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PREFACE

The subject of partial differential cquations, approached from an
elementary standpoint, has been much neglected in modern mathe-
matical textbooks. Previously published books, used for first courses in
differential equations, usually either ignore partial equations or deyote
a chapter or two to a bricf and inadequate treatment of this brfnch of
mathematics. This is regrettable, for to the student engagedsyath any
onc of three broad fields—analysis, geometry, or the phygi\qal"sciences—
partial differential equations bave an importance comﬁaréﬁble to that
of ordinary differential cquations. RS

The present book is designed to fill thai need.: Although the magni-
tude of the subject and the difficulties of its m(gr\e\advanced phases make
impossible any attempt at comploteness, it is bolieved that the treatment
is sufficiently comprehensive to meet mdst\zéquirements. Of necessity,
major consideration has been given to’t.h’(}'f(}rma] aspects of the subjeet,
but its applications to geomotrs, ph¥mss AN, §HgiRsHing have also
received their share of attention, 0N

Tt will be found that the bodk s sufficiently adaptable to be used in
several types of courses. This, methods of solving certain types of
equations may be exc]i &’ without loss of continuity, and geometric
and physical applications may be selccted as desired.

Best results and4naximum profit will be obtained if this book is made
the basis of & eoutsewhich follows a scinester’s course in ordinary differ-
ential cquat@o{fﬁ\." However, it is possible to use it following a ealculus
course whitihincludes the material given, for example, in the final ehap-
ter of thesauthor’s “Caleulus.”

’l‘zog's{ﬁgment previous studics of ordinary differential equations,
cépdeislly for review and reference purposes, methods of solving such
equations are treated in Chapter I Since this material is intended only
for the purposes stated, it is briefly presented, but each method is iHus-
trated by means of an example, and 160 cxercises for the student are
included.

In addition, because two eommon difficulties in the study of partial
differential equations are connected with the techniques of partial
differentiation and solid analytic geometry, Chapter 11 has been inserted

v
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for further review and refevence when needed. This ehapter also con-
tains numerous illustrative examples and 95 exercises.

Examination of the Table of Contents will quickly show the teacher
what portions of Chapters I and II need be considered, by each class,
before entering the study of partial differential equations.

Chaptor I1I, the first concerned with the new subject isclf, is
designed to show the various ways in which partial differential equations
come into being. Formal elimination processes, geometric problepay,
and diverse physical applications are there discussed. Those con.»siulvra-
tions not only serve to induce the subsequent examination of niefhods
of solution, but also propound live problems that the student(will want
to complete. N\

The remaining chapters, with the exception of Chapten VI, deal with
‘methods of solving different elasses of partial diﬁeren‘ti}ﬁ equations and
with geometric and physical problems solvablenby the processes
explained. Chapter VI, on the formation a:n'gi\\ﬁroperties of Fourier
seties, contains the material essential to cextain portions of the following
chapter, in which these series play a part. (Y

Throughout, particular care hu@ls been taken to motivate the work,
and to presevtedBRHNREAE 15gically 'and clearly. Some of the meth-

ods treatefd, notably in Chapterj? IT, are believed to be new, as arc the
presentations of various classieal methods.

In adfiition to abund%nt’\'iﬂustrative examples, there are altogether
815 exercises for the stu{l’gnt. Angwers to all exercises are included.

Nuw Yorg, N. Yo\

March 19410‘,'\ > Freperi¢ H. MILLER
I
:"\.s.
N

g\

O



CONTENTS

CHAPTER 1
OrpivarY DIFFRRENTIAL HQUATIONS ~
ART, ’ PAGE
1L Definitions . . . . v . o 0 0 0 0 b s s s e e e e e 1
I. DrrrErENTIAL EQuaTIOnsg OF THE Finst ORDERy \J
I‘M"
2. Varlables Beparable. . . . . . . . . . . ... L7 >\ SR SR |
3. Integrable Cowbinations . . . . . . . . . . . .. . .m&.{' ...... 2
4. Linear Iquations of Firat Order. . . R L. 4
5. Homogeneous Equations . . . . . . . . SKIURN, \CIEEEICEEIE IR 5
6. Equations of Degree Higher Than the First . . /%M . . . . . . 7
7. Bingular Solutions . . . . . . PR, A g
8. The Clairaut and D' Alembert Equatwns“-’w\‘:" dbraulibrary,org,in 11
IT. DrrreERENTIAL EqQUaATIONS oF sdﬁbER Higarr THAN THE FIimsT
9. Fquations with One Variable Abﬂml’c S e e s e e 14
10. Linear Eguations of Higher Order™, . . . . . . . . . . .. .. 17
11. The Complementary Funetigh,>. . . . . . . . . . . . . . .. 18
12. Particular Integrals. . ,x\’) e e e e e e e e e e e e e el 20
13. The Fuler Linear ]unat\mﬁ e e e e e e e e e e e e .
14. Simultaneous Lineapkiquations. . . . .« . . . o v 00w voo. 25
15. BeriesHelutions, ¢20 . . . . o L . o o e e e e 2T
N\ S/
x:\’..?
N\W
\' CHAPTER. 1I
{\ PanTian DIFFERENTIATION AND SpacE GEOMETRY

]6 JQT@PM&&C[ Derivatives . . - . + « « « o« o« . . . 31

NHigher Partial Derivatives . . . . . . . . . . 33
18. Funetions of Funetions . . . . . . . . . . . . . . . 8b
19. Total Differentials . . . . . . . .« « + + ¢ v v v v 4 0 4 O T f
20, Implicit Funections . . . . . . . . - . . . oL o000 e . 39
21. Tangent Plane and Normal Line to aBurface . . . . . . . .. ... .. 42
22, Angle between T'wo Lincs; Parallel and Perpendieular Lines . . L . 44
23. Intersecting Surfaces; SpaceCurves . . . . . . . . . . . . ... .. 45
24, Tunctional Dependence; Jacobians . . . . . . . . . . . . . . .. 49
26, Envelopes of Curves . . . . . . . . e e e e e e e e A i
26. Envelopes of Surfaces . . . . . e e e e e e e e e e e e e e 55



viii CONTENTS

CHAPTER II1

Orravg oF Partial DIFFERENTIAL EQUaTIONS

ART, PAGE
27. Elimination of Arbitrary Constants . . . . ., . . . . .. ... ... 60
28. Elimination of Arbitrary Punetions . . . ., . . . . . . . ... ... 63
29, Geometrie Problems . . . . . . . .., . .. ... ... [th]

30.TheVibratingSt.ring.........‘.........‘...‘ G9

31, One-Dimensional Heat Flow . . . . . . . ., . ., ., . ... . ... 71
32. HeatTlowinSpace . . . . . .., .. .. ... . .... . _ .. 3
33. Flow of ElectricityinaCable . . , . . . . ... ., .. ... .. . e v6
M FlyidFlow . .., ..., .. e e e e e e e e e SN T8
N
CHAPTER 1V AR
Livear Equations or Firer Onprr \\
35. Subsidiary Bquations . . . . ., . .., L NN g e v ... BB
36. The General Integral .. . . . . . ., . . . WS L . 86
87. Methods of Bolution . . . . . ., . . . . ".;} ......... 88
38, CompleteIntegrals . . , , . . ., . . | .\ ........... a1
39. Special Integrals ., . | R 92
40. Linear Equitiord WA N PRGENeS B  Varightos, . . . . 00T T C 95
41. Homogeneous Fquations Lacking the ]Qe.i;ien'flent. Varable . . . ., . ., 86
42. Ceometric Applications , , . . . . N S 99
43. Physieal Applications . . , . . . S\ T 101
_(\GHAPTER v
i
NON.-L AR EQUatioNs oF Fimsy ORoer
44. Complete, Singula.lg','é.ﬁa GenevalIntegrals . . . ., = 105
45. Charpit’s Methedr. . . .. 107
46, Equat:lons PNBSFom Fp,q) =0 . .., LT 112
47. Equatlo}ﬁ\'di.he Porm P, pygy =0 ... DL 113
48, Equat@lﬁof the Form f(z, p) = o . 115
49, Equziﬁ.*fans of the Formz = »p + Wi, ..o 0L 117
50, Bauations Reducible to Standard Forms. .. .., ... 118
5\jﬁmbi’s Method . . ... o e 121
52 ystems of Bquations . . . . . .. e o 127
B3. Apyplicationg e

CHAPTER VI

Fourinr Skrirs
54 Auwdliary Formulas . . , . .
85. Definitions and Theorems ., , 00Tt o
86. Examples . e e e . 138

PR T, 142



CONTENTS IX

ART. PAGE
67. Even and Odd Funetions . . . . - . .« . « .« .« . . e e e e s 145
58. Half-Range Series . . . . . - . . . . o v o v . & e e e e e e 147
59. Changeof Imterval . . . . . . . . . . .00 o e e e 150
60. Transformation and Combination of Series ......... R 3, 7.}

CHAPTER. VIIL

Lvear EquaTiore oF SEcoNp anp HigeEr OrpERA

61. Definitions and & Theotem . . . - .« & v« 4 v« 4 4 = s x e x aes {156
62. Redueible Homogeneous Fquations . o . . -« « o v« o N
63. Irreducible Homogeneous Equations . . . . . . . . . coe e e s 182
64. Separation of Variables . . . . . . . . ..o NN 188
65. Non-Homogeneous Equations . . . .+« .« o v 000 A P 111
66. Analogues of Euler Equations . . . . . - . . . . .. ., IS TP
87. Speeial TYPES . . « =« v 0 o 0 e e a4 2 177
68. Laplace’s Transformation . . . . . . . « . .+« . ’."‘.~,\ ....... 182
69, Variation of Parameters . . . . . . - « « « o o 0\ T 187
70. Geometric Problems . . - . . . -« « < . . . .\\; ...... ... 194
71. The Vibrating String . . . . . .+ « + + « . \\ ........... 198
72. One-Dimensional Heat Flow . . . . . . PN e 202

. Two-Dimensional Heat Flow . . . o . 0 >0 0 g v v o oie 0 o o 206
;i ﬁl\gfv of ETectrmlty ......... ‘;"f:vw‘dbl a.UI.l b?‘af yorgin 210

CHAPTER VIIT

NON-LrNEA&@UATmNS oF Becoxp ORDER

75. Intermediate Integrals\'\”'. ................... 215
%76. Monge's Method: Upiiorm Equations . . . . . o v o v v v u .. 217
77. Monge's Method?’ Hcrn-Umform Equations . . . . . . . . . . . . .. 222
78, Solutions from Thte¥mediate Integrals . . . . . .« . . . .. o o .. 228
79. Poisson’s Mem@a ......................... 232
20. A Gener Mgthod ...................... ... 234
81, Geomet{\s ProblemMs » « = « « ¢« & n e e e e e e e e e 237
AI\SWE!{STOEXEBCISEIS e e e e e e e e e e e e e e e e e e e 241

D 257

INBER « o v v ow e e



PARTIAL DIFFERENTIAL EQUATIONS

CHAPTER 1
ORDINARY DIFFERENTIAL EQUATIONS O\

This chapter is devoted to a summary of the methods of so‘lvmg gomne
frequently occurring types of ordinary differential equaﬁlons It is
intended that this material shall serve merely for review and for refer-
ence in connection with the later work on partialdifférential equations.
Accordingly, the underlying theory and motivations will be omitted,
only the techniques and illustrative examp eé eing given. For mere
detailed discussions, the student is referr%\’d 2 varlou&, textbooks on
ordinary differential equations or to those portlons.1 c;ta ntimctous caleulus
textbooks which treat of differentials &Guations.

1. Definitions, It will be reeaJled that a solution of an ordinary
differentia! equation is any funcﬁona,l relation between the variables
that identically satisfies th‘i etuation. When a solution contains, in
addition to the variables{# number of essential arbitrary constants
equal to the order of thb\\dlﬁerentla,l equation, that solution is called the
general solution, or. complete primitive. Solutions obtained from the
general solution By‘assigning specific values to one or more of the arbi-
trary constanté’ate called particular solutions. Oeccasionally there exist
so-called singular solutions, not obtainable from the general solution;
these are: b'?ieﬂy discussed in Arts. 7-8.

\.
\ } DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

9, Variables separable. If, in the typical differential equation of

first order,
dy

d'— = f (x: y); (1)
X

it is possible to separate the variables so that the equation assumes the
form

M(z) dx + N(y) dy = 0, (2}



2 . ORDINARY DIFFERENTIAL EQUATIONS [Crap, 1
integration at once yields the general solution,

f M) do + f NG dy = ¢ 3)

where ¢ is the arbitrary constant of integration.

Example. Find the general solution of the equation

dy _ eyt 3y,
dez 2y —=
Solution. Here we have .
28N
Sy — 1) dy = y(2 + 3) dz,
- 3 A\
ymlg =2ti, O)
) & ;

~logy = 2logz ~— + ¢.
o\
3. Integrable combinations. After a daﬁe?gnhal equation has been
written in differential f? m, and the variabfeg'ire not separable, it some-
times happdh¥ A b atonS of ternls; iInvolving both variables and
their differentials, are the exact d)ﬁerentxals of certain expressions, If
the entire equation is made up ‘of, such combinations and individual

terms each of which involves enly one variable and its differential, the
equation is integrable by cambmatmns

Exomple I. Find t‘r&cée}eral solution of the equation

‘\ EZE y

\~ de 4y — z @

Solumm\\ ~]f we write the given equation in the form

2
S

N wdy +yde — dydy = 0, @

ﬂ(e‘ﬂéé .t,lmt the come:uil‘lation & dy + y dx is the exact differential of the produet
zy. Bince the remaining term, —4y dy, is also integrable, we get npon integra-
tion,

vy -t = 3
An equation such ag (2), in which the entire differential expression
equated to zero is the exact differential of some function of z and i, is an
exact differential equation. In some cases it is possible to multiply a

given non-exact eguation throughout by an integrating factor which
renders the equation exact.
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INTEGRABLE COMBINATIONS

Eyample 2. TFind the general solution of the cquation

d
o @
de 4y + T
Solution, In differential form, this equation beenmes
yde —ady — 4y dy = 0. 6
Iiere 1/4? serves as an integrating factor, for A
dr —xdy 4dy p
- O ®
y y o\
iz exact. Hence we get W
x N
~—4logy = ¢ AN (7
¥ (&
\ &
® \}
EXERCISES D
O
Find the general solution of each of the fOHOWlH%\hﬂ:erentla.l equations.
dy _ _2x W‘g%gﬂhrﬁlﬂlﬁl‘y org.in
"dz y+3 R
3@_cosy_ ,\ \y 4@_ 1 -
"dr 2-1 N “dr N1 -2
"\ -
NN y To
N
Ay ‘\/————-é—:w— dy :
T. =2 = 2—:::,4’-)2@—::1:- 8~ =coslz+y) —cosz—yp)
N\ S
dy &y oW ¥
d_$ N ~./x ) dr 3y2 -
~\’§ 2
| Ny — 62 10, W _TV —y,
'»\§ (}?; T ) dz x
\/ dy 2214 +y dy_a?—y’-f—y
13— = — 18, == — -
dr x dx ]
o; 2
5 W 16, B _ _Zmruycosz
dr Yy — & di gin
dy _ 228 +4f 18@:tany—3z2'
" dz 2y dz T secty
dy __ye® ~ dy y
4 20, 2 = —% .
B e 42 dz  z{logz + %)



4 ORDINARY DIFFERENTIAL EQUATIONS [Cusr, T

4, Linear equations of first order. The type form of linear differcntial
equation of first order is

dy - 1
=t P=0 1

where P and § are functions of = only, This equation has as an inte-
grating factor the function

ef F dx, *@)
and the solution of (1) is .
y=e'de”erfP‘“dx+ce_de”. \‘"\ (3)
Exgmple. Find the general solution of the equation K ":'g
dy 284 3y .\‘
dz z v/
Solution. Writing the given equation in type fafim, /
AN,
dy 3 A\

SLT ¥ ==x
www.dbraulibrary.org.in .

wesee that P = 8/z, 0 = 22, ngcé:JP dz = — 3 logz, and the integrat-

*

ing factor is 2\
e'J'.F'dc«: =g \8lez _ plogz3
Therefore o)

ne ;
ys }?\-\]hx“-w‘adx + e = % + ex?,

. In equation ;(‘}:),’}which i5 linear in y and dy/ dx, © and y are respoc-
tively conmtje@d a8 independent and dependent variables, When the

roles playﬁéby % and y are reversed, the type form of first order linear
equatiqg

= x"s.

A\ d
~O tRe=s ®
N/ Y
where now R and § are functions of y only.
An equation of the form

dy n
7 TPy = Qy, (5)

(Bernoulli’s equation), where 7 is o censtant other than zero or unity,

and P and & are funections of 2 only, may be transformed into a Lincar
equation by means of the substitution z = 41—,
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5. Homogeneous equations. If, in the equation

W — s ), @

the function f(z, y) is such that f(rz, 7y) = f(z, ) identically for any
quantity r, then f(z, ¥) is said fo be homogenecous of order zero and (1)
is ealled a homogeneous differential equation.
The substitution N\
dy dy A o
Y = vr, a—”‘}'ﬂ?%’ \\“\ (2)

\/

transforms & homogeneous equation into one in which ¢H8, variables 2

and » are scparable.  Likewise, the substitution '\\
dz AN
t=w, Tt UgN (3

transforms a homogeneous equation inddone in which the wvariables
wwv. dbraulibrary.org.in
# and v are scparable, R\

Ezample. Find the general solution of the equation

N 2 ¥+ ay
(B & )

Solution, This is 4 }}_»}nogeneous equation, =0 that we may make either

substitution (2) or substitution (3). Choosing (2), we get
\\J
A\ dv
i\\ v+x@=1+v2+v,

{\ dy de

N = —

NN ’ 1+ =z’
‘C} arctan v =logz + c,"

e m o dheildy
'y
ve=_ = tan {(log z + ¢),
y = xtan {logz + ¢).

An equation of the form
. dy amz+byto

/' de ez 4 boy + 3’

@



6. ORDINARY DIFFERENTIAL EQUATIONS [Crar, I

where @by # a9by, may be transformed into a homogeneous diffcrential
equation
: EE_E _ a1X + bly (5)
X X + Y

by means of the substitutions z = X + k, y = Y 4 k, in which (&, &)

is the point of intersection of the lines
N
a1k + bly + ¢ = 0, 252 + bgy -+ € = 0. (6)
KoY

* An equation of the form (4), with a1be = asby, may be trmnfolmed

into a differential equation in which the variables ares SQ.parabl(, by

means of the substitution z = g2 4 byy. P\

" ..,3"

EXERCISES ) \\;

In Exercises 1-20, find the general solution of ea?;h;diﬁerential equation;

N\

dy . . < NJdy
1. i =€ vhdpraulibrary.org.in o.’:‘}’ g = =2z —y
& _ “:‘v dy 1 — day
S.dx—s1n3z+3y. ) Ny 4,Ei;=_;2__
5 % _lgz -y LN o % _zylogs
dz z \'\"' " dx zlog z )
7. Ey— = 2 . :~:: 8. d_’g = _.__1__ .
do ¥ —a g  ztany + secy
o, W _ ¥z dy
' dx'\i:?_é._y_—' 0. - = 4y — 2
PR Ak o W _ Y-8
2”\.’&:’; =3 " dx xyz .
O @ W
13-£=E+seuy- 16 W_VIZ 4P 4y
z x “dr ” .
dy 1
15, = = ¥ dy
dr  log (y/z) ' & 16, P LA
' z oz
4
19, % _2-9-6 J
dz z4y—g 20 ¥ _T_-+3

2z —4y _§
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For each of the differential equations of Exercises 21-26, find a particular solution
satisfying the given condition.

b7} 3z —
21.£ z =y sy =0forz =2
dy 228 4+ ¢ 8
2.~ = iy =- =4
2 o % Y 51’01-:.- 4
dy
23.E=2cuax+ytanz;y=1form=m
d O
24.§=5y+e3=‘;y=6f0rz=0. )
dy o N,
Y — ¥ N\ ©
25, — = ;4 =0f =1
b i 2y——x’y OQfore=1 ’:\'
dy 6 — =yt RN
WM T =g = L
2% 2 A YT RS

27. Tf 94/z{dy — dz) + ydr = 0, and y = 0 for z =0, 6nd y for & = Tog? 2.
8. If 22dy + (zy — 2% — 4B dz =0, and y = 2¢ for\p=¢, find y for =z = 1.
29, Tf dy = (¢ + 3) dx, and ¢ = § for z = 0, fibd the minimum value of y.
80, If zdy 4+ (Jogz —1 —yg)de =0, and y \3 for £ = 1, find the maxi-
mum value of y.
www dbraulibrary .ot

.. Equations of degree higher than the first. Among t%e equations
of first order but of degree h.lgher~£ﬁan unity in dy/dz, the following
three types may be attacked by elementary methods: (a) equations
golvable for dy/dz; () equa{lons solvable for y; (¢) equations solvable
for z.

For convenience, de%}e dy/dz by p.

(z) When a difidkential equation of degree m (m > 1) is solvable
for p, such algebpaiesolution leads in general to m equations of the first
degree, to thh\the methods of Arts. 2-5 may sometimes be applied.
If Filx, \@) =0, Folz, ¥, c2) = 0, F.(z, 4, ¢n) = 0 are the
solutiong: 1;} these m equations, the gencral solution of the original
equatiens vof degree m is expressed as

vV Fy(z, 4, ) Fale, 9, Q) -+ Falty 9 0) = 0. o
Heample 1. Find the general solution of the equation
% (d ) + (Ba%y — 1)- — 32 =0, @)

Solution. The quadratic 2yp® + (Gz*y — Lp — 3z = 0 may be solved
for p to yield

i
p=tl=co, p=gl=-dR @
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These two equations have the respective solutions 3 — x + ¢ = U' a,nld
¥ + 2% 4 cg = 0 (Art. 2). Hence the general solution of the given equation is

@W—ztelyta®te=00r
xayz'—x‘+ys—xy+c(x3+y2—x—|—y)+c2=(]. (4)

(b) When a differential equation is solvable for ¥, the solved form
may be differentiated with respect to z to yield a new equation in the
variables z and p; this will be a differential equation of the first UFL{cr
and first degree to which one of the methods of Arts. 2-5 may ap }1[3-2

ne .Y
Ezample 2. ¥ind the general solution of the equation O ‘
dy\? dy _ R ™~ .

(&;) + 2z d_x - U= 0. "\ O (-))
Solution. Differentiating the equation \
9\

¥ = 2rp + p? RS (0

with respect fo z, we get Q)

dp . { ‘f ‘dp
www_dbrauliblﬂr?.%?@ﬁﬁg:{-‘gp E’;,: s
or :v
2( + pldy + pde =0,

This equation may be solved &s\a’ homogeneous equation (Art, 5). However,

we may solve it more easil(‘bﬁ use of the fntegrating factor 2. This gives us

OPP 9P+ phda + 2ptdp = o,

<G

4 » 2p3 c -I
O3 Py =5
)Y . )
A Sap* + 2p° = ¢,
'f:'. : 6 — 2pd
O =T ?
}ﬂerting this expression for z in equation (8), we find
2e — 53
V=% - (8)

Equat.ions (7) and (8) together serve a
mf;eggral curves, p playing the role of
eliminate p from (7) and (8} to obtai

$ parametric equations of the family of
parameter, Tn this instance we may also
n the rectanpulgr equation

3x2y2+493‘4€2=3—6cxy—02=0.
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(¢) When a differential equation is solvable for z, the solved form
may be differentiated with respect to y, setting dz/dy = 1/p. The
resulting equation in % and p, of the first order and first degree, may
again be attacked by one of the standard methods.

Example 8. Tind the general solution of the equation of Iixample 2 by
another method.

Solution. TEquation (5) of Example 2 may be solved for @ to yield 2\
y—p° A\ ¢
g = AN (©)
Zp ¢ 2\ A
Diffcrentiating with respect to , we get 4”7’«:
dp . dy mj\i"
I_P(l—%dy)“(y—p)dy J
P - 2])2 / \\;;
whence there iy found C’\ '

(p*+ 1) dp + p A =0

This is integrable by combinations; we ﬁfi&"w“’-dbTaU“b"m‘Yﬂ"g-i“

>
3 YD 3,‘
A
¢ &\J ¢c—p*
= . 10
N "Ny 5 (10)

Equation (10) is chiivélent fo equation (8), Example 2. From (9) and (10)
we also have ,"\’"7

:"\‘. c — 4p3
W = 11
Q z P 1D

|

.which 15\ éﬁuivalent to (7).

i \ w
\7“ Singular solutions. In all of the preceding discussion we have
been concerned with the problem of finding the general solution of &
given differential equation. As remarked in Art. 1, however, there
sometimes exists a singular solution, which does not belong to the gen-
eral sclutiomn.

A singular solution, when existent, may be regarded geometrieally as
the envelope of the family of curves constituting the general solution.
Accordingly, if the general solution of a certain difierential equation has
becn found to be

Fz,y,0 =0, (1)
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a possible singular solution may be sought by the usual process for find-
- ing the envelope of the family of curves (1} (sec Art. 25). This consists
of differentiating (1) partially with respect to the parameter ¢, yielding

the relation
o,y 0) _

» 0, (2)

and then eliminating ¢ between equations (1) and (2).

The result of this elimination, called the ¢-diseriminant locus, Giay
contain the envelope when there is one, but it may also lead to other loci,
such as cusp- and node-loci. It is therefore necesgsary to dqt‘qr?ﬂine by
actual test whether the resultant equation is or is not a solution of the
original differential equation. "G

Instead of seeking an envelope in the c-discriminafity’it is sometimes
more convenient to deal with the differential equation itself. If

G(E, Y, 10) = 01 ,x:\\: (3)

where p = dy/dx, is the differential equét-'rfiz} we may differentiate this
partially with respect to p, getting an eqdation

www dbraulibrary.org.in N
G (@, pp) _
o
and then eliminate p from g)" and (4). If an envelope exists, it may be

present in the resulting @liseriminant, but again various extraneous

loci may appear. Whe a relation so found satisfies equation (3), it
represents an envelpe and singular solution, but otherwise it does not.

0, 4)

A</
Ezample. Find the general solution of the equation
7N\
’\ﬁ : _ dy\? dy .
RS Mz — 2y — 1) i) THo=1=0, )

and thow that it has a singular solution.
X Wolution. This differential equation m
0

8Y convenient i
tho motbds of Avt o oo m Y convemently be solved by either

g the latter procedure, we have

1
;;.i ¥ (6)

1
_=2+(l*_1_ @
P o2 )y’

21— 2p) = 2p — 1) 22,
dy

ze2yt1-ly
' P

)
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Evidently p = § satisfies this equation. Inserting this value of » in (6), we get
% = 2y, ®

which is consistent with the rclation p = 4. Hence the straight line (8) is a
solution of the given differentisl equation (5).
After extraction of the factor 1 — 2p from (7), we obtain

dp ..\
2 o = 4
=gy .
o AN
. )
Y = 2'132 * " } Ns
_ 1 ¢ : : 9
¥=13, + e m\ ©®
Combining (9) with (6), there is found Y

x=2+1+ (=i
& family of parabolas. O\

Using either the c-discriminant obta,incd;ff'ém {10), or the p-dizcriminant
from (5}, it is easily verified that the line (8‘)%%91]5\1'& IQEREH PE&rHbolas (10,
Thus (10} is the general solution and ,(S')'ié the singular sclution of (5).

(10

Neither of the differentiah equations of the examples of Art. 6
possesses a singular solution,) In each case, the c- and p-discriminants
vield leei which do net s%isfy the corresponding differential equation.
In Chapter II, Art..25;,~there is given a sufficient condition for the exist-
ence of an envelop@\io a family of curves.

8. The Claj{a'}:t and d’Alembert equations. The Clairaut equation
isa djﬁeren@Léquation of the form

AN y = ap + ¢(p), ey
wh‘&(e“;;= dy/dz. Differentiating with respect to z, we get
dp rooy P
p—a:dx+p+¢(?3)dx,
d
[+ ¢ @] 5 = 0. @

This equation is satisfied in two ways. If dp/de = 0, then p = ¢,
4 conglgnt, and (1) gives us

y = ez + ¢(c), @)
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a family of straight lines. This is the general solution, obtainable
immediately from (1) by replacing p by e. y »

On the other hand, (2) is satisfied if 2 + q‘)’(p) = 0 Sinee s is
the equation obtained by differentiating (1) pfmrt-lally “-'11..}1 rcspcct to p,
elimination of p between (1) and that derived equation yickls the
p-diseriminant locus. . .

Likewise, partial differentiation of (3) with respect to c,.whu:h gives
us z + ¢’'{¢] = 0, and elimination of ¢ between this cquation aridl f.‘%)T
yields the e-diseriminant locus. Evidently the two dlsCi'l]lll}]\:EI{t’- foel
are identical; both represent the envelope of the lines (1§~} ati] the
singular solution of (1). \ &

A\
N

Ezromple 1. Find the curve such that the algebraic sun}'\éf the intervepts of
its tangent line on the coordinate axes is a constant a: :
Solution. The equation of the tangent line at a:n\g( point (z, y) of the curve

7

is

¥ —y=p(X 2g)

where p = dy/dx is the slope at that peint.y, Then the z- and y-intercepts of the
tangent line e chapeetifulyry org/endy — zp, and we are to have

W\

Ay TV =g

AN
or ¢ 2\J
A\ ap
X = -_ 4
\) y=opt p—1 @
. PN\
Thisisan equation’of Clairaut’s form. Hence the general solution is the family
of lines \\
A - ac

& = . 5
| \ Y= cx 1 (5

7% N
\‘T]geenvelnpe of these lines is found to be

w“‘2$y+y2~2ax—2ay+a2=0, (6)

2 parabola tangent to the coordinate axes at
bisecting the firgt quadrant,
which is the gingular
result.

\ (¢, 0) and (0, @) and with its axis
4. This parabolic envelope (6) of the lines (5),
solution of the differential equation (4), is the desired

The d’Alembert equation is of the form

V=) +9); )
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it has as a special casc the Clairaut equation, when ¥{(p) = p. Differ-
entiating (7) with respect to z, we get

p= N(p) +¢(p)+¢(1?)

ar
d
p—¥) = [V @) + B ®h
If the equation ' S

oA\
b= o) = e
has a real root 7, so that dp/ds = dr/dx = 0, equation gS) mll be satis-
fied. Consequently there may be onc or more bolutwns of (7) of the
form
Y = $0)s + $0) (10)
Such relations will in gencral be singulag® solutions; sometimes they
will be particular solutions obtainable frOm the general solution.
To find the general solution of (7), W adb reritid {85 ierfhinform

dz aV({p) )
v —p  p— v
&
This is linear in ¢ and\dz/dp. Solving by the method of Art. 4, and
eombining the resulk Swith (7), we find the general solution sought.
Equation (5)13£ Art. T serves as an example of a d’Alembert equation,
i which ¥(

N EXERCISES
NN
*mﬂ ‘fhe general solution of each of the following differential equations, in which
p denbites dy/dz. Also determine any singular solutions these equations may possess.

1 p? —(2x+y)p+2x.,f—0 2, o%p* — 2ayp — o + 24" = 0.
3. 2ip? 4+ 2eyp — P+ ¥ =0 4-x2p2—2xyp+y2—z=0-
B.pltz—y=0" 6. ypt —2zp+y=0
7'xp2—y'p—y=ﬂ_ 8.p2—|—2p+y—2a:+1=0.

9, yip? + 2ayp — P +1=0. 10, 2p2 —yp+ 4 =0,
11.3p2-2p+x—0 12. * —yp — € = 0.

18. xp® —yp+2=10. 14, pP+ap—y =0

15, o2p? + 204 —xp)p + 4 = 0 16, 7 —ap+y =0

17, 2p? + {1 —pp —1=0. 18. 2z’ — Bz +2)p + 3y +1=0.

19.ap* — @+ p)p —y = 0. 20.p" —ap +y—2=0
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' DIFFERENTIAL EQUATIONS OF ORDER HIGHER THAN THE FIRST

9. Equations with one variable absent. Apart from lincar equa-
tions, two types of differential equations of common accurrence are
those in which (a) the dependent variable is lacking; (b) the independ-
ent variable is missing,

(@) An nth order differential equation of the form

~
dy dy &y
— e R — = 0, A 1
F(x; I dr?’ 3 dxﬂ) ( )

A\
. NS
which does not contain the dependent variable ¥ explicitly, may be

transformed into an eguation of order n — 1 by mgahé. of the sub-
stitution

S,
dy QO
-4 9
p== R 2)
together with the derived relations \ >
I o
de  da?’ 7 ggml T gpn

S . orE.in .:. 3

When' \;Widgf %lébtﬁafgs?élgme& ‘equation of first order in dp/dz is
often solvable by one of thelthethods previously diseussed. If the
differential equation is ace§tapanied by given conditions, it is well to
evaluate the constants of ihtegration as they arise.

Ezample 1. Find‘t}e\solution of the equation
N\ 2
ZN\J . T iy. —_ d-;y =
\ det  dy
which is sueh‘that y = 5 and ay/de =—2forp — 1.
S‘{ZY’"& . Making the substitutions (2) and (3), we have the equation

8zt

\ x@“?)zsxa-
N -

This may be in?.egmted either by combinationg (Art. 3) or as a linear equation
{Art. 4}. By either method, we get

L 4x% 4 gy,

@
Using the fact that P=dy/ds =—2forp = I, wefind ¢; = —6&, whence

dy
= =2 = 48
p o 4a® — gz,
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Since ¥ = 5 for z = 1, ¢z = 7, and the desired solution is
y=at—3* 4T

If, in an equation of type (1}, not only y but its first and possibly
other derivatives are lacking, and two or more derivatives of higher
order appear, the procedure may be shortened by setting p equal to the
derivative of lowest order present. If the equation contains only z
and d*y/dz", the equation may be solved by n successive integrations\

(b) An equation of the form \

dy d% d“y) Oy
At At 4 AN\ 4
G(y’ e =Y o w

which does not contain the independent variable explicitl'}‘f, may be
transformed into an equation of order n — 1 by means\of substitution
(2) together with the relations expressing d”y/ da?, dyjfda®, - - - in terms
of p and derivatives of p with respect to ¥; thub \~

ay dp d®y
Py W =p? dy2+43’ (5)

Example 2. Find the solution of the eqd&i’ﬂidhdbra uhbrary-org.m

d¥y dy dy
—=+2 —3y—=19,
2y + (:B) Y

which is such that y = 2 t{ﬁy]dx =dfore =0,
Solution. Substituting p = dy/dz, p dp/dy = 4%/ dz" we get

&

\ 2y'p— + 2p* — 8yp = 0.
By the connitt\ibns of the problem, p does not vanish identically, and therefore
\ yd;o+2pdy—-3ydy—{)
whettes
K / 3y
2y‘p —_— = (1.
2
Sincey = 2 when p = %, 1 = 0, and
Ly _ 3y
P % 1
Hence we get
dy._ 3
y 4
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Since y = 2 for& = 0, co = log 2, and

logy — log 2 = iz,
y= 283#-1'

[CHar. T

If equation {4) is lacking dy/dz, and possibly other derivatives, as
well as 7, but two or more derivatives of higher order appear, we may
advantageously set p equal to the derivative of lowest order prosent,

EXERCISES

dry  dy dy A
1, =& = = = e = A

2 o &%y 3’d =2 forx =0. \

dy  dy 5 dy

Bt Ty g e =D

5 Oy dy \"
Sz—ﬂ—-3xd~; —7~d—z——2,‘f01‘2:=—1.

d Cf :&hbrar‘y .org.in By \J/
= ,'y*-r,&=0 for z = 2,

d'ly ( d*y ol dy
\ xz— -= “aaat g ¥ _ =
+ iz 293 Py 8, I 2, for z =1,
xday__ézdzg m\dy dy

det dzg:{é%d—x=—3dx2-10,for:c=—l.
dy dy

. d:cg = 4y; y—‘—2 E&= 18, for z=0.

.‘\

dy
. Eg\é‘\ Qy;ye.l] P fﬁ,forxzr.

™

B2y d
3%“%2;y21,£=2, for z = 0.

nd
.‘.

N Ty _ 4 4
~"1°‘Ex_2=_;E;y=2,gg‘-‘=—2,forx=%.
dy  dy
11'£2=y“;y—\/3*—\/3 for £ = =1,
dy di dy
12, 2ydz2 a);y:ZEz—é,fOl’ﬁ:-‘—ﬁ.
dydﬁy a2y
13. dy d2
dz do® (dﬁ)’y“-&@ﬂ,ﬁgﬂ,mm:_1,
dy &8 ;
i y y+3y"( ) (@)g;y=1,§g=‘_1 Py _
da? de 4 g

N\

’ \\
Find & particular solution of each of the differential equations ing T\m( fger 1-14,
subjeet to the given conditions.
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I'ind the general solution of cach of the differential equations in Exercises 15-20.
a2y

d¥y
15. ol K2y 18, i —kY.
. 2]8 2y Py (&

17. | 1 — = —=1. . hatld -

l: + (d:n) : da:2) is. e + dx) +1=0

%y (dy oy &y A\ 22 dy

18, 5 — MYy o X, 24 g = -,

Pt T\ z 2. [y gt (dx) ] i

"N\
10. Linear equations of higher order. A linear differential equ&&i{)n
of erder # is an equation of the form N

7'\
, 4y &y dy
Iodxn+Pld$n—1+"'+Pn-1dI+Pny‘<zQ} v
where Py, Py, -+, Py, and § are functions of the Widependent variahie

only, Py # & If @ =0, equation (1) is called a_homogeneous Jinear
equation; if @ =0, (1) is non-homogengo@& When @ # 0, the

equation PAN
Jdy oy  Ody _
Po @ + Py da™1 T ’_:l?'ww,dbrj?ﬂﬁﬁ%ry.tg"g.in @

obtained from (1) by replacing @ by %ero, is said to be the reduced equa-
tion corresponding to (1). 4 _

If y = Y (z) is the ge;;e“x%l solution of equation (2), containing n
arbitrary constants, then'd% is called the complementary funetion of (1).
if y = Y,(&) iz any sofusion of the non-homogenecous equation (1), then
¥, is called a paljtikuié.r integral of (1}). The general solution of the
non-homogeneou’&ec’luation {1) is made up of the sumn of the comple-
menlary funeticn and a particular integral.

Ily = oy ) is any solution of the homogeneous equation (2), then
¥ = cuyaFhere £i8 an arbitrary constant, Is also a solution.  If y = 2, (z)
and 'yf=~\‘ug(x) are two solutions of (2), then ¥ = ¢ty + cotn, where
€ and ‘¢g ure arbitrary constants, is also a solution.

1% is customary to use the symbol D to denote the operation of differ-
entiation with respect to the indepcndent variable z, and, more gen-
erally, to denote by D7 the operation of finding the rth derivative:

dr
Di=— (=12 n. 3

With this notation, equation (1) may be written briefly as
o(D)y = &, : )
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where ¢{D) is the operator
WD) =PDHPD T e £ P D 1P (g

If (D) is any linear differential operator of the form (5), the fol-
lowing relations hold:

¢(D)e” = ¢(c)e, (6

where ¢ is any constant; ~

' ¢(D)(e"u) = e“*¢(D + c)u, A (@)

where u is any function of z and cis a constant, Equatinn'('ff; which is

sometimes called the shifting formula, has numerouﬁ'}:}ﬁ’p]icat.ions in
the theory and in the processes of solving linear equations.

L
Ezamples. From relations (6) and (7) we have .\

(D*~3D 1 5) e = (22 — 3.2 +.5) €% = 3ee,
(=*D? — 22D) 5* = 2265 —'2::\-3x2 =0,
(22D? — B)(e=sinz) = ¢= 22X 1)? — 3] sin g
= g T ’(2;])5 — 42D 4 2z — 3) sin z,
www,cl.l:u'aulj]areu'y%Lf{.f/‘l?l:(.ﬁ:‘z uj = ¢*Dru,

11. The complementary fulittion. In this article, and in the follow-
i..ng one concerned with paffieular integrals, we shall consider only those

linear equations in which'the coefficients of the operator ¢(D)) are real
constants, X\

The process of finding the com

. . A\ plementary function of a linear equa-
tion with rea.l‘constant coeffici

ents may be summed up in the following

stat.ement.’ \/
Let ?‘:1"1\?;2, “**y T e the roofs of the algebraic equation
2 \ \ aﬂmr + .almr‘i + e +aﬂ—lm + n = 0; (1)
- \aumhary to the linear homogeneous equation of nth order,
) 4
\ MW= @D D D a0 @
where qy, A1, "+, Gy 8T 8Ny real constants.  (g) If
] . i, Po, =+ ¥, are
real and all different, the general solution of (2) ig v
Y=o + o Cne™,
where ¢, 2 "**, Cr are arbitra, i
1Y constants. () If 7 is a p-fold real
root of (1), th: i i e
) {1), the portion of the general solution of (2), corresponding to 1,

(81 -+ Cow 4 - - Cpmp'_l)e’”_
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(¢} If conjugate complex roots e = 8, where ¢ = V' —1, oceur p times,
the corresponding part of the general solution is

e[{e1+ co +- -+ F oY) sin Bz + (6 + o -+ 2P cos fr].
Example 1. Solve the equation
(D¥ — D? — 6D)y = 0.
Solution. The roots of the auxiliary equation m® — m? — 6m = 0. ate\

m = 0,3, —2. Hence the general solution of the given equation is \
¥ = o1+ e96™ + ez R N,
Ezample 2. Solve the equation ~\ Dy
(D* — 10D + 25D)y = 0. o

N\
Solution. Since m? — 10m® 4- 2bm = m(m — 5)%, the r@i’)’t} of the auxiliary
equation are m = 0, 5, 5. Therefore

A\
. ¥ = c1t (e + cax)e’® \*\
is the general solution sought. N ~ )
Ezample 3. Solve the equation o) '

(D* + D? + 3D, SV Braulibrary org.in

Solution. Here the roots of the eqﬁé:tion m? + m? + 3m — 5 = O are found
tobem =1, —1 = 2¢{, Consequently we have

y = cl<'\~i—..é“:(cz gin 22 -+ ¢, cos 2),

EXERCISES

\Y
Find the general golition of each of the differential equations in Exercises 1-14,
in which D denotes &fdz.

1, (D? f\% = 0. 2 (D!4+ By =0

3. (D2h5D)y = 0. 4. (D? — 3D — 28)y = 0.

5. MR- 6D + 9y =10 6. (D% +6DYHy = 0,

{.‘gDa — D2+ 12D — 8)y = 0. 8. (D® — 8y = 0.

OM(D* - 168)y = 0. 10. (D* — 8D? + 16}y = 0.
11, (D* —3D* + 83D — D)y = 0. 12, {16D*—32D°+24D2—8D 4 1}y = 0.
13. (DfF+4)y =0 14. (D% — 5D% — 36D)y = 0.

Find a particular solution of each of the differential equations in Exercises 15-20
subjeet to the given conditions.

16, (D2 —d)y =0; y= —1, Dy = 10, for z = 0.

186. P+ 16y =0y=-3,Dy=0forz=m

i7. (3D? — 4D)y = 0; ¥ = 5, Dy = 0, for z = 0.

18, (D* + 2D + 1)y = 0; y = 6, Dy = 2, for 2 = 0. ,

19. (D% + 3D* — 4D)y = 0; y = —1, Dy = ~7, D% =18, for z = 0.
20. (D — D!+ D—-1y=0;y=1 Dy= -2, D=1 for z = 0.
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12. Particular integrals. Among the various methods _of finding a
particular integral of & linear not-homogeneous equatmn. w1th. constapt
coefficients, only two, of considerable power and generality, will be dis-
cussed here. ' '

et the differential equation under discussion he denoted, as before,

by ¢(D)y = (gD" + aan-l +- 1D + )y = Q, 1)

where g, @, ***, @x are constants and Q is a non-zero function of z.
If Q consists of the sum of two or more terms, § = @1 + Qs+ -4—.@3,
the particular integral Y, may be found as the sum of 3 terms,
Yp1 + Yo 4 -+ Yps, where Yy, is the portion correspondingifo @,
that i, ¢(D) Yp; = @ identically {(f =1, 2, ---,8). Thu§'& part of
the particular integral, corresponding to a part of @, may Jbe determined
by one method, and the rest of ¥, may be found by ahother meihod.

(@) Method of undefermined coefficients. If the gight member @ of (1)
consists entirely or in part of terms of the forms

Cz%e®,  Cz%* sin Bz, g:c‘ie Jo Bz, (2)

where g is & positive integer or zero, ¢, %, and 8 are any real constants,
and C is any constant, the corresponding part of the particular integral
may bevfoithd PEFHBEHE §UE following rule. For definiteness, we
suppose @ to consist entirely of ¢erms of the forms (2).
Write the variable parts of“the terms of the right member @ and of
all other terms obtaina]ql{ by repeated differentistion of @. When 8
term is a constant, write 1. Arrange all of these terms into groups such
that all terms obt@h}a le from a single term of @ appear in only one
group. If no member of a specific group appears as a term in the com-
plementary fyhction ¥, all members of that group are left intact; if
any membed'ef a group is a term of ¥, all members of that group are
multip}ie\d,by the lowest positive integral power of z that makes them
all @iﬂe}ent from any term of Y.. Then give cach resulting member in
all:groups a literal constant coefficient and take the sum of the expres-
< '*ﬁi@ﬁs thus obtained as the particular infegral ¥,. Substitute this sum
in the differential equation (1), match corresponding terms, and produce
an identity by determining proper values of the literal coefficients.

Ezample 1. Solve the equation

(D* — 4D + 3)y = 65 ~ 11 - 8¢,

. Solution. The complementary function is ¥, = g cze*, From the
Tight member we get two groups,

A | angd =,
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8ince no member of either group appears in ¥, we take
Yo=Ac+ B+ Ce=
Qubstituting in the differential equation we find
Cem — 4A 4 4Ce™* - 34z + 3B + 3Ce™ = 6z — 11 + 8¢9,
whence we musthave A = 2, B =—1,0 = 1. ThereforeY, =22 — 1 4 ¢7%,
and the general solution is
¥ = ce® + cee® + 20 — 1+ ¢,
Exzgmple 2, Solve the equation
(D3 + DYy = 4 — 126,
Solution. Here ¥. = ¢1 + ¢2x + eze~% The right menlbfii':ieaés to the

two groups \
1 and &=

-\
Now 1 is a term of the complementary function, and ’I'il}ist be multiplied by z*
to make it different from any term of ¥,. Since tf(" ’ig}not part of ¥, this group
is left intact. Consequently we take O
Y, = dat —1—~{Bé”’,
and substitution gives us X .' www.dbraulibrary.org.in
8Be% + il + ABe® = 4 — 1267,
sothat 4 = 2and B =—1. He:]ig\(: ¥, = 2z — €%, and the general solution is
¥ e ¥ ear + e + 2% — &7

The shifting fortatild (Art. 10) can often be used to advantage in the
determination of/jparticular integrals, as illustrated n the following
example. Q"

Q ,
Ezample3,> Solve the equation

2\ \ ) (D? — 4D + 5)y = 2e*sin .
) Soliftion. In this case we have ¥,
right member yields the group

&(cysin s + ce cos ). Bince the

eginz, & cost,

both merrbers of which appear in ¥, we should have to take ¥ = Azels SiIF_ z
+ Bxe™ cos . 'We may, however, avoid this rather cumbersome form by setting

Y= ugﬂz..
Then, by formula (7) of Art. 10,
(D* — 4D 4 5)(ue®®) = e [(D + 2)* — 4D + 2) + blu = (D" + Ly,
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and the transformed equation is, after cancellation of the factor ¢2%,

{D? + Du = 2sin z.
Tor this, U, = eisinx + ca c08 %, and we sefb

U, = Az sinz + Bz cos 2.

Upon substitution, this gives us
—Azging + 24 cosz — Brcoss — 2Bsina + Arsinz + Breose = ?\sinm,

4 =0, =a1, X
and <\ )

' U, =—2 cos T, O

Consequently % = ¢ysin@ + 62 cosx — z cos z, and since":f; =\, we get the
general solution of the original equation, R )

¥ = e¥(ci¥in g 4 63 008 & — BOEABE).

{b) Method of varialion of paramelers. .‘ﬁ}\ﬁ'as stated above that the
method of undetermined coefficlents qp'pﬁes only to those parts of the
right member § that are of certain.fbmﬁs. The method of variation of
parameters, due to Lagrange, applies’to all cases, even when the coefti-
cientsvof vhikbopdifter vdepéifilon z, provided only that the comple-
mentary funection is knowal® However, Lagrange’s method usually
entails longer and more.difficult computations and integrations, and is

therefore best reser)getl\for use in those problems to which the first
method is not applicable. '

Let the complementary funetion of the equation

$ODNE (PD" + PD* 4 4 PD + Py =@ ()

«x" . Ye=cuur + caua +- -+ Cptin. *)
. ,;Jfa;ke as the general solution the expression obtained from Y. by replac-
"'\; Jng the arbitrary constants by variable parameters:
¥ = Viug + Voug + -+ Vo, (5)
Differentiating (5), we get

V= Via + Vot o+ Vo + Vi + Viwg -+ Vit

Now set, that portion of ¥’ contajnin

g the first derivatives of the param-
eters equal to zero,

Viuy + Vaug -+ Vi, = 0, (61)
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g0 that ¥ reduces to
y' = Vi + Vauz 4ok Voo, (7
Differentiate this, getting
y' = Vol o+ Vo oo Vol + Viwg + Vigg 4+ -+ Viat,

and again sel {he portion containing the first derivatives of the param- -

efers equal to zero, A\
T’lul + I‘gﬂ.z —f" + Vnun = 0 ‘\‘(@2)
g0 that AN\
f=mﬂ+nﬁ+ A+ Vo, ’g“ (72)
Treat similarly 7', - -, 1,!(“ -5 thereby retting, a.ltogethe’r wi — 1 linear
algebraic eqmtmm in V1, T;, -, V., the last of whmh is
I_f (n-—f!) + I(v-"u{ﬂ 2) + + V (‘n\g) = 0. (6,;,__]_)
This leaves \ &

y(n-l) = Viu (ra 1) + ¥y u(n 1) ,_r_ "V u(n 1), (7n—i)
whenece

¥ = Vo 4 4 T, u(“) + V’u (T

Substitute from (5), (71), 24 (7n) in (3); sinee ¢(D)u; =0 (G =1,
2, ..., m), we then get AN

Y

Vil m\fﬂ—w o+ Vil = /P, (6

The % lincar alge blucxequatlons (61), - - -, (6.) may then be solved for
the derivativey 1\1, , the resulting functions integrated to get
the paramet 1~\"\V . V themselves, and these values substituted

in (5) to geh gnneral solution of (3).

AL d.bI‘aU_l}l-bl "%I')f 015 in

Exam?le J; Solve the equation
\ / (D? 4+ D)y = secx.

Solution. The corplementary function is ¥, = ¢1+ cxsin2 + cacos2.
Hence we set

y=Vi+ Vesinz + Vieozs.

Then
) y = Vicoss — Vasinz
Provided thaf
Vi+ Visinz + Vaeosz = 0.
CUDSequently

y" = —Vasinz — Vze08 % ¢
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provided that .
Vheosz — Vysinz = 0,
and - o -t
Y =—Vacosx 4 Visinz — Vysing — Vyeosw

Substituting in the given differential equation, we get
~Visinz — Vyeosz = sec L.
Solving for V3, V5, V3, we flnd

V!, =secx, Vi=—tanz, Vy=-—1, .
whence )
7NN ¢
¥y = log (sec z + tanz) 1+ oy Vs = logcos = + €, Vy =2 + cu.

7 %4

Therefore the genera] solution sought is “~\

= ¢+ ea8in® + g cos & + log (sec = + tan ) +siN w\Iog C0% & — & COS .

7 \d
EXTRCISES (¢

Find the general solution of each of the fo‘ﬂowmg differential equations, in which
D denotes d/dz.

1 (¢ - %mauwa 1&?3—15, N 2 (DD -2y =27" 12
5 DFE B = G+ e, N 4. (D* + 9)y = 5sin 2z.

B. {D® — 3D)y = 14e2 — @, 6. (D? +2D ~8)y-1‘2xﬁ“

‘i’ (% + 1y = Gsine, {

QN 8. (D' — 9D)y = 8¢" — Y0x.
9. (DF 4+ DYy = 16,4 g™ 10, (P 4+ 4Dy = — 20 — 16 sin 2.
11, (D* — 1)y = 48l — 1267 12. (D2 4- 1)y = 24an=.
13 (D + &)y =Bgot 2u. 14, (D? — 2D + Dy = 3e*/2"
16, {D* 1 4Dy + Bly = S¢ 2 cos 22 16, {D? + 4}y = Bszec2z.
0, (D* + DX 10)y = 9 tan Zx. 18, (D% — 6D -+ 10)y = 56% csc -

19, (D? +\)y = 4300 2. 20. (D% ~ 4D)y = 8/(e* + 1)
13’§Pﬁe Euler linear equation, We now consider lincar differential
aqaations of the type
PA

U (boz"D™ + by D"t - by 12D + by = @, 1)

where .the ¥'s are congtants, by # 0, Qis any function of z, and D = d/da
Equatmns o'f type (1), variously called Fuler, Cauchy, or hormogeneous
linear equations, may always be transformed into Jinear equations with
constant coefficients by means of the substitution

x = £,

(2}

For, if we use D, to denote differentiation with respect to z, we have

#DY =D, — DD, ~2) --- D, —r + Ly 3)
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{r =1, 2, .-+, n). Bubstituting these expressions in (1), and at the
same time rcplacing z by e® in the right member @), we get a linear
equation with constant eoefficients in the variables z and y. H we solve
this equation by the methods of Arts, 11-12, and replace 2 by its equiva-
lent, log z, in the result, we have the solution of the given equation (1),

Exomple. Solve the equation
@*D? 4- 227D? ~ 2%2DYy = 2z — 4. O
Solution. From relations (2) and (3) we get ’ \:\'
[DD, = 1)(D; ~ 2) + 2D,D; — 1) — 2D.Jy = 2¢ = &)
(D} - D} — 2Dy =2 — 4, )
The complementary function is readily found $o be “’\\
Yo =1+ cae™ + Caé’f’{\;
and the particular integral is of the form M
Y = de + 85"
Substitution givesus 4 =—1, B = ?;{’M_%}%H%%.org.in
¥ = e+ 02%7’:‘;:]: }:382" — e+ 22,
Replacing z by log «, we get as %{é ge;l;eral solution of the given cquation,

&=

y ot 2 4o — 24 2l0ge

A more geneg&j}fﬁ;m of Jinear equation, ineluding Euler’s equation
as a special cggé}i’s’ the Lagrange form
[bo(a:r—kﬁ)fi)l”—:]—bl(ax+ﬁ)“_1D"’_1—§— -+ thna{ex+8)D+b,Jy=0, (4)

in wh’it.t;.’r:he linear expression ex + 8, e and 8 constants, replaces the
m{h& operator of equation (1). The substitution

or+ 8 =¢ (5)

leading to the relations
(e + B DY = DD, — 1) +++ D — 7+ Dy (6)
(r=1, 2, -. -, ), serves to transform (4) into an equation with con-

stant coefficients.

14. Simultaneous linear equations. Let there be given a system of
m linear diffcrential equations with constant coefficients, involving one
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independent variable z and m dependent variables 1, %2, * ) Y
Using D to denote d/dx as before, w rite the system as

drDiy + o2z ++ -+ d1aIDym = Gy
b1 D) + G2y 4+ -+ d2n(D)ym = Qo ]
b1 (DY + Pm2(DMz +++* + Smm(DWm = Quy

where the operators ¢5(D) (4, k=1, 2,---,m), of any orders; Rave
constant coefficients and @, Qg; -+ -, @ are funetions of . O\

To solve a system {1) for y1, ¥z, - - -, ¥m, the procedure is. aptlogous
to that used to solve a system. of linear algebraic equations.| By suitable
operations upon the equations (1), eliminate all but one,of the de pendent
variables and its derivatives. Then solve for this dependent variable
by the methods of Arts. 11-12. The remaining /e may be obtained
either independently by similar climination progdsses or by using those
already found. In either case, care must ¢(taken that the solutions
found for all m y's satisfy the original systéfrn (1).

E:camwp‘{g\.m }3"&% }ﬁlﬁw&gﬁﬁquaﬁgés W
(D + Dy ~ (3p;{~;’i)z = 8t + T — 7, @
Dy — (2D M = gete — 2 - 4g, (3)

Solution. In this problem\we note that subtraction of (3) from (2) yicldsa
relation containing no de\m'atwes of y, namely,

Zy (D~ 8)z = 46 - 0 4 32, €3

Henge, if we ﬂrst ﬁ.nd 2, y may be obtained from (4) without further integration.
peratm%(o 2) with D and on (3) with D + 2, in order to make the coefli-

clents of},\ah &, we get
DD + 2y — (3D? 4 D)z = 16¢% — 1,
\«S\ »/ (D + 2Dy ~ (2D + 8D -+ 8z = 16e* — 8 — 8y,

ubtracting the wpper equation from the lower one, we have
D=0 -8 =—7 — 8¢
From this we readily get

£ =007 + e 4 g,

(5)
Substituting in (4), there is obtained

Qe — 8ot — 1 4 3c167 4 Boged” 4 3y = 4p2= + 94 3
L]
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whence Y =— 20167 + Breed® 4 2e2 4 5, {6)
The general solution of the system (2)-(3) is thus given by the two relations
(5) and (6).

A convenient test for the determination of the fotal number of
arbitrary constants that should be present in the gencral solution of a
syslem of cquations is obtainable from the operational determinant of
the system. Il the degree in D of the deterrainant | ¢;4(D) | is s, there
should be just s arbitrary constants in the gencral solution expresgions
far ¥y, Y2, * * 75 Ym taken together.

O\
EXERCISES O
Find the general solution of each of the differential equationgﬁr’['ﬁxercises 1-10,
in which I} = d/dz. '\g )

1. @D L 2Dy = Blogs — /2. 2, @D} Iy = 4z — 6.

3. (z'D° 4+ 2D 4+ L)y = 3sin (2 log ). 4 (lelg 2D + 2y = 22 — 8.
5. (z°D° + zD + 4)y = 4 cos (2log ). ,x:.\ g

6. (xTD? 4 62D + 6y = Bllog z + 1) /2%, x\

7. 1P — 22D? — 3Dy = 18 — 72 log &\

8. (#°D% + 3D + 2D — 8)y = 604 & Py dbraulibrary.crg.in

9. [(2¢ 4+ 112D2 — 2(2x 4- 1)D -+ dlye= 8 log (2= + 1) — 121og® (22 + 1),

10. {(3z — 2)°D? + 33z — 2)D + 3= 60z — 45.

In Exercises 11-20, find the ggneral ‘solution of each system of differential equa-

tions, in which b = d/dz. ) \’

11. (D — 3y — (2D a-\?::: 8¢ — B, 2y + (D + 2z = 10 — 4e~*,

19. (3D — Dy + (Bt Wz = 20z + 24, 2D + 1)y + Dz = 44z — 8.

13. (D? + 1)y + D= 66, (D — 8)y + (D — 1)z = 6™

14, 2D + By @D — 22 =16sinz + Beow 5, @D 4 Ny + (D -z =
2¢inx 4+ 7 cos

15, (3D . —Di'+ Dz = 4 + 18z — 3z% (D2 2)y + (D*+ 1)e = 11 4 4o + 6%

16, SDyR2z = 0, (D + 1)z + 5w = 15 — 32, DYy — 20 = ~10.

17. Diaf— % =2, Dz — 2w=2Duw— 2y =2
18.D% — 22 + Dw = —6,y -+ (D — 1)z — Dw = 2— 3, (D + Ly +w = &

492Dy — (32D — 5k = 15 — 12¢% 5 + @D + Dz = 10 + 222°
N0, D%t 1)y — 32De = (12 + 1ilogz)?, @D — 4y +42 = (3 — 10Tog )™
15. Series solutions. Up to this point, all of the differential equa-
tions considered have been of special types, solvable in finite form.
When a differential equation is not, and cannot readily be transformed
into, one of these particular types, it is gometimes desirable to find a2
solution in the form of an infinite series.
Maclaurin’s geries,

yiﬂu-!-ala:-l—a2x2+---+-cﬁ,x"+...’ o
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is frequently assumed as a solution of the given equation, the numbers

Gy, O, Gz, *- - being determined by substituting (1) in the cquation

and setting the complete coefficient of each power of x equal Lo zero.
A genersalization of this method, embodying a series of the form

y = 2%ag + oz + a2’ -+ 2"+ 1), 2

where the index ¢ and the a's are to be determined, may be used when a
. . N\
simple power series (1) does not suffice.

This procedure is often used in connection with homegencouSinear
differential equations, when it is known as the method of F\robomus
The equation obtained by setting equal to zero the totall em +fficient of
the lowest power of & in the series found by substltutnan in the linear
equation, is called the indicial equation, for it serves‘to determine per-
missible values of the index c.

\.
Ezample. Apply the method of Frobenius to the equation

=y + — +'.2 -

|
_ Solu.ﬁ"ifﬁ‘.' w AREruliEaTy-0 ‘genes (2 ), ogether with its first two derivatives,
in the given equation, we get
2agee — Dz + (e _[_'1‘)@_!_ s 2+ e+ r = Daetrl e
+agexs1 + ale BN+ oo + a1 +--
+ gmz +- .12, jzetrl Feoee =0,

Setting the total c@efﬁclents of 2% g0, ..o b=t L
the indiciai e@:ﬁh ’

% a.oc(2c -~ 1} =9,
and t};q’gdditional relations

- equal o zero, we have

N
COADCAEN +20 =0, ek )@+ 20— 1) + 24y = 0,0+

From the indicial equation there is found (assuming e 7 0, as we may)

c=0 or =1
Whene = 0, 2
B==20 6y == for = Fa, @ =~ 50y = — Fa, + -+,

and, in general,

_ 2(5,-_1 22
o _ o _ (__ 1)'22"
@ =1 rr— 1= D@ - 3 T (2'r)!a{I ;
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when e = 1,

a = gao =22 8o -2 :
PTTRM METE TR MT TR T gy
and, in general,
d = 2@_1 - 22(1.,-_2 _ _ (—-I)f22"a.o
! r@r+1) @+ D — DEr— 1) @ + 1)1

Corresponding to ¢ = 0, we thercfore have as one solution,

4 27 ‘\,,\
1—2 422 2 g R APPSR N
8y = [ :r+ % 453:—]— -+ (-1) 2)'x +~,"i

el
s
S

and corresponding to ¢ = %, we have a second sclution,

z? '\.’
2 2 4 ’é@f
= a) 'z 1-—:c+—:c2———~a:3—5— MR & e SRRl
= 15 315 (1) o + 1
It is easily shown that these two series converge fq;ﬂ values of . Hence we
have two letlIl(‘fa and valid solutions of our dlffcrentlal equation; their sum,
with t; and aj arbitrary constants, is the general solution.

At times, not every part, perhapémmedmfaﬁhdawpaksolutlon will
be representable by series of the iorm (2}, and eonsequently the general
solution eannot be found as 1L was in the above example.

K
ne
\{ EXERCISES

1. Using the substltutlen 2 = %, transform the differential equation in the
example of Art. 15 mtfxfm equation with constant coefficients, which may be solved
by the method of ..er; i1. Hence show that the general solution of the original
equation is ¥ =sey &N 24/% 4 ez €08 24/, and verify the series solutions.

Apply the *hod of TFrobenius to cach of the differential equations in Exercises
2-6. Vharew er possible, expreas the solution in finite form; otherwise, cxamine the
serles fo}\cmwergeme

} &y dy . N dy 2
\ - = =+ + 2y = 0.
}\ {z — 1 ] @ gy = 0. 3 R (z 3]

¥ dy
4.2x§%’+(1-4x)@—(1—2z)y=0. 53a——’+ +y
T

6. 2z(1 — 2)2 + (1 — 291 + 3x2) o + Sr(l + 2%y = 0.

7. Tse the method of Frobenius to find the general solufion of Bessel’s equation
of order =,
'y dy 3
227 7 — n 0,
= +x dr + &? Yy =
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ﬁhcn 1115 not an integer. Show slso that, when # is a positive integer or zero, Bessel's
funetion of order n,
n pra gt {— Drx'n-i—ﬂr

& T — e
angt 25 Mp 4 1)1 2vH2ln 4+ 2)1 ) rin -+ !

Jalz) = Foe

is a particular solution. This series converges for all values of z. ’ .
8, Use the method of Frobenius to find the general solution of Legendre's equation,

:u?)— —2m—+n(n+1)y— O

. 2N
Show also that, wheh % is a positive integer or zero, Legendre's polynorri;?{, N’
135 @[ ne-12"7 | D=2 B _]
Pule) = 7l T 2-4(2n— 1)@ 3

is & particular sohytion. . ~\
9. Show that the hypergeometrie equation,

0\¢
2, \
z(l—x)j—g-l-[’r a4+ 8 + La] &s—aﬂy—o

s,'

where v is not an integer or zero, has the hypergeemetnc series,

{at +.1)ﬂ(6 +1)
s MKy = 1 2 %
F(axfwwa br au-llrblr‘mg org. lﬁ"r(‘r +1

a(a + e + 2088 + 1)(8 4-2) o
x~.> Shiy + Dy + 2
convergent for fz| < 1, as\a&artlcular solution. Show also that z1YF{e — v + 1,
=7 + L2 — 4,7} ig"s solution.
10, Show that th{: m‘ethod of Frobenius does not apply to the cquation

w\" “'ﬁ”+2x3 +y =0

=+ -

Using 8, sq-\ma of descending powers of «,
“\ . Oy

\\a . y-—au+ -]— 5+ - +m"+”.

3

find the general solution of the above equation,



CHAPTER 11
PARTIAL DIFFERENTIATION AND SPACE GEOMETRY\

The formuiation of a partial differential equation, to be con@idered in
Chapter TII, whether upon formal, geometrie, or physmal grounds,
depends largely upon the techniques of partial d.lﬁ'erentlatlon and of
solid analytic geometry. Likewise, the methods of solvmg differential
cquations and the interpretation of their solutlonb\‘dibcussed in later
chapters, rest on these two types of technicues’ Accordingly, this
chapter i3 concerned with these preliminary b 1¢ matters. Nearly all of
the topies diseussed here may be found i m\aﬂy comprehengive caleulus
textbook, and consequently necd be enly briefly treated. Like the
material of the preceding chapter, the, present work may thus be used for

2 ’www dbraulibrary’.erg.in
review and reference purposes. ¢

16. First partial derivativegi™ Let 2 be given as a funciion of two
independent variables, z and

i\
.i. 3 2 = x N 1
& §@, 1 ®
If y is assigned S‘Omé fixed value, or is thought of as fixed, z will vary
only as a conqequence of a change in . When 2 takes on an increment
Az, z will chgu}gc by an amount Az such that

N
Then™
\\‘: ) Az [z + Az, ) — flz, @) , @

Az Az

Az = f(x -+ Az, y) — flz, ).

and if Ax is allowed to approach zero, the difference quotient (2) may
approach g limit. When this limit exists, it is called the partial deriva-
tive of z with respect to 2:

o _ . fetany) —f@y) ®)

ox - Ag—0Q Ax
31
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Gimilarly, if 2 is held fixed and y given an increment Ay, we are led, in
genersal, to the limit

o, f@yts) =S

&)
By Ay—0 ﬁy

the partial derivative of z with respect to ¢. .
Assuming that the partial derivatives (3) and (4) exist, we have the
relations :

™\
[ + Az, fl — iy _ 6f(;2 v, AW
fla,y+ &) = fo ) ofa ) €2, \ (6)

Ay ay

R4
where e —08s Az — O and ¢ - 0as- Ay — 0. \V

Other symbols for these two partial derivatives'of the funetion (1)
are \’\

af 3

o’ o P and ~a?1fw %

www .dbraulibrary.org.in . \

respectively. In all of the followifig work, the letters p and ¢ will be
reserved for use in this connection, and will be frequently employed.

The functional relation (1) ‘may be represented geometrically by @
surface in three-dimensional space, referred to three mutually perpen-
dicular Cartesian coqr(hnate axes x, y, . Assigning to y a permissible
constant value mayyaldo be regarded geometrically ag cutting the surface
(1) by a plane(parallel to the zz-plane, therchy obtaining a curve of
intersectioq,\';Tﬁe slope of this curve at any point on it is then given
by the V;‘Q‘Q& of p = 82/9z at that point.

Simﬁ,lar ¥, if the surface (1) is cut by a plane parallel to the yz-plane,
theslepe of the curve of intersection at any peint P on it is given by the

24

value of ¢ = 92/dy at P.
e of ¢ /9y
Erxample 1. Find the slope of the curve of intersection of the surface

2 = 2z% — 4zy® with the plane iy = 2 at the point (—1, 2, 20),
Solution. Here we have

» dz iz o
ar v L

whence the value of p af the given point, namely, —24, is the slope desired.
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If z is a function of three or more variables, say

Z= Iﬂ(xl) Fay o, xﬂ); (7)

we have n first partial derivatives:
oz OF 9z EJF dz oF
e om Y e e P e T e ®

Each derivative p; is found by djfferentlatmg (7) partially with respect
o z;, holding the n — 1 remaining #'s constant.

When z is defined as a function of two or more independent Yatiables
by means of an implicit functional relation, rather than exPileitly as in
(1) or (7), term-by-term differeniiation of the deﬁnmg Lquatlon may
be employed as usual. In such eases it is essential to ktep clearly in
mind which ig the dependent and which are the md‘bpendent variables.

Ezample 2. Given the cone xy + y2 + z¢ = O\ﬁnd dz/dvy.

Solution. In order that the symbol dz/dy shall have meaning, z must be
regarded as the dependent variable and z)ahd’y as the independent variables.
Then term-by-term differcntiation with rexpent o ¥, holding & fast and remem-
bering that 2 is defined as a function of 2ot A breHlibaa sy MEdVen relation,

gives us A\
\ s
xj—~y?+z+ma;z=0,
A ’
G s et
dy -+ ¥

In this case, the eXpIiEit functional relation could readily be found and differen-
tiated with respect to . The result would, of course, be identical with the
expression, §Bt#ined from the above value by replacing 2 by its equivalent in
terms of nd y.

1~7‘ ngher partial derivatives. If z = f(z, ), the derivatives p and

¢ oz with respeet to = and y, respectively, are themselves functions of

z'and g, ‘Thoese derived functions may in turn be differentiated par-
tially, to obtain the four partial derivatives of second order,

a(ag) Yy a(aa) kil
x\az/ T a2 ay\ex/ dyer

(8z) 3% 3 (az) %
ar\ay/ axay’  ay\oy/ &

Fach of these functions hag, in turn, fwo partial derivatives, and so on.
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If the two second-order ‘‘ eross-derivatives” 62.# dydx and 8%z/dcdy
are continuous functions of z and g, they are identical; thus, the order
of differentiation iz immaterial, Similar statements hold .for Cross-
derivatives of higher orders and for functions of three or more independ-
ent varizbles. We shall assume throughout that the nccessary con-
ditions of continuity are fulfilled.

Other notations for the second partial derivatives of a function
J(z, y) of two independent variables x and y are

~\
o a2 N
G=fe=r, = =t ()
e Ry
82f _y = a2f (s.‘:"' y
ayar T T T T T gray .\Qﬂ

In eonjunction with the symbols p and g for the firgs partlal derivatives,

we shall frequently use the notation 7, s, ¢ for the\second partial deriva-
tives. \ &

Example. Find the second partial denvathes of the function z = 2%y —
42,

Solutiog., TS nartia) Iimpzvnﬂves am

—4zy—4y?;~. g = 22% — Sxy.
- Hence we have e )
7 =4y, S=Mr — 8y, ! =— 8.
3

£
P {

™
\ \ EXERCISES
In Exercises 1~

10 ﬁnd the first and second partial derivatives of the given
explicit flmctlons )

l.:z= 4xy—2y3-5z+2‘ 2 2z = doletv . FuRos
3. z ={ — ¥ +sinay. 4.z—sm(2a:—3y}cos(3x-2y)
5 E: Sharctan oy — log (1 +- 248, 6. 2 = dzmec y 4 By tan x.
W= 5oyt Gy 1. 8.w—zysmz+yzsm:c+zxsiny.
\&w=2:cye’—2ze’"._ 10 0="4.¥ 4 2
¥ oz oz
In E : . . .
ITe1El'tllzl‘:m;zert:ls'ass 11-15, find 82/3x and d2/8y wsing the given implicit funetional

2. Eyez + 2 e +er" = 3. S]]l..""_,SII] ySlII 2

15. (log z)(log 4)(log z) - 1
16. e = do® — 3oy 4 5y, show thatx—- + yi =9
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X
17 X2 =377 show that s &+, 2 _ g,
Y z ox ay,

a2 z

18. If z = log V'#® + 42, show that —= + a—z =0
ozt | gt

&z 8%
- _ . &

19. If z = sin (@ — ) + &*¥, show that P 6‘1;2‘

2 2 2
20, Ifz=‘V'Qy—.7:+log(y+3x),sh0wthat.28—:—5—ai— = 0.
dx dxdy Sy
dur dw  fw
2l. ¥ w = (z — g}y — 2}z — z), show that — + 2= +— =10 £\
dx dy 9z
¥ z aw dw dw U\
22, Tfw = +—— + ———, show that z — — — &\
y+e z+z x4y’ 6x+yay+zaz'\,‘9’

23. The surface 2% 4 3 — 222 = 0 is cut by the plane & = 1, Ei'hd"t’.hc angle st
which the tangeni line to the curve of intersection, at the point L, 7, 5), cuts the
zy-plane. ldentify the surface and curve, and draw a figure. 20

24, The swrface z = 22® + 32 is eut by the plane y =-'25\ Find the angle at
which the tangent line to the eurve of intersection, at the point (1, 2, 14}, cuts the
zy-plane. Identify the surface and curve, and draw a.{gure.

25. Find the equations of the tangent line to thélpurve 227 | dy? o 3% = 34,
2 = 3, at the point (3, 1, 2). Identify the ourve) and*draw a figure,

18. Functions of functions. Leﬁ“f‘é%@tgi%ﬂbﬁfér&‘i‘iﬁi&ion of two

variables x and ¥,

2 &Y, ). (m
If x and y respectively take{on inerements Az and Ay, z will be changed
by & quantity Az such t]@t.?

&yt Az = flz + Az, y + 4y).
Hence, from (14 F:ﬁ;sincrement Azin z is
Y Mo =+ Ary + AY) ~ S, g @)
subtracggg'g\a;d adding f(x, y + Ay} in the right member, we have
Az,ﬁéﬁiﬁ- Az, y+ Ay) — fle, y+ Ay) + [,y + Ay) —flz, ). 3)
Now from relation (5) of Art. 16,

' af(z, y + Ay)
fot 0,y + ag) — Sloy g+ o) = LELEED g pn
8f(z,
Morever, since lim o,y + &y _ 4 Y) , we have
Ay—0 dx o

afte, y + Ay) _ 8z, v) +
z dx

3
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where ¢ — 0 as Ay — 0. Therefore

of (z, '
fz + Ax,y + Ay) _-f(x’ ¥+ Ayy = _f(zxy) Axr + (e + €)Ax,

where ¢ and ¢ approach zero with Az and Ay. Likewise, we have from
(6) of Art. 16,
af(z, )
Y

floy + ay) — fl ) =~ = Ay + @by (5)
N\
Combining (4) and (5) with (3), we then find
N Y
ox ay

N

A

7NN ¢
Ay + (e + €) Az + e Ay (6)

)

Az

where ¢, ¢, and e approach zero when Az and Ay botl ¢ approach zero.
The first two terms in the right member of (6), cohfaining the first
partial derivatives of z, constitute what is known.ds'the principal part
of the increment Az. \ ’

Buppose now that « and y are themselyéfsx\functions of some vari-
able u. By expressing x and yin (1) in termug of u, z becomes a funetion
of a single variable u, and the derivatiye 'dz/du may be found in the
usual manief” ﬁ‘i’?’eaﬂ;h? %ﬂé’o‘,"]fni\?@fe;i‘, obtain this rate of change of 2
with respeet to w as follows. Gigt*to w an inerement Au, as & conse-
quence of which z, y, and z #€spectively take on increments Az, Ay,
and Az. Dividing {(6), membc\ for member, by Awu, we get
. A A

Aj=if-.é—~x+§£ﬂ+ (61+E’)ém-+ez%,
e QQx,Au oy Au Aw Ay
and if we now gllow Au to approach zero, whence Az, Ay, ¢, ¢, and &
all approaclky@rﬁ, we find
"\

S de _of dv | of dy
N\ da z du oy du @

Thus we have the following

THEOR_EM. Ifz *r,’s. a function of two variables ¢ and Y, and x and y are
both functions of a single variable u, then the fotal derivative of 2 with
respect to u 1z
dz _d8zdr  dzdy

du 3z du a—ydu.

This theorem may be extended to the case in which z

; is a function
of three or more variables,

each of which is a funetion of . 'We have
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CorowLary L. If z is o function of n varigbles 1y Tay ** vy T, G0A
each x; is & function of ¢ stngle variable u, then the total derwatwe of z with
respect 1o s

dz 8z dr; - 9z dx dz dx
T e T e e e
du  dr dw  Qxp du Ay du

A fyrther extension may be made to the genersl ease in which each
of the variables in the functional expression for 2 is a funetion of two or
more variables.  All derivatives involved are then partial derivativés,

Cororuary I If 2 4 a function of n variables 1, g, - - 2 { Ty and
each z; is a function of m varighles uy, ug, «+ -, U, then the mgies partial

. B . N
dertvalives of 2 with respect to the u's are

e
T
%

32 _ 2 day | 0z I X2
duy N 6;51 6u-1 a.’llg 6u1 Gzﬂ'ﬁu-l !
dz 82 dzy 92 dxp &x2 Ll_\ Ndz 9z,
By 0% Uy | Oy auz AN Gy ouy”

N\ W
.

"

Dime 6x1 Ny axg Bum Oy Oty

J/E:rample Hw = %% — 2:;3; Phd & = + 8y = ud 0% g = 2w find
dw /G arad dw/Ov. Q
Solution, From Coro lE{y AL we have
913 dw dx/\ow dy  wde

du 62, &ux’&y du | 3z Au

="\@fx2y232 — 209 2u + (2272 — day)-3u? 4 20%y%- 2,

W3 dwdy | s

& Gz v Ay dv | Gz v

4 ..\’ Y
\”'\: = (3x%%% — 297307 4 (20ye? — day) 20 + 22%%2 2u,
19. Total differentials. If z is a funection of two independent vari-
ables £ and y,

dz ae 6‘.7}1 az ﬂ’w :vl_ dbr i}lﬂﬁ'aa%@rg .in

z = f(x, v, 1)
then the total differential dz of z is defined as the principal part of the
Inerement Az given by (6) of Art. 18; that is,

dz—a—zAx+—Ay @
oz
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The differentials of the independent variables @ and y are respectively
defined as the increments Az and Ay, and consequently we may write,
instead of (2)1

.
g =2 g+ Ly, 6)
ar Yy

The differential dz may be interpreied geometrically as the portion
of the increment Az, or of Az produced, cut off by the planc tangent toy
the surface z = f(z, ¥) at the point (z, ¥, 2} . .

Now if z and ¢ are not independent, but are funections of one or‘wgre
other variables, say % and v, then by Corollary 1I of the théorem of
Art. 18, ~ ¥ 4 el

bz dzdx 2 dy gz dzdx 0Oz 6y§:~

o

dw  drou ' dyou' v dwxov ayﬁ?

Multiplying these equations respectively by eh:?= Au and dv = Aw,

we pet ‘\
d dz (9 ar NNz (o &
% P2 (Zgu+ —,dv) -1-—(-—ydu +—ydu>-
du aﬁ r%x o s oy \ou v
ww w . dbrauli rary.org.in S8

Since  and v are now the indgpe;lﬂent variables, definition (3) tells us
that Q

e i, vy
_audu+avdv, Q\ﬂa—audu-i-avdv, dy—audu—i—avdv.

Hence in this casg, éisc?,
o \ud 8 &
,»\‘:.\ dz=—-idw—!—-idy-
N\ dx ay
A

This rgsin]t may be extended to yicld the

“PreorEM. If 2 is o funclion of n variables 1, 2o, - - -, 2., the lotal
différential of 7 is

dz dz 9z
de = —ds +—4d e —
a1, 1+ 32 Ta + + 3z dxp.

Thils relation holds when the ='s are functions of any number of other
variables as well as when they are independent variables.

haE‘:mn:aple.. If_ Plz, ¥, 7) de + Q. 4, 2) dy + Riz, 4, 2) dz = 0 is integrable,
that is, if this differential relation is satisfed by some one-parameter family of
suriaces ¢(z, ¥, 2) = ¢, find the condition that the funetions P, @, R must fulfl.



Agr. 20] IMPLICIT FUNCTIONS 39

Solution.  I'rom the functional relation ¢(z, g, 2) = ¢, together with the
above theorem, we get

3
d¢=a—idx+a—¢’d +i’5dz-0

In order that this shall lead to P dx - Q dy -+ R dz = 0, the partial derivatives of
¢ maust be respectively proportionsl to the funetions P, 4, B, or

3¢ d¢ A N\
2 _yp, % _yg X_ '
dz T 9y o a AE. A o
Then D))
% 9 N O
ayax '_ay( )_h‘_‘I'P'—y (‘.}‘:
3% 4 0 O)
awy—a@@)hh +Q5—'
AN
But 8%/9ydx = 3% /820y, and therefore \ &
aP 8@ "
h _— = P—o
(6;.-; dz f eax dy @

8 www.dbraulibrary org.in

<

Bimilarly, from the equality of the (;ther two pairs of cross-derivatives, we find
QL aR IA )
A R— — 5
(? ) dy - dz ' ®
BP) )} i\

2\\(}——— PR (6)

dx 0z 0z ax

Multiplying equ'a(bmns (4), (5), and (6) respectively by R, P, and @, and adding,
we got aite@hﬁellatlon

o aoR arR  apP ar  aQ
’~.P——-— — = Bl ——-— 0. 7
N (6‘2 6y)+ Q(ax 6z)+ (63; 6:3) @
o\
Thiglcondition is therefore necessary for the integrability of P dv + @ dy + B de
={. It may also be shown that relation (7) is a sufficient condition.

20. Implicit functions. If ¥ is given as an implicit function of x by
means of an equation f(z, ¥) = 0, then, sctting z = f(z, ) temporarily,
we get from the theorem of Art. 19,

de = f d:t: -I— f

Sinee z = 0 identically, dz = 0. This leads to
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TraEOREM 1. Let y be given as an implicit function of = by means o a
relation f{z, y) = 0. Then the derivative of y with respect to z is

o .
dy oz (g;é{)). 1)
dr Qj_" dy

Y

Buppose now that z is defined ag a funetion of two indcpend’v_ﬂ}t
variables z and y through an implicit rclation F(x, y, 2) = 0. , Sattling
w =.F(z, 4, 2), we have e

QO
F oF N
dw=.gfdz+a—dy+—dz=0. 2.\ )
dx dy dz R
Also, since z is a function of ¢ and , we have O v
PN
dz = % dr + % dy 3)
ax AN
Inserting this expression for dz in 2}, yicfé éet
W %rauli ary.org.in sl
oF 37 {oF  oF az)
T e — +— gy = 0. 4)
dx + dz a::) d? -F’(ay + dz dy Y (
Putting dy = 0, and takipg“‘atc # 0, (4) leads to
g
aF  9F 3z
O —+=Z=q 53
. @; ox + dz dx 0 ©
Likewise, setti,néd&; =0, dy # 0, (4) gives ug
:"\:w
N ke ()
dy dz ay

R{lgt"i\oﬁs (5) and (6) together yield

TaroREM II. Let 2 be given as an implicit Junction of tipe inde-
pendent variables  and ¥ by means of an equation F(z, y,2) = 0. Then
the first partial derivatives of 2 with respect to z and ¥ are

aF aF
e _ 2 e gy (aF 0)

ax F’ sy~ T aF’ o

-éE 0z

@)
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Frample, Haxy 4 y2 + 22 = {, find 92/dy using Theorem IT,

Sclution. Here F(z, y, 2) = &y + y2 + 2%, so that F, =  + 2z and F,=
¥+ =z Hence :
% __ 4tz
dy z+y

This result agrees with that found in Example 2, Art, 16,

QY
EXERCISES A ¢
2 A
In Exercises 1-4, find the total derivative of each function with respeefMo™.

Lz=d2' —Bay 4+ 6% e =~ 1, y=uf —u. &N
2.z=zcosy tycotx, =6 y=¢ " K7, \
3. w=logayz, x =€, g =& 2 =™ ..,'\\’

4 w=o2yef —2e°, g =, y = 1/u, z = logu. \/

In Excrcises 5-8, find the first partial derivatives pfiebci:n funetion with respect
to & and ». N

N\

b= 4+ 2nf z=2uty y=u— 50
8.z = ye®® — Bxe ¥, z = log (u + ), u =\og (u — o).
7.2 =sinay —zsiny, z = du® -+ 2v, wBw dbfaulibrary.org.in
8w =l —qyr, x =ty SN, 2 = o
In Exercises 910, find dy/de. L
9. 2% +¢° — 3azy = 0\\‘m’ 10, csiny +ysinz = L

In Exercises 11-12, ﬁnd %z/8z and dz/dy.

1L (& + p) sinz N En & ~ ) = 0. 12, (2% + 326" + 26 = 2.
18. 1f 2 = j(z, Gland gz, ) = 0, find dz/dz.
14 If z = f(yA4 az) + gly — ax), show that r = ¢%. .
15. If w..:\if(z — ¥y, ¥ — 2,2 — %), show that w, + wy +w. = 0.
16, U A= flr, ¥}, and & = pcos 6, y = psin 6, show that
A

\” (az 2 (63)2 (az 21 (g_)"
ax+ay"ap AT
17. A homogeneous function F(zi, Ta, -+ -, Ta) is such that F (M“l: <ery R} =
L TR %,) identically for any quantity A. By differentiating with respect to
A, and then setting » = 1 in the result, obtain Euler's theorem on homogencous
funetions,
aF ar ar

- i ...+:¢——=mF.
a:xaz1+zza$2+ " o,

. _18. ¥z = f(u,v) and y = glu, v), find du/dz and op/dy in terms of the partial
derivatives of £ and ¢ with respect to « and v.
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19. If u and ¢ are functions of % and y such that dw/dz = av/oy and au/ay
= —3v/dz, and 2 = pcos 8, y = psin &, show that

I o v a%u M A%
P =T i R 92"'_2+P_+_"'.j=0
dp 00 a6 3p ap dp = a0

20, If u and » are given implicitly as functions of z and y by the relations
Flz, 4, u, v) =0, Gz, y, ¢, ¢) = 0, find expressions for au/ay and dv/dz in terms of
first partial derivatives of F and G- ~

21, Tangent plane and normal line to a surface. It was stefted in
Art. 16 that when a surface F(z, %, 2) = 01is cut by a plane y=\ ¢, the
glope of the curve of intersection, at any point P:(z, _1,501325’) on it, is
given by the value of p = 82/8z at P. Likewisc, thg.furve of inter-
section of F(z, 4, 2) = 0 with a plane z = w; has as.gldpe the value of
g = 82/8y at P. These facts detcrmine the egmation of the plane
tangent to the surface at P, A

We suppose, for definiteness, that the £ hg\ent plane at P is not
parallel to the z-axis, so that it may be “{J:jtfen in the form

2—z= Al — fco)‘f‘ :B(y — Yo)- @

Hince t}'lws}&pdlmfatﬁiabtangm'@]mé”cﬁt from the plane {1) by the plane
¥ = %o is 4, and the slope of the tangent line cut from (1) by ¢ = zpis B,
we have Q

\@..}: p]P! B = g:IP,- (2)

whgre 1';he right mdmbers denote the values at P of the first partial
derivatives of 2 pbtained from the equation of the surface F (z, 4,2 =0.

Hence (1) beeomes
:"\:.
ONPlE 20 + 4l — 5) — 2 — 2) = 0. ®)

Uslit the expressions for p and
e may write the equation of the

N\

¢ as given by Theorem IT of Art. 20,
tangent plane in the alternative form

Flple =20 + Floly — y0) + Plpe— 2) =0,  (®)

where the coefficients represent the values at P of the three first partisl

de?:ﬁm’:zs O e fun.cmm Fz, y, 2). This result holds whether or
ROV The tangent plane is parallel to the z-8xls. Accordingly, we have

TargorEM I. The equation of the tgn

i
—0 0t th poins Prtaes e gent plane to the surface Fiz, y, 2)

on the surface may be written as
A Plpl@ = @) + gl ly — yo) — (2 — 20) = 0,

i

\
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whenever the tangent plane is not parallel to the z-aris, and in any event as
FI]P(x - 3‘3'0) + Fy]P(y - yﬂ) + Fz]p(z - 30) =

From analytic geometry, the direetion cosines of a line perpendieular
o the plane Az 4 By + €2+ D = 0 are proportional to the coefi-
cients A, B, C. Consequently the coefficients in the equation of the
tangent planc are direction numbers (that is, numbers proportional to
the dircetion cosines) of the normal line to the surface at P, Thusv%e
alse bave Ke \

Tueonmy I1. The equations of the normal line io, the surface
Flz,y, 2) = 0 al the point P:(zq, yo, 20) on the surface ma J “Be writien as
# ~\.‘

.

-y ¥ ¥ _E 4%
p]p g]p —]\~

whenever the normal Iine is not perpendzcul&r o the zaxis, and in any
event a8 {

o xu_y—,yﬁ_z-—zo_
“ Fx]p ',E@}P ww“ﬁczl]);auhbrary.org.m

The fact that Fg, F,, and P, (or, except as noted, p, ¢, and —1),
evaluated at P, serve ns fﬁrecmon numbers of the normal line to the
surface Flx, ¥, 2) = O\wﬂl be of fundamental importance in our later
work.

Erample. Fird \the equation of the tangent plane and the equations of
the normal liné 4 b the paraboloid ¢ + 2 + 4* — 4 = 0 at: () the point
(-18,3, HN@) the point (2, 1, 0).

Sﬂfutjm\ Setting Fiz, 4, 2) = =+ 2" + 4z — 4, we have

. Z"\'" Fzzl, Fy=4:'y, Fz=8‘z)

“Qf?ﬁc'é:

At the first point (—18, 3, 1) we therefore get

p=—1% a=-F

Thus the tangent plane at this point bas the equation

— x4+ 18)—%y—-N—-1=0
or

x4 12y 4+ 8 — 26 =0,
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and the normal line here has the equations

:c+18__'y—3=z—1_
1 12 8

At the second point (2, 1, 0}, however, p and g fail to exist, and consequently.
we must use
F.=1, F,=4, F.=10.

The tangent plane at (2, 1, 0) is therefore "\
1l — 2) + 4@y — 1) + 0¢z — 0) = 0, O\
or £\
x+ 4y = 6, , ‘ )
and the normal line there is piven by ) \
\
r—2 _y- 1 . 2=, >
1 4

AN
o\
Tt is common practice fo use the symmetrical form*of the equations of a line

even when one or two of the direction numbers Atezero. ‘Thus, the latter normal
line equations are conventionally written K

www,dbrauljbrarﬁ.tﬁ‘g-ig,37';%1 =%
1 w4 0’
but it should be kept in mind thabwe mean
ceding, pair of equations. O
~ _
22._ Angle betweehtwo lines; paratlel and perpendicular lines. From
a‘nalytclc geomet}'yx the angle 8, between two lines with respective direc-
tion numbers.a% b1, ¢ and ag, by, ¢z, is given by
A\
,\\~ cos 8 = % + biby 4 ciep

Q Vid+ 6 +3VETR1 @
- NT
Singethe angle between two Plancs is equal to the angle between their
rinals, formula (1) serves also to determine the angle between two
planes whose normals have the stated direction numbers,
Ifet Flz,y,2) = 0 and Glz, 4, 2) = 0 be two surfaces interseeting ab
apoint P. By the angle betwoen theso surfaces at P is meant the angle

Kef;wgin their tange:nt planes at P. From the results obtained in
rt. 21, Yogether with formula (1}, we get for the angle @ hetween the
surfaces, :

by this symbolism merely E];e pre-

ey

©08 § = PG + F!-‘GI?-‘ + F0, @
Rt RARVELt@ 1+ 6
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where the six partial derivatives concerned arc supposed evaluated at P.

If two lines are parallel and similarly directed, their respeetive
direction cosines are equal, and therefore two corresponding sets of
direetion numbers ay, by, ¢; and ap, by, ¢ are proportional:

Conversely, if (3) holds, the lines must be paxallel. \
If two lines arc perpendieular, that is, if the angle 8 between theniis

90°, formula (1) yields the relation \ \))
a1as + biba + crez = 0. A\ 4)

Conversely, il (4) holds, the lines must be perpendmul r\

Conditions (3) and (4), for parallelism and perpen(iwularlty respec-
tively, are of frequent utility.

23. Intersecting surfaces; space curves. Lé%'wo surfaces F(z, y, 2)
=0and G{x, ¥, z) = Ointersectin a CUIvey T en the equations

F(xr Y z) = 0 G(&?, = 0 (1)
N W, brauhbl ary.org.in

considered simultancously, reprefson’s “analytically that curve of inter-
section. »

The analytic repre bentatu@l of a space eurve is, of course, not unique.
Thus, we may climinate zapd y in turn from equations (1), yielding the
equations of two of thge};‘o]ectmg cylinders of the eurve: .

20Ty =10, 2=g); @

2 I
these two equalions together likewise reprosent the curve.
Anothmv%nefhod frequently used to rcpresent a space curve is to
express eae,h coordinate, , ¥, z, of the curve in terms of a parameter 6:

e
/N

O 2=a), y=w®, =0 ®)

If the parameter 6 is eliminated between the first and second, and
between the first and third, of equations (3), relations of the form (2)
are ohtained.,

Lot Pi(zo, yo, 20) and Q:(ze 4+ Ar, o + Ay, 7 + Az) be two
neighboring points on a space curve. The direction cosines of the
secant PQ arc then

c_‘,__Aﬂ’i ﬁ.f._,__ cosy = ——
COE o = PQ’ Cos PQ PQ
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Let P be kept fixed and @ be allowed to move along the curve toward P,
that is, let Az, Ay, and Az all approach zero. Then the sceant PQ will
approach, as its limiting position, the tangent line to the curve at P.
If As is the length of are from P to @, the dircetion angles of the tangent
line at P will be given by

Y ) Ax  As dx
cascz:hm—a:hm — = —

P As  PQ ds’
i 2 g (A g)zc}y N
cosﬁ—hm.PQ-—lmu(As 7G) = s’ '\:\()

. Az . (&z f.’\s) dz . O

= — = il — o — = — -
BY=IRGT M \a R T w O

where each derlvative is supposed evaluated at P. Th\g% the direction
cosines are respectively equal to the rates of chahfey with respeet to

are length, of the eoordinates z, y, 2 Furtherthore, the differentials
dz, dy, dz serve as direction numbers of the tafgent line.

Ezample. Find the direction angles of the fabgent line to the curve z = 36,
y = 20% 2 = 1 — §at the point {3, 2, 0). R\

Solut'ion\fwswm(ciéa La%:ul;bgﬁli}’y-gé'g:ﬁ&: g0, and dz = — df, a set of direction
numbers of the tangent line at any point'of parameter 8 is 3,48, —1. The given
point corresponds to 8 = 1, and&Consequently the direction numbers here are
8,4, —1. Hence the direction-egsimes are :

3 L\

1

3 4
3 T GDSB=—_’ B == 1
VL) Vs Va2 T TV
X

whenee we find ) \ )

Cos & =

\ \\"o}= 53°58,  f=13820, ~y=101°19"
In ;:e{qt-angular coordinates, the planes z = const., ¥ = const., and
# = gonst. are three mutually orthogonal surfaces and the element of
qu}ﬁe Az Ay Az is a tectangular parallelepiped, as shown in Fig. 1.
From equations (4) artl the relation cos? o + cos® 8+ ecos? v = 1,
we also find that the differential of are length is given by

@0)? = ([dn)? + (dy)? + (@22 (5)

In cylindri.cal e(.mrdinates (p, 6, 2), we use the polar coordinates
(p, ) of two c‘ilmensmns, augmented by the third (rectangular) variable
2. The relations between rectangular and eylindrieal eoordinates arc

T = pcosé, =ps'm8, z =z, (6)
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The mutually orthegenal families of surfaces p = const., § = const.,
and z = const. arc respectively cirenlar cylinders, »* + ¥ = ¢1, plancs
through the z-axis, ¥/x = ¢s, and planes parallel to the xy-plane, z = o,
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and the element of volume, approximately equal to p Ap A8 Az, is that
shown in Fig. 2. By differentiating equations (6) and substituting in

(), we got,

(ds)2 = (dp)? + (p dB)® + (d2)*.

9
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For spherical coordinates (p, ¢, 6), we use the distance p from the
origin, the angle ¢ measured from the positive z-axis, and the angle 8
from the zz-plane, so that

T = psin ¢ cos b, Y = psin¢sin 8, 2= pCOs ¢. )]

The mutually orthogonal families of surfaces o = const., ¢ = const,,
and ¢ = const. are rtespectively spheres, 2% - 3% + 2% = ¢|, cones,
(#* +y*)/2° = ¢3, and planes through the z-axis, y/z = ¢3, and. o,
element of volume, approximatcly equal to p% sin ¢ Ap Ag Af, isthat
shown in Tig. 3. Diffcrentiation of equations (8) and sul;st@tl\iffiﬂﬁ in
OVEE @ = @+ e + pemgd. AT )

z

"%s Fio. 3
m'I"hé’ ‘above discussion of particular coordinate systems may be
&%t'md.ed to the general system of curvilinear ecordinates employing
any triply orthogonal families of surfaces, u(z, y, 2) = ¢, v(2, 9, 2) = 02,
w(2,9,2) = ¢5. Thesurfacesy — €Lt + Au = ¢,p = ¢, v + Ap = €3,

W =103 and W+ M = ¢; will then bound an clement with edges

E}; A, EE2 A, By Aw and of approximate volume J\ E.FE; Au Av Aw,
where Fy(w, v, w), Ey(u, v, w), and E3(u, v, w) are three functions of

position. Furthermore. i turns out that the di :
13 then given by ’ at the differential of are length

@) = (B du)® + (B, 0 + (8, due. (10)
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We shall make use of orthogonal curvilinear ecordinates in the next
ehapter in connection with a problem in heat flow. This general pro-
cedure will then enable us easily to express our functional relations in
terms of rectangular, cylindrieal, or spherical coordinates, whichcver is
most useful for a particular purpose.

EXERCISES /

In Excrcises 1-6, find the equation of the tangent plane and the equations of the,
normal line to the given surfaces at the points indicated.

Laldy 22 =21 (2,-1,4. 237 +22=35  (-32D.
82— 3 22 = 6; (4,2, —1). 4 22% —F — 42 =8; (2{0)0).
bzt — 2+ =0; (=1, -1, 1) 86 zyz=86; 2,8, —1).

7. Find the angle between the ellipsoid 22 + 4y* + 2* = 1f)and the plane
£ -3y 44z = 7 at the point (2, 1, 2). O

8. Show thaf the paraboloid 22+ 24° — 32 = 6\and the hyperboloid
2* + 4y — 32° = 15 are {angent 1o each other at thepeint (—1,2, 1).

9. Show that the ellipsoid 5a% - 8y° + 452%=(45 and the hyperholoid
328 + 7y* — 2127 = 21 cut orthogonally at each gainy of intersection.

10, Find the values of @ and b in order that f-lic tone 22 = ay? + be? shall inter-
geet the hyperboloid 22 — y* — 822 + 20 = @lorthogonally at the point (2, 1, 3).

11, Find the equations of the normal te :t;Ile ﬁﬁf'ﬁh’of%hf %&L}bg@i’g&.%{i@ which
is parallel to the line 8 — z = y — 5 =28 6.

12. Find the angle at which the ndrmal line to the surface zyz — 2y — yz — =
=8 8t the point (2, —1, —2) cuts.the sphere 2+ + #=3

- 13, Show that ench spherey “{ﬁ\the family 22 4+ 3° +2* + e1z = O cuts every
sphere of the family 22 + 5%k 2 + ey = 0 orthogoually.

4. Show that the sufof the intercepts on the coordinate axcs of the tangent
plane to the surface /2 /7 -~ 4/ = 4/a i independent, of the position of the
point of tangency. AA\S

15. Show that theSum of the squares of the intercepts on the coordinate axes of
the tangent plade 6 the surface 236 + y¥ + 259 = o is constant.

16. Show‘t?h % the volume of the tetrshedron formed by the cvordinate planes
and the tan:g«put plane to the surface zyz = a® is constant.

17. Fiud the direction angles of the tangent line to the helix z = cos 6, y = sin &,
z ='9"&3t"the point {(—1, 0, =).

/Find the direction angles of the ellipse z2 + 2% + 42 =10, z — 2y = 0,
at the point (2, 1, —1).

19. Find the angle at which the curve o* + % -+ 28 = 4, 2% + 3 = 2v cuts the
surface y2 4 52 = 34

20. Two space curves, having a point in common, are respectively represented
b}'.x =1(8), y = ¢(0), 2 = k(&) and x = F(8), y = G(8), z = H(d). Find the con-
ditions that these curves () cut orthogonally; (b) are tengent.

24, Functional dependence; Jacobians. Let v = f(z, y) and v =
9z, ¥) be two functions of the two variables x and y, and suppose that
there exigts a functional relation ¢(u, ¥v) = 0 between u and ». By
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partial differentiation of the equation ¢(u, v) = 0 with respect to z and
¥ in turn, we have

dpdu I _
du dxr  ov oz !
4y
G
du dy = ov dy
N\

These relations represent a system of two homogeneous lineap
algebraic equations in the quantities ¢, and ¢y which cannot beadendi-
cally zero since ¢ actually involves both w and #. From algebra, it is
known that lincar homogeneous equations ean have solut-ior%s'ﬁjc-her than

the frivial set of zero solutions only if the determinant Qf the syslem
vanishes. Hence we must have N

Ju
dx
du
dy

v | . )
az ¢*¢ @
dv

dy

The (%et&@gnjmﬁ&mﬂ{ﬂay;imnm;&: the first partial derivatives of u
and v as indicated, is called the Jaeobian, or functional determinant, of

4 and ¢ with Tespect to # andy™ Tt is denoted briefly by the letter J
when no ambiguity as to_the ‘variables involved can arise, or by the

gymbols )
ymbo p }(u, v) Dy, v) 3)
‘\ a(x: y) ’ D(ﬁ?, y) l
The argumexfb;above,

; terfh which ean be readily extended to the case of n
funections o n.\rariables, shows that the vanishing of the Jacobian is
necessary, £o'the existence of functional dependence among the functions.
It may. iﬁlg’o be shown that the vanishing of J is sufficient.* The general
theergm' may be stated as follows,

CHEOREM L. Let uy, ug, ---, u, be n Junctions of the n independent
vamal.)les I1 T2y - vy Tne These n functions will be Junctionally dependent,
that is, there will exist q relation ¢(

nvol Ny ‘ Y1y Ugy v, Us) = O which does not
tnvotve expliciily any of the varigbles By v, T, of and only if the Jacobian

Bter, Uy, - v+ Up)
J =172 ""rt¥a)
B(xl, Fgy + "y :t:ﬂ) (4)

vanishes identically.

[ .
See, for example, Goursat—Hednck, “Mathematical Analysis,” vol. I, page 53
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-
l/E’a;ampIe 1. Show that the funetions
9 - o ~ ap

arctan ° 4 2 aretan x and
1 — 2? — 2gy2

are dependent.

Solution. Denoting these functions by u and » respectively, we get

dz 14+ a2’ dy 144
DALY nuaey .
dr (1 — 2t — 2m’ ay_(l—xz—%:yﬂz. \'\\
Hence K
_ 0w dy _du dv N
dz 6‘7 ay ax ”"'\'\N
4y(1 + 2% 4y(1 + %) "0

Tl -2t — 2R (-2t — P

and therefore % and » are funetionally dependegt \In this cage, the functional
relation between « and » (which cannot, in geneml be readily determined) is
fanu — v = 0.

“www.dbraulibrary org.in

The Jacobian is also of 1mp0rtance in connection with implicit
funetions, We merely state, awithout proof, the following theorem;
this is a speeial case of a more\general theorem which we need not con-
sider here, & N\

TaEOREM I Let thepe be given two functional relations, F(z, y, 4, v) =0
and G(z, y, u, v) 54 tnvolving the two pairs of variables z, y and u, v
Let these eq*wtw:r%\be satisfied for the set of values z = 2q, ¥ = Yo, 4 = 1y,
v =1y, and i f?se Junctions F ond G and their first partiol derivalives be

tontinuous #Nhe netghborhood of this set of values. Suppose further that

the J acobaan
\

\ F, G,
O 7=

6
F ¥ G‘H

is different Sfrom zero for this set of values. Then there exists one and only
e system of continuous functions z = ¢, v) and y = $(u, v) satisfying
the equations F = 0 and G = 0 dentically and such that zo = G(ug, vg),
Yo = ylug, vy).

L/E*’;"PZG 2. Consider the functional relations
Fempdaotopwt+y—56=0 G=4u+3yu—-5=0
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Here we have

Fo=v4+1, Fy=2r+42, G: = 4u, Gy = 3u,
whence

J = Bulr + 1) — 8uly + 1} = — Buly + 1),

Thus J £ 0 except for u = Oor for» =—1. We should therefore expect that
the given functional relations yield » and y as functions of u and v valid for all

values of 4 and v except possibly # = Oandv = —1. In this case we may eagily
obtain, from the given equations, ~
2 3 4 1 A o
z=== y Y= - ¢y
w -1 41 u AN

These expressions evidently verify the prediction of the Jacobiain.';

Ii, in particular, the relations ¥ = 0 and ¢ = Q"iaﬂté’ of the forms
u—flz,y) =0,v— g(z, y) =0, that is, if u and M0 given explicitly
as functions of z and v, Theorem II states the gduditions under which
the inverse functions = = ¢(u, v), ¥ = ¢{u, gXéxist. The Jacobian in
this speeial cage becomes PAY;

www-dbr?;"'-%b .;E’fzgy - fygx- _ (6)

_fy _«g'if‘ A

'a?;?ol'gj'g” J o

25. Envelopes of curves{ Consider a one-parameter family of
curves, D

4 i‘..’
N Ty, =0 )

If, for each pernlzisffibié value of the parameter a, equation (1) yields a
eurve {angent 40~one and the same curve C, then C is called the
envelope the“family (1),

Let agand o + A be two values of & differin itt
Let o g but little. If the
fa.mﬂ_g\' 3 has an envelope €, the two curves

\‘ ) f(x: Y, O"U) = 0: f(xr Y, ap + AQ) =1 (2)

will, in general, intersect near the poi
i, e pomts of tangency of these eurves
with C. Now the equation e
f(xr Y, 01()) - f(.’b, Y, g + AOC)
"‘_‘—‘_‘—‘E'—-*—-—-—___ =0
144

represents another curve, belonging to the family (1), which passes
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fhrough the point of intersection of the eurves (2). Hence we may
take, instead of the two curves (2), the curves

f(ﬂ?, Y, OCQ) - f(x, Y, g + AO{) —
A

f(ﬂ:, Uy CEQ) = 0: 0. (3)

Ii we allow A« to approach zerc, the second of the curves (3) will
approach the first, and their point of intersection will approach the

point. of tangeney of 1he first eurve with the envelope €. Buf Q)
— lim Jlx, u, ap) — f(x: #, og + Aa) - af("':s ¥y a{'l) ) '\‘?4)
Aa— Ac da ? ;'\

where the right member denotes the value, for a = ay, of the partial
derivative of f(x, ¥, «) with respect to . Henee we have®

Tueorem 1. If the family of curves f(z, y, &) <\D has an envelope,
the envelope may, in general, be found by el’imim\ti”ng the paramefer o
~ from the equations o\
A dyd _
PR [ '
N www_dbraulibl'a]z‘y.org.in

mily of circles +* + '+ 20z + 20y

f(x: ¥ ﬂr.') = 0)

\/E"mmple. Find the envelope of th(}\'fzi
+a? = 0. N

Solution,  Setting f(z, 7, @)= a® + 4 + 2az + 2ay + o* = 0, we have

N\
~Q\f—\= 2x + 2y 4 2 = 0,
PR 4
80 that, AN/

.\'t\."‘ a=-—(+yh
Replacing b}\\—'"(’x + o) in flz, v, &) = 0, we get as the eliminant sy = 0, or
£=0and 31’;.:: 0. Evidently these two equations constitute the L:nlvelopc, f.ol'
they repregent the coordinate axes to which all the circles of the origiral family
are Q@“ﬁgent {T'ig. 4).

The phrase “in general” was inserted in the statement of Theorem I
bocause the cquation 7(x, ¥, o) = 0 of the curve family may sometimes
be given in such form that the process does not yicld the envelope.
Thus, if the cquation of the circles of the above example is solved for «

o yield o =~ (z + y) + /20y, and we set f(z, y, @) =@+ +yF
\/ﬁi = (), the derived relation 8f/da = 0 leads to the ab_surdlty
=0, 50 that the process breaks down. It is therefore essentla.l that
the equation of the family be taken in the proper form. To Lnsure
the validity of the process, we have the following sufficiency condition.
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Turoresm I Le flz, y, «) and its first and second partial deriva-
tives be continuous in the neighborhood of the set of values x = x4, y = Yo,
o = ag, for which f(z, 4, o) and 3f/3a vanish. If 8%/3a® # 0 and the
Jacobian J of f and fy is likeunse different from zero for that set of values,
that is, f

2 f
=17 A0 fu#O,
Joa Jua
for x = x4, ¥ = W, & = o, then the equations A
af(x A ¢
J= 4y, @) =0, __f(_sM= 0 ¢ NN
6‘0: :"\ w

define @ curve to which each member of the family f(z, y,{x);— 0 in the
netghborhood of (g, 10, ag) 15 tangent. M'\'\."

y

\ g

www.dbraulibrary.org.i

NV Fic. 4
. %a
Thlﬁ:t?IEOI'em may he proved with the aid of Theorem TT of Art. 24.
For, sihee J 7 0, the equations f(z, y, a) = 0, fulz, ¥, @) = 0 yield x
a{a\;fﬁs econtinuous funetions of «,

¢ = ¢(a}, ¥ = (o), 6

guch that zp = #(e0), 4o = (o). Now differentiation with regpect to
aof f = 0 and f, = 0, together with (56), gives us

f+ f + fu=0, (6)
Jaa®" + fyadt’ + fon = 0. ()
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Sinee faa # 0 by hypothesis, (7) shows that ¢’ and ¢’ cannot both
vanich. Also, since f, =0, (6) becomes f.¢"+ f¥' = 0, whence
equations (5) define a curve whose slope is

&y VI

dz - ;; Ty
But f, and f, cannot both vanish since J = 0, and consequently the
equation f(z, y, @) = 0 defines a eurve whose slope is

dy  Ix N

e fy R\
Therefore the eurve (5) and the curve flz, ¥, &) = 0 are tahgent for
any value of « in the neighborhood of & = a, that is, dqhations (5)
represent, in parametric form, the envelope of the curveé¥le, ¢, a) = 0.

When the circles of the above example arc wrabten in the form
a+z +yF +/2zy = 0, neither of the conditioﬁéx\.}' # 0 and foo # 0
of Theorem 11 is fulfilled, and consequently thegnethod is not applicable.

The process deseribed in Theorem 1 mgy:sémetimes yield, in addi-
tion to or instead of an envelope, cert-ai;lfgx;mmﬁ%lli@,qim.y'];hg{q;pm 1I
will then be of help in discarding all buthe desired envelope.

26. Envelopes of surfaces. The ‘preceding remarks apply with only
small changes to the problem of finding the envelope of & family of
surfaces. If there exists a surfaec S to which cach member of a given
one-parameter family of suis’@éés is tangent along a corresponding curve
€, then S is said to be tha envelope of the family, and each curve € of
tangeney ig ealled anbharacteristic curve. We state, without further

discussion, the following
7\

THEOH’EM\I\\“I f F(z, 4, 2 00 =0 represents a one-parameter family
of surfaces pm‘?esamg an envelope, that envelope may, in general, be found
by el’.imi{ia.?ing the parameter a between the equations

)

AF(z, 4, 2, @) _
da

F(.',C, Y, 2 a) = 0: 0. (1)

For each fized value of a, equations (1) fogether define the corresponding
characleristic curve. Thus the envelope 13 generated by the characteristic
CUrves as o Yaries.

Ezample 1. Show that the family of planes Zax + (0 — L)y — @@+ 1)
= 0 possesscs an envelope, and find its equation.
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}9/ WO Setting F(xs i, 2, a) = Zox + (a2 - l)y e (a?. + l)z ZD’ we have
¢ OF _ 94 + 20y — 202 =0,
dat
from which we find

T
a = 1
E—=Y
Inserting this expression for e in Fiz, ¢, 2, &) = 0, we get, after simplification, '

a4y = =0, .
. - 2N
This cone is the envelope of the given planes, that is, the equation ¥ (ﬁ:,g,{, F- &«}T 0
represents the family of tangent planes OAB to the above cone (E]g.\ssj. For
each value of o, F = 0 and F, = 0 fogether define an element OB ol the cone,

and this Hinc is the corresponding characteristic curve, X )
z N\

7 T, 5
The envelopeﬁﬁf"é, one-parameter family of planes is called a develop-
able surfaces, (Phe characteristic curves are in this case straight lines,
and consegently a developable surface is always a ruled surface. For,
if F(xgjg 2, ) = 0is linear in =, y, and 2, so is F, = 0, and these two

planeg.define a straight line for every a. Evidently the cone of
Exitwrple 1 is a developable and ruled surface,

A two-parameter family of surfaces may also possess an envelope.
In this connection, we have

TEmorem II. If Glz, v, 2, o, ) = 0 represents o hwo-parameter
family of surfaces possessing an envelope, that envelope may, in generdl,
be found by eliminating the porameters o and 8 from the equations

3 8¢
G x} 2 z! t - 0, = — .
@, 9, 2, & B) Py 0, 5 0
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E‘xgmpie 2, ShOW tha,t the f&mﬂy of p]_a,n_es 2o ..|_ 2'8?,, + 2 + CUQ + ﬁE =
possesses an envelope, and find its equation. :
Sofution. Sotting z, 3, 2, o, B) = 200 + 2y + 2+ o 4 8 = 0, wohave

at G
Ge 2T T HTE=
whenecew = —x,8 = —y. Elimination of & and § then givesys
-—2x2—2y2+z+xﬂ+y2=0, N
or 4 \\.
7= 324yt (W

O
Thus the given planes have a paraboloid of revolution as envqlgpe‘f]?ig. 6). In
fact, it is easily shown by the method described in Art, 2}@11&’6 the equation

Ky
2 w7

O F1o. 8
9.\
G=0 repr@ie";’ts 2 plane tangent to the above paraboloid at the point
P!(——a, ‘._".\181' a? 4 132)
Ifds'easy to see that the family of all tangent planes to a given sur-
Eoeonstitutes a two-parameter family of which the surface is the enve-
lope.

EXERCISES

L Iz = f(z,y) and gz 5] = 0, show by means of Theorem T of Art. 24 that
fzfdz = Q identieally i and only if fz, ) and g(z, y) are functionally dependent,
(CL. Exercisc 13, Art. 20.) .

2 I = Flu, v) and y = g(u, v), show that the first partial derivatives of ¥ and
v with respect o x and ¥ do not exist if f(x, v} and glu, v) are unctionally depen-
dent. (Cf. Exercise 18, Art. 20.)

8. It Fir, o, #, ¥} = 0 and &(z, y, », #) = 0, show by means of Theorem I of
Art. 24 that the first partial derivatives of % and v with respect to x and y do not
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exist if F and @ as functions of u and ¢ are functicnally dependent. (Cf. Exercise
20, Art. 20.) ‘

4. Generalize the result of Txercise 3 io the case of three funetions of x, y, u, »
and w.

5. If wp = fly, y2), ue = gy, v2), and g1 = Flxy, x0), y2 = G{z1, 73), show that

L3

Blus, up) | dun, wy) Ay, )
azy, x2) oy w) Ay )

6. If u = f(z,y) and v = g{z, ) represent a transformation with non-vanishidg\
Jacobian

_ o, v) &)
3@, y)’ O
and if the inverse transformstion z = Fl, v), ¥ = @{u, v) has the“Jﬁﬁé'gJian
. _ 3, y) A\
Hu, v)’ v/

shows by means of the result of Exercige 5 that jF = 1.;\\;

T. X =flu,v),y = glu, 0), 2 = Alu, v), and z, 1, A.dré functionally connected,
show that \J

N

6(2, ?)‘) 6(I; z) < :":
B ooy w awat (sy)
wa&wd@jbraré’yo?gal&}@} P 3, o) 0}-
afu, o) ~é(it, )
B IEF(x, 3w 0) =0and G(fﬁn?’ 4, ¢) = 0, show that
Lo, @
A\ 3z, ) (G(F, 9 o).
oy oF, 6y’ 9(u, v)
¢ ‘f ’ u, v}

xt\n
9. If the sprfaees Fiz,4,2) = 0 and Az, y, 2}
through the {\komt P:{zy, 40, %), show th
the curve“rghy he written in the form

= 0 intersect along a curve
at the equations of the tangent linc to

~O° iw Vo __i-a
V a(F,G):l aF&T  sF G
5‘(34’; Z) sl 3(2.', .’,2:) FE a(xj ?}J' F

10. If the function F(z, ¥) is transformed into G{u, ») under the substitution

z = _f(u, ), ¥ = gu, »}, it may he shown that the iterated integral of Pz, ¥) over
a region 4 of the xy-plane is transformed 80 that

F , de day = 3(31?;')
j;f (z, ) du dy ‘/A:_/‘G(u,u) ) du dy,

‘s, .
where A’ is the region of the ur-plane corres

pouding to A, i i i
the transformation fram rectangular to polar y Verify this relation for

coordingtes,
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Find the envelope of each family of curves in Exercises 11-186,

11,
12.
13
14.
15.
18,

17.

area.
18.

The cireles (& — a)® + (¥ — &) =

The lines z cos a + yoin g = 1,

The cireles (& — cos ) + (¥ — sin e}? = 1,

The curves (¥ — a)? = 231 — ).

The parabolas 22 — 2oy + 32 — Zar — 2oy + o =

The cllipses (& — cos )z + Zeysinea + (3 + cosady® = 4

Find the envelope of the family of ellipses with coincident axes and of unit

A line segment of unit length moves in the plane with its ends on the coordi:\

nate axes.  Find the envelope.

19.

A linc moves in the plane 80 that the aren formed by it and the cogrﬁmate

axes 18 equal to unity., Find the envelope, \J

20.

A line moves in the plane so that the algebraic sum of its mt.m%clgp‘ts on the

caordinate axes is equal to unity. Find the envelope.

Find the envelope of each family of surfaces in Exercises 21"‘%

21.
22.
23.
24,
25.
28.
27.
a8,

29.

The spheres 22 -} 37 (z —a)? =

The planes z = ax + o). ) \\;

The planes a®c 4+ y — az = 0. ’\s

The planes azx 4 ay + o% = 1. ’~“x

The planes (1 — Za)(z +y — &) + az = 0.

The planes az + By + afz = 4. \a?mw dbraulibrary.org.in

The planes 2ar — 28y — 22 = o? _13%
The spheres (z — a)? 4+ (¥ — )2...3. = 1.
A plane moves go that the sum of its intercepts on the positive eoordinate

axes {8 equal to unity. Find the QN"Nope (Cf. Exercige 14, Art. 23.)

30.

Fiud the envelope of t{k,'ﬁxmjly of ellipsoids with coincident axes and of

unit volume,



CHAPTER III
ORIGINS OF PARTIAL DIFFERENTIAL EQUATIONS

In this chapter we shall consider some of the ways in which partial
differential equations arise. The methods of formulating partial, dl{fer-
ential equations may be classified under three headings: formals geomet-
ric, and physical processes. In the first method, we begin with’a fune-
tmnal relation involving certain arbiirary quantities, wfnch may be
cither arbitrary eonstants or arbitrary functions, a:n,d\e‘]lrmnate these
arbitrary elements between the given relation and those derived {rom it
by partial differentiation. In the sceond processpwe propose a gromet-
rie problem, usually by requiring that a cer@m spatial configuration
shall have specified propertics, and form ofte br more relations, among
the coordinate v%%lo‘)&% 1and arhal _defivatives, expressing these
geometric condition ty‘pe of question, we proposc a
physical problem whose varlables are ‘or depend upon time or position
or both, and express a physical law involving these variables and their
rates of change.

In each of these cases| ‘?Elerc will ususlly arise the accompanying
problem of solving th\})a,rt,lal differential equation or cquations to
which we are led. 1€ Will be the concern of later chapters to deal with
this sort of probleat.” Many of the partial differential equations formu-
lated in this chapter will be considered again subsequently.

27. Bl tion of arbitrary constants. Consider first a relation

conta,lmng';\two independent variables z and ¥, a dependent variable z,
and two ‘arbitrary constants g and b:

\§) I, 9,2, 0,5) = 0. | oy

By partial differentiation of equation (1), with respect to & and y in
turn, we get two additional equations,

af 8

20t 5?0 @
af

w000 ®)

60
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where
o2 dz
P = on’ qg= Ey"' \
In general, the arbitrary constants & and b may be eliminated from the
set of equations (1), (2), and (3), thereby getting a partial differential
equation of the first order:

F(x; “wap Q) ={ “@)
We call (4) the eliminant corresponding to the given relation (,19\~

Example 1. Obtain a partial differential equation of the ﬁr‘sﬁor&er by
eliminating the constants ¢ and b from the equation ~\

ozz + byz + abxy = 0,

»"\ &

Selution.  Differentiation with respect to  and y i tutn yields two further
relations, PN
alzp + 2) + byp + aby"f L4
axg + blyg + 2) + abx™= 0.

. ».'w\.\;'w.dbraulibrary,org,jn
We may solve two of these three equations for ¢ and & and substitute in the

third, or we may find the eliminant by wctting equal to zero the determinant of
the coeflicients of a, b, and ab. Thedatter procedure gives us

S yz y
‘&?" ’z e ¥ |=0
AP oz vq + 2 x

A</
which, upon expangion and reduction, leads to the desired eliminant,
0" &p+yg = 2
O

If a. giwcn functional relation involves only one arbitrary constant,
tW&\(}i,s\,ﬁinct first order partial differential equations may usually be
found’ s eliminants.

Ezample 2. Find two climinants corresponding to the equation

z=ax+g-
g

_ Selution. Differentiation with respect to x gives us p = g, whence elimina-
tion leads to the partial equation

zpt—zp+y=0.
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On the other hand, if we differentiate the given equation with respect to g,
we get g = 1/a, which yields the elimmant

v — g+ =0

If the original relation involves more than two arbitrary constants,
together with three variables, we must make use of derived equations
containing partial derivatives of order higher than the first. Since
there are two digtinct partial derivatives of the first order, three of

second order, - -+, n -+ 1 of ath order, there may be as many as o
' nln + 3 'S
24344t (1) = LD 3 ) ,.;\«o.‘

arbltra,:ry constants in a relation having as gliminant a partlal equation
of order #. If the number of arbitrary constante’is between
1n — 1)(n + 2) and gn(n + 3), there will exist, g general, more than
one eliminant containing nth partial derivatives. N

Example 3. Find the eliminant correqpondmg bqthe relation
‘/ 7 = awx® + aary + agy’ -I—.Ew-i—aay-
Solution. Pwaﬁ&ma’ébﬁ%mm.dsi
p—2a1x+azy+a4, ’q = a7 + 2azy -+ as,
r = 2, .S—tlz, i = Z2as.
Hence AN
w=z, @&=s {Ta%'\;’. a=p—ar—ys =g —3 — ¥,

and substitution in thé given relation yields the eliminant
'\¢'zr+2wy9+y2t—2xp—2yg+22— 0,
a partial d]ﬁ@nual equation of the second order.

2
S

NS EXERCISES

\Ifnd all possible eliminants of lowest order corresponding to each of the following
relations. The letters a, b, ¢ denote arbitrary constants to be eliminated.

lLz=az + by

3.z = ax® + Byt

B.{z —a®+(y— b2 =2

T -+ @y—b2+22 =1

2 2z =afz + 1.
4 2° + 4% = a.
6 (z— e+ (¥ —a)® = bz

B. —al+y—w2+2=1
9.z =aqgxy+b 10. ax® + by? 4 22 =0,
11, az? -+ =1, 12, az? + byt = Tz,
13. 22 = (z + a)(y + B). 14, z = qehTsin by.

15 oz + by + oz = 1. 16, z = a1z + axry -+ agy® + ag
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7. b —a)?+w -0+ (z -2 =1.
1B & —a)+ oy — e + (7 — a3)? = gy
19, 7 = awx® + any® + ez + a4y + ag.

20. 2 = ux1 + bxs + cxa.

28. Elimination of arbitrary functions. We consider next a relation
involving an arbitrary function of a specified expression in the variables.
We first deal with an example to illustrate the process leading to the
eliminant, and later generalize our result. £\

Ezample 1. Find the eliminant, as a partial differential cquatigl, ‘corre-
sponding to the relation \

P (g)’ N

where f 1s an arbitrary function of its argument y/z. .w,’\'\'

Solution. For convenience, and to emphasize tl\lgs procedure, denote by u
the argument §/z, so that the given relation is e:q\ﬂ:g}sed by

z = zf{u), :@F"E.
\ @
. . . s.’: “www . dbraulibrary.org.in
Differentiate with respeet to x and y imvéyrn, using the symbol f'{x) for df () /du;

we get RN
Bua
p = af () I ) =~ L7 ) + fa),
i.atx z
SNe= o E - pw.
D dy
Elimination of f(:)"afid J'(u) from the given and the two derived equations gives
us the desired régult,
§ P+ yg =2

We ndt:e, in passing, that the above eliminant is the same as that obtained in

Exaryple™ of Art. 27. Tt is therefore natural to expect that there exist some

ﬁﬁec“ﬁion between the two original relations, We have, in faet, from the rela-
tioWazz + byz + abxy = 0 of Example 1, Art. 27,

b
p e — abzy . & , ”:g,
ax -+ by @+ bu z
80 that this iy a gpecial case of the above example with f(u) taken as the in-

dicated function , —abu/(a + bu).

The given relation of our present example is evidently one of the form

v = flu), ey
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where w and » are definite expressions in the variables, and f is arbitrary;
thus, we had » = y/%, v = g/zIn our example. In the same manner, wo
may treat other explicit relations of the form (1), or the equivalent
implicit relation

‘It'(ur ‘U) = 0, (2)

where u and v are specified, as before, and ¢ is arbitrary. Because of its
importance in later work, we take as our next illustration of the process
of elimination of arbitrary functions, the follewing general exarnple.. N\

Example 8. Find the eliminant corresponding to relation (2),  andwheing
given functionally independent expressions in z, ¥, z, and ¢ bemg"a.rbltmry.
Regard z ag the dependent variable. \

2N
S

Solution. Differentiating (2) partislly with respect to :Kapd y In turn, we

get (Arts. 18, 20) )
dp fou | du odfdv O
wper L, vE TeLET PN g
au(aa; + 6zp) 3 (Bx + ag@' ’ "
"
opfodu  Ju ag f on Py
— =+ — — == g}=0
au (6y + dz q) + ay".,ayj" 0z g)

www.dbratlibrary org ind™®
These are two linear homogencous algebraic equations in.d¢/du and d¢/dv.
Bince these quantities are not both o be zero, the determinant of the system
must vanish. Henec wehave o ’

K&a%\u@ ve + 0D
(K

1y T g vyt g
which, upon expansiofyand reduction, gives us

¥

,.\':@%"Us — w0)p + (s — UL)Y = Ugly — Uy, )]

a linear r(i}s\\biﬁli inpand ¢. This partial differential equation of first order is the
desiregl‘eiljnﬁnant corresponding to (2). If is readily verified that the relation of
E}z@mp‘le 1 and its eliminant constitute & special case of the above result.

\UThe coefficients in (4) are evidently the Jacobians (Art. 24)

Au, v} B(u, ) A, v)
= Uyl — Uplhy, ———— = — = — Uy B
ay, o ¢ o, ) v s &)

‘We have stipulated that % and » be functionally independent, for if they
were dependent, each of the Jacobians (5) would vanish identically, and
{4) would reduce to the triviality 0 = ¢

) WhEI'l a given relation involves more than one arbitrary funetion, the
elimination process is not usually so straightforward. In general, an
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equation containing n arbitrary functions leads to more than one
eliminant, in which partial derivatives of order greater than # appear.
In some cases, however, a single eliminant, involving derivatives of
order # al most, is obtainable,

\ympie 3. Find the eliminant of lowest order corresponding to the relation
2 =f -+ ay) + gz — a),

where f and g arc arbitrary funetions and a is a fixed constant. \
Solutivn. Jetu =gt ay, v =2 — ay, so that the given relatig'r}'n\lay be
written compactly as .\
7 = flu) + g{o). N

Then we have

p=f g, ¢=qa')— agf{,,;}}"

It is apparent that the four quantitios 5o, 7, ¢ canngh be eliminated from the

three equations at our disposal. Accordingly Weéna‘ second derivatives; these

are R )

r=F1) + g0,  s=af () = 4N, §= o¥(w) + a%” ().
,,";arww.dbl'aulibral'y.org_in

It now happens that only f and ¢ appear in these three equationg, and conse-

quently the climinant can be founda\EVidently we have

b= abr
88 the desired eliminant. i o)

N \\ EXERCISES

Find all possiblq etir::jﬁants of lewest order corresponding to each of the follow-
ing relations. ‘Thed®ttérs S, g & denote arbitrary functions to be eliminated.

L= qu_‘ 2. z = yfiz).

b, ey D, &= Ay = flayn).

b @5z = flzz 4 p2). 8. z = flz* + 7).
”j::?g,}z'?f(x-i-y-l-z)- 8. z=uxyf (x—:y)'

N e = 1?4 g2 4 ). 0. oy +ys ez =1 ziy)
1L 2 = &) + g() -+ 20 12. z = f(32 4 2y) + g(2z + 3y).
18. = yf(z) + gla). 14, 2z = 2%y + 29),

1. 2 = f(z)-g(y). 18, z = f{z) + egx}.
17, =z = Ja) gtz + ¥+ 2). 18. z = &f () + yolx).
19. 2 = ) + 29y} + 2% (). 20, z = flx) + gtz + o) + hiz —y).

29. Geometric problems. Partial differential equations eorrespond-
Ing to specified types of surfaces, satisfying given geomet-ric conditions,
a2y be obtained by cither of two general methods. On the one hand,
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we may express the equation of such surfaces as a relation involving
certain arbitrary constants or arbiirary functions which may be elim-
inated by the procedures outlined in Arts. 27-28; by the other method,
we may formulate the partial differential equation directly, using the
geometric properties of partial derivatives (Chapter II). We illustrate
these methods in the following examples.

Ezample I. Tind the partial differential equation of all spheres of unit radius
and with their centers in the zy-plane.

Sobution. {(6) The equation of these spheres iz readily formed; we haye\.
¢\

(e~ @y - B = L, O

z N

§— y
www.dbraulib I'?.O]“g;i (8
&

L A
¢ &\J Fre. 7
X\
where (a, b, 0) are the'po?rdinates of the center, a and b being arbitrary constants.
By the method of Art. 27 (cf. Excrcise 7, Art. 27), we then find as the eliminant,
L0 2e P+ =1
This parti?etecﬁi‘ation of first order is the desired result.
& .A]{aematively, we may proceed as follows. Let P: (2, y, £) be any point
onnogrs{)f the spheres with center €' in the #y-plane, and let A be the projection of
Qa‘n: the zy-plane as shown in Fig, 7. Then CP = 1 and

cosy = cog APC = 2, O
Also, since (Art. 21)

cosee  cosf  cosy

yL g -1

we have
COB O =—peosy =—2p, cosf =— gooxy =~2q 2
Hence, using the relation cos?a + cos?g + costy = 1, we get from (1) and (2),

PP+ ¢+ 1) =1
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Ezample 2. Find the partial differential equation of the surfaces which are
such that the normal at any point (z, y, 2) is perpendicular to the line through
that point and with direction numbers given by the funetions Pz, y,2), Qlz, ¥, 2},

Rz, 9, 2).

Sotution. The normal to the surface at (z, ¥,

#) has direction numbers

#,¢, —1. Hence we need merely express the fact that the line whose direction is
given by P, §, E is perpendicular to the line with direction numbers p, ¢, —1.
The eondition for perpendieularity (Art, 22) then gives us imimediately

Pp+Qy =R

N\
(3)

N
2\

Binee this equation is of the same form as equation (4) of Exampla 2, Art. 28,
we may expect a close relation between the problems of that eXample and the
present one. The nature of this relation will be discussed in defail in Chapter IV,

"
Example 8. Tind the partial differential equation of a"l‘l:hevelopa-ble surfsces,
Solution. A developable surface is defined (Arta26) as the envelope of a
one-parameter family of planes. Such a family ofyplines must then constitute
the tangent planes to the surface, and the equ%mw’bf the planes may be written

in the form (Art. 21)

where p, g, #, , 2 are all functions of-@#ingle parameter.

and ¢ are functions of this
between them, say L

MY

O

Z -2 =pX — ) Fa(¥ -

4

y) _
&N "wwwdbraufjhrary.org.m

In particular, since p

paramgter, there will exist a functional relation

g = f(p). &)

\
Differentiating (5) with, Iépect to 7 and y in turn, we get

A&

s = f'(p)r,

t=f(ps,

o . .
and eﬁrnjna@‘i},of F'(p) between these equations yields the desired relation,

O
A\
3

it — 8% =0,

(6)

4 .\' 3 .
Equgtion (6) expresses the fact that the Jacobian of p and ¢ with respect to 2 and

3

y\anmhes identically,

9p
Ap, q) _ |9
@, v)  |op
dy

%
dr ros
= =9 —s2=0,
dg s I
dy

) Converscly, if equation (6) holds for any surface z = F{z, y), there must
€0st a funetional relation between pand g, say ¢ = f(p). We may exclude the
“ase in which two such relations exist, for then p and ¢ would be eonstants and
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the surface z = F(z, y) would be linear in z and y, that is, the surface would he a
plane. Now

dp—ap—yop) _ | T T T
3z, —xs—yt 8
=— zrs — ys® -+ @rs + yri
=yt — s =0

by (6), and thercfore 2 — 2p — y¢ and p must be functionally dependcp{.
Thus we have, using ¢ = f(p),

2~ zp — yf(p) = g(p). ‘,\:’\ )
Differentiating the latter equation with respeet to z and % in turn, {vé.ﬁnd
[z 4+ 4@ +e@r =0, [+yg®+g@HES0.

Since p is not to be constant, r = dp/dz and s = 8p/dy caz.m?t\both vanish, and
consequently the relation

2+ (B + 90 = 00 (8)

must hold, Hence the surfaces satisfying (6) mqst\:bé't.hose obtainable by elim-
inating p from (7) and (8}. Bus this eliminstictiNp¥ocess is precisely 13hat uged for
finding the envelope ghbthenwenayapeeten family of plancs (7), p being regarded
as parameter. Therefore the partial différential equation (6) is satisfied by the
envelope of & one-parameter family Qf}'p]ﬁ:hes, that is, by a developable surface.

{EXERCISES
"N

Find the partial differe tige&mtion (or equations) of the surfaces deseribed in
each of the following exercises.
1. Planes througl-the’origin.
2. Planes parallelto the z-axis,
8, Planes with 24intercept equal to unity,
4. Cylindérs With elements parallel to the y-axis.
B. Sp]:(‘e%s"with centers on the linex = y = 2.
6. Spheres with unit radius and centers in the plane 2 = y.
7«Bpheres with centers in the plane = y and tangent to the zy-plane.
“8:-Bpheres with conters in the zy-plane and passing through {he origin.
9, Surfaces of revolution with the z-axis as axis,
10. Surfaces whose normals meet the zy-plane at an angle of 45°.
11. Burfaces whose normsls make an angle of 60° with the z-axis.

12. Burfaces for which the tangent planes have Intercepts, on the coordinate axes,
whose sum is unity,

13. Surfaces for which the tang
axes, whose product is unity.

14. Burfaces for which the tangent planes have interceps, on the eoordinste axes,
{he sum of whose squarcs is unity.

16. All planes not parallel to the z-axis,

ent planes have intercepts, on the coordinate
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16, All sphercs.

17. Paraholoids with azcs parallel to the z-axis and with sections parallel to the
zy-plane which are conics with axes parallel to the z- and y-axes.

18, Paraboloids through the origin and with axes parallel to the z-axis.

19. Quadric surfaces with axes parallel to the coordinute axes and with sectiong
parallel to the azy-plane which are cireles.

20. Quadric surfaces through the origin and with axes parallel to the coordinats
AXER.

30. The vibrating string. The remainder of this chapter will_be
devoted to a few physical problems leading to partial differontial eqt}a-
tions. Later in the book we shall again disouss the partial edlations
formulated here, and shall solve them subject to suitahle: physical
eonditions, _ G\

Consider first a string stretched taut between twafﬁif’ed points a
distance L (ft.) apart. For definiteness, we take thegé fwo points at the
origit 0 and at (L, 0) on the z-axis, as shown in Fig’8. I1ct F (Ib.) be

¥ N
j’,\“
Q - “ .dbraulibrary.org.in
LR N
i R
F E R
0 4z & (L, 0)
\\ N Fra. 8

the constant tension'st'any point of the string, and let w {Ib./it.) be the
weight of the strifg per unit length. If the string is set vibrating, in some
manner we neédynot now specify, in the zy-plane, the subscquent dis-
Placement, {\{fk) from the equilibrium position of a point P of the string
will be a fhwetion of distance z (ft.) and of time ¢ (sec.).

Welnksume (a) that the constant tension F is so large compared with
ﬂ{"\jeight wL that the gravitational force may be neglected; (b) that
thedisplacement % of any point is so small ecompared with I that the
length of the string may be taken as L for each of its positions; and (c)
that each point P of the string traverses a straight line parallel to the
¥-axis, that is, that the vibrations are purely transverse.

_ The force (Ib.) acting on & segment PQ, originally of length Az (ft.),
18, by Newton’s second law of motion,
w Bzy(xl, £) )

7 Az EY R
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where the acceleration a%y/0i% (ft./sec.?) is taken at some point between
Pand @, x <2 <o+ Az, and ¢ = 32.2 ft./see.?  This foree is the
resultant of the y-components of tension at the extremities P and @
if « and 8 are the angles between the fension vectors and the z-axis at
the two cnds, as shown in fhe figure, we have for the force producing
the aceeleration,

F(gin 8 — din a). (2)
Now O\
. tan o din 8 tan 8 .
g e = ——— =0 ¢V
* V1 + tan® @ V14 tan® g8 \\\
where _ y M
dy(zx, ¢ ] Ard{DN
— N tan p = 2@+ 224
or . 9

are the slopes at P and @, respectively. By 'asm\m‘ﬁtfon (6}, restrieting
the string to small vibrations, these slopes w.\iﬂ e small, and their

Bquares may be neglected in comparison wﬁ}h unity. Conseguently
we have as a good approximation, )

P (ﬁg@gﬁugrgbﬁolf%% :;:xm:, 2 ay;a; i)] _

@3)

Equating the latter expressic{a"to (1), and dividing by w Az/g, we get

Qoo + Az, )y, )
82y (zy, HN g
y(:a:; ) N g2 z ax @
W Az ’

where a = V,{"g;’w {ft./sec.) and T < <z Az. If we now allow
Az to app,@’{mh zero, whence z; approaches z, the difference quotient

on the,'tza:ght of (4) approaches the partial derivative of dy/dx with
respeetto z.  Hence, in the limit, we get

’”\\ w
\V Py, ) _ Pyl B .
3t2 =a 6932 ) (D)

T‘his partial differential cquation of the second order is that of the
vibrating string.
EXERCISES
1. Verify the fact that

. nme £
¥z, t) = sin L eos Tmay

L ¥
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where # is an integer, i= & solution of the equation (5 of the vibrating siring. Hence
show thal the frequency of this vibration is proportional to the square root of the
tension ¥ and inverscly proporticnal to ihe length L and the square root of the
linear density .
2. Show that
¥@ 8 = flz + at) + ¢z — at),

where f and ¢ are arbitrary functions of their respective arguments, is 5 solution of
equation (5). (Cf. Example 3, Art. 28) T nterpret this solution as the resuliant of
two wave motions traveling in opposite dircetions with speed . N\

3. Assuming that the linear density and the tension are functions of distahes
along the string, say w(z) and F(z)}, show that the partial differential {-}quatinil\of the
vibrating string becomes : 7N\ ¢

9 2, y . N
L0 Y _ iy Y | IOy
g 9t 2 dr oz "G

4. Consider 2 vibrating membrane st each point of whjd],\tl\:lere is & constant
tension F (Th. /f1.) acting in all directions. et § (1b./ft.%) be thesurface density of the
material, and take the eguilibrium position of the mombrane to be the sy-plane.
Bhow that, under suitable assumptions, the displace}ﬁ%ﬁt} (ft.) at any point (z, y)
and af any time ¢ (sec.) is given by ~N\

4

Pz L% &2 _
e ° a—z;z’_}',,\gT)e idbraulibrary.org.in

where @ = V' Fg /5 {tt. fsce). &
b. Cousider the longitudinal vibrgtiens of a long homogeneous elsstic rod of
densily p (1b./f1.3), constant cross;—sectiéna] area A (ft.%), and modnlus of elasticity

E (Ib./ft.?). Show that the dis_piz{cement X (fl.} of & point initially @ ft. from one
end and at iime ¢ {sec.) is giV{ﬁ,by

\ 2 X
\ ¥ — =d )
™ a az*

where g = 4/ Eg,.x'p,{iﬁ.?sec.).

31. One-dimensional heat flow. In this and the next article we
shall comj.iabr the flow of heat and the aceompanying variation of
tﬁmpexgﬁdfs with position and with time. The following empirical laws
fopmthe basis of the analysis,

&) The quantity of heat in a small portion of a body is proportional
to Its mass and to its temperature.

(b) Heat flows from a higher to » lower temperature.

(¢) The rate of flow across an area is proportional to the area and to
the temperature gradient (that is, the rate of change of temperature
WIth respect to distance measured normal to the area) at a point of the
area,

Consider a bar or rod of homogeneous material of density 8 {gr./cm.%)
and having a constant cross-sectional area A{em.?). We suppose that
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the sides of the bar are insulated so that the streamlines of heat flow are
parallel, and perpendicular to the area A. Take the distance z (em.)
from one end of the bar and positive in the direction of flow.

By law (o), the quantity of heat in a lamina of thickness Az is
c8A Az(r 1 273) calories, where v is the temperature (°C.) of the
laming and the eonstant of proportionality ¢ is ealled the specific heat
(cal./gr. deg.). Then if R, and Rp are respectively the rates (cal./sec.)
of inflow and outfiow, for the sections ¢ = z and x = » + Az, ~

3 A
esA A;z:gT(x—l’) = By — R, AN
7o\

N\

where x < 21 < z + Az, and ¢ (see.) is time. By law (¢) £ve also have

¢ %, ¢
R1=_KA6_T(_$’_), R2=—KAM, 2
_ dz dx
ANY;

where the negative signs appear as a Gonseql;siéée of law (b), and where
K is called the thermal conductivity (caly/em. dog. sec.). Combining
(1) and (2}, and dividing by €54 Az, we get
www_dbraulibl'ary.org.in.:.’:"
a'r(:{;.}lfiA:r:, £ or(x, )
arlx, t) _ E NNF dx
ot c{‘ Az

(3)

#\J
Now let Az approachizero, so that =, approaches x. Then the differ-
ence quotient in the fight member of (3) approaches the partial deriva-
tive of 97/dz with t¥€spect to x, and there is found

"\n
:~\1. 61‘(23, 3) )
'\\‘. at =« Py (4)

whe]lge{br?.= K/t’:‘ﬁ is the diffusivity (em.2/sec.). TFquation (4) is the
‘"r«t‘;a,“l differential equation for the temperature in the case of one-
dimiensional heat flow.

2 &

EXERCISES

1. For one-dimensional heat flow under steady-state conditions, in which the
temperature at any point is independent of time, show that the temperature is a

lineaf ‘function of distance. Hence show that the tempeorature under steady-state
conditions at any point of a bar of length L {em.) is

TL 7T

T 2 il-l—‘ru,
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where 7o and 7, are the respective temperatures at the ends,
2, Verify the fact that

., hrz
T = SIII.‘I- 3"“2"'2‘?2‘/-53'

where n is an integer, is a solution of oquation (4). Describe the injtial temperature
distribugion {for { = 0) in a bar of length L {cm.), and the subseguent boundary tem-
peratures (for z = 0 and z = L),

8. Buppose that the density 5, the area 4, the specific heat ¢, and the thermal
conductivity K arve functions of distance z but are constant throughout any par-
ticular cross-section. Show that the equation of ene-dimensional heat flow theh is

oA
4K 7 i
dz { 9
4 't‘

4, Consider a long cylindrieal pipe of length L (em.). Suppos:etthe' temperature
at every point of the inner surface to be the same, and thal;ﬁ( every point of the
outer surface 1o be the same, at 2 particular fime ¢, butfhit each surface temper-
ature changes with time. Then heat will flow radially, andthe {emperature on any
eylindrical surface of area A = 2xrL, where r {em.) iy ’ﬁ&'distauce from the center,
is constant, Show that the rate of heat flow is -

aQ >
ar —2“@\,@wdbraulibl'ary.org.in

r . 2'l'
)i (e) T = KA @) =+ [x(@ 5;% + A

o

and that the temperaturc 7 is given by }1’ ¢
ar N[ 1 ar
—_— A2 — - 1.
P (81‘2 ur ar)

B. Consider a spherical s}m\ﬂ with surface temperature conditions similar to those
of the pipe of Exercise 4{_Show that the rate of heat flow is

N
O ar
9.\ ﬁ = —4yKr? a— »
N\ 4 ot 7
where » (CD;J‘is\f-jJe distanec from the center, and that the temperature 7 is given by
N :; 2 & &
m:“\ ‘3_"=a2 a_;_]__. _)
\ ) | o ar r ar

32. Heat flow in space. We now extend the argument of Art. 31 to
the ease of three-dimensional flow, which will include two-dimensional
How as a special case. To do this, we use orthogonal curvilinear coordi-
hates (Art. 23),

Lot +(u, v, w, 1) be the temperature at any body position with orthog-
onal eurvilinear coordinates (#, v, w) and at any time £, Let §, ¢, and
f_(: Tespectively, denote the density, specific heat, and thermal conduec-
tivity, assumed constant, as before. For the typical element of volume,
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with edges F, Au, E; Av, F3 Aw, as shown in Fig, 9, we may consider
the rate of fiow into and out of each pair of opposite faces.

For the two faces normal to the u-direction, with the edges By A
and E; Aw, the temperature gradients will be the respective values of
the limit of Ar/(E, Au) at two points (u, v1, ) and (u + Aw, vy, wy),
where v < <o+ Ay, w < wy < w4 Aw. Hence the rate of gain
and rate of loss through these faces will he approximately

18
—-K |:E2E3 Ay A — —‘T] ON
E, ou {u, vy, w1}

and )y

13
—-K [E2E3 Av Aw — i] ;
194 (- 8w, v, wy) ™

<

w REs.

0O
respeetively, so that thépet rate of gain for the y-direction is

{E_Q.E_E' ﬁ] [E2E3 31‘—]
K Au A{:M El au (w £ Au, wy, wp) E1 du [, vy, T-t‘l)_
\J Ay

#

ey

Sin}:i%}a,r.ly, 1;}.10 net rates of gain for the other two pairs of faces, in the
v-ma{{lq}w-darectmns, will be approximately given by

[E1E3 a_f_] [E1E3 af]
K Au Ay Aw E2 8o {tg, v4+-Au, wy) EZ it {ag, #, we) (2)
Av
and
[E]Eg _fa_'i:I ‘VE:[_EQ 67]
K Ay Ap Aw — E3 dw (s, By, w-Bu) - ‘E3 dw (g, tg, w) (3)

A !
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whore each expression In brackefs iz evaluated at a suitable interior
point.
On the other hand, the rate of gain of heat for the element, whose

volume is approximately equal to By EyE3 Au Av Aw, is also given nearly
by

5}
¢ Au Av Aw [ElEgEg —T:| (4)
a (ug, By, @),

where u <oy <o+ Au, v <ty <v4+ Avy, w<w<w+ A, .
Therefore, equating the cxpression (4) to the sum of (1), (2), and @),
dividing by Awu Av Aw, and passing to the limit as Awu, Av, .ﬂ.}p&’aﬂ

approach zera, we get O
ar | 8 (B.Es af) 3 <E1E3 61') 8 Elﬁ‘z 61‘)]
EEE — = o | — | — — — — —X & —_
R Gt a{au(ﬁl o) T\ B w) fenl g aw/]’
¥ (5)
where o = K/eb is the diffusivity. N

In the simplest case, the coordinate sj’xstlém is reetangular, for
then B, = E, = Ez = 1 (Art. 23). Equatiord¥RuHainheesmts, with

==y w =g R
ar Fr o\ 621')
CARNURNE ¥ AN LI B 6
at (6@%’;4_ ayF + 92 ©

In particular, if the streamlines of heat flow are curves in parallel planes,
80 that the temperature @QS”hot vary with, say, 2, (6) reduces to

, 4 3 a2 621'

e N . a2("“;‘+_2)'

N ax? ' oy
v

This is th&}i}czan_gular form of the partial differential equation of two-
dimensioltal fAlow. If, further, the strcamlines arc straight hines, say
Pﬂﬂ?\&lLéL\.to the z-axis, (7) then reduces to the equation obtained in Art.
3N/
. When the temperature at each point of the body is independent of
time, the flow is said to be in the steady state. Equation (6) then takes
the form

@

2r @ a%r
T T 9T, @)
A + ay? + az?

This is the three-dimensional rectangular form of an important partial
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differential equation called Laplace’s egualion. In two dimensions,
Laplace’s equation is )
27 n a%r -0 ©)
a? e _

We shall meet this equation again in our later work.

EXERCISES N\
1. Using the transformation x = pcos @, ¥y = psin ¢ from rectangularot»qt }sola:r
coordinates, show that equation (7) is changed into : ¢ :\
R (TR Les)
a  \agt | pap | B2 af 4

/N

Hence deduce Laplace’s equation in two-dirensional polar £orm.
2. Trensform from rectangular to eylindrical #pace, c@srdjnates, using the rela-

tions given in Art. 23 to determine By, Ks, and Eg{\ahd show that equation (5)
hecomes N

ar % fr lar 1 :6’2'?' a*r
www.dlgraulfh a@:@fﬁg@ :l-’p2 Py + at)

3. Transform from rectangular to spﬁe}fcal coordinates (Art. 23), and show that
equation (5} becomes T

ﬁﬂz(iﬁ;*&fx\ 100 eotyor  ex?yatry
at WK ede  PSogt T g F of

4, Using the resultyof*Fxercise 2, obtain the pariisl differential eguation of
Exervise 4, Art. 31, /" ‘

5. Using the {ésﬁlt of Exercise 3, obtain the partial differential equation of

Exercise 5, Art{31
A
33. Flow of electricity in a cable. Weo consider next the flow of
electficity in a eable having eonstant resistance, induetance, capaci-

tinge, and leakance. Let ¢ — OP (miles) be the distance along the line
from the source as origin O, and let

E(z, t) = potential (volts) at P at time £ (sec.),
I{z, t) = current (amp.} at P at time ¢,

R = resistance (ohms/mile),

L = inductance (henries /mile),

€ = capacitance (farads/mile),

G = leakance (mhos/mile).
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The drop in potential along a segment Az = PQ (mi) will be
gpproximately
=— RAg-T — LAx.@i’%ﬁl

¥

where z < 3y < & + Az, Dividing by Az and allowing it to approach
zero, we got in the limit

8@ ) _ oy _ g 161 A
T =~ Bl - L—>=
oz £ o @)
Likewise, the drop in carrent along As it approximately \ O
M=—’G‘3$'E-CAQ¢§E@?_’Q’ D
RIS
whenee ‘
BI(I, i) aE(@,’q\:
dx ..}& ( )

Equations (1) and (2) give us a system of simultaneous partial differ-
enlial equations with the independenty Srariabes RraHl TRy ehe depend-
enf variables £ and I. To ehmmabe I, differentiate (1) partially with
regpect o x, getting

8*E 3 %I
@3%__ -L——, &)

or azdt
and differentiate (2) paftla,]]y with respeet to f, so that

O ¥ B a2E
a7 FL__GE g

4)
OV ata at PN
\ L

Ehmmatiou of 81/0x and 8I/8tox = &°1/dzdt from (2), (3), and (4)
gl\’Eb ub

\ 2 K
\ g L = RGE + (RC + LG) + LC o (5)

Similarly, elimination of & yields
>
dr a2

&I N
= RGI + (RC+LG)——+LCBF ()

Thus the potential K and current I satisfy the same equation.
Equations (1), (2), (5), and (6) are sometimes called the lelephone
“ualions,
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EXERCISES

1, Under steady-state conditions, in which the potcntial and current are inde-
pendent of the time, show that the telephone equations arc satisfied by a solution
of the form

— e i
B = ¢VE0% f gpo~ VEGE, [ = \/% (clemx_ cog— VEG z) ,

where c1 and op are arbitrary constants, Show how to determinc proper valuegdi
¢1 and ez when the potential and eurrent at the source are given. )

2. If the leakance and inductanece of a transmission line are so simall thatyheir
effects can be neglected in éomparison with the effects of resistance and eapheitance,

show that the telcphone equations reduce to \
aE ol 8E B . 8F 80 le* al
a0 &’ o o ad

These are called the telegraph equetions. Note that the last two are of the same form
as the equation of one-dimensional heat flow (Art. 31). sy

3. H the effects of resistance and leakance are ama’Q vompared with the effcots of
inductance and capacitance, so that the former gdnstants are neglipible, show that
the telephone equations reduge to W

y "," ° 2 2
9 = _»ﬂé&_dbr%li&:tﬁ{yﬁg'g.mgg = I ¥E Q_I = L B_{
: a’ e B N ok af 7 agt af

These are called the radie equatfons, nseful under high frequency eonditionsz. Note
that they are of the same formmar{ the equation of the vibrating string (Art. 30).
4. Show that the radio.e({k;j;ions of Exerclse 3 have the solutions

285(-+ ) +o (- ).

A

B rd) )]

where f and} are arbitrary. (Cf. Exrercise 2, Art, 30.)

5. I\f RC = LG, the transmission line is said to he distortionless. Show (hat under
is,gondition the transformation of varishles

A e R N

changes the telephone equations into the form of the radio cquations of Exercise 3.

34, Fluid flow, As our final example of a physical problem leading
to partial differential equations, we consider so-called perfect {luid {low,
in which the fluid is supposed to be homogeneons and continuous in
strueture and for which viscosity may he neglected. These assumptions
imply that small elements of a fluid body have the same physieal proper-
ties as the entire body, and that ali forecs cxerted by the fluid on an
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immersed surface may be taken normal to the surface whether that
gurface is at rest or in motion in the fluid.

We investigate three-dimensional flow relative to a set of rectangular
eoordinate axes, where the coordinates (x, ¥, z) are moasured in foot,
Let %, v, w (ft./sce.) be the components of velocity in the 2-, y-, and 2-
directions respectively, at a point P:(z, y, 2) at time ¢ (sec.), so that
s, , w are functions of the four variables z, g, 2,¢.  In a tirae interval At,
the fluid particle originally at P* will have moved to another poinb,
Q:(z + Az, ¥ + Ay, z + Az). Consider this one moving particle, ‘80
that its coordinates (x, ¥, 2) will be functions of £, Then the compdugnts

of aceeleration of this particle are O
du  dudr  dudy N Jude  qu N
dt " owdl | aydt  dzdt ' gt "

s dw . ou  dua
=%— -+ v— —l—w—-}—.i,:
d dy dz .Q}‘
PR M
de v av AN\ By
— = U v S
dt dz oy “,”lQ?wwﬁéarauhbrary.org,jn
dw dw g’ dw  dw
— =y— oSt w— +—
dt 5 T oy T T e
K
70N i
L\\s.. " D
ZN i
ot ml——4
N\ S/ :
J y 7 A% ) _ o
"\:\ ///P rSJ
N v
< ARy B
e "
’"\\ w4
N 0 4

5 P, 10

Now let P:(z, y, 2) and Q:(z + Az, ¥ + Ay, 2 + A2) be the oppo-
fite corners of g small rectangular parallelepiped with edges Aw, A.\y,
md Az, as shown in Fig. 10, and let 8(z, g, #, 1) (b./{t.%) be the density
% P at any time . Suppose the fluid to be in motion under the action
o 2 force (Ib.) per unit weight (ib.), say G(z, ¥, % 1), whose components
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in the z-, y-, and z-directions are respectively Gy, G5, and G, and
let F(z, 3, 2, ) (Ib./1t.%) be the fluid pressure at P at time {. Then, by
Newton's second law of motion, we have for the z-direetion the approxi-
mate relation :

du

]
['& Az A’y Az a

] = [G]_& Az Ay Azl(ﬂz, ¥2. 2g)
{z1, 110 21}
+ [F Ay Ae)a, 5, 29 — [F AY A2]( 102, 5, W1

where ¢ = 32.2 it./sec.? and each bracket is evaluated at a sqitablc
interior point. If we divide this equation throughout by R\,

L 3

[5 Ax Ay AZ/Q‘](xI, e 210y £ "3«:

and allow Az, Ay, and Az to appreach zero, we get m‘ﬂlé limit, at the
point P, )

B e - ig\\\ @
Combining (@mdﬁb&ﬁmmg&q@ﬁiqggﬁ(:ﬁ; we have
Similarly, we get for tlfa{\ﬁ;n?i z-directions, |
i A Ae LI T
‘.&;?ﬂ?ﬂg—;@w% %":gc;a—%’g- (5)

¢

Equ@ti?ihé 3), (4), (6) are the partial differential equations of three-

di&gﬁsiunal fluid flow.

or two-dimensional flow, say in planes parallel to the zy-plane,
equations {3)—(5) reduce to

ou du  du g aF
U—For— 4 = = il
oyt m - (®)
v dv A g oF
U-— P — —_— = _ .
P A )
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and for one-dimensional flow, say in the z-direction, these equations
further reduce to

du  ou g oF
H— —_ = —_i
P &)

In addition to the above equations of motion, there exists another
relation among the variables, known as the equation of continuity. This
may be obtained as follows. The rate at which fluid enters the face PCDE
(Fig. 10) is approximately [su Ay A2)iz, 4y, = (b./sce.), and the Fate
gt which it lcaves the opposite face ABQH i3 [5u Ay Az](HM,\;‘m 22
nearly. Hence the rate at which the amount of fluid in the elemertt is
changing due to those two faces is given approximately by”,‘;.‘ by

[6u Ay Az](:c, Yar 2g) [Bu Ay Az](z_f_dz, y.,,“a')\'\ 4

[auj(x-f—ﬁz, ¥y 24) T [Eu](x, y.;,' z4)
=— Az Ay Az " ’::\\'
/ x\ N :
Likewise, the rates of change due to the othe¥ two pairs of faces are
A} www.dbraulibrary org.in

— Ar Ay Az [63"](1‘5. y+&2};'2's) — [51"](:5‘ ¥, 35
O Ay
and )

74,

— Arx Ay Az Mﬂ:sr g, AR T [510](%' e z)'
o Az

N\

As before, cach brapké;c-"is evaluated at a suitable interior point. Now
the weight of the\blement is, approximately, § Az Ay Az (1b.), and its
Ume rate of chadge is (86/t) Ax Ay Az. Equating this to the sum of
the preceding fhree expressions, dividing by Az Ay Az, and allowing
A, Ay, Ax all to approach zero, we get in the limit

Q)
\"“ M 95 a(su) | a(en) | 8(6w) _ 0. ©

6t+ dz t Ay +_6z

This is the equation of continuily for three-dimensional flow; the cor-
eponding equation for two- or for one-dimensional flow is readily
deducod, Iy the fluid is incompressible, so that & is constant, (9)
I‘Oduces to

e av Jw (10)

RAGT Ay

;3;63; z
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The quantity whose z-, -, and z-components are

1(aw 6v) z(a_u a_w) 1(@_@) an
2\gy o2/’ 2\dz ax/’ 2\ex Ay

is called the rotaiion of the fluid; a small spherical mass of the fluid has
an instantaneous angular velocity having these expressions as com-
ponents. If all three of the expressions (11) vanish identically, the
fluid mofion is said to be ¢rrotational. Now the necessary and sufficient
condition that udr + vdy 4+ wdz be the exact differential of,_some
funetion of x, ¥, and 2 is that the quantities (11) vanish identicaily.*
Hence, if the fluid motion is irrotational, there exists & function; which
we denote by — ¢(x, ¥, 2), such that

S !

at ¥

—d¢ = udx + vdy + wde .'“:,\\ (12)

The function ¢ so determined is called the smeetity polential. Since
do = ¢, dr + ¢, dy + ¢. dz, we have from .(1;2);

vy dbralibiery org in 99\ 86 (13)
oz oy az

When the motion ig irrotlg,i,iéhai and the fluid incompressible, equa-
tions (9) and (13) together give us
¢ SJ

S o
\ o Fe  a%
Tt =0 W

\¢

Consequcnt:lgthe veloeity potential satisfies Laplace’s equation (equa-
tion (8), .Q&t 32).

The Streamlines of fluid motion at any instant are defined as curves
sL}E}:g that the tangent at any point of each gives the direction of fAow at
tQat point and at that time. Hence the values of the velocity com-
ponents %, v, w at a point are direction numbers of the tangent to the
streamline through that point. Now at any point of a surfaee of the
ffmrmly 6(z, ¥, 2) = const., the partial derivatives Pz, ¢y 2 are direc-
tion numbers of the normal to the surface {Art. 21). It therefore
fol]c?ws from relations (13) that the streamlines cut all of the velocity
equipotential surfaces, ¢(x, ¥, 2) = const., orthogonally.

* This can be deduced from equations (4)-(6) of Art. 19, with » = 1.
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Supposce now that the motion of an incompressible homogeneous
fluid is irrotational, and that no external forees are acting. TFrom the
first supposition, (11) and (13) give us

?E_QE %“aw & Ju

dy oz’ s ax’ oz oy’

9 __ 9 %
e Q

Using these rclafions, and setting G = Gy = Gy =0, eq({:e}[if}l;s
(3)—(5) become WV

U— +v—F w— — — F _ g9t
4 + a + dr  dx 9t 5 AN
e y dw ¢ d¢ I
u- o — = o8 M7 (15)
dy ay dy dy ot {Bay
9 w8 asY
u_‘"‘{_’u_g w—w———\.va—%'=—ggfo .
oz dz dz ‘Qﬁ";&ﬁww,dblaaiggbl‘ary.org.m

LY

_IfEt V denote the resultant veloci’ﬁ?:w V2 = 4? + v 4+ v?; then equa-~
tions (15) may be written in thQ form

\
2 K)’_iiﬁa__gi’f
o'\ 2 T

( ox ot T
Ny (f) 366  goF
Dy \e) T ww T sy
N 2Py s _eor
dz \2 8z o 3 92

"

-4

Q)
IVIuRTplylng respectively by dz, dy, and dg, and adding, we get for any

fixed valye of £
T2 deh g
- _ —_— _ - dF.
d ( 2 ) 4 (at ) §
Integration then gives us

2 dgh g
— . IR Y 16
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where f is an arbitrary funetion of & If the motion is steady, so that
F, V, and ¢ are independent of firne, F{t) will be mcrely a constant,
whence

F=— Ll V2 + const. (17)
2%

EXERCISES

1, Comsider two-dimensional steady irrotational mofion of an incompressibley
Auid near two bounding walls at right angles to each other. It may then be shown
that the streamlines are rectangular hyperbolas, xy = const., hawng the y@ellx 33
asymptotes. Show that s permissible potential function is ¢ = ot = g hysshmx ing
that ¢ satisfies Laplace™s equation and by proving that the eurves @? — g% const.
are orthogonal trajectorics of the family zy = const. Hence show ’Lhai; the pressure
at any point is ,

F@w=F&®—?W+ﬁ-

AN
2, T the walls in Exercise 1 make an angle of 80° wi E*e}mh other, the sfreamlines
are the curves 3a®y — 3 = const. Show that apériissible potential function is
¢ = 2* — 3227, and that the corresponding pressfrd is
www.dbraulibrary.org.in R

Flz, y) = F(, 0). = 9— (x T o

N

\

3. The stresmlines of steady irmtational two-dimensicnal ﬂow of an incoms-
pressible fluid about a rotating gﬂ'%ﬂla.r cylinder are circles, % 4+ y° = const. Show
that a permissible potential fl,QQtIOII is ¢ = — arctan (y/z), and that the correspond-
ing pressure is

- §
O P 29t + 4%’
I
assuming zerg préssure at an infinite distance from the eylinder.

4. Considerwo-dimensional steady flow of an incompressible fluid, in which no

external fm'ces act, but for which the rotation e = 3(y; — 2,) = 0. Show that
N

° WLy

and hence that the rotation is constant.

6. In a certain steady flow of an incompressible fluid, with no external forces
acting, the components of veloeity are the same ss those of a particle moving “lth
constant, angular veloeity k in o counterclockwise direction along the civele 22 4 ¢
= a®. Show that the rotation of the fluid is equal to the anguler veloeity of the
perticle.



CHAPTER 1V
LINEAR EQUATIONS OF FIRST ORDER Q)

Partial differential equations of the first order, that is, equatigns
containing one or more partial derivatives of only the first order, may
be divided into two broad classes: lincar equations angd“non-linear
equations. By a lincar equation of the first order is meat@'a.n equation
which is of the first degree in the partial derivatives 3(and a non-linear
first order cquation is an equation in which at leagh one of the partial
derivatives oceurs in some way other than to the ﬁ}st degree.

It should be particularly noticed that the 3bove definition of linearity
differs from that used in connection with ordina:ry differential equations,
In order that an ordinary equation be dinear, if is negessary that the
dependent variable as weﬁ asqits derivéﬁj-i\;e\g\%\g‘g?gsae%l% 6&};3% he first
degree (Arts. 4, 10). In lincar first oxder partial equations, however, the
dependent variahle Inay occur in a:ﬁy manner, so long as the equation is
linear in the derivatives involy&dMn it.

It is our purpose in thi é\}f’laf)ter to discuss linear first order equations.
Non-linear cquations ofsthé first order will be considered in Chapter V.

3b. Subsidiary equations. The type form of a linear partial differ-
ential equation of the fitst order and involving two independent variables
*and y and the dépendent variable # is

R Pp+Qq =R, (0

‘P:fhere P’Q,R are functions of z, y, and z. As usual, p and g, respec-
t{"e o Henote 92/0x and dz/08y. FEquation (1) is called Lagrange's
inegr Equation, '
etz < g ¥) be a partieular solution of equation (1) Con§1der-
g a fixed point (z, Y, 2) on the surface z = f(x, ¥), we can give 2 sunple
geometrig meaning to equation (1), Since p, g, —1 are dJrectlo'n
ummbers of the normal AV to the surface at (z, 9, 2), (1) tells us that this
2omal is perpendioular to a line L through (z, , 2) and with direction
Mmbers P, Q, R (Arts, 21-22). _
. Now let the planc of ¥ and L cut the surface in the curve C, having
direction numbers dz, dy, dz (Art. 23). Sinee the curve C and the Line L
85 -
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have the same dircetion, the two sets of direetion numbers are pro-

portional:
d_ dy

dz
PTQ E @
The simultaneous ordinary differential equations (2) are called the
subsidiary equations for Lagrange’s equation (1},

In the light of the foregeing geometrie argument, we should expect
a close conneetion batween the solutions of the subsidiary equations. (2N
and the integrals of the Lagrange equation (1). Lagrange’s melhod, Yo
be considered in the next article, will serve to bring out this relatiénship.

36. The general integral. Let u(z, ¥, 2) = a and v(z, yoa) = b,
where u and v are definite functions of z, y, and 2, and ¢ and" % ‘are arbi-
trary constants, be two independent solutions of the ordlnary differential
equations

e M

We assume that both « and v involve 2 explicitly. For convenicne, let
d\ denote the corgglon vglue of the threa I*atms in (1), so that dz = P dx,
dy = @ dxr, dp =

Now, {faking the total dlﬁerenhzﬂ (Art 19) of one of the solutions
of (1), say u = a, we get -

du—u,gii'c-}-uydy-]—u,,dZ—O

Replacing de, dy, and é respectively by Pdh, Q di, and R &, and
cancelling dx, we ha.ye

.\:,,' Pu'x -+ Qu*y + Ruz = 0, (2)
whence N
& —PZ_Q%-R )
::'o Uz Uy

N
But,Yor the surface = a, —u,/u; = p, —u,/u, = g (Art. 20). Hence
(3) hay be written in the form

Pp+Qoe=R. {4)

Therefore the integral w(z, ¥, z) = a of the subsidiary equations (1)
satisfies the linear partial differential equation (4), Similarly, the
solution o(z, y, 2) = b of (1) is an integral of (4). Accordingly, the
subsidiary equations (1} furnish us with twe tndependent solutions of the
partial differential equation (4).
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Now let ¢{u, ¢} = 0 be an arbitrary funetionaj relation between the
independent integrals o anc.l vof (1). We have already foung (Art. 28
Example 2), that the climination of j;he arbitrary function & leads tr;
the equation

(uyts — wat)p F (u, — U} = un, — Uy )
If we solve the equationg
"\
Puz + Qu, = — Ru,, .
. )
JP?"I + Qvﬂ' =— Ri)z, « N\
(obtained from (2) and its analogue for the surface p = b)jforf? and
in terms of 22, we got, mj\\
P _ 1(_?;3‘._- — My R, _ U aly _‘;:z?z R
Ually = Hyly Wty S Myt

These relations may be combined to yield ANV

Uyls = Wby g — ’i{x‘??’z:“ u&w,ﬁwﬂuhbrary,orpﬁji
TN R

~

Henee, if 4 denotes the commoefvalﬁc of the ratios (7), we have
s = ugty = Py, &i&jfx — Ul = Qu, Ualy — Uyts = By,
Substituting in (5), we. .t};ércf ore get, after cancellation of g, |
Q.
\ Pp -+ Qq = R.

N\
which iy our \I'ﬂlx‘ar partial differential equation (4).
_ Therefq;é; any arbitrary functional relation ¢(u, v) = 0 satisfies the
I_mef"i,ﬁﬂ-@”&'al differential cquation (4) provided that w = a and v = b are
mdﬁ@n&mt tlegrals of the subsidiary eguations (1), The solution
ol 1) 0, with ¢ arbitrary, is ealled the general integral of (4). .
_It W8 originally assumed that both % and v actually contain z
S W3S necessary in order hat . (and #.) be not identically zero, so
b equation (3) in u could be obtained from {2) (and similarly fOI: D2
{quby givi.ng meaning to 1he statements that 4 = @ and v = b satlsfly .
« But ginee any function of two such expressions containing z is
& solution of (4), it is cvident that a u- or o-function lacking 2 may
kep from the subsidiary equations (1) as one argument of the
e integral gu, ) - g, |
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37. Methods of solution. We turn now to a consideration of several
methods of obtaining solutions w = ¢ and v = b of the subsidiary
equations

=N

Y

“ 1
0 ey

&
=] &

In many eases, the functions P, §, R are such that the gystem (1) is
or can be made equivalent to two ordinary differential cquations each
of which involves only two variables and their differentials. Theusual
methods (Chapter I) for solving these differential equations, fay then
be applicable. O

Ezample 1. TFind the general integral of the Lagrange equé,’g-ign

O
xp+ yg = & @

Solution. Bince P =z, = y, R = 2, the subs(\di,ary equations are here
. 2,

de _dy _ '_ff\ (3)

& ¥ (RN

In these, the Wﬁ%hkbﬁ&‘&l?ﬁ%ﬁ%}g{,@fi%m 2), and we easily find solutions.
From the equality of the first and ‘second ratios, we get, upon integration,
logy = logz + log a, or v = y/d = o, From the first and third ratios in (3),
we also find log z = logx + log, or» = 2/ = b. Hence the gencral integral of
the given Lagrange equatio{ni:&

L\ q:,(‘i, Z)=0, @

&

N\

where ¢ is arbit.'rai}:rs;.' Tt will be recalled that, in Example 1 of Art. 28, equation
(2) was obtaiped-as the eliminant corresponding to the arbitrary functional rela-
tion (4).  Hextwe have found $hat, conversely, (4) is the general integral of (2.

19’;‘3&13 problems it is possible easily to find one integral » = ¢ and
th:exyto' find a second infegral # = b with the aid of the first.

/N

\ ) Example 2. Find the general integral of

T ap — yg = 2y (5)
Solution. The subsidiary cquations are
dr _ dy _ dz )
& — Y xy

From the first and second of these ratios, we find immediately, log « + log ¥=
log'a, or 4 = xy = 4. If, now, we replace zy in the denominator of the third
ratio by a, we get from the first and third ratios, z = @ log z 4 b, Thus, since
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¢ = zy, we deduce the infegralv = 2 — ay logz = b, Ttis easily verified that
z— aylogz = bisanintegral of (5). Therefore the general integral of (5) is
d(zy, 2 — 2y log 2) = 0. {7

Other possible methods of attack arise from the following considera-
tionz.  Setting

P Q R ' N\

we see that for any quanlities f, g, k, whether constants or Ma¥able

funetions of 2, ¥, and 2, we have o
Jdrt-gdy - hdz  fPax+ gQdn + }‘R‘ﬂ“;}”}‘f
P+ g@ + ARk JP+gQ+he (U
Therefore the three equal ratios in the subsidiafyequations are also
equal to Y, \J
' fde A+ gdy + hdal\™ -
JP 4 g@ + Ay~

for any choice of f, g, and A. We'cga:gngqul&gg@;@ggﬁ for the
subsidiary equations. ANY

Now it may be possible to_ cheose two sets of multipliers, f1, g1, Ay
and fs, go, hs, such that

"‘\
SHide 4+ g4 @&El’—"}hi dz :fz dr + g dy + ho dz
fiP + giQ ps hiR falf 4§20 + haR

is integrable. This“will lead to one of the desired integrals of the
subsidiary cqug\t:ibﬁs.

E:camplg\ﬁ%’find the general integral of

A +ap+G+ag=2+u (%)
: S%r}&ﬁ'an. The subsidiary equations are
de _ dy _ e (10)
¥4z z2+x zT+Y¥

Here several useful sets of multipliers exist. Making use of three sets:
L11; L -1,0 1,0, —1;
we get as a system equivalent to (10),

de +dy +de _dz ~dy dv—dz
2+ yt2) y—=z g i
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Trom the first and seeond of these ratios, wefindlog (@ + v + &) +2log (z — o)
=loga, or uw = (x +y + &)z — ¥? = a. From the first and third ratios, we
also getlog (& +y + 2) + 2log(x — 2) =logh, orv=@+y+2)@—2*
= b, Hence the general integral of (9) is

oty +ae—v? ty+ae—2T=0 (11)

It may sometimes be possible so to choose multipliers f, g, # that the
expreasion fP + ¢@ + AR in the denominator of (8) vanishes identically,
while at the same time the numerator f dz + ¢ dy + A de 13 the exact
differential of some function w(z, ¥, 2z). In this event an mtegral is
evidently obtainable, for fds 4+ g dy -+ hde = du must b@‘equal to

zero, whenee we get 4 = a. (‘.,"
Ezample 4. TFind the general integral of M'\"’
=&+ —a2=2—ty (12}
9. N\

Solution. The subsidiary equations are '\ &

dx - i dz ! (13)
W dbraiﬁlblary Ozl.g_vl,g Ve - J
With the multipliers 1, 1, 1, we haye 1y —+1-G—2)+1-&—y =0,
and1-de+ 1-dy + 1-dz = d(x 4+ F 2} = 0,s0thatu =z + y + 2 = a. Also,
with the multipliers «, ¥, 2 we\}ime x{y — 2) + ylz —a) + 206 — ¢) = 0, and
e dx + ydy + 2de = 0y v@emc v=2%4+ 124 2 =10, Thercfore the gcncml
integral of {12) iz

@(’-’u‘-i—y-i-zrc ++ 2 =0 (14)

& EXERCISES

Find th&oneral integral of each of the following Lagrange cquations. A, B,
and fi(mobe constants.

N
m\L.2p — 3¢ = 4

2 Ap +EBg =10\
8. 7p —yg = 2. 4 zyp — 2fq + yz = 0.
b. yp +x¢ =0 8. 2%p + ¢ = 2
Tet+tAdrt+t@+By=2+0C 8 yp + vg = 2y.
9. yep + aag = y. 10 z —2p+ (z — y)g =0
11, @ —2p + (& — oy = 2 — 4~ 12, (& + lep — 9@ = & — Yo
13.p — g =log (z + y). 14, yep — 22 = 2y + 9.
16. =p + 2y = (x + )= 18, &*p — ¢’ = & ~ e

7. 2 —pp+ @+adg+ 20 +y=0.
18, z(y — 2)p + y(z — 2)g = 2(z — y).

19. zy(p — @) = (&2 — Y=

20. »(z® — M + yle? — g = 207 — ).
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38. Complete integrals. We have seen that Lagrange’s method of
solving a lincar partial differential equation of the first order,

Pp+Qq = R, (1)
leads directly to the so-called general integral
¢(u; '?J) = 0 (2)

where ¢ is an arbitrary function of the argurents u(z, ¥, 2) and o(x, 7, Q
and % = a, v = b are two independent integrals of the subfudiary eglla-
tions ~e b\
dr  d 2 S\
Fecw O e
In some instances, such as geometric problems, fe*can deal with
particular solutions more conveniently than with:the’ general integral.
The most Important type of particular solution Jobtainable from the
gencral inlegral is that containing two arbltr'a\y constants, say « and 8.
Such a solution of (1), which we denote by‘ )

MO S '8 \:)w_w%’brauljbrary.org.in @

a3

is called a complete tntegral. .
Ifu=aand ¢ = b are two mdépendent solutions of the subsidiary
equations (3), then A
- OV = au + 8 ®)
O

may be taken as a Qom\plete integral. For, sinee u and » separately
satisly (1) (Art. 36)7;(5) will be a solution; and since, moreover, (5)
contains two arbitrary constants, it is a complete integral.

It is eviderrt %hat the two-parameter family of surfaces (5) does not
bossess an genvelope (Art. 26), at least as given by this equation, for
partial d?ffcrenuahon with respect to 8 leads to the absurdity 0 = 1.
Wa ,ﬁhall‘ defer further discussion of this point urntil the following article,

\iupposo now that the two-parameter family of surfaces (5) is made
into a one-parameter family by stipulating that 8 shall be some specified
funetion of @, say 8 = g(a). Then

v = oy -+ gla). (6)

This relation yields a solution of our partial differential cquation, and
the surfaces (6) will, in general, possess an envelope. If we differentiate
(8) partially with respect to «, we get

0=u+ g). @
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From (7}, a may, usually, be obtained in ferms of u, and if this expres-
sion is inserted in place of « in (6), we find a relation

= ¢ (u). (8)

Sinee (8) is a parlicular case of the general integral, it will satisfy the
Lagrange equation (1).

Being a part of the general integral, the envelope (8) of the surfaces
(6) dees not, however, furnish us with a new solution. Thus the sitda-
tion here differs from that encountered in connection with ordingry
. differential equations. There, the envelope (when it exists) of ‘wbne-
parameter family of curves yiclds a singular solution (Art 7) which is
not a part of the general solution. N

If the function g(a) in (6) is arbitrary, the dem@d equation (7)
gives us « as an equally arbitrary funetion of «, whénec the 1,:'/-funct10n
in (8) is likewise arbitrary. Thus (8), which is theén the explicit equiva-
lent of ¢{u, v) = 0, represenis the genera]\:);ﬁegral Thercfore the
general integral may be regurded as the agd¥egate of the envelopes of all
one-parameter families of surfaces obtainable {from a complete integral.

Equations (7) and (6} may be WTitﬁeﬁ in the form

www.dbraulibrary.or

u=—¢'(e), ~v = — ag'(a) + gla). (©)

These equations, giving w andw as functions of » paramecter &, simul-
taneously represent certain)‘space curves called characteristic curves
{Art. 26). The envelopk\(%) is tangent to each surface of the family (6)
along a correspondirg)charscteristic curve. It is apparent that rela-
fions (9), with g(a‘) arbitrary, yield precisely the curves given by the
subsidiary equasions (3).

39. Spe&xﬁ.} integrals. In Lagra,ngc s linear equation,

Pp+ Qg = 1)

t\g;@f course, necessary that not both of the funetions P, Q be identically

Buppose, for deﬁmtmess, that P does not vanish identically,* so
that we can write (1) in the form

__9 R
P = Pq+P— | @)

Let the right member of (2) be analytic in the neighborhood of 2 = g,
¥ = Yo, 2 = 2, ¢ = go; that is, let p be exprossible as a power series in

* ¥ P is identically rero, we cen formulate a similar statement by interchanging
r and y, and p and ¢.
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Z— Zo, ¥ — Yo, #— @, ¢ — go, COnvergent in some region. F urther,
let ¢{y) be some funetion of y analytic in the neighborhood of y = y,,
and such that g(yo) = 2y, §'(yo) = g0- Then it may be proved that
there exists a unique solution z = G'(x, %), analytie in the neighborhood
of z = xo, ¥ = yo, and such that Gz, y) = o).

When the conditions of the above existenoo theorem arc satisfied,
there can be no solutions of (1) other than those given by the geners]
integral. However, when the right member of equation (2) is net
analytic in some particular region, solutions not belonging to the general
integral may sometimes exist. Such solutions are ealled special infegrals.

As an example, consider the Lagrange equation X O

. W

— p+g=1/z SNSRI ¢)

z? '\ 2
The funclion 4/2 — ¢ is analytic in every region forﬁfhich z # 0, but
2= 0 must be cxeluded since /2 cannot be expanded in ascending
integral powers of 2. By the mothods of Art;x&'we readily find, as
integrals of the subsidiary equations o\
dr  dy dz D

1 -1_ ?&@f%dbraulibrary.org.in

the solutions u = y — 2 = a, v EQVE — z = b, and consequently the
general integral of the given L&\g";ra.nge cquation (3} is

SE?, 22 =0, @

Now it ig irumedizately, evident that 2 = 0 is a solution of (3). But this
solution cannot be gxpressed as a funetion of # and v,* that ig, it is not a
part of the generdlanitegral (4). Henee 2z = 0 is & special integral.

Ttisof teq\{{agé{ble to give a geometric meaning to a special integral.
For example; Zonsider the complete integral

¢

o 27~ = aly — 2) + 8 Q)

of eQl\ation (3). As has been stated (Art. 38), the two-parameter
family of surfaces given by a complete integral in a form such as (5)
docs not vield an envelope. But let us rationalize {(8) to obtain the
relation

[$+a(y—$)+ﬁ12=4:2,

ar
S Py — 2)? + B2 + 2aa(y —~ 2) + 265 + 28l — 7) — 4o = 0, 6)

* See Exercise 6 below.
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For a chosen pair of values of @ and 8, (6) represents a parabolic cylinder,
and the corresponding equation (3) represents half that eylinder. That
is, {6) is equivalent to (5) and

—20/z — = aly — &} + B, Gy

(which i3 a complete integral of p + ¢ =— 4/z) taken together.

The parabolic cylinders (6) ean be shown fo possess an envelope
If we differentiate (6) partially with respect to a, or with respect to.g,
we gel

st aly —a)+8=0 RO NG
7NN “
Combining this equation with (6), we therefore get, as thg eliminant,
z=0. O (8)

N\,
This equation, of the zy-plane, represents the envelbf)’é of the parabolic
cylinders (6), and the special integral of (3}.
By a change of varlable, we can sometimes exhibit the existence of a
special intogral. Thus, il we set +/Z&Ew, so that z = w? then
p = 2w, g = Zww,, and (3) is transfql"m(zd into

www,dbraulfﬁ%&%’g-ﬁ{&{?ﬁo; = a, ©)

Fvidently w = 0 satisfies (9), sothat z = 0 s an integral of (3). After
removing the factor w fromrd(®), the resulting Lagrange equation leads
to the general integral (4Y g8 before.

A Luagrange cquati}m\, for which the analyticity eonditions of the
existenes theorem,arr}3~ not fulfilled, need not possess a speeial inlegral.
A change of varjable will somctimes indicate, by the presence of a [actor
as In the abo¥@tkample, that a relation w = 0, as well as the integrals
% = & an #.2="b of the subsidiary equations, satisfies the equation, bud
w=0 may actually be u part of the general integral (sce Exercise 7
belqwi).."’

\ Y EXERCISES

1. In Example 1 of Art. 37, show that, the complete integral v = e + 8 repre-
gents a two-parameter family of plunes through the origin, Taking g = of, show
alzo that the resulting one-parameter family of plunes has a quadric cone as envelope,
and that this cone is part of the general integral, 'What are the eharacteristic curves
in this ease?

2. In Example 4 of Art. 37, show that the complete integral v — cu - 8 repre-
sents a two-parameter family of spheves, all with eenters on a certuin line. BY
suitably choosing 2 as a function of ¢, obtain the equation of the one-parameter
family of spheres tangent, to the coordinate plancs, and show that these spheres
have a guadric cone az onvelope. Whai, are ihe characteristic curves?
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3. Show that the Lagrange equation ¥P — g = 0 possesses the complete integral
z = alz® + ) + 8, a famjly of paraboloids of revolution. Find the cavelope of the
one-parameter family obtained by taking g = &%, and show that the envelope fg a
surface of revolution and a part of the goneral iniegral.

4. Show that the Tagrange equation z¢ + % = 0 has the complete integral
2+ 12 + 7 = oz + §,afamily of sphercs.  Tind the envelope of the one-parameter
family obtained by taking 8 = 1 — o2/4, and show that the envelope Is & part of
the general integral.

6. Bhow {hat the Lagrange equation (22 — wWp+ (@ +ag+25+y=0has
the complete inlegral 2% 4y + 2t = afz — 2y — 2) 4 B, a family of spheres. &ind
the envelope of the onc-parameter family ohtained by setting § = 1 — 3o2/2 and
show that the envelope is a part of the general integral. e\

6. Show thet w =2 cannot be expressed as a function of 4 £z and
=947 — 2z by showing that the Jacobian a(u, v, w)/lz, y, 2} is ‘m‘R identically
zero {Ari. 24], whence z = 0 is a special integral of equation (3),4@‘1{'39.

7. Bhow that the Lagrange equstion /7 — ¥ ¥ T g = lenday be transformed
into w(uwz + wy) = 0, where w = /7 — y, but that w SU%r 2z =y, is not a
special integral.

8. Find the general intcgral and the special intqg@l,bf the Lagrange equation
A+vz—gp —g =1

9. Find the gencral integral and two special iﬁtﬁral& of the Laprange equation
Vioep+tVe_gyg=0.

10. Find the gereral integral and the spetial integral of the Lagrange equation
VEDP —¢ =2 % — v::’W“WW.C[b]“aUlibl'a]“y.Dl'g.ln

N

40, Linear equations with™n ‘independent variables. The linear
partial differential equation{of first order in the » independent variables
T1y &gy ¢+ v,y &p and the d\@ehdeut variable z ig of the form

By + Paps + -+ Pups = R, O
</
where p; = dz/8w (i = 1, 2, - -+, n), and the P’s and R are functions of
the z's ar(\ig“é." When n = 2, cquation (1) is evidently Lagrange’s
equation. s\
Thesystem of n independent ordinary differential equations
N

vV oy _du | _ dr. _ ds @
P, Py P, R

are known as the equations subsidiary to cquation {1). These sub~
sidiary equations have, we suppose, n independent integrals wizy, - -,
Tny2) = a; (§ = 1,2, -+, n), where the a’s are arbitrary constants.

When # > 2, it may be shown by the same method employed for
the Lagrange equation that

Uiy, Ugs v+, Ua) = 0, 3)
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where ¢ is an arbitrary function of its n arguments, is a solution of
equation (1). Relation (3) is called the general integral of the lincar
parlial differential equation (1). A relation involving n arbitrary con-
stants and satisfying (1) is called a eomplete integral of (1), and in some
cascs an equation (1) with n > 2 may possess special integrals,

To solve the subsidiary equations (2), and thus to solve a linear
equation (1), when # > 2, the methods of Art. 37 may also be used.

Ezgmple. TFind the general integral of the linear equation Q
/ zip1 + Tepg o+ Eapn =— 7 O\
Solution. Here the subsidiary cquations are . O
doy _dey . _dm_di oW
T, e Tn VAN

It is immediately seen that we can take as n i.udepende:{; golutions the relations
U= Ii2 = 41, Uy = X2 = Ga, --:,'\:un = T2 = Gn,

and consequently the general integral of the g;{ven equation is given by the

relation
WWW dbra(ythbzl arég .or g‘mnz) -0

When n > 2, equation (1} and its solutions do not have geomelric
interpretations as do the Lagrenge equation and its solutions. How-
ever, it is customary to sRea}t of (1} as (» + L)~limensional.

41. Homogeneous efudtions lacking the dependent variable. A
homogeneous linear gartial differential equation of the first order, with
coefficients free of §he dependent variable F, is an equation of the form

T GF ar ar
7\& - - 9@t
\‘xn 3 Ql 6151 "|" QZ 6..":.‘2 + .t ‘I" Qn axﬂ - 0; (1)

where Qr, Qs, + -+, Q. are functions of the n independent variables xy,
zgpes, T, but do not involve F.

The subsidiary equations belonging to (1) may be written as

d$1 d$2 dﬂn

el L . d_F = 0, 2

@@ Q. ° ®
If w@y, @2y -5 20) = 0; (j = 1,2, - -+, n — 1), involving only the z’s,

are n — 1 independent integrals of (2), then, the general integral of (1)
is given by

. ) F = ‘p(ula Ugy =0y Up—1)y @)
where ¢ is arbitrary, :
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The homogeneous equation (1) may thus be regarded sas merely a
special Lype of (n -+ 1)-dimensional equation. But sinece the variable F
is lacking, it may also be viewed as equivalent to an n-dimensional
equation.  For, let v{xy, 25, -+, ) = 0 be an integral of {1}, so that

ay av o
Qlaxl'l“Qzaxz‘i‘"'—i—Qna——O (4

w

identically. Now consider v = 0 2s an implicit relation defining, &y,

zy in terms of the remaining n — 1 2, so that (Art. 20) A o
e\
dy O
o E
6—‘1-2:_—3 =12 in~ 1) 40 L
ol ay ¢*C
Pull A
dz, \/
Then (4) becomes PN
’\ &/
By dzx N oz
O+ Qo F -+ Py = Qn, (5)
diay dzg o W dx,

—1 )
_wptw.dbraulibrary.org.in

which is in general a non-homogefgous n-dimensional equation of the

type considered in Art. 40. Ny
Eromple. Consider the 1i~n§}r equation

v ,\a}{"

4 » -
Py dr
P ¥

aF aF N
o £ oo
+ay+\/563

Regarded as f oj{l'gilﬁhensiona,l, thig hag the subsidiary equations

‘\w _
& elw_ a4,

A 11 /e
whendewve easily geb
N F =y —2,2vz—2)

as the general integrsl. On the other hand, we may regard the given equation as
equivalent to the three-dimensional ecquation

p+e=%

which was given as an example in Art. 39, and there was found to have as

general integral,
by — 2 2vz—2) =0
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Tn Art, 30 it was further found that z = 0 is a special integral of p + ¢ = 4/Z.
But with F = 2, we gel

BF aF ar
'\/_ '\/;:

6:0 ay

which does not vanish identically. Henee & solution which serves as a special
integral of the equivalent three-dimensional equation is not a solution of any
Kind for the four-dimensional homogeneous equation.

The non-cxistence of a special integral in the above cxample “of E
homogeneous equation is an instance of the following: O\
7 A\
Taeorem. The homogeneous equation lacking the dependerbtariable,
ar aF ar
— —_— Cea - = #°¢ 1
& 2 T Q2 % +r ot G % .,“}\\ 1

k13

T
| %

regarded as (n + 1)-dimensional, kas no special im‘{egrals

To prove this theorem, let wu;{zy, %2, \,9;,,,) =a; (=1,2,

# — 1), be n — 1 independent integrals of ‘the subsidiary equations (2)
Then we have \
WWW . dbrauhbl ary .or g..bn N P
Q—m+Q2—+ Q=0 ®

ﬂ.
(=12 ---,n—1). Ngv.f(i.f F = f(e1, 29, -+ -, 2,) is any integral
+8 3 ’

of {1}, we also have I,\\ . af

Ql -f— Qz + o+ Qn B = 0. (M)

ﬂ-
The n — 1 equ"tlt)ns (6) are satisfied 1dentlca11y, and not by virtue of
the rclatio \ = aj, for the 4’s do not appear in {6). Likewise, (7) is
an 1dent1iy\smce fdoes not appearin it. The gystem of % homogeneous
algebrf{u: equations (6)-(7) in the Qs has a non-trivial set of solutions;
I{zraferc the determinant of the coefficicnts must vanish identically.

this determinant is the Jacobian

3(171,3-"-2: Tty zﬂ) ’

and its identical vanishing tells us that the w's and f are functlonally

dependent (Art. 24). Therefore f, which is any solution of (1), i=
expressible in terms of the u’s,

=, g, - )
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that is, f i1s a part of the genersl integral. Hence (1) possesses no
special integrals.

EXERCISES

In Exercises 1-12, find the general integral of each lincar equation, in which
p; denotes dz/ox;.

Lmtpt+e=1 2P —patps—py=0.

3. zipr 4+ zapz + wapy = 2. 4 2py — 2opy Fasps +2 = 0
B. wop1 + zrpe + wizaps = 0. 6. @1zsp1 — womape + Py = 2, I\
T.z2(pi+ p2 + p3) = L. 8. z{zip1 + @aps + zaps) = 1.

9. werspm + Tizape + wep; = 0, 9 \:\
10. z{zezgpr + Tizspe + Tidepy) = Tixavs. e\ N

11 zp1 — 2epe + nizgzmaps = 2. L &

NS

12. (x2 — ap}pr + (2a — z0pe + (@1 — x)ps = 0. . N

13. Construct o four-dimensional equation eguivalent t-»q(}dﬁe five-dimensional
homogeneous cquation of Exereise 2, in which 2 iy lacking,‘and find the general soiy-
tion of the equivalent equation. \

14, Construct a three-dimensional equation equivg‘le\n‘t to the four-dimensionaf
_ hemogeneous equation of Exercise 8, and find the g?;m?ml solution of the equivalent

equabion. PNY;

15, Construct a three-dimensional equatipmiequivalent to the four-dimensional
homogencous equation of Fxercise 9, and findrshe gdnerull Sobatipnonutin equivalent
eguation. N

16, Construct a three-dimensionak é;:]ﬁation equivalent to the four-dimensional
homogenecus equation of Exercise, 12, 9nd find the general solution of the equivalent
equation. \‘

17. Construet the four-difadnsional homogeneous equation equivalent to the
three-dimensional equatioﬁ\}\]ﬁxercise 8, Art. 39, and show that the spccial integral
of thut exercise docs not®atisfy the equivalent homogencous equation.

18. Construet the Fotr-dimensional homogeneous equation cquivalent to the
equation of Exercigt S}, Art, 39, and show that the special integrals of that exercise
do not, satisfy thé\eﬁuiv&lcnt homogeneous equation,

18, Cons 'ﬁé\t’}che four-dimensional homogeneous equation equivalent to the
equation qfsbﬂkrcise 10, Art. 39, and show that the special integral of that exercise
does 1ot §atixfy the equivalent homogeneous equation.

}Pe ‘Bhow that the four-dimensional homogencous equation

VvV oF oF oF
il - ~ =0
«/Eaxl+x/x_zam+x/x_aax3

has F = yg{~/72 — /21, V7s — Vo) as general integral. Regarding 21, ws,
and 23 in tum as dependent, variable, construcl three eguivalent three-dimensional
equations, and show that each has a special integral which does not satisfy the given
hnmogencoucs cquation.

42, Geometric applications. In Art. 29 we indicated some of the
ways in which a geomotrie problem in three dimensions may lead to 2
partial differential equation. When the partial differential equation so
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obtained is lincar, the methods of this chapter may then be applied to
find the surface or surfaces satisfying the stated geometric eonditions.
We illustrate the process by means of an example,

Exdmple 1. Tind the surfaces whose tangent planes all pass through the
oTigin.

Solution. The equation of 2 plane tangent to a surface at a point (z, ¥, ) 1s
{Art. 21) ~
—n 4+ ¥ -y -EZ—-29 = 1)

where p = dz/dz and ¢ = d2/9y are supposed evaluated st the poind T'n, i, 2
Since this plane is to pass through the origin, weset X = ¥ = é =, and (1)
reduces to <

zp 4+ yg =z '\\ @

This Lagrange equation must therefore be satisfied by the desired surfaces, We
have already solved equation (2) (Example 1, Art. 3@5 and found as its general
integral ..\

- N

o=, -] =10)" @)

/"_“'\
= 3

ETIR
www.dbraulibrary.or B l.n .
The surfaces (3}, which are cones vnth vertlccs at the origin {or plancs through

the origin) for every choice of the fun(,tmn ¢, are thus all such that their tangent
planes pass through the orlgm

We consider next ‘;\{ geﬂmetnc problem of finding a.surface satis-
fying a given Lagrange equation and passing through a gwen Curve.
As usuzl, let ¢(u,, = () be the general integral of the given partial
differential equ\alimn where u(z, 9, 2) = ¢ and v(z, ¥, z) = b arc inde-
pendent integfals of the subsidiary equations, and let the given curve
be repree:eéi;ed by the equations

, \Q Ny F(xx Y, 2} = 0, G(&:, Y, 3) =0, (4)
S{ﬁcé the coordinates (z, ¥, #) of any point on the curve (4) are to satisfy
the equation of the required suriace, we eliminate z, ¥, and z from the
four equations ¥ = a, v = b, F = 0, and G = 0 o obtain the relation
which must exist between ¢ and . This in turn implies the necessary
functional relation between w and v; that is, it determines the form of
the integral ¢(u, v} = :

Of course, it will not always be possible to perform the necessary
elimination. When the elimination process leads to a confradietion, it

18 an indication that no surface included in the general integral can pass
through the given curve.
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Ezample 8. Tind the equation of the cone satisfying the Lagrange equation
(2) and passing through thecirclea® + 2+ 22 = La+ y+ 2 = 1.

Selutior.  'Wo take the general integral of (2) in the form (3), with u = y/z=
¢, v =z/z = b Theny = az, z = bs, and substitution in the equations of the
circle gives us

P+ + =21+ +5) =1,
x+y+z——-$(1+a+b)_=1.

Eliminating x between these last equations, we have O
1 2 2 4 ‘:\
S=1+a@+=(1+atby P\
i N\
14 a*+ b= 14 a®+ b + 26 + 2 + 2050, )
at+ b+ ab =0 \‘ )
Equation (5) is the resulting eliminant, If we now replice ¢ by y/z and b by
#/z, we get the required surface, AN
R
zy + xz + yz A0 )

Evidently (6) is a quadric cone fulﬁlling’bt\)}ﬂ}‘lr:%qgg%tai%%sbl_ary_m_g_m

EXERCISES

1, Find the surfaces whose tafigent planes all pass through the point (za, ¥, 20).
2. Tind the surfaces such thag for each the intercept of the tangent plane on the
#axis is cqual fo the z-co d@a‘c’e of the point of tangency.
3. Find the surfacesQ& that for each the intercept of the tangent plane on
the z-axis is cqual to thg #-coordinate of the point of tangency.
4. Find the surfasés such that for each the intercept of the tangent planc on the
F-axis is equal to he’ square of the z-coordinate of the point of tangency.
6. Find thessurfaces all of whose normals pass through the z-axis.
6. Find themost inclusive solution of the Lagrange equation yzp -+ zrg -+ ay = 0
representing, quadric surfaces.
7-.F\ind'the most inclusive solution of the Lagrange equation (2 — y)p + (z — 2)g
SN Tepresenting spheres.  What property have these spheres in common?
\&"Find the most inclusive solution of the Lagrange cquation z(z® — ¢%p
+5® — 29 = 2(y® — #?) ropresenting spheres.  What property have these spheres
2 common?
B. Find the equation of the surface satisfying the Lagrange equation 2p — yg = 2
and passing through the circle 22 + g2 = 1,z = 1.
1. Find the equation of the surface satisfying the Lagrange equation zy(p — g)
= (&~ y)z and passing through the hyperbola 3% 4 22 = 2%, 2z = 1.

43. Physical applications. In the preceding chapter we considered
some physical problems yielding partial differential equations. In
nost cases, we were thereby led to differential equations of order higher
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than the first, or to systems of first order equations mmvolving more than
one dependent variable. To discuss these more fully will, in general,
require the methods of later chapters, but we may examine af this time
a few elementary matters.

For radial heat flow through a long eylindrical pipe (Art. 31, Exer-
cise 4), we have

[ d
%‘3 = — 2 KLr a—';, )

Q"

where Q(r, ) (cal.) is the quantity of heat flowing through a seefiod at a
distance r (cm.) from the axis of the pipe of length L {cm.) 8hd at time
t (sec.), K {cal./cm. deg. sec.) is the thermal conductlwty af\ Lhe material
of the plpe, and «(r, £} (° C.) is the temperature. If“the gquantity of
heat € is prescribed as a funciion of r and ¢, and@hﬁable initial and
boundary conditions are also given, equation (N\serves to determine
the corresponding temperature r; or, if © 1~1 p}eassu,nod equation (1)
will yield Q.

Similarly, for radial heat flow through a spherical shell {(Art. 31,

Exercise 5), we have the first order eguation
www.dbraulibrary.or iy

4 N
X Shegre . 2)
Ot ar
In the case of one—dﬁﬁ:nsional fluid flow (Art. 34), we have the
equation of motion,
WA du du g aF
s — i — = a
WO e T ®
¢t\”

togetherf{ét}[’thc equation of continuity,

O + 6(‘3“) —0. 4)

Here ufx, & (ff./sec.) iz the velocity at a distance z (ft.) from some
reference point and at time ¢ (see.), Gz, £} is the external foree (lb.)
per unit weight (Ib.} of fuid, &z, ) (b./ft.?) is the density, F(z, 1)
{Ib./ft.%) is the pressurc, and g = 32.2 ft./gec.? If, in particular, the
pressure F o does not vary with distance z, cquation (3) gives us the
velocity u, and when w is known, the density § can be found from (4).
Again, suitable initial and boundary econditions must be given for the
complete determination of  and 5 as functions of z and .
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Ezample.  Consider one-dimensional fluid flow in which the pressure is inde-
pendent of distance @ (ft.) and for which no external force acts. If the initia]
velocity at any distance z is numerically cqual to = 4 10 {ft./sec.), and if the
initial density is also 2 + 10 (Ib./ft.%), find the velocity u and density § as func-
tions of 2 and ¢. '

yﬂﬁ\ From equation (3}, with @ = 0, F, = 0, we pet
a'u,

Bt | O
for whieh the subsidiary equations are y \ \ \
B _dt
% i e \ IR
N\
The general integral of (5} will evidently be given by S
u=iale —ul), N ()

where ¥ is an arbitrary funetion. Using the Hutlal}ondltlon ulz, 0) = z -+ 10,
(8) becomes

x4+ 10 = g,h(‘ap).

N\ Wwww dbraulibrary.org.in
Therefore the ¢-function of its artrummt’ must be such that it is identically equal
to that argument increased by 10, Hence the particular solution of {5}, mect-
ing the given initial condition, 15\\

\o\,i‘.,_; @ — uf) + 10,
whence N
79N x -+ 10
P\% % = P 1 .
,\ .
This gives us Q )felomtv at any distance x from our reference point 2 = 0 and
atany time >0,
Now J;&kdng the indicated partial derfvative with respect fo x of the product

bu m&lw\,and ingerting the cxpression (7) for », we get

7

ab 1 +x+10@=

Fra t4+ 1 t+1 a9z
or

o8 ab
= . 23
('J:—[—l(})i_)x—l-(t-{-ljla15 § (8)

This Lagrange equation has as subsidiary equations,
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from which we find as the general integral of (8},
(@ -+ 10)6 = ¢al(t + 1)8}, @)

where s is arbitrary, Since we are to have §(z, 0) = 2 + 10, (9) yields the
relation

{z + 10)7 = yalz + 10);

that is, the ye-function of its argument must be equal to the square of that dieu-
ment. Consequently the particular solution of (8}, fuifilling the stafgd Mhwitial

condition, is _ <O
(@ + 1008 = (¢ 4 1)%7, Ke
and therefore the density at distance x and at time £ is given’by.f o)
Szt O 10
G+ 12 O

i

EXERCISES.\,)

1. T the quantity of heat € in a cylindrical piﬁe or in a gpherical shell is independ-
ent of dmtanw‘g\ggﬁmllmyyt@gig,ﬁe temperature ¢ is hkemse independent
of r and 4,

2, A cylindrical pipe of inmer radius’ 71 {cm.} snd length L {em.) contains steam
at a temperature ry (°C.). If th€‘quantity of hoat is given by § = % 4 50 (cal. ),
where £ (sce.) is time, find th t.émper&ture t as a funetion of r and 1.

3. If, in Exercisa 2, @ sint + 50, find .

4, Tf, in Exercise 2,9 i4[):-2(1 — ¢ *), find 7.

B. A spherical ghell\oP inner radius ry {om.} contains steam at a femperature
1 (°C.). If the gnantity of heat is given by @ = 26 + 80 (cal.), where ¢ (sec.) iy
time, find the teerrature 7 as a function of r and £

6. If, mEmsef; Q = (30 — 20 cos £)+2, find 1.

7. I, m reise 5, @ = 200(3 — &2, find 2.

8. If,inthe example of Art. 43, the initial conditions are ufz, O) = 10 (ft./sec),
iz, 0= 84 (Ib./ft.3), find % and 3 at distance £ and time £,

»Fmd the velocity 4 and density 5 for one-dimensional fluid fow in which the
Xeséure is independent of distance , 2 constant foree 7 = 1 1b, per Ib. acts, and the
iritial conditions arc u(z, 0) = 10 (ft./sec.), iz, 0) = 64 (Ib./it.3).

10. Ti, in Exercise 9, ¢ = 6, u(z, 0) = 2 J- 10, and 5(z, 0) = x + 10, find % and &



CHAPTER V
NON-LINEAR EQUATIONS OF FIRST ORDER

In the introduction to the preceding ehapter, we defined a non-lingag\
partial differential equation of the first order as a first-order equation
in which at least one of the partial derivatives occurs in some way other
than to the first degree. O

We shall begin our study of such equations by defining/the various
important types of integrals possessed by them. Aftor Ahis we shall
consider the gencral method, due te Charpit, for S(")l}ing non-linear
equations involving two independent variables, and\shall then discuss
special types of non-linear equations that can besolved by quite simple
methods. Jacobi’s method of solving a partial differential equation
containing three or more independent varidblés and the first derivatives
of the dependent variable, and systemﬁ.qfﬁsmbqqgﬁgpgsyl%r.%ﬂqxt con-
sidercd, and at the end of the chapter we shall investigate some geo-
metric problems depending upon ngpilinear equations and their solutions.

44, Complete, singular, and general integrals. Let a non-linear
partial differential equation pf.the first order, involving two independent
variables z and y and th&dependent variable z, be denoted by

\" F(x:y: z:p,9)=0: (1)
where p = az/aa;,«&xz dz/ 3.
A cmnple%zmegml of equation (1) is any solution containing two
arbitrary cofistants, say o and 8, and which we denote by

g \ ) f(x,- Y, & & JB) =0 (2)
This\definition of a complete integral is entirely similar to that given
for lincar equations (Arl. 38). Evidently the geometric interpretation
of & complete integral is that, of a two-parameter family of surfaces.

In general, the arbitrary constants o and 8 in (2) will not occur
Inearly, as they do in the complete integral of a Lagrange equation.
Accordingly, the {wo-parameter family of surfaces (2) may possess an
envelope, obtained by eliminating & and 8 from the three relations

of o _
f=0, Pl 0, 3,3_ 0. ()
105



106 NON-LINEAR EQUATIONS OF FIRST ORDER  [Cusr. V

if the eliminant,
l,ff(:t‘,', Y, z) =0, (4)

satisfies equation (1), it is said to be a singular infegral of (1). Since
not every eliminant (4) of the equations (3} is an envelope (Art. 26),
it is iaportant to test (4) as a possible solution of differential equation (1).
Usually a singular integral is distinet from any solution obtainable from
a complete integral by assigning particular vahies to @ and 8, but this
is not always true (see Exercises 3 and 4, Art. 53). A singular integhsl,
when it exists, may also be found by eliminating p and g from t}me three
equations , ™
ar \.
F=40 % =0, — =0, \ (5

£ &
If the arbitrary constants « and 8 in (2) are nﬁmeft independent,
but are connected by a functional relation, O

K70
= B, ®
equation (2) mpmsathi:snﬂabnﬁ-p&ﬂagnﬂter :faim'ly of surfaces,
f[ﬂ?, U, Z, @’v ‘f’(a)] = 0. (7)

For each choice of the func’rmn qb, we got, in general, a distinet family,
the envelope of which (when'it exists) is found by eliminating & between
(7Y and the equation Xobtained by differentiating (7) partially with
respeet 1o a (Art. 26) he totality of all such envelopes, derived from
the equations

'.\ N
of

“\:\ f[.’.t:, Y, &, a, ¢(a)] =0, . 5 = 0, (8)

N

for all pnsable choices of ¢, is known as the general integral of the partial
dlfﬁerehhal equation (1). In other words, the general infegral repre-
sénté the aggregatc of the envelopes of every one-parameter family of
surfaces obtainable from the two-paramcter family given by a complete
integral.

With ¢ an arbitrary funetion, it is, in general, not possible actually
to eliminate « from equations (8). Thus we usually eannot get a single
equation, involving an arbitrary function, that represenis the general
integral of a non-linear cquation of first order, as we could for Lagrange
cquations. Moreover, a complete integral is Lerc not a particular case
of the general integral, as is the case for lincar equations.
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For each particular choice of ¢ and «, equations (8) yield two par-
tieular surfaces, and therefore equations (8) considercd simullaneously
represent a space curve. Such a curve is ealled a characterisiic curve
(cf. Art. 38). Supposc a particular ¢ chosen and « regarded as & param-
eter, so that the eliminant obtainable from (8), a special ease of the gen-
eral integral, is the envelope of the corresponding family (7). Then
this envelope is tangent to each member of the family (7) along a
characteristic curve. The gencral integral may consequently be
regarded as the aggregate of surfaces generated by characteristic curvest™

The question of the possible existence of special integrals, analogoud
to the special integrals of the Lagrange linear equation (Art. 39), will
not be discussed here, as it is more & matter of theoretical interést than
of practical importance in 2 first course. N

These definitions and geometric interpretations will he'illustrated in
connection with various specific non-linear cquations in".‘&lr later work,
aud the student should refer back to this article wirtilthe concepts are
clearly understood. o ’Z\\'

46. Charpit’s method. The basic idemyns Charpit’s method of
solving a given non-linear partial differentiglequation of first order

v w dbraulibrary . org.in

Flz,y, 2 p,dl> O, (L
is the determination of & second"eq{réﬁtion of the same type,
G.(@:b; 2 g) = U: (2)
N

such that equations {1}*and (2) can be solved for p and ¢ in terms of
7,4, and 2, and such §hat these resulting expressions, inserted in

)y, 2) de + gle,y, B dy — de = 0, ®)

make (3) intégrhble. :
In or o Ethat (1) and (2) be sclvable for p and g, these relations must
he iI.{h;;:eﬁdent, and therefore their Jacobian (Art. 24)

aF, &)
a(p, 9)

cannot vanish identically. We shall suppose, in what follows, that
J 20,
The necessary and sufficient condition that the total differential
equation '
P(r,y,2) de + Q(z, y, 2) dy + R(z, y,2) de = 0

J = F,G, — PGy 4

It
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be integrable is that

0 _0Ry (% _9) p (%P 0)
P(a—z#a_y-)-{—Q(Bz 6z)+R(6y ox

vanish identically (Art. 19). Hence, if (3) is to be integrable, we must
have, since here P = p, @ = ¢, B =—1,

dg dp 8p 9 N
p_;#qaz#c’iy-!_ax_—o' . ®
oA\

We shall use this condition (5) to determine the required,: rel?ztmn (2).
Regarding p and g in (1) as functions of z,y, 2 obtamable from (1)
and {2), we get by differentiating (1) partially with re&pect to z (holding
gy and 2 fized},
6F aF ap _GE g

o T ap ap ox ag%'ﬁ‘ﬁ‘ (©)

Similarly, partial differentiation of (2) wjth respect to x gives us

www_dbrauhbl ary.or gvfn‘.
G 5@9» 3G d¢

= 0. )
o Bp,ﬂ:c dg Ox

If we solve (6) and (7) sz} 8¢/ 4z, for insertion in (5), we find
M

O PG -FG, @
\X/ or J

Evidentk"ﬁg/ dz can be so obtained, since by supposition J = 0.
Indhe same way, we differentiate (1) and (2) partially with respect
tong, 'gettmg

2 \¥;

\V F,+ Fp + F =0,
Gy+ G 2 +G =0,
and, solving these equations for dp/dy, there is found

8p _ F.Gy, — PGy ©)
- 9y I
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Finally, differentiate (1) and (2) partially with respect to 2, whence

dp dg
FZ+FP5;+FQEZ= ¥

ap 2 '
Gs'l"Gpgz"]'_Gq'a—Z: ’

and solve these equations for dp/éz and dg/@2. There is obtained

ap FG-Fls 8 _FG—Ff
d J ! 8z J

By inserting the expressions for dg/dx, dp/dy, dp/dz and 69/543, as
given by (8)-(10), in (5), and by multiplying throughout by ¥, we get
D(F Gy — Folls) — q(F oG — P.Gg) — (FoGy — PO+ Baliy = FplGz) =0,
or, upon rearrangement, \
D
p x\ w

86 aG@

(Fm+sz)a_+(Fy+gF=)__ WY

D 9¢
aa .~."zw€'iﬂ:lbr ljﬁGaI_'y.ﬁrg in

— (o 96 oypdilbropliflagy grein (1

(Fy =+ o) 7 P gy i 3y an

~ This is & six~-dimensional hom@xjenebus linear partial differential equa-

tion for the determination o;EgG,Es a function of z, y, 7, p, and g (Art. 41).

Its subsidiary equationg afes

p = d‘{ Q;__ifz___: dz =--@-, dG = 0. (12)
Fotpb,” F,pab. —ph—oFs —F» —F

P4 .

Our prohlota’of solving the given equation (1) may therefore be
attacked ag\follows. We first form the subsidiary equations {12).
Bince apy(‘iﬁ't.egral of these equations is a sclution of (11), we try to find
ODE‘éﬁ‘gml of (12), the simpler the better, containing p or g or both, say

ulz, ¥y % Py g) = a (13)

where o is an arbitrary constant. This gives us the desired relation (2),
namely, G =y — o = 0. We then solve (1) and (13) sunult'aneously
for p and ¢ as functions of x, ¥, % and &, qubstitute in (3), and integrate
10 get .
fz 4% a,8) =0, (i4)

where § is a second arbitrary constant.

(1)
oA\
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Evidently the solution (14) so found, containing two arbitrary con-
stants, will scrve as a complete integral of equation (1). A singular
integral, il one exists, and particular cascs of the general infegral may
then be found as indicated in Art. 44.

1t should be particularly remembered that, in the formation of the
subsidiary equations (12), F, denotes the partial derivative of F with
respect to ¢ when holding z as well ag y fixed, cte.

Eazample 1. Find a complete integral and a singular integral, if one exigts,
of the non-linear equation

N

pi 2@y U+ @ P @y Da=0 NP0

Solution, IHere we have (‘.'}"w
Fo=@y+Dp, Fy=2mp+@y+Da—2 FaOF @+,
Fp=q+2@+ 1, Fo=p+ 2%

A\
Hence the first denominator in the subsidiary equ{ﬁig}:s (12) is Fp + pF. = 0,
and therefore we have dp = 0, )

v

p=a O (16)

This will serve'sy thd REaabibineyats Bibstituting « for p in the given partial
differential equation (15), and selving foe i, we get

A2 + Dz - oz)

(1T
qi:,\ ¥+yte an
Then (3) gives us \\
A 2y 4+ Dz — az)
o i > dy —de =10
SO ey ra VTR
or \¥ 2 :
9.\
\ iz — o e - {2y -+ 1) dy
\\ c—ax  Pty-te
wbic}rsis;ogvidently integrable. Congequently
7N “.1
N log(z — ax) = log* + v + &) + log B,
and
2= + 0+ y+ o) (18)

This is the required complcte integral. If we differentiate (18) partially with
respect to e and 8 in turn, we find

0—2+8 O=g+ytao (19)
Elimination of ¢ and 8 irom (18) and (19} vields the equation
2 =— z(y? + y). (20)
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It is easily verified that (20} satisfies (15), and consequently (20) is a singular
integral. Evidently this third-degrce equation {20) represents a surface distinct
from any of the quadrie surfaces in the two-parameter family (18), so that the
singular integral is not a part of the complete integral.

In some problems it will be found advantageous to change the sub-
gidiary equations (14) inlo a more convenient form by making use of the
given differential equation, as in the following example.

O\
Ezample 2, Find a complete integral of the equation
22g* ~ y*p + v'q = 0. e
Solwtion. 1In this case we have (»’f;.
FI=0} Fy:gy(q_p)s F3=2q2, Fp:-yﬂ,ng{r'_4zq+y2,
and the subsidiary equations are \
x’\\"
dp di _ dz {Yde _ dy (22)
2p®  2ylo — p) + 28 op - At pEE ¥ kg —

To obtain an integral {rom these equa-tiorgs’{ljs W@Xﬁﬁﬁ%iﬁﬁ%ﬁ%ﬁﬁ?& it was
in Example 1. But we note that the.‘cfe'ﬁnmmator of the third fraetion in (22}

may, by virtue of the original equalién (21), be replaced by —2zq2. Making
this substitution, the first and thitd ratios in {22} now yield the relation

o\
’i"';_‘iif_ _ d\z
. b\ 2pq° —27¢g?’
whence w\.)
\ </
xo\:,,.‘ d_j)‘ + % = 0:
O\ ?
e\l logp + loge = loge,
D o
o N = — (23)
p=-

~
R§I&Cing p in (21) by a/z, we then get
22%° + yteg — ay® = 0,

-yt yVy + S (24)

4z

from which there is found

Substituting from (23) and (24) into (3), we obtain
dodz — yidy £ yV Yt + Sady — dzdz =10,
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and integration yields

_.y_a 1 2 B 947
4o 3i3(y + 8a) 225 =8.

Rationalization then gives us the complete integral
(62° — 12az + ¢ + 38)% = (" + 8a) (25)
Tt is readily found that there exists no singular integral.

N\
EXERCISES O\
Find a complete intcgral of each of the following non-linear eq‘usii..i\ons. TFind
alzo any singular integrals that may exist. N

Lpgtap +yg—2z=10 2.p2—q2+4;p:’—.{—4yq—4z=0.
S.pa+pv+eg=0 4.1}Q—p—ﬂ§?«—1=0.
b ¢*—2¢+3p =1 8. ° + 2p G + xp + wg = 2.
T, 28?2 + ? = L. 8. zp® k" = 1.
9. + ¢ =2 10. pge = 1.
11. 2% — 2% — 3z + 3y = 0. 12,2509 — ¢%) = 1.
13. pg +ap + yg = 0. W - + &ty =0
15, PP +pgtz—y=0 LB p? + da?g = Q.

_ AN 2 —
1. 71 8y oractibrory.orgad 15 202~ 0.

46. Equations of the form F(p,¢) = 0. A second relation con-
necting-z, ¥, #, p, and q'gaz}always be found by Charpit’s method for
non-linear equations of\cel"‘t-ain types. In this and the following three
articles we shall exgwine some equations of special form for which
standard methodg{ébtainable from the general Charpit procedure, may
be formulated..\We call the four types of equations to be considered,

standard f{‘m
Consider first a non-linear equation of the form
AN Fip,q) =0, (1

fenfaining p and ¢ but none of the variables x, ¢, 2. Since F, = 0,
Fy =0, and F, = 0, the denominators of the first two ratios in the
Charpit subsidiary equations,

dp _ dg _ dz _de  dy
Fo+pF, Fy+qFf, —pF,—¢F, —F, —F,
vanish identically, and therefore we have dp = 0 and dg = 0. Wemay
thus use either p = a, together with the value of g obtained from (1)

when p Is replaced by a, or ¢ = «, together with the result of solving
F(p, @) = 0 for p, whichever is more convenient.

@
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Example. ¥ind a complete integral of the differential equation
PP—2pg+ 3¢ =3

Solution. Bince the cquation is linear in ¢ but of the third degree in p, it is
gimpler to use p = a, whence

_5—a
1= 8 0
Therefore we get, from dz = p dz 4 ¢ dy, o
.'.\
5— ot \/
= adr d N\
dz [+ +3-"'20£ Uy ;(.":
<0
z=ar + y + 8. v
There is no singular integral. N

Evidently every equation of type (1) wilhbave as a complete integral
a two-parameter family of plancs, as in the above cxample. Moreover,
the general integral of an equation of tyjfe (A willhe apade uppideyelop-
able surfaces (cf. Art. 29, Fxamplg' 3) For, as stated in Art. 44, the
general integral represents the aggregate of the envelopes of every one-
parameter family of surfaces §btainable from a complete integral, and
the envclope of a cne- pa@eier family of planes is a developable sur-
face (Art. 26).

47, Equations of; the form F(z, p, gy = 0. Consider next a non-
linear equation of the form

$

~0 Fano =90 )
m which the independent variables = and y do not appear. Since
Fy =0 F = 0, the Charpit subsidiary equations now reduce to

~\
\:

dp  dg dz _ dr dy @
pF,  gF, —pF,—qF, —Fp ~—F;

-and we therefore always get, from the first two ratios,
g = ap. 3
Combining (1) and (3), we then may find p and g in terms of 2, say
p=f@), q¢=op=afl 4
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Therefore dz = p dx + g dy yields

dz
= = dz + ady,
o - T
dz .
f@w_way )

Tt thus appears that, in a complete integral (5), z will be a funetion
of the combination z 4+ ay. We may use thizs fact to formulaté™a

method of solving an equaiion of type (1), as follows. Set A
2 = gl + ay) = g), o7 ®
gay, 50 that ~\
dg dg ag dg N ?
- — = — = — = — - 2 '\: 7
P=% " a1 ay dug ) @
Then the partial differential cquation (1) is transf({rmed into the ordinary
differential equation ‘L
(s o oS0 ®
T CwhT

raulibrar

of the first o?&%ﬁ'dhfﬁe genegaf gotu‘tmn of (8}, usually obtainable by
one of the methods of Chapter I c@ntams the arbitrary clement « in (8)
and & sccond arbitrary constant 6f inlegration 8, and thus yields a com-
plete integral of (1). x"‘g

Ezample. Tind a comﬂbt‘é'integral of the equation
\’ 2P+ ¢+ 1) =1,

Solution. M&{ng the substitution « = = 4 ay, together with the derived
relations (7)), weget

O 1+ (EY 4121
RAMTE Y

= Vi+a®V1I-2=xu+p),

I+l —2) = +ay+p)2

T.his is F‘ne desired complcte integral. It is left fo the student to show that the
given differential equation also possesses the singular integrals z = 1.

and
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The substitution % = z 4 ay has the geometric interpretation of
rotating the coordinate axes in the zy-plane through the angle arctan «
and stretching the z- and y-coordinates in the ratio Vi + o2
Since equation (6} represents a cylinder, the surfaces given by a com-
plete integral of an equation of type (1) will therefore be cylinders with
clements at an angle arctan « with the s-axis and parallel to the zy-plane.
Thus, the complete integral found in the above example represents
tireular cylinders of unit radius and with their axes in the zy-play@;
evidently such cylinders do have the planes 2 == 1 as envelopes, .,
¢\
EXERCISES O

Ny

Find a complete integral of each of the non-linear equations in “Exercises 1-6.
Diseard any solution that does not have a real geometric interpgt;ﬁ.tion.

L¢®—3¢+p=2 2, ;pz—]-q2 =/
. — =0 4. g+ sl p&ﬂ
5. 6% +2p°° +3p% = 0. 8. 200 PIg + p* =

7-12. Taking 8 = 0 in the answers to Excreisedt 1—%, find the developable surface '
that serves as envelope to each resulting one-parenicter family of planes, and verify

that each envelope is & solution of the corpqspo;ndmg differentjal equation.
WW W dbrauhbrary org.in

Find a eomplete infegral of each of the non-hnear equations in Fxercises 13-20,
Find slso any singular integrals that mayexist.

13. pg = =. 8 14, pg =22

15 g gt =24 i\ 16. zfpg = 1 - 2
17, 292—'?3 \\’ 18, p? — 2zg — 2 = 0.
19. 3Pq+zin+zq——1 20, »® + ¢+ 22 =22

48. Equations®ef/the form f(x, #) = g(y, ). Suppose now that a
given non-lin eg\r';jsartml differential equation is expressible in the form

§ fl, p) = ¢y, @), ®)

in Wh,icl; 31113? z and p occur in one group of terms and only y and ¢

a-Kﬁ?g}r in the remaining terms. Letting F denote f(z, p) — ¢(y, ), we
have

Fo=f, Fy=—ygy, F.=0, Fp=fp Fi=—10q
%0 that the Charpit subsidiary equations become
dp_dg ___ e _dr _dy ey
o —gy Pt —F O
From the first and fourth of these ratios we have

fadz + Jfo dp =0, (3)
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and from the second and fifth,
gy dy + ggdg = 0. )

But the left members of (3) and (4) are respectively the total differ-
entials df and dg of the functions f(z, p) and ¢{y, ¢) (Art. 19). Hence
f(z, p} = const. and g(y, g} = const., and, by the original equation (1),
these constants are equal. Therefore

@ =0, oo =a NG

The procedure of solving an equation of type (1) is thus cl‘ear We
set each member of (1) equal to an arbitrary constant oy smd solve the
resulting pair of equations (5) for p in terms of z and -« andifor ¢in terms
of y and «. We then inscrt these expressions for p a@d gin pde 4+ gdy
—dz = 0, to get a total differential equution \

dz = p(z, o) dz + qy,addy. (6)
This is evidently integrable, whenece we, ﬁnﬁ'
ww%\rﬁlgf ﬂﬁﬁ‘vﬁ%ﬁf«g‘i’ f (v, @) dy + 8, (7

a complete integral of the ongmal equation {1).
Example. Find a comiplétc integral of the non-linear equation

\\ (1 — 2%yp* + 2% = 0.
Solution, It gasy to see that this equation ean be put into the form (1);
we get ,\1“;
\’ (1~ 2%p? =%
N z* y o
Consequently
RN L :
"\.‘.u p=:[:L., q:_ay,
\/ V11— g
dz::l:_’\_/.iig_ aydy,
V1 — 22
z=T Va(l —z) —ﬁ-i-ﬁ,
and

(22 4 ay® — 28)? = da(l — 2?).

This is the required complete integral. There is no singular intcgré,l.
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49. Equations of the form z = xp + yg + f(p,¢). Clairaut’s ordi-
nary differential equation (Art. 8) has as its analogue, in the field of
partial differcntial equations, the type

z=zp +yg + f(p, @) (L
liwelet F=ap + vg + flp,9) — 2 =0, we have
Fo=p, Fy=4¢q, F,=—1 Fo=z+/f, Fo=y+1g

whence Fy -+ pF. = 0 and F, 4 ¢F, = 0. Consequently the Charpit
subsidiary equations yield dp = 0 and dg = 0, so that we may take
either p = const. or ¢ = const. in eonjunction with the giveniequation
(1). A0

However, it is easier to make use of both integrals Qleié subsidiary
equations.  If we replace p and ¢ in (1) by arbitrary eonstants « and 8,
respectively, we get N

2= ox -+ By + o B0 @

Since this relation correctly yields p = « andg = f upon partial differ-
entiation, (2) is a solution of (1); and.sinee (2) contains two arbitrary
constants, it is a complete integral of {1). wrw.dbraulibravy.org.in

Usually a non-linear equation of-§¥pe (1) possesses & singular integral,
the envelope of the two-paraméter family of planes represented by the
complete fntegral (2). As,ifiYthe case of partial differential equations
of the form F(p, ¢) = Q (}&q\t.’éﬁ), any solution belonging to the general
integral of (1), being dérived as the envelope of a one-parameter family
of planes obtained from (2), will be a developable surface.

ngar equatiph \

.':’. z:zp-{-yg{—pg.—qz. (3}

O i i i
F,in@%o"a developable surface belonging to the general infegral of this partial
differértial cquation.

9
</E$ﬂm3336- Qﬂﬁa complete integral and the singular integral of the non-

_ Solution. TReplacing p by a and ¢ by 8 in the given equation (3), we have
mmediately a complete integral,
z=ox+fyt+ol—F @.

Partial differentiation, with respect to a and § In turn, of th_js ‘equ?,tion, ylelds
0= * 4 2(2, 0= Yy - 26, whenee ¢ = — 3/2, .3 = y/?;. E}Jmma.tmg 44 and ﬁ
from (4), we then get

4z = 42 — 2% (6)
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This is easily verified as a solution of (8), and is therefore a singular integral;
the planes of the complete integral (4) bave the hyperbolic paraboloid (5} as
envelope.

To get a developable surface satisfying (3), we may set 8 in (4) equal to any
desired funetion of & and then seek an envelope of the resulting one-parsmeter
family of planes. For simplicity, set § = 0, so that {4) becomes

z = ar + a2 (8)

a family of planes parallel to the y-axis. Differentiating (6) partially ith

respect to e, we get 0 = 2 + 20, or @ =— /2, and elimination of « {rem (6)
yields O\

4z 4 22 = 0, 7N\N * {7

Thig paraholic cylinder, with its elements parallel to the y—agis;;.is evidently &
developable surface, and the envelope of the planes (6). \ \

50. Equations reducible to standard forms)\\J¢ naturally happens
that many non-linesr partial differential cquatiohs of the first order do
not fall under any of the four standard fqpfgx&discussed in Arts, 4649,
nor are their Charpit subsidiary equatipns,readily solved.

Sometimes, however, it is possi’pl.e' t0 make a change of variable
which is sustthabtHe M ofdipartial differential equation can be
easily attacked. Obviously, ng'géﬁeral rules ean be given for choosing
a suitable transformation in ‘each case; we mention here only a few
types of equations, reduciblein each case to one of the standard forms.

(#) An equation ¢f {h}a& orm

N FieEmp, ) =0 (1)

where m and Ngré any constants, can always be transformed into an
equation qf\~§6?1é type considered in Art. 46.* For, when m # 1, we
may set wh> ', so that

O\

= 3 9z dry az

A Y =—=——2= (] — -

~ D P=% dz, dx ( myz oz’

\Qr$

ap = (1 — m) -;;zl = (1 — m)py; 2

* Theoretically, it iz always possible to solve an equation of the form (1) for one
of its arguments in terms of the other, therehy produeing an equation of the standard
form f{z, p) = ¢(y, ¢) (Art. 48). However, itis sometimes not convenient or desirable
to do this. Moreover, the transformations discussed jn the present case {a) have
considerable utility in connection with cases (¢} and {d) considered later. Analogeus
remarks apply to equations of the form (6), under case (b).
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and if m = 1, we let &y = log z, whenee we got
dz

P = =1 @

Similarly, for n # 1, let 7, = »'™, from which we find

y'g=(1—-mn) (—3651 = (1 = n)g; @

and when n = 1, let 3, = log ¥, so that KON
¥q = qu. O

The use of the proper substitutions evidently converts equa'ti'oﬁ"(l) into
arelation involving only p; and g, for which a complete Mtegral may
be found as indicated in Art. 46, Replacing z; and yivin this mtegral
by their expressions in terms of  and y then yiel@a complete integral
of partial differential equation (1). \‘ &
() An equation of the form A/
Fi(d'p, 79 S0, ®
o www.dbraulibrary.org.in

where k is any constant, may alsqbe transformed into the type dis-
dwssed in Art. 46. I & > — 1, set'®y = 211, g0 that

= ::‘——-‘-—-— = Izk ' 7
D1 N 5 s &+ L% _ 0
LT B e ®)

o Ay dy dz
Substituting fN\rﬂ\(T") and (8) into (6), we clearly get the stated standard

fmminpljll}d 1. If b =—1, set 2y = log 2, whence
~O° _m_p g
N/ M=% T BTy T

3d again (6) is reducible {o the form Fpy, @) = 0.
(¢) An equation of the form

Fy(z"sp, y"e"g) = 0 9
miat}r % fransformed into the standard form F(p, g1} = 0 by combining
ebly chosen transformations from cases () and (4).

4An equation of the form

10
iz, 2"p, 9" = 0 av
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may be transformed into the standard form F(z, p1, ¢1) = 0 of Art. 47
by means of the proper substitutions of casc (a).
(¢) An equation of the form

fl(xr zkp) = gl(yr zhg) (]-1)

may be transformed inte the standard form f{z, 1) = ¢y, ¢1) of Art. 48
by means of the proper substitution of case (b).

Example. TFind a complete integral of the equation £\
Dxtp? — yzg — 3% = Q. O\
Selution. As it stands, this equation does not fall under any Qf\our standard
forms, nor do the Charpit subsidiary equations, N
dp _ dg _ da {';.'_ de _ dy
Bap? —ypg — 620 — g — y® — bxg  — deiokyzg  — datp g2

offer any simple method of attack. But we may whité the given equation as
$9
2 (5‘32—7’) - 393 I\ 3 )
z

from which it 1¥ AppatRRAHEE 3 ¥s°e£1§'}ﬂstance of cage (¢), with k =—1,m = 2,
# = 1. Accordingly, we make the transformatmn

N \S

¥ = xml, y1=logy, 2z =loga

Then N\
WO o
D= 9 dz dx 2P z=*p
.\'"1— zno odm —zt oz’
:.’\'ﬁ.’ dx
7\
\/ dsn dz 1
A =2 o
N\ g G2, dz Oy =z wq
R 1 = — = e = = —
o) W dn 2

\
\and our equation becomes
20 — g~ 3 = 0.
This is of the form Fipy, 1) = 0. Taking p; = «, we geb ¢ = 202 — 3,
da1 = ader + (202 — 3) dyy,
i = or + (202 — Sy + 8.

Replacing z1 by 1/, 41 by log g, and # by log 2, we therefore have the desired
complete integral,

rlogz =a -+ (Za’ - Szlogy -+ B
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EXERCISES

In Exercises 1-6, find 2 complete integral of each of the given partial differential
equations.

Loaep — g = 1. 2 yp — 2 =ty

3. pgtop =2 4. pPq — 2% = &y

5. ypy +xye — dyp = 2(1 + 4y). 6. v¢* — 2p¢ — 39" — yp + 6g = zy.
In FEaxercizes 7-12, find the singular integral of each of the given equations. Also

find, in: each case, a developable surface belonging to the general integral. A\

7.z =xzp + yq 1 3pa. B.z==2p+yg — 2p% — 3¢ O\
9.z = zp +yg — W 10. 2p? +-ypg —2p +1 = 0, L™

11. =p’¢ + ypg® —zpg +1 = 0. 12, (p + yq — 2)(0* + ¢5_< Jq.

In Exerciscs 13-18, find a complete integral of each of the given gquﬁ.faons, using

the transformations of Art. 50. .\.\ )
18, 2*yp? — xpg + 0 = 0. 14, 242 — 2fp = _
15, z%p® -+ xpg — 22 = Q. 18, z2p® — Qgg%g + 2z = 0.
17. pb 4 238t = ool 18, 2*p® — £97%y = 2%

19, Using the transformation #1 = €%, y1 = e”, z1= ¢, find 8 complete integral
of the equation e¥p? — ¢7g? = 2@TV—9,

20. Using a suitable tla.nsform.j,tlon, ﬁnd a.comglﬁte ttt;zgral of the eguation
P arww . dbraulibrary .org.in
p¢taicoszsiny = .

51, Jacobi’s method. When & :ﬁon—]jnear partial differential equas
tion of first order involves mofe, than two independent variables, either
explicitly or implicitly through the presence of partial derivatives, a
method other than Chgrpit’s must be used to solve the equation. We
consider, in this articléy.Jacobi’s method of attacking such problems.

Let 31, w3, -« 4\dy be the independent variables, z the dependent
variable, and ik '\azfaxj (j=1,2 -, n) the partial derivatives con-
cerned, in th@ven equation,

\Q .:; G(xlj Tgy "ty Xny B Py P2, " pﬂ) = 0. (1)

We héed consider only those partial differential equations into which
the dependent variable does not enter explicitly. For, if

uig(xlr gy v Ty 2) =0 {2)
is a solution of (1), we have (Art. 20)
du

a .
p.fE-__'_'_E:ff: G=L12-n
oz
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and if we set 2 = Tnq1, Pj = oufdxr; (j=1,2, -+, n+ 1), we get

P; .
pf=__Pj! (J=112:"'=n) (3)
ntl
whenee (1) takes the form
P21, ¥, +**5 Ty Tutts P1y Pay oy Py Ppp1) =0, (4)

This is # partial differential equation in n + 1 variables, in which the
dependent variable % docs not appear. Thus, any equation of\the
form (1) may be transformed into another cquation of type (4};\1:acking
the dependent variable but eontaining one more independefih variable
(ef. Art. 41). If we can find a solution u = 0 of {(4), geﬁ;}acement of
Zn.y1 Dy z yields the solution (2) of the original equatiofhly.

Tor example, a partial differential equalion W'ith\t\wo independent
variables z and g, of the form treated earlier in {his thapter,
F(ﬂ?, IR N Q) '__'Q{ :’\

can be transformed into an equation in $hrce independent variables by
setting © = oy dbraplibeary, opr 85 p: /ps, and g = — Pz/ps, Where
p; = ufoz; (j = 1,2,3). This giwes us an equation, say

Fl(xl.(yz: w3, P1; P2, P3t = 0,
in which the new dep d\érﬁ; variable « does not appear.

The method noywunder consideration thus applics not only to equa-
tions involving thlfeé' or more independent variables and one dependent
variable, but Kls:o fo those equations for which Charpit’s method may
be used. &

Tor Fti%pﬁcity of treatment, we now eonfine ourselves to a discussion
of theeguation '

P ») F(II} T2, I3, P1, P2, p3) = 0: (5)

\ W

cohtaining only three independent variables, z;, 3, and s, and the
. three partial derivatives p; = 82/3x; ( = 1, 2, 3).

Jacobi’s method, applied to equation (5), consists of trying to find
{twe additional relations of similar form,

Fi(z1, T2, 3, 1, P2, P3) = a1, ®
Fz(ﬂh, T2y X3, P1, Pzy ’p.'i) = {a, (7)

where a; and g, are arbitrary constants, such that p;, ps, and ps can be
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determined from (5)-(7) as functions of the z's and ¢'s, and such that
these functions, when inserted in the differential relation

dz = py dz; + ps dza + py dzs, (8)

yield an integrable equation. The result of integrating (8), whereby a
third arbitrary constant gz is introduced, 15 called a complete inlegral
of (5).

To cvolve a method of determining the needed relations (6) and (7):\
having the requisite properties, we proceed as follows. Regal ing,
p1, Doy and pz in (5) as the functions of zq, 3, 23 obtained from (\5) =),
partial differentiation of (5) with respect to z, holding - &nd g fixed,
gives us PR

oF  OF apy O om  OF om0

or . ee 9
axl ap]_ 6.131 apg axy apg, 3131 ( )
Likewise, partial differentiation of (8) with res@g} to 2y yields
aF. ¢ ’éﬁ 3
aFy | oF1 dpy | 8F1 8py \OF 0ps (10)

0zy  Opy 97 9pa dmkmag - -ary.org.in

To eliminate dp, /9z; from (9) and. [’10), multiply (9 by dF, /dpy and (10)
by aFF /ap,, and subiract; we ge‘b

o, 5) 3R om0 s _ ay
w1, 101) (NO (s, 1) 821 9(ps, P1) 871 ’
where 5 _
N a(F Fy) _oF aFy 9F oFy

\“\ 3(zy, 1)  Owy 0p1  Op1 0z
O\
cte., are J‘a‘eoblanfs (Art. 24).
Smnlaﬂy partial differentiation of (5} and (6) with respect to @,
and\@lﬁnmauon of 8py/dz, from the resulting two relations, give us

a(F, Fy) | 3(F, F1) apy | oF, F1) dps _ 0 12
3(xs, pa) = B(p1, Po) 0%z 9(ps, P2) 872

partial differentiation of (5) and (6) with respect to s, and elimination
of dpg/dzs, yield
oF, Fy) | oF, F om | O, F) 0 _ 3
3(zs, pa) = 8(py, pa) dzs  A(p2, Ps) O7s
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Now, in order that (8} be integrable, that ig, in order that py dx; +
Py dits + pa dzz be the exact differential of the z-funetion sought, it is
necessary (cf. equations (4)—(6), Art. 19, with A = 1}, that
épy % Pz @'—
drg  Oxedzy  Owdzy  Oma

e _0ps  9ps 0P 14)
dry  Omp’ dzy  Oz3 N\

N

Moreover, it is easy to verily that L\
o, Fy  aF, Fy  aF, F) e, Py O
s p) | Opy, e’ Opm,p) B a(P;.,?E)":’
BF, F) AP P o
a(ps; p2) T 0(pa pa) -

Hence, if we add (11), (12), and (13), three{iia\us of terms cancel by
virtue of relations (14) and (15), and the result is

ww @ @hrfu)i l'af"(,Fm'EIQ_S:.)’E‘QEF , 1) _

(1)

(o1, pr) - O(m2, pa)® 9(za, Pa) =% 1o
or, in expanded form, Ve N
b T NS T oF
For simplicity, {nﬁt}”@}rite (16) in the compact symbelic form
\\ (F, Fy) = 0. (18)
If we trq@h&i’)’: and (7) as we did (5) and (6), we are evidently led to
AT (F,F2) = 0; 19)
shd,)from (6) and (7), there is likewise found
(Fy, Fy) = 0. (20)

The expanded form (17) is now revealed as a seven-dimensional
homogenecus linear partial differential equation for the determination
of Fy {Art. 41). Tis subsidiary equations are

dpl. d'p2 dps dx 1 d.’zg d:rq
—_— i e— s e— B —_— - . 21
o S ST oF T _oF  _aF  _oF (&)
gy dry  daz Oz a1 op2 dp3
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These relations also serve ad subsidiary equations to (19), for the
determination of Fs.

If we obtain two independent integrals, Fy = ay and Fy = as, of
the subsidiary equations (21}, relations (18) and (19) will be fulfilled.
In addition, our analysis shows that F; and Fs must be such that
equation (20) is satisfied. Accordingly, we may formulate the pro-
cedure as tollows.

Given the partial differential equation (5), first form the subsidiary
equations (21). Then find two independent integrals (6) and (7) 61>
thesc subsidiary equations, and such that condition (20) is met. Solve
(5)-(7) for p1, e, and pg, insert their expressions in (8), and infegtdte

to get a complete integral of (5). \ 2
Ezample. Find a eomplete infegral of the equation ¢ \
- zopipe — 355p; + ps — 4 = 0.

Solution. The subsidiary equations (21) are here, :',\\’

dpa dpg dzy ,":‘ dzy ds
dp1=0, — - 7 = oy = =

pipr —bzsp;  —meppt Baip —zpr —l
owvww.dbraulibrary . org.in

From the first equation, we get A
' Fy=pi = as
and from the firgt and fourth ratios;
)
N\ Fy = x2ps = Ga.
Tt is readily found thaty @, Fa) = 0, since each term vanishes. Substituta;ng
PL=d, Py = ag/rs 0 he given equation, we also gebf py = 4 — map + 30175,
and consequen&y, \(8} becomes
o = ayde + Zdoy + (4 — e + 3¢5) daa.
\ s

AN
ngmeﬁatelyr integrable, and we get as the desired complete mtegral,
2 = a1 e log 2z + (4 — ma)ws + gz + s

The above process for solving an equation involving three inde-
pendent variables ean be extended to the ease of n independent varigbles.
The general theory is too long and complieated to be given here; we
merely stale the following rule.

Given the partial differential cquation

F(mi,-xz-'“: Tny D1, P2y "7y pﬂ)=01
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form the subsidiary equations

dpy _dpo _ _fpe_ dm _ dre o dr.
oF ~ oF aF —  8F  aF _oF
dxy Oz dzy, am dp2 O
Try to find » — 1 independent integrals, F; = ¢; (j = 1,2, -+ -, n — 1),
of these subsidiary equations, such that the (n — 1)(n — 2) relatigns
s F) 3P | 0P _ A
a(xl: }'3'1) 6(52: 102) a(xm pn) '\

G, k=1, 2 -+, n—1; j#k) are all satisfied. {Then solve the
nequations F=0and Fy=a; (=1, 2, ---, n Z) for the s in
terms of the 2’s and ¢’s, and insert their expresgiofsiin

dz = py dzy -+ pg Az -+ AP d2n.

Integration of this equation leads to a eogplete integral, involving »
arbitrary constants.

www.dbraulibrarmmﬁ&"ws

In Exzercises 1-12, the referenced wire to the exercises following Art. 45. Trans-
form each of these cquations tosone involving three independent variables hut no
dependent variable, as descrlbe\d in Art. 51, aud henee find a complete integral by
Jacobi's method.

\ .
1. Ex. 1. \2 Ex. 4 3. Ex. 5. 4. Fx. 6.
6. Ex. 7. 79 6. Fx. 10 7. Ex. 12, 8. Fx. 13
9. Ex. 14. AW 10. Ex. 14 11, Ex. 16. 12, Ex. 17.

13 8 W‘th’}t the standard form F(p, q) = 0, Art. 46, can be transformed into
an equatien'tf the form G{py, ps, ps) = 0, and that such an equation is alwﬁys
solvakﬂe\by Jacobi’'s method.

‘.LQ \Show that the standard form Fiz, ?,4) =0, Art. 47, ean be transformed into
dhyequation of the form Glrs, p1, 2, p3) = 0, and that this is always solvable by

\.Iacobl 3 method.

15. Bhow that the standard form flz, 5} = g{y, @), Art. 48, can be transformed
into an equation of the form ¢{zy, p1, ps) = ${ts, ps, ps), and that this is always
solvable by Jacobi's method.

16. Bhow that the standard form z = mp 4+ yg + f(p, o), Art. 49, can he trans-

formed into an equation of the form z1p1 -+ zops + zepy = a(p1, P2, pa), and that this
is always solvable by Jacobi’s method.

Find a complete infogral of each of the equations in Exercises 17-20.

17. 1pips + papy = O. 18. 2¥p] — zaps + Faps — waps = O
19. 73 + Zzpy + 22py = A 20, T%P% + mp1 + aeps = 2.
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52. Systems of equations. We consider next a system of two or
more equations of the form discussed in the preceding article. TLet
the system be denoted by

F(ﬁjl, Lgy = *y Ty P1y, P2y "7 7 p'n) = 0,-

JFl(xlg &gy "y Tpy P1y P2, =4, pn) =, (1)
. . . . . . . . .,

Funlzy, Fgy =7 &ny P1y P2y 0y Pa) = 0. N

It should be particularly noticed that although the number = of \inde-
pendent variables may be three or more, the system involves .dzﬁjr ohe
dependent variable 2. Thus, our problem is that of ﬁndjpg ohe fune-
tional relation between the «'s and g, satisfying all (m —]—..'I)"équation&

We first sct aside the casc in which the number (mq; &) of equations
exceeds n. When m + 1 > n, the p’s may or méyx uet be obtainable,
in terms of the z’s, from a certain n of the eq@i&ions. If no set of n
equations yields the p's, or if the p’s can lg‘ﬁb chiained but do not
satisfy the remaining m 4 1 — n equations§ identically, the system (1}
is said to be inconsistent. I the p’s can'bé found from a certain set of
n equations, and these valucs satisfy:3l} the remaining equations, then
the system (1) is consistent, at leagfjﬁl this” r‘é'é’ﬁéé‘%,‘ baﬁ%aysl?ﬂgﬁnof them
will constitute an equivalent systamh.

Jonsequently we may suppose that m < n, and that the equations (1)
are independent, that is, thit the system cannot be reduced to an equiva-
lent system containing féwer equations. T'or definileness and simplicity
wé take n = 3, and dohsider various possibilities.

(a) Suppose that/we have two equations,

N
\\’ F(xh Lo, T3, P1; P2y }‘3‘3) = 0,
Fl(xls T2y T3y Py P2 }‘93) =

If (Fy “F}) = 0, either identically or by virtue of one or both of the
rdlations (2), we try to find a third equation, Fz = 0, by Jacobi’s method.
To do this, we may use the equations subsidiary to either one of the
given equations (2). As shown in Art. 51, the funetion F, should be
such that (¥, Fp) = 0 and (¥, Fo) = 0. When we have found a suit-
able function F,, we adjoin the equation Fy = 0 to the given system,
solve for py, pg, and ps, substitute in

dz = py day + p2 dza + P dzs, (3)

and integrate. The resulting relation will then satisfy hoth of the
original equations of our system.

)

#
2 8
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(b) Suppose again that we are given the system (2) of two equations,
but that (F, ) reduces to an cxpression Fa involying at least one of the
p’s. Since (F, Fy) must be made to vanish in erder that the total differ-
ential cquation (3) be integrable (that is, in order that the given system
have a solution), we set Fy = 0 and use this in conjunclion with (2} to
determine the p's. Of course, the function ¥y so found must be such
that (F, Fa) = 0 and {F;, Fs) = 0; however, in practice it may be
simpler to proceed directly to the determination of the 7's and the inte-

, . N\
gration of (3), when these steps are possible.

{¢) Next supposc that, given the system of two equations (2){ sem-
putation of (F, Fy) yields a non-zero expression free of p1, pg;and pa.
‘Whether this expression is & constant or a function of the 8, it eannot
be made to vanish, and thercfore the system (2) is inqo;}éistént in the

sense that it has no common solution. oS
(d) Supposc next that the given system consistslaf\bhirce independent
equations, PN
F(z), 2, ©3, D1, Doy pa}? ‘0,
Fl(xij a2, T3, P1y p2.: “103) = 0} (4)

ww . db ibrary.org.in o™
e TR R 6 Bulp p) = 0,

and that (P, Fy), (7, Fs), and (F1;3P5) all vanish cither identically or by
virtue of the relations (4). Then ‘the system (4) may be solved for the
p’s directly, these values ifidetied in (3), and the latter equation inte-
grated. Asin (B), it is ot necessary, in practice, to compute (¥, F1),
(F, Fy), and (Fy, Fo)}5 we may try directly to carry out the process of
solving the systenn(4).

(e) Finallg{%uppose that the given system consists of three equa-
tions (4), bug thut at least one of the expressions (F, Fy), (F, Fa)
{Fy, Fg)’fzaj]E to vanish even with the aid of relations (4). Then our
systemnodg’ inconsistent, for no common solution of equations (4) is

ol{ai}imble. dz ) o g AP fdas.
Example. Examine the system of equations
F=aopp—22pp+ =0, Fi=2pm—ps+3=0
for consistency, and find & common solution if one exists.

Solution. The first step in connection with a system of two equations is to
compute (¥, Py}, and thus determine whether the system falls under case (),
{b), or (¢}, Here we find

(F,F) = 2pps + 2ps = 2pa(pr - 1),
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Hence our system i¢ an instance of case (), and can be made consistent by
setting (¥, F1) = Fs = 0. Now (F, F;) = Fy van be made to vanish either by
taking Fs = ps = 0 or by faking F2 = p; 4+ 1 = 0. With the former choice,
¥ = Ogivesus py = 0, whence F; = O yields py = — 4. Therefore

dz =— g dry, z=—fu+a.

Tt is easily seen that 2 = — 821 + e satisfies both # = Qand F; = 0,
On the other hand, taking F3 = p, + 1 = 0, we get ps = 1 from #4 = (,
and then pz = 1/(x1 ~+ 2%;3) from F = 0. This leads to N\

das p \\\
a2 =— dx —_—t da K™
1F it on + das, O

which is not Integrable, A\

The student should show that when Fu = pz = 0, hoth (F’}Fg) and (F1, o)
vanish identivally, whereas the choice Fy = p1+ 1 = Q.leads to (F, Fy) =
ppe 7 0. This accounts for the integrability of the formerordinary differential
equation and the non-integrability of the latter, \\;

The analysis into five cases when =n =~3\;$“typical, and serves as a
pattern for the treatment of systems of eguiations involving more than
three independent variables. Becau;;efpf"the greater complexity of the
argument for n > 3, we shall notedelve fuflralibizrihess Huestions.
(Sce Exorcises 8-10, below.)

A BXERCISES
\

In Exercises 1-7, examing each of the given systems for consistency, and deter-
mine 3 common solution whierl possible.

1. 3uapf + 2p0 @0 = 1, p1— zgpz = 1.

2. o} — p2 L @aevipy = 0, asp1 -+ pz = 0.

& oy — = \ (z1 + ma)zs = 0, p1 — pz -+ Zwraps — 2w = 0.

4. p +$(p: Fpp—zi—2 —4) =0, Ty -+ wpe = 2z1ez + 1
2 b 2 2 & 2

B. x1pi ENIrgpe + dreps = 0, Smapt — P2 — 22103 + warg = 0.

8. 2% p1 — 21aipy + Bzy = 0, 2p1 — 2awdpe = 0, ;1 — 2mps = 0.

T (Fapeps — wop1 — Bzowaps = 0, v+ #dps = 0, 2egp1 — 2app = 0

8 Muke an analysig, similar to that of Art. §2, for a aystem of two equations
involving four independent variables. Hence elassify under one of your cases and,
if possible, find a commeon solution of the system

2 —
zop1 —zp2 — 93 =0, pi+aim+1=0.

9. Make an analysis for a gystem of three equations involving four independent
variahles. Hence classify under one of your cases and, if possible, find a common
solution of the system

2ot — o — wwrlpa = 0,  2ips + Gadpy = O,
Brep1 + pz — xethm + 22 = 0.
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10. Make an analysis for & system of four equations invelving four independent
variables. Hence classify under one of your eases and, if possible, find a common
solution of the system

p1+ 2oipe + 28ps — apa =0, p2 —aips = O,
| p}+ dofeips = 0, pi+daipp = 0.

53. Applications. We have already considered, at various poinfs
in this chapter, a few geomctric aspects of non-linear partial differeufisl
equations of the first order and tbeir solutions. In this article W shall
illustrate, by means of cxamples, other geometric problems. .\

In a number of instances, the problem is to find a surfage Satisfying
a given partial differential equalion and possessing cerfaind geometrie
propertics. Various methods of solving the associat&;g&%ﬁbsidiary elua-
tions may lead to different complele integrals, then particular cases of
the general integral are obtainable from each, Bomplete integral as
deseribed in Art. 44, and, finally, the partia Aifterential equation may
possess & singular integral. The propencgurface, mecting the stated
geometrie conditions, may belong to any..ozne' of the categorics mentioned.
However, the con(HEion _of the rablttn often determine the correct
type of solutign‘f‘é’é 10 the Bifgu% l‘gitample.

Ezample 1. Find the surfa{e” satisfying the partial differentisl equation
‘z'\é.fép + g — 2p% = 3¢% (1)
and generated by characteristic curves parallel to the y-axis.

Selution. Sinee: j:ai'ticular cases of the general integral and the singular
integral (Whel{ die Exists) are all derivable from a complete integral, the latter
ghould be f h“&"ﬁrst of all. Here the given partial differential equation (1) is ol
the standgﬁis orm discussed in Art. 49, and consequently a complete integral is
immedigtely found; it is

£\
\ - 2= az + By — 2% — 38, @)
a two-parameter family of planes.

Now, in this problem, we are concerned with characteristic curves, which
arise in connection with the gencral integral (Art. 44). Hence we should assume
a functional relation between the arbitrary constants o and 8, and determine the
form of this relation from the geometric data. Setting § = ¢fa), (2) becomes

2= ar + ¢y — %a? — 3P (3
Differentiating this partially with respcet toa, we get
0 =2z + ¢y — 4o — 6. (4)
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Equations (3) and (4) together define characteristic curves; since each equation
is linear in x, ¥, and #, these characteristic curves are all straight lines.

Let @, b, and ¢, as functions of «, denote & get of direction numbers of the
characterisgtic lines (3) — (4). ety of direction numbers of the normals to the
planes (3) and (4) are respectively oo, ¢, —Iand 1,¢/, 0. Conditions for perpen-
dicularity (Art. 22) then give us the relations

et + b — ¢ =0, at+oh=10

From these, wec find as one set of direction numbers of the characteristic ]ine},
[ ! ¢\ :\ -

—¢, 1, ¢—af. AN (3)

Now the #-axis has the direction numbers 8, 1, 0. In order that*the character-
wtie lines be parallel to the y-axis, we must therefore have —g’, =7’ W0, b — g’ =0,

whenee o) = 0. ~
Thercfore & suitable one-parameter family of planes\g obtalncd from (3) by
setting ¢ = 0 / \.
2 =oaz — 2a° '\‘ {6)

The envelope of these planes is easily found 0" have the equation

Sz = (52 www. dbraulibrary.org.in {7
This is a parabolic cylinder, with eieiﬁents which al#o play the role of charac-
teristie: curves parallel to the j{*é.xis. Accordingly, (7) rcpresents the desired

surface,
The two-parameter fa.rhﬁy of planes (2) has an envelope; the student should
show that its cquatlon i8N
\& 24z = 3z 3+ 2L, {8

A
This elliptic pa'm%o]old is the singular integral of the differential equation (1).
The charack}g@bm curves (3)— (4) arc all tangent to the surface (8), and the
p'i,rabolm yhnder (7) is tangent to the paraboloid (8) along the curve 8z = z%,
hg 115.

\It sometimes happens that different methods of integrating the
Charpit or Jacobi subsidiary equalions, or other considerations, lead to
distinel, complete integrals. For instance, the partial differential equa-
tion

PP+ +D =1 (9)

discussed in the example of Art. 47, was found to have

(x4+ay+8°2+AFHE -1 =0 (10)
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a two-parameter family of circular cylinders of unit radius and with
their axes in the zy-plane, as a complete integral. On the other hand,
in Example 1 of Art. 20, the spheres

@—a+ @b+ =1, (11)

of unit radius and with their cenfers in the zy-plane, were shown to
have the differential equation (9} as their eliminant; accordingly, equa-
tion (11) may equally well be regarded as a complete intogral of Q)'
z N
rl—24z=3x2+ 2y )

A
y 4
»

4 '\ ?
N\

S ¥
o "
Ww ,dbrauljbrary.org.i’ﬁ;

® &N
e 11

.

To get a clue to the ;elgsionship between a pair of complete integrals,
let us investigate the\f'qi'egoing example still further. If we take § = 0
in (10), we get thedgne-parameter family of cylinders

S+ oy + L+ AE -1 =0, (12)

By the us;ts}'l;}:l{ethod, it is found that the envelope of the eylinders (12),
that is{'q\part of the general integral of (%), is

A &ty =,
\”\;vhich is & sphere obtainable from (11) by setting @ = b = 0. Like-
wise, other ehoices of § as a function of « in the complete integral (10)

will lead to particular cases of the general integral which are included In
the complete integral (11).

Apparently, therefore, each complete integral may be regarded as &
particular case of the general integral when the latter is derived from the
other complete integral, Suppose that

f(x: Y, 2, o g =0 (13)

and g(x, ¥ &4 b) =0 (14)
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are two complete integrals of the same partial differential equation.
Differcntiate (13} and (14) with respect 1o x and ¥ in turn, regarding z
in each casc as the funclion of & and y defined by the ecorresponding
equation. This gives us four additional relations,

fo=10, fu=0, gz =0, gy = 0. (15)

If we can eliminate z, 4, 7, P, and g from the six cquations {13) — (15},
we get a functional relation between « and § and o and b, say -

8 = ¢(a, q b). \\(16)
Now substitute this expression for 8 in (13) to get a one- pa,rc;meter
{amily, regarding « as paramecter and ¢ and b fixed. Tha particular
case of the genoral integral thereby obtained should then beé the eom-
plete integral (14). \

This relationship between integrals gives Jus{Jﬁcatlon to the title
general integral. For, the aggregate of envelnp derived from any one
complete integral will include, by virtue of éguations such as (16), all
other complete integrals (or particular casges\of these complete integrals).
Thus, this totality will include all solutlons, with the possible cxeeption
of singular integrals, and therefore manghbhé@ﬂawﬂsﬂdl he general

inlegral, X

Exzample 2. Perform the eliminafion process deseribed above, for the com-
pletc integrals (10) and (11) pf\bhe differential equation (9).

Solulion, Taking \\ ;

Lt oy + 8+ (e (P - 1) =0, an
WL (@ -+ =B+ - 1=0, (18)
we get hy 'Ilsq&“a\l':liffcrentiation with respect to x and ¥,
LAY =2ty +20F ol =0, (19)
QY fu = 2o + ay +B) + 21 + o = 0, @0)
gr = 20x —a) +22zp =0, (21)
gu=2y— 8 +2 =0 (22)
From (19) and (21),
_ztay B, @3)
i+a
and from (20) and (22},
M — b (24}

1+ o
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These two equations combined yield

afs —a) =5 — b (23)
From (17) and (18),

A+a) (- =@tay+fH =10+t [ec—a+ - )%, (26)
Qubstituting the value of y given by (25} in equation (26), we find
(x + ot — aa® + bo + 82 = (1 4+ oz — a) ~
(1+a2)x—aa2+ba—|—ﬁ=(1—l—a2) (x — a), ‘.\‘\'(27)

Hence

the sign of the extracted square root being determined by ilié tact that
(z + ay + ) must have the same sign as {z — a), by (23). Tn (27), @ can-
cels, and we are left with the relation , {
AV
- (a+ ba) \; (28)
This is the necded eliminant. ~\\J
Comntbining (28) and (17), we then have ﬂ\{:\ one-parameter {amily of
eylinders
(a:-l—afy—a—ba)?+(1 2)(zg—l)=0
or www.dbraulibrary.or

(5 — ' 20 — @) (o — B+ & iE*é[t:y—b b A1 P — 1= 0. @9

Partial differentiation of (29) with rCQpect to e yields

.z;;\ (¢ — o) by = B)

SRR

(30)

Substituting this eg{ﬁi‘ézéé}on for e in (29), we get
7oA 2 — af(y — B | (v — o)’y — b
— -1 — =
m\qﬁ'w - t2-1 G-brrL—1
[ @ + (= DI — B+ @ - D - @~ o)’y = B* =0,
'\
AV @@ -+ G- - D+ @ -1 =0,

) 2

Tactoring out 22 — 1 (which, set equal to zero, ineidentally yiclds the singular
integrals), we obtain

E—a+ty—~0+E-1=0,
the second complete integral (18).

EXERCISES

1. In Ixample 1 of Art. 53, show that taking § = ¢(a} will not yield a solution
whose characteristic eurves are parallel 1o the r-axis. By setting o = ¢{8), obtain
the eylinder 12z = 3 as the suitable solution.
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2. Find the surface satisfying the equation z = zp + yg - p* — g% and gener-
ated by characteristic curves parallel to a line with dircetion numbers 2, 1, 3.

3. Bhow that the equation # = 2p + yg¢ - 3p — 5g + 2 has & complete integral
representing planes through the point (—3, 5§, 2). What planes through this point
are not inchuded in the complete integral? Show also that the singular integral is a
part of the complete integral,

4 Show that the equation p? < ¢ = 2% has the complele integral z =
peroesat ¥ siv e 5nd that the differential equation also possesses a singular integral
which iz & part of the complete Integral. )

5. Find o solition of the cquation z = zp 4- y¢ + 2%, cnveloping planes passi?g
through the point (0, 0, 1) and belonging to a complete integral of the piven sduation.

6. Tind a two-parameter Temily of planes satisfying the differentiall cefisation
2 =azp + yq + &VPE + ¢ + |, and determine the geometric propertyacémmon to
these planes. ITence deduce, on geometrie grounds, a singular mtegml of the dif-
ferential equation, and find its equation.

7. Find ihe surface satisfying the differentizl equation 2&‘ +1 =0, and
generated by characteristic curves passiog through the geiny (0, 1, 0). Tnterpret
geometrically. N

B. Find two surfaces satisfying the differential equition z = zp + yg — 4p® — ¢,
passing through the point (5, 2, 1}, and with charé&temstm curves parallel o the
i AXIS,

9, Bhow 1hat the differential equation 4.zzg + p = 0 possessed the distinet com-
plete integrals &
2 =oy — o2 +8, :i(éﬁ:&fwg:}amqg}lhi B2y .org.in
Using the method of Example 2, Axt. 53 find a functional relution between o, 8, @,
and &, and henee find the qecond\aolutw n a8 a particular ease of the general integral
obtained from the first.

10, Show that the d]ffel\smal equation 4reg® — p + ¢ = 0 posscsscs the distinet
complele integrals

z?:,{(zli-ywa?xus 2o —42%) = @ +y+ b

Findaf unctN{Lal rel&tmn between «, 8, @, and b, and hence derive the second solution
from the Gogt

1L SHew that the differential equﬂt.l(}]l 2 = a1 + zopa + zapa — P — 208 — 354
has\tho\s‘mgu[m integral 24z = 63:1 + 3k + 328 which may be regarded as a hyper-

are enveloping the hyperplanes of a complete integral.

12. Show that, for an equation of the form Fir,y, 7 @) = &, Charpit’s and
Jacobi's subsidiury equations are of the same form.

13, Bhow that o differential equation of ihe form F(zxy, %9, 25, Py, 12 ps) = D can-
not poszess & singular integral.

14, Using the method of Art. 50 (¢), find surfaces whose normals all pass through
thelinez = 4, 2 = 0.

15. Find surfaces whose notmels all pass through the parabola WY=x2=0

16. ¥ind s non-planar surface for which the tangent plancs have intercepts, on
the eoordinate axes, whose sum is unity. (Cf. Exercise 12, Art. 20.)

17. Find a non-planar surface for which the tangent planes have infercepls, on
the coordinate axes, whose produet is unity. (Cf. Exercise 13, Art. 20.)
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18. Tind & non-planar surface for which the tangent planes have intercepts, on

the eoordinate axes, the sum of whose squares js unity. (Ci. Exercise 14, Art. 29.)
19, Tind & non-planar surface for which the product of the distances from the

points {1,0,0) and (~1,0, 0} to any tangent plane of the surface is unity.
90. Show that every surface, such that the sum of the intereepts of any tangent

plane on the eoordinate axes is zero, is a developable surface.
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CHAPTER VI
FOURIER SERIES

In the next chapter, coneerned with linear partial differential equ;-
tions of order higher than the first, we shall, sometimes of practicalneces-
sity, be led to a consideration of solutions cxpressed in thp:\for'm of
infinite series involving trigonometric functions. In order that we shall
be able to obtain such scries as needed, and to acquaintyourselves with
the essential properties of these series, we interrupt pui\gtudy of partial
differential equations at this point for a brief dispussion of the subject
of ¥ourier trigonometric series. N

As intimated above, expression of a giyethftinction in the form of a
Fourier series rather than in finite or powei"%gies qrm will be required
in our process of solving certain partial,ﬁ\i'ﬁ‘gi'enff‘ali squations: "In addi-
tion, we shall find that many fmctioii’s,’ for each of which there exists no
one simple finile expression over.ii{g‘ Interval of definition, and for which
no power series expansion is obi;bjinable, can he treated by the Fourier
method. K

54, Auxiliary form lé,:é;~ ’ In our discussion of Fourier series, we
shall require the Valus-)sxf certain trigonometric definite integrals. We
thercfore begin by @stablishing these integral formulas, to which we can
refer as the need{grises.

Lot ¢ be anylfiumber—positive, negative, or zero—and let n denote &
posilive 113«Qgt~r Then we have, from ealeulus,

N YR PR,
R\ . cOs NE
(Il«:..\’f sin nz dz = [—— }
\ ) A n ¢

=__l [cos (ne + 2wn) — cosnc} = 0,
n .

since cos (§ + 2xn) = cos # for n an integer, and similarly,

oo 2x 3 e-2T
(I f cos nr dx = [bmﬂnx] = 0.

e

137
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Turther useful formulas may be obtained by using the irigonometrie
identities '
gin mz cos e = & [sin {(m — n)z + sin (m - n)xl,

[cos (m — n)x — cos (m + n)xl,

1
3
- . _ ;
fin mr N ne = 3

cos mzx cos nr = 3 [cos (m — n)z + cos (m -+ nix].

With m, as well as n, a positive integer, we then get with the aid of the
above identities and formulas (1) and (IT),
N
c+2
(11T} f sin max cos ne dr = 0; A
3

and, with m = n, « W

et+2x 2.\
(IV) f sin e sin nx dz = 0, (m 5% n), L™

et2x
(V) f cos mr eos nx dr = Q, (m 7‘-\\’)

Tinally, we have OF

www.dbraulibrary.or g,ln

o4-2r !2"1*2"'
(VD) f sin® nx dz = %‘J' (1 — cos 2nz) dz = ,
] $ C

e+2x - c+2x

(VID) f cos® ne d@:¥ 3 f {1 <+ cos 2nzx) dr
¢ \\’ v c

These seven integrélformulas are the ones required.

656. Definition§’and theorems. A frigonomelric series is defined as

a series of tb.(:\furm
z“\s.
,Q\%’ +ajeose +azceos2r 4+ g, cosne e
.\"\‘;’ =+ by sin = + by sin 22 -+ -4 by, gin nr -+ -, (D
\wher(‘ the a's and b’s are constanis and  is a variable. Later we shall
obtain a slightly different form of trigonometric series, in which the
variable is replaced by some simple linear funection of , but such a form
is ossentially equivalent to (1).
For convenicnee, we sometimes represent the series (1) in the com-
pact form

I
3

o

%ﬂ —|—Z(an cos i + b, sin ng). 2)

=1
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Qimilar summation notations will oceasionally be used for other serics
in the following discussion.

The constant term In (1) is written as a¢/2 rather than as eg for
subsequent convenience, for we shall find a formula for @, which is
valid when n = 0 as well 23 when 7 i3 & positive integer.

It will be remembered that sin nz and cos nz have the period 2x/n,
and that any integral multiple of this number is also a period; that is,
for | an integoer,

&in ﬂ(

cos (a: -+

2al ’
:)Esin(nx—!-%k)ﬁsinm, N\

2l ¢
%r) = cos (nr + 27k) = cos nz. . O

o~
2 Y

7
 {

Thus every term in the Fourier series (1) has 2r as.a penod and con-
sequently any function represented by a series of the’ form (1) in an
interval of length 27 will be periodie, with peru;d{?.ﬂn-, and automatically
defined by the serics (1) for every z. We thebefore confine ourselves
(temperarily) to intervals of length 2r; suehvan interval may have any
left-hand boundary value ¢, and will thew, #Xtens-fa1dradTorg.in

The conditions under which a sgi‘ies"of the form (1) will converge
and represent a funetion f () in an interval of length 27 eannot be dis-
cussed here.* We shall merel}n détermine, under adt‘quate assumptions,
values of the coefficients au,ﬂm and &, (n = 1,2, -+ ) corresponding to
a given sullable functio 3'\’(::') and shall then St‘]f(’ Fourier's theorem.

Suppose that a glveI\unctwn f(r) is expressible by a trigonometric
serics,

fz) = O\Falc(}qx+agco'§2:c+ @, cOSHE e
\ 4+ by gin o+ bysin 2z +-- -+ b, sin nx 4 - {3)

311(1«51113'{)056 further that this series may be integrated term by term.
Then'we have, using formulas ([) and (IT) of Art. 54,

e+2r f“"‘-"'a
[iwa= [ G

{ poter
g = - f Jiz) da. @

* 8Bee, for cxample, Goursat-Hedrick, “Mathematical Analysis,” vol. T.

*

whence



140 FOURIER SERIES [Crap. VI

Now multlply both members of {3) by cos nz, and again integrate
term by term. With the aid of formulas (II), (AIDY, (V}, and (VII) of
Art. 54, we then find

e+2r o+ 2r
f f(x) cos nz dz = f @, COS° Nt dx = Ty,
4 [

gothat form =1,2, -+,

1 e+2r . '\
Q= — f fz) eos nz di. W M5)
by O
C ’\
We note that relation (§) also holds for n = 0, for then it r:eduCes to {43;
it iz for this reason that the constant term in our series i% conven’smna]ly
denoted by ap/2. m\\
Finally, multiply each member of (3) by sin & and integrate term
by term. Making use of formulas (I), (III) ) (Qﬁ), and (VI) of Art. 54,
the result iz \

¢+3r [ f'2vr N
wf»\gﬂ & dr = vé‘ B, sin? nx dz = 7by,
. I'au I ar_y o \

Y
.\

c—!—21r
g-/‘ flz) sin nz dz. (6)

Thus, glven fﬂnctmn f(z), we can formally compute numbers

g, Ga; On (7 = .-} by means of relations (4)—(6). The trigono-
metrie semeS\havmg coefficients obtained in this manner is called the
Fourier a%»e-s belonglng to the funetion f(z), and we call the numbers
ag, g by (n =1, 2, «-+) the Fourier coefficienis of the funetion f (x).
Ralafzons {(4)~(6) may be briefly referred to as Fourter formulas.
\ JThe student who is familiar with the concept of uniform convergence
will recognize the fact that our assumptions are fulfilled when the serles
(1) converges uniformly, and represents the function f{z), in the close xd
interval ¢ £ 2 £ ¢+ 2r.  We thus state the following thecrem.

and therefore, forn = 1, 2,

,%
1,2,

TaroreEM 1. If the series

]

- -l-z(aﬂ cos nx + by, sin nx)

a=1
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is uniformly convergent in the interval ¢ = z £ ¢ -+ 2, and represenis
the function Six) in that interval, then

1 et 2
a, = ;f flz)eos nzdz, (n=0,1,2 -}

I

1 v 21

b, = ;./ f(z) sin nzx dx, n=12 -

Now it is not obvious that every function f(x) will be representahles
by its Fourder scries, formally eonstrueted by means of relations (4)<(6),
nor, in fact, that the Fouricr series will converge to any fungtienz’ It
actually turns out that the Fourier series belonging to certain functions
do not converge to any funetion. However, all the func;}bﬁé that nor-
mally arise in practice, including many posscssing £16/power series

Y 1
] N
w’
N\,
\ :Iﬁ
P :w?ww,dbrauljbrary.org.in
O‘ I
N i
- )
O ! e
0] s {m x\ %y

A\ M. 12

expausions, are_freperly represented by Fourier series. In this con-
nection wo statd Fourier's theorem:

THEO]{N}.‘%iI. Any single-valued function §(w), defined and continuous
except_pdasibly for o finite number of finite discontinuities in an interval
of Aewgih 2, and having only a finite number of mazima and MINTMG 1R
thatinterval, possesses a convergent Fourier series which represents .

A function f(z) is said to have a finite discontmwty at a point
% = gq if Him f(zg — k) and Lim f(zo + %) both exist but are different
kot h—07

numbers, Thus a finite discontinuity is represented geomet-rica_lly by
a finite gap or jump in the graph of the function, as shown in Fig. .12.
It turns out that, when we put # = % in & Fourier series for & funct:lon
bhaving & finite diseentinuity at this point, the series yields the arith-

metic mean of the two foregoing limits.



142 FTOURIER SERIES [Cuar, VI

56. Examples. We now illustrate, by means of examples, the
manner in which Fourier series belohging to various funelions are con-
structed. Some of our results will alse be of use in later work,

Ezample 1. Expand the function defined by the relations
f@=—1, —7 < <0

: (L
f@) =1, 0<e<m,

. , . "\
in a Fourier series. \

Solution. Here the interval, of length 27, beging at ¢ = — 7. Th%ﬁnctum
whose graph is shown in Fig. 13, is in this case dcfined through o relations,
and has a finite discontinuity at z = 0. Aceording to the sta,temeut at the end

44
\.
¥ o\
\J
— 1 [
1
\ % ]
i »$ t‘\\" :
! Y —
— 0 X ) T
-~ - 1
I 1
! « \J !
L =3 | —
www dbra uljbrary.qﬁ‘gf in
.: N -

. T 13
of Art. 535, the Fourier ae%ixshould yield 3(1 — 1) = O for x = (. In addition,
the Fourier series will, betause of its periodieity, define f(a) for every =, anft
there will be finite dl‘SCQHtlllultICb at =4, & 27, -+ -, where the series should

have the sum 0N/
From the FQurler formulas of Art. 55, we get

et [ frsat [0

:"\.' L 0

&\
QO =§f( 1) do 4 = fldx:_l""l_o

1
=?-rff Losmdﬁ—“f( 1) cos nzx dr 4 ~ flcosmd:t:
[ 'imm::l [sinm’]w=0, (n=1,2--),
. E I

1 ' -
= ;f @) sin ngp de = Ef {(—Lsinnede + = f 1-gin ne ds
Y _ A
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a T

5 70 GO R 1

=[m M] + [— e J‘] = —l:l — eos {—nw) — cos nw + ].]
i —ar nw g W

= —2—(1 — COS nr), {n=1,2 -}
B

Thus, all @’s vanich, and, since the cosine of an even multiple of 7 is 1, all &'s with
even subseript also vanish, Forn =1,3,3, ---, weget

4 4 4 I\
by==, lby=-— By = e
1 o ] ar ] B A
&\
Therefore the required Fourier series, for —7 <z <7, is Ve \
N/

&

ey = E(sm+1sins:c-1- L inze + 2‘ @
7 3 5 >

X3
Evidently this series yields f(0) = f(xm) = J (£27) = ~A=0, as we expected.

Ezumple 2. Find the Fourjer expansion of the fun:&(fn defincd as

=& 0 <‘.:1‘;,:. T
o= O @
@) =2r -z, a@<z<Im
Y ',:’;‘"WWW-de’aulibrary,org.in
\
&/
£ N’ |
Q% !
) 1
7 N/ H
8 },/ :
4 1 ]
N\& t > B
1o - <
RN
=N Fa. 14
N |
interval

\%’Eﬁféon. This funetion, which is continuous t-hrougl.lout the
0 <z < 2r, has the graph shown in Fig, 14. We now find, with ¢ = 0,

1 2w 1 w i 2
ao=~f ftx)dw=—fm+— (o — ) da
TJo T JSa T ode

127, 1 Qr—a) " _7 T
oL

Tl 440 T Es

2w
2 ™ ]
a"z?lrf f(x)cosmdm=:}f xcosm:d:c-!-;f @r — ) cosnz dr
0 aw

o]
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1Txsinne . cosne |* 1] 2w sinne zsinne  eognz |77
=P = b T T T T
T n X I n n 7 .
eosnr — 1 . — 14 cosnw 2
=—-—-——1——-—+-.—-=—-2—(1-cosmr), =12 ),
e nlr nir

o x 2w
=% 1 . 1 .
[ lf f(:c)sinmdx=—f :tsmm:dx+—f (2r — @) sin nx dr
L 1] ?r ¢} w T

1 cosnr spnz|™ 1 9 cOBTE . L COS BT Sin A LR
[ e g

il

2 n i 7N
€ N\

w " [ o T

ks

'\
=0, (n=1.20").
n n ™

cosar 2 2 R2ecosnwm  COSRW
n noon

Thus all of the s, and the ¢’s with even subscript, vam'lﬁhés,f\id

Therefore the desired expansion, for 0 < &'<2r, is
www.dbra uljbrary.on.:g’;iﬁ

1 3 1
J) = g - ;(cosz:i}é—{cos 3z + o 008 Sl ) 4

Example 3. Find the Foﬁ"}ler serics for the function

,,\\)"'(x)=x, D<e Em
A\ (3

< o) =w, w<z<m.

/.

O = .
Fia. 16

Solution. This function, continuous for 0 < z < 2, coincides with the
funection of Example 2 in the left-hand half of the interval, but is different in the
right-hand half (Fig. 15). Here there are finite disconfinuities at the end points
of the interval, which was not the case in Example 2,
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The Fourier coefficients now are

- 2r
1 1 . :
=—f:cdx—t——f wd:cz*-lr—i—w-——gz,
T Jg % J, 2 2
1 T 1 2
a.ﬂ=—f :ccosnxda:+—f T COs N 4
T T,

-1
_eosmr— 10 L g eesnm),  (=1,2--0),

nir nir

1 T 1 b2 ' ;
by =~ z ¢in ne de 4 - 7 sin n dr O
T Jy ), A "
y 4

#%7

cos pr 1 CoR N ¥ AD
= — =+ =T " (ﬂ; = 11"%'\"}'
oon o n n \J
Thercfore, for 0 < ¢ < 2, \\

A\
fla) = —%i—r - %(c(}s x4+ 312 c08 3$:—f§1§cos 5z 4 - )
i o 1o ®)
— (sinz + §sin 2{ ;1*:% S, 32 g oo l)jbl‘al'y.org,in

EXERCISES

1. Bhow that the funetion ﬁgﬁ;\led asf(x) =sinlfs,0 <z < 2%, does not satisfy
the eonditions of Fourier’s ¢ oo,

2, Betting z = /4 afdz = n/2in equat-ion:@), Art. 56, deduce two numnerical
series for =. »

3. Verify scries (3), Art. 56, for z = =/2. Also, setting # = 0 in (4), deduce &
numerical gorics ot a2,

4, Setting A = 7/2 and # = = in equation {6), Art. 56, deduce sexies for = and
. Using t] ég\ﬁ:cfter result, obtain the value of f(0) 88 given by (6).

In Ex‘éégiées 5-10, expand each function in a Fourier series over the given interval.

Alsoexhmiine cach series at points of discontinuity when such exist.
) 3
Ffa) =1,0 <z <v; fla) =0, v <@ < 2w,

6.7@) =0, v <z <0 f)=20<z<m

T =% 0 <z = =/2 f@ =72 x/2 <z = 80/2; fle} = 2= — &,
/2 <o < 2m.

8. fiz) = sing, — v <zr<0; fg) =0,0<T<m

9 flz) = sinz/2, — v < <7

0. fi) = |sinz ], 0 <=z < 2

B7. Even and odd functions. A function which 18 guch that
J(~%) = f(2) is called an even function. Tor example, cos 7 is an even
function, since cos (—z) = cosz. The geomefrie charaeteristic of the
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graph of an even funclion, ¥ = f(x), is symmetry with respect to the
geaxis; thus, the graph (]ﬂ ig. 14) of the function of Example 2, Art. 56,
ghows that this funection is cven.

An odd function is a function f(z) such that f (—x) =— flz).
Thus, sin z iz odd, for sin (—z) =— gin x. The graph of an odd fune-
tion is symmetrie with respect to the origin; ¥ig. 13 shows that the
function of Example 1, Art. 56, is odd.

Now it was found in Example 1, Art. 56, that the Fourier coefﬁments

‘g, @ (m = 1,2, ---), of that odd functmn all vanished; and the cagfi:
clents b, of the even funetion of Example 2, Art. 56, were hkpms@ all
zero.  These facls could have been predicted; in this connectlorn we
have the following theorem.

,’.
7N
< LY

TarorEM. The Fourier coefficients of an even funct@% flz) expanded
over the interval from —w to = are given by

2 x ’x:\\:
an = ‘f J(z) cos na d:c, ..\b,,, =0 o)

The Fourier c5ReRER HiREAT SbF {Efﬁﬁdwn J (1:) for the same interval are
given by

@ = 0, bﬁ = f f(z) sin na da. 2)

Geometric conaderafisﬁn of the areas represented by the integrals in
the Fourier formulas l'eadle shows this theorem to be valid. Here we
shall prove ana.lyt;‘@ally only the first half of the theorem. We have

ﬁﬁ\ f Jlx) cos nx dz

\m‘ =—Irf(x)cosnxdx+ ff(x)cosm:dx

In the first integral of the latter expression, change x into —z; remenm-
bering that cos (—nz) = cosnz, and that f(—z) = f(z) by supposi-
tion, we get

1 0 w
8, = ;f fiz) cos nx (—dx) + %f Jf{z) cos nx dr.
x f]

Now change the order of integration in the first integral, This changes
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the sign of that integral, and it becomes a duplieate of the second
integral, whenee @, is scen to be given by (1). Morcover,

by = E./- flz) gn nx de
T —_T

1 f“ ‘ 1 /" .
= - fx) sin ne dz + — (@) dz
. 7"./0- SIn. T

1/0 X 1 /- X
= = flrysin (—nz) (—dx) + — @) sinnzdz
)] T rfof St & )

N

_. 1 f f(x) sin na dx + 1 f F(2) sin nz de 0.9
.o TJo R4
Consequently the second of equations (1) is established. Formulas (2)
may be proved in like fashion. PN
When a given function, to be expanded in'a Fourier series over the
interval from — = to w, 13 either even or odt,\the above theorem effects
s considerable reduction in the computagion. If the function is neither

even nor odd (fn{- i-nst.a.nce, the funcfc,if)}q’ Omﬂmﬁrﬁ%ﬁg} 53R if the
interval of definilion iz not —7 €@ <7 {or one equivalent to 1t, as
r <z < 37), we use the original Fouricr formulas of Art. 55.

Ezgmple. Obtain the Fn{ﬁe} series for the function
f(=) = =, —x <z <A, (3)

Solution. Sirlce,‘s}i;i;s'functiorl is odd, the theorem tells us that all the a's
will vanish, and wemneed compute only the b's, using the seeond of equations (2).
We get S

2T 2 cosnr | sinnz |7 9 cos N
bn=~—j;j xsinnwdx=—[—x +— ] =—-—
...\:'\’.‘7Ir 0 E '"' # o
Tifb@f},fe, for —7 < 2 <,
x=Q(Sin:c———é-sin2a:—|—%;sin3m—1—sin4zr—{—---). @

The graph of this function is shown in Fig. 16. We may check by noting that
series (4) yiclds £(0) = f(=x) = 0, as expected. _

58. Half-range series. let there be given a function f(z) defined
for0 <z <« x, an interval of only half the length previously eonsidered.
For some purposes, it may become necessary to cxpand this function
i:Tl a series of sines alone or in a series of cosines alone. We shall find
instancos of these needs in various problems in the next chapter.
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The properties of even functions and odd functions, discussed in the
preceding article, enable us to fulfill such requircments. Suppose first
that a series consisting only of sine terms is needed. Since this sort of

¥

F1a. 1 )

6 R
geries arises In connection with odd functié'n}, we create an odd function
Fo(z), defined for the full range, —o & < w, and which is identical
with f(z) in tHEvpiHHRBHER et gdhge, 0 < 2 < 7. It 18 easy o see
that this odd function Fy(z) willBergiven by

o) =—d{22), —7 <2<,
Fn(x)'é}(x), 0<e <

The Fourier series fﬂ}}*’u(x) will then consist only of sine terms, and,
gince Fo(z) = f@)Mbr 0 < z < , this sine series will represent the
given funetiony f@:) n its half-range.

If, on t}@;}ﬁher hand, we need a cosine series represcnting the given
funetionyle) for 0 < z < v, we proceed as follows. We ecreate an
even fuhction Fg(z), given by

AN
\"\} . Fg@@) = f(—z), —7m<z<0 )
Fgplz) = f(z), 0<ze <
Then, by the theorem of Arf. 57, the Fourier series for Frlz) wil
contain only eosine terms, and, by the second of equations (2), this
cosine series will represent the given funetion f(z) in its half-range.

Usually we are entirely unconcerned with the yield of either one of
these half-range serics in the left-hand half, —# < z < 0, for such a
vield is merely a by-product ariging from the artificially created function,
and our interest is centered in the representation of f(z) for 0 <z < 7

(D
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Aseordingly, we need not stop 1o eonstruct the f unctioh Ifo{z) or Fg(x),
as the case may be, but may direetly apply the theorem of Art. 57 to the
funetion f{x), as in the following cxample.

Ezample. TFind the half-range sine expansion and the half-range cosine
expansion of the funetion
fay=2-1, O0<z<m, 3)
N
Solwtton. 'To find the sine series, we use formwlas (2) of Art. 57. We £eh,

of eourse, 6, = 0, and AN

O
bﬂzgf (;c—l)sinﬂxdz=~2-[—zmsm _I_sm:w:_l_c(qs:{ﬁ']
1] ]

T ki3 13 I e

~\
2 vos 2
_ 2r0wnr_,_2cosmr_ 2 — 2 (cos nr — rcc)snw‘— 1.

n nw nr onw
\ J

/ ] ~ 3 v
! 1 : v‘. ) :
/ i &8 wwihdbra JBbl' v.org.in
! . 0 ! ' T

Fre. 1'7:.'"’ Fia. 18
A/

L >
N/

)
Therefore, for 0% < i,

. ). -
fx) =;’"{}ﬂ" — 2} sinz — T sin 2z + T
o 2
~O . .
Biml‘lurly, formulas (1) of Art. 57 give us the coefficients of the cosine series.
We find, in addition to b, = 0,

z — -1:-1
T

9 [zeinne cosnr shne|”
a'n:— (:c—l)cosn:cdx=-— —
TJ T n n R 0

, 2
L vosmw —2~ =—_2 (1 — cosnw).

R nir niw

— 25in3z — Esin‘}x -]—] (4
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Henee, for 0 <z <

T —2

f@) = —%(cosx—i—;cns&c-{-gécosﬁx-]—---). (5)

a2

The graphs of the functions given by series (4) and (5) are shown in Figs. 17
and 18 respectively, The differcnces in these two series are accounted for by
the difference in the graphs for —m <2 < 0. However, the graphs coineide
for 0 < @ < T, as they should. ~

EXERCISES O\

L. Show that any function defined for every value of z may, b'e\expressnd a8
the sum of an even Tunction and an odd function. N
2, Prove analytically the sccond half of the theorem of AFINST.
3. Deduce the theorem of Art. 57 on geometrie groungisz\\
4. Setting & = /2 in series (4), Art. 87, deducesaNderies for w. Using this
result, check series (4) of Art. 58 for x = =/2. N
5. Setting = = 0 in scries (5), Art. 58, deduce ,st-':%riés for «2. Using this result,
check the series for 2 = . o\
In Exercises 6-10, find both sine and cosins. Ralf-range series for cach of the given
funetions.  wrww.d braulibl'ary.org.m": .
6. /@) =0, 0 <z <a/2; f@S1, 72<z<m
T fley =1, 0 < <x/2; @&y ——1, »/2<z<m
B.fie) =2, 0 <z = a/2NJf&) =m/2, n/2 <z <
0. j@@) = ', 0 <z <\
10. fiz) = %0 < Kim.’

59. Changeefihterval. In many problems involving trigonometrie
series, functighs tnust be expanded over intervals of lenglh different
from 27 or\;r\ It therefore becomes desirable to develop methods and
forraulas which will enable us to expard a funclion defined over any
interval.

g{f:e% a function f(z) be defined for —L < z < L, say, where L is any
“Positive number. One way of attacking our problem is to get an expan-
Gon of the function for the range —r < & < , and then transform the
latter interval into the desired one, from — 7. to L, by means of a suitable
substitution. In effect, such a substitution will elongate, or compress,
the interval from — = to « into the interval from —L to L; it is cquiv-
alent to a change in the unit of length, the ratio of these units being /L.

Lvidently the lincar transformation

kg

L

5

(1)

=z =
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sl efiect the desired change of scale, for as « varies from — £ to L, 2 will
vary from —w to m Now let f(z) = f(Lz/r) = g(2), say, be developed
in & Fourier series,
. iy .
glz) = B —]-Z {a,, cos nz + b, sin nz), 2

n=1

vaid for —7 < z < m.  Under the transformation (1), this becomes

N
= Hnre
T A .
@) =5 + > (an cos == + by sm’%) &)

se=1
N/

walid for —L < 2 < L. This series {3) will then be asuitalflggkpansion.
We may obtain formulas for the o's and ¥'s in (3) diréetly by apply-
ing transformation (1) to the Fourier formulas already developed.

We have e\
1 - 1 oL ':;.\ nrx {1z
dy = —f g(z) cosnzde = —f #) cos—d(“—)
T J_ TSLRY L L
1 L nrr c’,;.“
T . \ 4
L/, Jx) cos L,fl‘x?' www.dhraulibrar‘y,m'g,(jn)

g

L A L
by = f o(e) sipdrdz = f fe) sin = da. ©)
TS D LJ_; L
ks \\
Formulas (4) and (5)'eRable us to derive the series (3) in each particular
ease without goin@ythrough the transformation process.

Hulf-range §iie or cosine series for the interval 0 <z < L may be
similarly fghnd)  We state all essential matters in the form of a theorem.
It s, of \Course, assumed that the function f(z) under consideration
Bat-i%ﬁeg suitable conditions, such as those of Theorem 11, Art. 55, for
@gﬂt’érval Involved.

TuEOREM. A Junction J(x), defined over an interval — h<esh
has the Foyrier ELPUNSTON

. = . BTE
fx) = (;Q —1—2(% 08 ?—E—x + by sin ‘f)!
=1

where
L nre 1fL o 7 e
T, = — _ et - — Z) §in .
L[Lf(x) 008~ dz, [ 7 _Lf( L
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A function j(z}, defined over an interval 0 <z < L, has the Fourier
half-range sine expansion

Jiz) = Z bn sinﬁ-;:-—lg
n=1

where .
2 nare
== z) sin — dzx n=1%2-);
=g f SO T =Lz
and it has the Fourier holf-range cosine expansion L\
@ =~ AR O
Sy == + E gpoos—, N
2 bt L N
where o) -
2 prf T v
=— z) cos —- dx e, 1,2, -]
Oy L.[ J@) L ¥ '(x,.\Y’, 3 Ly & )
,\ e
Exaemple. Expand the function AV
fy =2f, &z <, ®)
www.dbraylibrary orgiin
n a Fourier half-range cosine sgﬁ"%’;;if“g“‘“
Solution. From the a,bove’\ther;rem, we get
o\
O 2 [t 2%
Nag = — wide = —,
7 _[ 3
@y = 2 sz ém iz = 2 | 2L cos 2% 4 LfTsin raw _ 217 sin =% i
"L o ”\‘:@ "L L | n*x? L na L S L |o
£ 3}
Q 412
R\ = —— (08 FuT,
3¢ iyt
).
\Th,e’réfore, foro<a <,
L 412 7z 1 2m 1 anx
P — — CO% — — — COS—— + =S 08— — - | 7
3 ﬁz(LZZ L TR )

Inasmuch as the funetion 2 is even, series (7) incidentally represents this func-
tion throughout the full range, —L < = < L.

60. Transformation and combination of series. 'The scalc trans-
formation (1) of Art. 59 may be used, as deseribed, to convert previously
obtained series into other useful series. Because of their utility in
later work, we now derive five important series from earlier results.
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From equation (2) of Art. 56, we get the development of unity in g
half-range sine scries. :

4 . .
=~ (smz+ %sin32+Lsnbz4--), O0<z<m
kin

Using the transformation

xT
72 ==,
L )
O\
where I is any positive number, we find O

4 1,3 1. 5rz ON *
I 1=T—r(sinwf—E-ésm%a:#—gsm%—l—-“).,m;\ko<:c<L.
This i the first of our five basic series. PN

There is no infinite cosine series for unity. For, f(z) = 1, -7 <z
< 1, is an even function, and a Fourier serieyshould yield f(z) = 1 for
every . The Fourler process then ledds “to ao = 2, 84, =0 (=1
2, -+ ), whence we get the trivialityin': 1. ' _

From equation (4) of Art. 57, we get \ﬁﬁé\'ﬁﬂfﬁ'ﬂgﬂl &t YeHitR for 7,

2= 2sinz — }ein 2k Fsind—--), 0<z<m
{‘

Changing 2 into =z/L, ’t}&}ﬁelds our second basie series,
; 79N 3 5
iy m=Qr(igﬁimf—lsinz—ﬂ--]—lmn-w—x—---), 0 <z <L

e

:"\l.

Equatio’f}(@j of Art. 56 gives us the half-range cosine series for 2,

T,
NG

NS

L 4 1
\z::%_;(COSZ+§§COS3Z+5§COS5Z+"‘), 0<z<m

Setting z = #a/L, this leads to

3 1 5wz
(i -”3=L—%(cosﬁ-i——lgcosﬂ-i——:cos————l—---),
T

Thus, (I} and (II1) are two series for 2 over the general half-range,
I<z <L



154 '~ FOURIER SERIES [Crse. VI

Equation (7) of Art. 59 gives us directly
2 L 4L’*( LN SO PN SO .. )
(IV) z =—3-; 2 cosL 22«305 7 55 008 — ,
0 <z <L,

Finally, either from the sine series for 2%, 0 < 2z <« (cf. Art. 58, Fxer-
cise 9}, or from the theorem of Art. 59, there may be obtained the s¢ties

2If . 2rx x> ) h&&rﬁ:

2 _ 2 L ygne g™, (T
V) = 3 [(n- 4} sin 7= — o-sin — + 5 T & .Sl

L 4”_{_(""_2_1)81[1‘5& fsmﬁﬁ+ ]
£ T/ LT e D ’

\ 0<z <L

Beries (IV) and (V) are the basic sine and co&,{lfﬁcmes for the function 2*

over the general half-range, 0 < x < L. N0

The scries (D-(V) may casily be cornblﬁed to yicld Fourler expan-

sions of any lipgay ananadalic .%ﬁﬂqﬁ of x over the gencral half-range,
0 <& <L Weillustrate the pragess by means of an example.

Ezxample. Find & gine qc:ries a.nfl’a lzosine series for the funetion
HOS: \2x—4 O<a <4,

Solution. To get q shse series for this function, we combine serics (J) and
(In. Multiplying (],I) by 2, and {I) by 4, and subtracting the latter from the
former result, whileat the same time setting L = 4 in both series, we got

\..
“2& 4:=]-—6(::inf£_l 1 @_’. sin ?.lrf-—-o--)
4 4

.\\ g 2
AN\ 16/ .
NS -—(sm-@ +lb'n?—ﬂf+ )
NN\ T 4 3

Evidently the terms involving odd multiples of 7x/4 cancel, and the tosult is,
after simple reductions,

8f .wx 1 . 2gxz 1, 3rz '
2;::—4:-—;(3111?—}-58111—2—-0-31n~-—+ ), <o <4

The cosine series may be similarly found. Multiplying (ITI) by 2 and sub-
tracting 4, and also setting L = 4, we have

32 5
2x—4=-———(wsﬁ+— 1r:i:+lms£r_a_:+_” , 0<a<4
T 4 5% 4
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[

EXERCISES

1. Bhow thut a linear substifution of the form z = ax -+ g will transform any
interval ¢ £ z = b into any other intervale £ 2 = d.

2. Using the proper substitution, transform the sine series for unity, 0 < z < =,
into the series :

4 cos ™ i 3rz n 1 Brz L
—{cos sy —geos ot zeos T~ -
T\ 2L 2. T 5% 2 <z <L
8. Derive series (V) of Art. 60, N\
4 Expand flz} =2 —1, 0 <z <m in a sine series by combining suitabie
series jrom Art. 50.  (Cf. Example, Art. 58.) ¢\
B. Expand f(z) = ¢ —1, 0 <z <, it & cosite series by cumbiuiﬁg: known
series. (Cf, Example, Art. 58.) |
6. By combining scries, obtain a sine series for f(z) = Sz -2, 0‘< 3 < 1.
7. By combining scries, obtain a cosine series for f{(z) = 0 <z <2

8. Using the theorem of Art. 54, expand the function f(x) -:\zx +3, —-Z2«<z
< 2.
9, Using the theorem of Art. 59, expand the fimetion. ;Q(ﬂ:)‘ =4—x —3<z<d
16, By combining series, obtain a sine expansion of (:s) =z2-2 0<z<2
11, Obtain a cosine expansion of the function Qf~]%xermse 10.
12. Derive u sine series for the function f{(z) =4k — 2% 0 <z <4
13, Obtain a cosine series far the function of Ezercise 12.
14, Derive a sine series for the funf'tlonvf(;r) SR 1‘315‘37'5(31]{]% i .org.in
15, Obtain a cosine series for the functwn of Eixercise 14
16, Ixpand the funetion fiz) = %, ™0 < x < 1, in a sine gerfes.
17. Obtain a cosine series for theiinetion of Exercise 10.
18, Expand the function f (g¥™e =, 0 <z < 1,inasine series.
19. Obtain a cosine serieddor the function of Fxercise 18.
20 From the sine BBI‘].BS of Fxcreises 16 and 18 obtain sine expansions of sinh z
=% ("~ ¢ and cosky z =1(e*+e®), O0<z<l Similarly, combine the cosine
series of Exercises 17 ana 19 to get cosine cxpansions of sinh z and coshz, 0 <z <1
2o M
”\s v



CHAPTER VIL

LINEAR EQUATIONS OF SECOND AND HIGHER ORDERS
Q"

In this ehapter and the following one, we shall diseuss certgl'm\ types
of partial differential equations of order higher than the 'ﬁés’c:. Only
the more important forms of higher order cquations and whe various
methods of solving them can properly be cunsidered,ifl"é? first eourse,
and our treatment of such equations will accordingly{be’not as complete
as it was for first order equations. \Y;

One of the reasons necessitating a restricted ¢featment of higher order
equations may be traced to the peeuliariti ‘@icountered when deriving
these equalions as eliminants. For instd¥ice, it was found in Iixample 3
of Art. 28 that it Wag pos ible to eljmi:r:;afte’ the six quantities f, g, /*, ¢, 1",
and ¢” from the &% reﬂiﬁoﬁa‘fﬁto{l} witlisposal, and we were thus able to
get & second order partial differenitial equation as the eliminant. In
general, however, as stated intArt. 28, the climination of n arbitrary
functions leads to more tham onc differential equation of order greater
than n (cf. Exercise 18,Art. 28). Consequently we should cxpect that
only for certain parti};sl\di:ﬁerential equations of the sccond order can we
get solutions each{of which contains two arbitrary functiens, but that
we shall have bo%be content with less general solutions for other second
order equaj;iéhs.

We shil} therefore not attempt to classify solutions of partial differ-
entia} :}'Jhuations of higher orders into categories such as complete,
genevsl, etc.  Instead, for cach type of differential equation considered,
“weshall find whatever solutions our methods furnish, or those solufions

\of greatest uscfulness in applications.

61. Definitions and a theorem. Beeause of their importance and
tractability, we devote this chapter entirely to linear partial differential
cquations, For m Z 2, a linear equation of order m is defined as an
equation of the first degree in the dependent variable and its derivatives.
This definition is thus similar to that of linear erdinary differential equa-
tions (Arb. 10), whereas the definition of a linear partial differential
equation of first order (Chapter IV) does not stipulate linearity for the
dependent variable, but only for its derivatives.

) 156
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When only two independent variables, 2 and y, are involved, as will
be the case in nearly all our work, the lincar partial differential equation
may be written in the compact symbolie form (cf. Art. 16)

"f’(Da:: Dy)z - F(ﬂ:, y): (I)
where
3 3 . gite
D, =—, D, =—, DIDF = ——
Az Yooy <Dy aatoy®’ @

N\
and where the eperator 6(D;, Ty) denotes a polynomial of degmamm
D, and Dy, with cocfficients which are funetions of z and y only' \J)

When, morcover, the equation (1) is of the seeond order,s e shal]

frr-queuﬂ} employ the notlation N
o N T_Bp__& tlﬁa’_a
b= 5 Q_ay’ Cde o’ Yoy e’
\Y;
dp g Fz
SE == =5 (3)

Thus, the second order lincar equation may be writien cither as
N Y www dbraulibr ar in
(RD + SD.D, + TD} +, BB, + QD, + 2)z = F(z, §),
or ag

)
RT+S3+T!,\-1— Pp+Q9’+Zﬁ—F(Tu W), 6)]

where B, 8, T, P, Q, an}k\Z as well as F, are functions of z and ¥ only.
If thc, right member in (1) is zero, so that the squation is of the form

‘t\if: $(Ds, D)z = 0, (6)

&
we shall sa’_y&hat. it is a homogeneous equation.* If Flz, ) 7 0 in (1),
the equagioh will bo called non-homogeneous.

Ah}”‘ funetion of z and ¥, which, substituted for z in a non-homo-
gc‘l{eous equation (1), satisfies it identically, is called a particular integral
of (1). A function satisfying the corresponding homogeneous equa-
tion (6), obtained from (1) by replacing F{z, y) by zero, and containing
arbitrary elements (constants or functions), will be called a comple-
mentary function. Because of the linear character of equation (1), the
Sum of a complementary function and a particular integral will evi-
dently satisfy (1),

* Bome writers define a homogencous equation as an equation in which the depen-
dent variable itself is absent and all the derivatives are of the same order.
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The student will note the similarity between these definitions and
the corresponding definitions for linear ordinary differentlial equations,
Moreover, the important fundamental propertics of linear ordinary
cruations and their solutions have analogues in the field of linear partial
differential equations. A basic theorem, which is important to us in
later work, and which may be easily proved, is the following.

TagormM. If 21, 25, * -, 2 ave n solutions of a homogeneous linear
partial differentiol equation, then ¢zt -+ Ce2a 4 oo cuzy, where thellls
are any constants, is alse a solulton. A\
xS

62. Reducible homogeneous equations. As stated in Ai;ﬁ.\ Gf, the
operator $(Dz, Dy) in a lincar partial differential equation, 1z a poly-
nomial in D, and D,. When the cocflicients in the phtrator are con-
stants, we have what is known as a linear partial dJ“ﬁ}rential equation
with constant coefficients. \

Tn this and the two following articles, we ,shﬁ?consider the problem
of finding complementary funetions of lin,ca}\ equations with constant
coefficients, that is, we shall seek solutionef the homogeneous equation

www,dbrauljbrary.org.ip’:’,,

¢(Dz,'1:?:;a'z~ = 0’ (1)

in which the coefficients of the operator (D, D) arc constants.

For convenicnee, we separate equations of the form (1) into two
classes, which we call aducible and irreducible eguations respectively.
By a reductble equation, We shall mean an equation in which the operator
$(Dz, D) can be @50lved into factors each of which is of the first dogree
in Dy and D,{,.\’An equation whose operator cannot be so faclored we
call irreduciblé/ For example,

\ d)é — DDy — D, + Dyz = Dy —~ DD, — Dz = 0
{N”
fs @ reducible equation, but
(D3 — DDz =D(Di - Dz =0

ie irreducible since the quadratic factor D2 — D, cannot be resolved
into linear factors.

Consider now a reducible homogeneous equation of order m, which
may be written in the form

¢(Dx! D:f)z = (ale - Jle'y - Tl)' ' '(a'm—Dx - ﬁmDy - 'Ym)z = 0! (2)
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where the s, £'s and s are constants, some of which may be zero,
Evidently any solution of the Lagrange equation

(ﬂme - ﬁmDy - ’Ym)z EamP = B — Yz =0 (3}

will be a solution of (2). Tor, if z = flz,y) satishes 3), so that
{amDy — B Dy — vm)f = 0, we have

$(Dz, Dyif = [{eiD2— B Dy—~v) - -+ (%—IDE_'.Bm--IDy“"}'m_‘[)](O) =,

. - . N\
The Lagrange cquation (3) has the subsidiary equations
KQ
dx dy ds A\

'\
Uy ~Bm YmE \ o

From the first two ratios, we get cmy + Bmz = o. If a;';é 0, the first
and third ratios give us logz = ~vuz/am 5 log by Whehee the general
integral of (3) is

2 = Bymz’““fm(amy + ﬁ{@}) ) (4)

where f,, is an arbitrary functicn of its ﬂ,T:g'l]jTIl(-':nt; and, if 8, = 0, we

alternatively get as the general int-egyal’;‘gi; (hb;.)dbrauljbrary org in

2= _Tmﬂ/%j -':(am?/ -+ ﬁmm)' (5)

Sinee a, and By, cannot btk be zero if @pDe — G,y — 7m is 0 be
a lincar operative factor of $(D,, D,), at least one of the forms (4} or
(5) will serve in all casc® ™ If am 3£ 0 and B, # 0, either (4) or (5) may
be used at pleasurd, » For definiteness, we suppose form (4) to be
permissible. A/

Now the lingarfactors in (2) may be arranged in any order. Conse-
quently each{factor asD, — Dy — 77 (G = 1,2,++ -, m) will give rise to
a solution{of equation (2). By the theorem of Art. 61, it therefore fol-
lows that their sum,

NV e= @ (ay + o) oo+ € oy + Bo), (6

where fy, fo, -+, f,, are all arbitrary functions, will also satisfy equa-
tlon (2). If any «; = 0, the corresponding term in () must, of course,
be replaced by a term of the form (5).

If no two of the m linear factors of ¢(Ds, D,) are lincarly depend?.n!;,
that is, if no factor is merely some constant times anot-her. factor, 1t is
apparent that equation (6) gives us a solution of (2) involving m essen-
tia] arbitrary funetions.
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Ezample 1. Solve the third order equation
(DD, + D,D? — 2D} — 3D.D, + 2Do)z = 0.

Solution. Here the operator has three distinet linear factors, and the equa-
tion ean be written as
Da’.(Dz + D:,' - 1) (Dhl' - 2)2 =0
Thus we have

ar=1 5= 0,v1=0; 0E2=1,}92=—1,72=1§ oy = Uﬁs‘——l,’}’a"'—\‘Q.

Hence the given equation has the solution

N ¢
RO

2 = Lily) + ehly — 3) + @), £\

containing three arbifrary functions.

When the operator has repeated factors, the pr@@em dE‘SCI‘le'd wiil
lead 10 a solution eonlaining fewer than m essentigl arbitrary funetions.
Let us consider  simple instance of repeated fgetors, namely, an equa-
tion of second order with two equal factorao\‘ >

(D, — D, — 7% = (aD; — 6D, —(N6D; — D, — vz = 0. {7)

If we set (aDW@’éiJBrathﬁrE %gWe have first of all to solve the
Lagrange ‘equation (oD, — ﬁD,, 4 =10. As befare, supposing
o # 0, we find 4 = rz"”"“f(ay 35z), whenee we have

(eDy — 6Dy — 79>»~ ap — g — vz = & (ay + B).
This is another Lagrﬁ}e equation, having the subsidiary equations
Q% _ 4y dz

A0 w T T vzt ey + B)

"'\QO
From thefirst, two ratios we again get oy 4 8z = a. Using this in the
first gud third ratios, we find
e
N\ dz v

o~
Y, & e,

This linear ordinary differential equation of first order bas e s
integrating factor (Art. 4). Consequently we get

gy = Ef(a)x + b.
Equation (7) therefore has the solution
2 = &' [zfi(ay + Bz) + falay + B0)], &
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where filay + 8x) = flay + z)/o and falay + 2) are arhbitrary
funetions.  Alternatively, supposing 8 5 0,

z = ¢ "8 [yf (ay + Br) ‘iff2(ay + Bz} ®

is & permissible form of solution of (7).

By extending this sort of reasoning, we may similarly show that a
k-fold factor (al), — ANy — v)* in the operator ¢(1,, D,) givesrise to a
portion of the complementary funetion which may be expressed as

2= "0 (2P (o Ba) 3P Mooy +B2) - -+ uley 6], W8

valid whencver o # 0, or as )

2= [y U1 oy +2) + o T foley + B2) -+ lay 58], (1)

valid for 8 = 0. ) D

By suitably choosing one or both of these forms}’;}e can obtain s
golution, of a reducible homogeneous equation of erder m, containing m
essential arbitrary functions, whatever the mubs\.l‘plicity of the various
linear factors in the operator, N\

‘ Bzample 2. Bolve the fifth order eql%git?%;w_ dbraulibrary orgin
(DD}, + 603D D%z = 0.
Solution. Factoring the operatory we write this equation in the form
DD, + 3% =0,

Corresponding to the tripl}f\actor D3, we have the parta¥i(y) -+ of2(y) + f(9)-
Corresponding to the,Wohble factor (Dy + 3)%, we have e [yfule) -+ fs(@)].
Hence the requiredPsgidtion is

wLEN ) + ) + H) + e 6 + @,
GOntajning‘ﬁ% arbitrary functions.

~O EXERCISES

-3

\Solve the following equations.
1. (3D? - 13D,D, + 4D%z=0. 2. (2D} + 7D.Dy + 8D} =0.
3. (2D% — 3D.D, — 2DYz=0. 4, (D} — D;Dy)e=0.
b. (3DID, — 4D,D3z=0. 6. (D3Dj + 2D;D;)2=0. .
T. (DD, — 4D,DE + 4DYz=0. 8. (4D} - 42D, -+ DED))z=0.
9. (7D.D} — Dijz=0. 10, (DD} + 6DiDye=0.

1. (D — 6D2D, + 12D,D% — 8DPz=0.
12. (DiDZ + 312D} + 3DIDE + DD =0,
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13, (3D + 2D.Dy — 4Dz =0.
18, (D2-2D.Dy+Dy—DopDyz=0.
15, (D2 4 2D,Dy + D} -+ 4D, + 4Dy + 4)2=0.
18. (D2 + 2DED, + D,D} — D} — 2D.Dy, — D))z =0.
17. @D 4 DD, — 12Df — 6D.D, + 18D, + 8D }e=0.
18, (DiD: — 2D3DE + DiDz=0.
19. (DD — 2DID, — 2D,D} + D + 4D, D, + Dj — 2D, — 2Dy + 1z=0.
20. (D} — 2DID; + D -+ 2D% — 2D3D, — 2D,
+ 2D§ + D} — 2D.D, + D))z =~

63. Irredncible homogeneous equations. When the op{,rator\of a
homogeneous eguation with constant coefficients, O

".'.
< R

oDy, D)z = 0, e\ 1)
. w\\

cannot be resolved into linear factors, that is, whed 1) is an irreducible

equation, the procedure of Art. 62 does not apply: We then employ

the following technigue, suggested by the fac that an exponential

function is reproduced, possibly multiplied by some factor, under

repeated differertiwtithrauBineey . org. in WV

DJ Dk u.z-i—by : ajbk ax-+hy

(G, k=0,1,2,-..), where and i’J are any constants, it follows that
(D, Dbeﬂﬂy = ¢(a, b=, (@)

Consequently the eXponentlal function ¢™ T will satisfy equation (1)
if and ouly if aml b'are such that

:..\:}“ ¢(a, b) = 0. 3)

For any, e’ﬁ'\mce of a, relation {3}, called the auxiliary equation, yields a
certam number of distinct values of b; or, eonversely, cach choice of b
g1\es Us a definite number of suitable values of a.

Hence, if (a1, b1), (e, bs), -, (@, by) arc any = value pairs satis-
fying (3), where n is any positive integer, we get by the above argument
coupled with the theorem of Art. 61, a solution

= +a
7= e 4 gttt L o gty (43

where ¢y, ¢z, - - -, &, are arbitrary constants, Although a solution of the
form (4) contains no arbitrary funetions, this mcthod permits us to
cbtain a solution involving as many arbitrary constants as we wish,
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The pairs (a;, b;) need not, and in some cages ean not, be real immber
pairs. For complex values, the Eunler relation

¥ = cos § 4 7 sin 8, (5)

where 1 = '\‘/- 1, will be found useful. Thus, if the suxiliary equation
(3)3s a* 4+ ¥% = 0, and we take for a any real number, so that b = = ia?
is pure imaginary, a typical solution of the original differcntial equation
is

ga:c-Ha?y + eax—ia’y = eax(ee‘a’y + e_;,asy) ~

N

= 2¢* cos a’y, ;O\
by (5). N
Tividently the method here employed is valid also fox Teducible
equations, but for our present purpose we shall endeavc;r? to’find solu-
tions of as general a form as possible.  Hence, if an, ofaeiator hag some
lingar factors and some irreducible factors of highey degree, we find
part of the sclution, corresponding io the linegr factors, containing
arbitrary functions, and the remainder of @h\élsolution, eorresponding
to the irreducible factors, containing arbitzacy constants.

Erample 1. Solve the equation ":.’:ZWWW‘ dbraulibrary org.in
@DiD, =Dz = 0.
Solution. Here the operator ~ha:é ‘one linear factor, D, and an irreducible
factor, 2D% — D,. Corresponding to the latter, we have the ausiliary equation

K 2w —b=o.
Henee our equation hag she solution
# =~ J(aSoF cigtTH I | et oo o,
where f(r) is h?ai*bitmry function of z, n is any positive integer, and the &'s
and o' &I:Gﬁ?‘bltl‘ﬂ-l"y constants.

Iﬁ E‘?ddl lion to the exponential function solutions (4), it is possible also
ek as many other particular solutions as desired. These ean be
fourld from the exponential functions as follows. Let b = g(a) denote
any one expression for b in terms of a, obtained frem the aum'hahry
equation (3). Regarding ¢ 1% = ¢**+=@¥ a3 » function of g, with 2
and y now playing the roles of parameters, expand this exponential
function in a Maclaurin series. In this series, .

e telay _ Po(z, y) + Pile, wa +- -+ Pz, yla™ 4+ (6)

the cocfficients Po, Py, Ps, - -+ will be funetions of zand y.
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Series (6), representing a function which satisfies the differential
equation (1) for every permissible value of ¢, will itself formally satisfy
(1). Henee substitution of series (6) in (1) gives us a serics which is
identically zero for every a:

‘f’(Dx; Dy)PO + ‘I’(Dm D'y)Pla + e + ‘ib(Dm: Dﬂ)Pnaﬂ + ree = 0.

Consequently cvery coefficient ¢(D,, D)P, (n =0, 1, 2, - -) must be
zero; that is, cach of these coefficients P2, (x, ) in the Maclaurin expan-
sion of €% 8@ i3 a solution of ().

. . . O\
Ezample 2. Find polynomial solutions, up to the fourth degreiof the
irreducible sqguation ) « M
(2D? — D,z = 0. N

Solution. The suxiliary equation, 202 — b = 0, yicld}g'\)‘ne value of & In
terms of @, whence we have the exponential solutiomass/e®=t2% = (g}, say.

Now we find W
. D
Gla) = eactid’y, LMoo =1,
o) = @ +dayetety,  O7 @O =g,
@@ e dbre iy gl gr) = o2+ 4y,

and 80 on, 8o that the Maclaurin a@l‘fie’s‘for Gla) is

2? + 4y 2 %_“g + 12y . n 2t 4 24z + 482
at O 8 41
N :
Therefore 1, z, 2* + A4, 2° + 122y, o* + 24z 4 48y” are a set of polynomial

solutions; of coursepany constant times each of these, and Linear combinations
of them, are alsq’Saliitions.
N\

-'1~|—xa.+ e R B

We nestt consider the possibility of finding a solution of (1} in the
form. gf,};h infinite scries.  Instead of taking a finite number » of terms,
as lm#), we now generalize to an infinite geries,

e A

\ ) 2 = clemx-‘rhy + 826a2x+bw +-F cnemx—i-bn‘y R . (7)

where (@, b,) (n = 1,2,3, - ) are number pairs satisfying the auxiliary
equation (3). The scries (7) will formally satisfy (1), but in order that
the symbol (7) shall have meaning, it is necessary that this series
eonverge,

The convergence or divergenee of (7) will depend upon the values
assigned to x and y, the number pairs (a,, b,), and the coefficients ¢,.
In physical applications, the ranges of {he variables z and ¥ are usually
given beforehand, and initial and boundary conditions serve to fix the
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characters of the pairs (g, b) and the ¢'s. Thus a definite physical
problem will in general lead to a unique series solution, which we can
then test for convergence.

Later In this chapter we shall diseuss a few physical problems whose
solutions are expressible in the form of infinite series. At this point we
shall considor merely a theoretical example.

Ezample 3. Show that the differentisl equation
@D} — Dz =0 @)

has the series solution A

ef ey + eﬁr-i—iy + g\qr—l-ﬂy_]_ SN eﬁw—!-ﬂny 4. . e\ (9)

and find the real values of % and y for which this series converges:

Solution. The auxiliary equation, 2¢% — b = 0, evicie.nf@b} iy satisfed by
corresponding pairs from the sets 4

a=11'\/§:'\/§}'”;ﬁ:'“r b=—"2,24>6‘,“',2ﬂ,"'.
Henee, or by direct substitution, we see thaf ih}series (6} formerly satisfies
the equation (8). Y,
To investigate convergence, we use Cafehy's ratio test. Letting u. denote
the nth term of (9), we bave 8 www.dbraulibrary org.in

N
Vg T H AR
Tont1 _ ) w4 ].a;+~?(ﬂ+1)z,r

Un F AE-FIny

i - YV 1+ AV
/T Sy < L YA 20

P
70
:"\5.

1
= i "_—'“:-'—-_-::—'0,
AN nh_r&\/f:-i-l*l-\/%

and eonsdtacntly, for any value of =,
N

— VYot

Now \ /

NN

) , et . Vatl—vValz _ o2
N/ lim —22 = ¢ty Jim Yt E-Vms = o,

n—a Ya n =

By Cauchy’s ratio test, this limit must be less than unity for convergence.
Stuce e < 1 for y < 0, we conclude that series (8) converges for all real values

of # and negative values of .

64. Separation of variables. We turn now to an a,lternat-i‘afe meth_od
of finding particular solutions, which may be cornbined to yield series
solutions, of a linear homogencous cquation with constant coefficients.
This method, which is of considerable utility in conniection with physical
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problems, often applies alse to linear homogeneous equations with
variable coefficients, and elearly exhibits various types of sohuiions ob-
tainable in & given case, The process is best explained by moans of an
example; we use ag an illustration the differential equation of Examples
2 and 3, Art. 63,

Ezample. Find solutions, cach in the form of a produet of a function of x
alone and a function of y alone, of the differential equation

@D — D)z =0, @y
Solution. We wish to find a solution of (1) in the form <O
2= X@) Y@, WO g
where, as indicated by the funetional notation, X involves « op.lyfalrﬁ ¥ wmvolves
y only, Substituting the produst (2) in (1}, we get ‘..,:\\
XY XV =0, ' 3)
in which the accents denote differentiation: < o !

Xu — §2X v :ﬁix :

=N

www,dbraulih1~éif’5§;.;1~g_iu"’l dyy
At the start, we have of course no assatance that our differential equation will
pussess & solution of the form (2), angtherefore the method is in this respect a
tentative one. Buecess will depefid upon our ability to perform the next step,
which is to separate the va.rigb:[‘es in (3). Here separation of the variables is
possible, and we may m‘ite\@'in the form
PR X 2Y

We have placed {Hfe Constant 2 in the right member for later convenience, but it
may also re lp\ﬁl the left member.

Now tl}é\ieft member of (4), involving enly x, does not change when y i3
varied, néridoes its equal, the right member, involving only ¥, change when 213
vali@csi.“\' Thus neither of these equal expressions can change when z and y are
Lot gltered, and therefore the two membets must be equal to a constant, say &

XH' Yr .
Xk ©

Hence, we get, from (5), two linear ordinary differential equations,

a4 X

- X = 6
—5 kX =0, (®)
dy



Aur, 641 SEPARATION OF VARIABLES 167

The problem of solving the given partial differential equation (1) i sonsequently
replaced by the problem of solving the two ordinary differential equations {6)
snd (7). The eonstant k may be given any value, but that value must be the
aame for both (6) and (7) in order that {4) hold.

The nature of the solufions of equations (6) and (7) will depend upon the
value given to &, which may be positive, negative, or zero.* By the usual
methods (Arts. 2, 113, we may find real solutions of (6} and (7) for each of these
{hree kinds of values for k. Doing this, and inserting the results in (2}, we get
three types of solutions of (1):

2 = (1eV® + e VI, k>0, (8}
2 = (¢ezsin v —kz + ey cos V —kr)e™, k<0, ) \' \(93
2= e + g, k=0 .\ 10

In these relations, the ¢'s are arbitrary constants and are thus Qﬁ\olu‘ disposal,
gs is k except for the stated restrictions. )

Evidently two or more solutions of any or all of thcse‘three types can be
linearly combined to produce more general solutions pf:f:l‘): For instance, the
series solution (9) in Art. 63 is obtainable by taking.a'seties of terms all of type
By wither = 1,05 = 0,andk = 1,2, 8,--+ . .

~

www.dbraulibrary.org.in

EXERCISES |
Using the method of Example 1, Art. t’;3; ‘solve each of the equations in Exercises
1-6.
L D, +3DYz = 0. , “x\ 2, (5D — DDy + D)z = 0.
3. (DID} — DY — DY DBz = 0. 4, (D! -+ 2DID, + DYz =0,
5. (D4 D=0 L g, (DB +2DiD% 4 Dz =0

A\ ¥
¥-12. By the me{.hx\éln'f Example 2, Art, 63, find particuler solations of each of the
equations of Fxercisesld—6. Use four terms of each Maclaurin expansion.
13, Shaw thabbhe differential equation of Example 3, Art. 63, has the series
#olution z = e 4 oo £ oug + oo, where the nth term . iz given by

N ¢

A~ log us = Wiz + %,
and ﬁﬁ fhe values of z and y Tor which this series converges.
14, If, in Exercise 13, u, i given by

log ta = nz + 20%,
find the values of  and y for which this series converges.

16. Tf, in Kxercise 18, un = ¢~2* cos nz, find the values of = and  for which this
serles converges,

*In some problems it is desirable to give & complex values, but we shall here

Yestriet ourselves to real vahues of k.
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18. Show that the differentinl cquation of Example 3, Art. 63, has the series

solution By
2z =2 Wainy — Je¥sin 2z + Jo " sin B —-.+},

and find the valies of  and y for which this serics converges.  Show also that, when
y = 0, the series represents the funetion » jn the inferval — = <z <

17. Using the methed of Art. 64, show that the equation (D - D2 — 2Dz = 1)
has five types of solutions, accordmga,ak < =l k=~1-1 <k <0,k=0,k >0

18. Shew that the equation (DI — D2 4 4Ty, — E‘:Dﬁ,)z = 0 hag five types of
golutions, according ask <— 9,k =—9, —9<h <-4, k=— 4,k > -4

19. Show that the equation (DI - D‘! + 2D, — 2Dy)z = 0 hag only three {ypes
of solutions, according as b < — 1, %k = — 1, k > — 1. 3how also that thisequation
hag the solution z = fily 4+ ) + e_ﬂzfg(y — ), where f1 and fy are a.rbrtm.r} func-
tions.

20. The mothod of Art. 64 may sometimes be applied to linear p‘m:tlal differential
equations involving more than two independent variables. In thg‘thlec—dlmon%mml
form of Laplace’s equation {cf. Art. 32), ..,\

u P o
car eyt et \.‘
get w = X{z}- ¥{¥) Z{z), and separate the vanab}o\to get In turn the relations

J'} ?ﬂ) ?
WW W, dbrauhg EaTY. ev%;-n— 7 =k,

where ki and ke are constantS"\Hence show that Laplace’s equation has thirtcen
types of solutions of the asiuged farm.

65. Non—homogeneous equations. We consider next the problem
of solving a nQn homﬂgeneout; linear equation with constant coefficients,

\’"\*' #(D., D)z = Fiz, ). @

2 S

Now a ¥olution of an equation of type (1) is made up of the sum of a
cgmp‘iﬂmentary function and & particular integral (Art. 61). By the
meihods of Arts. 62-64 we can find a complementary funetion; we have
therefore to find & particular integral of (1), that is, any function of
and y such that when it is operated upon with ¢(Dg, D), the right
member F{z, ¥} i3 produccd.

The designations reducible and irreducible may conveniently be
applied to equation (1) also. Thus, the non-homogeneous equation (1)
will be called reducible or irreducible aecording as the eorresponding
homogenecus equation, obtained by replacing F(z, ¥) by zero, is reducible
or irreducible.
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When an equation (1), of order m, is reducible, a particular integral
may be found by trealing suecessively m Lagrange equations. For,
Jet the operator ¢(I)z, Dy) be resolved into linear factors (some of
which roay be repeated), and write (1) as

é(D;, ]:)y)f:E (ale_'ﬁlDy—’Yl) ce (ﬂme”_'ﬁng_"Ym)Z=F($, o). (2)

Betting
((ngx — 82]:)3; - ¥2) o (a,Dy — .BmDy = Y8 = U, {3)

we have first to solve the Lagrange equation
{e1Dz — B1Dy — vo)u = Fiz, y).

Having found a solulion « = w{z, y} of {4}, we insert this exprgssmn in
the linear eguation (3) of order m'— 1. The process, n‘iay then be
repeated for the new equation of lower order, and so on thﬁmgh 1 stages.

We shall suppose that a complementary function)of () is known, so
that only a particular integral need be found. Agbetdingly, in solving
each Lagrange equation of the form (4), we piay“omit arbitrary func-
tions. Our final solution of (1) should, of gburse, consist of the sum of

the complementary function and the pargicular integral we bave found,
3 www,dbrauljbt'ary.org.in

QY

4

.'\

«ay

}z{mple I. Bolve the equation 4 }l’ ’

(DY — 3D,D, + 2D2AD, + 2Dy}z = 2+ dz)e v
Selution, This iz a redu il%e.g‘quatmn, for we may write it as
{D: — 2]33){ e =Dy~ Dz= 2+ 4™

We therefore have, a8 Yofie form of complementary funchion, the eFpression
Iy + %) + eofy ‘){\}— x), where f; and fz are aIbltraTY

To find pAQ"\rfLu integral, let u = (Dy — Dy — 1), 5o that
Q D, — 2D)u = (2 + 4z)e™,
for which fhe subsidiary equations are
} de  dy _ du

T 2T CFwe?
We then get y -+ 27 = a, and, using this relation,
du={—1—-2nevdy=@y—0a~ e dy,
u=(g—ye?ta = 23;8‘”-*1-&'-

e + fily + 2%),

The general Integral of this first Lagrangs equation isw =
the comple-

but since we know that an arbitrary funetion of y + 2z appears n
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mentary function of the given equation, we need not include it here.  Conge-
quently we next solve the equation
(D, — D, — L)z = 2xe¥,

which has the subsidiary equations

dx _gy_ s
1 -1 &4 2ze7
From these we get 4 + 2 = band ~
ﬁ —{— 2 o= — Dre VW = — 2({) — y)g—&r’_ o'\".\
dy N\

This linear equation has e¥ as integrating factor, whence we find N
¥ = — 2y + yt + b =y — 2vy b."-“:\\

Again, we omit the arbitrary funetion, foly 4 2. Hgnce a partienlar integral
of the original equation is — (3% + 2xy)e?, and our S@H answer may be expressed
as -~

=il 4 2) + ey + S50 + 2eple.

. . wwwdbraulibrary.ovg. in g '
Variations in the process, guc]hgs‘sﬁ.?hmg% in the order of the factors

of the operator, will sometimesylead to differant particular integrals.
These differences ean be acequntéd for by making suitable changes in
the arbitrary funetions of’th'é complementary function. For instance,
#% 7 is also & partimdg’\ﬁaﬁegral of the above differential equation, as
may readily be verified. ¥ Now the solution found for Example 1 can be
changed as followssy We have

A

?i’fi@ +22) + ¢ faly + 3) — 4 + 229))
.f'%":’ﬁ(y + 2z) + e ¥ faly + 2} — (y 4 23?4+ 2]
AN =Nl 20) + ey + 2) 4 2%

whete g(y + ) is a new arbitrary function equivalenl to foly + @)
~(y + 2)®>. The latter form of solution exhibits % ¥ as a particular
integral.

When the given differential equation (1) is irreducible, reduction to
Lagrange equations cannot be effected. Choice of a method for finding
a particular integral of an irreducible equation will, in general, depend
upon the form of the right member F(z, y). We shall develop here a

few processes for treating right members of particular but common
forms.
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A solution of equation (1) may be represented symbolically as

1
# = oDy Fiz, ), &

in which 1/¢(D;, Dy) is o be regarded as an inverse operator acting on
F. Now the possession by an operator of algebraic properties, such as
factorability, suggests that we perform the indiested division of unity
by ¢(Ds, 12y), at least through a certain number of stages, and then, if ~
possible, operate on I with the result.

Such division can usually be performed in two ways, TFor instan}:é,

we have QO
S N
9D — D,  2D21-— (D,/2DY 0
= 1._[1_}_&_}_1—)3_}* ‘Df": ] [i]
2D 2D; ' 4DF T 8D D,/2D3) ©
and ,\
1 ! O
IDE-D, D1 - @DYDya Wwwdbreulibrary orgin
1 DA D! 8Ds ]
= =1 i N it S S Y 7
Di D, | D} ' DI~ 207Dy @

)
- Bince a positive integral j}Q\vér of Dy, or of Dy, denotes differentiation,
we may naturally intérpret 1/D, and 1/Dy as integrating operators.
Moreover, being chuiéerned here with finding as simple a particular
integral as possible;’ we may agree to omib an arbitrary element of
wiegration. )"~

Now vx-'he'n\\F(:r:, 3) is a polynomial in z and ¥ 2 finite number of
Partial diff§fentintions, with respect to « or with respect to %, produces
ZergesHevce, if we first perform the differentiation processes in an
expansion such as (6) or (7), we need not evolve interpretations of the
final terms in these expansions when operating on a polyromial. We
Sh_a]l not attempt to justify or generalize the division process beyond
this point, bu shall merely employ the method tentatively; results thus
obtained can readily be checked.

Erample 2. Find u particular infegral of the equation

@D3 — D)z = 3¢ — ¢ + 1%
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Solution. Since the right member is of the second degrec in either x or y,
we use expansion (7), of which only two terms are peeded, rather than (8), in

which the third term produces a non-zero resulf. Then we have

z2=— Diy(1 +§;D2)-(3x — y* + 2z%)

o e ot 2
= D[&”c y+2my+Dr(4y)]

i O
1
=—ﬁ-(3z—y2+2x2y+4y2) L\
¥ :\.\
1 \ o
=—— Bz + 3 + %'y N
D, 7\
\
=— 3y — 3 — x}y \

Tt is easily verified that this expression satizfies the glw;n equatlon and thercfore
serves as a particular integral. \ 4

We next develop the so-called shlftmg Jormula (cf. Art. 10), uscful
in many connectlogm‘au library.org. m~ X
¢{Dg, Dy) (e ) = &‘“'* we(D, + a, Dy + bw, (8)

where ¢ and b are any constg:ﬂts and w I8 any function of x and y. We
have ~
D (w“’{b\? Yo ®2TD 0p 1 que™ T
= (D, + a)w,
Di(we?{%% = D[ (D, + gu]
O =D + aDw + ¢ HaD; + )

Q) = (D, + o),
Kn‘tl,“?)y induetion, it is easy to prove that, for j any positive integer,
Di (we®® 1) = (D, | a)w.
Likewise, operating on the latter relation k times with Dy, we find
DD} (we= ™) = = +W(D, + 5D, + a)w,
whenee formula (8) immediately follows.

Suppose now that the right member F(z, 4), or any term of it, is of
the form ce®* ™, where @, b, and ¢ are constants. Then since

4,(]):, Dy)ecm-kby = 4)(&, b) eum-l—by,
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we have, if ¢{g, b} # 0, the interpretation
1
. . ety aztby
o105, Dy) $a ) ¢ ®
This yields the eorresponding particular integral when ¢(a, b) 5 0,

If ¢{a, b) = 0, we may use the shifting formula (8), as follows. In
the differential equation,

#(Dy, Dy)z = ec™* ¥, (10)
substitute z = we™ ™, whence we get A
6(D, D) (we™ ) = (D, 4 6, Dy + Bw = 2>t A
We then have morely to find a particular integral of the equation™ -
o(D, + a, D, + bw = c. OV

Thiz may often be found by mqpeetmn, otherwise by bhe ‘method of
Example 2. The product of ¢ and a particulds dntegral of (11)
then gives us o particular integral of (10),

Evidently terms in F(z, y) of the form cx" Ee“‘N'g” gan he gimilarly
treated. For, under the substitution 2 :‘:’T.Q& ) the differential
equation W W

o(D,, D)z = cxf’z;@eamw-dbrau]ibrary.org,({ﬁ?,)
hecomes, by (8), RN\

(D, + a, Dy F Bw = e’y (13)
Ezample 3. Yinda partlcular mtegral of the equation
e (2D? \\D?jz = dg=t2v 4 10e*~ b,

Solution. Using relatmn‘ (), & particular integral corresponding fo the sec-
ond term on the right; J.bio’und to be

\"' 10

\u 2f — (=3)

We need nog End only a particular integral of
o) (2D2 — D)z = 4¢7 %,
81“"*& 12 — 2 =0, we set 2 = we**¥, and get by (%),
WD, + 1)% ~ (D, + 2)]w = 47,
(2D} + 4D, — Dyw = 4

% is easy to see that either x or —4y will serve as a particular integral of this
tquation, Choosing the former, we then have

g = xgotiy - Dgr—W

g8 oz Qg

% & particular integral of the given equatioz.
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If a term of Flz, ¢) is of the form csin {az + by), or ¢ cos (ax -+ by},
it is usually simplest to usc the method of undetermined cocflicients
(ef. Art. 12), as in the following example.

Example 4. Tind a particular integral of the equation
@DE — D,z = 8sin (x + 2.

Solution. Stz = A sin (& + 2y) + B cos {z + 2y), where A and B are
constants to be determined. Substituting in the given equation, we get

— 24 sin {z + 2y) — 2B cos (& + 2) — 24 cos (x + 29
4+ 2B sin (z ++ 2y) = 8sin (z -+ 2-\;,?)\.:\

Q!

Then we must have — 24 + 2B = 8§, — 28— 24 =10, v.-‘heru:,ex,;e@\= — 2 and
B = 2. 'Therefore N 3
2=—2gn(zx+ 2y) +2cos @+ 2:1,{).,;\"
is a particular integral.
AN .
TUse of the shifting formula (8), follosed by the proeedure of
Example 4, will serve to find a particular imtgeral corresponding to a term
of either of thevfertaresdth®siogin £\by), o™+ cos (mz + bhy).
Evidently all the processes of Ex:é}jmples 2—4 may be applicd also to
reducible equations. For reduqilﬂgé‘equations of order higher than the
second, and for some reducible Stjuations of second order, our special
methods, when applicablga,\ﬁ'ill often he shorter than the reduction
method of Example 1. \\ /

R EXERCISES
2K :
Find a parbiunn tntegral of each of the following equations.
1. 02Dz = s. 2. (DI — 4Dz = 8z — 4.
3. (D3 3'2DDz = 30z 47(@D2 — 3D2 + Do)z = 1467V,
5,32D; — 3D; + D)z = 106772 8. (DI — DDz = 2ze” 0,

\~:r (D2 4 3D,Dy)z = 22 + 6y — 9. 8. (D% — 21D,z = By ~8ay.
9. 2D — D, D, + Dz =13 —z.  10. (D} — D)z = 6% — 22"
11. (D2D, + 202 — Do)z = 2427, 12, (DD, — 21} + Do)z = 246"

13. (2D.D, + 3DZ — Dz = 6 cos (2r — 3y) — 30=in {2z — 3y).
14, (3D — 2D + D, — 1)z = 36" Yoz {z — y).

16, (DDE 4+ D2 — 2)z = 1627 cos 3y.

16. (D} + DD, — 2Dz = 8 sect (2z + ) tan 2z + )

17, (D2 4 DDy, — D, — Dz = /42

18. (D} — Dy ~ Dz + Dy)z = (z + 1)/
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19, (D2 — D} + 4D, — &)z = 42(1 —3).
20, (DD, — DDy 4 DoDyz = 1.

6. Analogues of Euler equations. In this and the following three
articles we shall cousider linear partial differential equations with varia-
ble coefficicnts.

Only certain types of such equations, solvable by elementary
methods, ean be discussed here.  We begin with a type that esn be
transformed Into a linear equation with constant coefficients, and which
is an analoguc of the Buler equation (Art. 13). This type is chan- ¢
acterized by the fact that the operator ¢(Dy, D,) consists of a sumgf |

terms of the form . \ ",

cjkx’fopDi, \ \ (]_)
,k=0,1, 2 ---, m), the £'s being constants. For ,eitz;mp;.[e, the
seeond order type f orm is \

(0’ Dz + 117y DDy + opy Dy + cr02Ds + oDy e = Fla,3).

Changing the independent varfables from .%\zmd % to » and ¢ by
means of the substitutions O ¢
x = e, y "*'8‘www dbraulibrary.org. ik2)

will transform the given cquation mﬁb a linear equation with constant
coefficients.  ¥Tor, we have " '

= . = = ’ug,, 2Dz = Dz,

D,z
T8 dudr 2N
Dp=_ %Gl 4Dy = Dz,
% afij@’ v |
2
DY = 2 \.:@i)z}_a_iﬁl oz #D% = Du(Du — D2,
dt\z ou 2 o &® du
~Oo (1 14 (o 1 &%
Dt%\?’:ﬂ:—- (— Dgnz) Ty -_(-E) _ , ayDDye = DuD:2,
9z \y Y dx \ov xy dudv
D3z=£(1 "_) 1o 1o D% = DDy —~ 12,
oy \y o g ot oy

and, as may be proved by induction,
YPDIDE: = Dy — 1) -+ (D ~ 5 + DDy — 1 -
D, -k + Dz @)
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Hence each term of the form (1) becomes an expression involving powers
of D, and D, and only constant cocfficients.  In non-homogeneous
equations, the right member, Pz, ¥), is of course also subjeeled to the
transformation (2), becoming F(e¥, %) = G {u, v), say.

After transformation, the resulting equation may then b attacked
by the methods of Arts. 62-65. When 2 has becn found as a function
of w and v, the inverse transformation,

u = log , v = log ¥, (4
gerves to give us a solution of the original equation, \
Example. Solve the equation R, \)

(D2 — 3ayD.D, + 24D} + aDs + 2yDy)z = 6ty by
Solution. Using relations (2) and (3}, we get as the tran 5%1%’113(1 couation,

[Du(Dw — 1) — 3DuDy + 2D:(Ds — 1) + Du 2D, ]z = Be-e,
or O
(D} — 8D.D, + 2D7)z = G
Since the new operator has the factors Dy — ijg, and Dy — 2Dy, ey + ) +
golv + 2u} is Wb uliRpisYhaap futetion.  Also, by means of formula
{9), Art, 65, we easily find that z = et k4g a particular integral. Hence the
new equation has the solution NV

z = gi(v + ) + galv + 2u) + 2ev T,
Returning to the original indeﬁt}ldent variahles, # and ¥, we then get, as a solu-

tion of the given equation}i

.\'z’.='9x(10g zy) + gallog o2y} + 224,

N

\\ z = faley) - Folz®y) -+ 2u9%,

where fi :;111%’5 are arbitrary functions.

or

& EXERCISES

Holve each of the following equations.
1. (2D% — 2D + 2D — yDydz = Or
2. (®D% — 2eyD.D, + DL 4 2D + yDy)z = 0
3. (x2DZ — zyD.D, — 2D.)z = 0.
4, (?DL — y?DE — 2D, + 2yD,)z = 0.
B. (zyD.D, — 4?D; ~- 22D, + 24D, — Wz = Oy
6. (24°D2 — 5eyD.Dy + 2"D2 + 22D, + 2yM,)z = bxz.
7. (22°D% + TayD.Dy + 347D} + 25D, + 3yDy)z = 103/

.
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8. (3¢°D% — 82yD.Dy — 35°D] + 3Dy — YD)z = 16,

9. (@DL — 231Dy — 2°D} + 2Dz — 2yDy)z = 2 log (y/2).

10. (z*DZ — 32yD.Dy + 247D + 2Dy + 2yDyz = 42y log &

11, (2*D + 3ryD.Dy — 45°D} -+ 2D, — 4yDy)e = 12 sin log 4%

19, (627DE ~ oyl — y?D2 1 62D, — ¥Dyz = 1dzxy cos log (/).

13, (zDID, — ¥D.Dy)z = 0.

14, (D% — 2yt D.DE + 32°D% — wyDLD, 4+ 2Du)e = 4.

5. (HyDIDy — 2°D.D5 — #°Df + ' Dz = 6a¥/y.

67. Special types. We next consider a few special types of second 5
order linear partial differential equations with variable coefficients)
These particular forms are included in the general linear equatién‘n of
second order, N

Rr+Ss+ Ti+Pp+Qg+2z=F, 7} )]
where R, - -+, Z, F involve the independent variablesis and y only.

Among the simplest {ypes are those in whic}.x:ﬁb'é of the six coeffi-
cients in the lett member of (1} are zero. In qrdéx that we shall actually
have an equation of sceond order to deal withy % or 8 or T must be the

non-zero coefficient, and we thus have thelfhree possible forms
www.dbrau]ihrary.m-g_m

623 ’:.':.;

= é:;i’-—‘. Gz, ), (2)

N

S8 0%z
XeY = Gz, &

X X azdy (z, ¥),

o2

O\ = — = (x, y). @
oS abrw: (z, 1)

&
We shall dis?%\s only equation (2); the remaining two equations may
be similarhitreated. i

ek = 3% /o2 = 8p/dw, partial integration of (2) with respoct
2 that is, integration in which y is regarded as constant, will yield p.
In thig integration, the arbitrary element introduced may then _propeyly
be taken ng an arbitrary function of ¥ A second 1ntegration with
rgsyiwect to , in which a seeond arbitrary function of y appears, will then
Tield 2, |

Fxomple 1, Find s solution, containing two arbitrary funetions, of the

equation

r=ary2'-‘2y.
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Solution. ©One integration with respect fo x gives us
p = 3% — 2oy + (),
where f(3) is arbitrary. Integrating again with respect fo z, we get
z = 2% — oy + 2f(y) + o),
in which g(y) s also arbitrary. This is the solution sought.

Of course, equations (2)—(4) are reducible linear equations with con-
stant coefficients, and may therefore be solved by the methods of A,
62 and 65. Howcver, it is usually easier dircetly to perform thg Awo
integrations, as in Example 1.

Next in order of gimplicity are the equations O
Rr+ Pp=F, ,;f 3 (%)
Ss + Qg = F, O (6)
S8s+Pp=F, o~ )
Tt + Qg — 0" 8)

The first of these ggn be written ag »." )
RTTATEAT Td

ulibr ary org. m

_N+Pp=F1

which, with ¥ regarded i:3as\t3t)r1stam', iz essentially a linear ordinary
d:lffort,ntml equation ofithefirst order, p being the dependent variable.
By the usual method, (Art. 4), p can be found, and integration with
respeet to x willthen zive us 2.
Similarly, ‘@,.may be expressed as
&
\/ d
O 8+ Qu=F

and { tWD integrations, with respeet to @ and g in turn, serve fo solve the
p\:oblem Equations (7) and (8}, equivalently written as

d 9
S +Pp=F, T HE4Q—r
dy ay
require first an integration with respeet to g, and then a second integras

tion, with respect to x for the former, with respeet to y for the latter.

Ezxample 2. Find u solution, containing two arbitrary functions, of the
equation

xs 4 g = de? V.
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Solutien. This is an equation of the form (6), and we therefore write it s
x -'a—q' -+ g = 4p2r-v,
O

This may be integrated as a lincar ordinary equation, but it is easy to integrate
by eombination (Art. 8). Ior, we notice that the left member iy the partial
derivative with respect to z of the produet xg. Hence we have

xq = 26 4 fly),

% _2 g 4 Ly, R\
dy = z

W

g £\

where f{3) iz arbitrary. Integration with respect to y now gives qsﬂl‘é:‘sdution
7 {"
2, 1 S
=— ¥V 4 — fi(y) + g(=),
z @

:. \"‘
where fi(y) is a new arbitrary function of y (such th&t'dfy/dy = J) and g(z) is
also arbitrary, &

Consider now the forms &
o www.dbraulibrary.orgi
Rr + Pp4iz = F, {®

T +\Qq + Zz=F. (10}
O
Equation (9), when writtchas~

oy N2
\Rﬁ—z+ P§E+Zz= F,
/\ du ax
is seen to be egse \’tia.]ly a second order linear ordinary differential equa-
ton with z addndependent variable and y playing the role of parameter.
If, in partieular, the coefficients B, P, and Z contain y bué not z, this
equafion“ean be solved as a linear ordinary equation with COI'ISt&nt
coefficients (Arts, 11, 12). The arbitrary elements appearmg I the
solution should, of course, be arbitrary funetions of ¥.

Similarly, form (10),

&2 dz
- — + Zz = F,
T o +Q a +

ay sometimes be solved by elementary methods, treating z a5 8 pﬂffm};
®fer. Tquation (10) can always be solved by elementary raeans i

7,Q,and 2 depend only upon z.
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ﬁmple 8. FTind a solution, containing two arbitrary funetions, of the
equation
r — 8yp + 2y% = 2y — 2ye¥ V.

Solutfon. This equation, which for emphasis may be expressed in operational
form,
(DX — 3yD + Dz = 2y — 2)e¥ 7,

is readﬂy solvable by the methods of Arts. 11~12. The auxiliary equation,
— 3ym + 2y® = 0, has the roots y and 2y, and consequently the compie-
ment&ry function ig )

e f{y) + e g(y), O

where f and g are arbitrary functions. By the method of un@feterm111ed coeffi-
cients {Att. 12), or otherwise, we find the particular 1nteg1'3~12 = e vfly — 1)
Hence the given equation has the solution

o
— a7y Lo pTg» .
z=e"f(y) + 7 gly) ;i}y.._ 1
Finally, we consider here the forms ()"
wwwdbrauli%&ngz.@gg,@?}; = F, (11)
Ss +~Tb+ Qg = F. (12)
Fquation (11) may be Wxi’t%n a8
,\\ ~
&
'R P Pt S —~F— Pp,
X X
which is ear partml differential cquation of the first order with #

and y 28" dependent variables and p as dependent variable. Hence
it can be sttacked by the Lagrange method of Chapter IV. Since p
oecurs on]y linearly in this Lagrange equation, it is usually possible to

tain p explicitly in terms of z and y, one arbitrary function being
involved. If we can integrate the result with respect to x, we shall get

& solution of (11), into which a second arbitrary function, of y, 18 intro-
duced.

Equation (i2), wriiten as

Jq aq
S 4 T2 =F—
9z T P F — Qg

can evidently be attacked in a like manner.
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e
Emgﬂe 4. Find a solution, containing two arbitrary functions, of the
squatio

or—ys+p=1y%

Solution. As this equation falls under form (11}, we express it ag

ap dp 5
T o ¥ Tl - r
N\
the subsidiary equations for which are A
W
dr _ dy dp_, N T
-~y ¥—p AN\

From the first two ratios we get ay = ¢. From the second and t@xﬂ“ratios, we
find AS
ydp — pdy 4 y*dy = 0, \
_ o
dp —pd <4
il L AP
¥ Y
Loy=ul
‘w:,::“ W‘J\:"W‘(E[bI'aUljbl'aI'y_opg.j_n
Therefore the general solution of the Lagrange equation 8

~\§~F y = flzy),

where f is arbitrary. Ther, >
NO o
LA™
”\s.

{
,\\u

whete f; (miii";is a new arbitrary function such that 8fi{zy)/0¢ = ufiley) =
4 {xthnd g(y} is also arbitrary.

= y"‘ + ?;v'f(xy)s
and

z =— oy + filey) + 9,

Sometimes an equation of type (11) or type (12} can also be 501; Bi
by & direct, first integration. For instance, the equation of Exampie s
@R at once be integrated with respect to z, by combination, glving u

P — Yq = oy® -+ ¢,

where ¢(y) is arbitrary. This Lagrange equation, with 2 as depti:nt-if 1;';
variable, can be solved to yield the same solution found above; 1

eft to the student to verify this.
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EXERCISES

Find s solution, containing two arbitrary funclions, of cach of the following
equations.

1. r = 2sin (2 — 2¢). 2 5 =2z — 3t

3.t =gzl 4. yr = scel .

B. zfys = 2 — by’ 6. (x| )t = 2.
T.zr+2p=0. 8y tyg=1+ye ™

9.y —p =3 10, yt — g = 2z, ~
M.i—¢g— @+ a2¥z =220 tay 4+ #y). 12, scosx + ¢sing = sin 2C6s I
13. ys 4+ 2p = 3y cos 2. 14. t + g = z%cos 2y + 2sin y.
16. r —yp = 2 — 2ay. 16, r -+ 8 = oy + 253 M
17, 25 — 222 = 1. 18, ayr 4+ 2% — yp S — e
18, 2% + a2 — )p —y2 = 372 — ). 20. zs + yi + qr=Ni2ey’

68. Laplace’s transformation. A second orderwﬁ\rfear equation with
variable coefficients, ’

Rr +8s-- Tt 4 Pp + Q{{}}\éz = F, (1)

which does not fall under any of the fypﬁeg dizeussed in Art. 67, can
sometinwﬁl\pgigirgﬁlﬁiﬂqp};%lj%ﬁq g-n.’pcfuat-ion sclvable by elementm
methods. We consider here Laplacd’s method of transforming equation
(1) and possible ways of solving the resuliing equation.

We first change the independent variables from z and ¥ to a new
pair % and ». For the gfesent, the funetional relations connecting the
original and new v i@i)lés will not be specified; cach of the new vari-
ables % and » will\be some function of z and , to be determined when
and as desired./pFor brevity, we use the following nolaticn with refer-
ence to the vé:ﬁablcs © and », analogous to our usual nolation when 2
and y arga@l} independent variables:

.:\p,"_ o %, _ % %,
™y =L = - r=— = — —"
NN o U7 o2’ " T quaw’ s’
<) Remembering that z and its partial derivatives, with respect t0 %

and y or with respect to » and », as well as u and » themselves, are
functions of z and y, we get (Art. 18)

@

pzai_ﬁiaiL 9z 9v [ ’ fay. I T3t
_ax ou dz a_vax_'puz—I"qvm g = Py gty

o= s + (s + 502) + e+ 0a(Us + 172
r'ul 4 2’ ugn, - 102 4 Pten + ¢ 2z, 3
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ap _ 9q
s = -é}; = a_xh = ?JUIUF + Sf(u:?)-y + uy”x) + t"vzﬂy' <+ p!u;y + q'ux,,
?__q_ e et R 23! # 2 2 ’
5 = 1y + 28"y, + vy Py - gloyy

i =

Substituting in (1) and rearranging, we find as the genersl form of the
transformed equation,

Ry + 85 + 1 + P'p' + Q¢ + Z& = F, (4)4
where R
Bfe= Rui + Suu, + Tuf,, \. \“‘\
8 = 2Ruzv; + S(uaby + wyvs) + 2Tuypy, AN &
= Ro2 + Sop, + Tf}?,, '\\ ) )

P = Ry + Sty + Tty + Ptz + Qg
Q' = Rugg - Svzy + T?JW -+ PU: Ti"\\Q”

Now we have the two quantities u and ¢," as functlons of x and y, aé
our disposal. Examination of the forms) (57 of the coefficients in the
new equation (4) shows that u and v can aiwaacs be lqu:]gﬁl 0 as 1o make
vanish two of the three coefﬁclents~R S’ T, of the sec«cnndy deriitives
in {4). For, consider the quadratlc ‘equation in 4,

I@E%i— 8+ T =0, (6)

suggested by the form, of %' and T in relations (5). Suppose first that
the roots of (6), whitelrof course depend upon  and y since R, S, and T
do, are dlfstmci;\a)aa’ denote them by a and 8. We then determine u
and ¢ as sohﬁ»(ms, as simple as possible, of the Lagrange equations

A L Q)
<\; ox 3’_!;'
dv a»

— = (8)
ax e ay

Consequently, since « and 8 satisfy (6),
R’ = Rai2 + Send + T, = (Be® + Se + Thuy = O,
= (R8® + 88 + T)h = 0.
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Moreover, we have from algebra, «f = T/R, « 48 =— S/R, and
therefore
= [2Raf + S{x + 8) + 2T 7w,

52
= (2T - E + 2T)uyﬂy

§? — 4RT
= "T Uyllye £\
Since, by supposition, « 3 8, the discriminant S* ~ 4RT of t‘hb quad—
ratic (6) 1s not zero, and consequently 8 = 0. O

Wlth u# and ¢ determined by equations {7) and (8), We thus have

=T = 0,58 # 0, and the transiormed cquauon (4)\may be wriften
i} the form )
8+ Lp' 4 Mq' + Nz —\).

or

—+L +M +Nz— )

Tn several cases, ooia T Oé'ﬁl\“%e solvod If it happens that the
coefficients Z and N both vanieht) we have an instance of form (6) of
Art. 67; or,if M = N = 0, £6rm (7) of Art, 67 ariscs.

TWD further posmbﬂﬂ]g&\nay be considered. On the one hand, we
may write (9) as \\

a( -i-Lz)ékM( +L)+(N—%—Lu)z=@. {10}
du ,\ o

Then if N,&»Lu —~ LM = 0, (10) becomes the first order equation

o aw
O 4 Mw=G, (1)
\; N/ a;“
w}kre
0z
w=— - Lz (12)
o
Solving these two Lagrange equations in turn, we get z in terms of u

and o, and thenee z as a function of z and y.  On the other hand, (%)
may be expressed ag

oM B
av( +M)+L( +Mz) ( - )z—G.-
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50 that, il N — M, — LM = 0, we have merely to solve

aw
o + Lw =4, (13)
and then
oz
= — 1 Mz
W= + Mz (14)

When none of these conditions is fulfilled, it is possible to make
further transformations, one of which may lead to a tractable forny, bt
we shall not go into these matters here (see Exercises 11 and 12{ fellow-
ing Art. 69). In order to keep the argument from bee()mmg t00
involved, we have also passed over a few exceptional cases;, far instance,
we have tacitly assumed that B # 0, thereby makmg (ﬁ) truly a guad-
ratic cquation. This and certain other points 'ngl‘be left to the

exercises.
We have still to eonsider the ease in which th fuadratic equation (6)

has equal roots, so that R
S§2 — 4RT =.0 ) {(15)

and (6) yields only one function, say. oe We then determine % from (N,
and take v = y. As a consequeice, " B L R ibsrey i = T,
from relations (5). If, in the efiginal equation (1), T = 0, (6) has the
root zero, and, since we are AHow supposing that (6) has two equal roots,
this implies that 8 = 0 aigg Therefore (1) already has the form

}§T+Pp+Qg+Zz= F, (16)

containing only; (me second derivative. I T # U, we have, since o is &
double root ofy(6}, » =— S/2E; and from (5) and (7), together with

this va]uegf’}z we find
O 8 = Su + 2Ty = (Se+ 2T )uy

~O° g __ S 4RT
9, =(—-——+2T Uy =— T op w

Henee, by (15), §' =0, With ' =8 =0, "=T, and » =y,
{4) then takes the form

T?Ea-+ -I—Q" +Zz=F. an
°

This equation can sometimes be solved if P’ = 0, for in this ease it has
the form (10} of Art. 67.
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Ezample. Solve the equation
zr — ys — zyp + g+ yzr = L.

Solution. We first determine the roots of the quadratic-equation (6), Since
R=z,8=—y T =0 wehaveat® — yf = 0, whence o = 0, 8 = y/z, Hence
(7} and (8) become

%y _yd
F dr o« dy

¥rom these we find the simple relations © = %, v = zy. We next determirk
from {5}, the coefficients of the transformed equation, We have, of ‘egulse,
B =0T =0 and we also find & =— 3 =— % P/ =4 —u2 Q"-—y
=-—u, £ = y = 4. Congequently the new equation is 5

4

—u% 4wl — ug +uz =1, N

or M\ﬁ.
1 1
A ST TR
U 1 -u,,\\;
80 that \’\
1 1 ) 1
L=—1, M—~, N=-AY 0=——-

. U
wiww.dbraulibr ary org.in O3 -

The transformed equation does nob fa&l.‘lmder any of the forms discussed in
Art, 67, but we find that R

3

N - L.~ LM&0, N — My~ L3 = 0.

<\
Therefore either equations £11) and (12), or equations {13) and (14}, apply.
Choosing the former pair, %ﬂe get {rom (11},

L >

\x gw‘f‘“‘w‘—_l&:
PN n u
O\Y - —
;\\w. Tl log w« 4 fi(e),
where f{(.v} i arhitrary.- Consequently {12} gives us
2\®
o\ 9z 1
\\‘ —z=— g f (),
"
1
e = %eﬂ + ;fz(v} + g,

where fa(v) is & new arbitrary function such that dfs/dv = e~ fy, and g{u) is aleo
arbitrary. Finally, replacing « by y and » by «y, we obtain the solution

Iog Y

+ - f(wy) + ¥ g(3),
where F{v) = efals).
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The gtudest should show that eguations (13) and (14) lead to the same
reault.

69. Variation of parameters. In connection with linear ordinary
differential equations, the method of variation of parameters (Art. 12)
enables one to find a particular integral whenever the complementary
function is known. A similar procedure applies to second order linear
partial differential equations of a ecrtain form. Only the general case
will be discussed here; the argument is casily altered to take care
of exceptional cascs, for which the procedure to be deseribed is also,
effective, \

We assume that the differential equation R O

Rr+S8s+Tt+Pp+Qq+2:=F N\~ @)

‘~

has a complementary function of the form f(u} 4 g(v) Where w and #
are known functionally independent expressions inz ahd y, so that the
Jacobian J = ugw, — w2, # 0, and where f dnd’ g are arbitrary.
Accordingly, z = f(u) + g(v) must satisfy i;hex hotnogeneous equation,

Rr+Ss+Tt+Pp+Qg+Zz~0 2

obtained from (1) by replacing the nght sperbgr, £ by zero. Now we
ha / % af” QLG qu?,
ve, using accents to denote dﬁerentmtmn, agf’ =

ete., N\
4 !
P *uxf’-#ffzg, g = uyf + v,

P =20 o Ul + AP, £ = 6L F a0 vt
s '=~u5;uyf + Uy f + VeV + Vel

Substituting in {Q} and rearranging, we get

(R + Sﬂz%”*l‘ Tuﬁ)f” + (Riteg + Sttay + Tigy + Pits -+ Quy)f "+ Zf

-l~(R'v’J2 ‘h’Sfﬂyby—l-— To2)g -+ (Ropo+-Stay - Toyy+ Prat Qug +24=

mce this relation is to hold whatever the funections f and g, it

follows that the coefficients of f, ¢, /" g_, f Ml_d g"’ in the above iﬁu:ﬂm
must all vanish separately. Hence, in particular, Z = 0, so that our

differential equation must be of the form
Rr+8s+Tt+Pp+GQg=F

found in the anthor’s paper, “An Applieation of
ar Partial Differential Equations”, Bull. 4m.

(3)

* A complete treatment may be
the Method of Parameters te Line
Maik. 8oc., February, 1930,
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In addition, the relations

Rul + Suguy +- Tus = 0, 4)
Rv: + Sveey + Tvl = 0, (5)
Ruge + Stizy + Tuyy + Pus + Quy = 0, (6)
Rvye + Svgy + Tvyy + Poz + Quy = 0, (D)

must be satisfied. Consequently the funetions # and » must be such
that u./u, and /7, are roots of the quadratic equation
¢ \A

R+ 88+ T =0, N (8
by (4) and (5), and also such that they satisfy the hon;fdjg’éneous equa-
tion corresponding to (3), by (6) and (7). Since wé have supposed u
and v functionally indcpendent, the roots a =/u, and 8 = u,/v,
of (8) will be different, for & = 8 leads to Uy Uyt = J = 0. Thus
the discriminant 82 — 4RT of (8) must be différent from zero.

Given an equation of the form (3), with§* — 4RT > 0, we thercfore
proceed as follows, We find the roots a'and 8 of (8) and thus determine
% and v, as in Laplace’s method (Ar$.368), from the Lagrange equations

www.dbraulibrary.org.in N \

Uy = atlyy v, = P, )

If the functions u and -8 found satisfy the homogencous cquation
corresponding to (3),4then f(u) + g(v) will serve as complementary
function of (3), and\we have only to find a particulsr integral. For
this purpose, we set,™

A\ z=Uu+ Vo W, (10)

'"\. W
where U, ¥,rand W are unknown functions of z and #, to be employed
as pa,raf;l:eters. Then

4 .\'" 3

NN

O P = Utz + Voo + Ugue + Voo + W, (D
¢=Uu + Vo, + U + Vo + W, (12)

When we say that (10) shall be a solution of (3), we impose one eon-
dition on our three parameters. We take as the two additional con-
ditions,

U + Voo + W, = 0, (13)

Up+ Vo + W, =0, (14)
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so that (11) and (12) reduce and lead to

p="Uu+ Vo, ¢=Un+ Vp,
r = Uttee + Ustte + Vouo + Voo, 8= Uy - Uty + Vit + Vo,

p

§ = @ = Uttey + Ugtty + Vo, + Vi, (15)
9g

= 9 = Uugy + Upty + Voo, + Vit Q
Oy
The two expressions for s give us the relation O
Upte + Vo = Ugty + Ve 0N (16)
From (10), the total diffcrential of 2 is o\

de = Udu +udlU +Vdv+ Uqll(:i— dw.
Now if we multiply (13} by dx and (14} by;ﬁé;\ and add, we get
w(Us do + Uy dy) + (Ve de + Vady) + We do + Wy dy = 0,

or AN

uwdlJ + gdv 4 dW = 0. www.dbraulibrary.org.in
Therefore N
& = U dup\V do

- 'U@ dx + uy dy) -+ Vv, de + v, dy)
LAV, + Voo) dz + (Uuy + Vo) dy. an
This express::iei}oz}é'ﬁn exact differential, for

RS
N “3_%’ (Ut + Vog) = Uty + Uiz + Vory + Vb,

\W s
\ a (Uuy -+ V‘Uy) = Utgy 1 Uy + Vo, + Vaty,

and these are equal by (16). Henee, if we find U and V, and insert

.their values in (17), we can integrate to get the desired particular

Integral, .
Substituting from (15) into {3) (using s = d¢/dz), we obtain

UlRu,, + Sugy + Tuyy + Pug + Quy) + (Rus -+ Stty) Uy + TUy

+V(R”M F Svay + Toyy + Poz + Qoy) + (Be: + 8v) Vs + To,Vy = F,
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which, by (6) and (7), reduces to
(Ru:: + Suy) U+ Tquy + (R - S'L’y) Ve+ TvyVy = F, (18)

We can eliminate ¥V, and V,, from (18) as follows. Mulliply (16), on
the left by Tw,/v,, and on the right by —(Ru; 4 Svy}/vy; these two
quantities are cqual by (5). Then we get
Ry, R O\
Tuavy U, + To,V, = — (_U_i"_fﬁ“i‘ U, ~ (Ro, + Su,) T,
Vg Yy AN
or N\ ¢
R x Se ) zs,,.
(Rvg - Sv,) Vi + T,V = — (—”——fv—imm U, — :%ﬁ U,
o £7)

Substituting in (18), we find ~\ “

I

Ry, N RS

(Rux + Suy — T Suy) Uz + (T@bg}w "
L4 M\ g ¥

whenee, using J = w9, — w9z, there is@btained

wwwdbr@t{ﬂ“bgﬁ'yq?gfﬂi(ﬁy = Fugvy, (19)

a Lagrange equation for the detgMnination of /.
Similarly, using (4), muliply (16) on the loft by Tu,/u, and on the
right by — (Rug + Suy) /gi},)\to get
W

Yo -5

- Tuypy (Ruy -+ Sug)v

TuUy + —22Y, = — (Ru, + Suy) Uy — 'V,
QY Uy .
or AN
(RupfBu,) Uy + Tu, U, = — Buz + Sugvy - Tita g,
A\ Uy Uz

Sﬂbst}itﬁting in (18), we eliminate U, and U, thercby obtaining

i 2 W
(Rv,, + Sv, — 1; v _ S-vy) V. + (Tvy _ T ) Vy=F,
%

¥ T

or
RJu,Vy — TV, =— Fuuu,, (20)

a Lagrange equation in V,

Equations (19) and (20) are easily solved. The equations sub-
sidiary to (19) are

dx _dy _du
BSv, -— TJvy N Fu.py,

(21)
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If we multiply (4) by vevy, and (5) by u,u,, and subtiract, we get

R(ugraty — uguytl) — T(ust} ~ wow,) = 0,
or
BJup, — TS, = 0. (22)

Hence u, and %y, used as multipliers (Art. 37} in the first two ratios of
{21), yield v, dx + w, dy = 0, whenee u = ¢, o constant. 'Then the
first and third ratios in (21) give us

auv  Fr, \
ey L)
dz RJ O
Replacement of y, obtained from % = ¢ in terms of z and" ﬂ«, in (23),
integration, and subsequent replacement of ¢ by u, glves b & suitable
expression for U, o

Likewise, the equations subsidiary to (20) are\ \

do dy w0

= » (24)
RJu, —TJu, —~F il thy

Using &, and o, as muliipliers, (22) grve@ s, Ap%c%fb;]aﬂ&%yaag whence

t = b, a constant. Solvingy = b forgm terms of 2 an Iéeﬁmg
in N\
LOC_ Py (@5)
. 2 \oHx RJ

we are enabled to find, T?\

The values of U-anll V found from (23) and (25), which Df‘»@d not
contain arbitrary fulittions if we are secking merely a particular integral
of (3), are then &lbstituted in (17) and the integration performed. The
gum of this c}lcular integral and the coroplementary function f(u) +
(1) then flettishes us with a solution of (3).

."\ »
\Eigmpze_ Salve the equation _
2(1 — 2)r — (1 — 2Ds+ U — ) +p—yg=1.

Solution. We first form the quadratic equation (8): after division by the
‘ommou factor (1 — ), this is

B2~ y(l + )8 + 3° = 0.
This vields ¢ = ¥/x, B = y, whenee equations (%) become

Te — Py =0, Uz — Yy =0
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We readily find % = 7y and » = ye® as simple solutions of these equatinns, and
it is also easy to verify that these functions satisfy the given differential equa-
tion, Hence
fey) 1 g(ye?)
is & complementary function,
Equation (23) then gives us, using xy = g and J = (1 ~ z)ye?,

av _ &* _ 1
dr  z{l — 2Ywe* ol - 1)’ ~
whence we may take \
-1 1 )
a(l —x) wy(l —z) O
Bimilazly, (25} becomes, with the aid of y¢* = b, R ‘”}‘:
@ x ot N
&z o1 — z)Pye? bl — BNV
so that AN,
o {0

ol —=) (1 Saer
Substltu“ﬁ%}n Qg‘huhbral yorgin %

_ S 3

1 1 o7 1 1 dr
do= | —— — dz ek - Y= —
¢ [a:(l—z) l—x] ‘jj‘[y(l—x) (lﬂx)y]dy z’

snd consequently 24
N 2=
) g
& »
is & partieular mtegml Therefore the given differential equation has the
solution

MK .3

2 = flzy) + g(ye”) + logw,

N
Applle%fbn of the Laplace transformation to equation (3) yields
the snnplés guation
8% Fup
SN T2 futy
' . Qudy RS’ @)

"
\ 3

and it may also be shown * that our results are closely related to
Laplace’s method. However, practical difficulties sometimes prevent

the use of Laplace’s method dircetly. Thus, for the above example,
(26) takes the form

%z 1
dud (1 — 252
* See the paper previously cited.
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To treat this, it would be necessary to replace z and yin the right member
by their values in terms of 4 and v.  But the inverse of the transforma-
tion » = zy, v = ye* cannot be obtained in elementary finite form, and
eonsequently we are unable to eomplete the process,

EXERCISES
Bolve each of the equations i Exercises 1-10.

Lardays+aptyg~2 =0
2 2yr+s+(2y—1)p+q-—z=2ye”.

B yla+ 9 —8) —a2p—yg—z = day + 2 O\

4 o — Bays + % 4 Zep + yg = 622 P N

B. &' — 2uys + 47t + (22 — P + ayfq - 2B = 2ev.
baly—ar + (% — et yly — 2t Fyt+2)p—g) = ?:c{g— )72,
Toyley — Ur— @%° = s + 2oy ~ 1t + 6~ 1)p + (y ~adg = 3(zy — DA
8ty — 1y ~ (g ~Dystyly — i +p ~ ¢ = 20y — 144 \
9 zloy — Dr — (2% — 1)s + ylay — 1t + @~ Dpk v~ Vg = @y ~ D)%
10. 2(z + 1) + (=) ~ yle + ) + v — DORY = 162z + y).

1. Tn Taplace’s rethod, if ¥« Ly — LM » @avd ¥ — M, — LM =0, we

7

may procecd as follows, Leg \

dz L)
= — 4 Iz H=NEL,~-LM=0
Y év+ i N www.dbrau]ihrary,org_jn

8 that equation (10), Art, 68, hecomeal ™

2 1 Mw + Rz = @
T
By solving this equation 4@2; and substituting in w = 8z/v - Lz, show that a new
equation of the form
o\ D%
N udw

duw du ,
P oY L A=

5 obtained, TJ;E is of the same type as (9}, and hence may be pimijlarly treated. o
12, Altey alively to the procedure of Exercise 11, we may ﬂe:f. w = dzfeu +t *
R=N 4 v— LM 5 (. Show that this also leads to an equation for w of ths g
@, g}"ﬁg- Each of these transformation processes may be repeated until
Ae%ssary condition for solvability is satisfied. _
x )13, Bhow that we may use the quadratic equation T# + S¢ + B :h otmdi?::rli)b;h:
f equation (6), Art. 68, and owtline the procedure analogous to tha
Thiz alternative viewpoint is useful when B = 0. ’
14, Using the method of Exercise 13, solve the equation

aye — 4% 4 2p — 2yg = 27y

*, = atm
18 T, in Art. 68, §% — 4RT = 0, we may alternatively take u Hon :::ta:mux i
Hine ¢ from cquation (8), Show that this also leads toa Ile‘;’] ?tqlil:sol\'a e,
%nly oue socond derivative, and find the condition under which i
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18, Using the method of Exercise 15, solve the equation
alr — st tap—ag—z=y — &

1%, Derive equation (26), Art. 69.

18, Show that the right member of equation (26}, Art. 69, may also be expressed
a8 — Fup,/TJF

19. Show that, for the method of Art. 69,

Uz = Jya, uy =~ Ja, vz =— JYu vy = Jau.

20, Using the relations of Exercise 1%, show that equation (26), Art. 69, leads to

dz Fy, 8z p ’\\\
jalal a4 »
aw S RIa ™ +Jile), O

3z f‘ Fuy dx N

a’b‘_ . M&udu+g1(”)1 >

S
‘where s subscript on an integral sign denoctes the variablesgwith/respect to which the
partial infegration is to be performed, and f1 and g are a.r{ita:ary functions.

()

T0. Geometric problems. In this artigle“we shall illustrate, by
means of examples, a few geometric prghlems involving lincar partial
dieental cusgions o fr ighe dhut e .

Ezample 1. Find the equation oftdhe surface satisfying the differential
equation r = 0 and containing the lipes

4y =1, z\m"o and z=2 z=0. )

Solution. We readily¢fidy’by the method of either Art. 62 or Art. 67, the
golution N

N\

o~ 2= fly) + agly) (2

A\
of the given dii’fe\éntial equation. We have now to determine the nature of the
funetions f(yldgid gy}, which are arbifrary in (2), so that the given geometric
conditions 3\&@]1 he fulfilled.
For gty point on the line x + y = 1, z = 0, we must bave y = 1 — 2 and
7= Qo Inserting these valucs in (2}, we get the relation

\V 0= (1 — ) + zg(L — 2), ©)

which must be satisfied by f and g identically in z. Similarly, for any point of
the second of the lnes (1), we must huve z = 2, « = (, whence insertion in (2)
gives us

2 = f(u). @

The f-{unetion is therefore determined ag the constant 2. Setting f (1 — z) = 2
in (3}, we then get

gl — 2) =— 2 63
x
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Kow since the g-function ju the left member of (5) hag the argument 1 — 3
we express the right member in terms of this quantity. Evidently, then, ’

2
l—g)s —
9( ) d-a =1
ot
2
9y) = — (6)
Substituting from (4) and (6} into {2}, we therefore have
)\’
2z LW
Z—2+y'—-—1 ‘“\ ¥}

as the required surface. Equation (7) represents a hyperbolic'ga:rab-::ﬂoid gen-
ersted by a linc moving always parallel te the zz-plane and pakmg throngh the
lines (1. v’

Erample 2. TFind the equation of the mlrfacex’s%i'sfying the differential
equation § — 2 = 0 and tangent fo the para.lgol}i& z=u%— 2¢* along the
section by the plane y = 2 — 2. Y

Selution. 'The given differential equatiolis casily solved (Art. 62 or Art. 67),
and we find the solution o www.dbraulibrary org.in
z = J@3F gy + 2). ®

1f the required surface, inc]uded\i}; the family {8), is to be fangent fo the hyper-
belie paraboloid z = 22 —2¢gPalong a plane section, the values of p for these
two surfaces must he the,se%&e at any peint of that section, and the correspond-
Ing values of ¢ must cpincide there. For the surfaces (8), we geb

)

pEy @ Fu G+, ¢=dut2, @
'"\§~
and for the' fi@ae'e 2=z -2
™ p = 2z, g =—4y. a0
- \ % then ha
U\ﬁé}‘y"& 2r — 2, which must hold at each point of tangeney, we then have
fromv®) and (10), (11
2 = f'(z) + 24 — 2), '
8 — 8¢ = ¢'(4 — 2). 4
Relation (12) may be written as
Whence we get, by integration,
(13}

g{4x—2)=-—(4:::—2)2+4(4n:-—2)+a,
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where g 18 a constant. Combining (11} and (12), we find

fia) = 2z — 2(8 — 82) = 18 — 16,
and consequently
Ffle) = 92% ~ 16z + b, (14)

where b is & constant, Changing the argument 4z — 2 in (13) to ¥ + 21, and
inserting the result, together with (14), in (8), we have
A

2=9z' — 16z — (y + 22)* + 4(y + %) + ¢ .
5
=5t —day — Pt — B+ 4y + ¢, .'\\
O

where ¢ = a - b. To determine the value of ¢, we may use ,thl: fact that any
conveniently chosen point on the section of tangeney must lig'on the surface {15).
Taking # = 1, the plane equation y = 2% — 2 gives ug 5&¥ 0, and the surface
equation z = x2 — 2y? then yields z = 1. The coordinites (1 0, 1), inserted
in {15), give us ¢ = 4, and therefore the required :;ugg,ce is the quadrm surface

z_5x2—4xy—y—sxq>4y+4 (16)
E mpz',e 3. Bhow that the differential equatlon
i www.dbraulibrary. qry
@D} 4 3c4yDiD, + §xy2D D+ D82 =0 an

is satisfied by surfaces all of gghose seetions by planes through the zaxis are
straight lines and parabolas,.\

Solution. We may‘s}}}e 'equation (i7) by the method of Art. 66, Letting

<" z=¢, y=4, (18)
{17) becomes x\ >
[Du (D —\Q"\D — 2) 4+ 3DuDy ~ 1D, 4 3D,Dy(D, — 1)
+ Dy(D, — 13Dy — 2)]e = 0.

Th.u}, {educes to
O~ [(Du + D) — 3Dy + Do}t + 2(D, + D)}z = 0,
or

(Du + Dt‘) (Du + D, — 1)(Du + Du - 2)2 =0,
Hence we have the solution (Art. 62)
z=fily — u) + e¥gily — u) + e2hylv — W),
Replacing 4 by log x and v by log y, we see that (17) has the solution

Aol
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Now every plane fthrough the z-axis, except ¢ = 0, has an equation of the form
y = ma. Substituting ¥ = mz in (19), we get as the equation of the sections
in thege planes,

z = f(m) + zg(m) + 2h(m). (20)

When A(m) = 0, (20) represents a straight line in the plane 4 = mi, and when
h(m) # 0, we have a parabolic section. To take care of the exceptionat plane,
z = 0, we write the solution of (17) in the alternative farm,

= (g) + %4 (g) + ok (g) \(19')\

. a " . . £ A \
Evidently all these surfaces have straight line or parabolic sections by,the\ﬁlane
z = 0. Therefore every solution of the forms (19) and (19} whatever'the fune-
tions f, ¢, and %, represents a surface with the stated geometric ploperty.

4
EXERCISES \/

1. Find the equation of the surface satisfying the diffeéﬁtial equation » 4+ ¢
¢ = 0 and containing the lines y = 0, z = 0 and y = 3%, #= 62.

2. Tind the equation of the surface satisfying $He differentinl equation + — 6s +
9 = 0 and passing through the linex = 0,7 = y and'the parsholay = 0, z = 32"

3. Find the equation of the surface sstisfyihg ifferential equation r — 35 +
2 = 8 and passing through the y-axis and ﬁh&pﬁa@(ﬁﬁgﬁrgu; y# gPE-in

4, Find the equation of the surface «s}aﬁiéfyiﬁg the differential equation r 4- 3 —
2 = 0 and tangent to the paraboloidz ="22% + 2y* - 1 along its section by the plane
y=1z A
8. Fiud the equation of the s'iir}hce satisfying the differential equation r — 25 =4
and tangent to the Surfacé\g\; 7% — 6zy 4 8y* along its section by the plare
Thy=1 \

6. Show that there e infinitely many surfaces whose equations satisfy the dif-
ferential equation 2% %% 4 zp — yq = 0 and which are tangent to the surface
2 = 2z%7 along itsfglelion by the plane y = . . )

7. Find the.dqiation of the two-parameter family of planes satisfying the differ-
ential equatidings 4 p =32 . ] ]

8. Find'the equations of the families of quadric surfaces satisfying the differential
equation s = 2zt = 0. : . .

glijﬁd the equation of the quadric surface setisfying the differential equation
lsnfos T ¢ sin = O and passing through the y-axis, the line @ = 1, z = 1, and the

or =22 =6, _ _

10. Find the equation of the quadric suface satisfying the digefe’m&l equation
Zyr +a% — yp = 0 and passing through the paraboles 2 =& —3 y=0and
2= -3, x=0. ' S . )

11 Find the equation of the quadric cone satisfying the differential eq“at";m
i‘* — g = 0, having it vertex at the origin, and passing through the parabola z = y"—
&= 1.

12. Show that the differential equation 2% -+ Zzys + e =0 satisfied by ruled
Surfaces generated by straight lines passing through the z-ax.
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13, Tind the equation of the surface satisfying the differential equation s 41 =0
and tangent to the surface 3° - 2* = 1 along its section by the plane z = 0,

14. Find the equation of the surface satisfying the differential equation (Df —
3DID, + 3D, DI — DYz = 0 and containing the lincs: z =y, £ = 0; 2 = 2y — 1,
z=1andz =3y -2, =2

15, Find the Equation of the surface satisfying the differential equation (DS 4
6DID, + 12D, D2 4+ 8D}z = 0 and containing the lines; 2z =6z + 1, y = 0;
z=2% —2,y=1ande =10z +4y=— 1L

18, Using the method of Example 2, Art. 63, find the equation of a quadric sur-
face satisfying the differentinl equation 3t — p = 0 and passing through the cdrves
z=2+4+24 y=0andz =2 — 3y + 4 z =0,

17. Find the equation of the quadric surface satisfying the differential’ equatmn
9 — 3p -+ ¢ = 0 and passing through the points (0,0, 0}, {—1, 1, 8), and @, -1, 11).

18, Using the method of Art. 64, find the equation of the surface, sa.t,wfymg the
differentisl equation r — ¢ = 0 and .passing through the y-axis and the eurve z =
2sinz, y = 0.

19. Find the equation of the surface satisfying the dlﬁererrtlal equa.tlon r—f=10
and passing through the curves 2 = ginz 4 cosz, y = O sody? = cos 2z, ¥y = 7.

20. If iz + 1) = oz, ¥} + d{x, y), where 2, y, cb}:smd Y are ail real and ¢ =
4/ —1, show that z = ¢(z, ) and z = ¥{z, ¥) both saf{sfy Laplaee’s equation, r =
0, and that the two families of curves iz, y) ='a and ¢(z, ¥} = b are orthogenal
trajectories of each other. O\

www.dbraulibrary orgin™

71. The vibrating string. In. Aw. 30 we derived the partial dif-

ferential equation of the v1bratm,g string,

\32 5 0%
LA - 1
\\ Yo T Y a2 M

where x (ft.} is th,e dtstance measured along the stretched string in its
equilibrium pomtmn, { {sec.) is time, y = y(z, &) (ft.) is the displacement
from equﬂlb;m;rﬁ position, and @ =~/Fg/w {{t./sec.) is a eonstant; F (ib.)
is the constant tension, w {Ib./ft.} is the lincar density of the string, and
g =322 Tt /eee”

e 4ssumed, in Art. 30, that the two fixed points of support were ab
@, 9 and (L, 0), where L (ft.) is the length of ‘the string. We now
take these physical facts and express them as boundary conditions.
Moreover, we shall stipulate typical initial condifions, that is, the dis-
placement and velocity of each point of the string at the time { = .
When a physical problem is thus completely specificd, by a combination
of the intrinsic equation (1) and initial and boundary eonditions, we
may expect to find a unique mathematical solution giving us the dis-
placement of each point of the string at cach instant. The procedure
of finding such a solution, using the method of sepavation of variables
(Art. 64), is illustrated in the following example.
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Fzample. Tind the displacement function y{z, £} which satisfies the differ-
ential equation (1), the boundary conditions

¥0, b = 0, it 0, )
WL, &} =0, >0, 3
and the initial eonditions
#le,0) =m{le —2h), O0<a<, (@)
&
_y] =0, O<z<L 5 ¢
gt J;=0
where m (6,7Y) is a constant, numerically small. R\

Splufion, As in Art. 64, we assume a solution of (1) in the fom}»’}"
v, ) = X@)T0), R ®
which, when substituted in (1), leads to v

N
XTI = a2 X"T, 0
N\
X!tj i p\ \J
X e b

SO ww w.dbraulibrary.org.in

s constant.  We thus obtain three types.dfsolutions:

§ = (cleﬁr’z + cze_m) ("-‘a:’z?"‘/‘.H + 848-m : k>0 ()]

Y= {es8in vV —kr+cs cos Y ~kx)es gin gV —ki-Feg cos aV —ki}, k<0;
N\ | ®

¥ f’-,(l?giﬂ + ep)(ent + g},  E=0. ©

Snpposing no aflﬁéz‘g} is dissipated, so that each position o‘f t.he string 18
Tepeated indefi ité’lz}'often, we see that the motion must be periodic, and con-
sequently onl, rm {8) is physically suitable. Using this, we now apply the
houndary conditions (2) and (3), which express the fact tha_t the ends of the
string ufergo no displacement. Substituting » = 0, y = 011 (8), we get the

.I‘Bla,ﬁQl‘; o
celes sin aV — ki + cg cos aV <) = 0, (10)

which must hold for every ¢ > 0. Evidently this condition is satisfied if we take
ts = 0, whence (8) reduces to

¥ =ez8in V —Fkx (c7 sin @V — Kkt + c5 008 o/ k), k<0 (1)
From (3) we then get the relation

es sin v/ kL {ersin @V —ki + s cos ¢V —Ht) = 0, (12)
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3. T the string is initially at rest in its equilibrium position and cach of ite points
is given the velocity
% o wind T
at]mu-—msm 7 0 <z <L,
where v (ft./zec.) iz a small positive constant, find y{z, &).
4, Using the data of Fxercise 1, find the maximum permissible value of v in
Exercise 3 if the displacement of the midpoint of the string should not exceed 1 in,
5. If the initial configuration of the string is given by
@ O
y(x,{i):ygsinsz-, 0<x <L, a
L AN
where ¥ (ft.) is a small positive constant, and the string is released frdﬁl\rest in this
position, find ¥ (z, ).
6. Using the data of Exercise 1 for the string of Fxercise 5, apd takmg ye = lin,,
find (1, 0.1}. RY
7. If the string is initially at rest in its equilibrium pos;twn, jand each of its points
ig given the velocity

ay] Kz -9, 00L& \<‘L
— = r— x
ot li—o ! \ “
where K (ft. 7" see.™) is a sufficiently small pOSl‘the constant, find y{z, 1).

8. Using the”, a‘ﬁ%‘%@’]ﬂﬁdi&i&emf@rgha’stmlg of Exercise 7, and taking K = 2
(ft. 7 sec. 1), find the displacement of thauidpoint of the string when ¢ = 0.1 see.

9. I the string is initially at rest m 1ts equilibriumn position, and each of its points
is given the veloclty

& L
i écx, Q<rs—
at, N 2
By L
N2 = eofl, — il
2K 'at]x=n oL = =), g <° <L

where ¢ (sec.” 1Y ima sufficiently small positive constant, find y{z, t).
10. Usmﬁtt\e data of Exereise 1 for the string of Exercise 9, and taking ¢ =3
(sec.™ ), ﬁ he displacement of the midpoint of the string when ¢ = 0.1 sec.

7& One-dimensional heat flow. In Art. 31 we derived the partial

Qﬁgrential equation of one-dimensional heat flow,

ar a%r

AR A 1

at gz’ (
where & (em.) is the distance measured along the direction of flow,
t(sec.) is time, 7 = r(z, £) (° C.) is the temperature, and o = K/¢8
{em.?/sec.) is the diffusivity, a constant; K (cal./em. deg. sec.) 18 the
thermal eonductivity, ¢ {cal./gr. dog) i¢ the specific heat, and 3
(gr./em.?) is the density, of the material of the bar in which the heat
flow takes place.
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We consider now o typical physical prob]t;,m Involving on&-dimen;
sional heat flow.

Fzample. A bar, 10 em. long, with insulated sides, has its ends 4 and B
kepf at 20° and 40°, respectively, unti] steady-state conditions prevail, that is,
unéil the temperature at any interior point no longer changes with time. The
femperature at A is then suddenly raised te 50° and at the same instant that
at B is lowered to 10°,  ¥ind the subsequent temperature function +(z, £},

Sphution.  From the verbal staterent of the problem we first mathematically
formulate boundary and initial conditions. TFor cur boundary eonditions wed

dearly have, Taking « = 0 at the end A4, A\
oA
{0, ) =50, £>10, O @
(10,8 = 10, £> 0. CN®

To obtain an equation expressing the initial eondition, we'plf{scéed as follows.
Previous to the temperature changes at the ends, at { 28, the heat flow was
independent of time. Dut if the teraperature 7 dependsienly upon & and not
apon §, squation (1} reduces to '\ :.\

@=& I\ o )

the solution of which is evidently - werw dbraulibrary org.in

=z % b,

-
Whers & and b are al‘bitl‘ar)’ Gg%‘tﬁnt& Nince 7 = N for x = 0, dnd =40
forz = 10, we get from (3}, ,

20= 3, 40=10a+d,
whence 2 = 2 and b, ~_—\20“ Thus our initial condition is exprossed by

:&b;@ﬂn=%+mm ¢ <z <10 ©®

{} sutisfying the differ-

We have thérefore to find o temperature function 7(z, g r
), and the initial eondi-

atiz) eguation (1), the boundary conditions (2) ang (3

topedgh.)
Jotritwo immediately follow the procedure adopted ip Art. 71, we encounter
dary values in our vibrating

% difficulty that did not arise there. The boun

Sing problem were both zero, and consequently we were able to find, Bgﬁtiog
bne solution of the differential equation, satisfying these houndary co!ll lﬁo '
hut the necessary rnore gencral solubion made up of the sum of such solu og;s
Hers, however, we have non-zero boundary values, and therefore we mOULLY
the procedure,

We break up the required function (, ) into t%0 pasts;
; @
Tz, ) = rdx) + e, 2,



204 LINEAR EQUATIONS OF SECOND ORDER [Crar, VII

where 7,(z) is a solution of (1}, involving only  and satisfying the boundary
conditions (2) and (3), and r:(, £} iz a function defined by (7). Thus 7.z} s a
steady-state solution, of the form (5), and 7.(%, {) may then be regarded as &
transtend solution, numerically decreasing with increase of ¢ so as to beeome
negligible after a sufficient lapse of time. :

Using the form {5) for .(z), we get, since 75{0) = 50 and 7,(10) = 10,

n@) = 50 — 4. (®)
Consequently we have, from (7), (2), and (8), O
(0,0 = 70, ~ 0 =80 —50=0; O @

from (7}, (3), and (8), G\
710, §) = r(10,8) — 7,(10) = 10 — 10 =,\0;;f 3 (10)

~

and from (7), (6), and (8),
iz, 0) = 7(z, 0) — 7o{z) = 2z + 20 — AN 4z = 6z — 30, (11
\N

Equations (9)—(11) express the boundary anil, ij;;itial conditions relative to the
transient solution. Since the boundary \«;allieg given by (9) and (10} are both
zero, we maydeliow Khaubibllaod wyerliin ALt 71 to determine 7.(z, £).

We assume 7.{z, ) to be of the form™

a8 = X(z)- T, (12)
substitute in (1), and separ\a:tfgs\the variables. This gives us
SN xr - exer,
. . \ i X (13)
> i

where & is{&\&iﬁsﬁant. We then find three types of solutions:

™
NS

NY Ty = e@H g1V | opp=VER) k>0, (14)

'"\‘ w4 o
N/ 7= e®(cgsin vV —kz + e 08V k), k<0, (15)
Te = €% + ¢, ' E=0. (16}

Bince 7, is to decrease numerically with inerease of ¢, form (15) must be chosen,
From (9) we get the relation

0 = cae®™, >0,
which can be met only by taking ¢4 = 0. Condition {10) gives us

0 = ¢z 5in 10V —k, t>0,
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and since 3 cannct be zero, else 74 would be identically zero, we take 104/ —% =
#r, where 11 15 an integer. Hence (15) reduces to
Ty = gge ™ T o100 gin LS

(17

Tt is apparent that ne single term of the form (17) will satisfy condition (11).
Reasoning as in Art. 71, we are thus led to the infinite series

ol

Ty = be=Reta%t/100 gin 1T (18) \
Zﬂ_ y 10 \

- N\

This series will formally satisfy (1), (9), and (10). Relation (11) nq“&'g}v&s'us

T
S

L ’
62— 30 = ) busin %, o<z <104 ¥ (19)
n=1 \

We easily get the needed Fourier half-range sine series fortz — 30 by combining
the series (I) and (IT) of Art. 60. Setting L =10\ these series, we find

120 w1 %wpl 1o 8w 9 ,
- 30 = == i~ - 8 v dihradlibuary)org.in
o - (Sm 025 T3 10 8

<

Therefore .
AN J . 60
bzl'%"g’ by = — %Q; by =0, 64=_2_11‘} Y

¢ \.QO
and substitytion i (18) yields
~ :\r; __% p—tatatt 100 5in T° . 1 g 16w et /100 Sm% +-- ) @
Q" - Poe

Finally, combining (8) and (21) into (7), we have the required solution,

{) =1 » . WIE
7(13, £) =50 — 4x — §_ E - 3-4n3 22 100 gin - (22)
T
n=1

when ¢ is small, the pres-

This series ¢ 10, ¢ > 0. Exeept
onverges for 0 < & < 10, pid, so that usually only

e of the exponential functions make convergence Ia
& few terms nced be used in computation.
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EXERCISES

1. Show that the temperature at the midpoint of the bar in the above example,
originally 30° when ¢ = 0, remains the same for all £ > 0, regardiess of the materia]
of the bar. .

2. If the bar in the above example is of copper, with K = 0.84 cal. fem. deg. sec.,
¢ = 0.092 cel./gr. deg., and & = 881 gr.fem.?, find the temperaiure at a point 2.5
em. from A 10 sec. after the change.

3. A bar, 30 em. long, has its ends A and B kept at 20° C, and 80° C,, respectively,
until steady-state conditions prevail. The temperature at each end g then sudd ty
reduced to 0° C. and kept so.  Find the resulting temperature function #{z, #), teking
2 = 0 at the end A. A

4, If the bar in Exercise 3 is of steel, with & = 0.086 cal./em, deg. seq‘,'c‘*=,\0.118
cal./gr. deg., and § = 7.70 gr./em.3, find the temperature at the midpofatiof the bar

10 min. after the change. A\

5. A bar, 40 em. long, originally has a temperature of 0° C. thmﬁghc}ut- itg length,
At time ¢ = 0, the {emperature at one end (z = 0} is raised ’"t;o'\5(]° and that at the
other is raised to 100°.  Find the resulting temperature firuintion +{z, #).

6. If the bar in Exercize 5 jis of copper, with K = 0.84 calyom, deg. sec., ¢ = 0.092
cal./gr. deg., and § = 8.81 gr./em.%, find the temperature’et the midpoint of the har
1 min. after the change, ¥

7. Find the time reqnired for the temperatue af the midpoint of the bar of Ex-
ercise § to reach 00 per cent of ity steady -state yalue.

8. The temperature at one end (x = 0) oRebbar 50 em. long is kept at 0° C. and
that ab thepther abddshbpting $0Q71F. until steady-state conditions prevail. The
two ends are then suddenly insulated, so,tﬁat the temperature gradient, dr/6z, is zero
at each end thereafter, Find the temperature function (z, 1),

8. Show that the temperature it the center of the bar of Fxercise 8 remains 50°C.,
and that the sum of the tempgmi’th‘es at any two points equidistant {from the center
is 100°. A\

10. If the bar in Exereise '8 is of steel, with K = 0.086 cal./em. deg. sec., ¢ =
0.118 eal. /gr. deg., and 8= 7.70 gr./em.?, find the time required for the temperature
of & point 10 em. fromyihe cold end to reach 90 per cent of its steady-state value.

73. Two-g:}iifn\ensional heat flow. In Art. 32 we derived the linear
partial diﬁ}géhtia.l equation for heat flow in space, using orthogonal
curviliz}ear coordinates. We shall confine ourselves here to two-
dimefisional steady-state heat flow. Using rectangular cordinates
(z\y}, we then have to deal with Laplace’s oguation in the form

3% 8%

o T 1
6x2+6‘y2 0 (1

{cf. equation (9), Art. 32); and in polar coordinates (o, ), Laplace’s
equation beeomes
& ar &
2
22T o o
ERRFAy:
(cf. Exercise 1, Art. 32).

=0 (2



Art. 78] TWO-DIMENSIONAL HEAT FLOW 207

The method of separation of variables (Art, 64) may often be used
to find the temperature funetion, r(z, y) or (o, 6), satisfying Laplace’s
equation and the accompanying boundary conditions, When the plate
(assumed to have insulated faees to insure two-dimensional flow) is
rectangular in shape, we naturally use Laplace’s equation in the form 1,
but if the plate has some circular ares as boundaries, equation (2) may
be preferable. We illustrate the latter situation in the following
example. A

Ezample. A semicircular plate of radius 10 em. has insulated faces =nd
heat flows in plane curves. The bounding diameter is kept at 0° C., s0 thatiwe

have, measuring @ from one of the bounding radii, O
(p,0) =0, 0= p<I, @
_ o) =0, 0<p<i N @)
On the semicircumference, the maintained temperaturewdistribution is given by

0\
(10, 8) = 22 ¢ DLl
T 2N/ 2" .
: 00 . )
B T
(10, §) = r (w 7’3), wwva,di)paéfﬁrary.org.in

Thus the temperature increases ];tnéé,ﬂ'y with 8 from each end, attaining a max-
imum value of 100° for § = w2, After steady-state conditions prevail, what
is the temperature function, £(n," )7

“Solution. We have to}h}d a solution of the differential equation (2} meeting
the boundary conditiens{3)-(5). Assuming a solution of the form
A\
RS (p, 6) = R(p)-T(8), ®
we get by su\lg;ﬁtﬁtion in (2),
) pR"T + oR'T + RT" =0,
whenge\™s

\ \; N p2R” + pR? . -T:i _ k’ | (7)
E T
4 tonstant.  Three types of solutions for T evidenily are
T = ¢ 5in A/%6 + cg €08 A&, k>0, ®
T = oV B+ ce™ V7, k<9, ©
T = cgf 4 ¢, k=1 (10}
rather than an indefi-

Since 7, and therefore T, must be a periodic function of 8,
nitely inereasing or decreasing function of 8, we must choose & > 0.
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The eorresponding equation for R,
428 ar
Pt p—— kR =0, 1
Par TP, (11)
is'an Buler differential equation (Art. 13). If weset p = ¢%, (11) is fransformed
into 2R

— — kit = 0.
d 2
With & > 0, this equation has the solution : O
R = eV® 4 ggem VB = pVE L ggp~ VE, A1
Thus we have, combining (8) and (12) into (6), O

7= (erp¥ + o™ V) (e; sin VEg + ¢ cos '\/}_ag)‘ (13)

&/
Now condition (3) tells us that, in particular, +(0, 0) =b Tlence ey must
be taken as zero in (13). Applying (3) in full, we then gef'the relation

0 = coerp VE 0= p< 10\ u {14)

2\
As 7 1z not to be identically zero, we eannot take,ﬁ; 0, but (14) may be met by
getting co = 0. Next applying (4) we find A WV

W W, cga['a&lfbfarysy}é\d/—ﬂ; 0< p < 10, {18

whieh (since e; and e; must both besaiﬂ’crent from zero) we meet by choosing
/% = n, an integer. Thus we hd%e, so far,

) ,i'rx\—- £107p" 8in 1. (18)

A smgle term of the foleG) or a sum of a finite number of such terms, will
be inadequate to meet‘bqunda.ry condition {5). We therefore take
\&/ ®
' T = Z bno® sin nf, ' (17)
’xw” n=1
Using f{fJ to denote t.he’funct:non defined by (5), we then have fo satisfy the

cm]dmm
\. =3

Q 7®) = 6107 sinng, o< 9. i

n=1

By the method of Art. 59, we get

nloﬂ-—fu931nnad9+ f @(vr—ﬂ)smﬂﬂds

. T
= n23r2 Hin —é'* (19)
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Consequently
800 1 800 1 3
:_.._‘._, b :0, b T e — b —— 0 — —1 a-da
= 10 TT oy Wehe

and insertion in (17) yields the required solution,

8001 £ oY . 1 {p\. 1/p\
=2 2 Ysne— =2 ALY gngg~ .o |
7o 8) = —, {(1()) in 32(10) sin 33-}-52(10) &in 56 J (20)

This serles converges for 0 < p < 10 and 0 < 8 < r, and may $herefore be useds,
tofind the steady-state temperature at each interior point of the plate.

N
L X
2\

EXERCISES “\

1. Find the temperature at 8 number of points on the axis of symmetry of the
plate in the above example, and hence plot a curve showing the #ariation of tem-
perature » with distanee p along this exis. From your curve, defémmine the distance
p at which the temperature is 50°. \/

2, H, in the above cxample, boundary condition {5) is\replaoed by

I

(10, 8) = 4%0 8 — 6, &= 7
™ “. }

other conditions remaining the same, find the femperature function.

8, Un the line 8 = /4 of the plate of Exercise 2, déﬁ' i
¢enter of the eircle at which the temperatyre is half {8 s fifar SIS,

4. Arectangular plate with insulated Sturfaces is 10 em. wide and 5o long compared
toits width that it may be consideféd infinite in length without introducing an ap-
preciable error (see Exercise 5),~0f the temperature along one short edge {y = 0} 18
given by w{z, 0) = 4{10x ,’L\!I'd}:g‘, 0 < z < 10, while the two long edges (z = ¢
:m d2=10), as well as thq—(}her short edge, are kept at 0° C., find the steady-state

emperature function = (zig). i

b. Find the tempdeafure at the point (5, 5) of the plate of Exercise 4. Algo find
the distance y alongythe midseetion z = § at which the temperature 18 0.1 per cent of
ifs maximum yajuetand hence justify the assumption of infinite length.

8, If the @qﬁemture along the edge y = © of the plate of Exercise 4 is given F’Y
.T{x'i) =2000N0'< z < &, +(x, 0) = 20{10— z), 5 <z < 10, otber conditions remain-
g the sdree, find the tempersature function r{z, ). :

y ot the temperature at the point (3, 3 of the lat of Bxeris 0 b
thet, for large values of y, the temperature at 2 point on the midsection of t] th: '
15.; approximately 78.5 per cent of the value at the corresponding point of the plate of

xereize 4, = 20

8. A square plate is bounded by the lines z =0,y =0, & = 20, znd ?s #‘WI;
Tts faces gre insulated and the temperature along the upper horizontal e-dg: t.%}l" c
b7 7(z, 20) = 20z — 42, 0 < & < 20, while the other three edges are kept &7
Find the steady-state temperature funetion r(z, ¥)- .

3. Find the temperature at the center of the plate of B
N 0. Consider g rectangular plate, a by b em. Let the feoipet

ong the four edges be given by

0, 5) = i)y la 3) = fule)r 75 O =Sl 1@ D

ature distribuiions

= fylz).
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Show that if 1, r2, rs, and =4 are four solutions of Laplace’s equation, respectively,
satisfying the boundery conditions:

10, 1) = Aly), nle.y) =0, mi{x, 0} = 0, nifz, B) = 0;
X 72(0: y) = 0: TQ(G, 'H} = fz(?)‘); 72(1:: 0) = 0) 72(:5) b) = 0;
{0, 1) = 0, rile, ) =10, r3lz, 0) = fa(z), =alz, b} = 0;

74(0) y) =0, ""4(9"1 y) =10, T4($J 0 =0, 7'4[55) b) = f-!{x);
then the steady-state temperature function = (z, ¥) is
w7, y) = ri(z, ¥) + rale v) 4 nala ¥) + e, ¥) ~\

Hence, for any given boundary conditions, 7 (2, ¥} ean be found by solving at migst four
P\

problems each of which involves three zero boundary values. PR
N\

74. Flow of electricity. In Art. 33 we considered thie™fow of clec-
tricity in a cable having constant resistance E (o 8/mile), indue-
tance L (henries/mile), eapacitance € (farads/ile), and leakance
G (mhos/mile). We there derived the so-callegl\\i;glephone equations,

8F T

S RF — D 1

Jdx R 7~at’ @)

oI N
www,dbrauljbl‘a%.m‘g?mgf&— C E 3 @

where z (miles) is the distange measured along the eable from the
gouree, ¢ (gec.) is time, E’(gc;}) (volts) is the potential, and I{(z, t) (amp.)
is the current. By elffination of I and E in turn from equations (1)
and (2), we alzo found the sceond order linear partial differential equa~-
tions for E and £, éspectively:

RE:H . oF 3’E
¢ ’\s. = -~ - = 3
.‘%“ 7, = BOE + (RC+ L6) — + LC—5, 3

R\ 8?1 af 8%1
O — = + + L= + L0 4
~C o3 = ROI+ (BC+ LG) = + LC 5 (4)

When the effects of inductance and leakance arc negligible, equa~
tions (1)-(4) reduce to the telegraph equations (Exercise 2, Art. 33), of
which the last two are similar in form to the equation for one-dimensional
beat flow. When the effects of resistance and leakance arc negligible,
the telephone equations reduce to the radio equations (Excreise 3,
Art. 33): the last two of these are of the same form as the equation of
the vibrating string.

However, when all four circuit parameters must be taken into
account, the telephone equations are usually not similar in form to equa-
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fions previously discussed. We shall deal here with an example
ilustrating this more general situation, but for simplicity the data have
been chosen to make the computations relatively simple.

Ezample. A transmission line, for which B = 1 ohm/mile, L = 0.01 henry/
mile, ¢ = 1075 furad/mile, and G = 1079 mho/mile, is 1000 miles long. Initially
the potential at cach point is independent of tirne, with the ends z = 0 and
5 = 1000 at potentials 100e = 272 and 100 volts, respectively. If the ends are
saddenly grounded, find the resulting potential function Bz, t).

N\
Solution. Substituting the given values of B, L, C, and @ in equation (3},
we have RSN
K aE E O
2% 1ot +2-100— 4 1070 — Py 1]
du’ + at + o N 2

Assuming & solution of the form Ez, §) = X(x)-T(yowéget, by the usual
process, ’

100 =

X T

X7 10000 T + 200 77 H. 80 ©
= e T h

aconstant. Thiz leads to three types of sqlptiaﬁs,
= (e 4 e m'ﬁv?'a.’j?iﬂh”(%‘ef@bi‘ﬂﬂkfb‘@hy.krgﬂl el
E = (g sin 1075V —kz _# Cg ‘cos 10-5Y —kz)e 1% (g7 sin +/ -kt

. .\xj»\+ o5 cos V/— k), k<0, ®

E :(;17 + cw)e 0% et + e12); _k = 0. ©)

Now groundisg %l;th ends of the hne at time £ =0 gives us the boundsry
conditions .0 {

’xn 3 E(O, t) = 0’ t > ﬂ’ (10)

N EQ000,8) =0, >0 n

A
s can be met cnly by & solution of type 8).
sin 102V ~k = 0, whence

have to deal with

0t 3§ casily scen that these relation
From (10) we then get ¢ = 0; and from (11),

—k = 100 nm, n being an integer. We therefore
{12}

E = cssin 2. . g-1004(gy sin 100nwt + ¢ 008 100#wt},
1000

which satisfies the differential equation (5) and houndary coPth_lonS %0]—2;}:3;

Before expressing and applying the initial condition furnished by " letsi.'.al ab
ment of the problem, we further restrict (12) a8 follows. Swmee the poto™ of the
803 point, of the Jine before the change is independent of Ume, and beeause
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inertial effect of inductance, the initial time rate of change of potential will be
Zerc.:

%?] =g, 0 < z < 1000. {13)
From {12) we find
% = g sin % e~ 100t(100nee; cos 100nwt — 100nmes sin 100nat
— 100¢; sin 100wt — 100cs cos 100nx1), 1%,
and (13) thus yields 100nwe; — 100cs = D, or 63 = narer. CnnsequenﬂSr\(IQ)
becomes O '
. nwIT . A\
E =g st oo -g™100¢ (sin 100nm + nar cos 10[}7@@5.*1 (15)
m'\i.'

To formulate the remaining initial condition, we needhd selution of (5) that is
independent of ¢. When E depends only uponz, £ = JE\}(@), (5) reduces to

7

L¢
o2 _ B (16)

which has the\%?.\lflxl};ggL‘aulgpfgj‘yz,oxf}%,jm \+ A be_x /1000 (17)

Since E(0) = 100¢ and E,(1000) = 190, we get from (17),
100e = gqxb 100 = qe 4 be™?,

whenee a = 0, b = 100¢ = \72 Consequently our other initial condition is

E&t} ﬁ) = 27270 0 <z < 1000, (18)
xt\u’
It is apparerih, that (18) can be fulfilled only by taking an infinite series of
terms of tyR%S),
i} .j':" @
~O & - in 0 =390 (i 100nmrt + mar cos 100mwt) (19)
9O £ 00 '

Applying (18), we find

9726~/ . Z(mrb,.) sin (20)

1000

Accordingly, we must have (Art. 59)

1000

by = — —zs1000 . AT
1000 272e sin 1000 dr,
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which ylelds
_ 544(1 — e Lcoany)

o 14 nig? @)

Tugerting these valucs in (19), we therefore get

“
1 — e lonswnr |, nme
=544 SO AL ML LT TR .
E=54 ﬂil T e M0 1500 € (sin 100nmi -+ rr cos 100nms).  (22)

This is the desired potential function,

)\

EXERCISES ™
1. Using the potential function (22}, find 87/8z from egustion (2)’.‘.‘~lﬁtegrate

this partialy with respect to z, and determine the arbitrary function of ¢ thereby in-

troduced by mearng of cquation (1) together with the condition { ¢ 7

ar
M S
a!f r=0 .'\\f

Henee show that the current function J(z, §) Is given b:?'\ v
) 3

L —eleosar mmm o ONY t
= 0.544?; W Cos ‘IBBE'E ’(';;108.100%#3 AT SN 100s3r )
wON www dbraulibrar 9.8 7K

2. Using the result of Exercize 1, ﬁ.nfifthe eurrent at the midpoint of the line

when £ = 0.01 sec. e ;
3. Bhow that, in general, equ%tﬂiq\l {3) has five distinet types of solutions, aceord-

ing as ¢ v
®CS107, L, o (RC-IGP
W k<- o3 @ EEmTge
A</
oy
(3) _M <k<0; @ k=0 & k>0
(\NVALC
Why were nuly‘t\ﬁr;e t, btained in the example!
1IN ypes obtained in the exanp ] T
4. A tran§iission line is 100 miles long, azd B = 10 ohms/mile, € =10"%farad/

wile, 2ad{ hnd @ are negligible. Initially it is under steady-state ﬂoﬂg;i“t“s’ ";’:3
Poteiitial)1 100 volts at the source (z = 0) and 1000 volts ab the load. X tet:.h e:Ionurca
endis suddenly grounded, reducing its potential to zero, but the poteptial at toe

iskept at 1100 volts Find the tial function Efz, ).

3. he potential Tu T 1 ]
B. Find the current at each end of the line of Exercise 4, 0.01 sec. ;ft?jrn‘;hl?eing u::-
8. If both ends of the line of Exercise 4 are initially grounded, the

. fen-
charged, and s potential of 1000 volts is suddenly applied at the soures, find the poten

tial funetion & (z, 1. .
7. Find the I;er)centage of the maximum current value attained at the gounded
®0d of the line of Exercise 6 at the end of 0.01, 0.02, and {],(}igec. e and Rand
8. Aline is 10 miles long, and L = 1 henry/mile, ¢ .=‘10 f:%rad,fﬂntz;ltial of 100
Arenegligible. Tnitially it is under steady-state conditions, with a po
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volts at esch point. If the terminal end is suddenly grounded, find the resulting
potential funetion E{z, t}.

9. Using the fact that J{z, 0 = 0 for the line of Exercise 8, find the current fune-
tion I(z, t}, and hence determine the current at the midpoint of the line when ¢ =
0.025 sec,

10, The line of the example is an ingtance of a distortionless line, for which BC =
L7, Show that the substitution B = Eie '™ (of. Exercisc 5, Art. 33) transforms
equation (5} into the form of one of the radio equations, and hence solve the probiem
anew by the method used in Exexcize 8 above.

7
\\
©
2>’
7/
»
A
~ { {/
\S,
i:}"
A\
www.dbraulibrary orgin (A



CHAPTER VIII
NON-LINEAR EQUATIONS OF SECOND ORDER

As was stated at the beginning of Chapter VII, partial differential
equations of order higher than the first present complications which
make the systematic classification of such equations and their solutions
diffieult. This is particularly true of nondinear equations of highér),
orders, and we shall therefore discuss, in this final chapter, only a-few
types of non-linear equations of second order, by

The methods of solving second order nop-linear equationsyte be con-
sidered here are, in several cases, applicable also to second,otder linear
equations. We shall sometimes use a linear equation to Hustrate, in a
simple manner, the process under discussion, \\

76. Intermediate integrals. One way of attacking the problem of
solving a given second order differential equabion is to seek a solvable
first order equation which is such that the orjginal second order relation
can be obtained from it and the two relationsrdenived. by, Jpartial dif-
ferentiation. Such a first order e;iﬂaﬁon is called an eniermedi
integral. Sy

We have already dealt with Mtermediate integrals, although they
were nob so designated. ~T~Q\Js’, in Example 3 of Art. 29, elimination of
the arbitrary function frén the relation ¢ = f(p) led to the second
order equation rt — £ =0, and consequently the first order equation,
g = f(p), i8 an intemnediate integral of 1t — 2 = 0. Likewise, inte-

gration with respéet to « of the equation zr — Y + P = y? (Example 4,
Arf, 67) gay%irs’the intermediate integral zp — ¥4 = o + o).

An intgymediate integral may contain no arbitrary elements, or it
may,\cﬁﬁtain arbitrary constants, or, &3 in each of the above examples,
it Gnay contain an arbitrary function. We cannot expect more than
one ‘arbitrary function to appear in 8n intermediate integral, for the
elimination of two or more arbitrary functions from a first order rela-
tion will, in general, lead to & differential equation of order higher than
the second.

We therefore consider the most general situation, in which the inter-
mediate integral ig of the form

&(u, v) = 0, (1)
215
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where % and v are definite expressions involving z, ¥, ¢, p, and ¢, and ¢

_is an arbitrary funetion. By elimination of ¢ from (1), we shall find
the form possessed by the second order partial differential equation
having (1) as intermediate integral. Differentiation of (1) with respeet
to z and y in turn yields the relations (Art. 18)

dg 0 d d a a6 {d d & J
o _“+—“p+-£r+£s)+ “b(~”+—”p+i’r+—”s)= , @

du\dz ' oz av\ax 92"  8p | g

~
36 (Bu ou  du  Ou ) 3 (au v ov A )
0o (0% o e = —+ g+ s+ =0 3
du ay+azq+afps+6q +&v ay+azg+ap +ag .\“\()

7'\
Equating the values of ¢u/¢, given by (2) and (3), and reddcing, we
get the equation A )

Byr 4 Su5 -+ Tot 4 Usrt — ) = Bl & @
where \/
ou,v) | ou, v) - B(H,Q > alu, v)

TR L 1 R T R

au, v) 0w, v) 3(‘1&;'*})’ a(u, v)

8 = J : 5

wwi.dbﬁé&tiﬂ};}%&zg}r’? p. By g oh ®
3(u, 1) A ou, vy | a0 v)

U= = <t &

o’ Lwma) oD P oG, )
the symbol d(u, v)/9(«, ﬁ{@eﬁotea, as usual, a Jacobian (Art. 24):

oln 0 _dudn  dudw
3, B)  Oadf 9B da

From thi\g:e}mination process we deduce the result that eny second
order partiol differential equation which possesses an intermediate infegral
of the fqrm (1) must diself be of the form (4). Accordingly, if a second
ordér'gquation is not of the form (4), it would be useless to try to find an
intermediate integral of type (1}.

Moreover, it should be noticed that the converse of the above state-
ment is not necessarily true. ‘That is, when an equation has the form (4),
it docs 1ot follow that it must have an intermediate integral of type (1)-

From relations (5) we see in particular that when either u or ¥
lacks both p and ¢, and in certain other cases, U, = 0, and equation 4}
is of the first degree in the second derivatives r, s, and £ For con-
venicnee, we shall call an equation (4), in which U= 10, 2 uniform
equation; and if Uy #£ 0, we shall say that (4) is a non-unifornm equas
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tion. In the two following articles, we shall discuss Monge’s methods
of seeking intermediate integrals of these two types of equations.
76, Monge's method: uniform equations. Consider the uniform

equation Rr+ Ss+ Ti = F, 8

where R, 8, T, and F are functions of z, y, 2, p, and ¢. Whether or not
this equation possesses an intermediate integral of the form

¢(u; !J) = Gr- @)

we have at present no means of telling. However, assuming ’r(h@t (2)
is an intcrmediate integral of (1), we ean conduct our seareh, for the
expressions u and ¢ as follows. \ >

From the differential relations

0".
L

R4
P p R
dp = Lge+ Py = rdr 5w,
o oy \
PN

] ] { &/
dg =-_a%dx + a—gdy fs;am+ £ dy,

we get N
= dp—s dy';":. ) fﬁgvdgilﬁ'ﬁﬁﬁu‘ary.org.in
 dr QXN ay

Substituting these expre’smsi'Q’ns for r and ¢ in (1), we have

—sdx’

&)
R———-—“‘dx +SS+T ay '

or \Y

R dydp —E-'.‘é‘”élx dg — Fdedy = s[R{dy)* — Sdzdy + Tdz)?). (3
(¢

Evidentl}}a&iy functional relations simultaneously satisfying

AN Rdydp+ Tderdg— Fdedy =0, (4)
O R(y)? — 8 de dy + Tz =0, )
will satisfy (3), and consequently the given equation (1).

Now let S, 92,0 @ =0 (6)

be an intermediate integral of (1), formed by choosing the ¢-funetion (2)
in some way; in particular, f may be either u or o. ‘We shall deduc,e
the fact that the differential relations 4) and (8}, k'nown as Monge's
equations, may be used o determine an intermediate integral when one

exists.
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Differentiating (6) with respect to x and ¥ in turn, we get
fo 4 Lop + for + i =0, futfg+ s+ 1t =0 N

whence

=_fz+fz’p+qu t:_fy+fZQ+fps_
o ’ Ja
Inserting these in (1), we find
_sz+fzp+qu+ss_Tfy+fzﬁ'+fp8=F’ A\
fl’ f& 2N
or O

'\
% Ny

Rf:fq+ Bffop + Thufe + Tf 100 + Fipfg N

+ B2 — S [ DT =0 ©®
Now to say that (6) is an intermediate integral of fl) means (Art, 75)
that (1) is satisfied by virtue of (6) and thosbwb derived relations (7).
Hence (8) is not an independent equation{determining s; instead, we
must have * N\

el R, e BT o + Bl = 0, ©)
Rf; — Sfply + T, = O. (10)

These two equations te(be satisfied by f contain five independent
variables z, ¥, 2, p, and" b; and the five first partial derivatives of f.
We may then use Jacobi’s method (Art. 51) to find other functional
relations of the typey(6). The equations subsidiary to (9) are, in part,

dx '?\ &y _ dz _ dp
_\Rf\s’ —Tfy, —Rfgp—The —Tf — Tf:q— Fis
SO _ dg
~ —Rf.— Rfp — Ffy

\Dénoting the eommon value of these ratios by d\, we get for the differ-
ential expression in (4),

Rdydp + Tdxdg ~ Fdedy = (RT%,f, + BT .fo1 + FRTfola
+ R*Tf.fy + R*Tf.fp + FRTf,f, — FRTIN(@N
= RTBfofy + Bfcfop + Thufo + Tfoboq + Flof (@)

* We put sside the trivial ease in which s, rather than its coeffiient (10), vanishes.
For, unless (}) is itself the simple linear equation s = 0, with the solution z = o) +
¢, (1) will have another type of solution which we wish to find by Monge's method.
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which vanishes by (9) itself. Similarly, we get for the left member
of (5),

R(dy)? — 8 dx dy + T{dx)? = (RT*2 — RSTf,f, + R?TfD)(d\)?
= RT(Rf: — Sfpfe + TIEN?,

which also vanishes, by (10). Therefore (4) and (5) may be employed
to find intermediate integrals. A

Since, in any given case, we do not know if (1) possesses an inter-
mediate integral, the above argument should be regarded ag\ulerely
suggestive of a tentative way of seeking the desired relation ®: ’

We may deal with Monge’s cquations (4) and (5) i13~{.]:;e following
manner. The differential relation (5), which is essentfally a quadratic
equation in dy/dz, yields, in general, two linear differ%&ial relations,

dy = adz, dy = ﬁ:d{;,’ (11)

where « and 8, like R, S, T, and F, are, fﬁ%‘}tion& of 2, 4, 2, p, and q.
These will be identical if (5) 1s a perfth.équare; this situation is dealt
with below, and illustrated in Exa;ﬁiple 2.  Another exceptional case
arises when B = 0; we may then-tse;instéhraofilH )y thestmo relations

gz =0, de = Bidy. a1

Combining relatio s'\tli), in turn, with equation (4), we get the two
linear differential systeimns,

W& adr, Radp+ Tdg~ Fade=0, (12)
3y ~par, Redp+ Tdg— Fgds=0. (13)

With eifh'\cr“of these pairs we may also use the relation
O dz = pdx + qdy. (14)

\™
Suppose first that each system gives us a pair of integrals: 1 = a;
and v; = by from (12), and ug = @2 and v, = be from (13), where the

a's and b's are arbitrary constants. Then we deduce that
uy = $a1(v1), uy = $2{va), (15)

where ¢; and ¢ are arbitrary, are two intermediate integrals. If we
can solve the two equations (15) for and ¢, and, after substitution in
(14), if we can then integrate this relation, we have a solution of equa-
tion (1). Evidently there may be two arbitrary functions in the result.
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Tf, however, only one intermediate integral, u = ¢(p), is obtainable
(which will, in particular, be the case when (5) is a perfect square), we
can try to integrate this first order equation, using the methods of
Chapters IV and V. Likewise, if two intermediate integrals have been
found, but p and ¢ cannot be determined from them, or if the values of
p and q do not permit us to integrate (14), we try to integrate one of the
intermediate integrals,

Here we shall carry the process, when it can be effected, only as far
as the determination of the intermediate integral or integrals.® In
Art. 78, we shall investigate the remainder of the proeess. ¢ \“}'

O

Nes

Ezample 1. Apply Monge's method to the non-linear equatmn
g + @r — p(1 4 29)s + p% = [L\

Solwtion. Eguation (5) is here )
ol + Q) + p(1 + 2Q)dadt P*(de)? = O,

or

[0+ @) dy + p dalidy + pde] = 0.

dbraulib iny
Consequently Swebave oY 01& n

N
= oy =—Z2a,
¥ {1 ¥ ¢ Y p
so that \ )
r 2
7N a — = — -
1+¢’ f q
AN/
Equations {?Q}'ihen are
O
\“"dy+gdy+pdw=0 — pedp + pPdg = 0.

W1th“t}re aid of (14), the first of these hecomes dy + dz = 0, whence

\3 Y+ 2=a.

The second relation gives us, in addition,
dg _dp

q ?

log g — log p = log by,

20’

L
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We therefore have

= pdi(y + 2,

which is easily shown to be an intermediate integral.
Likewise, we find from relations (13), together with (14),

pdetqdy=dz=10, 2=y
—pt+ g dp+pPdg =10,

pdg— A+qdp _,  1t+a_,. O
p =10, =0 N
by P O\ ¢
and consequently there is obtained ' . QO
N
1+ g = pa(), 7,
x\

which alse may be verified as an intermediate m‘oegral
Thus the given equation in this case possesses, t:('e intermediate- integrals of
the desired form. We shall deal with these fur{iqr in Art. 78.

Example 2. Apply Monge’s methad to }&e ‘non-linear equation
zgfr — 2wpgs, :w]-’:mwd'b.ﬂwf’ibral‘y,org,jn

ay

Solution. From (5) we get “\"

&
2B 2apg de dy + 2p'(d)* = 0,

or &\

(gdy +pde)?=0.

<"
We therefore haye the double root

L

k-

\Y = = —
N “F

an@'ﬁb‘;;sequenﬂy can obtain only one intermediate integral at best. Monge's
éﬁ?}&ﬁons then yield
pdz +qdy=4dz=0, 2=8

2
dp _dy o o TP
P ¢ ® 7

Hence we have
z2p = gd(2),

which may be showsn to be an intermediate integral.
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EXERCISES

Using Monge's method, find, wherever possible, intermediate integrals of the
following equations.

1, gr —ps =0, Leg—-—(p+astp=0
8. ¢% — 2pgs + p%t = O doar —ys +p = 3.

B, r & = 4oy + 2% 6. zs — 2x% = 1.

T. ayr + as = yp + (2% — y)e¥. 8. zs 4 yt = 12z9° — ¢

9. gr— (L +p+gs+{l+pdt=0 10, 2% fays =z —2p —yq. « N\

H 2pr +s =2 24 {1 —2)p ~¢q. L)\
12,20+ gr+ 2l —pt+as~2pi={1+p+9 1 +9. o\
13, 2¢% — glz 4 2xp)s + plap + 2}t + pg* = 0. g

14, 2g% — 2apgs + xp’t = aply - 2pgt. R N

6. gl —gir — (1 +p—g—2pgls —p(l +p}t =0. o\’(g

77. Monge’s method: non-uniform equations. QOr:n'lsider next the
non-uniform equation N

#¥4
W

Rr + Ss + Tt + UGt — ﬁ}’: 30

where R, 8§, \TW\Udgpéi,l&mcym@cmons of z, 4, 2, p, and ¢, and where
U = 0. By substituting R

"'

dp — 3 - :
_dp s"dy, . dg — sdx ,
dal ) dy

a5 In the uniform equatlon of Art. 76, we get
Rdydp-l—dedq—i—Udpdq Fdzdy _
=s[}{\dy)2 — 8dzdy + T{dx)* + Uldz dp + dy dg)]. (2)

By ana‘ltrgy with the procedure of Art. 76, we deal with the diffcrential
relatron&

Rdydp+ Tdzdg+ Udpdg — Fdz dy = 0, (3)
R{dy)? — Sdzdy + T(dz)? + U(dz dp + dy dg) = 0; 4

for, any functional relation simultancously satisfying (3) and (4) will
necessarily satisfy (2), and therefore (1). Using the results of Art. 75,
we shall show that if 4 = ¢ and v = b are two integrals of (3) and (4),
such that 8(u, v)/6(p, §) = v, — ug, = 0, then

o(u, v) = 0, (5)
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where ¢ is arbitrary, is an infermediate integral of (1).
From 4 = a and v = b we find (Art. 19)

du du o du due
du=_—de-+—d —de+ — —dg =0
“ T x+6y y+62 z-}-apdp—l—aqq !

iz ay v ov b
=t —dy+—de+—dp+—dg = 0.
dv P +ay y+az z+ap p+aqg

Inserting A
dz = pdz + qdy, N(6)

these equations become \"m

(s + pu) dz + (uy + qus} dy + up dp + Ug da S 0 (7)
(s + pv) dz + (vy + @) dy + vpdp t zz{dq =0 " @®
Using the notation {cf. Art. 75)

A\,
_ By, v) | Hu,v) 2'3(}5, o Au,v)
= Tima B0 T G 0

a(u, ) a(u, ) 6(@, vy o{u, v) ©

a(z, p) T o ) a(z, ‘*’ Ty iy s in

alu, v) " a(u, ) alu,v) A, ¥)
0 o “a(y,:c)+a(y,z>’*" 3 %)

S =

U, =

and remembering t.hat\by hypothesis, Uy # 0, we may solve {7) and (8)
for dp and dg; “egef

Au,v) | du,v)
(ip == Tude [Ses+ egalan 0o

a(u, v) . 8{u, v) dr "
3(z, p) a<z,p>*"] ' ()

\~
:“\’; ’
\M&ltiplying the first of these equations by dz, and the seeond by dy,
and adding, we find
Ui(de dp + dydgy =— T (dz)? — Rq(dy)® + Sidz dy,

U, dg =-—R1dy+[

or
Ry(dy)? — Sudz dy + Tr(dn)* + Ur(dz dp + dy dp =0. (12)

Similarly, equations (10) and (11} lead to
(U, dp + Ty dx)(Ur dg + Rudy) = (F1U1 + BaTy) dz dy,
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whenoe
Ridydp + Ty drdg + U,dpdg — Fydedy = 0. (13)

Comparison of equations (12) and (13) with relations (3) and (4)
shows that, since u = a and v = b satisfy each pair, we must have
By _& _T_ U _ P
R 8§ T U F
Hence equation (1) is equivalent to N\
Ryr + Sis + Tht + ULt — &) = Fu. RQeth)

'\

But this equation was found (Art. 75) to be the eliminant corresponding
to (5). Thercfore, if u = a and v = b, with 8(u, v)/3(p, G \FW, satisfy
Monge's equations (3) and (4), relation (5) will be an intgﬁ(rwdia.te integral
of the given equation (1} \V

To find the needed integrals ¥ = @ and » = b ofyMonge’s equations
(3) and (4), we proceed as follows. Decause o .{he oocurrence in (4) of
the term U(dz dp + dy dg), we eannot nowactor the left member of
(4), as we could the corresponding exprgésibn in Art. 76, nor ean we
factor the lefl maprbaribfaf3)org e t}:lgféfore form the linear combina-
tion &Y

Ry — S do dy + T@s®+ U(dz dp + dy dg)
4 MR dy dp +§{'@dg + Udpdg — Fdedy) =0,

or, denoting the left member of this equation by M,

M = R(dy)? — (S84 \F) dz dy + T(de)? + U dz dp + Udydg

9\
\\ + AR dydp + \Pdxdg + AU dpdg =10, (15)
O . :

and try t0 determine A so that M is factorable. Since M containg no
terms inyolving (dp)? or (dg)?, dp can appear in only one factor and dq
only In"the other. The factors may consequently be assumed to have
the forms

Avdy+ Bydz + Cydp, Asdy -+ Beda 4+ Cadg.
Comparing the produet of these with M, we see that we must have
A4y =R, (16)
ABy + B4y =— (S +AF), (17)
BBy =T, (18)
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C1B; = U, ' (19)
A1C =T, (20)
Ci 4z = AR, @1
B,Cy = T, @2
C1Cy = AU, (23)
If we take
Ay =1, Ay =B,
(16) is satisfied, and (20) and (21) respectively yield < \s\
G=U €=\ ,"13

#7%G

These values evidently satisfy (28), and then (19) and (22Ykive us

U
.B2=K; BIEU::\\"
These also satisfy (18). Substituting in thevremaining relation {17),

i atisfied by
we get as the equation to be & | :‘“y'r'“?{"r-dbl'auhb]“al'y_org_jn
U )\RT L N\

L a8 M
N + 7
or & 2 "
(RT i'\ﬁ'ﬁ)kz +8UN+ U =0, {
al, yield two values of A;

The quadratic eqhation (24) will, in gener . ' .
call them o and g\ For each of these in turn, M has linear differential

factors: (N
:j\.f“ oT U 7 d ) ~0
l"ﬁi;%\('dy+~6r—dx—}-adp)(ﬁdy+;dx+ g) =0,

'..\'." . U
" \./7 T U -0
\‘:Ms(dy-{-%—d;u-[-ﬂdp)(Rdy-l—ﬁdz+qu) 2

whenee B
(Udy + oT dz + U dp){alt dy + Uds +alUdg) =0, (25)

(U dy -+ T dz + BU dp)(BR dy +Uds+pUdg) =0 (26)
To determine the functions 2 and v, We must combine one factor of (25)
with one of (26). Now the first factors taken together,

Udy+ aTde+eUdp =70 Udy + 8T dz + 8Udp =0,
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yield, upon subtraction,
(@ — (T dx+ Udp) = 0;

if « > B, this implies T dx + U dp = 0, and consequently Udy = 0,
This cannot furnish a solution. Likewise, the second factors in (23)
and (26) together lead to U dz = 0, which is of no valuc to us. We
must therefore take as the two relevant systems

Udy+ aTdz+ aUdp =0, '(\27)
BRdy + Udz + 8U dg = 0; O\
and A0
Udy+ 8Tdx + U dp = 0, A
p & o8)

alRdy + Udz+ aUdg = 0. \\

When a = 8, which oceurs when (24) is a perfect-square, the systems
(27) and (28) will, of course, coalesce into .GQQ:paiT' of equations. In
this case we cannot hope for more than onefinttrmediate integral. But
if the quadratic equation (24} yields twi\distinet values of A, we have
two possible systems of differential rglgi’t-icins; golutions 4 = e andv = b
of either pauip;wwﬂhanul@brtwiuah@;}ngive us an intermediate integral,
o, v) = 0. ONY _

If, in a given problem, RF&| FU = 0, equation (24) will not be a
quadratie equation. Set}'@g A = 1/u, {24) takes the form

W44 SU + BT + PU = 0, (24)

which has s zero xéob when BT + FU = 0. In this case, therefore, we
deal with the s¥stems

72 Tdz + Udp = 0,
' 27
N BRdy+Uds+pUdg =0,
and & A\
O Udy + 8T dz 4 U dp = 0,
U (28"

Rdy+ Udg = 0,

obtained by dividing the first and last relations of (27) and (28) by «
and then allowing & to become infinite,

Ezample 1.  Apply Monge’s method to the equation’
r— 38— 4+ 20t~ 5 =3,
Solution. Here equation (24) is
2 —BA14=0,
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or
M- +2=0-1D0—-2) =0,

whence we get two distinet roots,

The systern (27) then becomes
Ody —dde+2dp=0, 2dy+2de+4dg=0.
These are immediately integrable; we get
O\
m=y—2rtp=m n=y+z+2="0 .
Therefore 0.y
y— 2+ p =y + =+ 20, e X

where ¢, is arbitrsry, is an intermediate integral. ¥rom relg.tg’d;{g (28) we
also get D
2dy — Bdr +4dp =0, dy + 2 dr + 24 =0,

whence RN
w=y— 4+ 2p=a, WEQTQW:’F2Q=!JQ.
Henee we obtain a second intermediate integm};} v/
y—4dz+2p= ¢2(§55§%2t‘:ﬂﬂf'gfpilbrary_org_in
where ¢ is arbitrary. j::
Ezample 2. Apply Monge’s m‘eﬁl‘;ﬂi to the equation
_ i+ (g — :cy)\s"}ﬁpt — x{rt — &%) = yg — 22p.
Solution. Equat-ion. (2}}}1}95 us
‘i';’—f"éyq?\” —~ z(g — 2y + 27 =0,

or A\D
ART G - -5 = @D =0
Consequenﬂ%"'
A z 1
’V:; a==-, ﬁ:.__'_.
N g y
Fr{rﬁ(ﬁ?) we get
2
-—-xdy-—gfgdx—-?—ﬂdp=0, Ty —wdi+ —dg =0,
g q Y ¥
oT

gdy+2pdx+xd'p=0, sdy +ydr—dg =0

The first of these may be written as
:z:d;o-k-;odw—?-pda:-i-qdy =zdp+pdst+de=0
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so that u; = zp + 2 = g From the other we get directly, v: = oy — g = by,
Hence
zp+ 2 = $(zy — ¢}

is an intermediate integral. Relations (28) give us
3 L2
—xdy+%dx+fdp=0, x—dy-—xdx—x—dq=0,
Y Y 4 q

or

zydy —2pdr —zdp =10, 2ldy—gds—adg=20 ~
However, neither of these differential expressions, nor any derivable from thcm
i integrable, ns may be proved by the usual test (Art, 19). Conucqh'entl\r
Monge’s method furnishes us with only one intermediate integral i in {this case.

at
< ‘.

EXERCISES \\
Using Monge's method, find, wherever possible, mtermedlate integrals of the
following equations. \,
1. 78 — 2(rt — &%) =~ 3. 2s+32\~*r£—2
. r 42+ —r=3 4r—23+t+rt—s2~0
b, 2r+2s4+2 —rt+s =3 6,21‘*3—#—1’!—{—32—{-2—0

T.r _21\5}'v7§v“‘dl§¥‘aﬁjﬁblary org.in 4 3 2z —y)s +rt — &+ day = D,
9 yr —ps iyt —eBH 1 =N
10-xq*r+(p—q)s+y:ut+(1+xyﬁ(5't—sz)+m*0

78. Solutions from mteqnédla.te integrals. In this article we shall
consider a few ways of soI‘Qng second order partial differential equations
for which intermediatesntegrals have been found by Monge’s methods.
‘We shall illustrate théée"processes by further discussion of the equations
used as examples 'u;bArts 76 and 77.

Ezample I\Solve the equation

..f;" ¢l +or — pll+ 29+ p% =0 (1)
(Example)l, Art. 76).
Salution. In Art. 76 we found two intermediate integrals of this equation,

¢=ply+2), 1-+g=ph). )
"These may be solved for p and q; we get
1 . dly+2)

Tw-ewta L e —e+o

Inserting these expressions in d2 = pdx - ¢ dy, and clearing of fractions, we
have

¢2{2) dz — ¢y + 2) de = do + ¢1(y + 2) dy,
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ar

$o(2) dz = dz + d1ly + 2) (dy + d2). @)
Thiz is immediately integrable, and we find as a solution of the given equation,
j@) =z + oy +2), ey

where f and g are new arbitrary functions.

Ezample 2. Solve the equation

zgtr — 2apgs + aplt = — 2p¢” )
(Example 2, Art. 76}, ¢\
Solwtion. Only one intermediate integra] of this equation was :gébtaihable
by Monge’s method, namely, \

T
& R

#'p — (@) = 0. O ®)
L W
We may treat this relation by Lagrange’s method; thegubsidiary equations are
dx dy & \ /
— T T ~\
w @)

From the second of these we get 2= a,» a constant Using this in the first

equation, we get
) g 'j;\rww dbraulibrary.org.in

+£6(

do =
~<
iNJy _ola)y _ b
\\ . z -
whence the given eqﬁi;.eﬁbn is found to have the solution
(2 2y = $(2) + 2@, @

~E
conta.in;‘n.g’hle two arbitrary functions ¢ and ¢,
~Jg’i\aﬁple 8. Solve the equation
4

r-—33—4t+2(rt—82)=3 €3]

(Example 1, Art. 77).
Solution. Two interme
Art. 77,

y-—2m+'p=¢1(y+m+2q), y-*4x+2p=¢e(y+2z+2q)- @

diate integrals of this equation were obtained in

h argument of the arbitrary functions, we

Because of the presence of ¢ in eac .
cannot solve these relations for p and g snd proceed a8 in Example 1. Instead

we employ a parametric method.
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Set the arguments of ¢, and ¢z in (9) equal, respectively, to parametcrs P
and @, so that the two intermediate integrals are given by the four relations

y+z+2¢=P, (10)
¥+ 2z 2¢ = @, (11)
¥ — 224 p = ¢:(P), (12)
¥y — 4z + 2p = $(Q). {13)
Solving (10} and (11) for «, and (12) and (13) for y, we find £\
t=0—P, ’.s (14)
¥ = 201(FP) — ¢2(Q). o )

Also, from (12} and (13}, A\
p=2=-y+ o) =2 -S4 ¢2(Q)K\ C o as

and from (10) and (11}, . » \

By trial, it will be found that for dz = pdr & &’dy to be integrable, we must
combine either the first value of ¢ and the,Second of g, or the second of p and

the first of ¢. Al'béj;'al‘ll choosing the fotmer pair, and using, where necessary,
raulib rary.org. Lo

= dQ — dP, 0‘@7’# 2¢,(P) dP — $4(Q) d0Q,
obtained from (14) and {15}, w e\have
dz_zxdx—ydwrm@d@ ¢1(P)dP—:vdy——

‘.\..,} + QoL (P) dP — gqbé(Q) d.

Upon integration,f‘bhié leads to
\s\‘ 2 1
9;‘7‘%& s ‘!i‘ + Qi (P) —f¢1(}3) dP — §fQ¢":(Q) de.

o N
Infepration of the last term by parts yields
b 3

f 06,(Q) 4Q = Q6a(Q) — f 02(Q) 4.

Hence, introducing new arbitrary functions F{(P) and g(Q), such that f'(P) =
$1(P) and ¢'(Q) = $:(0), we get

2
2=t =y = Lt Qrp) — () ~ gg'@) + 3@

—s—ay - L -2‘? 27'(P) — g1 — £P) + 30@).
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Inserting these new =yvimbols also in (14) and {15), and aceordin kit
the expression in hruckets above, we have finally il splilying

= ~P, vy =2f'(P) - '@,

09
Lofn k@

R y?
2 =1I" = Iy - —
¥ 3 +
These three parnmielric cquations, eontaining two arbitrary functions of the
parameters I wocd &, furnish us with a solution of (8). '

Brample 4. Sobve the equation

2% + g — zy)s — 2pt — z(rt — &%) = yg — 22p "\le)
2NN “

Fxample 2, Art. 77).

Solution. Monge's method led to only one intermediate itﬁ:egrﬁl of this
equation, N
zp + 2 = play ~ 9. ' (20)
Bere g appears iu thie argument of the arbitrary fuﬁ.é‘g?oh; if we use the alter-
mative inverse form, ry — q = Ylep + 2}, p 18 pre}ent in the argement C:f the
arbitrary function ¢ 1f p or g or both oceur in(this way, Charpi[_;’s method is nPt
effective; consequently, when only one interreediate integral Is o l'mudb,i :t is,
in general, & practical impossibility to oblaih & sgligion jpvolving two arbitrary
el a practival impossibility ool‘»al g W-d]éll'ﬂullbrary,org‘m

We therefore particularize the.arbitrary function so that the necessary infe-
grations can be cffected, If wé_take for ¢ a linear funetion of its argument,

3 “

e get ¢\
‘}g}+z= alzy — 9 + b

N

Where ¢ and b arét«}ri)itrary constants. This is a Lagrange equation; it i left
to the st11d311§{0 colve (21), thereby obtaining as a solution of (18),

?

o
(21)

AN =Y _ a_zf T b+ o), @

N/ . i ts
whicinvolves one arbitrary function f in addition to the twWo atbitrary coustan

%and b,
EXERCISES @
. t- &
i COFﬂplete the solution of the exercises of Arts. 76 and 77 by infegrang
ollowing intermediate integrals.
Lp=s@
% p = ggs ot = $lay):
gh (=), 4, zp +
) 3_q=logx+¢(£2+y)-

b= gty 0y,
% =e”+x¢?:§g-;’}).. 8. yg=3”?/s+¢(yﬂ)'

2 g-—-p=elhe= piale +y)'-
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9, p—qg=dfz+zs pt1=ahle + )

10. zp + 2z = zo{z/¥). 1L p+2z = % + ol — )
12. 1+p+og=amiy+2, s+ =01 + p+ oidalz —yh
18, g = appulze), @p +2 = ob2(z)- 14. (g — zp)e¥ = go(e).

15.g—1=paalz+2), p+i= géely — 2).
16, p+3y=er2g+2), 2p+y=elet 3z}
17, p+ 2y = dilg — 2}, p—y = $2lg + 22).

18 p— 22 +y=dg—z—u), P2y delgtr -y ~
1. ptz+y=olgtz+u 20. p — 25+ 9 = olg + — 2%,
21.P+$=¢1(q—$—2y), p+$—y=¢2(g—2y), .,\:\ ~

22. p — 2 = olg +9)- 23 p+ o = ¢lg — D)

24, yp + o = ¢lg -+ 4. 26. xp—q:;ﬁ(yqnxﬁ}_

79. Poisson’s method. In this and the followidg article we shall
discuss other methods of solving second order, partial differential equa-
tions. Thesec methods will often be foungeffective for some types of
equations to which Monge’s methods do a0t apply.

Consider 55/, #Ryqufiiionof the fores

P= (i, W
where P involves p, ¢, 1 s, afh\t and is algebraically homogeneous in
r, s, ¢; € is any funetion af By, 2, Dy QT 8 and £ that is finite when
ri — §2 = 0; and k is a positive constant. Poisson’s method, applicable
to such an equation, is'to scek an intermediate integral containing only
pand q. If we sel </

Ko ¢ = (), @

O
where ¢ iﬁi%function to be dotermined, we get by differentiation with
respect tevs and y in turn, :
P _

QY s=we, =) =P @
Evidently, then, #¢ — s* = 0, and (1) reduces o
P=0. 4

Moreover, because of the homogeneity of P with regard to r, s, and %,
substitution for g, s, and ¢ of the values given by (2) and (3) will yield
the product of some power of 7 and a factor containing only 7, ¢, and
¢'. Thus (4) reduces to two equations,

r=0 {6)
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and
Flp, ¢(»), ¢'(n)] = 0. (6)

From (5) we get, upon integration, p = f(y) and
2 =af(y) + 9(y). M

But f and ¢ cannot be arbitrary functions of . For, since ¢ = a21”(y) 3
¢'(y), (2) imposes the condition ¢
; O
@) + ¢ ) = oI A7 )
Consequently f(y) must vanish, or f = g5, & constaqti‘éfﬂﬁ therefore
also, by (8), i \\
: 7' = ¢lar) = by,

say, so that g(y) = byy + ¢. Thus (2) and {5).\}6gether yield the solu-
tion -

z = mz+ bype, ©)
.. . v ilbr ul‘tB ary.org.in )
containing three arbitrary constagtg;. C earfy 5W1H a solution of

any equation of type (1). N\

On the other hand, if welsolve the ordinary first order equation (6)
for ¢(p), obtaining a relation invelving one arhitrary constant, substi-
tution in (2) will givéius™a first order partial differential equation to
which the methods gf\Chapters IV and V may be applied. We thereby
may obtain a soluffon involving an arbitrary functior: in addition to the
arbitrary con.g.&ént.

~ a°
/ﬂamggta\wSolve the equation
AN 16rt 4 s+ 2 — 0t = 0,

O .
N\ Solution. This equation may be written in the form (1); we have as an
equivalent expresgion,
{4 — 2 =1t — %
Bubgtituting ¢ = ¢{p), this becomes
4 - 7 =,

whenee, dropping the factor %
') =2
g=9®) ==2p+05
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where ¢ is a constant. By Lagrange’s method we then have

Fptoe=2o
& _dy &
2 1 o

which easily vield the solutions
2= ay+fe+2), 2=oay+gk—2),

N\
where f and g are arbitrary functions of their respective a:rguments; It is
apparent that each of these includes (9) as a speeial case. 2 N

N\
EXERCISES A\
Solve each of the following equations by Poisson’s method. \:

1. 4r —t = (it — D2 9. 2 — 3s Kbt — 9.

3, 72 4+ 25 4 812 = 20ri. L. 7 — 28 0= 2t — 55

5. p(r — 4s + 41) = (it — &%) 6. yir! LRt — & =0

7. pPr — 2pgs -k ¢4 = 1t — & 8. (dpPs-l)r - 4ps +£ =10,
9. % — 3pgs + 2p% = palrt — ). 10. Bhy Zors? =55 8 =0

80. A genemirméﬂmdLibrWy_mg;giﬁér now a general procedure, ap-
plicable to any sceond order partiel differential equation

G(I,{}, LS t) =0 (1)

in which @ is a polynomialin r, s, and 2.
We seek an intermediate integral,

N7 umpap =9 @)

which may m'\n}ay not eontain arbitrary constants or an arbitrary func-
tion. Di@rentiatmg this with respect to  and ¥ in turn, we have
)y Ug - Uap - Ugr + ugs = 0, (3}

O
.

9, ) 1y + wog + Ups -+ ugt = 0. €Y
If the given equation (1) possesses any intermediate integral (2), then
{1) must be obtainable from the three relations (2)-(4). Consequently,
when we substitute the expressions for r and ¢ found from (3) and {4),

T=__um—|—uzp—|—uqs, tz_u_,,-{—uzg—]-ups’ )
’H.p ‘u.q

in (1), the result must be an identity. Hence, either the total coeffi-
cient of each power of s (including the power zero) must vanish, or 8
and the group of terms free of s must both be zero.
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With the former alternative, we get a set of equations involving
T, ¥, %, P, ¢, and the first partial derivatives of the unknown function %
with respect to these five quantities, This system of equations will
then be of the form considered in Art. 52, and may be treated by the
methods there discussed, or by simpler methods in some cases. Tn
order that (2) be an intermediate integral of (1), at least one of the two
first derivatives of 2 must be present in (2). In particular, therefore,
if the system found &s described above leads to the relations u, = 0
and %, = 0, indicating that % lacks both p and ¢, we conclude thaf t\he
original second order equation does not possess an intermediatedntégral.

If the form of the given diffcrential equation makes the/supptsition
s = 0 tenable, whether or not there exists an intermegdiate integral,
there may be a solution of the form z = f(z) + g(y),f and the char-
agter of the functions f and g should be determined. & *

When a second order equation possesses neithér an intermediate
integral nor a solution of the form z = f{z) +¢(y), we may try to find
a solution of some other particular form, g{in the following example.

Example 1. Apply the above method to.the equation
78 -J—:iﬁh;arldbraulibl'ary.org.in {6}
Solution. Making the substitutions (5) and clearing of fractions, we get
Uplty = 0, Uzlg ‘:{T..%i;qu + Uyttn + Ugltpd = 0, ui + ‘U,g =0 (7)
+)

From the first and thjr\&\of' these we see that u, = 0 and u, = 0. Hence (6)
has nolintermediste(ihtegral. Moreover, we evidently cannot have ¢ = 0, so
that our method.iaﬁs"to provide & solution.

If we tentagively assume a solution of the form

\\f\" 2= A + Bu + Cy + Dot + By + Fi,

substiftbion in (6) yields the relation 2E(D + F) = 1. Thus we get the solution
P

~S 2y
\/ z=A+Bx+Cy+D$2+§'(D—_}_—F—)+Fyg, (8)

eontaining five arbitrary constants. e oh
Other solutions, involving higher powers of z and y, may be similarly ob-

tained. In some cases it may be necessary or desirable to assume a solution
in the form of an infinite power series, but we shall not attempt these processes

here,
Evample 2. Appiy the above method to the equation

rs—ar —ys+p=0 @)
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Solution. Replacing r by its expression (5) and clearing of fractions, we
obtain
— WS — UPS — s + Tz + TP+ Tigd — Yoips + PUp = 0, (10

which leads to the system
Tp 4 Tup + Pp = 0, s T up — g T pp =0, U= 0. (Y

We first treat this system by the method of Art. 52, to illustrate the general
procedure; we shall then solve our problem by a simpler process. A\
Employing the usual notation,
B =Z, Y =, £ Fs P = T4 § = X5 Pi"‘z@' G= 1:2»,"\:,\)\,
a&’/‘,‘ i
the system may be written as

s
S

F = xp + 2wwaps + 24py = 0, '.“\k"

Fi = p1 + xaps & 22ps — 2195 = ) (12}
Fa=ps =0, \\“
Then (Art. 52) \
(F, F) = p1+ %eps + 31Ps + (131&03 + pajtz — TaPa. (13)

Reducing this bwmmﬁb@ﬁ@h@mmﬁ = O and F» = 0, we have
(7, F ) = E1taPa = M;Us = (Fis — Ts)Ps- (14)

In order that the system shathbve a common solution, we must bave (F, F1)
=0 Ifps=0, F—Oam{\F]—OreduLeto

F= :vlpl ¥ 2 = 0, = P+ zaps = O (13)

Now since ps = 11!4\ U by Fa = 0, p1 = up must be different from zcro if the
original equationn®’to have an intermediate integral, Consequently the rela-
tions (15) cam 6ld only if the determinant of that system, #1%s — s, 15 Zero.
Hence (F, ‘F;) = 0 only if a2y — 24 = 0, that is, only if
A
,..\ P = Ty (16)

2

This is an intermediate integral; integration gives us
2
= x_?%’ + ¥ (y)! (17

where f is arbitrary, [t is easily verificd that this is a solution of the given
differential equation.

In this case it is easicr to solve the problem as follows. Using the third of
equations (11), the other two become

xus + wup + pp = 0, Uz + wp + YUy = 0.
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From these we get

ﬂz+%sp=—3;—”= — Yip.

Again, since g = 0, u, 7 0. Therefore the last equality yields
=y,

as before, whence the solution (17) is found.
Now the possibility that s = 0 must also be examined. Retting -« N

z = f@@) + ¢(y), Oy a8
obtained from s = 0, we have 'S
p=F, g=¢, r=f" s=0, = 9’:’.‘5"«:
and substitution in (9) gives us .\‘
—ef =0, 3O
or A\,
T i’ _)er — 0<;\

This readily yields f{z) = az® 4 b, wlgefe o and b are arbitrary constants. Sub-
stituting in (18), and ahsorbing F]:Ee‘gnémtardﬂrimlﬁh'anrpimgmfunction 7(3),
we then get the additional solution”

ANz = ar® +g(y). (19}
O
R EXERCISES
Solve cach of t@e following equations.

Lors 4t =B Lst—r=

3 st —eE 4,82 —gr=0.

B. 7t = 0. 6.o8 —1 =2

7. rehed 45 = 1. 8 ri+st=0

2 10, 7s + 22+ st =71 — 1.

YgB—r —t =0,

Y% 81. Geometric problems. The general procedure for solving a

geometric problem, in which a non-linear partial differential equation

is concerned, is similar to that discussed in Art. 70. ’?‘he geor.net.rm

properties involved must, of course, suit the type of solution obtainable
: ge.

N C\a;?}}:cﬁl git:h?g ti’vith developable surfaces (Art. 26), Poi'sson’s method,

when effective, is particularly useful. For, it was found in Art. 29 that

p and g are functionally related for these SllI'fa,Gl'-:.‘S, _

takes just such g relation, ¢ = #(p), 8s its starting point.

and Poisson’s method
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FEzample. Find the equations of developable surfaces satisfying the differ-
ential equation
rt—s?—r4-t=0, (1)

and passing through the circle z* - 22 =1, y =0 and through the point
D, 1, 2.

Solution. Setting ¢ = $(p), so that s = ¢/, £ = ¢’ = r¢"%, we get
{1 — ¢ =0, @

Evidently we may discard the factor r, sincer = 0leads only to planes (A;'t 79),
which cannot satisfy the given geometric conditions. Hence we hax«e
pp)=1 g=9¢p)=p+te; T®)

or AN
$'lpy=—1  g=o¢p)=—p+ GO v (4)

Trom the respective Lagrange equations (3) and (4) wpxeasﬂy find two families
of Javelopable surfaces satisfying (13:

7
\.

2 =ay -+ flz+ y), \ (5)
2= ay + gley W, (6)

www.dbraulibrary .org.in N
where f and g are arbitrary functiohs ant«l 18 an arbitrary constant.

We now apply the first geometrle condition, 2 = &= \/ 1—x% y=0 to
equations (5) and (6); this glves\ua:

+ V1 N §2 f(ﬁ)s £ V1 -2 = g),
whence f(z + y) = :l:‘V T—(z+yfandglr —y) = =V1— (z — y)% and
z_cw}xu—(xﬂ;? 2=y +V1— (@ — gt )

Finally, if ea% surface iz to pass through the point {0, 1, 2}, we get in each

case G ="\.2;'and therefore _
Q~ @+t + -2 =1, ®)
G-yt -2 =1 @

are two developable surfaces meeting all the requirements. Equations (8) and
(9) represent elliptic cylinders.

EXERCISES

1. Show that the differential equation z¢% — 2zpgs + 2p% = ap%g — 2pd°
iz satisfied by all cylinders with elements parallel to the z-axis.

2. Show that the traces in the wz-planc of surfaces satisfying the differential
equation ar — ys + p = 37 are straight lines parallel to the z-axds,
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3. Bhow that surfaces sutisfying the differential equation @+ 1% — 2p(g +
1)s + p% = 0 are generated by straight Lnecs parallel to the plane y + z = 0.

4. Bhow that the surfaces whose sections by planes parallel to the zz-plane are
circles through the y-axs, satisfy the cquation (22 + 2%r = 2(xp — 2) {1+ p9.

5. Bhow that the differential equation 2¢% — g(z + 2zp)s -+ plep+ 2+ pgt=0
iz satisfied by surfaces whose traces in the zy-plane are straight lines parallel to the
X-AX18,

6. Find the equation of the surface satisfying the differential equation ¢(1 + ¢)r
— p(1 + 2¢)s + p% = 0 and passing through the line y +2z =1, 2 =0 ard the
parabola 3® =z 41, 2 =0.

7. Tind the equation of the surface satisfying the differential equation 21 \g)r
+ 21 —p 4 @s —apt = (1 + p + 91 + ¢) and passing through the line y = =z,
¢z = 0 and the z-axis. ¢(\A

8. Tind the cquations of developable surfaces safisfying the diEertEiﬂsial equation
4r — ¢ = (i — s*)? and passing through the parabola z = 2% y.=0.nd the point
(1, — 4, 8). N 3

9. ¥ind the equation of the surface satisfying the differe ial dquation 2t - & =
0 und passing through the parabolaz = %%, z = 0andth€ point (1, —1, 3).

10. Find the equation of the surfsce satisfying thé\differential equation 2rs -+
5s? + 28t = 4r — {and passing through the eircle3%«\2* = 1, = = Gand the point
2,1, 1). R

\ Y
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ANSWERS TO EXERCISES

Arts. 2-8. Page3

Ly 46y —222=e: 2.9 +6y+2log (1 —3y) =e.

8. 2 —z)(sec y+tany) =¢. L yVEi—Z Vi —g = O
B. (x — e L g¥ =¢. 6. log’ y = ¢z A\ ¢
7.3\/1+y+(2—$)%=c. 8.2008x+log(cscy+copgj\=":

9. 2xy -+ 322 = ¢. 10. zy — ¢ = ¢. 11. 32 + y >z

12, 2% + cxy +1 = 0. 13. y = ztan (z + o). 14, lng'.:ig=2x+c.

N C ]
16. 4% — 2ye® =, 16. yainz 4+ 27 = ¢, 17,"*yf"\—ﬁ=cz.
18. 3z + tan y = ez 19, & + 42 = ey 20.M° — log z = ey

Arts, £5. Pages 65(
.y = el — e 2. f 28 —2+oc ™

1
www dbrauljbrary.org.in
3-y=689”—%(sin3x+0063z): v{4.“«:13411—:zi’]=e:.y &

b. 22% —log?z =, o »8. y = allog log = +¢).

Tox =y — 2+ e~ O 8. zeosy —y =¢.

9 4% = ¢ % 4 ee 10, y{dz — 1 - ce™%) = 186.
. dyloge +x=cp ‘i"’}\ 12, * - 92 log z = c2®.
13. sin € —logz =c. 4, W y+ VE+y§ =al

x £
y PR
16. ylog= — y =wlogz + oz 16.ta.n23—ogx—c.
x N\
7. 4y =2 log.{é;}- ¥y + ez 18. z = y sin (log ¥ + o).

19, 22 — 2zu gyt — 120 + 4y = ¢ 20. 22 —day + 445 + 60 + 10y = ¢,
21, 2zy <3t — 4). 22, By = 22% — 60 /7.

93. y colk = z fsinxeos s — 1 —m 24 2y = 13657 — £,
Wefo - 1)z — 1) = L. 26. (z + 39 — 2)" = B4z

o7 Jog 4 — L. 28. £.
29." — gdv. 80. -1 —log 3.

Arts. 6-8. Page 13

1. 2% —yg—l—c(y—ye”-l-x?e”) +cte*=0. 2. = 22 gin? (log = —{;cz);y =
3. da® — 25282 + 10ezy — & = 0. 4t — 4zt 2eay + 25 =0
Sz=2p+2bglp—1)+o y=102+2P+2IOE(:0—1)+c;y2=z+1-
B. 8 =22 —¢% y==L2 7. & =elp+ 1), gy =cpet.

241
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8.x=—2p—~6lg(p—2+e y=2—12l0g(p—2)—p*® —6p —1;
y = 2z — 9.

8.2 =2+ E+1; 2+2=1 10,4 L ey +- ¢ =0; #° = 162

1.0 =2p — 3%, y=p*—2p* te 12.1—|—cy—-cze”—-0

18, z = epe P, y = e(p® + e ¥ W y=cx+c Z2+4y=0.

16. 2 + 24 —zy) +ef2 =0; zy=2. 16. y =cx —cb; 42 = 2742

7. 14ely—1) —cz=0; @—12+4z=0.

18. 1 + 3y +c¢Bx +2) + 2% = 0; 8z — 2y)* = 8.

19. 2 = e(p + De?*/v/p, y=clp —1) vVpe™? y=0.

20, £ =2p -24¢e? y=p"—2+clp +1)e? A
Art, 9. Pages 1617 o\“}

7'\

Ly ={z 4+ 1)e* 4+ 2.
2P —day +3lx+4 =0

1
3
B, 4y = 22% { 2z -+ log {2z — 1) — 36.
7. y = 36%F — 5g2a,

9, yx — 172 = 1.

2 2y =zt +4logx 44N
&
4 y=z2—4 arctanjE —2.

\\

6. 3y = 2% — 82,

8. ¥ = 2 sinda\— cos 3z.
10. y vy 8N 20 — 2.

= 2@ + c1)® + 2.

1L %2z +1) + 8 =0. 12, y = 2(6 5)2.
18. og (¥ +4) = 2z - 2. 14. 833 8) = 4.
16. y = c16®® + e 22 16. @ = o1 sin kz + ¢z cos kz.
17. @ + e)® + (Efu"b@ﬁbra%'hbrary orgd}l& (‘“": + o + ¢ = o
19. 2 —(y+ o) =0 v
Axt.‘ii.' Page 19
1. y = c16®® 4+ eoe™ ¥ *\

K

¥ = o1 + ege
B, y = (c1 + eam)e™™2

2. ¥ = ¢18in 3r -+ ¢a cos 3z.
4.y = 016" + 26,
6. ¥ = &1 + ear -+ cag 55,

12. y = (c1 + cox + €37 + cax®e?2

Ty = (1 4+ eox + r.:azcg).e22

8. y = c16®® + e Zegsin 4/ 3z + 3 con 4/ 3z).

9. y = c1e”® + qﬁz\z” + essin 2 + ¢4 con 2z,
10, y = {or F£30)€% + (o5 + cax)e 22
11y = o1 /R 5+ st -+ cqx)e®.
13 Yy = 5'(01 sin 2 + ep cos &) -+ ¢ ez sin = + ¢4 008 7).

- Y 28+ c26 4 e % - o4 8in 2z + o5 cos 2z

15\./ = 26™ — B¢, 16. y = —3 cos 4.
17. % = 5. 18, y = 2ze™",

19. y =1 — 3e% + 742,

Art. 12,

= 0167 J- e 2% | 43 — 322,
= c1 + e + 2z + 1)e%/2.
= 01 1 €26¥ + 3z — Tet=,

= e 5in x 4 {2 — 3a} cos .

= &1+ 37 -+ ce”" + 8z —ze ¥,

20, ¥y = ¢* — 3 sin =.

Page 24

2y =cr1ef e LG —=

4. ¥ = ¢18in 3z + e2 cos 3z + sin 2x.
6.y = (1 — 3z + 7N + et
8.y =¢1 + ooe®™ + 036 + 2% — &%
10. y=c14(r2+2x) sin 2z + €3 cos 20 — ba.
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11, y = (61 — Bz)e® + eae™ + ezsing + (o4 + ) cos 2.

12, y = c18in = + oz cos & — 2 cos £ log (see z + tan z).

13. y = c1sin 22 + ¢p cos 22 — 2 sin 2 log {cse 27 + cot 2x).

14, y = €%(c1 + ez — 3 log 2). 16. i = ¢ %(¢1 sin x + 3 c0s £ — cos 2z).
18. ¥ = e1 8in 2x + 62 cos 2 - 4w sin 22 + 2 cos 2z log cos 2.

17. y = € *[e1 8in 3z + 2 cos 2 — cov Bz log (sec 3z -+ tan 3x)].

18, y = &*{e; sin & + ¢z cos ¢ + 5 sin z log sin z — 5z cos ).

1 2 ai -
1%y = (cl + \/Elogl__l—_u\/__sfﬂ) sin z-p (cg - \/2log%@—x)coaz.

+/Zsinx vZeosz

20. y = c1+ (s + 26" + 687 € 4677 —~ 2 — (¢ — e log (e*+1). . O\
O\
e S\ N
Arts. 13-14. Page 27 g >
1 y=ea+eloge+iogs — 1/ 2 y = + et w220
"
3. y = ¢1 sin (log ) + ez cos (log #) — sin (2 log 2). \
4y =cix+eox® —2xlogz — 4
B. ¥ = c11in (2 logz) + 63 cos (2 log 2} -+ (log x) @[2 log ).
6. y = c1/z% + co/s® + 4llog? £) /2. “\
7.4 = ¢y + ez log 2 + ezt + 8 log® 7. :
8. y = cat® -+ [eg5in (/3 log ) + 3 cos {3/310gz)],’m+5x210gm - 3.

9 y = [e1 + e2 log 2z 4 1)] (2x+1) -’Wﬁ,w amu(ﬁ;f]fiallg/orgln

10. y = ersin[} log (3= -—2)]+ogCObE:5 log (3:5—2)

1L y = — Fe16® + ot ¥ — 2677, 2\ —cw + exe™ - 5.

12, i = c16 2% + o™ + 4z — 2N 2 = feie 2 _ Seg®® + B + L

13. y = €16 + o — 2635 = — Bere®”® — Deg6™" + 4677,

14, y =3sinwx, 2z=—cofs

16. y = ¢16® + s sin 2 Wcosx—]—sz”

(chg +3c3) cos Pt N

1 = sl 3, w=

1’? g— cleei—-tl:-hezé”"sm (+/3rx+es)—1, = = 0162 - eog sin (4/32 + 5 + &7)
— 1, w &N + oo™ % gin (/82 +es +§7) — L. o

18, y = e3d BF coe ™ + ¢, z—%f1e’+me'2”+3= w = oo — &%

19, y—%cw+4cgfm5+7—-2x, s—clx+cg;’x%+3—i—&t.

20, ye= 212® I ear?? -+ 8% log 2, z = Low? + e — 2l log 2.

2 =—206 — (Sez—es)Binz

N
VUV
Art. 16, Pages 29-30
2y = a1 + coe™ 3, y = c1£ 8in & - C3TCOS - "5’=(”1+°“f)es'
R S S P A
Bu=eall —7 T35 TTast 0744 ‘
x? Ll ) | <.
LI T ,|$
+8-5-2! 11-8-5-31

8.y = (o + 03 VE) V1 - 2%



244 " ANSWERS TO EXERCISES

2 xt x5
Ty = o” [1 T il T as(dm@in 48 RAtmeinGEg T ]
. % xt zb
+ oo [1_4(1 ) ViR me—m 48 120-—meE— n)(3—n‘}+“‘:| '

z =0
8 y =01|:1 _ n(nz—[!— 1):5"‘ +ﬂ(n —2}(?1‘;— 1)(1'1,—I—3)x‘1 _:l

_l_cz[x_(ﬂ—l)(n-l—?)za_i_(ﬂ—ﬂ(n 3)(ﬂ'+2)(n+4)x5 :|,];l<1.

3! 51
10. y =c1sm;—|—cgcos =z "\:\
Arts. 16-17. DPages 34-35 O
1r=18%" s=18" +4, t=062" —12y
2 r = 8% — 5yl %, & = 24ze® - 10ye %, © = 3622 106"
3. r = -/t — )Y — ofsinay, s = 2y/@@ -y EBysin oy + cosay,
== 2,’(.7:"" — 5% — 2 gin ay.
4 r= 1sin{zr +4) — &fsinblz —y), 8= %@s)(:c + ) +ZE sin bz —y).
B.re= 23,:2(1:2'3;2 —ay — 1)/ + 2%, s = (1 \‘hy — 2B/ + 2,

£ = 2220277 —ay — 1)/(1 + 23N
6, r= ﬁysec;zzta.n z, s=4 sec ytan y+ 3 seczx, t= 4z sec y (wec?y + tan?y).
wm—IO 22, ww—lﬂx wy = 10827, wgy = ayz? — 3z,
~ 200y% AL Lﬁ%w gyl T
8. w_,-,z =—yzging wy =— smfy, Wyy = — Ty 8D 2,
Way = 80 7 - 2008 2 4 2 OB YN0y = YOS - yeos T <+ sin ¥,
ty, = x cos 2 +sin » +xcas"z;
9, wu = — 26, wy, =AY, w,, = 2uye’,
= 2¢* — pyze™ "', Wes = 2y6® — Dye™, wy, = 2xe’ — 2reV.
10. wzz = 2z/x Wyy = Xys’ Wy = 2y/zs, Way = =~ 1/9'2; Wey = '_1/-'52:
Wy = — 1/:52 :
1. p=—-1,79 =—'I*
12, p = — (ye* ¥ + 267/ (wye” + ye - ze),
g =~ @2 + 226%) [(wye® + yo© + zeb).
13. p =7‘0Q T tanz, ¢ =— coty tan 2.
18, p == a2y + 20Vae + 2Vye) [ @V ey + 22v/z + 204/2),
23— @2y + 2V F z«/m)z(w_y + 25V az + 2yv/ )
18, p =— (zlog2)/(z logx), ¢ =— (zlogz)/lylogy).
23.735% 24, 75° 537, 26, 2y + 32 =8, x=3.

:“

Arts. 13-20. Pages 41-42
1. 2u(Sz — 3y) + (31 — {10y — 32).
2, (cos y — y sin x)e¥ — (cod z — T sin y)e ¥
3 6 4. y(e®— ze") — z(e* — 26*) /1 + (oye® — 6™¥) /.
5. p = 28 + 62% + Bep® + 48, ¢ = — B2® + 3y — 30=® + A
6. p = (2ye¥® — 3¢ ¥)/(u + 8) + (€% + Bz ¥}/ (u — 1),
g = (2ye® — 3¢ ¥)/(u ) ~ (¥ + Bre™)/(u — ).
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T, p = Suly cos zy —sin y) + 3(x eos oy — z cos ),
g = 2(y cos zy — &in ) — 2u(z cos 2y — 2 cos .
8. Wy = (2%’2 - 1)(9'28“-“: "I’ Tret T + xyve“)l
wy = 2ayz — 1}(yze — 22e"~ + ayuewy,
9. (2% — ay)/{ax — 1. 10. — (sin y + y cos 2)/(z cos y + ein ).
1. p =—[sinz +zcos {2 — N]/[{z + o) cos ¢ + sin fxr — ],
g=~[sinz —2z cos (& — y)}/[(x 4+ 3) cosz +ain {z —]-
12. p = — (Zze® + yze™)/[(&F + D) & 7],
g =— Qye* + a2e™) /[(&* + 106 + &1,

13, (fegry — Fu92) /e 18, w2 = gu/(fuge — Fot)s vy = ful (Futts — fib)-
20. uy = — (FyGy — Fu0)/(Fuly  Folla), .
ve = — (Fuliz — FzGa)f((Fqu - F@Gﬂ)- '\,,\‘
'S\
Arts. 21-23. Paga 48 N\
t—2 y4+1 z-4 D
.2 — gt 4z = 21; - = . .
L2z ~y+ By -1 4 O

2.9 -4y +386=0; dx{ 0y =6, z=5 \
x—4 y—2 z+l,*'.\\"
2 T 3 A
4. z2=2; y=0, 2=0. ' ”
z+1 _¥ +1 ‘_‘_’\ﬁi\mml,dbraulibl'ary.org.in

22 -3y —2=8

Bz —2y —2 =10 1 _“'2:“?._1
22 Ty -3 z41 .

&3x—%%ﬁr+w=0;f§ =?4 =76 7. 90°,

0.6 =10, b=—% M 4—-z=y-2=2+2 12, 35° 16",

17, o = 90°, g =1853{ W=45° 18. 0 =42°2, §=68°12, 4 =569

18. 62° 59" N 20, () fF +g@ + K =0 Q)f/F =g/@ = K/H

\\ ’ Arts. 24-28, Pages 57-69
1z 4480 12 24pP=1 B4 Ho=1
15. = a’&”y =0, 16 2442 =1, 2 +*=2 17, 4r¥s%? = 1

18, 0P 4% = 1. 10. 422 =1  20.2° -2+ ~2c -2 +1=0.
2194 yg =1. 22 2% 4y =0. 23 2 =4y 1 z+yP+a=0

2B+ 2 + 2y~ =8 +y).  Wmytd=0 WP -p =D
8.2 =1 29, M+ i+ H =L 30. 48r%ay% = 1.

Art. 27. Pages 62-63

lz2=uap+ug % z=(+9n z=(x+y)q-2 ¥3-zp+y9=22-
4 2az = (% 4 Y, 2z = @+ AP 42-—;- D=1
6. (& — )" + ¢) = 2e(p — 0) T 200+ '

8.+ (y —z—mpf +d=1 -V -29322"' AP+ =1
oA 2P = yu. 10, z = zp + ¥¢. 11, #* = 1 + zep + weg-



246 AXSWERS TO EXERCISES3

12. zp 4+ yg = 0. 13, 4pg =1, 14. p = gtan (yp/2).

15, r =0, g=0, t=0. 16. p=ar4+ s, ¢=z8-+ i
0. (P +E+ D0 +p0 =% PP+ D) =& @GP+ AN+ =2
18, 1 +pHs =pgr, A+ ¢f)s=pg. 19.s=020. 2z = mp1 + z2p2 + 2378

Art. 28. Page 65

1. z = zp. 2. z=yq 8 ztylap —ya) = (z ~ yl=
doaylp—g)=@-—yk. b zptyg+2=0 6. yp —2¢ = 0.
1. (e — 1)p + ylz — 2)g = 2(y — ). 8 2% — 3P = (z — ¥z N

9. x(z2 — yp + yia® — Fg = 2t — 2. .
0. 4+ +2)p —+yly+20g=@—yz Ws=1 ()

12. 6r — 135 + 6t = 0. 13. ¢ = 0. 14. % — 2P %2 = 0.
15, 23 = pq. 16. ¢t = xg. 1. @ + ?)8 = (1+ g
&% oz 8% ok 8% : % ) o
Tnlar o a3 ond T o8t 18, 20., 42— = ——.
Yooy o' " ozoy oyt o oy oy

Art. 29. Pages 68—69 \.‘

1 axp+uyg =2z 2, p =0 3. xp-}-y‘g\_z—l 4 ¢g=0
B.(y—2p+{e—ag=2z—y B. @Y+ 1) = ( — %
7. (2 — 2oy + o — 2 + D)+ 2P X 2y —2)p — o) = O

8. 22(xp + yg) PEKGETAIEY OB yp = 2. 10. PP+ 7 = 1
il 3p® —¢' =L 12v @p +yg —2)pg —p — @) +pg = 0.

13. ap +yg — 2 4 pg = 0. N (rp +yg — Pt + PP+ D) = P

16.r=0, s=0, t=40. AN 18, por = {1 + %5, pgt = (1 + ¢%s.

17. s = 0. .*} 18, 2% +2zys + 3% — Zxp — 2yg + 22 = 0.
19, pglr — 1) = )‘}
20. zlpgr + (z2 - :c s v'a%s + gt — 2pglep +yg —2) = 0.
\<
.t\‘“' Arts. 36-37. Page 90
1. (2 +\1':c}z"- 2) = 0. 2, ¢(dy — Bz, Az — (z) = 0:
3. s(xy, &) = 0. 4 o2+ 7% a2 = 0. 6. ¢x? — 32, 2) = 0.
‘::r."ﬁ-y T —z 2k A z—I—C‘)
Wy = 0. T,

{q’( ay T2 ) ¢(y+3 y+B
8762z —a?, 22 — o) = 0. 9 ¢l —yh oyt -2D) =0.
10, ¢f(z —2)(z —y), 2] = 0. Wodlz+ytaa®+®+25 =0
12, 4 (zy, ;i—y) =0Q. 13. o[z +y,z —zlog{z+ )] = 0.
14, ozt + 47 22—t —2hH) =0, 16. #{y/2% 2logz — 22 — ) = 0.

ety =2y _ ' 0l -
16, .¢>( p” ,xy) 0. Wole—2y—z, 2+ +H =0
18. ¢z - v + 2, 2y2) = O. 19. ¢(z + ¥, zy2} = 0. '

20, ¢(x® +o* + 2% ay2) = 0.
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Aris. 38-39. Pages 94-95
Straight lines. 2. Cireles, 8+ 44 =, i 2421,
62 + 3P+ 22 1) = (z — 2y — 22,
oz + 14,242 —z — ) =z=gz
¢ Vi~z AT —)=0; 2=z z=y
¢.(y+2\/x, \/z—ﬁ—-\/;) =0; z=—g

Arts, 40-41. Page 99

L ¢leg — 21,03 — 21,2 ~ z) = 0. 2. oz + 21, 25 — 21, 74 + 21, 2) ?O"
3. ¢(z/xly 2/32; z/xii) ={. 4, q&(zlz' z/’xs’ xsz) =0, '\“\'
5. ¢(e§ — af, 223 — af, 2) = 0. 6. p(zies, 2 log 23+af, log 242y =0,
Toolzr — oy ms —an, 2 —20g) = 0. 8 glaa/z, mafey, 22 — 2 Joian) = 0.
9. o(i — 2}, 25 — 2} 2) =0, 10. (5 — 2, o — A~ 2 = 0.
11. ¢(zize, log 2z — zuze log o1, z/m) = 0. 12, ¢{z; + 25 + xsg.w'ig +238 =0
13, ¢lwg + 21, 73 — 2y, 24 + 3) = 0. 4. 903 — o}, 24p>ad) = 0.
16, ¢(x3 —af, 2% — D) = 0. 18. ¢z —|—ng2{-{¢3, gra+5=0
Art. 42, Page 101\
1 ¢[ly —wm)/(z — ), (2 — 2)/{x — 20)] ,=,0’:\::’t'mes with vertices at (zo, ¥o, %).
2. ¢(y/x, 2) = 0:surfaces with rulings paratlelte thengridneary org.in
3. ¢ly/x, 2/z +log x) = 0. N z:"f‘ 4 ¢Gfx, 2z +y/2) = 0.
B. ¢(z, 1 1 28) = 0:surfaces of revolution with z-axis as axis.
6. cr(? + 2% + ooy + 28 = gzl
T2+ +2=cfr+y -L-z[:+ ¢o; centers on the linex = y = 2.
8.yt =y cente@tf e origin.
Lyttt =2 N 10, z+ ) -4z + ) ez =1
A Art. 43. Page 104
{IN” B(r —r1) cos i
2, r=n j\;}f&_’ihg ?‘_1 r=m- KL
W\ 102 — et o Hr —ry)
4. .——:\;ﬁ: e G.r=n _——fKrlr
~Y o Vst I
GN-‘:TI.__(%. Tor=n—-—z¢ Iogf1
& =10, 5 =64 9. u=10+¢ §=2564
0., 220+l 410  z-g + 10
ts t+1 ’ ¢+
Art, 46, Page 112
- —gh =22
Let=ay+gizta)yztay=0 %z —2?—}_-213!(,'“'1;_"1‘!)9; f(’:+11;;+3-
e+ Dr=alatlz —ay-t8 4 (a—lip=a o E
5.3 = (I + 2a — o)z + Say + 8- 6 z=ox+ (-5
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T,z = sin « log z + cos a log ¥ + 8.
8. 16(1 — a)ylz + 6)F = [daw — 4(1 — o)y — (2 + BY]%

9. (1 +adlog?z=(+ay+822=0 10. 4a(l —2) = 4+ ey 8% z2=1
1. daz = 3 —yP +az+y) +6 12 0 —a¥pt = 4z + ay + 6
13. 202 + (z T oy +8 = 0. 14. 6oz = (& + ¥ + 3’y — 2) + 8.
16. 2z + (z — ) — 22’y 48 = 0. 16, z = ax® — oy + 1.
1., (z + 32 = 4242 4 ), 18, 2a? 422 — 4oy + 8 = 0.
19. zyz = ax + o’y + oy 20, £ = o%¢ + Sa® + 8.

Arts, 46-47. Page 116 ~
1.z=024+3a—oaY)z+ay+5 22—2(x(3050:+y811‘1a)+~€
8. z = 3(x tan « + ¥ sec a) + B. 4, z = aw_— ¥ sin a—{—ﬁ
b.2=ay —a% 18 \ s.
6. 2 = ary — efz + B, 2 = oy — 2a3x + fa. &N
7. 4oz = 17t + 6oy + o 8. 2 = 4( +y2)

2

8. 2% = 0(y? — 2%). 10. ( — T AOCOY y) =y —2?
11, dzz = 37 12, dzz <0 8oz = ot
13.4az-—(x+ay—i—ﬁ)’ g=10 14. a]ﬂ\gzz—(x—l—dy—{—ﬁjz z =0
15, 2(x+ay+ﬁ)2 1+o% 2=0 18, ﬂ(l-k-zﬁ) (x + ay -+ 8.
17, o 3($ +a
18, (Iog 2 — “’zbﬁ"’ﬂ‘ﬁu-ll-b&"‘}'@’ -‘1’-“3@"31- 3)2 z2=0.

19, (a22+x+ay+a:c + oY)t = (Ib%a L Pz + ay + BY.
20, z =sec (zeose+ysina+ Bl =0, z=x1

¢“firts, 48-50. Page 121

1.z ={+4aY log ® —}—\\lng ¥+ 8 2. 3z — az® — 8)% = d{a — 115
3. 3az = o + 3% -—3ay+ﬁ 4(2az-—y — B = a2{e 4 202t
B. 202 = (1 — aw’«—l-zaﬂlogy+8ay 4 2a8.
6. [Bole — ljgw\w ¥) — Ber® — 18a% — 6812 = 16(a ~ 1)*(ay + 1)%.
7, 8z + ay(=0. 8. 24z = 3x® + 2% 9, 64z° = 2Tz%2
10. #* =z 11, 8= 27xy. 12, (2%  ¢%z = 2y
13. 2({2 1)z = 2ale — D logz + oy + 2{e — 1)8.
14 8% = (o — 9z + 3ay + 38.

\k;,alog z = o loga -+ (1 — a“)y + af.

18, 2a2? "‘(a 4 2yt 4+ 2o? —l—"aﬁ

17, (log 2 — ax® — )} = (1 — 4oy log?y. 1B, 2yt = 2eaty + 4 — 9o - By
19, (¢f — ae® — g)F = (a¥ — 1)e%. 20, alog?z = (ginz + « cosy + B>

Art. 6L, Page 126

17. ayz + aeos log 21 = ailows + oows -+ dary -+ ag).

18. (z — a1 logag —azlogmy — o log 24 — as)® = (@1 — a2 -+ az) log 1.
19. [am1 + azms + egzs + 1 — {61 + a) log 21 = [(a1 + a2)® + 6f] log® 2.
20. 4(aiz1 + agze + 2) = (log 2s + a5
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Att, 52, Pages 135-130

1 4z = dmx + 22 — )z — Baial + 4(a1 —1) log 23 + az.
2. 2z3z = 201m1%3 — Mhes + axts + 4y + a.

249

3 2 = a%f 4 mws — 2973 +a.

4, [z — 2wz — log (11 — @9) +al = of. 6. Inconsistent.

6. 20 = @ias + wox3 + aze —4; 292 = Bafry -+ Bxoxa - bag — 20.
T.2=uqa.

8. 2242 = 2as21y -+ 2a0mems + (01 — adedny + aam 1+ 20} + 1),

9. (102 — 10mz1 — Balel — alagms = (af + Bor + 1)(odzdng + 225 — 620). ¢
10.x3x4(z—x1+a:2—a}—x3+x4, z=h :\

Art.53. Pagesist13s (U

2. 12¢ = 2% — day + 4 -+ 2z — 12y + 36. v

3. Planes through (—3, 5, 2) parallel to the zaxis. /50

B. (z — 1) = 4ay. B o+t + 2 =R \TSa:(z—m)+(y—1)"'—
8. 2=x—4,4z=x—1. 9. 435 b — gal.
10. 43 = dba — ac?. 14, fe.= gl u(Ht‘:/é‘]) BT
1. (z — o+ {y—aP +2 =8 19 \/_w“}‘\/t Yy 8

17. 27zyz = 1. 18. 2%5 +y% +z%“— L 12+ +2z’ 2.

N
Qms. 55-56. Page 145
% 7 = 24/2(1 +-§ ’} —iqe); r=AI-3+E-F4)
b
3. =8( ﬂ&“+52+72 )
4do7= f_ﬂg(l.\xg,:-;-g P4 112-'—8(1:+ + +- ); Q) =5
sin (211 — l}x

B. f@}: = _,,Zl o

\ - {—1)* 1 gin nr 2 cos (Zn — 1)35]

6.J@) = ;1[ ~ m_ﬂﬂ

2
7. f(-’v)—g— —Z(tzosx—[— 2cos2x+ CDS3”+ 0035-'"""'“ 2cosﬁz+

2ne
8. f(z):-—m-{——sinz-l—-zzz—%__i‘
s . a 4 2. eos 2nx
EEEPN e e R U

)
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Aris. 7-68. Page 160

. \ 1,1, 1

4.w=4(1—%—+'§—%+"')- B. xf = 1+~2+§+?+

3 = T gin nm {(—1)* cos (2?1—1):1:
6. ;,;(COS > = €0s n:r) ﬂ_; p—
7'éism (4n—-2)x; i (—1)”—l cos (2n — D)z

i 2n—1 et 2n — 1

1 1 2

8. (1+§)8]Il$-58’1312$+(3 pom )sm3x—ism4z+ ~ N\

1 2 3 2 2 N\
(5+5_21.r)5m5x.....; -g—;(cosz—}— c0=52x+ cos3:c'\ “

1 N

) 2
-5—2cos5x+—6§uosﬁz+"') AN
‘&
\ s 4 JORY
9. 3[(«2-—4) sinm—%sin%-l-(%—g)ﬁiﬁ%\—;ﬂfn’h
xt 4y | "'2 DY 1
_3_(?_?)31351_...]; "5—4(005-:"{":§§30523+‘3§00535

1 OY
——cos dx + - ) LY
4 www dbraulibrary.org.l i w
2 il - (—l"%¢ "] einnz ki e T 2 [1—{(—1)Y¢""} cos nr
+; z .

0. — N
3 r’; 1 4 n? :“:::, T =i 1+t

N
o\‘\';\rts. 59-60. Page 165

2 . Ng . T
& ~ | {r — 2} sin :c--;‘a gin 2z -+

K > \Y%

-2 P
sm33—;sm4:z+ :I

9 AN
5. z Qﬂé(\cosx -+ cos 3z —i— 5 08 Bz - )
i

e

6, S
£\
;n\’ g,;

Jo 32 1 3 1 5
. 1-7(cosﬂ+rcos-w—x+—cosﬂ+-'-)-
T

3
'\(sm b +-—sm 2rz +- sin 3wx +"b|T.l. dax fo- )

A

2 3 2 5 2

32(_w:c L N 3W+_-‘%"‘+...).
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ol

16 1 Per 1 -

11, — —F(COSE_?0087+§ECOS-_2 —...).
126/ =x 1 3 1 | Bax

12. 3 (sm n -I-aasm 1 +§3m-T +)

8 16 T 1 2rx 1 -
13. 3 -p(cos E+§COB"2_+?GDB_2- +)
2 in ? 2 4 )
14. = [(71'2 —4) sin'az + < sin 255 .}.(E "?)Si“h¢+%sin4r:+...].y\
1 4 1 1 "\\,
15.g—t—;;(cosvrx+§§cus?r:rx+§co33m+-..). -~ \/
16. 2 i nfl — {—1)"] sin nrz ”(»}‘:
’ 7rtx=1 1+ n%? ,\\
1. e—1 —Qi [ — (—1)%] cos nmz N
' a=1 1 + #irt- O
. x'\ w
o w1l — (—1)% 1] sin nasx L
18. 2 ) RY
wnzzl 1+n2r2- .‘5‘3

19. 1 —1+2i [1—(=1)% Tcosnrg =
' ¢ — 14 nf? O wwww.dbraulibrary.org.in
o 1 . ""':& 1 .

. {(—1)""ln sin sz o\ n[l — (—1)" cosh 1] sin nxz
20. 2 hi — a0 i .
T sin ”Z-:l T p AN r’; R ;
SN [1 — " cosh 1] cos nax
coshl—l—-22 [. .:5‘?1) 22] ;

= \ 1 4+ n'r

20
. A W —1)}" cos nax
sinh 1 +25mh‘i~&z~1~ T
' .t\.‘..’

O
N\ Art. 82, Pages 161-162

2 =i 14n).  2z=hy -2 +HhHy - 5.
S ;*iﬂyyﬁég i ;:gy - 2). & 2 =) +hy+2) + iy — 2
3

z = filz) + foly + 20) + =iy + 22).

2 = fily) + zfaly) + fi@y — B + fully — 2)-

8. z = f1(z) + yhlz) + $¥sle} + falTy + -

10. z = fi(y) + xfely) + fola) + ¢alz) +f5(5gz— 6z).

1L 2z = fi(y + 22} + afaly -+ 23} + 2%s(y + 22)- 2+ ety — 9

12, ¢ = f1(z) + yhalx) + fily) +Fly — %) +hly =
13, ; = 2uf, (3 — 2x). 14, 2 = fly +2) + €1y +2)-
1 o gl 165 — sy — ) + 1y — )+ HO

17, z = f1(2y — 2) + €= [afely) + HW].
I8, 2 = 2fi() +fuy) + o) + /@) + TG + O]

1

3
€2 1000) + falg) +lu+ %) 6.2 = A6 D) Tukle) FAG — B
7

8
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19, z = ¢*[zf1(y) + Jolt)] + ¢ [pfalz) + fulad).
20. 2 = ziily + 2) + foly + 2 + 7 lafaly — 2+ fuly — 2.
Arts, 6364, Pages 167-168
1. 2 = =3 .| o obut—3atT,
2. 2 = fly) + & [t FTPHY .o - gpetne e ],
8. z = cre™F O ol | gttt | Oy %I L (ePFe0nz,
4, z = PO .o T | (Crghm—4% ... Cke_g_kz_Akgy);\

B. z = c1®W cos bix +++« + co@¥ cos b R
+ 1P sin Blxr + -- -+ Ckeﬂﬂ" sin Blz. <\
6. 2 = £16™® cos afy 4+ - - + £,6™F cos aly -+ C1e® gin Ay + - O
+ Cre?¥ sin Ady + = (v1e 1% cos Bly 4+ P E eog chy
+4 TeP® sin Bly -+ + TxePE? gin B3, e,

N\
7. 1,4 4% — 6z, y* — 18y, 8. ¥, ze¥, (22 F0)e¥, (&% + 30xy)e.

9. 1, e +2.?}, -T's + ny; Yy ?;‘2 + 2z, :ff + ﬁxy' :’\\o:
10. 1, z, 2* — 2y, 2* — 6ay; 2%, 2% — 2ay, 2t — 6:@.

1. 1, %, 4% =, 3%, =y 12, B2, v, 5, ;. @, Py
13. Allz,y <0; z <0,y =0, 14. r%0y<0 £ <0,y =0

16. Allw, y > Qﬂww dbraulibrary.or g "}5‘ Allz, y 2 0.

Art, 65 Pages 174176

1. 322, 2.\%3/2 — 2%y, 8, Brfy? — &5,
4, g2y, 5. et ¥, 6. (2 — 2$)e=“"?’r
T. =yt — 9%/2, \ 8, 4x%® + daby 1 24 8. 132%/4 — £°/12.
10. z%°. “,‘ 11, 3e¥—22, 12, — Sze¥ 2,
18. 2 sin (2 — P 14, & Vsin (& — ). 16. — &% cos 3y,
16. tan (22 + g 17. 1/y. 18. — log z.
19, xy. \V 20, zy
O\
"\,f:". Agt. 66. Pages 176-177
1= filey) + fly/a). 2. z = filzy) + falay) log 2.
8/2 = fu) + 3 Falo0). 4 2 = fi(ay) + ¥aly /o).
b. 2 = 1*f1lz) + yfaley). 6. z = filz"y) + folav®) + =
7. z = fily/a%) + L) — 2(y log 2) /<
‘8. 2 = fily®/x)} + fule®y) — 2 log zlog y.
9. z = filz%) + faly/e} + log’ w log g
10, z = fi{z%) + felw) + 227 (log? = + log ).
11, z = fily/aY + Folzy) + 1 sinlog 2.
12, 2 = filzy® + fold/z) + ok 2y [7 sin log (z/y) — cos log {z/y)]:
18, z = fulw) + foly} + falzs).
W. z = fily) + folay) + faly/z) — 2 log 2 log® .
16. z = () + wfel@®) + fulow) — ¥/y.



1.z = af(y) + g{y) — 2sin = — 2y).

ANSWERS TO EXERCISES

Art. 67. Page 182

3. z = yflz) + glx} 4 ze?.

9.

13.

o

20 "‘L‘?\‘F 22 f 22t~ =0,

= fly) + =g(8).

2= yfle) + gly) + Syt
&= e (x) + ¥ T Hgla) — 22ty 1% 2 = f(y) cos 2 + g(e) + sin y.
. vz = fle) + gl + .7;3 8in .

c 2= "0y + gly) + 2
c2=f +y) + @ +yloga.
. xz o= fly) o2t T lgly) 4 2R

-2 = fle + ) + plzy) + 3% — 2%, L
s 7= flE 4 2) 4 9@z + o 458+ +3Ey» }
-z—;éx+y)+g(ye’)+(y—2}e“- '

s 2 = flae!) + glye™) —oy — 2 dbraylib
-z—f(x—,r)+g(=cy>-Ma;“r(a:+y1é on G DY Rfeg 2.

.2 = iy 4 yfay) + el).

15. 2z =1\ 6r — By — 4ay.
17,2 €82 + 18zy + 27y* + 4.
19\z= cos (y + z) — sin (y — zh

1. 026 in.
" 12ar
5.y = n

16

Art, 71, Pages 201-202
2wz . Zawt it
2 y= yoam-—-L 008 7~
i 1 ft./eec
(Qsm-—sm _Bm._L_mn_I_,_)ft 48 f

5vz  Daxi
dharl Brz Sawxt | . OMF )f{,_

10 &in zcosI - 5mn-1"' cus———L -[—Sifl T coi-——b

2 2=flz) +oly) + a2y — ot

253

4 g2 = afly) + 2() + log sec 2,

. 3z = f{z) + zgly) —2logy — Zay® log =
2 =yf@) + o@ 2y — 22 + Ylog & +3) — 1]

B. z=¢"fly) +90) +logy + aye™.

10. z = o(2) +g@2) — 2.

14, 7 = e ¥(z) + glz) — cos ay.

16. z = f{z — u) + o) + 3%~

18, z = f(e* — &%) + gly) + ze¥.

20. z = f(y/x) +olx) + b

PAP
L

™

U, z=zy ~z+¥

18, z = 2¢ ¥ sin 2.

N

e 3

16, 5 = 2 - 3y + 4 -+ U=

N

o\

£\
N

Arts. 68-69. Pages 193-194 N
« 2z = zyf(z/y) + oly). 2.z = &fle — o) + e‘fy(y) + e,
cyk e =Sz +al) — 2P 9.
-z = floy) + zyge®y) + 28
= EVf(ay) + Vglay) — Vj2HP, A

22 = 2z + ) +gle 4+ 1) —xs—vxy— ? log .
mt\/o Pages 197-198
z =2y \z—3x2+xy+y 3 2=42
2= (@t )P — Lo 6. z = 622 4+ doy + 139° — 10z — 10y + 5.
z=3x+ay+b\
2 = ax® + bt ey + & (z + A) 2 = B + Coy + Bz + ACy + K.
2 =222 o) 10,z =2 + 27— 3 11. @2 = 4 — 422
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19. z = e*[afily) + ()] + ¢ [ufsl) + ful=)]
20. z = afily + 2) + foly + 2) + e “[=faly — )+ fuly — 2]

|

Arts. 83-64. Pages 167-168

1, 2 = b= [ o Pui—3bnTE
8 2z = ft) + e [P TN ...} g, 6000 +5anty ],
3.z = e tE e amnrtenty L Oyt L Cp bR,
A, 7 = g1eMF—O% ol o gWE— R | o (Chpdis- Aty L Oetat e ARt
B, z = ¢ cos B -+« + e cos bha O
+ P gin Biz 4 oo C;ceBk?*’ sin Bl A
ne
8. 2 = ¢16%% cos oy +- - - £ €47 c0s a2y + Credt® sin Aly 1. .\ .
+ Cret® sin Ady + 2 (y18 1% cos By 4+ -y OPF cos Ng’
-+ T1¢B# sin Bly +- -« + TxePE? sin Bky). R N
7. 1,4, 3° — 6z, y® — 18zy. 8. ¥, xe¥, (&* —[j'lzﬁy\)’ey, (z? -+ 30y )ev.
o 1,3, 4255 +6ay; 5,08 20,00 Fbay. NN
10. 1, 2, 2 — 2y, oF —bay; &%, & — 2zy, ' ~ Oy g\\
1L 1, v, 9% & 3P,z 121% 5 X ,xy; xdrxzy"
13. All g,y < 0 m{Oy—O 14 s>0y{(} z<0,y=0
15. Allz, y > qi\rww dbraulibrary.or g nlia Al ©yz0.
Art._ﬁ]i;; Pages 174-175
1. 322 2dat/2 — 222, 3. ba%y? — ab.
4, 26277, (8 22077, 8. (2* — 25)eH,
7. ay? — 9y2/2. \\’8. de® + 4%y + 2% 9. 182%/4 — z3/12.
10. 282, W V11 et 12, — Sgpev—im,
13. 2 Bin (22 — 3y) 14. ¢* ¥ sin (z — ). 16. — &* cos 3y.
18. tan 2z 4+ yy\™ 17. 1/y. 18. — log =.
19, zy. I 20, zy.
:"\:Qt
O
R Art. 66. Pages 176-177
A= filey) + faly/a). 2. ¢ = filey) + faew) log 2.
\§ Z = 1u(y) + 2Rlwy). 4. z = filey) + oaly/?)-
.z = yifi@) + yfalzy). 8. z = filzy) + felz®) + =o
7. 2 = fily/2% + fole*/x) — 2(y log x) /22
8.2 = iy’ /e) +Hald®y) —2logrlogy.
9. z = filz®) + faly/z) 4 log?z log v
10. z = fi(z%) + falay) + 2% (log2 = - log y).

11 z = fily/2Y) + faloy) + £ sin Tog 32,

12, 2 = filey®} + foli®/2) + 4% xy [7 sin log {z/y) — cos log (z/)il:
138, 2 = fi(z) + foly) + Faloy).

W 2 = fily) + faley) + f5(p/2) — 2log = log? y.

15, z = zH(¥) + W@ +faley) — 2%y
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Art. 87, Page 182

Le=aofy) +0@) —28inz —2). 2 2=f -

8.z = yfle) + 9@ + zev. 4, 4z =qu}’)(y-)l:?}-(L;){nyg{ug ;:!;8 z

5. 2z = flz) + 20() —2logy — 3mylog .

6. 2 = yf(@) + g(2) + oy’ — 22 + pllog @ +4) — 1].

7. %z = f{y) + agly). 8. 2=¢= 2} +Io -,
9. 2 = i) + o) + B 10, 5 = g ) gy + eue
1L 2z = e7*¥f(z) + ¥ T o¥() —~ 2%, 12, 2 = f{y) cosz | glz} 4 sin .
13. y%z = f(z) + gy} + 4% sin x. 14. z = ¢~ ¥f{x) + g{x) — cos mp.
16. z = e¥f(y) + gly) -+ 2% 16. 2 = f@o — ) + gly) + 2. O
17. 2 = f(&" + ) + @) +ylog = 8. 2 = fl&* — 15 + o) + 2. o
19. 2z = f{i) + o¥ T lg(y) + o 20, z = fly/a) +g(0) + 28, ()

7NN ©
Arts. 6869, Pages 193-194 AN\

1. a2z = ayfle/y) + oly). 2. z = éf{z — 4% i\g(y) -+ ze¥,
8. ylz + Wz = flz + ) + oly) — 2/ + ). '

& z = flay) + 2ygl®y) + 2%

B, z = BV (zy) + Vylay) ~ &Y/ 2N N

6. 2 = f(z +y) + gley) + 3y — 5. £

Tz =f(2 + 2 + ¢z +47 +z“+ys+3xy: )

8.z=Jflz+ oy + (y — e

9.z = flae*) + glye®) —zy —z — - SRWE. dbl aulibrary.org

10. = —f(x —y) + glay) + 422 + (x—w)“lﬂog z+g —1] +&ty](os-'c—'-1)-
14, yz = % + wfzy) + gl). N
16, oz = 2%z + ) +gla + ) 'f—zy—a:.log:c.

AFHT0. Poges 197-198

z =2y \5—3:::’+xy+y 3.z=42
2= (x4 ) — 1.8, 2 = 62® + day + 135° - Wz — 10y + 5.
+2 = 3z + ay + B
-z—aw2+ba;'4<cy+k(x+A)z—Bx2+Czy+Ez+ACy+K
9. 2=2s% xg) 10. 2 = 22 4+ 27 — 3. 11, 22 = 4 — 422
18, 21 —gfN ) L2 - ) =0 Me=m-stu

16. 2 = I 6z — 3y — 4ow. 16.z=2—3g::+4yg+24z.
17,z €827 + 182y + 274" + 4. 18. 2 = 267 5in =,
19\5*003(?,!+x}—sm(y—x)

Art, 7L Pages 201-202

. 2@z 2011'#1.
1. 0.26 in. 2.y = yosin —~ 008 7~ t.

=L a0 8 in 2 3J‘i”if) f. 4 8.1fb/sec.

3-y~——;(951n1—sm7:- smLsm T . Eﬂ‘
P ant Bxz 3_51 . -E—)ft.

5'.?”:16 1031n1~cos—L——-53m-—Ecos T, +sn_1 7 coi‘L

k .

R
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6. 0.50 in. T.4= ?3 T smz -+ 3t sin —~ sin A

deL? i1 3rz . Swal
8, 0.19in. 9.y ----—(sinw—xsinETL ——sin—fsm-ﬂ +) ft.
i

SKLa(_vrm_aart 1 . 3wz . Jwat )
sin ' B

? tes L L P L L
10. 0.18 in.
Art. 72. Page 206
2. 39.7°. 8. 1= 1 ATty 800 5111—3 — B IxFali/900 smglrf
T 30 30 2\
20 B 6 4
+y o 8a%a%/900 i ?U:E - E‘ ¢~ 1657a%/900 Sin% + —;:)>deg.
5 50 £Y'2
4, 34.1°. 6. r =50 +1z -— (ﬁe—’g"‘”‘/m““ sin Eg — e“*“"“’““i{{*j{f“%lnéi:
6 3z 1 Ry
+ 3 &= IrTalt/1600 g 102: -5 ¢~ 18r2alt/ 1?[{?"{@\716% 4o ) deg.
6. 11.0°. 7. 6.63 min. O
7 VA
400f . LI T -
8.7 = B0 — — (e “/25“0003% .1_?6 o ‘/25?2603 =
+ ; o 26m%ate/ 2600 oo 5_5?;5 Foo ) degy \/
10, 1.40 hr. www_dbraulibl'ary.ot'g:iqj""‘
Art. 73, ‘Pages 203-210
i. 5.9 cm. A\
3200 1 s
2or=—7F [(10) sin @ +§3‘(€%) gin 36 - - ] deg.
aw
8. 5.1 cm. “‘{";
3200 N | By
2o 10N D saw/10
4 7= | ° :’":/\ﬁs + 563/ W0 5in o T ]deg.

b. 21.4% 2251%m.”
00, 1 Bz
8 7 = —5] -1 sm% 3 e~ 3m/10 gin -1%- +-- )deg;

St
7. 25‘6
n-y 3rx Jry
— h,_.
. 3200( sm smh sin 20 sin 20 . )d
PTETEN smh T 3*sinh 3¢ 8
9. 20.5°.
Art. T4 Pages 213-214
2. 0,081 amp. & F = 1100 — 115 + 20 (e—w”* sin 11%

1 2z 1 B
-—Ee 4% gin 1ZO+ e*w'z‘smi(—]g—n-)volts.



ANSWERS TO EXERCISES

255

N

8. 0.39 arap.; 1.88 amp. 8. B = 1000 — 10z — 2000 (9—10;-2; gin =%
+~1—e‘4°"'2‘ sin2—m -{—1 —0r% g 972 : .
2 100 3 € S]nﬁ + - | volts,
7. 203%, 72.3%, 98.6%,.
200f(  ax 1
8, F =100 — 10z +T (sm :——-ﬂcos 100%2 mésié—lo—xMBZQQﬂ
1 . Brx
- 3 sin 10 cos 300x 4 - ) volts.
1 TE | 1 2me |
9, T =10 — . (COS o sin 100xf — > cosﬁmn 200#t + - ) amp; | \:\‘
0.25 amp. :\'\.
Art. 76, Page 223 A
Lp=a). 2.¢-p=dly; g=pole+y). LY
3. p = galz). 4 ap +2y” = olzy). 5. p = 295 8y — o).
6.g=loga + o +1). Ty = tapld — P
8. yg = 3zy* + ¢(y/a). 9.7 —¢=le +{p+1=qnk+3).

10, zp + 2 = a¢(z/y). 1. p 4z = v -]:'eﬁas(x — .

12,1 +p + ¢ =21y +2); 21+ =L KpF deale — ).

18. ¢ = aporlaz); TP + 2 = ¢ha(2). ‘:"\.'w.r.’w%r%'dﬁ'a—u f‘g:y_qgl(zgfin

16. ¢ — 1 = pealz +2); p +1 = geelifiaz).

AfENTT, Page 228
N\
L p+3y = e1(2¢ + 2); @..—I% y = ¢olg + 32).
2. p+2y = pulg — ) By = dolg +22).

3 p—2xty= r.bl('qi%;f —y): p—2—y=d¢algtz-¥).
Lptaty=glg¥Fs+y. 5.p—2ty=slgtz—2)
6. p+2z = gilgror —2); pAz—y=hlg—2) p
T.p—2z <l + ). 8. p +4" = ¢lg — 7).

9. yp + %&s(q + ). 10. zp — ¢ = #lyg + 1)
~O Art. 78. Pages 281-232
Y +9)
1% = o) + gl 2, y = &) + 9k +w-
A A 4. 2+ = flaw) + 000
5.z = 2% 4 f{y — 2) + (- 6 z = ylogz + flz® + 1) + ¢l&)
T. 2 = zo¥ + [z — ) + 0. 8. 2 = af - f/2) + 9@
9. z=flz 42 +glz+y) 10. 2z = ¥ /y) +90)-

11, z = y%¥ + o¥f(z — ) + e~ %gly). 12, 2 =fly +2) +glz — 3
B,y ~ flz) + g(2). 14, ze¥ = 2f(e) + 4l

1. 5 = flz + 2) + gy — 2-

16. bz = 2Q — P, by = 2f'(P) — ¢'(@), 10z =~ 302y + 10;? _; 2{5)}) + 2@
. 8:— Q — P, 3y = f(P) — ¢'Q), 3 = 3ay + 3P ~fB) + 48
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18. 2z = Q — P, 2y = f'(P) — ¢'(Q), 2 = 22% — 22y + 3 + 24Q — J(P) + 0(Q).
19, z = (a? — 1)2%/2 + (@ — Dry + bz -+ fly + az).

20, z = (I — a®z® — 2a + Ly + bz + fly + ax).

N.z2=Q—P,y=F®) —g@,2=y" —2%2+yQ —f(P) + ¢(Q.

22. z = (a% + 2)2%/2 + oy + br + Fly +.az).

23, 2z = — a{e + 1)2%/3 — axly — = + bz + fly + az).

24, fal = 24 — 3aly? + Gazy - by + P + 2az).

26. z = blog (z —a) + f[{& — a)}2(1 4+ ap)].

Art. 79. Page 234 O

Lz =ay+flz+2), 2 = oy + oz — 2). R
8.z =ay+flz+yhz=qay+ glx 1+ 2y). i,,;
S.2=ay+ 8z +y)2=ay +gBz— ).

4z =ay+ flz + . B. 2= oy + /(2 'I‘ﬂ)

6. 2 = ay + filr +4), e = ay + falz — 1), 2 = ay + falzs +vib),z =ay + filz — ).
T.z2=az -+ by +e B.z=oaz+by+e v 9, z=f(z + ay).
0. z = ay + f1ile), 2= ay+filz+1), 2= ayHfele — ),

z=ay + i@+ 2, 2 = ay +fole — 2J) \~
Art. 80, »Page 237
) WWW dblaullbralyex’g]

Lz =92 4+ ay + flz). 2. z = az + f{m).

8z =f. n«:” 4. 2 = f(r), z = ar + g(y).

b. z = az + f(1). 6. z = ay — ¥ + fla).

T.z2=A + Bz + Cy + (1{-\} + B2 /2E + Ezy + Fy?.

8. z = ay + flz}; bz ¥ 9(u).-

9.z2=4 4+ Bx -+ CyXE2 — 2F)2%/2 + Ezy 4 FiP.

10. 2 = az + flz —>4))

\':,\' Art. 81. Dages 235-239

6. {y+ —x+1 T. 22 + 28 — 2oy 3+ 2y = 0.

8. (23 =4z -2y); G+ WP =22

9.z -+ y

10, /. :-zJ)z 442 =4 (r— 2+ 4G -2 =4



INDEX

Angle between lines, 44
Auxiliary equation, 18, 162

Bernoulli’s equation, 4
Bessel's cquation, 20
Beszel's function, 30

Cauchy's equation, 24
¢-Diseriminant, 10
Change of interval, 150
Characteristic curves, 55, 92, 107
Charpit’s method, 107
Clairaut equation, 11

analogue of, 117
Combination of geries, 152
Combinations, integrable, 2
Complementary function, 17, 18, 157
Complete integrals of Lagrange's equa-

tion, 91
of non-linear equaticns, 105

relations between, 132 2\

Complete primitive, 1

Constants, elimination of, 60 ,. \
Curvilinear coordinates, .
Cylindrieal coordmates, 46,

I’ Alembert, equa,tlon,\12
Dependence, functienhl, 49
Dependent variablé lacking, 14
Developable burfaces, 56, 237

partial equation of, 67
Dli’ferenﬁa,l are length, 46
lefuswﬁ;y, T2
Disgontinuity, finite, 141
Distortionless line, 78, 214 '

Electricity, flow of, 76, 210
Eliminant, 81, 63
Elimination of constants, 60
of functions, 63
Envelope of curves, 9, 52
of surfaces, 55, 56, 91
Equation of continuity, 51

Equations of higher degree, ordinary, 7
Equations reducible to standard forms
118

Equations with one variable absent, 14
Euler linear equation, 24

enalogues of, 175
Euler’s theorem, 41 p \:\
Even function, 145 NS ¢
Exact equation, 2 L >
Existence theorem, 92 ™

Finite diseontinpity; 141
Flow of electritity, 76, 210
of fluid, 78,102
1rmtatwﬁa1, 82
of heat, 71, 73, 76, 102, 202, 206

Fhig figw, 78, 102

Eo’uner serieg, 187 ff.
O\Befietag Ml brary org.in
1" combination of, 152

for even and odd functions, 146

formulss, 140

half-range, 147

transformation of, 152
Fourier's theorem, 141
Frobenius, 28 °
Functional dependence, 49
Functional determinant, 50
Funections, elimination of, 63

(Cienera] integral of Lagrange's equation,
8
of nop-linear equeation, 105 ]
Ceneral solution of ordinary equation, 1
Geometric problems, 65, 98, 180, 184, 237
Gradient, temperature, 71

Half-range series, 147

eat flow, in space, 73
one-dimensional, 71, 202
radial, 73, 102
steady-state, 72, 75, 206
two-dimensional, 75, 206
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Homogeneous equation, ordinary, &
partial, 96, 157
irreducible, 158, 162, 168
reducible, 158
Homogeneous linear equation, ordinary,
17, 24
Hypergeometric equation, 30
Hypergeometric series, 30

Implicit functions, 39, 51
Independent variable lacking, 15
Integrable combinations, 2
Integral, complete, 91, 106, 132
general, 86, 105
jntermediate, 215, 228
particular, 17, 20, 157
singular, 1056
special, 92
Integrating factor, 2, 4
Intermediate integral, 215, 228
Intersecting surfaces, 45
Tnterval, change of, 150
Inverse functionsy $2 dbraulibrary .ovg]
Irredueible equations, 158, 162, 168
Irrotational flow, 82

SN
™\
SN g

74\

\\ -

Jaeobian, 50
Janebi’s method, 121

Lagrange, 22, 2 18,5\
Lagrange's eguation, 85 f.
Laplace’s egoation, 76, 82, 168, 206
Laplace’s;\{;ﬁnsformation, 182
Legendrels equation, 30
Legégﬁre’s polynomizal, 30
I@}.a;r equations, ordinary, of first
arder, 4
of higher orders, 17, 24
simnltanecus, 25
partial, of first order, 35 ff.

of higher orders, 156 f.

Longitudinal vibrations, 71

Membrane, vibrating, 71
Monge's method, 217, 222
Multipliers, 89

INDEX

Non-homogeneous linear equations,
ordinary, 17
partial, 157, 168
Non-linear partial equations, of first
order, 85, 105 f.
of second order, 215 ff.
Non-uniform equations, 216, 222
Normal line, 43

0dd function, 146
One-dimensional heat flow, 71, 202
COperators, 17, 157

Ordinary equations, 1 ff. )

Q"

O\
\
Parameters, variationzof w22, 187
Partial derivatives, 81 f.
Particular integrals, 17, 20, 157
Particular solufions, 1
w-Digerimindawty 10
Poisson’y ',lﬁ;gfhod, 232
Polaredordinates, 76, 206
Prin(::ipé.l part, 36

Radial beat flow, 73, 102

Radie equations, 73, 210

Reectangular coordinates, £6

Reduced linear ordinary equation, 17
Reducible homogeneous equation, 158
Rotation, 82

Separable variables, 1, 165

Series, Fourler, 137 f.
combination of, 162
for even and odd functions, 146
half-range, 147
transformation of, 152

Series solutions, 27, 164

Shifting formulas, 18, 172

Sirultaneous linear ordinary equations,

25

Singular integrals, 105

Bingular solutions, 1, &

Space curves, 45

Speeial integrals, 92

Speeific heat, 72

Spherical coordinates, 48, 76

Stavdard forms, 112, 113, 115, 117
cquations reducible to, 118

Bteady state, 72, 75, 206

Streamlines, 82




String, vibrating, 69, 198

Subsidinry equations, 88, 95
multipliers for, 89

Systems of partial equations, 127

Tangent plane, 42

Telegraph equations, 78, 210
Telephone equations, 77, 78, 210
Temperatute gradient, 71
Thermal eonduetivity, 72

Total differentials, 37
Transformations of series, 152
Transverse vibrations, 69

INDEX 250

Trigonometrie series, 137
Two-dimensional heat flow, 75, 206

Undetermined coeﬂicieﬁts. 20, 174
Uniform equations, 218, 217 .

Variables separahle, 1, 165

Variation of parameters, 22, 187

Velocity potential, 82

Vibrating membrane, 71 &\

Vibrating string, 69, 195 >

Vibrations, longitudinal, 7% )
transverse, 69 AN
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