yield Variety Yield Variety Yield
111 465 112 384 113 549
123 3958 121 348 122 348
132 556 133 421 131 468 N
213 348 211 455 212 348
222 413 223 374 221 R !
231 408 232 507 233 ()" 363
312 337 313 421 311,40 449
321 421 322 374 328\ 217
333 308 33 334 e 355
333 353 121 381 [\ 832 244
312 438 133 403,70 323 246
213 219 313 BN 113 82
321 544 211 /325 122 280
123 478 331 ! 221 195
231 291 nz _NC 269 131 196
222 311 993 &b 954 311 178
" 02 W %é%l gu]flbrar,‘ysgrg,m 212 099
132 542 (232 308 233 309

AN
222 374 \f~." 133 209 311 106
321 3584, 331 273 131 259
213 46810 232 437 122 361
231 2816/ 322 485 233 345
111 /0807 121 311 - 221 207
333 - \V b0 313 343 113 16
312,07 427 211 353 323 199
123, 380 112 454 212 114
32 400 223 251 332 240
N 12 611 12t 403 113 302
123 444 331 338 323 256
312 550 322 405 311 367
333 573 223 - -1 131 268
213 706 33 522 221 400
111 423 211 319 332 . 446
321 749 232 383 233 515
231 529 132 202 212 420
222 424 112 554 122 384
——
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TABLE 4§

PLan oF A Figep wiTE VARIETY NUMBERS AND ConrmsroNDING ProT YIELDS FOR
4 Two-DiMENSIONAL (QUASI-FACTORIAL EXPERIMENT WITH 49 VARIETIES

.

Vari-| 4. VAri- o, Vari- ., .JV“iJ . leari- . Vari- Variz| <.
v .

oty ield oty Yield| ety Yiel ety Yiel oty Yield oty Yield st.‘x“{(mld
7| '\

12 | 189 15 | 284 13 | 2189 14 | 382 11 | 211 17 /308 ] 16 | 182
o6 + 280 | 25 | 342 | 27 845 || 23 | 214 || 21 | 327 [| 224 Ne7orf| 24 | 820

Repli- 32 | soo || 34 | 357 | 26 | 208§ 31 (368 37 | 356 || 85 ) 283 || 33 | 292

cate I 45 | 132 || 44 j250 | 46 | 202 | 438 384 || 42 | 27odiN\#t | 187 || 47 214
Group X|| 56 50 |{ 62 az || 51 | 3304 54 | 283 [} £3 | ERB\MST 82 (1 55 37
65 | 153 || &6 | 310 || 63 | 306 || B4 03 | 61 [[Im>|1 &7 | 121 || 62 197
7z | 214 || 71 1380 | 77 | 345 T4 363 3’5' 274 [| 76 | 330 75 | 242

b
S

71 1 2sa |l 21 {283l 51 | 1257 41 | 336 '}1 oas || 81 | 830 || 21 { 269
aa | 2so || 62 3 367 || 72 | 308 || 12 | 3¢9\(V52 | 1481 22 o5z || 42 | 147
Repli- | 73 | 41a [} 23 | 300 || 33 | 381 1} 43 KIS¥ 12 | 162 |l 63 | 1ex || 63 | 62
‘cate 11 44 | 217 54 | 331 24 | 205 84 N2TT 34 | 273 14 | 307 74 | 287
Group ¥|| 35 | 142 || 15 | 202 || 25 | 196 je4§ | 376 ) 56 309 || 65 j221 || 75 | 141

26 | 161 || 16 | 204 | 88 | 214 LA 78 | 203 || 36 | 197
- o7 j2rs || 47 [ 21| 67 | 214 17 St ‘é‘%’;"‘g“d} 13¢ | 77 | 160

15 | 263 || 16 | 111 || 12 |85 14 } 201 17 | 150 || i1 | o5 13 | 259
g2 {120 || 21 | 158 (et 102 [j 26 173 || 25 ) 133 || 27 | B7L 23 | 265
Repli- | 31 | 284 [] 34 2“{"32 214 || 35 | 325 )| 88 | 149 || 87 | 254 36 | 184
cate 11|l 42 | 130 || a7 heosN| 45 [28¢ | 43 | 3200 [ 44 | 211 41 {225 || 46 | 388
Group X|| 54 | 186 || s7.{ pa|[ 52 | 267 | &1 | 242} &3 158 || 55 | 102 || 56 | 339
a5 | 25¢ Gﬁ 11 || o4 | 2851 62 | sizfj 67 | 165 | 61 | 198 @3 30

il 16s || 71 | 245 75 |01 7e |z28 [ 72 | 265 ) 77 361

71 jasgdl ez | 160 || 31 | 288 i al [ 173} 52 188 || 11 20 =1 70
7o e || 52 |14z | 42 |10 12z |16 | 22 | —8 ) 32 -8 B 52
Repti- || 48 | 187 i 23 | 254 || 58 | 100 f) 43 |—29 33 | 65| 74 | 10 13 | 199
catn 1V has' 1 257 || 64 | 159 || 7a | 218 24 | 200§ 34 j 174y 14 12 || 54 | 108
ol 5ts | 254 {| 35 | 289 [ 65 | 2ed i) 56 | 191 | 25 | 142 |} 75 | 395 45 | 2858
Nl 26 | 240 || 78 | 201 || 18 | 140 || 26 248 || 56 | 285 || 46 | 235 | e& | 178
\ 4 o7 | 218 || 27 | 138 || 77 | 208 |} 37 j 338 57 233 || 17 | w5 || 47 | 2
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TABLE 66

Pran or Fierp wite VARIETY NEMBERS AND CoRRESPONDING PLOT YIELDE FOR
A SyuneTRICAL IncoMPLETS BLocE EXPERIMENT WITH 21 VARIETIES Q)

PETH N
Vari- Vari- Vari- Vari- Vari- ;:\ “Block
ety |Yield || ety | Yield | ety |Yield| ety Yield || ety 4Yield || Totals

13 | 465 | 11 | 303 || 14 | 66 || 01 | 343 j 437 413 ) 2170
a0 | 208 || 21 } 337l 24 | a2t | 23 | 308,01 | 363 § 1827
a1 | ass |l oo | 219 || 34 | saa || 32 | 478\ 33 | 391 } 2118
or | 311 | 44 | 302 | 43 {ba2 | 42 [empa|| 41 | 358 || 1887
a1 {488 || 21 | 318 || o2 | 307 | 170 | 31 | 427 || 2088
3s0 | 32 | 400 || a2 e | A 444 | 22 | 550 || 2385
43 | 513 13 | 708 | 28 | 423 |j o2 | 740 { 33 | 629 || 2080
aa | 4oa | 02 | 838 | 24 | 7383P 14 | 488 [l 3¢ | 788 ) 3044
oo | 364 | 11 | 848 || 44 |.420 | 33 | 455 03 | 374 (| 1962
12 | so7 | 3a | a; fviasdlpeiyblargroreims | 03 | 381 ) 2017
o4 {403 || 42 | 75 [ 28 828 || 81 | 141y 03 | 259 ) 1208
32 | 264 || 23 | 259 %03 308 | 14 | 200 | 4 | 273 | 1483
2% (47 ) 1 4sso\‘! " 311 || o4 | 343 || 43 | 353 || 1029
14 | 454 || 83 [,281 403 [ 42 | 338 || 04 | 405 [} 1851
31 | 331 || 04 |Che2 | 44 | 319 | 12 ) 383 || 23 | 202 i 1847
22 | 554 | 0alleze | 41 |} vs3 || 34 | 505 | 13 | 668 3108
) 463
217 || 44 | 385 |j 32 | 244 | 1628 -
20 || 22 | 195 || 05 [ 196 j 999
309 || 12 | 196 [} 33 | 250 } 1164
207 | o5 | 16 || 03 | 198 || 1128

42 | p49 »34 348 || 05 i1 | 346 I| 23 | 304 j 2100
{21
31
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CHAPTER XIII

THE ANALYSIS OF VARIANCE APPLIED TO LINEAR
REGRESSION FORMULAE N

1. Significance of the Regression Function. If, in a series(oi-paired
values, y is the dependent and z is the independent variable,the regres-
sion of ¥ on x is represented by the linear equation Y =%+ bz — E),
where b is the regression coefficient and Y is a value of gfestimated from
the equation for z = z;. Now if the equation i§ Hsed to estimate each
value of y from the corresponding values of x, 11;\\09.11 be shown that

(4 — 2y — 9 <T@ — ¥ "
23y - PR Y — 97
And since Z(y — §)* =»,(&mm%§mr-ﬁg)fr§hrﬂz(y — )2, it is obvious
that, if the total sum of squaresfor the dependent variable is broken up
into two parts, one part X(y'— Y)?, representing deviations from the
regression function, amd.another part (Y — #)%, representing that
portion of the total,v%nability that is accounted for by the regression
funciion, these two parts are proportional to (1 — r%) and 72, respectively.
1, should be cleshthat S(y — ¥)? represents deviations irom the regic®
sion function because for each value of y we are taking the square of the
deviation of-that value from the corresponding ¥ value on the regression
line. '~Sj1milar1y Z(Y - §)? vepresents the regression function itself
bectise for each value of y we take the square of the difference between
4 and the corresponding point on the regression line. As the slope of
the regression line increases, (¥ — §)? must increase also, and as the
y values approach more closely to the regression line the value -of
S(y — Y)? decreases correspondingly.

The direct relation between Z(Y — )2 and the regression equation
may be shown by equating it to

(Y - g = 2{g + b — &) — §}* = P2 — &’ (2)

In the e'xpression_on the right (z — %)? is obviously independent of the

correlation so that any variations in (¥ — §)? are due entirely 10 b.

This is an important concept as it shows that, since the value of
210 i



SIGNIFICANCE OF THE REGRESSION FUNCTION 211

(Y — §)? for any given distribution of y is dependent on & single
statistic b, it must represent only 1 degree of freedom. Hence the
analysis of variance corresponding to equation (1) will be:

| ‘Sum of Squares DF Mean Square
Regression funetion...... BZe — 2)? 1 ¥z — )P
Deviations from regression )
funetion. ........o.v.- Sy —¥P n—2 iy — N =&
Total..........-. Iy — n—1 \' \AH

!
T
S

where 7' is the number of pairs of values of x apd ¥ SO

In calculating the sum of squares b* Z(x — )21k frequently con-
venient to make use of the equality _ O _

e DP
(e — )P = -——**‘E AT 3)

If b has already been obtained it is, p‘f' course just as convenient to mul-
tiply 2(z — P2 by ¥ s\:-:;i»\-"\-:f,dbraulibrarx,or .in '

1f the correlation coefficient has been determined, a short method
of determining the signifiéance of ra which is exactly comparable
to determining the significance of bys arises from the substitution of
A — 19) Sy — §)? for Bly — V)2, and 122(y — §)* for ¥ZE — & in
the sum of squareseohimn of the analysis of variance. Then F works out
to 12 (n' — 2)/1¢*r?, and this is all the caleulation necessary. In other
words, for a fotal correlation or a regression coefficient, F = 3, and
tables eitfier-of F or of ¢ may be used to test their significance. Refer
here to Chapter V11, equation (11), and note that F = s/

2.~{I‘~Est for Non-Linearity. When correlation data ave set up in the
f6rin"of a correlation table the total sum of squares may be split up into
twb portions, one part representing differences between the means of
arrays and the other representing differences between values within
arrays. The equation is

S - 9F = Emifp— 9P + 2B -6 @

Between . Within

- where 7, is the number in an array and #, is the mean of an aITay. The
second summation in the term on the right means that the sums‘of
squares are first computed for each array and these are summated.

e
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The equation for the correspondihg degrees of freedom is as follows:
Ww—-1=@g-D+@&~9 (8

where g ig the number of arrays in the table,

If we picture the sum of squares for between arrays as being due to a
get of means running diagonally across the table following in general Qhe
regression straight line, it is-obvious that the sum of squares for between
arrays includes the sum of squares p22(z — )%, worked out sboye for
deviations due to the regression function, and that the remaifider will be
due to deviations of the means of arrays from the regression line. The
equation is ' o

Snylds — 97 = Enyly — VI + VE> 2 (6)
Between Daviations Dug to linear
of means of .~\\r$zreuion

resremion Bag

If the means of arrays fall directly ofi'the regression line, Zn,(J» — Yy
will be zero, and correspondinghytits value will increase as the trend
of the mean values gets fé t] or away from thé trend of the straight
regression line. Then ginées the sum of squares for within arrays
measures the random vafiability in the values of ¥ a comparison of the
estimates of variancé\obtained from Zn,(F, — ¥)? and ZZ(y — F)"
should provide a measure of the linearity of regression, or the goodness
of fit of the regieselon straight line to the data in question.

The equation for the degrees of freedom corresponding to equation
(6) will belg ~ 1) = (¢ — 2) + 1.

Tl}ejcbmplete analysis of variance may be represented as follows:

AN

T

Sum of Squares DF Sum of Squarasl DF
Linear
Betweenarrayal Zap(fs — P | ¢ — l< regression | b*Z(x — 5)* i
Devintions,

means of mrrays | Snp(f, — Y| ¢~ 2
from regression
line .
Within arrays | 22y —f)® [ —¢

Towl.....| Sw—9° |a'—1
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For the purpose of testing linearity, however, it suffices $o set up:

Bum of Bquures DF Variance
Deviations, means of arrays
from regression line. .. ... gy —Y¥ | g—2 Zng(dy — YV/g -2
Within arrays.......... o 2By - gt n—q Iy — Gl — g
Total. ...... e, 2y~ Y2 . B -2 "\

There are various methods of obtaining the sums of squared for the
above analysis, but one of the most convenient and dlrect. i¢ first to
caleulate Tn,(j, ~ 7%, making use of the identity » j :

Zmd, — 9 = 2(32) - NS 10

nl’ \ )\

We square the total of each array and dlwd\e}py the number in the
array. These are summated, and from the'sum we subtract the square
of the y total divided by the number of paired values, Then we caleu~
late ¥Z(z ~ £)? and, Sy — )2 being- known, the two sums of squares
required can be obtained by subbraption R - BRPSgguTe 18 obvious by
reference to the outline of the analysis of variance above.

Ezample 41. Significance oN Regression Function, In Chapter VII, Ex-
ample 13, we determined th ‘prelntlon coefficient for the yields of adjscent barley
Plota and in Chapter VI, Ex&nple 11, we determined the regression line. Using the
same data and the analyms of variance to test the significance of the regression
function we should gat \ gimilar result. The puma of equares are

O 2(:0: — £)? == 3052 ~ 850°/200 = 330.50

O 12z ~ £)* = 0.4492! X 330.50 = 68.50

O Sy — )® = 8180 — 1246%/200 = 417.42
AN Sty — ¥)? = 417.42 — 6850 = 348.92

Thén ﬁhe anslysis of varlance ia aa follown:

Sum of DF | Variance’ F 1% Point
Bquares
Regrossion funetion....... 68.50 1 68,50 38.9 8.76
Devistions from regression| 348,92 198 1.762
Total. ............ ) a7z | 190 -

The F value is well beyond its 5% point, indicating a bigh degree of aignificance.
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Example 42. The Teat for Non-Linearity. We shall again use the data of
Chapter VI, Table 12, for this test. Sinee we already have Z(y — #)? (Example 41,
above) the first atep is to calculate Zny(Fp — #% In Chapter VI, Table 13, the
totals for the y srrays are given, 8o we proceed as follows:

Between arrays....... 20%/4 4+ 60818 +--- + 42216 — 12462/60= 78.70
Linear regression .. .. bz — £)? = 0.4402° X 339.50 = 68.50
Deviations from regres- —_—
HOM.covvnennnrnn Zng(jp — Y)* = Difference = 10.20
Total....... Ty — ) - (1742
Between aITAYS. ... ... Zaglip — 7 5“7‘8.70
Within arrays........ IZ(y — ¥p)? = Difference ' (= 33872
Setting up the snalysis of variance, we have: N
Sumof | pp | variance’| F |5% Point
Devintion means of arrays ] v \ ‘
from regression line..... 10.20 55\ 2.040 1.16 2.26
Within arrays.......... .| 338.72 | 83 “1 1.756

www,dbré'dl’ibrary,org,jn . :
The F value does not approach its 54, point, 8o we conclude that there is no evidence
of non-linear regression. \ _
3. Significance of (Multiple Correlations. In multiple correlation
- where z; represents.the dependent vanable and zz and s two independ-
ent variables the\régi'ession equation is

',;"\'":'61 = & + bia(ze — 1) + bia(zs — %) ®

and thi’ehtfay of course be extended for any number of variates. The
norjl\xial equations corresponding to (8) are

Tri(ze — Eg) = bi1aB(zma — £2)% + biaZza(zs — 3)

9
Tz1(2s — Za) = biaZaa(zs — £a) + braZ(xs — £3)2

and from these we can derive the solution
B - 82 = @ — X1)? + bioZaa(es — &) + bisZz(zs — %) (G0

This equation corresponds to (1) above where the first term on the right
represents the portion of the sum of squares for 21 that is independent
of 72 and z3. 'The other two terms on the right represent the portion of
the sum of squares for z; that is dependent on #2 and 3. These terms
may of course be written blyE(zs — ) and b2 (s — %)% in which
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form they correspond to V2Z(x ~ £)? as above in equation (2). Equa-
tion {10) may also be written

Sz — 5P = (1 - B3z, ~ #1)2 + R%3(xy — &) (1)
where R is the multiple correlation coefficient. Also

(1 — B?) Bzy — £1)2 = Z(z: — X1)%, and R2Z(x; -~ #)°
= bizZo(e2 — £2) -+ baZiz(2z ~ o).

It follows from (10} and tll) that a multiple regression can be

expressed as an analysis of variance as follows: . N\

. f \73

y ~
Sum of Squares DF Variance W
Regression : R"“ ey~
furetion BTz — 72 F R2Z(xy ~ Z)¥p - i‘{"‘g;) (L:—)
Deviations F -
from . . \
regression \\
function (1 — BDZ(x; — Z)%a' — p — 1| (1 — BOT{ny S’ )
L A ]
Total E(n — Et »—1 A

where p is the number of indepeh@ﬁt“éﬁﬁ.ﬁlbﬂ?réw #the significance
of a multiple correlation therefere it is only necessary to find

QRN

and look up thg\’5% point of F corresponding to m = p and
nz:n'—p—{.ﬁ . .

Example ékThe Significance of a Multiple Correlation. Lef Rygus = 6._6457.
and it hag béon obtained from a series of 84 values of L1, 2a, 3, T4, &nd zg. We have

m:.\:.. P (0.41692_8 (zg 141
O™ 0.583072/\ 4

For p =4 apd n’ —p — 1 = 79, the 1% point of F is 3.56, so that the multiple
correlation is highly significant. : '

4. Special Applications. The analysis of variance can be used {0
determine the significance of the additional information obtained in eal-
eulating multiple correlation coefficients. This method was used by
Geddes and Goulden (2) in & practical problem in cereal chemistry.
Correlations were first determined between loaf volume of _-whea.t flour
and the percentage of protein. In later studies the protem was sep-
arated into two portions, peptized and non-peptised, and using these two
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portions as variables the multiple correlation for their combined effect on
loaf volume was calculated. If the proportions of the two kinds of pro-
tein have an important effect on loaf volume the multiple correlation
should be significantly higher than the simple correlation for total pro-
tein and loaf volume. A method of comparing the two correlations
would determine therefore the practical significance, for purposes of
predicting flour quality, of knowing the amounts of peptized and non-
peptized protein in addition to the total protein. ~

If we let z; represent loaf volume, xp the peptized protein, w3 the
non-peptlzed protein, and z, the total protein, the correspondmg simple
" and multiple correlation coefficients are r1p and £1.23. The total pro-
tein is of course (z2 + z3), the sum of the two {ractions.s™

Assuming these correlations to be determined fro\n:i:20 pa.irs of values,
the sums of squares representing deviations from'thie regression function
are proportional to (1 — r'f,,) snd (1 — R,\a), respectively, and the .
corresponding degrees of freedom are 18 and'17. The effect of using
more variables to estimate z; as in the case of multiple regression is to
decrease the sum of squares due to devigtions from the regression fune-
tion, but for each additional variablé introduced 1 degree of freedom is
lost and unless the reductmn of the\sum of squares is more than propor-
tional to the loss in degress’ ?Mﬁ' i Phéfei’no gain in precision. An
analysis may therefore be set\up as follows:

- S

1S
a\ Sum of Squares DF Variance
Deviations from rega;éasion of
gpong.... ..., 1-—+, 18
Deviations from}hgresmon of
%3 8nd 23001, ... ... ... 1 -~ Kl 17 )
Addmonal\degree of freedom | (1 —rd,) — (1 — RY9) 1 (2}

oA'i)plying the 2 test to the mean squares (1) and (2), using (1) as an
erfor, we can determine the significance of the gain in information due o
the addition of another variable.

In one actual experiment for a series of 20 flours from No. 2 Northern
wheat r1, = 0.511 and Ri123 = 0.732. The analysis gives:

—_ )

Sum of Squares - DF Variance F 1% Point
1-—-rl, 0738879 18
1~ REa  0.484176 17 0.02730

Difference 0.274703 1 0.2747 - 10.08 8.40
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In this case there was a decided gain in information owing to the
* separation of the protein into two components,

In the general ease to which this method may be applied note that
(1 — r*) represenis (n" — 2) degrees of freedom and (1 — R%),
{(n’ — p — 1) degrees of freedom. The difference between the two
sums of sguares will be represented therefore by ' — 2) —
(" —p — 1) = (p — 1) degrees of freedom.

b. Exercises, O

1. For the data in Chapter VI, Table 16, determine the signifieance ofitj:ns -
gression funetion by means of the analysis of variance, where the flour €arotene is

taken as the dependent variable. F =159.5,
2. For the same data a8 in Exercise 1 above, test for linearity oféregtension;
> Fe32L
8. Apply the test for non-linearity to the data in Table 67 for“t;kﬂ relation between
loaf volume aocording to a standard baking formula and the \pércentsge protein of
wheat flour. If there is evidence of non-linearity ealculate the regression equation
and make a graph ghowing the regression line and the Q‘&ma of the arrays.

 §

TABLE 67 {
CORRELATION SURFACE FOR RELATION Bﬁ:vﬁ'mr Protemw anp Loar VoLows
Protein sﬂfﬁm library.or g.in
1.0 11.5 12.0 12.60 13:&) 13.5 14.0 14.5 150 155

950 ' \K ' [ 1
00 \ g 5 7
850 \\ 5 |25 )6 3|1 ]|2
800 ‘;\:“ 6 (15 | 7 .3 12 | 2 45

Losf 750} o |12 Jiefslelel ]|

volumde ™\ ™

in ce. \700 17 3§11 13
650 Al s 2 u
600) 4 [ 61 2 12
550 2 2
500 [ 1 1

5 13 23 23 35 15 16 26 8 2 164
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4. For n' = 40, determine the multiple correlation B34 that is just significant.
. B. Determine the significance of the gain in information through the calculation

of multiple correlations in the examples given below. For each comparison, state
your conclusion in words.

n' = 40 rie = 0.7643 R3¢ = 0.8031
n' = 62 ris = .8744 Rygaas = 09664
r =20 rip = 0.7621 Riza = 07635
w =20 i = 0.7316 Ryzssss = 0.7329 O
Oy
REFERENCES ‘o

L R. A Fsmmn BStatistieal Methods for Research Workers - Qliver and Boyd,
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3. L. H. C. Treeerr. The Methods of Btatistics. Williams and Norgate, London,
1931, Reading: Chapter VII, Sections 7.23, 7/33;/Chapter IX, Sections 9.3;
Chapter XI, Sections 11.6, 11.72, 11.63. . '
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CHAPTER X1V
NON-LINEAR REGRESSION

1. An Exampie of Non-Linear Regression. In Chapter X111,
Section 5, Exercise 3, a test for non-linearity was applied to a correlation
surface for the relation between protein and loaf volume of whéah Rour
in a baking experiment. The non-liearity is significant, and@p plotting .
the means of the arrays we find that with increasing proteinthere is at
first a very rapid increase in the loaf volume, but with higher protein
flours the increase in loaf volume is slower and finaliy. there are indica-
tions that the loaf volume is actually decreasing.” Here we have a
typiecal example of non-linearity, and it is ob\r{oﬁs that, in such cases,
methods for the prediction of values of the dependent variable from
specific values of the independent variablécannot be based on a straight-
line equation. o\ o o

2. The Correlation Ratio. In ¢ases of non-linear regression the
correlation ratio (1) is sometimes}t}seéi Eetesent the relation between
the two variables. The correlation ratio is defined by

AN o, |
o - Bl &

and its relation 10 $he correlation coefficient will be obvious from the out-
line of the anaiy#is of variance of Chapter XIII, Section 2. The corre-
lation cocfficient may be defined as follows if we take into account its
numerical value only:

“\Z \. @ - E{Y —_— y-)z
™ e = —-—*-—-—E(y — " o (2)

and it is clear that in the correlation ratio the numerator contains the
sum of squares Z(Y — §)? plus the sum of squares due to deviations of
means of arrays from the regression line. Hence #? is always greater than
72 unless the means of the arrays fall exactly on the regression line. The
correlation ratio measures the lotal varisbility of the means of BITAYS,
and this may be due in part either to a linear relation between the vari-
ables or to some other type of relation. It does not, however, represent

s relation that can be expressed by a mathematical equation, either
219
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" linear or curvilinear. 'The correlation ratio is therefore not a very satis-
factory statistic asit cannot be used to predict one variable from another.
Tts use must be confined to a measurement of the significance of the
total variability of the means of the arrays and in this respect must be
interpreted in terms of the analysis of variance. Thus in Chapter
XIII, Section 2, the analysis of variance test will involve a comparison
of the variance between arrays with the variance within arrays.

The popularity of the correlation ratio was oceagioned partly by
the use of Blakeman's criterion (¥ — r%) as a test for linearity"(1).
R. A. Fisher (3) has shown that this test is not satisfactory and.that the
analysis of variance can be used as deseribed in Chapter XI{Dto provide
an sccurate test. The correlstion ratio as such is therefore not much
used st the present time. It may frequently be netéssary to apply &
test of significance to the variance for the means of@rrays in a correlation
surface, but this does not necessitate the actuahealculation of the corre-
lation ratio. Elaborate methods have bee;n"ataveloped for testing the
significance of the correlation ratio, but Abese are now unnecessary 83
the problem has been completely solvéd)by Fisher’s 2 distribution and
the analysis of variance. The testpas we have noted in the previous
chapter, is now quite simple. .33

3. Types of Regréssiotd BYlktnso afBe procedure in making &
eritical study of the relatiod“between two variables when this relation is
non-linear is to endeaggr,\to find some type of mathematical equation
that will give & good fit:. "This is obviously not always a simple problem
as there are & number of types of equations to choose from and in each
case the method G making an accurate test of the goodness of fit must
be considered;The first step is to examine the trend of the values in the
regression (graph and from its general characteristics decide as to the
type of ‘ejuation to be used. After the type has been selected the
actualequation must be determined by direct methods.

) :\f The simple straight-line equation that we have dealt with previously
15

Y =7+ bealz — ) = — by + b7
and since § ~ by is & constant we can write this equation in the form
Y=0co+ eax
where ¢g = § — by.® and ¢1 = by, the regression coefficient. This isa
convenient form with which to represent the various kinds of regression

equations, which in general are of two types: (1) polynomials, and (2}
logatithmic,. Typical examples are as follows: :
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PovLynomiara LoGarrrauic

Y=0+az Y=atalgs
Y =a+eaz+ead lgY =g+ a1z
Y = a + car + e + er® log¥ =g+ erloge .

ete. ete.

Of the polynomials the first is the simple straight-line equation, the
second is the simple parabola or quadratic, and the third is the cubie,
The simple parabola has only one maximum or minimum poeint, and
there are no points of inflection. The eubic has both 2 maximum and &
minimuin point and one point of inflection. Curves of higher degree
have more maximum and minimum points and tend to twist oftenér and
more rapidly. A most interesting characteristic of the pelymomial
equations is one that has already been noted in Chapter XIT, 11 dealing
with the separation of sums of squares corresponding to” individual
degrees of freedom. The effects represented by thé\ polynomials, of
different degree are independent, and we refer to thent as the orthogonal
polynomials. This property is of particular vale'in curve fitting as it
simplifies materially the problem of testing j;h;]x\goodneaa of fit at each
stage of fitting. e

Logarithmic curves may be regardedtas modifications of the other
types. Thus the straight-line equatiot\l’ = ¢ + c1# may be changed
to a logarithmic equation by mp!gg\fnxé'd.gb? ?éa%?‘o'ﬁibnresult of this
change is a crowding together of&he z ordinates farthest away from zero.
A straight line with a positive slope is changed therefore to a curved line
which has a very decided*slope at the origin but changes rapidly as =
increases and reaches a{point finally where the slope is fairly constant
but much less than that of the original straight line. Logarithmic
curves, in addition; eannot be used to represent negative values, and in
this respect are{therefore much more limited in their application than
the polynom%." e -

The characteristics of the different types of equations are most easil
learned, by working out the ¥ values for some imaginary equations and
plotting the curves on graph paper.

4. A General Method of Fitting Polynomials. With the dats such
a8 those of Table 67, Chapter X111, before us in the form of a correla-
tion surface, we may inquire as to the possibility of expressing the rela-
tion between protein and loaf volume by some simple mathematical
equation, the end result of our inquiry being to obtain the best method
available for predicting the loaf volume that will be obtained from the
flours of a given protein content. The selection of the best type of
equation is fairly easy in this case. First we prepare a graph of the
means of the ¥ arrays as in Fig. 12, connecting the points with a dotted

. \.ll\'\'ll I‘| v :-" ;
.
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‘line. The general trend of the points seems to follow fairly closely
the first half of the second degree parabola, or of the portion of & third-
degree curve up to the maximum point. There is very little resemblance
to a logarithmic curve as the first portion of it is nearly straight and with
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a greater curvature fowards the end. Of course polynomials of higher
degree may give'abetter fit than those of the second degree or third
degree, and thé’problem resolves itself therefore into the selection of a
polynomiahthat will give the greatest degree of precision in predicting ¥
from particular values of =.

SN

\” " SELECTION OF EQUATION GIVING THE BEST FIT

The problem of selecting an equation of the degree that gives the
greatest precision for prediction purposes is of paramount importance
in curve fitting and one which may easily be overlooked in a maze of
technical details leading to the fitting of curves of a high order. Unless
we can be sure that a curve fits better than a straight line it would be
better not to use the eurve. In certain cases the improvement in fit due
10 one equation over another is clearly visible by inspection, but this is
certainly not generally true. For example, in comparing second and
third-degree curves, the latter often appear to fit better than the former,
but a critical test may show that the situation is definitely otherwise.
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In the methods of curve fitting described below, particular attention
is given to the problem of determining goodness of fit. We begin by
fitting a straight line or a curve of low degree and follow up with addi-
tional stages of fitting. At each stage one degree of freedom is wilized
in fitting, and the variance represented by this degree of freedom is tested
against the error of regression. As a geéneral rule, when a curve has
been abtained that passes reasonably well through the points, and if in
making use of an additional degree of freedom there i3 no gain in preci-
sion, the curve of lower degree fitted previously is taken as giving(the
best fit. A

2N\

METHOD N

The fitting of polynomials is an application of the wiettiod of least
squares. Where Y represents the values of y estimated/from the regres-
sion equation for given values of z, the type regreSsion equation is as

follows: \
Y = co + a1z + cx? + o ez ' (3)

and eonsequently the error of esthnation:istgiﬁren by
Sy — ¥) = By —~ oo — @B — - —cat™? (4)
The best values for substitutio‘ﬁ"ﬁ’ t‘fn‘é“éﬂﬁhﬁﬂaw-ﬂmm €1y Oz, * - *C ATE

taken as those that give a minimum value to Z(y — ¥)2%. Minimizing

the expression on the right.dn'(4) we obtain a set of m + 1 simultaneous
equations, where m -+ ¢ iétile number of unknowns and m is the highest

power of x in the polypomial equation to be derived. These simuitane- -

ous equations are.\knnwn as the normal equations, owing to the.sm-
metrical nature ©f the coefficients. For the general case they are as
follows, where.£4nd y are messured from their means: '

oo £X@es + SDe: 4+ - + SEWe. = @)

E(x)?@.‘k BaDer  + (e + -0 + T(Emtlon = Z{zy)
Fffbf)cé + ZaMer + Zabes + o0 A+ ZEmPem = Z2%) (5)

(@™o + Sty + Samtes + -+ + Z@¥ew = S(z™y)

The symmetrical nature of the coefficients allows for a method of
solution commonly known as the Doolittle method wherein the total
amount of calculation involved is very considerably reduced as com-
pared with the ordinary method of solving & set of simultanecus equa-
tions. After co, 1, €z, - -+ C» have been solved for, the setting up of the

LAtk
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regression equation is merely a matter of substituting the values of these
gtatistics in equation (3) '

TESTING THE GOODNESS OF FIT

The method of testing the significance of the variance corresponding
to each degree of freedom used in fitting is merely an extension of the
method described in Chapter XIII for testing the significance of &
straight-line regression function. \

‘Let Ro = S(y — §)%, R1 = Z{y — Y% and Z(¥1 — F%\is the
sum of squares due to the regression function for one degree offitting,
The analysis is of the form: \ >

88 < Npr
‘\, 4
Regression function......... 2y — )2 % 1
Firet residusl............. Ll B=2 - Y0 =2
Total........... By = Sty ~™ -1

If a second statistic is fitted the rgsifiual R will be reduced by an amount
equsal to the differency BetwesniiBeauns nirsquares for the two regres-
sion functions, i.e., by Z(¥e — §)2 — Z(¥1 — §)?, which for conve-
nience we will put equal\to Z(Y: — Y;)?. The new residual may be
represented by Bz, al\d'\f'.hé analysis will be: -

‘.:“ 88 DF
I;ifference,:rgg&s;ion func-
gl S g vl
’m:'}" First residual. ... . R: -2

Obviously this process can be continued indefinitely, providing at each
stage & test of the significance of the additional statistic fitted in the
regression equation. Jsserliss has shown how the sums of squares for
each regression coefficient can be obtained gimultaneously with the so-
Tution of the equations for the unknowns. His method involves solving
for the regression coefficients co, ¢1, -+ Cw, by means of algebraical
formulae, and since this method appears to be somewhat laborious, the
work in the following examples is performed in tables by a technique’
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gimilar to that used in solving the equations for partial regression and
correlation coefficients. It is shown also how the sums of squares
required for the tests of significance may be obtained directly from
these fables,

The analysis of variance test as used here should not be confused
with the test for non-linearity as described in Chapter XIIT. The
regression straight line may not be a good fit, but, if it 1g a better fit than
the horizontal line representing the mean of y, the test we use here will
show it to be significant. Af the same time, the test for non-linerity
will indicate signifieant deviations of the means of the y arrays from'the
regression line. As a matter of fact, after fitting a straight? h‘ne it is
desirable to apply the test for linearity. If there is no evidence of
“nop-linearity there iz no objeet in proceeding to the ﬁttmg of a curve of

higher degree. _ R

Example 44, For this example we shall use the data’of Table 67 and fit poly-
nomials by successive steges up to the third degree. \\

The first step in the procedure of fitiing regression lines is to obtain the values of
the coeflicients for the normal equations. Thése\are best cbtained as in Table 68,
which i divided into sections, each section repreSenting the dats necessary for cal-
rulating one additional constant. Thus Sactibn A in necessary for fitting a straight
line; if we wish to fit a second-degree curve we proceed with Section B, and so forth.
This is continued until it is obv:ous%t“fdhhﬁ'ﬁbﬂlﬁgymugﬂmry In actual
practice we will probably not have to'go beyond fitting to the third degree. -

Note that the actual clasaes{or both y and & are replaced by 1,2, 8,...9. This
reduces the labor a great deal, and, when the ¥ values have finally been calculat,ed
for drawing the curve, th‘s;(\may be converted to actual valies by the method de-
scribed in Chapter 11, Séetion 8, for converting means; or the whole equation may be
converted to a.ctual valnes by methods similar to those deseribed in Chapter VI,
Bection 5.

The essiest, méthod for caleulating the sum of the powers of z ia by continuous
multiplicatiori, )First, N, is calculated for each array, and to obtain the figures in
N2 we &im ly multiply each of the N valuea by z. When we reach the last
eolumn of\ohe section it is good practice to check this column using » iable of powers
of z.¢ “This checks all the previous caleulations of the powers of 2.

“Hsmg earried out the calculations sa in Table 68, Section A, we write the normal
equatmns for fitting a straight line. For the general case thess are

n'a) + Z@a = Z{) @
2@ + ZHa = Zay)
and aubstituting the actual oneEﬁcients we have

164y + 851e; = 1014
851ep + 5181y = 5686
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TABLE 68
CALCULATION or COEFFICIENTB FOR FITTING A PDLYNOMIAL UP TO THE
Tamp Deonew
Section A
Frequency ‘Totals | Means Frequency, O
ofyforz | fory for v ofzfory | » Nt Py=loy2 1a
Y] Arays | Arrays | Arrays ) © | Arrays il R I\G\',,:l)g};:L v
Ny Tye ¥z Nay \
1 1 13 | 2.6000 || 1 5 5 {051 1371 33.8000
2 2 43 |3.3077 | 2 13 26 4 “b2 | 86 142.2308
3 12 115 ! 5.0000 | 8 23 68| 207 | 345 575.0000
4 11 137 ] 5.9566 )| 4 23 b2 | 368 | 548 | 816.0435
51 13 23¢ [6.6857 | 5| 35 olwrs | 875 1170 [1564 4571
] 50 100 | 6.6667 || 6 158Y 00 | 540 600 0666.6667
7 45 115 | 7.1875 7| M6/ | 112 | 784 B05 | 826.5625
8 22 199 |7.6538 [ 8 ‘26 208 | 1664 | 1592 [1523.1154
9 7 44 [7.3333 | BLY 6 54 | 486 | 396 | 322.6867
10 1 14 | 7.0000 [[10Y 2 20 | 200 ] 140 98.0000
) W’de.['g Li rary org il
164 1014 “ r 164 851 | 5181 | 5605 |6568. 5427
L&
)
\\
Sagtioﬁ B Section C
> 2 o
s Tyz = . 2Ty =
Ny o Nyt v Nyt Nyt P
}rf,s\\ . #C N, :,;c“zfz 24 L N xyz"yr
AN 5 5 13 5 5 13
NN 104 208 172 416 832 344
N e 1,863 1,035 5,689 16,767 3,106
1,472 5,888 2,192 23,552 94,208 8,768
4,375 21,875 5,850 109,375 546,875 29,250
3,240 10,440 3,600 116,640 699,840 21,600
5,488 38,416 5,635 268,012 1,882,384 39,443
13,312 106,496 12,736 851,968 6815744 | 101,888
4,374 39,366 3,564 354,294 3,188,646 32,076
2,000 20,000 1,400 200,000 2,000,000 14,600
34,991 253,557 36,197 1,930,751 | 15245301 | 250,488
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SuMMARY oF CoEFRICIENTS

Section A ' Section B Section €

w o= 164 2(z%) = 34,991 (%) = 1,980,751
Z(z) = 851 T(zt) = 253,557 Z(z%) = 15,245,301
() = 1,014 Ziz%y) = 36,197 Z(z*y) = 250,480

B(z2) = 5181
Z(zy) = 5,685
E(T5e/Nuy) = 6,568.54
I(y - §)* = 428512 ’ O\
~\ ¥
The solution of these equations is carried out as in Table 69, the'heéthod being
identical with that deseribed in Chapter VIII for partial regressiofi’and correlation
coeficients. Note the “check sum” column, which is used for chw}ki’ng the caleula-
tions as you proceed, and in addition the “check line” just helowthe “'reverse,” that
giver s complete check on all the ealculations ineluding tl;ese in the reverse. In
Table 69 the check line is obtained as follows: K7, 8

S

A
164 X 3.244,175 4 861 X 0.5{’36,340 = 101

It is merely a substitution of the statistica o andjcl.i'ﬁ the first equation of {6).

At, the foot of Table 69 we have the analysigaf variance for testing the mgmﬁanznce
of the degree of freedom due to the reggsasion sivpight live. Ro = Z(y —g)" is
obtained from Table 68, ysing the equality® o y\érg,m

A Tz :
Iy =267 - 7
TS w
Z{¥1 — #? is then obtained hén the solution of the normal equations by multiplying
the figure in line 5, column-1 (5,1}, by the square of the figure in line 6, column
K{(6,K)*. The differentg'is the sum of squares Z(y — ¥1)? = R, and may be taken
to represent the ersohof regression and is therefore approprinte for testing the sig-
nificance of the ¥atfnee due to the regression line. In the example, we find that
the Tezremon":s}décidedly significant but we proceed to the second siage in order to
determine whether or not greater aceuracy can be obtained.

Procgeding to the fitting of a polynomial of the form ¥ = & + o1z + oia?, we
write/theriormal equations

ey + Sz)er + ZieNe = Z{y)
@ + Zeha + e = ey O
2D + ZEHe + Zizhe = 2

and the necessary data for solving the equations are obtained as in section Bol Tab}e
68. The solution of the equations is performed according to ‘Table 70, and note that in
this table columns (0) snd (1) can be copied directly from Table 69, and colufnn K
can be copied as far as line 6. ‘The reverse and the check line are caleplated in the
ususl way. For the analysis of variance B is brought forward from Table 69, a_.rfd
(¥, — ¥2)? is calculated by multiplying (10,2) by (11,K)?% where the numbers in
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TABLE 69

Bovorion or Norwar Equarions For FrrTiNg A BTRalaRT Live

Line 0 1 K Sum
1| 184 851 1014 2029
z | —1.0000 ~5.180,024 | —6.182,927| —12.37,195
AN
3 5181 5695 11,722
4 _4415.8504 | 5261.6703 | ~10,528)530
5 7651406 | 433.3207 | (1;198.470
6 —1.0000 —0.566,340.1\ - —1.566,340
c1= +0.566,340 & 1 40.566,340 |  +.0.568,340
=-+3.244175 § 3 | +8.208,175) 2938752 | +i82,027
R - '.\\.
N\
Check 532.0047 | +481.9553.C] =1014
K ww,dba‘éﬁl]ija -ary.orgli
S sq.) DR | Vardaces| | F 5% Point of F
Ro=3(y — g)? | 428512 -\ 163
G X 6K |25a2 1 | 2.4 225 3.90
Ri=2(y - ¥1)? | 183.100 162. 1130

A\

the brackets cg:;%ﬁpond te line and column respectively. The difference between
the two 8.0f squares is R, which can now be tsken to represent the error of
regresmom \In the example we find that the variance due to the additional degree
of freedom used in ealeulating the second-degree curve is quite significsnt, so we can
cofiélude that n real gain in precision has been made.
<. ¥ the method of procedure up to this point has been thoroughly understood it
will be found that the fitéing of additional statistica can be carried forward without
difficulty. The work involved in fitting to the third degree in the present example
has been performed in Table 71. Note that the columns 0, 1, and 2, can be copied
direetly from previous calculations and that column K can be copied as far as line 11
The snalysis of variance indicates that the variance due to the additional degree
of freedom used in fitting a polynomial of the third degree ia insignificant. It Is, in
fact, less than the variance due to error of regression. The conclusion is that the -
third-degree curve, although it fits the data satisfactorily, is less useful for predicting
loaf volume from protein than the second-degres curve. In msking use of another

degree of freedom to determine a new regression function, precision kas actually been
lost. '
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FITTING LOGARITHMIC CURVES 231

b. Fitting Logarithmic Curves. The procedure is beat illustrated by
means of an example. .

Example 45. The data given in Table 72, and presented graphically in Fig. 1 3,
were obtained in a study by Geddes (4), of the effect of time of heating on the baking
quality of wheat flour. "
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Fig. 13.—Relation between time of heating and baking quality of wheat flour.

From an examination of Fig. 13 it is owwmm%l{glﬁ ot give a good .

fit to the results. It is also obvious byinspection that a poﬁﬁ)nmial cannot be

expected to give a pood fit as the curyeétends to flaiten out and run parallel to the
s J

. KO TABLE 72

INFLUENCE OF THE 'I‘mg Qn Heamwg ar 170° F. on THE Baxine QUALITY OF
() BrraigaT Grave FLour

A
Q)" _ Bsking Quality
‘(§Pi“ e in Hours Single Feature Estimate
N 0.25 93
~O 0.50 71
\‘;" 0.75 63
1.0 54
1.5 43
2.0 38
3.0 29
4.0 .26
6.0 - 22
8.0 20

gero axes at both ends. From z = 0 to z = 4, the curve might be fitted fairly well
by a second-degree polynomial, but as z increases from that point, the curve flattens
out and runs almost paralle] to the x axis. This is typieal of logarithmic turves and
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decidedly not typical of polynomials. We decide therefore that a logarithmic curve
will give the best fit.

The next step is to examine the three prineipal types of logarithmic curves, as
given on page 221, and make a preliminary determination of their goodnese of fit to
the results by plotting the three pairs of variables, ¥ and log y, log y snd =, log y and
log 7, against each other in a rough graph and noting which of the three give pointa
that fall most nearly in a straight line. As lustrated in Fig. 14, the set of points
falling most nearly in a straight line are those given by log y and log x, 8o we proceed
to fit 8 curve of the typelog ¥ = & + ¢1 log z. )

The caleulations, using log y and log = a8 variables, are exaetly the same a8
in fitting & straight line. These are given in Tables 73 and 74, togetherwith the
analysis of variance to determine the significance of the fit of the reg{éseibn line.
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Fia. 14— Result, 6f preliminary test to determine the logarithmic equation giving
L0 the best fit to the data of Table 72. -

Note thp.t‘ﬂ}a goodness of it is determined on the basis of the logarithms of yand ¥,
and pobion the basis of the actual values. Thus the error of regression is given by
Sflegy — log Y)?. This can be taken asa general rule, i. e., that when the regression
chuation gives logarithmie values, the test of goodness of fit must be in terms of the
logarithma estimated. It arises from the fact that logarithms express the relative
differences between numbers and not their absclute differences. With two numbers
such ag a and b, their absolute difference is @ — b, but log 2 — log b is log a/b, and if &
and b are variables and a given percentage increase in g results in a similar percentage
increase in b, log a/b is constant and the relation between the logarithms can be ex-
pressed by a straight-line equation. To test this faet it is essential that we deal with
logarithms throughout and not with actual values.

For graphical purposes it is suitable to express the results of fiiting & logarithmic
equation as in Fig. 15, where the actual values of z are plotted against the sati-
logarithms of log ¥, and & smooth curve drawn through the points. The small
eircles in Fig. 15 represent the original values of y and z.
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Cavcuration oF COEFFICIENTS FOR m mem log Y =a +c1 log x

Ww\v’ dbranfihrag 2 orp

~ i
e s N m o ¥ v
ime ng _ g
in Hours | Quality - xb‘l’ﬁ z | =logy
AN
0.25 3 \—0.6021 1.9685 1.9937 98.6
0.50 L 17 ~0.3010 1.8513 1.8628 71.2
0.75 6300 —0.1249 1.7903 1.7704 58.9
1.0 P15 0.0000 1.7324 1.7120 51.5
1.5 48 0.1761 | . 1.6355 1.6206 42.6
2.0  [{\'ss8 0.3010 | 1.5798 1.5711 37.2
3.0 & 29 0.4771 1.4624 -1.4887 30.8
4000 28 0.6021 | 1.4150 1.4302. 26.9
6}?‘3 : 22 0.7782 1.3424 1.3478 22.3
g, 20 0.9031 1.3010 1.2893 19.5
E(z) = 2,209,600 St = 4.169,362
Z{zh) = 2.601,671 [EyOP/10 = 3.703,453
Z(y)* = 6.085,600

Zlzun) = 0.355,642,8

Sy —~ §)F = 0.465909 = By

% g roded by subtracting 1.
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TABLE 74

CarLcuration oF SraTistics anp Test oF GoobpNesg oF FIT ror THE CURVE
Jog Y =g +c1logz

Line 0 i K 5
1 i0 22096 6.0856 18.2962
2 1.0 ~0.22006 | —0.60856 | —1.2052
3 2.60167 | 0.355643 | A 516601
4 —0.48823 | —1.344,674 { 2204251
5 211344 | —0.980,03L) 1.12440
6 ~1.0000 0.46797
= 046797 | 1 ~0.46797 | ~40.46797
= 4071196 | 2 | 4071196 | +0.10340. |3 0.60856
Chetk Line 70196 | —1.0340)7| =6.0856
O
S6a) DY Variance F 19, Point
Ry = 0465509 . dbl‘alﬂlbl a “y.OL‘g.{n
(517X 6,K)? = 0.462.835 _ 11 0.4628 1205 11.26
By = 0003074\ 8 0.000384

Equation log ¥ = J?}\Igﬁ — 0.46797 log =

6. Fisher's’"Summation Method of Fitting Polynomials. When the
¥ values are{0r can be assumed to be, of equal weight and are given for
equal intéxvals' of z, the method of fitting polynomials developed by
R. A I"l}her provides a very decided short eut from the actual to the
theqmﬁical polynomial values. The arithmetieal labor is likewise easy
881t consists largely of a process of continuous summation. The pro-

\cedure will be illustrated by an example

A summary of formulae for fitting polynomials is given below, and in
‘Tables 79, 80, and 81 the constant factors in the formulae have been
calculated for n = 5 to 20 and r = 0 to 6, where r represents the degree
of fitting.

) ! Professor Fisher has now developed this method for application to the case
wherein the y values are of unequal weight. See the references at the end of this
chapter.
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Sumumary oF ForMULAE FoR FirriNne PoLynowiais BY THE SuMmarion Myragp

1. 81, 82, Sz, S, 8, Sg,- - - 8r +1 (by pummation)

2.a=181
n
2
b=n(n+1)82
i}
c=n(n+1)(n+2)83
24
d = - S.
nln+1)--(n+8) "
. 120 P
‘TR +D B
720
= S
R VR

Q

12,3 (r 4 1)
aln+ 1) (atn tt

2

¢ =a
¥=a-5%

 =ag—-3+2
O\
& =a—6b+10c - 5d - O

¢ = a — 10b + 30¢ — 35d 4 ke
| AN

J' = = 185 + 706 <3404 + 1266 — 42

where the rule'f(} the formation of the coeffi-

cients is to multiply succeasively by

rr+ e\ r—1(r+2} r—2+3)
123" 2.3 ’ 34 '

Coefficients

AN '
Yi=+1X{o +8 f5c)+Td 49 +11) 1 85 7 9 11

\\
DY ==y B b + 14 306 +56) 1 5 14 30 56
. 77

'y _+‘Q"~“\"1) oy € T+ 206+ 7 1 7%
DY, ek "~ 840 (&*'+ 8¢ + 441" 1 9 44

X e De-D@-3 |

) 15,120 : .
b, Ly syl Lk
DY = - 382,640 %) | 1

n—=D{n~—2--{n—05

Each formula is seen to be composed of two parts that are best cal-
culated separately. For the component on the right Fisher gives the
coefficients for fitting curves to the tenth degree. They are reproduced
here for fitting up to the fifth degree. The factors on the left are of
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alternate positive and negative signs and in generalized form are as
follows: _

—2.3 2.4.5 ~4.5.6.7 '”+(r + D F+2)-(2r41)
n—1"n-Dr-2""-1"-2) m-3" —-1Dr—2)(a-4)
4, Polynomial values ¥; ¥ Y3, ete., by process of summation.*

Example 46. The 4 values in Table 75 represent the percentages of cars of
smutty wheat graded at Winnipeg, Manitoba, for the years 1925 to 1933 (B),\ The
# values are therefore years and can be replaced by the numerals 1 to 9. “¥e shall
use these data in order to show the procedure of fitting a curve of the fifth degree.
Such a eurve would probably be of very little practical value for analyzing data of
this kind but it is quite suitable 85 a numerical example. Summing the y values
from top to bottom we write down the sum showing on the maching after each value
is added. This process is repeated in succeeding columpa, th€etmp of the columns
being designated 81, Sy, ste., and if we are fitting a curve to $he fifth degree we must
go as far g Sp At this point the summations must ‘be very carefully checked.
This is accomplished simply by adding all the colu;gns and noting that the last
figure in any one column must correspond with thé/stim of the column on the left.

The second step is to caleulate values that a;e}:lenoted by the letters a, b, ¢, d, ¢,
'f, and from these cbtain o', ¥, ¢, &, ¢, and F\\The formulae for these caleulations
are given on page 2356, In our example wehave

a= 819 = 50000 o = 5.900,000
b= 2638/db PLBHBEER OB . 02mn
¢= 790.8/165 = 4,792,727 ¢ =-—1.401,213
d= 202{58’/495 = 4082424 &' =— 0.358,184
e w &5}?5;’ 1287 = 3.656,721 ¢ = 0302174
f 9543.6/3003 = 3178022 f = 0.088,117

The third gtep-is the calculation of ¥1 the polynomial value of y corresponding
to z = 9, and\five other values known as the first, second, third, fourth, and fifth
dzﬁeren@ From ¥; and the differences represented by the symhols

.:”o DIY],D2Y1,D8YI|D‘Y1:DEYI

AN
(be polynomial values are built up by a process of summation as illustrated in
Table 76. For Y and the differences we get,

¥;= 1,000,000 X 0888833 =~  0.888,833
DY) = — 0.760,000 X 2.182,125 = — 1.621,504
DAYy = 1071428 X 11.035,206 = 11,823,420
DPY) = — 2,500,000 X 6.238,580 = — 15.508,325
DAYy = 9000000 X 1271461 = 11.443140
DYy = —40.500,000 X 0.088,117 = — 4.361,792

L If necessary the sctual equation may be written. Details of the calcufations are
given by Bnedecor in “Btatistical Methods.”
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The summation process as illustrated in Table 76 is started in-the lower right-
hand corner. Beginning with DAY we add successively the value of DP¥F;. The
other columng are then built up merely by starting with the first figure at the bottom
and adding the figures in the same row in the column to the right. The values in
the Iast column on the left are the calculated polynomial values of 5. Note that in
the second column anly five values are required but we require one more in each
column as we proceed to the keft and also that if only two declmal places are required
for the polynomial velues the number of decimal places are reduced by one for ench
column after the second. A fina) check on all the work following the ealeulation
of 81, 8, - -8 18 1o add the last columm. This should pive us 8, the total for sli the\
values of y. '

The summation method is particularly well adapted to fitting by suctegsive
stages and to the application of the analysis of variance at each stage. Assmﬁing at
the outset that fitting will probably be carried to the fifth degree we first.éalculate
8y 8g-+ -8 as in Table 75 and the constants &', ¥, ¢, &', ¢, /. TFofeach stage of
fitting we require only ¥, and the corresponding differences. If desirable we ean
determine the signifieance of each degree of freedom used in fitting before we go to
the trouble of actually caleulating the polynomial values and\in‘this way save our-
eelves the labor of calculations that are not going te be of any'value. The formulae
for the sums of squares represented by each addition{,llﬂeg’ree of freedom used in

fitting are as follows: _ : N
Degree of o) ‘
Fitting (r) Sum of Squares. O "
o S3/n m’f@qpmfmﬁﬁé’ of the, mean)
_ g a4+ 1) 0
1 E(Z{ YI) 2 {n — 1)) b
¢ < an+){n+2) ,
2 z:(rl-';f})% S -Dw-9
.,:\_'“ . an 4+ 1}---(n + 8) a2
3 Y T N m -9

o X
£\

» v -4
4 NIw-vy g teddobEd

r—DEm—-2-(n—4)

e X a4 in+8) o,
I 2oV M e 8

» 2

nin+1)--(n4r) 1
- By = VR (@ 4 1) gL onstant)

For the exarrple that has alread_',.r been fitted to the fifth degree the sums ?f BOQUATSs
ard corresponding analyses of variance are given in Table 77.  After fitting to the
second degree there is no further gain in precision, consequently in actual practise
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we would proceed direet to the cslenlation of the polynomial values for 2 second-
degree curve. ‘This caleulation is given at the foot of Table 77.

TABLE 75

CALCULATION OF S1, Sa, S3, 54, S5, AND Sg ¥or FirTing A PoLyNOMIAL OF THE
Firre DeGrEE BY THE SUMMaTioN METHOD

z ¥ ~
1| 2.2 2.2 2.2 2.2 2.2 | (2.2
2 1.2 3.4 56 7.8 10.0 A\ “12.2
3] 28 6.0 11.6 19.4 29.4 ™ 41.6
4 5.5 11.5 23.1 42.5 7L 113.5
5§ 18.5 28.0 51.1 93.6 18575 279.0
6 | 17.0 45.0 9.1 189.7 [\/\855.2 634.2
71 65 51.5 147.6 337, "692.5 1326.7
8 1.1 52.6 200.2 537.5\) 1230.0 2556 .7
9 0.5 53.1 253.3 79({‘3, 2020.8 4577.5

63.1 | 2583 | 790.8 | Q0.8 | 45775 | 9543.6
= S5 =8, = Ss R ”" =8 = 8 = 8
www,dbr;'i}ll‘ibrary,org,jn
<“ TABLE 78
. P v
C{@ATION oF PoLyNoMIAL VALUES
1| 2.8¢ (O
2 | 0.87 J()1.467
3 | 208/~ 1.190 2.265,7
4 | nOU| — 5.845 4.6554 |— 1.998,50
5 |Jd8do | — 6.405 0.6499 | 4.00552 {— 6.004,019
6. J95.90 | — 1,497 — 49979 | 5.647,75 |— 1,642,227
WOV 847 8.420 | — 7.926)1 | 2.928,18 2 719,665
B |-0m 10.202 | — 3.772,9 |- 4.153,18 7.081,357
9 | 0.889 ] — 1.6216] 11.823,43—15.506,325| 11.443,140| —4 361,792

Example 47. The whole process of fitting by successive stages may be carried
out in tabular form as in Table 78. The data are for the relation between pH and
the activity of the enzyme asparaginasé (5). Note that three columns are required
for fitting to the first degree and thereafter each additional column provides the
data for fitting one additional constant. Lines 14 and 15 determine the degree {0
which the eurve should be fitted. In the example it is obvious that the fitting should

be-carried to the fourth degree; consequently, the remainder of the work applies to
a fourth-degree curve only.
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" TABLE 77

ANALYSES OF VARIANCE — SIGNIFICANCE OF DnarEgs o FREEnOM Usep il
Frerivg 10 THE Firre DEGREE N SUCCESSIVE STAGES

Degree Degrees
of 2“‘:?;2: of Variance F 5% Point
Fitting 9 Freedom |
~
1 Total | 334.96 8 N o
Regression 2.48 1 2.48 )
Error 332 .48 7 47.50 \\
2 | Regression | 173.55 1 173.6 6.5 5.9
Frror '158.93 8 26.49 R4
3 | Regression| 31.75 1 31.75 1795 6.61
Error 127.18 5 25.44,4 )/
4 | Regression| 75.54 1 5 :5} - 5.85 7.71
Error 51.64 4 4201
5 | Regression{ 27.48 1 o} 2748 3.41 10.13
Error 24,18 :ﬁ“*{’w’ dbra®li®idry org.in
Yi= 1X (590000 +38X 0.271,111 — 5 X 1.401,213) = —0.202,732
DYy = —0.75 X (02711} — 5 X 1.401,213) = 5051216
DYy = 1.071,42850-71.401,213 | =—1.501,209
A\
WV Polynomial
;;\’ Values
’\Iv: —1.92
RN —5.458 3.54
RN ~3.057 7.50
m~\J 4 —~2.455 9.95
\/ 5 ~0.954 10.90
6 0.547 10.36
7 2.049 8.31
: 3.550 " 4.76
9 —~1,501,30 5.0512 - 0.293
~ Total = 83.1
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(1} 8y+1 values entered as columns are summated.

(2} Divisor for S;+1 values, taken from Table 78,

(3) Division of line I by line 2 gives the constants e, b, ¢, d,. . ..

(4) The constants a’, ¥, ¢, . . .are caleulated from a, b, ¢, d,. . .as indicated in
summary on page 235.

(5) Squaresof o/, &', &', &,. . ..

{6) Factor taken from Table 80.

(7) Line 5 multiplied by line 6 gives the sum of squares Z(¥r—1 — ¥r)? repre
sented by | DF. For each DF utilized in fitting this is the reduction in the sum of
squares due to error of regression, \

(8) Enter Z(y)? in first. column. A

(9} Repeat S(¥r—1 — ¥r)? values. )

(10} Subtracting 9 from 8 in the firset column gives the remainder in Ime\lﬂ Then
subtract the values in line 9 succeasively, putting down the remainders in line 10,

{11) The DF for error of regression are entered here. The DifMor the sums of
squares in line 8 is 1 in each case so that they do not need to beentered

(12) Line 9 repeated, reducing to 4figure securacy.

(13} Line 10 divided by ]me 11. \

(19 P = o/, N

(15) Enter 5% points from Table 9§ .

{18) Calculste ss in section 3 of summary of fori:mﬂae

(17} Enter factors from Table 81. g ™

(18} Line 16 multiplied by line 17. o

*

CALOULATION OF POLYNOMIAL VL 1l raturDires Cunve

\
)
0.2748 B\
0.1601 "0.105,651
16003 « {7>-1.521.180 |  1.626,831

4.0161 \: —2.325,746 0.804,566 0.822,2856
6.4768 —2.480,689 0.134,943 0.669,623

3@qummww.—-
p .

8.856¢ ~2.078,661 | —0.382,038 0.516,881
8.8877 —1.332,214 | ~0.746,377 0.364,339
1102619 —0.374,200 | —0.958,074 0.211,607
Y 0.6190 0.642,929 | —1.017,129 0.059,056 |
3 80528 1.566,471 | —0.923,542 | —0.003,587
1 5.8087 2,243,784 | ~0677,313 | —0.246,229
12 82865 2.522,2268 | —0.278,442 | —~0.398,871
13 1.0373 2.249,155 0.273,071 | -0.551,513
14 —0.234,608 1.271,929 0.977,226 | —0.704,155 0.152,642

7. Exercizes.

!;. Caleulate the correlation watie for the data of Table 87, Chapter XIIf, and by
means of the analysis of variance test the significance ofthgvnrianeaforthemom

of the arrays.
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TABLE 79

123041 ForR Usk 1w CALCULATION OF a, b, ¢, d, e, f---
) Degree of Fitting (7}

n 0 1 2 3 4 5 6

b 5 15 35 70 126 210 330
6 i 21 a6 126 252 462 792
7 7 28 84 210 462 924 1716
8 8 36 120 330 702 1,716 .\:\":,432
9 ) 45 165 495 1,287 3,003 “6,435
10 10 55 220 715 2,002 5,!)()5" 11,440
11 1i 66 286 1001 3,003 8,008 19,448
12 12 78 364 1365 4,368 .12 376 31,824
13 13 81 455 1820 6,188\ \ 18,664 50,388
14 14 105 560 2380 8,508 ’ 27,132 77,520
15 15 120 680 3060 11 GQS 38,760 116,280
16 16 136 816 3876 \g, 54,264 170,544
17 17 153 969 4845 o 349 74,613 | 245,157
18 18 1M 1140 5985 :“' 26,334 100,947 | 346,104
19 | 19 100 1330 7318, | 33,640 | 134,506 | 480,700
20 20 210 . 1540 8855 42,604 | 177,100 | 657,800

www,dhr:a:ﬁl'jbrary org.in

@+ 1) ["(“

o

D (n 2 dn 4+ )

TABLE 80

1)(n—2‘)\ (n—7)
> Degree of Fitting (r)

] For CALCULATION OF SUMS OF SQUARES

e e bt W et 4
oo e N oW

17
18
19

-
}amm‘

.

o | D [ 2 3 4 5 6
o
5.0 [\22.5000 | - 87.5000 | 490.000 | 5670.000
B0 | 252000 | 84.0000 | 352.800 | 2268.000 | 30,492.00
V7.0 [28.0000 | 84.0000 | 294.000 | 1386.000 | 10,164.00 | 156,156.00
8.0 | 208571 | 857143 | 264.000 | 1018286 | 5,303.14 | 44,818.00
9.0 |33.7500 | 88.3028 | 247.500 | 827.357 | 3,539.25| 2091375
10.0 | 36.6667 | 01.6667 1 238.333 | 715000 | 2,621.67% 12,393.33
11.0 | 30.6000 | 953333 | 233.567 | 643.500 | 2,097.33 8,427.47
12.0 1425454 | 99,2727 | 231.636 | 595.636 | 1,768.00 6,268.86
13.0 | 45.5000 | 103.4001 | 231.636 | 562.545 | 1,547.00 4,962.45
14.0 | 18.4615 | 107.6923 | 233.007 | 530.245 | 1,391.38 4,110.94
15.0 | 51.4286 | 112.0879 | 235385 | 522.737 | 1,277.80 3,523.64
16.0 1544000 | 1165714 | 238.523 | 51132t | 1,192.82 3,100.80
17.0 | 57.3750 | 1201250 | 242.250 | 503.135 | 1,127.39 2,785.88
18.0 | 60.3520 | 1257353 | 246.441 | 497.912 { 1,076.68 2,544.88
19.0 | 63.3333 | 120.3022 | 251.005 | 494.838 | 1,036.80 2,356.37
20.0 | 66.3158 | 135.0877 | 255872 | 493.467 | 1,005.21 2,206.24
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"TABLE 81

E(r+DE4+2)---@r 1)
(n—D@—-2(n—r1)

ror CarcozaTion oF ¥i awp “DirrseeNces”

Degree of Fitting (r)

; N
” o 1 2 3 4 5. &
g N
+ - + - + - e’ ad

5 1 1.5 5.0 35.0 630.0 N

& 1 12 2.0 14.0 . 126.0 27780 >

H t 1.0 2.0 - 7.0 42.0 46210, 12,002,0

8 1 | 0.857L,4286 | 1.4285,7143 0 18.0 32, 1,718.0

8 1 0.75 1.0714,2857 2.5 8.0 { Gans 120.0
16 1 | 0.B665,66687 | 0.3333,3333 | 1.5666,6607 50.\N\Y 224 1486
it 1 0.80 0.6666,8667 | 1.1886,6667 3.0 110 57.2
12 1§ 0.5454,5454 | 0.5454,5454 | 0.548¢,8485 | 1.5090,9081 8.0 28.0
13 1 {050 0.4545,4645 | 0.6363,6364 | 1.27 ar 8.5 13.0
14 1 | 6.4615,3846 | 0.3846,1535 | 0.4805,1049 gﬁg;;.lass 2.1538,4615 7.0
15 1 [ 042857143 | 0.2206,7033 | 0.3846,1538 | 0-6293,7063 | 1.3846,1538 40
18 1 | o4 0.2857,1428 | 0.3076,0231 |\ 546153846 | 0.9230,7602 2.4
Pid 1 | 8375 0.25 0.25 % ] 0.3461,5285 | 0.6846,1538 1.5
18 1 | 0.3520.4118 | 0.2205,5824 | 0.2058,8285 | 0.2647,0588 | 0.4479,6380 | 0.9705,8824
19 1 | 0.3333,3333 | 0.1960,7843 { 0.1715.0863 | 0.2058,8235 | 0.3235,2041 | 0.8470,A882
20 1 | 9.3157,8047 | 0.1754,3860 ‘9'.1444.7334 0.1625,8870 | 0.2353,0008 | 04427 2448

A ” LTTL PRV |

- ety orEon

2. TFor the {ollowing egg’at}ons, caleulate the values of ¥ for 2 =1 to z = 20,
and plot the curves on Wﬁh'paper.

(@ Q" YV =258+0.8c
() P\l Y =258 +8.4logz
{c) ;S:"" Log ¥ = 0.258 + 0.058 z

\ Log ¥ = 0.213 + 0.662 log =

JDescribe the effect of the logarithmic transformation of equation {a) into equa~
tions (&) and (c}. e

3. Using the data given in Table 85, determine the type of logarithmic curve that
should be fitted to the data. Having selected the type of curve proceed with the
fitting as in Tables 73 and 74. Prepare two graphs, one showing the it of the
straight-line logarithmic equation to the logarithms of y, and another showing the

curve for the actnal values of ¥ estimated from the regression equation. Table 82

may be used for & similar exercise. .
4. Table 83 gives the values of g, Nys, and Tz from 2 correlation suorilaee for :l::
area and head length of 500 bull spermatozos, Isa (7)._ 'The three columans
gsimilar to the first three columna of Table 68 ar{;‘d r:il‘ot;ide all the d:q‘:gm
for eal i lynomisl regression equations. Find the regrosaon
NPT e culate the ¥ values and construct & graph

gives the hest fit to the data. Then cal pustene
gimilar to Fig. 15, showing the means of the arrays and the regression
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5. Using the data for x and y given below, determine the goodness of fit of curves
up to the sixth degree. Select the curve to which the data should be fitted, and
proceed accordingly to the ealculation of the polynomial values. Graph your results.

1 2 3 4 5 6 7T 8 9 10 1N 12 13 U4
y 126 138 141 139 123 72 48 28 24 21 37 53 78 83

8. In economic analysis, methods of curve fitting are very irequently utilized
in order to study secular trend in a time series. Secular trend means the smooth
long-term movement of a series of statistical values and is entirely dwtlﬁct from
seasonal and eyclical Suctuations. Cyclical fuctuations are not aa periodical as the
peasonal ones but a8 & general rule have sufficient regularity to shoyv..d‘e'ﬁnjte swings .
above and belowthe normal through periods of depression and prosperity. Curve
fitting may, on the one hand, be used to measure the secula end of a statisticnl
series, and, on the other hand, using the fitted curve as & n”b&hml, we can plot the
deviations from the normal in such a way as to bringout the characteristies of
eyclical fluctustions. AY;

Take the data given in Table 84 of the bank ¢l rtn\gs in New York City for the
years 1860 to 1923 and combining them in 4 yeal grouipa obtain 16 points to which a
curve msy be fitted. Determine the best-ftting polynomial and graph your resulta
on a large sheet of graph paper giving the 18\calculated values and the actual bank
clearings for individual years. Measure off,ihe deviationa of the values for individual
years from a smooth curve drasvhdbredtbilis 16o¢eldalated points, and graph these
deviations on another sheet showing'them as deviations from a straight horizontal
line' P

A

€3
7

\\‘ ~  TABLE 82

Heat oF Hvorarion my CALORIES AND WaTER ImBIRED PER ORaM OF FLOUR

A\ X
'\:Cc- Heat of
Water Imbibed Hydration
\\~ 0.012 2.3
0.0256 5.7
SN 0.039 7.4
a\4 0.049 9.2
N/ 0.064 10.7
0.073 12.4
0.001 14.8
0.099 16.1
0.123 16.8
0.148 17.8
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TABLE, §3

Data rroM CoRRRLATION SURFACE Fou AREA {y) aND Heap LEnors (z} or
500 BoiL Seraums

Frequency
of y for Totals for
Z Arrays y Arrays
¥ Ny T
"1 2 6
2 o 24
3 7 63 N
4 7 247 ¢\
5 4 818 O
g 12 g3 .\
7 22 1038 .\
8 36 897 ¢
9 70 BE7)
10 112 gl
11 133 N 82
12 69 \ 20
13 2 O 41
14 2 28
16 1 7

Total = m\;f,d braulibrary.org,jn

TABLE o

Bank Cwmng;n& New Yore City (1860-1923)
Figgx in thousands of millions

A%

1860 7.2 A\1876 21.6 1802 38.7 | 1008 79.3
61 5.9~ 17 23.3 93 31.2 09 | 103.6
82 a}§ 78 19.9 94 24.4 10 97.8
83 | 14 79 29.2 95 20.9 11 092.4
64 pN2e1 80 38.8 9% 28 8 12 { 100.7

P 2.0 81 49.4 97 33.4 13| 948
§‘ 28.7 82 46.9 88 42.90 14 83.0
67 28.7 83 37.4 99 60.8 15 | 1108
88 28.5 84 31.0 1900 52.7 16 | 150.6
69 37.4 85 28.2 o1 79.4 17 | 177.4
70 | 27.8 86 33.7 02 6.3 18 | 178.8
7 29.3 87 33.4 03 66.0 19 | 26.8
72 33.8 88 31.1 04 8.6 20 | 243.2
73 35.6 89 35.9 05 3.8 21 | 104.4
74 22.9 90 37.4 06 | 104.7 2 ! .9
75 25.1 91 33.7 07 §7.2 23 | 214.0
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TABLE 85

Moisture ConTent anp Hzar oF Hypramon oF Firre MippLiNGs FLour (8)

Heat of
Per Cent Hydration
Moisture in Calories
@) =)
1.7 18.3
2.9 16.0 A\
4.2 12.6 .
5.6 10.9 2 AN
6.6 9.1 '\
8.1 7.6 A
9.0 59 )
10.8 3.T ¢
11.6 3\
14.0 NG
16.3 p \\0.5
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CHAFPTER XV
THE ANALYSIS OF COVARIANCE

1. The Heterogeneity of Covariation and the Principle of Covariance
Analysis, We have noted from our study of the analysis of varizneo
that for & single variable the variation is frequently hetemgeqeous and
may be sorted out inte components determined largely by the way in
which the data are taken. The same is true for the dorrelated vari-
ability or covariation of two variables, and the mechapism for sorting
out the covariance effects is known as the analydis)of covariance. In
order to think in terms of actual values, we My, Buppose that the two
variables are yields of grain and straw frop{’eéreal plots. The total
covariance for grain and siraw yields is made up in part by the covari-
* ance for the means of the treatments andinpart by the eovariance within
the plots of the same variety. The degree of correlation may be differ-
ent for the two components anq)henc(:ﬁ) the total correlation s hetero-
geneous. In the ssme way wé-may ComABF ¥ G ¥ariance for the
replicate means ss another ¢emponent. In fact the components may
be taken as exactly eqmva.le}nt to those according to which the data may
be classified for an a of varianee of either variable,

2. Division of Sums of Products and Degrees of Freedom. Just 88
the analysis of varignce arises from the fact that the sums of squares and
degrees of free 6mi may be subdivided according to the way in which the
data are ﬁed the analysis of covariance arises from the fact that
the sumg products of the deviations and corresponding desﬂe&s of
freedom an be subdivided in the same manner.

Rgpmsentmg & set of data for two variables as follows: -

Z11511 T12l12 7 Zislln
Eo1Ya1 Tzt - Tenl2a
k groups : - .

Trilel Ta2lfez " Tinllin
in which there are k groups of n pairs of variates of z and y. Then
(g1 — &) = {£ax — 1) + (31 - )

and u—9=@u—7)+ - ¥)
247
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Multiplying to obtain a single product of the deviations:

en—-Dgu—P=eu—)yu-—7) +&E — 3 H — 7
Fzn — )G =9 4+ G — 8 Yo — §)

On summating for all the pairs in the first group the last two terms dis-
appear and we have:

L] R Q
BBy -N =2 - -F) t 0@ -5 G D
A\
Then summating over the k& groups: . O

Ye-nu-9=3Hie-ne-wl+23elrw -9 0

where %, and §, are group means for z and ..\ This is the fundamental
equation for the sums of products on which@he analysis of covariance is
based. If the same data are divided intoun classes as well as k groups,
the equations for sums of products and degrees of freedom are:

nk nk ‘.'.'{. . i
2 — 5 — §) = 2T E XL PHER - 0.+ 9)
(nk —1) = A o Dk — 1)
2\ )
+ a2 — O~ 9 + k2@ - DG -0 @
5 k-1 + (n — 1) 3
N/
The methed-of calculating the sums of products is not according to
these fom’ but by means of equalities similar to those used for cal-

culating/sums of squares. These equalities are described below under
Examipile 48.
N

/3. Coefficients of Correlation Corresponding to Sums of Products
and Squares. Considering the simple classification of the pairs of
variates into k groups of n pairs, we have the sums of products and corre-
sponding sums of squares of x and ¥ as follows:

2@ -0 -9 -26 - 24— ) +n2E - DG —
$e—2F  =Z@-&2 4l — o2 “

-9 =2 -8r +ai@—o9r
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It is now clear that each vertical set represents the factors necessary to
caloulate correlation or regression coefficients. Hence we can write:

Y - H@ - g

Ty {total) = =
Vie - 980 - g2
b - 2@ =80~ 9
3@ — 2y Q
DF =~nk—2 . O\
roy (within) = 2z — Ty — &) . ("}‘.\' .
Vi ~ 25 — DR
b~ 2@ = 2~ 2R ’ @)

E(z—wg)“
DF = kin ~ 1) (8"

2(::-. G —
sy (between) = Dratt r'y.o
\(nz‘,(:t, - z)zn%?yf =% )1'51
*,\n 3@, ~ 5 ~ 9)

" {
‘bq\ ni(j‘ — £)2

\X DF =k -2 : j
,\“
Note that for(éach component the degrees of freedom for estimating the
coeﬂioients%e one less than for the corresponding estimates of the
vana.nce.

Smce 1t can be proved that the variances and covariances for between
and\within groups are unbisssed estimafes of the true values for the
population sampled, it follows that the corresponding coefficients of
correlation and regression are also unbiassed estimates of the correla-
tion and regression parameters of the population. They can be used,
therefore, to test the significance of the covariance effects represented by
the various components for which they are calculated. One practical
application of this principle will be seen at once. Total correlation
coefficients are obviously incapable of definite interpretation if they
represent beterogeneous covariance effects, and fests of significance
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applied to them cannot give & clear-cut answer. The coefficients
calculated from each component, however, are capable of definite inter-
pretation. In the simple case of covariance within and between groups,
if the total covariance is made up largely of the covariance between the
means of the groups, the total eorrelation is often referred to as contain-
ing & spurious effect. By the covariance method this effect is taken
care of in the calculation of the covariance between the means and is

- completely removed from the covariance within the groups. Thus the

so-called spurious effect is not only removed but completely evaluated as
& distinct component of the total. O\

4. Applications of the Covariance Method to the Control)of Error.
One of the most important apphcatlons of the analysis of.govariance is
in the control of errors that arise at random throughott \the experiment
and cannot be taken care of by replication. In the ease, for example, of
number of plants per plot for such crops as mangels and sugar beets,
the variations in number of plants arise at’rindom throughout the
experiment and, so far as they affect the ywl&s of single plots, add to the
experimental error. Correction of the faelds on the basis that yield is
directly proportmnal to the number Qf‘ pla.nts is a frequent practice, but
it is not difficult to demo&mgim 0113 rarely if ever proportional
o the number of plants per plet,‘and that stich an adjustment is likely
to exaggerate the yields of plats in which plants are missing. Correction
on the basis of the exact falation between yield and number of plots as
indicated by the data m\showever, perfectly justifiable, and the method of
making such a corfection is a natural development of the covariance
technique. Numeérous applications of the same method will undoubt-
edly oceur to Workers in other fields.

In Ol‘d&[ to demonstrate the control of error by the covariance
method ,‘we shall represent a covariance analysis algebraically as follows,

in Wluch the experiment is presumed to be a randomized block field plot
sty

DF | 2% | 2y | 24 bys [Py} ZYH | DF
Blocks..| » Ao B, Co
Treat-

ments] ¢ | Ay | Bi | €1 [by=By/ay| BB1 [C1-BuBi| ¢-1
Error...| n | Ay | By | €z by = By/ds] beBy {Cs—beBej n—1

THE [nt+q A B C: Vb= B/A| BB |Ci—bBi|n+g—1
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In the column headings, z is writien for (z — %), y for (¥ — §), b, for the
regression coefficient of i on #,’and Z(32) indicates a sum of squares for
y adjusted by the regression coefficient in the same line.

 The ealeulations are complete in each line of the table. The regres-
sion coefficient is B/A, and the adjustment in the sum of squares for y is
bB or B?/A. In the last line we are considering only treatments and
errorsothat A, = A1 + Ao, Bi = B1 4+ Baand C: = € + Ca.

The second step in the procedure is indicated as follows:

DF 8 (sq.) Var\ianoe
T+E nt+g—1 C — B
E. n—1 s — biB: RS ¢
T ?. C1 + bsBs = beBy N
T g~1 C;—blBl & Vl
(b1 — b2 1 biB1 + BBy — biBi ) Vs

The first sum of squares for treatments is obtained by differcnces and,
since it has not been adjusted by the treatment regression coefficient, is
still represented by g degrees of freedom. XThe second treatment sum of
squares is written down from the first table and is represented byrg—1
degrees of freedom, as it has been adjnsted by the treatment coefficient.
On subtracting the second treatment dhmdftsqusrengram the first, we
have a sum of squares given by biBy + b:Bz — b.B,, and it is not diffi-
cult to prove the following equality: _
e\ A4,
b1B1 + beBas — b,B, s &tﬂl + biAs — bi4, = i1 4,

It follows that whelh; = b this sum of squares is zero, and that a test of
significance of ghe-Corresponding variance (Vs) is a test of the significance
of the differéfice’ between the error and treatment regression coefficients.

The t.egtkouf significance. of the treatment differences after adjustment
for the Fegression of y on z involves a comparison of the variances Va and
[N The fact that V; may contain a significant effect due to (b1 — ba)
does not vitiate the meaning of the test, as such an effect is obviously due
to some factor characteristic of the treatments. In the case of yield and
number of plants per plot, the variety regression coefficient (by) might
be higher than (bs), and this will contribute to the significance of V1, but
bz represents the regression of yield on number of plants within varieties,
and may be taken as a true measure of the effect of number of plants on
yield. If the treatment regression coefficient is higher this probably
reflects an additiona) genetic relationship, and one that should contribute
to the significance of the differences hetween the vavieties. A further

(b —d2)* (8)
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test may be applied, however, to V3, and by a comparison of the signif-
icance of V3 and V4 a complete picture of the variety effects is obtained.
The value of such an analysis, if, for example, number of roots has a
significant effect on yield, is that the error variance and variety variance
will be reduced proportionately with a consequent increase in the signif-
icance of the variety differences, if such differences exist. If the anal-
ysis of the unadjusted yields shows significant differences when the
adjusted yields do not, this simply means that the original diffexénces
were due to number of roots and not to the yielding charactenstws of the
" varieties as measured by average yield per root.

R. A. Fisher (4) has pointed out that an appropriate scalefor measur-
ing the effectiveness of methods of reducing the error {§'the inverse of
the variance. This is sometimes called the invariance and is represented
by 1/V. In measuring the reduction of error by mi€ans of the covariance
analysis, this scale i particularly useful. Exaniple 48 is a good illus-
tration of this point, The original error variancé is about three times as
large as the final error variance obiained by a\d]ustmg the sums of squares
for two associated variables. In other words, in the original form with-
out any adjustment about three times'as many replications would be
required o give the same ¢, BGouTach) : the adjusted values. One should
not reason from this that the st cance of thé differences between the -
treatments will be increased@ccordingly, as it must be remembered that
at the same time differences between the treatments due to the associ-
ated variables are also'being removed,

The test of signifitance having been applied as outlined, the next step
is to make an actal correction of the variety means. Since the regres-
sion coefficientjn’ the error line may be considered as representing the
actual effeet \of number of roots on yield, this regression coefficient
should bé\ised for making corrections. The corrected means should
then be'the best possible estimates of what the means would have been
if-they had not been affected by variations in number of roots. The
regression equation will be of the form:

— byl Fy - Z) (7

where Z; is the mean of x for one variety, 7, is the mean of y for the same
variety, by, is the regression of y on z in the error line, and Y, is the
~ estimated mean of the variety.

To compare two corrected means such as ¥, and Y, we must use for
the standard error of the difference between two means

2 | (E — &)
sz[r‘*' 2 }
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where 52 is the variance in the error line of the analysis of covariance
table (for example, in Table 87 it will be 7681.3/35 = 219.5), 4 is the
sum of squares for £ in the same line, r is the number of replications, and
(Z» — %) is the difference between the two means used in the two
expressions for calculating ¥, and ¥,. Thus .

Yp= Gp — bw(ip —~ &) and ¥, = To — buulZ, — &)

In comparing two means corrected for two variables z, and 32‘}9’8
caleulate the standard error of a mean difference as follows | O\
7NN *
2 w'B — 2uP + 4?4 G\
o P vy ] A\ 3

| K<Y
where 4 and B are the sums of squares in the errorlinie for #; and 25,
' AY;
0\ :
P is the sum of products for z; and zy in the error kine.

NN

u = (&1, — &1,), difference betwgpli ¥ means,
v = (Top, — Tag), diﬁerence‘mﬁeéhmmmang.,m-g.m

The method of error cqntrol by means of two or mora associated
variables is described in Example 48.

5. A Testof the He\e\rogeneity of a Series of Regression Coefficients.
The analysis of covafiance provides & unique technique for testing the
significance of the differences between two or more regression coefficients,
Using the sam@symbolism as in the previous section, the procedure is a8

given beloQ"\ :

Gradp] DF (269 2@ |26 | e | bZ@| M | DF

T} e]a! B {hebja| uBy |Ci-tBi]| g~1
2 ¢ | A2 | Bz €z |bs = ByfAs | baBs Ce—baBy| g1
g | Az | Bs | Cy |ba=DBy/ds; Wby Oy — By ¢=:

P q Ay B, Cp Lbp= B,)’A, byB, Cop—bpByl ¢—1

Total | pg | A: | B: C. | b = By/A, b.B; Cy—bB: | g —1
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DF 2@ Variance
Total......... pg -1 C: — By
p
Within groupe..| plg — 1) § 2(C —bB) V1 error varisnce
. .
Difference . .. . . (p—-1 T(bB) — b(B; Ve due to differences between
regreasion coefficients
N\
The last sum of squares may be shown to be (N

"N

7 »Ca AiAk(bj — bk)z ) ”..‘; ™
Z{bB) — b8, E(A1+Ae+ T4,
‘&
where b; and b represent all possible pairs of the regression coefficients and A;
and Ay sll possible pairs of the eorresponding sums of sguares for z.

The comparison of Vi and Vi by means of {he"z test furnishes therefore
the required test of the heterogeneity of the regrgsa\pﬁ. coefficient.

Example48. For the sake of brevity this onéexampie will be used to demonsatrate
most of the important applications of the covariance technique. Data are given by
Crampton and Hopkins (1) on weights, gains, and feed consumption in a comparative
feeding trial. These data arg,mm_ i - Tabl for initial weight, feed eaten,
and final weight. The analysis is‘cdnce;‘ir?led%tsl: *Eﬁ'eming the results for final
weight, corrected for variationsdh, initial weight, eorrected for varistions in feed
eaten, and corrected for initialweight and feed eaten. The lasi is an application of
the method of partial re don'which is described in detail in the paper by Crampton
and Hopkins. In sddit{oga test will be illustrated of the significance of the dif -
ferences between the regression coefficients for each treatment.

(1) Effect of Initial Weight on Final Weight. The analysis of covariance is set
up in the form shown in Table 87. In performing the calculations for such a table,
it is recommenidéd that the sums of squares, sums of products, and totals be obtained
. by treatments; s it i8 necessary to keep these separate if certain tests are to he
employgil ‘at a later stage. In obtaining the sums of produets it should be noted
that a procedure may be followed exactly analogous to that for obtaining sums of

gugres.  With k replications of » treatments, the sums of products are given as
followa:

Total. . ... iiiiiiaeeans 'i",k(a: - .i)(y - = nzk(:l:y) - T.T,/N
Botween means of treatments k 55 — 2@ — 9) = Z(TuTe)/k — TTo/N
Between means of replicates n (2 — 8@ — ) = S(TwTry)/n — TTW/N
Residual or error.......... Total—(treatments)—(replicates}.

Whete Tz and T, are treatment subtotals for z and ¥
and T,; and T,, are replicate subtotals for z and 4.
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TABLE 87

ANALYBIZ OF COVARIANCE—FmNAL WEIGHT AND INITIAL WEIGRT
73 = initial weight z) = final weight

owlele| @l e!| ® @ @] o
DP| D) [Brwn) | Zted | bis [PraZleaze) | 2 | DF| rus

Replicates.| 9 |454.4| 752.0| 2,487.2 1.6540F 1,244.5 | 1,242.7 SLg,’I{}IS

Trestments] 4 |509.2(1,172.2| 5,741.7 | 2.3016 2,607.9 | 3,043.8 ’3 6854
Ervor., ....| 36 |368.4{1,001.8(10,405.56]2.7193 2,724.2 | 7,681.3 .\35‘ Q.5117
Treatments A\

S Error | 40 | 877.6 [2,173.8 |16,147.2 | 2 4770 | 5384.5 [16%62.7| 30
~ \. v

(1) DF for unadjusted suma of squares. \\
(6} bu = item in col. (3) divided by item in 001.&(?).
. {2)-

(6) buZizizs) = col. (6) X col. (3) or col. (3}%/col
(7} (") = adjusted sums of squares = col, 4) — col. (6).
{8) DF for adjusted sume of squared. W3
(9) Correlation coefficient (unnecessary for tests of significance).
www.dby}iﬂ}ibl'ary.org.in
From Table 87 we can proceed th'the test of significance of the treatment dif-
ferences adjusted for initial weig&t nd of the difference between the treatment and

error regression coefficienta | \
\ \\DF S {sq)  Variance F 5%, Point

Treatments + Erref . ..] 39 10,782.7
Effor...... 35 7681.3 | 219.5
Diference(> Treatments| 4 | 30814 | 770.4 | 3.5 2.64
8" Treatments 3 3,043.8 | 1,014.7
N
Bifference = by — bi....| 1 37.6 37.6

. Bigee the difference between the error and treatment regression coefficients

(b, — be) is obviously insignificant the tests of migmificance are not carried any
further.

To adjust the means of the treatment final weights for the initial weights we use
the equation given above which in terms of the symbola now heing used will be

2n = Fg = bis(T;m — Ea)

_ (2) Effect of Feed Eaten on Final Weight. The procedure is exactly the same 28
sbove sc will be given in tabular form only.
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TABLE 88

Axavysis OF CovariaNCE—FEED EATEN aAND Final WeIGHT
21 = feed eaten a1 = final weight

DF| ZGD | S} | 26D | b (buew) | S (0F

Replicates.| 9] 35,150.3] 8774.1 | 2,487.2 [0.24962] 2,190.19 | 2970 | 8[0.0384
Treatments| 4} 28,404.9{11,506.5 } 5,741.7.10.40826( 4,734.39 {1,007.3 { §[0.0080
Error. .... 86 [ 00,702.3]|24,508.7 [10,405.5 [0.26904! 6,615.88 13,780.6 | 35 0.7914

Treatments|
+ Error |40 (119,167.2|36,105.2 116,147.2 |0.3020010,036.26 [5,210.9 |89 2
N

N

-

DF | Z@% | Variance | {F 50 Point

Treatments - Error...... a9 5210.9
Error...... 35 | 3780.6 | 10848\
Difference = Trestments] 4 | 1421.3 [\\335.3 3.28 2.64
Treatments| 3 1007.3 N\_835.8 3.10 2.87
Difference = (b — b)...} 1 | 4140°| #1460 | 3.8 4.12

wre.d b]i aulibrary pra.in

There is sz ipdication here of@\difference between the regression coeflicienta for
treatments and error but it is bardly significant. '

(3) Effect of Initsat Wef @ and Feed Ealen on Final Weight,  After obtaining the
separate sums of sguaresfor each variable and the sums of producta for the three ways
in which the variables can be paired the next step is to determine the partial regression
coefficients. For thre€variables the sums of squares aud produects give two simul-
taneous equa.tiopsgaa" illustrated in Chapter VIII. These equatione contain the
partial regression‘coefficients s unknowns and can be most easily solved by the
normsal equation’ method, also described in Chapter VIII. The remainder of the "
. ealeulationsare as in Table 89.

NN ' TABLE 8%
¢ Axizes or Covariance—ErrEcT of Inrrian WeigeT AND FEEp Eaton
' ' on FivaL WEIGHT

Zzh | DF |sbuZizim) phisZ(zas)| I | DFP

Replicates. ... ........... 2487.2| 9
Treatments. ... ........ 5741.7] 4 | 4002.8 | 9800 | 7780 2
BITOT. v eeve s nennennenins 10,405.5] 36 | 5010.0 | ©88.7 [ 8305.9( 8¢

Treatments -+ Error. ... .. 16,147.27 40 0411.6 | 2264.0 | 4471.7| 38
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TABLE 89—Continued

ANaryeis oF CovariaNce—EFrFeECT oF INITIAL WEIGHT AND FEED EATEN
oN FinvaL WelgRT

Z{y* | DF | Variance r 5% Point
Treatments 4+ Error...... 4471.7] 38
: Etror...... 3,505.9| 34 103.1 ~
Difference = Treatments| 965.8| 4 241.4 2.34 (264
Treatments | 778.9| 2 389.4 3.78 [ 32
Difference. ............... 186.9| 2 03.4 N

The final result is rather unusual in that the ireatment variance corrected by
its own regression coefficient is significant while the treatment variance as obtained
by differences is insignificant. This seems to be {raceable to the relations between
21 and x3 where, a8 will be noted in Table 87, the difference between the regression
coefficients is much less than would be expectedon the basis of randem sampling.

The equation for correcting the mean firlaliweights will now be

X = 2 OBEn L B - 20

where ab1o and ob13 are the partial‘regression coefficients for the error covariance.

(4) Test of Heterog 'zg\‘of Covariation or the Significance of the Differences
between Regression C’osﬁeg&s Calculated for Each Group. 1If for the above example
we have kept our rawigums of aquares and products separate for each treatment
we can very quickly'det up the results as in Table 90, showing the sums of squares
and produets fop s@a’nd x3; the regression coefficients for each group, and finally the
adjusted sumg'ofsquares for 1.

SO TABLE 0

il "\ “TesT oF HETEROGENEF'Y oF REGRESSION BETWEEN TREATMENTS

£ )

DF | 2(a}) | ZS(zxn) | Za) b | buZ(mzy) | S | DF

Lotl.. .. 9 | 188.9 458.5 | 2,020.5]2.7146 1 1244.6 775.9 8
Lot IT ... 9 |192,1( 102.6 715.6 | 0.53410 54 .8 660.9 8
Lot IIT .. 9 | 1321 | 169.4 | 2,869.6 | 1.2824 217.2 | 2752.4 8
Lot IV... 9 1158.1 | 333.7 ) 1,964.9] 2.1107 704.3 | 1260.6 8
Lot V.....| 9 [101.6 | 680.6 | 5722.1 | 3.5002 ] 24820 | 2740.1 8

Total....] 45 | 842.8 | 1753.8 [ 12,802 7| 2.0800 | 36490.5 |[9243.2 | 44
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TABLE $80—Continued

Tesr or HETERCGENEITY oF REGnsssioN BETWEEN TREATMENTS

DF | Z(% | Variance F 5% Point

Total................... 4 | 9432
Treatments. ... ........ 0 | 81898 | 2047 1.29 2.61
Difference...............{ 4 | 1058.4 | 263.4 ~

For the test of sipnificance we summaste the adjusted sums of'squaréé‘f;} each
treatment and subfracting from the total obtain a sum of squares cor':q?ponding io
4 degrees of freedom representing differences between the b régreaipn coeflicienta:
In thig example there is no evidence of significant heterogeneity; ﬁf regresaion.

. M'\'\
6. Exercises. \%

1. The data given in Table 91 are grain and siraw yiems given by Eden and Fisher
{2} for 8 manurial treatments and 8 replicates of e&t:l;\ “Calsulate the correlation and
regression coefficients for treatments, replicatespand residual. Test the significance
of the grain yield differences for the treatments after correction for straw yield. Test
the significanee of the difference between.fhie regression coefficients for treatments
and residual, and apply the test fi heﬁer[tﬁenm‘ ity to the regression coefficients
calewated for each trestinent. %’E«W‘ raul '.E"ar y.org.in '
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CHAFPTER XVI

MISCELLANEOUS APPLICATIONS

N
£ X
2\

L THE ESTIMATION OF MISSING VALUES

1. Reasons for Estimating Missing Values and Pnncxples of Esti-
mation, In most experimental work, and especially in ﬁeld plot studies,
the results of one or more observations are oceasionallylost or distorted
by some disturbing factor in such a way as to.miake the particular
observations useless. In the laboratory it maysbe possible to repeat 8
portion of the experiment and obtain new valdes for those that are miss-
ing, but in field experiments repetition is impbssible and one has to make
the best of the results available. I, other biological experiments
it is frequently impossible to repeat under the identical conditions
of the original experiment, and! Yedlaelétasstimating missing or
distorted values are preferable to discarding the whole or & portion of
the data.

+ A method of estimati thé yields of missing plots in field experiments
on s strictly statistical, basis was first developed by Allan and Wishart
(1), Their methods-wete developed for the estimation of one missing
yield; but more réeently Yates (3) has extended their methods to the
estimation of the)yields of several missing plots. Since the methods
developed by\i’ ates are of general application, we shall use them through-
out, althgq‘gl} for single missing plots they are identical with those of
Allan md \Wishart. The mathematical basis of the method of estimat-
ingduissing values is the substitution of a value for the one missing that
will iifake the'sum of the squares of the deviations from the mean s mini-
mum. Bguations are written for the sum of squares substituting 2
for the missing value; and after minimizing, the equations are solved

for .

. 2. Estimation of Missing Yields in Randomized Block Experments.
The data are first arranged in a table according to treatments and
blocks, Table 92 is an example of an experiment with 6 {reatments
in 4 randomized blocks, and 1 plot of treatment B of block II is miss-

ing. -
- 261

¥ '
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TABLE 92
Treatments
Blocks A B C D E F Total
1...l1850157116.2|14.1|13.0[13.6| 911
m... | 120|144 |16.9[125| 68.4=¢Q
...l 1541661565203 18.4}21.6 [ 1078 )
IV..... 16.5 | 18.6]12.7|15.7{16.5|18.0] 98.0 \
Total..| 62.1 | 50.0 | 67.3 [ 64.5 | 64.8 | 85.7 | 3663 =,\T’\‘
-:P '\.

In the generalized formula for x, the yield of the mlssmg plot

p = number of treatments,
‘¢ = number of blocks,
P = total of all the plots recewmg ;he\same treatment as the

missing plot,
Q = total of all the plotsin the same block as the missing plot,
T = total of all plots. N
The formula is: www.d br;agil:i {I;ral'y_org_in
PP +eQ—T
T = 7 —— (1}
, p-—U@g—-1

In Table 93 we hax?e\\the same data as in Table 92 except that now
three plots are missing

A TABLE 93
N
Ne & . Treatments
N
wBlocks | A | B c| p| E| F Total
\” 1..... 1851571162141 (13.0]13.6 9.1
m..... 11.7] B 129 D [16.9]|12.5 54.0
Il..... 15.4116.6 155 | 20.3 [ 18.4 [ 21.6 | 107.8
... A [18.6112.7{15.7|16.5 | 18.0 81.5
Total...|i 45.6 | 50.9 | 57.3 | 50.1 | 64.8 65.7 | 334.4

The procedure in such an example where more than one observation
is missing is first to substitute approximate values for all the missing
values except the one to be estimated. We then apply the missing-
plot formula as given above. The same process is in turn applied to all
the missing plots. The results given are first approximations, and the
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whole process is repeated until the estimated values become practically
constant.,
The methods are illustrated below for the estimation of the missing .

values in Table 93. ’,’;'_;L‘_u
First ApprOXIMATION £y B
. gy VG q,\_} o

Average yield = 3344/ = 15.9, ‘ th

The T' = (3344 + 2 X 15.9) = 366.2.
Here the average yield of the plots is used as an approximation of the\

yields of two of the three missing plots. .
A P=456 Q = 815 L2
z = (6 X 45.6 + 4 X 815 — 366.2)/15 = 156 -
B. P =509 Q = (540 + 15.9) =409

T = (6 X 50.9 + 4 X 69.9 — 366.2)/15 = 14.6

Note that here we have to substitute a value for Dand that the mean of
all the plots is taken as the best approximation

D. P=501 Q= (5:4,0' ) 14.6) = 68.6
z = (6% 50.1 + 4 X 686~ 366.2)/15 = 13.9

wwvs.d braulibrary,org,jn

Here we have to substitute a valuefor B, and the previously estimated
value is taken as the best appr{nximation.

ne
SECOND APPROXIMATION

4, ¥ =23334+ 14,\6',-}—' 13.9) = 362.9; P = 45.6; Q = 8L5;

z = (6 X 4569 4 X 81.5 — 362.9)/15 = 15.8.
In all the a \si)x;‘mations after the first a new value for T is worked_ out
for the estimate of each plot, using the estimates from the previous

approximation. To get P and @ it is best to substitute for the missing
plo¥ valies where necessary, the latest values obfsamed.

3. 'Estimation of Missing Yields in a Latin Square. The best
arrangement of the data is in & table such that the positions of the figures
correspond with the positions of the plots in the field. -’I:he treatments
should also be indicated on the table in the exact positions that they
oceur. _ o N
The formuls for estimating z the yield of a missing plot is: .

xﬁp(Pr+Pﬂ+Pi)—2T (2)
G-D0-2




264 MISCELLANEOUS APPLICATIONS

where P, = total of row containing the missing plot.
P, = total of column containing the missing plot.
P, = total of treatment containing the missing plot.
T = total of all plots.
p = number, of rows, columns, and treatments.

£ more than one plot is missing, we proceed exactly as for randomized
blocks, substituting approximate values for the plots not being estirated
and making continuous applications of formula (2). .

4. Correction to Analysis of Variance Due to Estimation of \Missing
Values. The estimation of missing values for a set of resulfg introduces
a complication in the analysis of variance. In the first*place, one DF
must be removed from the total for each missing value; and in the sec-
ond place a correction must be applied to the suni of squares for treat~
ments or any other component in the ana.lysis,\the significance of which
is to be tested against the error. An exact méthématical solution of this
problem for all cases has been provided‘b} Yates (3), but except for
randomized block experiments, and for Datin square experiments with
only one missing plot, it is rather comiplicated for general practice.

In a randomized bmm.ggoi}%ﬁable 93, for which three of
the missing plot yields were estimated, the following scheme for the
analysis of variance shows ow the correction is applied to the treatment
variance. In this schenfe)the “original” values refers to those for the
21 plots as given in Téb\ha 03, and the “completed” values refers to those
in Table 93 with the addition of the three that were estimated.

A\ DF Sum of Squares Calculated from
TOAL. . - oo e 20 Original yields
EITOT ay M oocveenmnre e 12 Completed yields
)
¢ Iﬁf}ference = Blocks -+ Trestments. .. 8
Blocks. ........co00nnn. ] Original yields
Difference = Treatments............ 3

The procedure for caleulation is as follows:

(@) Obiain the sums of squares for blocks, treatments, and errof
from the completed yields.

(b) Obtain total sum of squares for original yields.

(¢) Obtain sum of squares for blocks from original yields, noting
that not all the blocks contain 6 plots.
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(d} Set up the analysis of variance ag above, obtaining the sums of
squares first for blocks 4 treatments and then for treatments by
subtraction from the known quantities.

For Latin square experiments with only one plot missing the simplest
method of determining the correction to the treatment sum of squares i8
1o use the formula

1
P~ 1)%p — 22

which gives the correction directly. The scheme of analysis Jsing &

[(p—l)Pt—Pf‘—'Pc‘"ﬂz ~

N

6 X 6 Latin square would then be as follows: \

orF Sum of Bquards Calculated from
Totad ..., 34 (ﬁinalwﬂue&
Brrov.. ..ol 19 ,{Corapleted values

. .\ S
Difference = Rows — Colursng — AV
Treatments................ 15 « \J _
Treatments — Correetion ....... 5 4% . Calealate from complete
AN vaiues and subtraet
N wwwdbmﬂ@ﬁiﬁi‘y‘m.gin

6. Correction of Treatment\ Means and Standard Errors. The
treatment means that contdin estimated values for missing plots are in
effect corrected means, dnd further corrections are not required. The
gtandard errors of sich means, however, require a definite correction,
and for methods of’doing this accurately the reader should refer.to the
paper by Yates\ica}. For general purposes it is probably sufficient to

for the number of plots averaged, i.e., if there are »

make & correttion _
ons'and one plot is missing the standard error of the mean of the

replicati mis -
trestafiént-containing the missing plot will be
| &
= =N 21

. METHODS OF RANDOMIZATION _
ymzati be effected by tossing coins, drawing cards ous of
B o ete., but these methods are too slow and

ing dice
?n&gﬁ;.gldfjf ’i:};rc?::qrafe for,actual -practice. _The problem has been
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greatly simplified by the preparation of Tippett’s “Random Sampling
Numbers” (2), and these numbers are now in general use.*

If we have s series of numbers 1, 2, 3, - - - %, the problem of random-
ization is to arrange these numbers in such a way that in forming the
srrangement any one of the numbers has an equal chance with any other
number of being placed in a given position. A procedure that is fre-
quently followed in arranging field plot tests may now be described
briefly. ,

Suppose that the numbers representing the varieties are 1, 2, 8, 2, 5,
6,7, 8, 9. Turning to page XI of Tippett'’s ‘“Tables” (the ukual prac-
tice being to open the book more or less at random), we findl'that begin-
ning at the upper left-hand corner we can take a serieg-of random two-
figure numbers as follows, 40, 81, 89, 58, 87, 74, etc. (PAssume now that
there are 9 places to be filled up by the numbers 10'0, and the first one
is selected by dividing the first two-figure number by 9 and taking the
- remainder. Thus for 40/9, the remainder is‘%\,énd number 9 is placed
in the fourth place. The second numberd'bé placed is 8 and we divide
the second two-figure number by 8; 81/8,gives a remainder of 1, and 8 18
placed in the first place. The thirdwumber is 7, and dividing it into 89
the remainder is 5, and 7 is placedin the fifth space counting only those
that are empty. This procediiséissolivwecoumtil all the numbers have
been placed and we get finally the following arrangement:

PAN
8: {i( 51 99 4: 6: 7: 2; 1

The same pmcedure can be modified for application to & Latin square,
but in that casejt’is only necessary, starting with a given Latin square
which may be'made up systematically, to randomize the rows, columus,

and tregt\(lﬂénts.
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TABLE 95
TABLE OF )°*

D Probability

of

Freedom | 09 { 005 | 0.50 | 0.30 | 0.20 | 0.10 | 0.05 |0.01
1 0.0002| 0.00a{ o0.46 | 1.07 | Lot | 2.71 | 384 \6.64
2 0020 0.103{ 1.30 | 2.41 | 3.22 | 4.60 | 509N 9.21
3 0.116 0.35 | 2.37 | 3.66 | 4.64 | 6.25 | (Ad2|11.3¢
4 0.30 | 0.70 | 3.36 | 4.8 | 5.09 [ 7.78 {\0.40 {1328
5 0.56 | 1.14 | 435 | 6.06 { 7.20 | ©.24\{11.07 15.00
8 0.87 | 1.64 | 5.35 | 7.23 | 8.56 |40.84 [12.50 ) 16.81
7 124 | 2.17 | 6.35 | 8.38 { 9.800 2.0z |14.07 ] 18.48
8 1.65 | 2.73 | 7.3 | 9.52 | 11,03\ 13.36 { 15.51 | 20.09
9 209 | 3.32 | 834 |10.66 | 1224 {14.68 |16.92 | 21.67
10 256 | 3.9¢ | 9.3¢ |11.78 JU3/44 | 15.99 |18.31  23.21
11 3.05 | 4.58 |10.3¢ 12,907 14.63 | 17.28 | 19.68 [ 24.72
12 3.67 | 5.23 | 11,34 |J%01 |15.81 |18.565 | 21.03 ] 26.22
13 411 | 5.89 {234t k.1 16,98 [ 19.81 | 22.36 | 27.69
14 | 4.66 | 6.57 |13.34 ] 16.22" | 844" | 21.06 | 23.68 | 20.24
15 523 | 7.26 | 14.31 |17.32 [19.31 | 22.31 |25.00]30.58
16 581 | 7.96(P15.3¢ |18.42 2046 |23.5¢ | 26.30 | 32.00
17 6.41 | 8 16.3¢4 |105t | 2162 |22.77 |27.50 | 33.4
18 7.02 [ (30 |17.34 |20.60 |22.76 | 25.99 |28.87 | 34.80
18 7.63 10012 1834 |21.69 | 23.90 |27.20 | 30.14 ] 36.19
26, 8.265{10.85 |19.3¢ 2278 |25.0¢ |28.41 |31.41)37.57
2 (%0 |11.50 {20.3¢ |23.86 |26.17 | 29.62 |32.67 | 8.93
22 {]N'9.5¢ |12.3¢ 121.3¢ J24.94 |27.30 |30.81 |33.92]40.20
230511020 | 13.00 | 22,34 |26.02 |28.43 | 32.01 | 3517 41.64

227 | 1088 [13.85 [23.34 |27.10 | 20.55 ) 33.20 [ 3642|4208
195 11.52 [14.61 |24.34 [28.17 3088 |34.28 | 37.65 | 44.21
2 12.20 15,38 | 25.84 ) 29,25 | 31.80 | 35.56 | 38.88 | 45.64
27 12.88 |16.15 |26.34 |30.32 |32.00 [36.74 | 40.11! 46.96
28 13.56 | 16.93 | 27.3¢ |31.39 |34.03 |37.92 |41.34] 48.28
29 14.26 j17.71 [ 28.34 | 32.46 | 35.14 | 39.00 | 42.56 | 49.59
30 14.95 11849 2034 (3353 [36.25 | 40.26 | 43.77 | 50.89

: * Taken from R. A. Fisher’s "'Statistical Mothoda for Research " with th issign
of the author end the publishers, Oliver and Boyd, London. oh Workors," with the permi
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Abnormality, chi-square tests for, 27,
' 28, 94
tests for, 28-51
types of, 28
Allen, F. E., 281-266
«, alphs, 23
Amnnlysis, of covariance, 247-250
of variance, 114-138
applied to linesr regression formu-
lae, 210-217 ’
division of degrees of freedom in,
116-119
division of sums of squares in,
116-119
interaction effects in, 124-135
multiple' classification of wvaviates
in, 120-121
simple clmﬁcstmn of varlates m,

125 y

tests of stgmﬁcance in, 119&120
three-fold classification. qf\va.na.t.es
in, 131-133 }
two-fold elasmﬁcatu}k\of variates
in, 127-128 O
of variation, 1144116
Arithmetic meap) B
ealculation-of, '3, 16
decoding\of; 17
properdies of, 10
Assomnt.ion tests for, 95
B, Imesr regression coefﬁcient,- 55
Batcheloy, L. D., 209
B, beta values, 81
Bias, in field plot tests, 43, 144

intravarietal, 144 o

planping to remove, 45
Binominal distribution, 21
probabilities from, 108-109
Bivariate frequency distributions, 87
Blakeman, J;, 220, 246
Brandt, A, B, 97

Chi square, correchon for continuity,
102
from i X#-fold tables, 96-07
from 2Xn-fold tables, 87
. from 2x2-fold tables, 87 ¢
Chx—@qunm tables, degreeg Qf frsedom
in, 96 N\
Chisquare tests, 88, 1'13
of goodness of fit; 89-9!
" of hdapmdm@e‘ and amocisiion,

Clmﬁcab@ of varistes, multipls, 120-
L2 N
siople, 135-126
three-fold 131-183.
\ fwo-fold, 127-128
6%, non-linear regression coefficients,

e dbmal Y. org in

Class range, 14

Clasy value, selection of, 13—14
Coding, 57

Coefficient, of contingency, m

" of correlation, 65-77

. of partial correlation, T8-88

of partial regression, 80-81
of variability, 17 .
Confounding, . in & 2X2XT experi-
ment, 160-162

~in B 3X3X3 expenment., 170-171
in incomplete block upmmanu, 175,
- 118 . .
partial, 162-168
Control of error, byeonmnee method
250, 253
Correction, of mmmt. eans due to
mjssmgva!ues 286
to analysis of variance dus to. mie-
ing values, 264-265
'to-chi-square for covtinuity, 108
Corrections, for grovpieg, 18
to means, i covariance analysis,

263-263
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Corrections to means, in incomplete
block experiments, 103
in quasi-factorial experiments, 181,
183, 187
Correlation, definition of, 65
measurement of, 67-72
partial and multiple, 78
Correlation coefficient, 65
calculation of, 73-75
from correlation table, 76
from paired values, 74
imterpretation of, 71-72
relation to regression coefficient, 69
test of significance of, 72-7T3
£ transformation for, 73
Correlation coefficients in co-va.nance
analysis, 248-250
Correlation ratio, 219-220
Correlation table, 75
Covariance analysis, 247-250
corrections to means, 252-253
division of degrees of freedom, 247-
248

division of sums of produc‘tswﬁéﬁﬂ‘i&u

principles of, 247 AN
with three variables, 254258 ~
Covariance method applied, 't\o the

control of error, 25&%3
Covariation, 85
heterogeneity of, 247
Crampton, E. W., 138, 141 254, 250
¢v, covarianee, 5&55
"ed'om, 12, 34
in analysis of variance,

'Degreea of,
division ‘of,
11&-119
mm covana.nee analysis, 247-248
Sin chl-aquare tables, 96
in estimating the variance, 12
in linear regression, 56
in non-linear regression, 224
in partial correlation, 85
splitting into orthogonal components,
165-169
Departure from normality, tests for,
27, 31
Design of experiments, 45
Differences, methods for testing signifi-
egnce of, 4042
Discontinueus variables, 13

INDEX

Distribution, binominal, 21
normal, 22
of F, 120
of ‘£, 38
of 2z, 120
“Student’s,” 38
Distributions, leptokurtic, 28
platykurtic, 28
Dot diagram, 66
Dunlop, G., 127, 141

Eden, T., 259 R A
Enumeration data, 8% ()
Error, control of, 48 .\
Error control, by cenfounding, 160
by covariance t.schmque, 250-258
in field plot tésts, 145
in mo::g:gzg block experiments, 172
Error vari , 122-125
Fstimating, missing values, 261-2656
the\varience, 35
Estimation, &
00! miwming yields in randomized
Ilbrary!iﬂp k. ¢xperiments, 261-263
of ard deviation, 33-34
Experiment, hypothetical, 2
Experimental design, 45-51
Ezekiel, M., 63, 246

F, distribution of, 120
table of, 269-272
Factorial experiments, 151
eonfounding in, 160-185
Fiducial limits, 39
Field plot teats, 142-208
Pitting, of logarithmic eurves, 231-234
of normsl curve, 24-25
Fitting polynomials, 221-230
by summation method, 234-243
summary of formulae, 235-236
Fitting the regression line, 53-55
Fisher, R. A, 2, 6, 8, 19, 32, 40, 44, 51,
63, 72, 77, 87, 100, 107, 113, 118,
120, 141, 143, 170, 171, 191, 209,
218, 234, 246, 252, 250
Frequency distribution, binomial, 21-22
normal, 22-34
Frequency polygon, 16
Frequency table, formation of, 15-16
graphical representation of, 16
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71, measure of symmetry, 29
g2, measure of kurtosis, 20
Geddes, W. F., 87, 131, 141, 215 218,
231 '
Goodness of fit, 89-94
of polynomial equations, 224
tests with small samples, 101
Goulden, C, H, 77, 141, 172, 200
Graeco-Latin square, 191
Grant, J. C, B, 105, 113
Graphical representation of frequency
table, 16
Greenwood, M., 100
Grouping,
Sheppard's corrections for, 15

Hapna, W. F., 246
Heterugene:t.y, of covanatlon 247
of soil, 142
of variation, 114-116
Heterogeneity test for regression co-
efficients, 253-254
Histogram, 16
Hypothesia, null, 6

’g’.

i, class interval, 17
Immer, ¥, R., 90, 139, 141, 208,
Incomplete bIock expenmths 3,
178 )
choosing the best typés(}f 200-201
symmetrical, 188-193\ -
Independence, ani psanciation, t.esta
' for, 95
tests for, witgl\mn eamples, 101
Interaction ‘effecis in analysis of vari-
anGe) 124125
Inva.nanee 252
Iaa, I, 243, 246

Koit.xoﬁ, N. K, 111, 113
Kurtosis, 28
k& statistics, 28-20

Large number of varieties, methods for
testing, 172-261
Latin square, 147-148 ]
estimation of missing yields in, 263-
264 .

X

ol

. Multlple regression, -78

Linear regression, 52

275

Logarithmic curves, method of fitting,
231-234
Logic of statistical methuds, 1

Mainland, D., 112, 113
Mean, a.djust-ed for associated vari-
ables, 252-253 :
_arithmetic, § _
calenlation of, 18-17
of a population (m), 35
of & sample (£), 35
vatiance of, 36 .
Mean difference, test of slgmﬁemce'
0,42 (
Mesn square (82}, 35', ) . o
Methods of mndomhm, 205266

A\

| Miscellaneous applicstions, 261, 206

Missing valued/correction for, inanaly-
: sis of varisnce, 204-265 -
ptment means, 205
atien of, 261-285 : :
Mw yiolds, estimation of, in s
> Latin sguare, 263-284 o
‘in randomized block expmmeuh. D

Mm&%@rﬁy &rgin o
Multiple ulaaslﬁmtmn of vmatas, 130-'
7
Multlple comelahon ooiﬂ_imnt., 13 '
caleulation of, 85 S
test of significance for, _aa_ : '_:_\.-_: T

mgmﬁamce of, 214-2!8

n, degreea of freedom, ST
n', humber in eample, 35
N, number in sample, 3%
Neatb)', K Wq 1!2"1!3
Non-linear regremsion, 218, M
Noninearity, test test for, 211218 -
Normal - curve; le"m "‘
fitting of, 24-25 o
Normal distribution,” 23
finition of, 3B .
Nornal xmations for seing . palp:
for parﬁal and mul‘hph _



276

Normal frequencies,
24-25

Null hypothesis, 6

Numbers, random, 266

calculation of,

Orthogonal squares, 191-192
Orthogonal_it.y, 180

Parameter, 6, 34
Partial confounding, 162-165
in & 2X2X2 experiment, 162-165
in a 3:X3X2 experiment, 171-172
Partial correlation coefficient, 78
ealeulation of,
test of significance, 85
Partial regression, 78
Partial regression coefficients, ealeula-
tton of, 80-8t
Pearl, Raymond, 32, 77
Pearson, Karl, 32
Palynomisl equations, testing of good-
ness of fit of, 224
Polynomials, method of fitting, 22I-
230 www. dbi
summary of formulae for fitting, 235~
236
tables for fitting, 242-243
tabular method of fitti
Population, 5
Probability, caltmlations’irom normal
curve, 26
from binomial
inverse, 1

, 240241
X\

Qﬂtnbutlon, 108-108

.‘_

Quasn-fa.ct.on}i\ experiments, three-di-
mepsional with three groups of
o~ leclts, 186-188
Ywo-dimensional, with three groups
of sets, 185-185
with two groups of sels, 170-1856

r, correlation coefficient, 65
R, multiple correlation coefficient, 88
Bandom pumbers, 266
Randomization, 46

methods of, 265-266

of field plot tests, 143-145
Randomized blocks, 146-148

estimation of miesing yields m, 261-
263

INDEX

Ratio of variances, 132, 137
Recovery of information, 162-165
Reduction of data, 7
Regression, non-linear, 219-245
partial and multiple, 78
Regremion coefficient, 53
methods of calculation, 56-58
properties of, 55
relation to correlation coeflicient, 69
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