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FOREWORD

Biological assay is now a recognised tool for the study of certain
properties of living matter.  Accuracy in this work is of primary
importance whether the object of the assay is the solution of a
problem in pure research or the standardisation of a drug., A striving .
after accuracy has, perhaps, been more cbvious in the latter ﬁelc{\
where biological standardisation has acquired a new importanceand
direction with the discovery, mainly after the end of the first-world
war, of a number of new specific remedies which have proved'to be
of great importance in medicine. Most of these are:of\biological
origin, some are potentially dangerous, many depend’ on precise
dosage for their therapeutic effliciency; they are dévoid of character-
istic chemical or physical properties which would serve for their
identification and assay, and the determinatjbn of their potency
depends on the reactions they produo&)ﬁ‘: living material. This
important group of therapeutic substanees includes the antitoxins
and tuberculin, the vitamins and insulifﬁ‘the SeX hormones and the
active principles of the pituitary gtévﬁ‘ﬁ', i u&fsﬁﬂéﬁ%‘rﬁiﬂés and the
heart drugs, heparin and penicillii®

The need for the establishmient of reliable methods for the deter-
mination of the potency, x\)f:\medicaments of this class is obvious,
but progress has frequently been delayed because some of the first
attempts were neither’Well-conceived nor intelligently directed. The
ordered progress ~wh’i,c11 is now scen in this field followed the recog-
nition of the inadéquacy, and indeed the fallacy, of attempts to
define potena¥Vitt animal units, based on the simple observation of
individual¢reactions produced in animals; the clear demonstration
that q!ljﬁlethods of biclegical assay are essentially comparative;
and{hg\;, for the carrying out of such assays, standard preparations
aré\absolutely necessary. It should never be forgotten that it was
due to the sustained and long-continued labours of the Permanent
Commission on Biological Standardisation of the Health Organisa-
tion of the League of Nations that these standards were provided,
firmly established on an international basis, and made freely avail-
able throughout the world. In consequence of this achievement in
international co-operation, assays carried out in different parts of
the world become directly comparable, 2 common system of unit
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vi FOREWORD

notation for the expression of potency is provided, and a sound
basis is created for rescarch into the nature, properties, assay, and
therapeutic application of these important remedies.

As the author points out, the establishment of these international
standards marked a turning point in other developments of biological
assay since they permitted statistical methods to be widely applied
and fully exploited. The readers of this book will be able to follow
the stages of this progress, from the earliest attemnpts at precise
measurement of potency, through the introduction of statistical
concepts in devising methods and analysing data; and he will noje
the great variety of biological reactions which bhave been cxplfgitcd
for the assay of the different therapeutic and other substanges; how
this is reflected in the varying designs for assays whichwhave been
devised, and in the subsequent treatment of thes results. The
importance of animal variation in the response to hielogical stimulus,
‘the bearing of this on the design of assays and Qnthe precision with
which they can be applied, the recognition thapthe’errors of biological
methods of assay may be large, that thé\determination of their
magnitude is an essential part of the assay’itself—all these are part
of the story unfolded to the reader of thiS book.

In the past-manysofitheseorpgaded in this work have oo often
been content to dispense with the did of the statistician—or to seek
it at the wrong time—in the conduct of their assays and in the
interpretation of their dafa® Indeed, some research workers in
biology have a distaste{ for the symbolism of algebra; but while
rigorous logical proef of many important siatistical theorems may
demand a consid\e'r’aljle mathematical training this should be no
deterrent to thé yéader who is less well equipped, for even if he
cannot proye tigoronsly he can verify many important results by
using sir}x}yie "arithmetic. One consequence of this useful book
should be to encourage all such to increase and perfect their statistical
equipnient so that in many circumstances they will be able to plan
dudidesign their own assays and analyse their own data. With the
increasing importance of biological assay in the production of thera-
pettic substances, of fungicides, insecticides and many other products,
in their testing to ensure that official reguircments arc complied
with, and in order to secure and maintain the fullest confidence of
those who use them, it is more necessary than ever that those who
conduct the assays should be familiar with the many advances in
technique which have been made. When to all these considerations
is added the fact that research into the chemical nature of these
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substances, their purification and their ultimate isolation is insepat-
ably bound up with the determination of the amount present in any
material, it is quite clear that biological assay plays a predominant
part in whatever field of scientific activity these substances are
studied.

The important advances which have followed this close study by
biologists and statisticians of problems arising primarily in the
field of biclogical assay are not restricted to that field. Many of
the methods here described are of much wider significance, and are
applicable in biological fields other than those of standardisation
and assay, and even in such disciplines as economics, indaistrial
rescarch, and psychology.  One particular direction in which«lvdrkers
in biology are indebted to statisticians arises from their re¢ognition
that, very often, the biologist is obliged to work \'Miéh'%'ery small
groups; and the help and guidance given in the design‘ef experiments
in which the use of small numbers is inevitable,and in the develop-
ment of statistical methods for the analysis efythe data yielded by
these methods, have been of very great senvice and importance.

It may not be out of place, in a boo}dﬁl‘which statistics play such
a predominant part, to emphasise that\iHle Icast the biologist can do
is to bring to his part of the undertaking—the conduct of the assay

- itself—all the skill, precision and:wrwdﬁlwﬂnlixﬂrahp.ésgapablc; but
the success of all concerned is betind up, to an extent that statisticians
do not always appreciatgd with the health and well-being of the
experimental animals ,\(‘h}th arc used in practically every assay.
The insistence on. the provision of healthy stocks of animals is
not due to the idéd that by this means animal variation can be
climinated, buaé the endeavour to ensure that the biological
response whickis the basis of the assay is not being obscured, and
even falsified, by the effects of intercurrent disease. It cannot be
over-emiphasised that adequate stocks of healthy, well-fed and well-
hoyged*animals are as essential to the worker in biological assay as
the\balance, the microscope and other instruments of precision are
te/workers in other scientific fields. Moreover, the animal house
of a research department and the natural habitat of laboratory
animals are different environments, and a knowledge of the natural
history of the animals used in assays is not iess important than the
choice of appropriate and accurate methods of statistical analysis.

Tt is with the greatest confidence that one can commend this book
to the close attention of all interested in this field of scientific activity,
and T am grateful to Dr. Emmens for giving me this opportunity of
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recording the indebtedness of the Department of Biological Stand-
ards at the National Institute for Medical Research to a long suc-
cession of colleagues, in other departments, who have come to our
aid in the solution of problems which have arisen during the past
twenty-five years. Moreover, in the early part of that period we all
profited from the close association with professional statisticians
who were our colleagues, or shared our domicile, at the Institute at
that time; and the close liaison which was then established has
happily been maintained. From these fortunate circumstances the
literature of biological standardisation and assay has been enrich.o\d
by many notable contributions and I think we may claim that they
have played a small part in winning from a continental wgiﬁ;r{the
description of this country as ‘“‘the home of modern Wigmetry.”
Dr. Emmens’ book maintains the high standard andsfradition of
British contributions in this field. ?,\
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AUTHOR’S PREFACE

This is not a text-book of statistics, or even of statistical methods
of general application to biology. Most of that field has been
covered in a number of excellent works in recent years. None of
those which have appeared at the timme of writing has, however, been
particularly concerned with biological assays as such, and very little
has been published in book form about the design and analysis of
tests made for the purpose of assigning limits within which, the
potency of preparations may be presumed to fall in compa;’ispﬁﬂﬁth
a staudard. The present volume is designed to cover the.gap.

Although a good deal of elementary statistical ppoéedilre is fully
described, and some attempt has been made to indicate the reasons
behind it, proofs are not given and omissiong\aeé many. 1 have
tried to give an account of those statistical methods which are needed
in the analysis of biological assays in sufﬁu%nt detail to make the
book self-contained, so as to enable the\ﬁéscarch worker or routine
analyst who is not already an amateur.$tatistician to ptan his own
tests and analyse them without ref¥renss-ta9Mhey, mangals. 1t is
to be hoped, nevertheless, that l;afs interest will be sufficiently stimu-
Jated to make him wish for~a“more general acquaintance with a
fascinating subject than ah¥ one volume can give, particularly a
volume written by a.\"n}m-mathematician. Almost every new
method of assaying the potency of biclogically-active substances
requires statistical tréatment which differs at least in small particulars
from any of thesé’ preceding it. It is therefore impracticable, and
would lead tevastultification of the subject, to try to lay down sets of
rules forsthe) Conduct and analysis of all tests, but it is possible to
illustrage by discussion and example some of the basic principles
whichithe design of tests and the treatment of results should follow.

~Fhe examples I have used are taken from actual assays, but they
Bave often been modified to illustrate the use of a particular analytical
procedure. There are few cases in the literature from which to
select examples of the more advanced type, involving restrictions in
design and the application of, for instance, covariance analysis.
It has sometimes been necessary to impose imaginary conditions on
the existing tests, when no suitable example has come to hand, or to
use a test designed for a different purpose in the illustration of a

ix
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particular method. Thus, the assay of thyrotrophin described in
Chapter 6 was not made with a Latin square design, and I have added
the dummy restrictions, “‘cages” and “‘strains of animal,” purcly for
the purpose of demonstrating the methods of analysis applicablc to
the Latin square. For this reason ¥ must ask the reader not to take
the limits of error found in these examples seriously—they are not
always those of the original tests nor those that would be found in
practice. Again, in the discussion of assays based on a reaction
time, it was convenient to use Mr. D. J, Finney’s data from toxicity
tests with insects, as an excellent example of the technique of analysis,
although these tests do not in fact involve a time factor. 1t is\wry
difficult and certainly not commendable to invent data to jllbgtrate
statistical methods, and therefore far preferable to make ghe bést of
existing matertal. A7
I am particularly indebted to Mr. A, L. Bacharaghz\Mr. I. Curty
and Dr. C. C. Spicer, who read the manuscript.and offercd many
helpful criticisms and suggestions, and to Professor R. A. Fisher
and Dr. F. Yates, also to Messrs. Oliver & Boyd Ltd. of Edinburgh
for permission to reprint Tables I, IT, ITIK IV, V and IX from their
book Statistical Tables for Biologicah,)Agricultural and Medical
Research. Tt is also with much pleasiwe that I take this opportunity
to thank Dr.wf"(l)c.lbfi“awufhblf%‘fytﬁrégﬁih‘ny enlightening discussions we
have had on statistical matter$™\ Dr. C. L. Bliss has allowed me o
reprint various tables from I8 published works, and 1 am much in
debt to him and his varig{&collaborators for the free use I have madc
- of their material. Mgk thanks are also due to the editors and pub-
lishers of The Biog:ﬁc’}zicaf Journal, Annals of Applied Biology, The
Analyst, The American Journal af Roenigenology and Radium
Therapy and FHe Journal of the American Pharmaceutical Associa-
tion for pgr@ﬁ’ggion to reproduce figures and tables as indicated in
the text&ﬁi
K\

N\ C. W. EMMENS

'sze\:Nationaf Institute for Medical Research,
ampstead, London.
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CHAPTER 1

THE APPLICATION OF MATHEMATICS
TO BIOLOGICAL MEASUREMENTS

1.1. Introduction "

A collection of data contains a certain amount of information ch}
any point. If it has been badly collected it will contain’ Jess
information than it might have done, and no amount of subsequent
juggling with figures will extract more than is inherent intlie data.

This concept is axiomatic in modern statistics. Itl}eadé to two
important conclusions: that the way in which fact} are collected
for analysis will determine the total amount ef information they
can yield, and that the complete extractionyof the information
available depends on using an adequalg anélytical technique. A
badly planned experiment will give regtifs’ inberently less reliable
than a well-planned experiment, wha‘,tpﬁér is done with them, and
an inadequate analysis of the rcsulty WfltReUbésrAvaed test will
extract only a portion of the inféﬁhation it is capable of conveying.

This is the justification forasking biologists and pharmacologists
to concern themselves wljsﬁ the details of statistical techniques.
You cannot plan arg€tperiment properly unless you know the
methods that will Jee ‘used in assessing the results, and to use
inadequate analy\ti.cal methods—or, worse still, none at all—in
dealing with thé fesults of a test is to prefer guesswork to knowledge.
The cxtent taShich guesswork replaces knowledge in the examina-
tion of pidlgical assays when a bad analytical method is used is
probably'not sufficiently appreciated. Few of ns would be content
to.\rr':]}[ke a chemical extraction by a method which gives 257 of
qut‘ obtainable yield, yet it is not an exaggeration to say that in-
efficiency of this order occurs time and time again in the planning
and execution of biological assays. That is why we should disagree
emphatically with any claim that statistics are never essential in
this field. On the contrary, it is quite impossible without using
statistics to plan and to analyse the resulis of an assay in such a
way as to obtain the optimum yield of information.

When determining the amount of a substance present in solution
2 1- .



2 PRINCIPLES OF BIOLOGICAL ASSAY

by a chemical assay, it is usually sufficient to repeat the titration
once or twice, whereupon by a well-designed methoed the end point
will be found to be substantially constant, Owing to the small
errors which are usually encountered in such determinations in
inerganic and even in organic chemistry, chemical and biological
workers found it unngcessary to estimate the error of their (itra-
tions or analyses, or, at most, to form more than an approximate
idea of their magnitude.

In some of the even finer scientific measurements made in physics,
particularly in optics, where the precision of an answer is u u’é.lly
greater than that of chemical analysis, it was, curiously emnough,
found necessary to investigate methods [or determiningfh& error
with which very accurate determinations were made. Such
computations of error led to the development of &l fheory which
described the “normal curve of error” encoustéred in making
repeated determinations of such refined observations as the length
of the standard metre or the weight of the‘standard kilogram,
when expressed in the units of some oth}f system of measures,
These early statistical methods wergN p‘f course, available to the
chemist if he found them necessary andwas aware of their existence.

It was not u(ﬂ:t‘il com arativelga;fqéently that any serious attempts
were made” {0 aléaslzjifz ﬁ%ﬁ:ﬁf.or pharmacological substances by
other than chemical means.~SNow that widening researches into a
variety of fields, such as gheéwitamins and hormonges, have rendered
necessary the deve[op{’fl}nt of assay techniques using biological
material, there has 6ceurred within the past two decades a rapidly
growing study of §tatistical methods for attacking the problems that
arise. The range of variation encountered in biological assay is
very large sgompared with that to which the earlier statistical
techniqbgéj were applied, and the conditions under which assays
must gften be conducted make possible interference from various
squgée's. of a type which was hardly ever encountered, or at any rate
'ra@:dgnised, in chemical or physical measurements. Thus, statistical
téchniques which were designed for refining procedures which
themselves had a high inherent precision have had to be enlarged
and developed for dealing with types of measurement not only of a
low inherent precision but clearly subject to various types of error
not previously investigated.

The earlier workers in the field of biological assay were, for the
most part, unacquainted with those statistical procedures which
were at that time available to them, and often peculiarly blind to the
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degree of animal variation which was staring them in the face. It
is not long since biologists competent in other fields were capable
of comparing the effect of a dose of one drug on one animal with
that of another drug on a second animal, and of drawing conclusions
as to the relative potencies of the two from such meagre data. As
it was gradually realised that comparisons of this nature were not
only subject to relatively enormous errors but aiso that the magni-
tude of the errors was unknown, attempts were made to better the
situation by using groups of animals instead of single animals, and
by constructing curves relating the various doses of a drug to tt@:
average response of groups of animals, each receiving the same
dose. This procedure reduced the error of determinat,ioﬁ:ls“' of
relative potency, but left its formulation in an unsatisfactory state.

The next step was for biologists to make the atte apt) both to
undersiand the elements of the necessary mathema(ies and, atthe
same time, to call in the aid of professional statisticians to examine
the type of problem with which they werc degling and to evolve
methods for expressing relative potencies and their errorsin as simple
a manner as possible, Unfortunately, p\cg‘fessional statistical help
was even then dispensed with to a deplosable cxtent, with the result
that at the present time many oﬁﬁé{\a}\l! apd official procedures
for the determination of relati'vp’Ipbte}icm}aa%fel Basedton invalid-
assumptions. The situation ‘8 fortunately undergoing a rapid
change for the better, This\change involves as an integral part of
the reformation of methads of biological assay the recognition that
it is not enough io %ok the statistician to help in elucidating
the results of biological work after they have been completed. His
assistance in plahfiing the original research (or an adequate under-
standing of th@problem on the part of the experimenter), so that it
shall be mp{héésily handled by the statistical methods now available,
is essential for eliminating wasteful or useless work in the laboratory

and férdttaining a maximum of precision.

1.2/ Animal Units

The carliest attempts at defining relative potencies of drugs—by
which is meant here any biclogically active substance or poison
and even other agents such as heat or radiation-—were in terms of
apimal units. Thus, the unit of androgenic hormone, the substance
responsible for the development of the typical secondary sexual
characters ol the male, was that amount which, when injected
intramuscularly into capons, would preduce a certain minimal
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degree of comb growth in a group of the birds. This was the
“capon unit.” There were many other such units and their
unsatisfactoriness was soon apparent. They were unsatisfactory
for a variety of reasons., In the first place it was very difficult so
to adjust dosages that the response obtained to a given dose was
sufficiently near to the unit as defined to satisfy the necessary
criteria, and various attempts at the establishment of some kind of
dose-response curve in terms of animal units were found (o be
nnreliable.  Secondly, the variation which biological material
usually exhibits, not only between animals or plants or preparati'(ms
from them, but from time to time in the same organism of» sh)ck‘
rendered the unit most unstable. A

Tests at present specified in the 1.8, Pharmacopelw’ for the
determination of potencies of some of the vitamin %Xbmplify the
best that can be done by the use of such animal ugifs. A standard
substance and the unknown are compared at thésame time and the
procedure stipulates that the response to the\unknown must be at
teast equal to that of the standard. Itis therefore necessary for the
substance tested to attain a certain miﬁhjjal potency in order to pass
the test. ‘This introduces the concept.df using a standard by which
to. assess t{;e\,\p_@‘gﬁqgi@grgfyg;lge;g{siubstances in the test, and the
setting up of standards has magr’ijced a turning-point in the progress
of biological assay and has-enabled the more powerful statistical
methods now available t{{\be more fully exploited.

1.3. International Sta'ﬁdz;rds

A large numbeérof international standard preparations has now
been set up. ZThey are intended to be stable yardsticks against
which the poténcy of other substances may be measured at any
time. Kh}éy are kept under conditions designed to preserve their
activit{_ whchanged and distributed from such centres as the National
Ir}sj&ft,ti'tc for Medical Research in London, while careful checks on
't‘h:efr stability are made at frequent intervals. Standards now exist
it crystalline form for many of the sex hormones, for seluble
insulin, and some of the vitamins, and in various impure forms for
other vitamins, hormones, anti-toxins and other pharmacologic-
ally active substances. It is now a common practice, in order to
conserve such international standards, for laboratorics to set up
their own sub-standards, which have been carefully assayed in
comparison with the international standard preparation. In the
investigation of substances tfor which no international standard
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preparation is available, laboratories also make a practice of setting
up their own provisional standards for use in research,

When a standard preparation is available and has been demon-
strated as far as i3 possible to be stable, any new substance may be
compared with it in order to determine whether it has the same
action as the standard, and, if so, to express its potency in terms of
the standard. One of the first ways in which progress was made
in the use of standard preparations was by the establishment of a
dose-response curve determined, for instance, by injecting several.
different doses of the standard preparation each to a group ol
animals and relating response to dose graphically. The potclgcfg of
another substance having the same pharmacological aclidh®was
then related to that of the standard by injecting one or make groups
of animals with known doses of it, and reading backward from the
dose-response curve the doses of the standardsthat would be
supposed to produce the same response as each dese’of the prepara-
tion under test. Variation in response whichsmay occur from time
to time was often ignored in these proc dljre’s, or an attempt was
made to allow for it by giving furtherPgreups of animals one or
more doses of the standard at the same'time as the unknown was
administered and assessing roughlyiwhether or. ot the position of
the dose-response curve relnaineﬁ.’cc‘i\'n“s{t\ﬁhﬁrau iy et

1.4. Curve-fitting O

All kinds of curve-s.\s(eré fitted to the results of assays. More
often than not, curyes were fitted by eye and no equations were
determined for thept» When equations were determined, they were
most frequentl :gfmpie parabolas relating dose directly to response
and were of diited use in the estimation of error. It was apparent
that the edeulation of error could not approach exactness unless
the dosé'{re'sponse data were fitted by relatively few types of standard
cu;;\aé;if which could be investigated statistically and for which
Quitible mathematical formulae to be used in the estimation of
relative potencies and of their errors could be computed. The
fact that the curves which came into general use were not necessarily
those by which the data could be fitted with the greatest exactitude
is of minor importance compared with the mathematical suitability
of the types of curve finally adopted. Any series of results to be
used in the computation of a standard dose-response curve may in
practice be fitted by an infinity of mathematical functions, many of
which, aithough demonstrably inappropriate at the extreme ranges
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of response, are as good a fit as can be expected over that range
which will be used in practice. Faced, therefore, with such a
choice of functions, it is logical to adopt those which are most
easily handled in computing relative potencies and in estimating the
precision with which these potencies are determined, as long as they
do not grossly violate any theoretical considerations as to the
probable nature of the dose-response relationship.

1.5. Increasing the accuracy of tests

Having settled these difficulties, that a standard preparation rm\st
be used and that the response to it shall be related to the doag by
the most convenient method ol graduation which fits the f‘dcts the
relatively rapid strides which have been made in 1ncrg:asmg the
accuracy of assays became possible. In the fol}ov\?}ng chaplers
we shall see how methods have been developgdMor eliminating
the eflect of many sources of variation inherentid*tiological assays
and for so planning the comparison of a substante with the standard
preparation that the assay shall be self-codtdined. This means that
measures shall be available of the vahdity of comparing the two
substances, as well as estimates of the limits within which the
potency ofuther dhknosnargast @enjudged to fall in comparison with
the standard, to any desired, degrec of probability, From the
internal evidence of a well—pla:nned assay it is also possible to make
adjustments for various.@ther concomitant factors by which the
response may be partszb ‘conditioned and to eliminate their effects
in the estimation of potency.

Side by side wrth ‘these refinements of statistical technique have
been developed befinements in the conduct of the assays themsclves.
The mcrease.}l precisien which may result from the adoption of
modlﬁcaﬁgns in the conduct of assays is, of course, measured by
statist.i(,él ‘methods. They serve to eliminate unnecessary pro-
cedu;es ‘which on a priori grounds might be thought to add to the
acc:uracy of the tests, but may turn cut upon critical examination to
do no such thing. It is typical of biological assay that homogeneity
of the test malterial is sought, although much of its heterogeuncity
may be eliminated by adequate statistical control. Thus, the use
of pure lines of animals has served to eliminate part of the variation
found within less homogeneous animal stocks, and the running of
the test under rigidly defined conditions will usually reduce the
variability of the results to a worth-while extent. This narrowing
of the conditions under which assays are conducted, adopted for
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the purpose of reducing error as far as is conveniently possible,
follows on our knowledge that the substances which are being
compared in such tests are of a well-defined type, known fo possess
certain pharmacological or other properties. In these tests the
animal or plant preparation is, in fact, used as a test-tube and would
not normally be so used unless a good deal were aiready known
about the properties of the substances being compared. In other
words, the test is run upon a narrow inductive basis.

There are many statistical methods, some of them identical with
those used in biological assay, which are appropriate to the testing\
of materials and the comparison of their effects when a broddet
inductive basis is desired. When investigating the properties of
substances in a relatively new field of work, it may be unj(jeﬁrable
to confine one’s experiments to a very homogencous p@pulation of
animals, since misleading results may be obtained WEhich, however
true for the particular stocks and test conditions utilised, may not
be of wide application to other even clos Jrelated biological
material. Although in assaying the potenciﬁé% of particular vitamin
preparations, it may be desirable to use ojﬂy the males of a particular
breed of rats, it would be a mistakggfo'base either gualitative or
gquantitative conclusions about thetaction of the vitamin in the
animal kingdom in general upgf-the’ Veabis B edm such
homogeneous material, for it may be discovered that the relation-
ships utitised in assaying,j'@th one given type of animal do not
hold even for other stooks.bf the same species. It is useful, there-
fore, to distinguish &t the outset between the frequent desirability
of rigid control of,eonditions in a highly developed assay technique
from the wider tj,jﬁe’ of experimentation that will usually be prefer-
able in the jn;ue\tigation of the properties of new and little-known

substanc@*‘
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CHAPTER 2

MEANS, VARITANCES AND DEGREES OF
FREEDOM

2.1. The normal distribution

It we make repeated attempts to measure a quantity as accu rately
as possible we usually find that the results are scattered abotibrheir
average or mean value in a typical manner. The measﬁrcments
tend to cluster most closely around the mean and to thin'out as we
depart from it. The distribution which such measyrgments usually
exhibit is called the normal distribution or norm& Curve of error.
The use of the word “error” was introduced indescribing the curve
because the earlier applications of it were concerned with the
errors of measurement of such physical duantities as the height of
a building or the length of standa{rﬁfmcasures. The curve is
bell-shaped and has the general formuula:

www dbiauli bl'ar‘fy gr g. m \ é-yﬁjzaz

e i./ 27

where Y is the variable Bging measured and p the frequency at
a given value of Y, JFig: 2.1 jllustrates the normal distribution,
and it will be seen thap the curve reaches a maximum at the mean,
falling off rapidly(om either side of it, and has two points of inflec-
tion, one on each/side of the mean. Table 2.1 gives the ordinates
of the curve/) These points of inflection (at Y= 40) are the points
where thitgu’r’ve is steepest and below them the curve falls off less
and les{ steeply, so that its two arms slowly approach the base-iine,
but sver reach it, Approximately iwo-thirds of the total area
enp:ldsed by the curve is contained within two vertical lines drawn

@m the two points of inflection, and these lines mark off along the
base-line the natural units in which the curve is measured and are
thus by definition situated at plus or minus one standard deviation
(+o) on each side of the mean.

These conditions would only be fulfilled in practice if a very
large number of observations were made from a normally dis-
tributed population, when the observed curve takes very nearly its
theoretical mathematical form. (A population is a theoretical

8
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infinity of possible observations from which we actually take a
sample.) When rclatively few observations are made, their dis-
tribution, even when they are drawn from a population which itself
is normally distributed, copies the normal curve of error in only a
sketchy form.

It has been found that this type of curve describes not only the
distribution of errors encountered in attempts at accurate physical
measurements of various kinds, but that in a large number of cases
it cqually well describes the distribution of measurements of various,,
biochemical and biological nhenomena. Thus, measurements af\

¢ &\J
+ AN 89-7% >

F1G. 2.1. The normal cm‘v:e' of error, calibrated in standard deviations, measured
from the mean, § the arrows indicate the percentage of all cbservations which
fall within rhc{ngits -, 220 and 4-3e.

such quantities as the heights or weights of populations of animals,
the ]engtb\'b stamens of a given type of plant and the amount of
haem'oglif‘bin in blood samples are frequently found to be normally
distributed. This is true also of the measurements of the response
of adimal or plant preparations in the groups which are used for
biological assays, 1t will be appreciated that in a large number of
biolegical tests there will never have been sufficiently extensive
investigation for a really critical analysis of just how well the
distribution of responses is fitted by the normal curve of error, but
it is a fortunate fact that the distribution of mearns of samples from
even quite abnormally distributed populations fends rapidly to
normality as the sample size increases.
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12 PRINCIPLES OF BIOLOGICAL ASSAY
2.2. Elementary statistical definitions
If Y is any individual observation, the sum of all observations is
. . SY
denoted by SY. The mean of these observations is P where #

is the total number of observations which have been made. This
mean is denoted by ¥, and we thus have the relationship:

SY

" N

Y=

The symbol .5 always implics 1the sum of all the guantitics refte-
sented by the symbol, or group ol symbols, immediately following
it, or of all the symbols contained in the brackets follgwine S.
Thus S(¥—7Y) would imply the sum of all the differences.af ¥ and
¥. The individual dewatlons of each separate ¥ erm the mean,
which will be ¥;,—7, ¥,—-Y . .. ¥,—V, are wr\tten as Jy, J2
.. . ¥u so that in general y= Y—f. The sum of all ys is zero,
iLe. Sy=0.

One of the first necds that arise in? ét)mputallon is that of
representing the splay which VarIOUS\Gb%ezvcltlons exhibit about
their mean. The direct addition of all “their individual deviations
results, as mm‘d%ﬁwnbmx%pﬁ@gshm 3 Tt would be possible by giving
all the deviations a positive sigl 0 measure the average deviation,
whether positive or negatives a‘ﬁd this statistic has before now been
utilised. Such a way of. {epresentmg the splay doecs not lead to
very usefnl statistical ¢ m%thods There are, on the other hand,
strong theoretical reasens for utilising the powers of y for describing
the propertiecs of \the normal and other distributions and for
examining sam]&lcs supposed to have been drawn from a normally
distributed population. Thus, while the mean is so determined
that Sy=0,the splay around the mecan is measured by Sy?, which is
a]ways&a\ osttive quantily. Other powers of v, ie. y3 or »4, arc
used i measuring further propertics of distribution.
o'sf.“[‘}lc use of y2 in measuring the scatter of observations leads

dturally to the employment of the standard deviation, o. The
relation between the sum of squares of the deviations and the
standard deviation, usually denoted by the lower case Greek letfcr
¢ emploved above, 1s such that:
gl=— Sy
_ n—1
The estimate of ¢ that we make in practice from our observations
is denoted by s. The standard deviation is thus a kind of averags
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of 328, bot the divisor for determining this average is n—1 and not »,
It is difficult without going into further mathematics to explain the
reasons for dividing by #— I instead of # when determining standard
deviations, and in cases where » is large the difference between
dividing by » and n—1 is clearly insignificant. This is not so when
nis small, and it may be shown that the difference just compensates
on the average for the inherent inaccuracy of small samples, and
that using » as a divisor Jeads on the average to an underestimation
of «,

The squarc of the standard deviation, o2, which appcars in the{
Formula above, is called the variance or mean square, usually denoted
also by the letter V. Thus, if s from one group of observatlnné 18
twice that from another, the corresponding variances wﬂ.l be in the
ratio 4 : 1. The reciprocal of the variance gives by d nrtlon an
estimate of the amount of information supplicd by any ol}e observa-
tion in a group and is used as a measure of the relafive precision of
observations in different groups. Thus, on the averdge, an observa-
tion from a group with a standard deviation wlﬁ‘e h is twice that of a
second group will give a quarter of the mfonnauon supplied by an
observation from the second group.  {

N/

2.3. The variance of 2 mean @ dbraulibrary org.in

In most elementary text-book‘sk;j]’ statistics there will be found
numerical examples de-monst{atjng that the variance of the mean

. , L AN o .
of a set of observations s’\l,fof that of any individual observation,
X F

where » is the nuniber of observations in the group. This is

equivalent o saymg‘fhat there is available » times the amount of

information abmit mean as there is about any individual observa-

tion in the \%t:.‘;"']'hus
N\

~ 3

PN ) nln—1)

It‘le}d\;vs, therefore, that the standard error of a mean of n observa-
tions is —1 times the standard deviation of the group. If, for

Vi

instance, 100 observations are used in determining the mean, the
standard error of this mean will be {/10th of the standard deviation
for the whole population, and on the average a serics of means of 100
such observations will have 1/10th of the range of the corresponding
individual observations. The term standard error distinguishes
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the square root of the variance of a mean from the standard deviation
of individual observations.

2.4, Smali samples

When describing the normal distribution, it was seen that
approximately two-thirds of all the observations will fall within the
range +o about the mean. It may be shown that approximately
2122 of all observations wil! fall within the range +2a, i.e. a tota]
range of 4o with the mean as its centre. Table 2.2 shows the
proportion of observations which fall within various ranges by steps
of 0-01 (i.e. 1%} It will be seen from the table that less than{one
observation in 10,000 will fall cutside the range of L4vina nofma]ly
distributed population. The above describes the conditighs, found
to hold when large numbers of observations, of the order Q}‘ undreds
or thousands, are examined. When a small samplé é dealt with,
the mean and an estimate of its variance are calcu]ated by the usual
methods, but unless the sample exhibits ext:le“me departure from
the normal distribution, it is 1mp0551b1e\t@ Judge whether it is
drawn from a population in itself nor malry distributed. In the
absence of evidence to the contrary, ityis assumed that the normal
distribution holds and the statistical mggh@glsa@mqg@,% to small
samples from the normal d1str1bu1wn are used. It has f‘orlunate]y
been demonstrated that in mapy. of the tests which will be developed
in later chapters, minor depa(\tures from normality of distribution
—and in some of theny guite large departures—do not seriously
affect the validity of the statistical conclusions drawn.

2.5, Caleulation of hleans and standard deviations

In Tabie 2. 3~C})1umn 1, are listed 20 measurements of the uterine
weight of mq\'l’oers of a group of young femaie rats. The weights
are taken};\: the nearest mgm. These weights, which vary from
9 to ,~32\t.'mgm., are an example of the large splay so frequently
encountered in biological measurements, and it is clear that the
chance that any one of them is sufficiently representative of the
whole group for the purposes of comparison with other groups is
not large.

The mean is determined by summing the 20 weights and dividing
by 20, the number in the group. It is found to be exactly 21.
The deviations from the mean are listed in the second column in
the Table. The deviations for numbers falling below 21 are, of
course, negative. The sum of these deviations is, by definition,
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TABLE 2.3
{CALCULATION OF A MEAN AND STANDARD DEVIATION
) 4 y ¥
9 _i2 144
14 ~7 49
15 —6 36
15 —6 36
16 3 25
18 —3 9 .
18 -3 9 S
19 ~2 4 A
19 —2 4 R\
20 —1 i (O
21 0 0
2 1 1,00
22 1 2K¢
24 3 g/
24 3 9
26 5 D725
27 6 \"\\ ’ 36
29 § AV 64
ATANATS dkﬁq lib 9 A\ 81
ulibrary org. 1’ 313 121
Totals 420 —0 664
Means * 21 Q 0 _
s2= 3\—.534 9473 s=591
y‘a\—\’ 174737 sp=132

> s

zero, To e tifnatc the standard deviation we sum the squarcs of
the individu@l deviations. These squares are listed in the third
column Qi‘the Table, and since all squares are positive in sign, the
sum thhese squares i8 a positive quantity, namely 664, This

ucmtity is called, simply, the sum of squares. In order to derive
t}}e “value of the standard deviation from this sum we divide by
n—1, which gives us the variance, 34-9473,

It is in practice unnecessary to compute the actual scparate
deviations givenn in column 2, or their corresponding squarcs,
since the sum of squares can be calculated very rapidly and with
less chance of a slip in the calculations from the following rela-
tionship:

Sy2=SY2—nP1=SY2~ FT=5¥2— L
H
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where T is the total of all observations, We use whichever form
of the relationship is most convenient, and where, say, YT is
written in the following pages, it is often casier to divide 77 by n,
When using this relationship we do not need to know the individual
values of the deviations, and although we have to deal with the
squares of larger numbers, we avoid the task of deiermining each
individual deviation fromi the mean. Since the mean will rarely
be a whole number, as in this sample, this second method of
calculation s usually the casier. In the present cxample, §¥?=
9,484 and Y7T=8820, their difference being 664, as it should.
The variance computed above is the variance of the indi{idiial
observations dnﬂ]ﬁ_tdndald deviation applicable to these nbserva-
tions is thus v/34:9473, or 5:91. \

We can roughly check the absence of a slip in th&ca‘lculations
by remembering that the variance is computed on\the assumption
that the various estimates with which we are deahng are normally
distributed and that approximately two- thqu of them will fall
withiu the range of 4+ of the mean and that approximately 21,22
will fall within the range of £2s. G\&uung back at the second
column of Table 2.3 we see that in fdct 12 observations fall within
the range <4591 and 19 fall mt]}m the\mmgabﬁa&hﬁ%ry&i ihere is
thus no reason to suspect any efmr in our calculations. Note that
this procedure is not a check® on the accuracy of our assumption
that the distribution is nd@fgial, but is a quick check cn the value
found for s. Duplicatexi::a culation is esscntial for a full check.

The standard error\of the mcan uterine weight in the group of
20 is given by the, formula:

N> S 28 }’2
\ Vi=sy Tn n(n—])
a calcu]g"m\on based, it will be recalled, on the fact that we have »
timesathe information about the mean that we have about any
of\the individual observations comtributing to it. The standard
7ot of the mean in this insiance is thus:

v 664

T20%19

What does the standard error tell us about the mean? Tt is,
of course, an index of its variability and a measure from which we
can compute the chances that the mean we have observed differs
from any other assigned value,

3
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2.6. The ¢ test
A function, r, first investigated by “Student” (W. 5. Gosset),
has been tabulated for this purpose and is such that

_Y-m
T osv
where m is a value known or postulated for the mean of the popula-
tion. The values of f when the number of observations approaches
infinity arc those in Table 2.2. Table 2.4 gives valucs of ¢ found
from samples of a normally distributed population at various Tevels
of probability, for numbers of observations from two kl{i\x-;eu'ds.
Thus when the number of observations is 20, as at presefity*and the
number of degrees of freedom (sce below) is 19, thare is o 3%
chance that 7 equals or exceeds 2093 and a 1% chanéﬁ\hét H excecds
2-861. We may therefore assert that the chapgeNs 1 in 20 that the
sample has been drawn from a population thestean of which lies
outside the limits 21£{1-32x2-093), or 1824'to 23-76, and is 1 in
100 that it lies outside the limits 21§t(l 32 % 2-861}, or 1722 to
74-78. Note that our best estimate gfthe value of the mean is the
actual value wg. fimt Rt dhabat 48, an estimate to which we cun
assign certain specific limits oi‘Qaizg':nracy by the use of the standard
error. These 5% or 1% chantes arc alternatively expressed by
saving that P, the probgbili’t? of equalling or exceeding a given
value of ¢, is 0-05 or 004,
¢ '\’\,.‘
2.7. The coefficient of variation
A statistic whieh'is quite frequently used, and which is calculated
by dividing tHesfandard deviation by the mean and multiplying by
100, is the~cocfficient of variation. This coeflicient is the standacd
deviatiMpressed as a percentage of the mean. Its value depends
on ‘ghé,\magnitude of both statistics, and thus the same variance
,att'étf;fhed 10 a big mean will yield a smaller coeflicient of variation
Siban il it is attached to a smaller mean. The coefficient of variation
of the scries above is 5;;1 X100, or 2819%,. If we were to add
1,000 to every figure in the first column of Table 2.3, the mean would
be 1,021, the standard deviation would remain the same, but the
coefficient of variation would fall to _521162’}00’ or 58 %4 approx.
Such facts are important if, in the determination of mecans and
standard crrors, we use coded figures,
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2.8, Coding

We code figures for rapid computation when the crude data are
unwieldy. Thus, in a series which ranged from 1,009 to 1,032, we
would code before computation by subtracting 1,000 from ecach
number—a procedure which can be followed with no risk of error—
and treat the data just as in the foregoing. We must remember,
however, to add 1,000 on again after we have completed our calcula-
tions and also remember that coding of this type does not affect
the value of the variance. In other instances we may code:by
rounding to the nearest whole number if our original data appear
to be unnecessarily detailed, and in this instance coding wi@l,ﬁa&ué a
negligible effect on both the mean and the variance. (If“in the
process of coding we have performed any more, {(‘)’h‘np]icated
procedure, such as dividing, or dividing and them &ibtracting a
constant number from each observation, we mifst at the end of
our calculations repeat the coding procedure il\strictly reverse order
on the statistics we have derived, in order g§finish up with means
and variances of the correct magnitude N Thus, if we divided each
number by 10 and then subtracted ?Q;Jh%ﬁ?gﬁljﬂ}%%?.ow‘%md be
arrived at by adding 80 and then¥mlltiplying by 10, while the
variance would have to be correctédiby multiplying by 100, which is
the same as multiplying the star giafd deviation by 10.

K
2.9, Degrees of freedom?)

A set of observatjens‘such as (hat in Table 2.3 is called a group,
class or grray.  Ehis array contains 20 items and there are 19
independent comjg&r’fsons or degrees of freedom which exist within
the array. JHe first 10 of these comparisons may, if we so desire,
be made P\éi;W%&ﬂ successive pairs of items, ¥i—¥,; Yi— ¥, . ..
Yie— Yig\. The remaining nine consist in various more complicated
grg}lpi:ggs of the ¥s; these nine further combinations exhaust
the independent comparisons that can be made, once the first 10
have been laid down as above. There is, however, an infinity of
wuys of dividing up a group of 20 observations, each yielding a
sct of 19 independent comparisons between members of the group.
The particular arrangement selected depends on the objects of the
investigation and not all 19 may need to be isolated. The use to
which the isolation of individual degrees of freedom is put will be
clear as we proceed with an examination of statistical techniques,
but a simple example is not out of place here.
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In a group of four observations sums of squares corresponding
with the three degrees of freedom can be isolated in the following
ways. Twelve are of the form :

HY =Y H Y+ Y27 {5(Y | +Y,+Y,—3Y,)
A turther thiee take the form:
HY 1 —Y5)?% HY;3—Y)?% HY +Y,—Y;—Y,)?

Another is:

~

K\
HY 1+ Vo= Y= Y2 MY = Yok Vo= Y2 (¥ )= Yo Yo Y )2

Each of these adds up to SY2--n¥2, Those of the first gt compare
first two ¥s, then three, and finally ali four. Those. of the sccond
set take the observations in pairs, then all togetbctg\whlle the final
set involves only simultaneous comparisons pi,\%i]] four together.
If we had treated two pairs of animals witivtwo diflferent drugs
we could use one of the set of three way@*»{:)f dividing the results
which gives measures of the dlﬁe(;cnce between {(Y;+ Y, and
(Y4 Y, and bet{v&F E and Y and’then Y, and Y, separately,
If, on the other hand, L 5}6‘ §éﬁ]§ned the test that one animal
received both drugs, one rece;vcgi no drug at all, while each of the
remaining two received a single drug, we should need to partition
the results as in the last ofithe three sets above. For, if drug A were
given to the animals Y\a\nd Y,, while drug B were given to ¥ and
Y., the action of¢ AQcould be assessed from (Y 4+ ¥o— ¥3— Y3,
that of B from (X, + ¥3— Y;—Y,) and combined eflect of A and B
from (Y, —¥Y2¥:+ ¥y, where “combined effect” means those
effects not predictable from a knowledge of the actions of A and B
when giyeri.Separately.

In genetal, an array containing # observations has #—1 degrees
of fne}dom The mean and the variances which have been calcu-
lated for the array are called sratistics, which are estimates of the

\ parameters, or constant characters of the population from which
the sample has been drawn. The mean is a statistic computed
directly from the observations as they stand, and the variance is
computed from the second power of these observations. When the
variance is computed by subtracting ¥7T from the sum of squares
of the items in the array, the factor ¥7T is commonly called the
correction factor for the origin or mean, or correction for the sum
of squares. The term ‘‘correction factor for the origin” merely
implies that we have taken an arbitrary origin at 0 instead of at the
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mean for the purposes of computation. Unless an inordinate
amount of labour would be involved, it is usnally best to square
the Ys directly as recommended and to subtract ¥7 from them,
because this avoids the introduction of any possible errors of
subtraction. In simple cases there is often little to choose between
different methods of computation, but the selection of the best
method may be of considerable importance in less simple instances.



CHAPTER 3
COMPARISONS BETWEEN GROUPS

3.1. Differences between groups

In the biological standardisation of insulin, the blood sugar of
rabbits is measured, TFable 3.1 gives the blood sugars measured in
mgm, per 190 ml, of four groups, cach containing seven rabbits,
the four groups representing four different breeds of rabbit pr‘n\rcd
for tests. We wish to know whether these lour groupscdifter in
the mean level of blood sugar and thus to determine thlhm the
animals we are going to usc for a test forma homogcmous c,ollu,llon

N
TABLE 3.1 o\’;F
BLOOD SUGARS OF FOUR DIFFERENT BREEDS OF RABBIT
Brecg\\.)
1 2 L% 3 4
Yp (Xp—10002 ¥, (Y002 ¥y (Y,—100)2 ¥, (},,—100)2
wu& dbra’&&?braigﬁ' orp%é}ﬁb 135 1,225 (09
796 122 484 108 64
128 784 1208 #1135 1225 117 249
104 16 113 169 138 1,444 I8 324
121 441 45 2025 131 961 101 1
100 0123 529 134 1,156 134 1,156
123 525{ 13 169 140 1,600 113 169
Totals, §¥, and \‘ T T
S(Yp—100)2 802,315 888 5,998 935 8,095 800 2,084
Means, ¥, ,  MN53714 126:8571 133:5714 114-2857
Correction f actc\rk
Ap{ ¥p—-100)2% 1,697-29 504914 7,889:29 1.428-57
Sum of sqiines,
Syp? z"\:" 617-71 948-86 20571 65543
O Total: 2,427-71=58p"

C}ﬂlmg, the méysurement from an animal in any one group
MLYﬁ, we calculate S, for cach group and from that determine the
sfnean ¥ » by dmdmg by n=7. The sum of squarcs for each group
is determined by summing (¥—100)2—coding by subtracting 100
from ecach reading, since no reading is below 100—and from this
subtracting the correction factor of n(¥,—100)2 or (¥,—100)7,.
The separate variance for each group would be determined by
dividing the appropriate sum of squares by #—1. However, wce
are about (o test the hypothesis that there is no difference between
the groups and for the purposcs of the test we assume that the means
24
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and the variances of all four groups are sample estimates of the
same statistics.  We shall then proceed to test, using the combined
data from all groups, whether this assumption can be upheld. Thus
we are testing a nul! hypothesis—the hypothesis that the four groups
are samples from the same population having the same mean and
fhe same variance.,

In order to test this null hypothesis we have available two estimates
of variance. The first variance is that of blood sugars within the
four groups and is an average of the four separate variances, onc
of which may be calculated from each group. In order to computg‘
this variance we add the four sums of squares, Sy,2, giving us.ﬂ%
guantity 85,2, where the symbol S means “the sum of tho{sutns
of.” This quantity is 2,427-71. Each of the four groups con-
(ributes its own n—1 degrees of freedom to the estingate of this
variance, and since the groups are equal in nu ¢r, the total
number of degrees of freedom available in estimating the variance
is 4(n,—~1)=24. The variance is therefore %P =101-2. This
is the combined variance of individual blegd s gar readings derived
from the distribution of each of the fougFouly oflifeadingsdbout
its own mean, ¥,. ‘

From this variance we can cstimate the variance of the four
means. Since each mean is detived from seven observations, the
variance of these means wiLKbe Lth of the variance of the individual

observations, or %2=\14h5’?1

We can now estintate the variance actually observed between the

four means congeihed:
Oy S(T—-,100)2— FT=257-02

where ¥ ah@:f'are the general mean (122-5714) and the correspond-
ng tOtE‘ﬂ'.’i\T 0 estimate this observed variance we divide the sum of
squapésiby the three degrees of frecdom between the four means,
g{iﬁg s a variance of 85-6733. This variance, estimated from the
achtal distribution of the means, is thus considerably larger than
the variance which we estimate the means to have from the dis-
tribution of the individual observations contributing to them.

3.2, The variance ratio

Tables of the function F, known as the variance ratio, have been
prepared for estimating the significance of diffcrences between two
variances. F is equal to the larger variance divided by the smaller
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one; in this case it is _ =593, Table 3.5, a tablc of F,

gives those values which will be equalled or exceeded in the pro-
portion of cases indicated by the percentage given at the top
of the Table with the respective degrees of freedom involved in
computing the two variances concerned, if these variances are
in fact equal. The number of degrees of freedom used in cal-
culating the greater variance (n;) is read off along the top of
the Table, and the number of degrees of freedom used in cal-
culating the smaller variance (n;) is read off from the exu®me
left-hand column, In the present example s;=3 and, fp=24.
From the Table we see that a variance ratio as high as 4*?7 Wwould
be encountered only once in 100 times, and from thjs. we conclude
that a ratio of 593 would, if the two variances weré il reality the
same, be encountered considerably less than ’ohCe in 100 times.
We must therefore abandon the hypothegi§\that the observed
variance between group means is equal tp,the variance calculated
from the population of individual bloof, Sugars. Hence we con-
clude that there iswawhighiyigignifieagtidifference between the mean
blood sugars in the different groups ot rabbits,

In the interests of clarity we “have dealt with the problem in
terms of the variance of the medns 1t is easier in computation to
use the reverse procedure and not to reduce the individual variances
to variances of means, hﬁt instead, when calculating the variance
between the means, Qﬁ groups, usually called simply the variance
between groups, thumtltiply this variance by the number of observa-
tions contnbuu\n ¢to each group and thus to estimate a variance per
observatlon\nstead of per mean. The final form of the analysis
set out imTable 3.2 illustrates the method. The sum of squares
betweeMoups with three degrees of freedom is 1,799-14, giving a
mean, square of 5997, while the mean square within groups with

24 de;,rces of freedom is 1012 as before. The total sum of squares,

which may be estimated as a check on the arithmetic, should
be equal to the two separate sums of squares beiween and
within groups, and the degrees of freedom will, of course, toial
n—1, one less than the total number of individual observations.
The total sum of squares, which is SY2— Y7, is 4,226-86. The sum
of the two sums of squares between and within groups is 4,226-85,
and thus the calculations are shown to be correct. The unit
discrepancy in the last place of decimals is due to our having
rounded off figures in calculation,
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TABLE 3.2
ANALYSIS OF VARIANCE FOR THE DATa OF TaABLE 3.1
Source of variation Formula  Degrees of Sum of Mean
freedom squares square
Between groups npS¥p2 3 1,790-14 5589-7
Wilkin groups (error) S5pp2 24 242771 161-2
Total Sy 27 4,226-85 —

F=593: P<0-01 (1% point is 4-72)

In the example above we have made use of the following alges

braical identity: . X A\
S(Y——Y)ZzSnp(Y,—Y)2+SS(Yp—f’pjz (:..’:
or Sy2=S5n,F,2+ S85y,2 ;M "
where 832 is the sum of squares of all deviations from their mean,
Ay is the number of observations in group p, and f’,;tk\xe mean of
these observations, 1, the deviation of any one of. thes\ observations
from ¥,, and J, the deviation of any one meah from' ¥; $Sy,2
is the sum of the sums of squares of deviagidns of ¥, from ¥,
In the example, #, was the same for all 'pﬁps and we were thus
able to illustrate the calculation of the varmm.mi@hm@yﬁidgqing
the variance of means or of individngﬂ"observations in a simple
manner. In the next example, ny is‘{d‘iﬁ‘erent from group to group,
and the advantage of calculating, and expressing the results as in
Table 3.2, in which the variances are expressed per item, will be
apparent, \\
¢\

3.3. The analysis of ya’lﬁnc

Table 3.2 is a simple example of the analysis of variance, a
statistical weaporndeveloped primarily by R. A, Fisher (cf. Statistical
Methods for Research Workers, Oliver and Boyd, Edinburgh).
The sum ogzséuares of all items from their general mean has been .
broken ‘d&n into two parts: the first part expresses the variation
cncouidtered between groups or arrays, and the second part that
w{ﬁiln' groups or arrays. In such an analysis we proceed always on
the¥endl hypothesis and test the assumption of homogeneity by means
of the variance ratio. The analysis of variance is a modern statis-
tical procedure which is still being actively developed by professional
statisticians and is a powerful yet simple procedure for the analysis
of properly designed experiments, Much of the rest of this book
will deal with experimental designs based on the fact that the
analysis of variance will be used in examining results, for although
variance analysis can sometimes be applied to results as presented
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by the experimenter to his statistical colleagues. its full application
in the reduction of error and the accurate estimation of potencies is
only possible when a properly balanced and adequately designed
experimental procedure has been followed. Then, in the hands of a
competent statistician, computation and analysis are simple and
rapid, and the precision of tests will usuvally be considerably
heightened. When only two groups are compared in the analysis
of variance, there is only one degree of freedom between the two,
and F is thus equal to #2, wherc ¢ is the function introducediby
“Srudent” for dealing with the means of small samples. Fo\\)ur
purpose { may be completely replaced by £, which dcais :dlw with
comparisons between more than two groups. %

%

e
NG

3.4. The analysis of variance with unequal groupsxj\\ ’

Table 3.3 illusirates computational p.roceduré}n’ the case where
groups are unequal. The data in this Table ‘are the weights of
young male mice in gm. six weeks after, biﬁh Each group repre-
sents one litter in which a large nungber ‘of males occurred.  We
wish to know wHé{He?bﬂi‘ElWéHﬁeTﬁtlt@r weight differs significantly
at this age from litter to litter s No coding is necessary in this
example and 7, =8 Y, is detcrrmned for each litter and ¥, calculated
by dividing cach total by the, ‘corresponding number of animals.
The sum of squares within ‘each litter may be calculated by -ub-
tracting ¥,T, from §¥? as before, and these calculation: are
included in Table 3 &I’or the purpose of illustration and as a ciieck
on subsequent Marithmetic. In actual practice, however, the
quickest way‘t\é;ﬁerform the compultation is to take the total, T'=
290-8, squa(e this total and divide by the total number of mice,
gwmg\@ D il 82

n 25

uc;res of the weights of all mice is calculated also, and from it is

~~§:u tracted Y7, giving us S»2=223-10. This is the total sum of

gquares. '{he sum of squares between groups=Sn,i,2 is alsc

equal to SY,T,— YT, where ¥, and T, are the means and totals for
cach group separately.

This sum of squares between groups is 151-41 and the diflerence
between it and the total sum of squares must be equal to the sum of
squares within groups. We check this by adding the sums of
squares within groups given in the Table, which gives us a figure of
71:69=223-10—151-41. Where easy it is useful to perform this
actual check, but in many cases such checking is difficult or im-

, which is the same as ¥7. The sum of the
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TABLE 3.3
WEIGHTS OF FIVE LITTERS OF YOUNG MALE MICE IN GM.

Litter: 1 2 3 4 5
150 10:9 103 9-2 13-5
13-4 12-8 10-1 67 12-7
127 83 88 89 164

19:2 144 11-5 110

14-3 10:3 102

14-8 76

78
=S¥, 89-4 4464 510 61-4 42-6

¥ 14-90 1160 10-20 877 14-20 A~

) "\

Sy 1,358-02 558-90 523-83 552:38 §12:5¢ N\

YTy 1,332:06 53824 52020 538-57 604:92 )

Difference. - i T 8 :\

Syp2 25.96 2066 3-68 1381 a0\ ¢ 758
T=290-8 SY2=3 60568 S¥,Tp=3,53399 3};@\= 71-69
F=11-6320 Fr=3,382-58 FT=338258, {Snpppt=151-41

Sum or difference, ) Syr= 22310 S_HE_I;Z: '[SI-Q \ Sy2=223-1

possibie, and in the more involved examp\l’ésf}with which we shall
deal later other means of checking musk‘l}@,@;;@g&gyg@hb 1*559‘3}' these
data we may now construct the analysis~of variance given in %a%le
3.4. There are tour degrees of freedom between groups and
20 within groups. Hence the ~1jné'hn square between groups s
379, that within groups is 3-58:“ F=10-6 and P, the probability
of equalling or exceeding F By chance if there js in fact no difference
between the average litteﬁi%eights, is very small indeed. The 19
peint for £ is 443, with four and 20 degrees of freedom for the
respective mean squages, and thus £ must be very considerably less
than 0-01. We have thus established with a very high degree of
significance j,\h' “the differences between the average weight of
male litter\thates in these five litters are due not to chance, but to
the fact}hla\ the members of the different litters are not members of

NS«

the same *‘population” of mice.

Q~ TABLE 3.4
ANALYSIS (OF VARIANCE FOR THE DATA OF TABLE 3.3
Source of variation Formula  Degrees of  Sum of Mean
freedom SqUATSS square
Between groups SapFy? 4 151-41 379
Wiihin groups S8v,? 20 71-6% 3-58
Total Sy? 24 223-10 —

F=106 ; P<0-0I
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TABLE 3.5

VARIANCE RATIO
20 Per Cent. Points of ¢2¢ (H. W. Norton)

3 4 5 6 8 12 24 o

m,fnz 1 2
1 9-47 1200 1306 13-73 1461 1426 1459 1490 1524 15 58
2 35 400 416 424 428 432 436 440 444 448
3 268 289 294 296 297 297 298 298  29% 298
4 235 247 248 248 248 247 247 246 24 ‘343
5 218 226 225 224 223 2222 220 218 2 16\ 2-13
6 207 213 211 209 208 206 204 202 \l °}5! 1-95
7 200 204 202 199 197 196 193 1-914 \1 87 183
3 95 198 195 192 190 I-88 I8¢ L&g . 179 174
9 i91 194 190 1-87 -85 1-83 180 K:?/’(? 152 167
10 88 150 186 183 1-80 1-78 Z‘?S,&\i 2 167 162
11 1-86  1-87 (-83 1:80 177 178 L1920 168 1-63 157
12 184 185 180 [177 174 I [EARN N 165 160 154
13 82 183 178 175 172 9\\Jl 66 1-62 157 1.5}
14 g1 181 176 173 170 HB7» 164 1-60 155 148
15 - 180 1 73)“,,“} 3%1 au]hyrat }]r éiig)ul()ﬁ 162 158 153 146
16 1.7 1-78 174 170 167 ‘ 1 64 1-61 1-:56  1-51  1-43
17 178 1177 172 168 148 163 1-59  1-55 149 142
18 177 176 171 167 1*64 -2 158 1-53 148 140
19 176 175 170 1663963 1-61 1-57  1-52 146 139
20 176 195 170 1;65“ "1-62 60 156 181 145 137
21 1’75 174 169 4 }c65 1-61 159 1-55 150 i44 |36
22 175 173 1- 68\ 1-61 i-5§ 154 149 143 135
23 174 173 kgs 1- 63 1-60 37 1-53 149 142 1'3M4
24 174 172 ™ 163 159 1-57 153 148 142 1-33
25 173 1+72% . 166 1-62 1-39 1-56 1-52 147 141 132
26 173 NGrF 166 162 158 1:56 152 147 140 131
27 173, A7 166 161 158 1-55  1-51 1-46 140 130
28 1 72:\ 171 185 1-61 1-57 1-55 151 I-46  1-39  1-30
29 ?72 © 170 165 1-60 1-57 1-54 150 145 139 129
3o 'ik 170 164 160 1-57 i-54 150 145 138 128
40~ 170 168 162 157 154 151 147 141 134 124
mzﬁl‘! . 168 1-65 139 155 1-51 148 144 138 131 118
\N20 o6 163 1-57 1-52 148 1445 141 135 127 142
/oo 164 161 155 150 146 143 1-38 132 123 I-GO

Lower 20/ points are found by interchange of m and s, ie. #; must always
correspond with the greater mean square.

Table 3.5 is reprinted from Table V of Fisher and Yates' Statistical ‘Tables for
Biological, Agricultural and Medical Research (Qliver & Boyd, Ltd., Edinburgh) by
permission of the Authors and Publishers.
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TaBLE 3.5-—continted

VARIANCE RATIO
5 Per Cent, Points of e2*

aima |1 2 3 4 3 6 8 12 24 =
to| 1614 1993 2157 2246 2302 234D 2389 2439 2490 2543
2 18:51 1900 1916 1925 1930 (933 1937 1941 1945 1950
3 1013 955 928 912 901 894 &84 874 864 8-«53\\
4 ] 77 694 6359 639 626 616 604 SS9 577 563
3 7 661 579 541 519 505 495 482 468 453 :4‘%6
i - N’
6 599 514 . 476 453 439 428 415 400 384 )° 367
71 %359 474 435 412 397 387 373 35T F4AlY 323
8 | 532 446 407 384 369 338 344 328 '\‘3»12 2:93
9 512 426 386 363 348 337 323 IOTAN200 271
10 | 496 410 371 348 333 322 307 281Y 274 254
11§ 484 398 3359 336 320 309 2930N\NFT79 261 240
12 7 475 388 349 326 311 300 2133; 269 250 230
131 467 380 341 318 302 292 97 260 242 221
14 1 460 374 334 311 296 2858270 253 235 213
15 . 454 368 329 306 290 %\%w:\\g@ra@ﬁﬁ.ar‘\;;gggi,g-m
16 449 363 324 300 285 \2T74 259 242 224 201
17 4435 359 320 296 28I6GR0 255 238 219 1:96
18, 441 3535 316 293 2798 266 251 234 215 192
19 | 438 332 313 280 274 263 248 231 211 188
20 | 435 349 310 287 N1 260 245 228 208 184
LN\
21 | 432 347 37 2:53 268 257 242 225 205 18l
22 | 430 344 303 ,(2 266 255 240 223 203 178
23 428 34z 303\ 780 268 233 238 220 200 176
24 | 426 340 301N 278 262 250 236 218 [98 73
25 1 424 338 Q299 276 260 249 234 216 196 171
2% | 422 3IINT298 274 258 247 232 215 195 169
27 421 &R’ 296 273 257 246 230 213 193 167
28 420 N334 295 271 256 244 229 212 191 165
29 4‘%\\»3-33 293 270 54 243 228 210 190 1-64
30 447 332 292 269 233 242 227 209 189 162
40 NH08 323 284 261 245 234 218 200 179 151
NN 400 315 276 252 237 225 210 192 170 13
120/ 392 307 268 245 229 217 242 183 161 123
o 184 299 260 237 221 209 194 175 132 100

i
!
r
|
I
|
|
|
i
|

Lower 5% points are found by interchange of ny and g, 1e. m must always
correspond with the greater mean square.

Table 3.5 is reprinted from Table V of Fisher and Yates' Staristical Tables for
Biological, Agriculiural and Medical Reseqrch (Oliver & Boyd, Lid., Edinburgh) by
permission of the Authors and Publishers.
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TaBLE 3.5—continued

VARIANCE RaTio

1 Per Cent. Points of &2¢

nilns l 1 2

8 12

o0

49-50
2612
IAd6

X

“ 565

4-86
4-31
391

L L
7R
L ag—]

e
ZEx

BREIIANIND EIRIEIRILD
N O s N |
B3 D~ LA

—td b Led L

— P T Lt e T O

1
O D

[l )

3 4 5 6 24
| 4052 4959 5403 5625 5764 5859 5981 6106 6234 6366
2 | 9849 9900 9917 9925 9930 9933 9936 9942 9940
3 . 3412 3081 2946 2871 2824 2791 2749 2705 2660
4 | 2120 1800 1669 1598 1552 1321 1480 1437 1393
5 | 1626 1327 1206 11-3% 1097 1067 1027 989 947
6 i 1374 1092 978 9J35 8§75 847 810 772 28l
7 | 1225 9355 845 785 746 719 684 647 £9OT
8 | 1126 8§65 759 701 663 637 603 367 M528
9 | 10356 8§02 699 642 606 S0 547 FNAC 473
10| 1004 756 655 599 564 539 506 AAWLY 433

4
11 965 720 622 567 332 507 4TS 440 402
12 931 691 595 541 5006 482 NPO 406 378
13 9-07 670 574 520 486 462,30 396 359
14 886 651 556 503 469 4-46\V4-14 380 343
13 868 ﬁ‘mvwﬁiﬁ'auﬁﬁﬁarﬁ'éﬁg.ig«%q’ F400 367 329
5 }

16 853 623 529 477 444 {(\420 389 355 318
17 | 840 611 518 467 434 . 410 379 345 308
18 | 828 601 509 458 4Q§= 401 371 337 300
19 © 218 583 501 450 Wl 394 363 330 292
20 1 8§10 585 494 443910 387 356 323 286
21 802 578 487 437 404 381 351 317 280
22 794 572 482{ ™31 399 376 345 312 275
23 788 566 4,-123 426 394 371 341 307 270
24 782 561 4\2 422 390 367 336 303 266
25 7T SSh, 468 418 386 363 332 299 262
26 772 (8837 464 414 382 359 329 296 238
27 768 (940 460 411 378 356 326 293 255
28 | T-6ONS45 457 407 375 353 323 290 232
29 . 760Y 542 434 404 373 350 320 287 249
30 r.§z~56 339 451 402 370 347 317 284 2:47
40\ 731 518 431 383 351 329 2:99 266 2:29
A0S 708 498 413 365 334 312 2:82 250 2412
N2 685 479 395 348 317 296 266 234 195
p 664 460 378 332 302 280 252 2:18 179

——
ghlac:\ob

Lower 1% points are found by interchange of #y and #g, ie. » must always
correspond with the greater mean square.

Table 3.5 is reprinted from Table ¥ of Fisher and Yates™ Sratistical Tables for
Bivlogical, Agricwltural and Medical Research (Oliver & Boyd, Lid., Edinburgh) by
permissien of the Authors and Publishers.
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TABLE 3.5—continued

VARIANCE RATIO
0.1 Per Cent. Points of e2

!:1,-'Hg! i 2 3 4 5 6 g 12 24 %
1 !4()5284 500000 540379 562500 5376405 585937 598144 610667 623497 636619
2 1 998-5 9990 9992 9992 9993 999-3 9994 9994 099-53 999-5
3131675 1485 1411 1371 1346 132-8 1306 1283 1259 1235
41 7414 61-25 56-18 3344 5171 50-53 4900 4741 4577 4405
3,474 3661 3320 3109 2873 2884 27-64 2642 2514 23'78\<
& 3551 2700 2370 2190 2081 20003 1903 1799 1689 157§
742922 21069 1877 1719 1621 1552 1463 1371 12-73. W '69)
8§ 2542 1849 1583 1439 1349 i2-86  12:04 11-19 1030 im:9‘34
9, 2286 1639 1390 1256 1171 11-13 1037 9357 872 781

10 2104 1491 12-55 11-28 1048 592 920 845 'K&I» 6-76
N

1101969 1381 1156 1035 9358 905 §3s 763 (683
121864 1297 1080 963 8§80 838 771 _740)" 625
13,1781 1231 1021 907 825 786 721 o8Y 578
141714 1178 973 862 792 743 680.¢13 54l
15 1659 11-34 938 825 737 709 64TNSEL 510
16 ; 1612 1097 900 794 727 631 W¥@rodbmidibrassor
17 1572 1066 873 768 702 656 596 532 463

LBERE

il

18 1538 1039 849 746 6§l 635575 513 445
19 11508 1016 828 726 661 ©OI8 555 497 429
2011482 995 510 710 646 w602 544 482 415
2 145 977 794 695 6INY 588 53U 470 403
2§ P14.38 961 780 681 &19 576 519 458 392
2

p 1413 847 767 069 &%‘08 665 509 448 3-82
24 | 1403 934 755 659N V508 555 469 430 374
J

13-88 922 745 ~6'@\9" 5-88 546 491 431 366

halslge OO WG

Sosl BRNRRN DRUGE BeBWER Sabug
oo G \sﬁcuum o=l thun Oh mmqmg

2611374 912 736(N\G41 580 338 483 424 359
271360 902 72,7633 573 531 476 417 3352
28 11350 893 N9 625 566 524 469 411 346
29 | 1339 885 ,\;«12 619 559 518 464 405 341
30,1320 §7 0705 612 553 512 4358 400 336 25
a0 | 1261 660 370 513 473 421 364 301 22
60 | 11974\776 617 531 476 437 387 331 269 16
120 | 1138977-31 579 495 442 404 355 302 . 240 15
" l& 374 327 274 243 10

AQEY 691 542 462 410
4

Lower 0-17; points are found by intexrchange of »1 and #s, i.e. n; must always
correspond with the greater mean sguare,

Table 3.5 is reprinicd from Table V of Fisher and Yates' Statistical Tables for
Bivlogical, Agricuitural and Medical Research (Oliver & Boyd, Ltd,, Edinburgh) by
permission of the Authors and Publishers.



CHAPTER 4

DOSE-RESPONSE LINES

4.1. Linear regression

In the preceding chapters we have seen how to test for sighiticant
differences between the means of arrays. We shall now pass O
consideration of how to relate such differences to othe;gl‘u&ors
which are believed to cause or to be associated with théme) We
may have established that there are significant dif’feren’césﬂ'hetween
the weights of rats of various age groups. How ai€ “we tu rclate
age, known to be associated with these differences in\wcight, to the
differences themselves? The statistical method$ dpplicable to such
problems are those of regression. The regre\ssion line is ong which
relates the changes igbonej, ggriablq to accQmpanyinyg chunges in a
second variable! “THUS, Were w e%lcf{'ﬁ%sc;ibe the changes in weight
which take place in rats as their age ddvances by means of a mathe-
matical equation or graphical]y,,jgve' should be dealing with the
regression of weight on age, %%

Regression lines may be str’q'fgflt or curved. We shall confine our
attention almost entirely'\ to straight regression lines, i.¢c. those
exhibiting finear regrgm?m, since it is our endeavour always to deal
with the results of hiel6gical assay in such a way that the relation
of one variable o, another may be expressed in'linear form. A
straight line may jbe expressed by the equation:

.M;:.\“ N Y=a+bX

In tl}iQ@gkession line, Y is called the dependent variate and X the
independent variate, since the line describes changes which occur
min}:Y as a-result of alterations in X. The numbers ¢ and /b are
\ bonstants‘of the equation, ¢ equalling the numerical value of ¥
when ’X 18 zero, and b, the slope of the line, or the regression
coefficient, tells us how Y increases (or if b is negative, how ¥
gﬁgﬁs? g?al;ll’l iit;c:r?ziis;. irtl F‘ilglmt;e 4.1 these relationships are
distance up the ¥ axis o.r 1'd'Wl ; seen. that 4 e t'hc
cuts the axis, while 5 "mathg Htl'azleﬁ . Whu?h th{e rreression It
the angle which' the h',ne makma head Speakmg:, is the tangent of
€8 ;v41th the X axis, or abscissa. In



TDOSE-RESPONSE LINES 35

biological assay X stands for the dose of the drug and ¥ for the
response. For reasons which will be discussed more fully [ater,
X will often be expressed in terms of the logarithm of the dose,
ie. the Jogarithm of the number of mgm. or ml. of a substance

o~
(1N
=
<
-4
z .
=
z &\
=} O
2 W
o 7N
o 7 | B=TANG x'\\ ¢
> AR <

! S

a \ ¥

| )

X (iNDEPENDENT mrzmrg)"&\
FiG. 4.1. Illustration of linear {Eﬁl’;@sﬁ)h?‘a ulthrary org.in

\/
under examination, and Y, the rBSponse may be measured in
different assays in a great variety of ways

4.2. The regression of response on: dnse

In Table 4.1 are shown the . eSults of a test in which five groups of
capons, cach group con@mng five birds, were injected with

':3 TABLE 4.1
T}YOSE-RESPONSE DAIA \F(JR THE YNIECTION OF ANDROSTERONE TOQ CAPONS

& Group
N 1 2 3 4 5
Dose in mg.
(Xp—Xp) 0-5 10 20 4-0 30
o N
Repomx,,. 8 5 13 17 17
\/ 1 6 7 14 17
1 G 12 - 14 20
3 7 19 19 i8
1 4 11 13 15
Totals, T; 14 k1l 33 77 87 Sumn, T=262
Mcans, ¥y 28 62 106 15-4 174 ¥=1048
SY2 76 207 583 1,211 1,527 SSYy2=3,6040
Tu¥p 39-2 1922 5618 [,185-8 1,513 8 TP=274516

Difference, Syp2 368 148 212 252 13-2 Sy2=858-24
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international standard androsterone (Greenwood, Blyth and Callow,
Biochem. J., 29, 1400, 1935). Androsterone is a purc chemical
substance which has the actions typical of the hormone produced
by the testis, and responsible for the secondary sexual characteristics
of the males of vertebrates. The capon is a castrated cockerel and
has only the vestige of comb and wattles. When androsterone s
injected into the bird it stimulates growth of the comb and wattles,
and these may therefore be used as test objects for the assay of male
hormones. In this test the increase In size of the comb was used
as an index and expressed as mm. increase in length plus height

Using the methods of the preceding chapter, we sum the rgsp}mses
and the squares of the responses in each group, giving u§' W scries
of totals, T,, and means, ¥,, and sums of squares of obsérvations,
$Y,2. The grand total, 7, the corresponding medir) ¥, and the
corresponding total sum of squares of observctio\ns, S8Y.2, are
also written down. Only the totals for sums of siuares of obscrva-
tions arc given in the Table. The sums of\deéviations from cach
group mean and from the general mea‘n;%j},,2 and S¥I are deter-
mined by subtra¥GiE SH P ¥iRdBonding means of squares of
observations, the total for each gréup multiplied by the mcan of
each group.

Although it is not necessagfifor the purposes of calculation to
determine the individual suins of squares of deviations for each
separate group, this has Bi¢en done to illustrate the addition theorem
of the analysis of vari'apc\c and the fact that Sy2 may be broken down
into a series of sums\ol squares, each associated with a particular
source of variatioh. An analysis of variance showing that the five
groups differsignificantly in mean response could be built up {rom
the data in/Bable 4.1, but this will be postponed until further analysis,
which follows the calculation of regression, has been made.

Welwill suppose that we have already tested that the differences
bg;W,éen these groups are significant and thus that there has been a

"mcéningful difference in response to the various doses. W now
wish to relate mathematically the increasc in comb size in the
different groups to the dosage of androsterone which they reccived.
We wish further to determine the regression of mean comb size on
dose. Readers who are already familiar with the concept of
regression will be aware that there are two regression lines which
may relate such variables, namely, the regression of ¥ on X, which
we have been considering, and the regression of X on ¥, These
regressions describe theoretically the average change in Y as X
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changes and the average change in X as ¥ changes. They will not
be identical unless the points all fall exactly on a single straight line.
In the calculation of regression it is, however, essential that the
values of the dependent variate shall not have been arbitrarily
selected.  If selection has been exercised in the dependent variate,
the regression calculated from such material is invalid. Since we
choose which doses are to be administered in biological assay, we
exercise selection of the dose and it must therefore be used as the
independent variate.

The complementary regression, that of dose on response, has been
calculated and used in published works through a misunderstandings
of the problem. It isunderstandable that this should have occurred,
since in assaying the potency of an unknown preparation @4 are
estimating its activity from the response it has producgdy and. it
would thus seem reasonable to estimatc this dose fr0m=i3\f gression
line which might be thought to tell us the most likely dose corre-
sponding to the scries of responses obtained, However, the use of
this inverse relationship is a mistake which mly{tmahdale any con-

lusiot
clusions drawn from the data. \w\).-'w dbraulibr ary org.in

4.3. Caiculation of the regression line 3, .~

It will be remembered that the mecm of an array is so determined
that Sy=0. It is easy to show tha:t S¥2 is less when the deviations
of individual items are taken, from the mean than when they are
taken from any other pomt\ When considering a unique set of
observations, the two stat@tzcs by which we describe this set are so
related that the sum ofallthe deviations from one statistic, the mean,
is zero, and the swmy pfthe squares of these deviations is a minimum.
This sum of squ\ 88 divided by the number of degrees of freedom
gives us the second statistic, the variance.

When a s@t of arrays are to be related by a regression line, we
procced by\analogy with the above. We determine a line such that
the sum of the deviations of all observations from the line is zero.
It thele’is an equal number in each array the sum of the deviations
of the means of the arrays from the line is also zero, and the sum of
the squares of these deviations is minimal. This is the classical
mcthod of least squares. We cannot determine the regression line
by a simple procedure exactly equivalent to that by which we
determine the mean of a set of observations. In calculating the
equation of the line we have to employ the fact that §y? is minimal
when Sy is zero. When we have calculated the line we have a new
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statistic, b, the regression coefficient, which relates changes in one
variable to those in the other, and the two lines which may be
calculated thus satisfy the two possible criteria, that the deviations
of X shall be fitted by least squares, and that the deviations of ¥
shall be fitted by least squares. 1t has just been explained that we
are interested only in the computation of the second of these two
regressions,

A regression line calcutated according to the principle of least
squares passes through the point X, ¥. If Eis the value which we
predict from the line should be the response to a given dose, ‘Qie

regression equation which we have fitted is -\

E=a+bX A9
Since the point X, ¥ lies on the regression line, F at.4is point is
equal to ¥. Hence K7, \ I

P=a+bX and a=T—HF NN

\

Substltutmg this value of @ in the equation Qs that
= Py Rieydibrary BT b(X X)

from which we have eliminated a. From the principle of least
squares it may also be shown that, tha best estimate of b is given by

®

the equation N
. SU—ENY—T) _Sxy
sS(X X2 Sx2

If #, is constant, \

__S_(__Af_ -X)¥,—¥) _Sx,5,

S(X -0z Sxz,2
QN

With these ejq{gations we can calculate the regression directly from
the observations. FEach dose in mgm. is converted to its corre-
sponding\JYogarithm, using the most convenient base for the
compuitation in hand. If the doses are irregularly spaced, there is
T, pﬁmt in using any other than base 10 and the logarithms are
?sad off from an ordinary table. If, as in this case, the doses are
so spaced that their logarithms increase in arithmetical progression,
then the most convenient base to use is that given by the ratio of two
successive doses. Each successive dose in Table 4.1 is twice the
dose preceding it and we therefore take logarithms to base 2 and
call these the coefficients representing the log dose. These are the
successive values of X,, which, since all doses in a group are the
same, equals X, In order to calculate the regression line we
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determine S%,2 and SX%,5, the sums of squares of deviations of
doses from the mean dose, and of the products of the corresponding
deviations of doses and responses from their respective means,
We saw earlier that ~
Sxi=85X2—nk?
The analogous identity relating sums of products is
Sxy=SX¥Y—nXY
where »n is the total number of observations. The mean product

of xv, which is Sx _)il analogous to the variance of a single variale\

is called the covariance, and b, the regression coefficient, is tlze.co-

variance divided by the variance of X. Since it is unnégessarj,

directly to determine the covariance and variance by @mimg the

sums of squares and products by the common factcn{ w1, we use
38-4

the equation derived above, so that for Table 4.2xb= 10" or 3-84.

Substituting in the equation _y, 4

&
E—p= b(X—X\)\ ‘Www.dbraulibrary org.in
we find that

E—1048= 3 84{X—1)
whence
E=6 64'—}-3 84X

From this equation we maéﬂga{culate the value of E for each dose,
and this is {abulated unﬂ the estimated response in Table 4.2.
TABLE 4.2
CALCULATIONCOF REGRESSION WITH CHECK FOR TABLE 4.}
Dose Coeﬂiéie}; for Resp?onse, X2 X, ¥, Estimated wp(¥p—E)

g dose o response, E
=log:
A\ (dosc)
035\‘; Vo~ 28 I —-28 280 0-000
@ \. 4 ] 62 0 0-0 664 3968
N0 1 106 1 106 10-48 0072
40 2 15-4 4 30-8 14-32 5-832
&0 3 174 9 502 18-16 2-888
Totals 5 524 15 908 524 9760
Means 1 10:48 — —
Correction for mean 5 52-4
Sums of squares and products 10 384

= 5%Pp 384
S 100 o4
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The square of the error of each estimate (¥,— E)2 is listed in the
next column as a check on the calculations. The sum of the errors

of estimate is zero, i.e. _
SE=357Y,

and the sum of the squares of the errors of estimate, Sn(Y,—E)?,
which from the definition of the method is lower than that which
would be given by any other straight line, is 9:760, Note that this
sum of squares is computed with regard for the number in each
group. It isunnecessary, except for the purpose of interest and\for
checking, to calculate the sum of the squares of the errors of e‘ﬁ%ﬂte
by this method, since they may be calculated direcllv'ﬁom the
relationship O
(87,X,7p)* *
= :'\

Sni,x:,':\z“

zSnﬂfﬁz—@Jj”).

prr
since #, is constant.
This quantity com&&y 9“789“5?%‘%?581%‘4 2.

Snf¥,— E)2=8n,5,2 —

4.4. The analysis of variance, mclpdmg regression

We are now in a position tc;»’.tébulate the analysis of variance for
these data. We have splitithe sum of squares into three parts.
These are listed in TabJ{(éf.l

7

“8  TABLE 43

S

ANALY%Ié“OF VARIANCE FOR THE DATA OF Tanre 4.1

Source of varw\mn Formula Degrees of Sum of Mean F F
& freedom  squarcs squdre
. w2 Fwhin)?
A. Lme{hegressmn rh{g—?’f”‘)— 1 737-30 7373 1326 -Z0-00t
B. De{uatlons from i '
(“\regression Snpvy?— A4 3 976 325 0-58 =003
\(,; Random sampl-
ing (error) SSyp? 20 i11-20 5-56 -—
Total Sy 24 §58.26 _ -

Part A is that which can be accounted for by the regression of
response on dose and with it is associated one degree of freedom—
that *“‘used up” in calculating the regression coefficient,

Part B represents the deviations from this regression line which
the means (¥,) exhibit. With these deviations are associated threc
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degrees of freedom, two less than the number of groups. The total
number of degrees of freedom between groups is four, one of which
has already been accounted for in the calculation of the regression
line,

Part C, called random sampling, is the total! sum of squares
within groups (55,2} and with it are associated the 20 degrees of
freedom, four within each group. These three sums of squares
should and do add up to the total sum of sguares {(5y?) and the
number of degrees of freedom add up to the total number of
degrees of freedom in the whole set of observations, or 24 degrees.
freedom. The mean square or variance associated with A, Ban
C is obtained by dividing by the appropriate number of dégrees
of freedom and is tabulated in Table 4.3. The first two.mean
squares are to be compared with the third, due to rando 'sampling,
which we use as our estimate of the error inherer(iﬁ the deter-
mination of the statistics computed. F, the drkince ratio, is
obtained by dividing these by the mean squarg\5+36 and takes the
values 1326 and 0-58 respectively. The fisStyvalue is very large
and P, the probabjl_ity of equalling or e&e@@ii}%&%{lﬁﬁ?{? ‘.‘8‘?."&‘1;1“
fact no real regression of response on §ose, is infinitesimal.” S
second value of Fis less than unity, which means that the deviations
from regression are smaller than \yp{ll'd be expected from the degree
of variation shown within grogps. Values of F less than unity
will not be found in the Tables of F, and in order to test the signifi-
cance we take the reciprqcﬁjk})f the value, which is 1:72, and enter
the Table of F with ngéqal to the pumber of degrees of freedom
in the larger mean sguare, in this case n; =20, and n; cqual to the
number of degrecg?of freedom associated with the smaller mean
square, whence f2=3. We then find that P is greater than 0-05,
which means~thdt the deviations from regression, although rather
smaller tth{souid be expected, are not so smali that any signi-
ﬁcance‘is}.)o be atiached to the fact. From this analysis we thus
conclfde that there is a highly significant regression coefficient
rdating response to dose and that the points we have determined
fit a log dose-response line perfectly well. This is illustrated in
Figures 4.2 and 4.3,

4.5. Log dose-response line
The log dose-response line had the equation
E=664+3-84X%
in which X, the coefficient for log dose, is the logarithm to base 2
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of the dose. There are no logarithmic tables computed to base 2,
but this need occasion no alarm, since a simple transformation is
available by which we may calculate the value of E for any chosen
dose, using ordinary tables of logarithms., The relationship in

question is '

log o X'={logxX){log,oN),

where N is any number. Hence, in order 1o convert the regression
equation to one in which the logarithm of the dose is taken to base

A X

C'omd increase (L 4+ H) inm. after 5 days

Total dose {mng.)
Fig, 4.2. Dc:sxl;eéponse curve for the data of Table 4.1.

&

N\

{From Greenwood,
Biyth and Callow, Biochem. J., 29, 1,400, 1935.)

10, yyg'\Bivide the term involving X by log,,N. The equation now
bgcomes:
o\ 4 384X

3 =6 - YA g, .
\/ E 64-{-0_3010 66d4+12-76 %

4.6. Regression with unequal groups and spacing of doses

In calculating the above regression we were dealing only with
groups containing equal numbers of animals which were given
dosages in geometrical progression and computation was relatively
simple. It sometimes happens cither through bad planning or
unavoidable accident that the numbers vary from group to group.
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It may also happen, usually through lack of foresight, that the
doses are not in geometrical progression and thus do not lend
themselves to easy calculation. Wc shall now consider how to deal
with the calculation of regression in a case where the number of
observations in each group is not the same and where the doses are
not on a convenient scale.  In Table 4.4 are shown the resuits of a

s

raulibrary org.in

Comb increase (L + £ mm. after 5 days
=)
¥

2k

N 'J i L i 1 : I

A\ s 2 1 B
:":\{' Total dose (mg.}. Log scale

FiG. 4.3, T {a. of Fig. 4.1 plotted as response against log dose.  (From Green-
wood Blyth and Callow, Biochem. J., 29, 1,400, 1635)

s’t‘mwlnch five different groups of rats, which had been maintained
diet deficient in vitamin A, were then given supplementary
ratlons of vitamin A for a period of five weeks. The vitamin was
given in the form of cod-liver ¢il and doses are measured in terms of
the number of mgm. of cod-liver oil given daily to each group.
When little or no vitamin A is included in the diet the animals losc
weight. On supplementing their dict with cod-liver oil, rats gained
weight in approximate proportion, 4p to a certain maximum, to the
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logarithm of the dose. The data in Table 4.4 are the records of an
actual experiment which were published without any information
about the individual gains in weight (Coward er al., Biochem. J .,
24, 1,952, 1930). Thus for each group we know only the number
of rats, the mean guin or loss in gm. and the dosec which rats in
the group reccived. We therefore cannot calculate § ¥2, nor for
the purposes of illustrating the calculation of regression is it
necessary to do so.

TABLE 4.4 .
"\
CALCULATION OF REGRESSION OF MEAN WEIGHTS OF \"IT.-’\]\-IIN-D:l:E';If'IL-‘NT
RATS ON DOSAGE OF CODR-LIVER OI1. ...< w
Dose | X= Mcan | No. in - N\ ‘
inmg.: logyy . weight | group i ,j\\ ’ i
(dose} ingm,, np l _ '\ ¢ B B
Y i ?T}JXp Np ¥y Hp/?pz . .”pXD ¥y i ¥ p2
025 —0‘602‘ —115 © 31 —18662'~ 356511235 21461 | 4.0998
10 0-000 13-0 37 0000 48VDyY 0-000 000 | 62530
15 | 0176 171 35 6160 S98%, 1084 10534 102344
25 I op3sg| 277 32 12736 \N886-4| 5069 35279 - 24.5533
73 1 0875 | 48-2 3 27-125 i’l',¢94-2 23-734  1,307-43 | 72,0204
Totals | 166 ‘ 27,359 '3,103:6 | 41122 1,980-17 117,160-9
Means [ —  D-16481° 1869647 — — . =
Correction for meanysww .d braulibyary.org.in 4:509 - 31i-51  SR.0261
Sums of squares and products 'i ’ 36613 |1,468-R_ _59-134‘8

SrpZpPp_ 1,468:66 ¢ LN
b=§p;—pz"=-3sm'=‘4ﬁm3,

The logarith’£6 base 10 of each dose is noted under X,. 1t is
only necess?.(y..to write this logarithm to the third place of decimals
and it wilkbgseen that the logarithm of the smallest dose, 0:25 mgm.,

“is a ng Ve number, ascertained by subtracting the logarithm of
2-5 fram | and changing the sign. We¢ do not leave this logarithm
indthe form 1-398, as we would in using it for common multiplication

oy division. ¥, is then written down against each X,. Again it
will be noted that the group on the lowest dose lost weight and thus
the gain in weight is negative.

The number of animals in each group, #,, is now tabulated and
is to be vsed as a weighting factor by which to weight the observa-
tions in each group in the caleulation of regression. Fach animal
in the test is supposed to contribute unit amount of information,
which it will do as long as the variance is independent of the
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response; and thus the value of a group in determining the slope and
position of the dose-response line is directly proportional to the
number of animals it coniains. The next two columns, under the
headings n,¥, and n,Y,, are filled in by multiplying the log dose
and response respectively by the number of animals in each group,
and the corresponding weighted means are determined by dividing
the sums of these columns by 7, the sum of all the »,s. The last
three columns in the Table, which are the sums of sguaresand
products as before, are each weighted by multiplying the 1nd1v1dua1
entrics by the corresponding n, and the totals are recorded at thé
bottom of the column. In order to obtain the weighted sums\o
squarcs and products, we subtract in the case of the sums of sc;uares
the totals multiplied by the weighted means (7¥ and T() and »
times the product of the two weighted means (this cqua‘ls either
total times the complementary weighted mean in ;t{es «ase of the
sum of products). These corrections when subfracted from the
tolals give us the weighted sums of squares cu\cl products. b, the
regression coefficient, is then ;,
StyZ,Py N D

-40 133
RY -

.. b
N

The dose-response line is
E—18:696=40- 133 (X 0643 pulibrary org.in
E-<\12 082+40-133X,

and is shown in Figuré 45@ That part of the variance of the means
which is attributablgMo linear regression is
£ : N (Snp%,5p)2
‘~~:> Sny¥x,?

which is, §\912 3. The sum of the squares of the deviations of the
mcans\ﬂ’om ¥ on a per item basis is:

O Snyp,2=59,134-8

and the difference between these two sums, which is the sum of
squares attributable to deviations from regression, is 222-5. The
accuracy of these calculations may then be checked as in Table 4.5,
where the estimated responses are compared as in Table 4.2 with
the actual mean responses. It wiill be seen that the total errors
of estimate in this Table add up to —000, the difference tfrom
zero being accounted for by the rounding of numbers used in
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constructing Table 4.5, and our total for the sum of squares of
errors of estimate is 221-75, which agrees well enough in this rough

S (GM)
2 by S

5]
=

=

=

MEAN GAIN IN WEIGHT OF GROUP OF RAT
1
=

-20 1 1 1 I ol O';\ 1 I L
-06  -04 <02 o0 %\; 04 06 08 10
LOG DESE

FiG. 4,4, The relation befween the mearﬁ:ﬁal‘n in weight of groups of vilamin-A
deficient rals and the log dose®of cod-liver oil (Table 4.4).

\
kS
N

check with the ﬁgm*e-%i@yg,bﬁms@f&é@ also to illusirate that when

calculating to a high deBxee of accuracy, it is desirable to retain
more figures after th{*d,ecimal point than those in Table 4.5,
A

TABLE 4.5
(GHECK ON CALCULATIONS OF TABLE 4.4
Mean r@’S]:qﬁnsc Estimate, Error of (¥ = 1)

:&,' E estimate,

O (¥,—E)
AN 115 —12:06 ~0-56 9.72
M\;“' 130 12-09 -—0-91 30-64
/ 17-1 19-15 205 14709
277 2805 0-35 392
482 4719 —0-99 30-38
Totals —006 221475

Table 4.6 gives the analysis of variance for these data, analogous
to that in Table 4.3, except that there is no item under the heading
“random sampling,” since we do not know the values of the
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individual observations. When confronted with such material
we may estimatc the significance of the regression cocfficient by
using the deviations from regression as error. 'We do not know
whether these deviations are significant, but if they are it mcans
merely that we are using a larger mean square against which to
test the significance of the mean squate attributable to linear
regression Lhan might be the case if we were fully informed as to
error due to random sampling. Indeed, if these deviations are
significant and in addition are not systematic, and give no indication
that the data depart in some regular way from a straight line, ly'ng
for instance on a smooth curve, the mean square associated(With
deviations from regression should be used in assessing the \signi-
ficance of the regression cocfficient, even if an error rpgaﬁ"'square
is available. Under these circumstances we are fa(;eQ\inth signi-
ficant heterogeneity of the test material, and theSifuation is not
satisfactory. Only if the deviations could be feund to be sig-
nificantly less than those cxpected on a ragfl,om sampling basis
would their use as the error term prove {0thave been fallacious.
This situation would, however, be unlikBly in practice and the use
of deviations from regression in a:gs;fy"mg the significunce of the
regression is quite justifiable when fe other information is available.
The value of F in Table 4.6 is'yfp{:y high (792-9) and we thus have
every confidence in the extrenmtely high significapeseftie _ggg_)ﬁion
coefficient (it exceeds theQO-l o level of significance for #;=I;
n;=3). ¢ &N

O\ TABLE 4.6
ANALY${S6F VARIANCE FOR THE DATA OF TasLE 4.4
Source of vs,ria}k}on Formula Degrees  Sum of Mean F P
\¥ of Squares square
{ freedom
. et (S?Tp,\_.'p,fp)z
A, Lineatregression  —5 - i 58,912:3 589123 7299 <C0-001
o N Shpin?

’.'D:sviations from
rgoression (used
as error) ShpFp?—A 3 222:5 743 — —

Total A 4 59,1348 - _ —



CHAPTER 5

FURTHER DISCUSSION OF DOSE-
RESPONSE LINES

5.1, The log dose-response relationship

When the response to a series of graded doses of a pharma-
cologically active substance is plotted against the doses on an
arithmetic scale, the ling relating these two variables is L{sﬁaﬁly
curved. Very low doses may elicit no or practically no reSpbnse,
and high doses may elicit responses which differ very Kitle from
onc another if the maximum response which the gest’object is
capable of exhibiting has been reached. Betwcen,\»t]jése’twu levels

120 2 X

.
<
©

40

v 2] L L L i1 1
'\\ 0 10 20 30 40 50 60
W\ DOSE, IN MG,

FIG,"\‘E:}.'Thc response of groups of pigeons to various doses of prolactin,  Pro-
#s\Nctin stimulales the growth of the crop-gland, the weight of which is uscd i

/ assaying preparations of the hormone. (From Emmens, J. Fndocrinol, 2
194, 1940.)

will be a range over which changes in response as the dose is
increased occur most rapidly, and it is this portion of the curve
which is used for the purpose of biological assay. Sometimes, as
far as can be determined, very small doses take effect and there may
be no apparent region of a curve over which they are ineffective.
Some examples of typical dose-response curves are shown in
Figures 5.1-3.3. The curves fitted to the points arc logarithmic,
48
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and do not pass through the “response” to zero dose. It is
characteristic of the middle ranges of such dose-response curves,

o)
.
401 f
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K7,
&
0 1 1 1 1 1 2 J;;x\
o0 a2 04 o6 a8 0 N 14

DOSE, IN GM. O
Fii. 5.2, The mean ovary weight of groups of female il injected with a gonado-

P 4

irophic preparation of pregnant women's serum'\ “From Emmens, J. Endo-
crinod, 2, 194, 1940.) \\\\‘;

where the curve is stcepest, that equal JIficrements in response are
not produced by equal incremenis™in dose, but only by equal
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Fig. 5.3, The relation between the growth inhibition produced in plate-droplet
cultures of Staph. awreus and the dose of penicillin in international units.
The response 1s measured in grades approximately corresponding to the width
of a ring of growing staphylococei. The growth of this ring is smaller, the
higher the dose of penicillin.

muoltiples of the dose. Thus, while response is increasing in
approximately arithmetic progression, the corresponding doses are
5
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increasing in approximately geometric progression. This has long
been recognised as characteristic of a large nomber of pharma-
cologically active substances, which are then said to folinw the
Weber-Fechner law, so cailed after its first discoverers. Duose-
response curves which follow this law may be converted to struight
lines by the simple transformation of dose to log dose. In plotting
the curves the logarithm of the dose may be read from tables and
plotied along the abscissa instead of the dose itself, or specially
prepared logarithmic paper may be used to simplify the makingvof
the diagram. In such paper one or more cycles to basc‘.lf}\are
plotted logarithmically on the sheet, so that it is unncce§suty for
graphical purposes to determine the actual logarithms ofithe doses.

The statistical handling of dose-response data has, grown up
around the almost universal log dose-respons Alationship. It
so happens that this naturally observed relatignship lends itseif
to ease in computation, particularly in the c@tcrmination of relative
potencies. Occasionally, dose-response data deviate so much from
a linear log dose-response relationship\that the latter canno. be
used for computation. Such cases{often present difficulties for
the statistician, and.the use of othier Tormulae will most frequently
lead only to.approminate-saeiheds being available in the com-
putation of relative potenciég®and of error. Thus, it would often
be preferable to fit the &bserved data to a log dose-response line
over, perhaps, a ]jmi‘ge\‘d,\range of response and to take into account
the deviations whieb\such data may show from a directly linear
function in the eStimation of error. When the dose in arithmetic
units is linearly related to the response, the methods described in
Chapter 20yindy be applicable.

Al t!f’::thought will make it quite clear that the log dose-response
f'elatﬁo hip cannot hold over the whole range of dosage in any
instance. There is never an unlimited maximum to which the

~Jesponse may rise, whilst the lower part of the curve, which culs

the_X axis at some point greater than X=0 and then plunges

rapidly down‘ asyt:nptoticaliy to the Y axis, cannot describe

:,gci?eI:i:}:{;zzgépofpf}twem dose and Iesponse. This does not

used, and over which it ?SCI;;V :hgver {he_reglon fn which It 3 10 b¢

’ er wl majority of cases an extremely

goodl approximation to whatever may be the true form of the

relationship. thur'.s:s 5.4-5.6 show the curves of Figures 5.1-5.3
plotted on the logarithmic scale.

Thus, in dealing with the conversion of dose to log dose in
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statistical computation, it must be borne in mind that the relation-
ship which we choose to empley may have no higher status than that

of an avowedly convenient method of graduation.

Biometricians
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Fii, 5.4, The data in Fig. 5.1 plott&\u\on a log scale.
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Fic, 5.5. The data in Fig. 5.2 plotted on a log scale.

a siinple quantity as the weight of an animal or the amount of gas
evolved in a chemical reaction should follow the Weber-Fechner
law, there may be no reason at all why some quite artificial index
of response should do so.

Responses based on a series of arbitrary
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grades, an example of which is the grading 1, 2, 3, etc., given to a
series of changes which occur as the result of the administration
of a drug, may fit a logarithmic curve by chance, but there is no
inherent reason why they should do so. The grading may, of
course, be modified in the light of the rclationship subsequently
discovered between dose and response in order that the new
relationship, as measured by the grading, may be more suitable.
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FiG. 5.6. The data in ﬁig. 5.3 plotted on a log scale.
A

5.2. Using the relati ip in assays
In relating the jpoténcy of one drug or preparation of a drug to
that of anotherywe must satisfy ourselves that the actions of the
two are identical. Apart from the usual biological control which
will be exexsiSed to ensure that such is the case, a properly designed
test wiiﬁn’éi{;de a statistical check on this fact. The check consists
in gsﬁ@ﬁ)lishin‘g that the same dose-response curve may be fitted to
tHeytwo separate substances. When dealing with a linear log
\c}(‘i'sc—response relationship, this implies only that the two dose-
response lines shall be parallel. If it is found in practice that they
are not, it means, guite simply, that under the conditions of the test
the one substance cannot be assayed with any accuracy in terms of
the other, since our estimate of relative potency will depend on the
particular level of response at which it is made. Thus, in Figure 5.8,
which illustrates the case in which two log dose-response lines arc
not parallel, the potency of substance A measured at a 40-mgin.
response level would be twice that of substance B, whereas if the
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measurement i made at 80 mgm. response the potency of sub-
stance A Is approximately four times that of substance B. When
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Fig. 5.7, An assay with paraliel log dose-response lines, \"fhe log ratic of potency,
M, is constant at all levels of response of %ubstdns\{Qﬂ and A,

the two lines are parallel, M, the loganthm ofthe relative potency of
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Fic. 5.8, A iest with log dose-response lines not parallel.  The log ratio of potencey,
M, depends on the level of response at which it is measured.

When planning the setting-up of tests involving the establishment
of a dose-response curve or curves, the following points should be
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borne in mind. I two groups of animals are given two different
doses of a substance, the two points X;, ¥, and X, ¥; may be
fitted by a straight line simply by joining them, and there will be
no test available of the adequacy of the log dosc-response line or
any other line, except lines fitted on some assumption involving
the “response” of an untreated group. It will be noted that
observations from a control group receiving no treatment cannot
be fitted to a line relating the logarithm of the dose to response,
Such a control group is useful, however, in showing whether, the
group exhibiting the lowest “response™ is in fact responding at'all,
If it is not, it too is of no use for the purposes of assay. ¢ W)

Three or more treated groups enable us.to test the lingakify of the
relationship, and it is in general advisable to use at least"tgur zroups
and preferably more in preliminary investigations to’decide whether
a proposed method of assay can reascnablyNbeg® based on -the
hypothesis of linearity of the log dose-responseyelationship, With
three groups, deparfure from linearity of thej:\}‘cirm of simple curva-
ture may be detected and with more thanghree groups the possibility
of departures of a more complex type{catt be examined. We¢ have
already seen in the preceding chapter how such tests muay be
conducted by’ Hﬁé%f%@%&lﬁﬁ}wf variance. We establish first
that there is a significant regr.ess‘idn of response on dose and in the
light_of the variance of ¥Y7we test whether the errors of estimate,
Sn(¥,—E), can be accounted for by random sampling or whether
they are too large fofthis to be likely. If they are 100 Jarge for the
log dose-response gelationship to be tenable, we may allow for the
excess departuré/in’ our estimate of ertor, or we may attempt to
modify the way.in which we measure or express the response so as to
obtain a linear relationship, or as a last resort we may be compelled
to abgq@bﬁ the log dose-response relationship altogether,

Tl)jes;e are the kind of preliminary investigations which will most
usdally be made with a substance intended for use as a standard
preparation when we are investigating the possibilities of deter-
mining potencies by any particular method. When we are satisficd
that a linear relationship with reasonably small errors has been
established for any particular method of assay, we shall then proceed
to set up tests for comparing the potencies of other substances with
that of the standard, and while we shall normally include sufficicnt
doses of bot'h unknown and standard at least to lest the validity of
:?em?sumptlon that the two a_\re ﬁ_tted by the same regression line,

¥ not be necessary to establish complete dose-response lines
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for either the standard or unknown in the coursc of subscquent
AS5ays.

Some of the dose-response lines used for the purposes of illustra-
tion in this monograph do not have the doses arranged in geometrical
progression.  They have been taken from the literature for illus-
traiive purposes, and, except in so far as it facilitates computation,
it is not essential that in the establishment of original dose-response
lines the dosss should be arranged in any particular order of magni-
tude as long as they cover a wide cnough range. However, it 18
not sufficienily realised that the full value of modern statistiCat
treatment can only be attained in biological assay when thedoses
of both the unknown and the standard are distributed systematlcaliy
They must be distributed in geometric progression, whu:h means
that their logarithms must be in arithmetic progress\rqn Failure
to plan an assay along these simple lines leads nof énly to a very
much more complicated analysis than should haye’been necessary,
but may also make it impossible to obtain as mueh information from
the data as could have been obtained. The g\eat ease of computa-
tion to which this arrangement lends its¢if may be realised when we
consider that, by taking our logarithms fe /a base equal tothe multiple
by which doses qre increasing, Wey can express the log dose by the
natural numbers, 1, 2, 3, 4, ctc., Ourfinalbestitate, @tfgnr;k]dtwc
potencies will not normaHy beva cardinal number, and in order to
convert this logarithm bz\ kMo the equivalent dose we have to
remember the relationship” in Chapter 4. The use of such a
conversion factor is freq\ently well worth while, as the few logarith-
mic transformariop§ Wwhich have to be made at the end of our
calculations takélittle time compared with the increased computa-
tion which woﬁm have been necessary had logarithms been taken
to base 10\1; Jany other base.
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CBAPTER G

RESTRICTIONS IN DESIGN

6.1. Randomisation of test objects

Ope of the variables in biological assay is always arhitra.tily\"
selecled. This variable is the dosc of the drug which is toab
administered to particular groups of test objects, Qther vgu'{aibles
which may be capable of influencing the course of the Yost are
frequently subject to selection as well. In the descri%(i‘r}h of the
majority of biological assays a considerable am ubt of space
is given to defining the conditions under whickithe test shall be
made and describing the class of test object siitable for the test.
Animals of only one sex and between certain’a}gé's and weights may
be prescribed; the test must be conducted within certain limits of
time and perhaps at certain temperatures; and the response must
be measured stbieet byastierymdigions, morce or less rigid.  Thus,
althongh the question of designing tests in which certain rigidities
of this kind may be relaxed will'be discussed later, it is generally
speaking true that the mere rigid these initial conditions are
made, the more accurate(Sthe test.

Once these initial Specifications have been fulfilled, it is then
necessary to sce thdlthe allotment of test objects to doses and to
any other restrigted/classes which may be included in the design of
the test shall take place by a process called randomisation. Allot-
ment at ragdom is comparable to the process of thorough shuflling
and dea]{g\g from a pack of cards. In the simplest case, where we
wis}},{fo'r mstance, to allot five groups each of 20 animals to five
diﬁgrent doses, we could do so by writing the number of each
'zhsimal on a slip of paper and drawing them one after another
from a hat, allotting cach animal in turn to group I, 2, 3, 4 or 5.
This is rather a tedious process where large numbers are concerned
and to save the experimenter the trouble of carrying out the actions,
tables of random numbers have been preparcd (as in Fisher and
Yates’ Staristical Tables for Biological, Agriculiural and Medical
Research, Oliver & Boyd, Edinburgh) by which the test objects
may rapidly be allotted to classes,

56
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Many workers have been under the impression that such a pro-
cedure as taking the first 20 animals that come to hand from a cage
and allotting them to the first dosage group, taking the next 20
and allotting them o the second dosage group and so on, con-
stitutes random selection. This is most definitely not the case.
The first 20 animals that come to hand will often be the tamest
animals. They may be the biggest animals and they will quite
rarely be representative of the group as a whole. A striking in-
stance of this occurred when an assistant was requested to sefect
groups of mice at random, and it was afierwards possible to
demonstrate a highly significant correlation between the order i’
which the animals were taken from the cage and the weight of\the
animals.  Similarly, it is not random selection to allot the P:)i) rack
in an animal room to one dose, the second rack to anotp{:r;énd S0
on, because the position of the animals in the room w'ﬂ\’s;bmetimes
affect their response in the tests. The top of thc}‘\i"'oom may be
lighter than the boitom; one wall may be wachier than another;
and animals in the one position may even recglye more food than
those in another if assistants feed them in a’%twroutine; and these
are factors likely to affect ihe results of(@ large number of tests.
The order in which doses are administeréd may also affect results:
tl?.ls is parnculale likely to ha}p__peg; th@%ﬁ%@%ﬁﬁsg}eﬁsumd
within a short time after administrgtion or if the drug i§ givetlat a
© certain period after preparationof the test object. Thus, whenever
suich factors are even remotely likely to affect results, the order of
administration of doses ,sb‘og}uld also be determined by a process of
strict randomisation. "¢ Should be noted also that attempts to
adjust groups of dnimals so that their mean weights shall be
approximately the$dme are open to criticism. Methods of making
such adjustmaitnd of allowing for differences which may be found
to ¢xist wkkiih"are more statistically acceptable will be described
fater on. O\
6.24~;A\ﬂetting test objects fo groups -

‘will be seen that in effect the process of randomisation must
fulfil the requirement that any particular test object shall be as
likely to be alfotted to any particular class as to any other, and
conversely that any particular class shall be as likely to receive
any particular test object as is any other class. These conditions
may, however, be fulflled within the limits of certain planned
restrictions in the design of the test. This important fact is used
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in designing tests which shall be so balanced that the cllect of a
number of variables may simultaneously be examined in sub-
sequent statistical analysis. If, for instance, we are dealing with
several litters of rats which are known or believed to exhibit less
variation within litters than between litters, we shall normally desire
so to distribute litter mates that the smaller variation betwcen
members of the same litter may be used in reducing the errors of
the test.

In a simple instance, we may have selected litters from each of
which four animals may be drawn, and each animal is to be a}lot{sd
to a different dose. This is perfectly permissible as long a8, the
individual members of litters are allotted «t random tozﬁje"fﬁ)ur
different doses, for it will be seen that the conditions ouglined above
have not been violated, as each dose is as likely to bc@dr’ninistered
to any particular animal as any other dose. When ‘the resulis of
the test are being examined, the differences in\response between
litters may nevertheless be segregated from othér sources of vari-
ability and eliminated from our estimate of éfror. It weuld be an
entirely mistaken procedure to allot thgiwhole of one litter to one
dose and other whole litters to the other doses, on the assumption
that‘since t_hew\{'g‘{,i%tgg&lhje]tg%ggyé}gg’response of animals in any
particular litter 1s less than thoses between animals from diflerent
litters, the error of the test would be reduced. On the contrary,
since this procedure woulc{mnfound differences between doses with
differences between littefs) so that the effects of these two [actors
could not be separatéa\in the analysis of variance, the misuse of
litter mates in this ay would increase the error,

If we wish towis€ 100 animals in a test and have not 100 animals
which can rmeajsonably be regarded as coming from a homogeneous
stock, we.fudy be justified in sorting them into groups, each group
being‘rgsgarded as more homogeneous than the stock as a whole.
If thiss done and several groups can be selected with such numbers
oﬁ;mémbers that a balanced allotment to the various doses can be
thdde in the same way as we might allot litter mates, then exactly
the same procedure can be followed, for any particular animal is
again as likely to be allotted to any given dose as to another. This
18 a better procedure than attempts to balance dosage groups by
the_ prior selection of animals so that such a factor as the mean
wellght of animals in all groups shall be approximately constant,
This procedure, which is not random selection, may bias the results
of the test and. will impair the validity of the statistical methods
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which will be applied. The methods which are described in this
monograph are based on the assumption that randomisation of
test objects has been followed, and the absence of strict randomisa-
tion may seriously affect the reliability of any conclusions we may
draw.

6.3. The Latin square

A design which has proved particularly useful as a basis for the
atlotment of trcatments and test objects with a scheme of vestricted
randomisation is the Latin square. Latin squares were first used
in agricultural experimentation, where field trials are condubted
on plots of land which may exhibit gradients in soil fertilgi{y;, A
georuetrical scheme for allotting treatments so that vafations in
soil fertility could be eliminated from the estimation of\errors was
necessary. A plot of land to be used in experimenj:tﬂ\\vork, prefer-
ably approximately square in shape, is divideddsto a number of
similar rectangles or squares, as in a chess Beard, with an equal
number of rows and columns (see Figures®hd). The number of
treatments to be applied must be equal telera factor of the number
of rows and columns. In the simplest.ease, where the number of
rows, columns and treatments arethe same, each treatment must
be applied to a small square whilht falls’ srdbya dirsrent srow and
in each different column. Thgs will be seen to be the case in
Figure 6.1, where each cap’i{al Tetter represents a different treatment.

YR

C, ) D A E

S AN® A B D

A E C i B

D A B E C

el D B c A
\Q' Fic. 6.1, A 5x 5 Latin square.

Althﬂué’h&lﬁject to this restriction, it is still equally likely that any
given téeatment shall fall into any particular position in the square
and tfgils the principles of randomisation still hold.  The restrictions
fa design ensure, however, that since every row and every column
shall contain an example of each kind of treatment, the differences
between rows and columns may be eliminated in the analysis of
variance and thus any systematic trend in the natural fertility of the
soil from one end or side of the field to the other will be discounted.

The square used for the purposes of illustration is a 5 X 5 square,
i.e. there are five rows and five columns. Row 1 contains examples
of all treatments from A to E, and so does each other row. Thus
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the natural fertility of row 1 may be compared with that of the other
rows by totalling crop yields for each row. Crop yields in columns
may be compared by exactly the same method. In comparing
treatments the five examples of cach treatment distributed over the
square are similarly totatled. Hence the analysis of variance takes
the following form:

Source of variation Degrees of Sum of squares  Mean square

freedom
R,
Between rows 4 R P A\
Columns 4 C ;(‘4\ v
Between treatments 4 D xt\\ R [4)
AT (RO D)

Random sampling (errer)* 12 T—{(R+CD) —- - e

Total 24 K 74 —

The effect of treatments is estimatéE‘By comparison with the
error variation based on 12 degrees ¢f freedom after the e¢limination
of systematic tr‘é’?i’d‘é-‘iﬁ*i“éiﬁﬁﬁﬁ?a?ﬁﬂé"the two rectangular axes of
the field. Latin squares have.bégiﬁ used in practice when comparing
potencies of drugs in this physical sense; they may, for instance,
be applied to the positim@ of test objects on a rack, such as the
cages in which anim,aké\ére placed during the tests; but thev are
frequently used ima more symbolic manner. Thus the place of
rows and colqusﬁapplied in the physical sense to a plot of ground
may be taken by titters and order of injection, so that members of
any one lzitlie]‘ shall between them receive one of each kind of
treatment, 'while the injections are so ordered that each sub-interval
of t@e}iﬁjcction period shall also contain an example of each treat-
ment.* Any effect which litters and the time of injection may have
upon response may then be eliminated in the analysis of variance
by exactly the same procedure as outlined above,

. Ptjocedures for the selection of a Latin square suitable to the test
In view are laid down in such books of statistical tables as that of
Fisher and Yates. There ars 12 possible Latin squares which have
three rows and three columns, i.e. 3x 3 squares, 576 possible 4 x4
Squares and 161,280 possible 5x 5 squares, whilst the possible

* In the Latin square, it is perhaps a misnomer to call the error term random
sampling, as it in fact consists of imisolated interactions, see p. 116.
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npumber of squarcs greater than 55 increase enormously as the
index of the sguarc increases. 1t will be seen that there is no
danger of an experimenter vsing up the possible combinations of
such squarcs in the course of his work,

The resiriction as to the number of doses, rows and columns
which this type of design imposes upon experiments will generally
be no handicap, but instead, if intelligently used, will be a great
help to the research worker. There is often no cogent reason why
the doscs and their spacing and the number of doses or the number
of animals used in biclogical assays are such as they are, and‘i
planning an assay so that it shall be the most statistically convengeqt,
all the objects of the assay can usually be attained through, fhe
utilisation of one of the restricted designs available. AN

We shall now consider the detail of calculation in twe, examples
of designs cmploying restricted randomisation. .!t{‘fﬁe first of
these examiples the test is so designed that in the apalysis of variance
we are able to segregate two possible sources, of vatiation, other
than that due to linear regression and deviaabn from regression,
naniely, differences between litters of rats\aﬁd variation due to ran-
dom sampling. In the second design, which is a Latin square, we
are able to segregate three sources ofivariation not concerned with
differences between doses. o3V www.dbraulibrary org in

6.4. A test nsing restrictionsin design

Table 6.1 gives the wdights of the uteri in mgm. of imamature
female rats which wece irﬁhcted with international standard oestrone
{adapted from Biilbi'mg and Burn, J. Physiol, 85, 320, 1935).
These uterinc wetghts are actually expressed in mgm. per 100 gm.
of rat, a procelure not particularly to be recommended, as will be
clear fronz\{atér chapters, The figures have been taken from
records of & test in which this method of measuring the response
was adepled, When oestrone is injected to the immature female
ragliheanses an increase in uterine weight, and this increase may be
uset/as the response for the purpose of biofogical assay. The uteri
of uninjected rats averaged about 30 mgm. per 100 gm. and that is
all we need to know in order to decide that each level of treatment
has elicited a response from the group receiving it. Members of
eight litters of rats were so distributed that each dosage group of
eight rats contained a member from each litter. We will suppose
that litter mates were allotted to doses strictly at random and that
we may validly apply the analysis of variance.
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Since each litter of three animals was injected with each of the
three different doses, the total uterine weight for each litter is a
measure of differences between litters, and this is listed under the
heading 7; in the Table. Since each dosage group includes a

TABLE 6.1

THE RESPONSE OF RAT UTERL {WEIGHT IN MGM.) TO INJECTED ORSTRONE
IN EIGHT LITTERS OF THREE RATS, ONE MEMBER ON EACH DOSE

Litter Dose of oestrone . A\
02 ug. 04 pg. 0-8 pg. Totals (L3
1 106 116 145 867
2 72 88 135 A0 295
3 42 68 115 AN 3225
4 64 111 136 L& 3l
5 70 111 133: 30 314
6 56 68 B50 209
7 42 63 RV 192
8 65 70 \50 285
- S
Totals, T, 517 695 .\ 986 2,198 (T)

ST 2= Py Ry e
STR= 629.426; n=3
T2=4,831,204; =24

PAN 2 2
SY2=226,1%600 STy 5153138 ST 509,808-7
x Hy iy
2 N 2 2
2 _ohdn02 T? —201,300-2 %: 201 3002
A S

n P

o N,

Difference\ﬁjﬁ: 249178 Snf,2= 140136  Smpl= 85083
O

membgr:;\ﬁom each litter, differences between doses are similarly

measured by the corresponding dosage totals, T,. The correction

R{r}the mean response, Y, throughout the calculations will be the

'sum of all responses, T, multiplied by the mean response. This is

. T2 . .
equjvalent to L where n is the total number of animals. Sums of

squares are shown at the bottom of Table 6.1: Sy2 is the total swm
of squares, Su,7,2 is the sum of squares for the means of dosage
groups and Sni? is the sum of squares for the means of litters,

where n,=8 and m=3, the numbers of animals in the dosage
groups and litters respectively.
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We then calculate the regression coefficient in Table 6.2. The
dose

doses were 0-2, 0«4 and 0-8 pg. and X, the Iogatlthm of the —

to base 2, takes the convenient numbers —1, 0 +1, vsed as coeffi-
cients for the log dose,  Against these we hst » the mean response

T
of each group == 8—” ,and calculate the sums of sguares and products

as in previous analyses. Since X==0, the only correction for the

TABLE 6.2 N\
CALCULATION OF REGRESSION FOR THE DATA OF TABLE 6.1¢° )

£ 3
Dosein  Coeflicient Response, X2 X, ¥, ,3]’;2

0-2 pg. Tor log Y. "
dose, X, ’ \’\\

b -1 64:625 | —64-625 4,1764

2 0 B6-875 0 Q00 7,547-3

4 1 123-250 1 «L}B»‘%D 15,190-6
Totals 0 274750 25X ‘: 58625 269143
Means 0 91383 N\ — —
Correction for mean ‘ﬁ 0-0 25,1624

X ».1 —Wwww dbraulibrar B

Sums of squares and products o8 2 58625 1, 7%1 9

X

2
b SEsFy __5_32;‘3_29313\\

SxP . \\“

mean which differs fem zero is that applying fo Y,2, which is
not in fact needgd\f‘oi‘ the calculation of regression, but which we
have included forthe purposes of checking the calculations. We
then proceed(to” isolate the sum of squares attributable to lincar
regression 'B‘\(dctly as in previous examples, and by subtracting this
from Sr:ﬁyﬁ we obtain the sum of squares attributable to deviations
fmmstegresmon, as in Table 6.3. There is only one degree of
freedom associated with each of these first two sums of squares,
since there are only three dosage groups. The sum of squarcs
attributable to variation between litters is Swm#2, with which are
associated seven degrees of freedom, one less than the number of
litters, and the residual sum of squares s determined by subtracting
these three sums of sguares from Sy2, and with it are associated the
remaining 14 degrees of freedom, giving us a total of 23 degrees of
freedom. This residual sum of squares, which will be used as our
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term for error, is that attributable to random sampling within

litters. _ o
The sum of squares between doses is 14,013-6, which, divided by
8, should check with §¥,2 in Table 6.2. This latter sum is 17319
and 1—4’—0813—§=1,751°7, which agrees within the limits of error of
the calculations. The sum of squares attributable to linear regres-
. PRI (Xﬂ}_rp)znn : : : N SXpPp)
sion, which is —2, =, since #, 18 constant {this equals ———-*
: SX,2 SE2
since SX,=0), is 13,7476, leaving us 266-0 as the sum of squdres
for the deviations from regression. The mean square for ramgqm
sampling, 1717, is to be compared with the three sums ofsquates
above it in Table 6.3, whence we get the series of values i+ F listed

0\
TABLE 6.3 \ Q¢

% 3

ANALYSIS OF VARIANCE FOR THE DATA OF TanLe 6.1

N L & : . :
Formula ‘Degmes! St Of | Mecan | F P

Source of
variation : cg' l suares ' square |
|_www.dbrauli bjlrarﬁgr 2Erl'1ufj”n | = l
Betwecn doses | Sngfy? \ & ’ 3 | \
A. Linear ‘ Snptai? | 8y | 13,7476 | 13,7476 80:3[-00-001
regression | ShpXy® » .
B. Deviations | &\ i i i _
from : NS i
regression Sn,,?p%")d.~’ | 1 | 2660 | 2660 1'6!;‘)0'05
c. Between ! . : i .
livers o\ SER 7 | 835085 LS55 | 71001
Random samp- O | , . |
ling within ;| A N | |
litters A | L
(mertor) o LISyI—(A+B+C) 14 | 23957 | - ‘ -
Tom,\\\’” L sy | 23 loaoi7s .
a i : i I P
u\' $

‘in’tfle table and the corresponding probabilities, P, associated with
them. We sec that, while the significance of the regression is
beyond doubt, there are no significant deviations from this regres-
sion. The variation between litters is also significantly greatcr
than that within them and we have thus eliminated in the design
of the test an important source of variation. Had we not s0
designed the test as to rule out the inter-litter variation, our sum of
squares for error would include that between litters and would thus
be 8,508-5+2,395-7 (see Table 6.3)=10,9042, with which would
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be associated 21 degrees of freedom, giving us a mean square of
$19-2, which is three times as large as the mean square for random
sampling within litters, and thus our test would have been conducted
with only one-third of the precision obtainable by the more adequate
statistical design. To obtain the regression equation, we substitute
in the formula E— P=5(X~X), whence we get
(E—91-583)=29-313(X—0), or E=91'383429-313%,

dose

where X is logz(-—j—).

O
6.5. A test using the Latin square A ‘\
Table 6.4 gives the proteocols of a fest using a 5 x5 Latin hate.
Tt is adapted from material relating to the assay of a princip}e‘df the
\\ 3
TABLE 6.4 \\

RELATIONSHIP OF DOSE OF THYROTROPHIN TO THE WEIGHT OF THE
TRYROID GLANDS OF GUINEA-PIGS, USING A LA\i}N SQUARE DESIGN

Strain ' Cage S > Totals, T,
1 2 3 O1 s
i c65 ES85 A57“xB49
2 ES2 363 DJIA db’ahﬁgsblaw o3ggn
3 A73 D68 edl & 76 B 52 320
4 D92 <67 P63 a4l k68 331
5 B8 A6 E9 DTS c66 377
Totals, T, 303 %336 347 313U 1L,701(=T)
Dose & C D E
Totals, T, 2% 308 319 391 410 1,701 (=T)
Means, f, o546 L6 638 782 820
2
A0 sv22 12071900 STZ _ 116,111-80
R\ 7
&Y Diisreos I 11573604
W I H
QO I
Difference, Sy?= 498296 S jl= 37576
2
-‘S;T‘--2= 116,644:20 ‘S;’— =118,427-00
'y i
2 2
T 115.736:04 T 11573604
1 e
Diffcrence,  Snpl2= 90816  Smgl= 269096
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pituttary gland, thyrotrophin, which causes growth of the thyroid
gland in mammals (Rowlands and Parkes, Biochen. J., 28, 1829,
1934). Guinea-pigs of about 200 gm. in weight are injected for
several days with an extract of cattle pituitary glands and are then
killed and the weights of their thyroid glands determined. The
thyroid glands of uninjected guinea-pigs of this weight averaged
31 mgm. and hence we may be satisfied that the lowest of the doses
given has produced a response, since the mean weight of the thyroids
in the group receiving it was 54.6 mgm. We will supposc that fiye
cages, each containing five pigs, were placed along a rack ii\‘zhe
animal house and that each cage contained one animal fro@gach
of five different strains. (It would be difficult to obtain fve séts of
five litter-mates, since guinea-pigs rarcly produce sei\many at a
birth.) ON

Having selected a 5x 5 Latin square at random\we allot each of
the five doses to positions A—F in the square,sp that each cage will
contain one animal receiving each dose, as well as onc animal from
each strain, and one animal from each stfain will also receive each
of the five doses. Thus each dosage gpenp will contain onc member
from each strain and at the same timhe.6ne member from each cage.
This design, as Expratauthree yedubles us to separate the variation
attributable to differences bjé.twéen cages, differences between
strains, differences between doses (which will be further divided
into that due to linear regression and to departures from regression)
and to random sampling. We work in totals, as in Table 6.1,
and list the four sum¥ of squares at the bottom of Table 6.4. 532
is the total sumvef-squares, Sn.52 is the sum of squares between
cages and Srr,,f;z the sum of squares between doses. The corre-
sponding tot\is will be indicated with the same subscript as that of
the groiip:td which they belong.

I_n'l':able 6.5 we calculate the regression of the totals of groups on
ilose This is a more rapid method and we use it now that the
micthods of dealing with regression should be well understood.
The doses in the groups A—F are shown in Table 6.5. They were
so arranged that each dose is 1-5 times the previous one. We
determine X, by taking the logarithms of (dose/4-5) to the base
1-5, which gives us a symmetrical arrangement of coefficients for
log doses so that SX,=0 and there will be no correction for the
mean. We do not include a check ¢olumn in the table, but ihis
can be added by the reader if he desires to check deviations from
regression, etc. - The calculation of the regression line by this
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scheme is thus extremely simple, but it should be remembered that
we want to finish up with a regression relating the mean response to
dose. To obtain this we must divide the regression coefficient for

TABLE 6.5
RIGRFSSION OF THYROID GLAND WEIGHT ON DOSE OF
THYROTROPHIN
DGose Cocfficient for log T, e X7,
in mgm. dose X,=log;.s &
{dose/4-5) | N
A 200 -2 273 4 —546~ )
B 300 -1 308 1 —608
c 430 0 319 0 A\
n 675 1 391 PN 301
£ 103 2 410 W\ w0
Totals 0 1701 l 357
.\\
For meany fa= 7 =714 ih{---68 04
’ 10x5 N
E-63-04=7-14(X—0) L O
E=68-04+7-14X ’:::;« e dbralibeary org

totals by the number of animals i “each group. The calculation is

shown at the bottom of the (ﬁble and we obtain the regression

e\
line E=68-04+7-14X, in \{hwh X is log;. ﬁ(d;ss;e)

We may wish to usg lhlS regression in conjunction with common

logarithms, and ituiay be transformed so that X’ =log;y(dose) by
means of the 1der(c;ty

%;;?'(A) logmA——logmB
N1

‘.‘\ B ]Og_{_ UN
Whefl&:@'ﬁh’ this case,
N E—68-0447-14% 081043

log !5
=68:04 +40-547 X — 2649
=41-554-40-55X".
The regression is illustrated in Figure 6.2. )
In the ncxt chapter we shall be introduced (o a general method of
computation for dose-response lines which climinates even this
amount of work, as long as the doses have been properly chosen,
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and is applicable to cases where a transformation such as that shown
above would be rather more complicated.

The sum of squares attributable to linear regression may be
calcutated directly from the last two columns of Table 6.5.
It is w This formula is the same as the one given in the

n,SX,2
analysis of variance in Table 6.6. From the analysis of variance

o
(=3
T

-

) o
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ww . dbraulibrary erg.in
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3

&0 | g 1 ! |
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¢ X\J .
FiG, 6.2. The response of the thyroid glands of rats to thyrotrophin (Table 6.4).

given in this Taﬁle“it will be seen that, as it so happens, the differ-
ences between-strains and cages are not significant, nor are the
deviation§_from regression, while the significance of the regression
coefﬁqig‘& is without doubt. Nevertheless, the elimination of the
varidtion attributable to two sources {strains and cages) the mean
'sgf]uares for which do not differ significantly from the mean square
ue to random sampling has reduced the estimate of the mean
square for error from 114-6 to 84-0. In many other instances the
reduction would be far greater, as was the rcduction due to the
elimination of inter-litter differences in the last example.

In connection with the reduction that may ocecur in the mean
square for error by the elimination of various factors, it should be
noted that an excessive reduction in the number of degrees of
freedom available for the estimation of error is to be avoided.
unless accompanied by the elimination of a significant amount of
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variation. The reduction secn in the last example, from an error
mean square ol 114-6 to 84-0, was accompanied by a reduction in
degrees of freedom from 20 to 12, The total effect is to reduce
the estimated error, aithough not significantly, since with 20 degrees
of freedom, ¢ af, for example, P=0:05, is 2:086, and s is 223

TABLE 6.6
ANATYSIS OF VARIANCE FOR THE DATA OF TABLE 6.4
e — e —— - = e e ) - \’\
Source of | Formula ! Degrees | Sum of Mean ] F J 2, N
variation | o of sguares | square | P S .\
| ifreedom ‘imf -
A. Between ! i A\ -
straing | Srips2 4 37576 939 \\};1 =005
8. Between cages! Sncfl | 4 908-16 | 2270.%2-7 | =005
Between doscs StipFp? | ~
: T H e T T 12 ) X \® 2
c-linear (SRR sg0e | 55400 | 303 <0001
TCETess10n Shpdip? : )
. Deviations | | N
from ; R&S
regression | Supgi—C | 3 B 473 | 056, =005
E. Random ! Ny
sampling . S | R Pw |
(semor)  (4+BTCED) | 12 WSBOOSOR,) a8y begin
Total ) 82 | 240N 4,98296 — —_ | -
A+BYE Sy2—Smpfp2 ;. 9Q% | 2,292:00 | 1146 | — | —

! [ |

— e —_—— —

approx.; with 12 degrees Qﬁfreedom rat P=005is 2-179 and t5 is
200. I the samc njean* squares had occurred in the course of
reducing the degrees of freedom available for the estimation of
rTor from, say, Q:t?ﬂl, the estimated error of the test would thereby
be increased fray’23-3 to 254 (P=0-05).

Thus, if Qéc’ri'minary. tests indicate that a particular source of
variation, (bi supposed source thereof) is in fact unimportant,
there ;mag*be nothing to be gained in future by continuing to segre-
gat 18, "with the accompanying loss of degrees of freedom. If the
desigh of the test has, however, been such as fo segregate a par-
ticular source of variation, it is not usually wise to recombine an
apparently non-significant sum of squares with the error sum of
Squares mercly in the light of the observed result, as this procedure
will bias the estimate of error in the long run. If we design a test
S0 that a particular set of degrees of freedom is allotted for error,
0_nly this set should be used whether or not other sources of varia-
tion prove to be significant in the particular test analysed.



CHAPTER T

POLYNOMIAL COEFFICIENTS

7.1. Introducing the coefficients

The calculation of dose-response relationships is so much casier
if the doses are equally spaced on a logarithmic scale zynd\t e
numbers of observations per dose are equal, that we shull Consider
only this case for the present. There is, after ali, rarely\ahy point
in failing to space doses and to allot observations in {t{eh a way as
to save trouble and to gain the maximum of Qﬁg\n‘mation from
results. It is not always possible to do this;{But is more often
possible than a survey of the literature Wou],Q suizgest,

When the log doses are equally spaced/3¥& make further use of
the coefficients for log dose we havealready met, which are small
whole numbers bearing the same yél};ﬁon to each other as that
between the differendbsofileaaly kghdose from the mean log dose.
These are polynomial coefficientsy By means of these coetficients
it is easy to examine the pos’s:ible curvature of a log dosc-response
line and to determine ho@ well the supposed relationship between
log dose and respons\%:‘}ﬁts the data. The exact naturc of dis-
crepancies may alsé_be examined, but we shall not concern our-
selves with more fhan an isolation of the sums of squarcs attributable
to linear op\guadratic regression—i.e. those accounted for by
fitting to thevdata a straight or a singly curved line of the form
Y=a+dX)0r Y=a+bX+cX? respectively.

TwQ \points can always be fitted by a straight line and three
poifits by a singly curved line. As more points are considered,

~we/may fit them by curves of higher degrees. In general, n points
¢an be completely linked by a curve of the (n —1)th degree (involving
terms up to x" 1), Each successive term in the equation

Y=a+bX+eX2+dX3+ . . . nX'

can be examined by the use of polynomial coefficients to see whether
it significantly improves the fit of a curve to a series of points.

The coefficients applicable to an examination of the linear and
guadratic terms are shown in Table 7.1, for from three to eight doses.
These coefficients are orthogonal, which means that with each single
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degree of freedom a set of corresponding coefficients may be
chosen so that independent estimates are made of the importance
of each source of variation. The scheme for computation, also
outlined in Table 7.1, is as follows. The sum of the n, responses
on each dose is entered at the foot of the relevant column; this is
T,. The coeflicients are represented by the letter k, and the divisor,
n,5k2, is the number of responses per group multiplied by the sum
of the squares of coeflicients in each row. The sum of products
for each row is ascertained by multiplying each T, by the corre-
sponding cocfficient—with due regard for sign—and adding the,
results. Tabalation is conveniently made as in Table 7.1, \yith a
final column {or the mean square, or variance, which is the Square
of a sum of products divided by the corresponding dm&or or

(SKT,)? 2
npSk? )
TABLE 7.1 D

POLYNOMIAL. COEFFICIENTS AND SCHEME FQRISOLATING THE SUMS OF
SQUARES ATTRIBUTABLE TO THE LINFAR ANDZQUADRATIC TERMS OF A
REGRESSION LINF

Term Coefficients (&) for doses  www diBixi Sl o Mepn
sor products squvarc
Y 2
b2 3 4 5N% 7 8 mpSkr SkT, il
« ?TpSkz
Linear -1 0 +1 —& — — — 2ng
Quadraic +1 ~2 +1 P2\ N vt
Lincar -3 —1 F1¢EW — — — — 2m
Quadratic +1 -1 . % - = . 4ny
Linear -2 -1 oN 1 12— —  —  10mp
Quadratic 42 -1 G2 =1 +2 — - = i
Linear -5 —3N\¥1 +1 43 +5 —— — T0np
Quadratic 3 a4 -4 -1 45 — — 8y
Linear wz -1 0 41 42 43 - 28n
Quadratic T\§~ ~3 —4 -3 0 +35 — 8
Linear =3 =1 41 +3 35 +7 168ny
Quadratu,. $7 +1 -3 =5 =5 =3 41 +7 168ap
Total.ofs
requnges
gach
daosi ‘:TF

When three dosage groups are employed, the sums of squares
for the linear and quadratic terms, with each of which is associated
one degree of freedom, should add up to the sum of squares for
differences between doses, since only two degrees of freedom are
involved. This is cquivalent to saying that the Tesponses to three
doses can be joined by a parabola of the form

Y=a+bX+cX?
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However, the curve is only of interest if the mean square for the
quadratic term exceeds that for random sampling significantly
— otherwise a straight line describes the relationship as well as does
a curved line. With more than three doses there will be a residual
sum of squares associated with the remaining degrees of {rcedom,
which can be determined by subtraction of the sums of sguarcs
corresponding to the linear and guadratic terms from the sum of
squares for all dosage effects.

~

7.2. Use of the coefficients &

We may, as an exercise, calculate the linear and guadratic terms
for the two sets of data in Chapter 6. Table 7.2 shows~the re-

L 3
~
s

i

TABLE 7.2 \\
ANALYSIS OF THE DOSE-RESPONSE RELATION OF TABLE ﬁ;lj\;%&’ POLYRNOMIAL
CQELFFICIENTS v
Term Coefficients for log dose (k)  Divisory \\JSum of Mean
L &/ products sguare
NN sguare,
02ug.  Odpg. O8ug  MwSk? SkT, (i%i
Lincar -1 0 41 J\.T6 469 13,7476
Quadratic +1 www dbraulibray prgingg 113 266-0
Total of AN
responses, Tp 517 693 986"

calculation by use of Rc{lﬁ(nomia] coefficients of the sources of
variation A and B in Table 6.3.
Table 7.3 shows\‘the calculation of the mean squares

associated with thelinear and quadratic terms of the regression

AN/
7.\ TABLE 7.3
ANALYSLS\\QE#HE DOSE-RESPONSE RELATION OF TABLE 6.5 BY POLYNOMIAL
3 ,\ COEFFICIENTS
- ;"\:Tt:rm Coefficients for log dose (k) Divisor Sumof  Meun
\ \™ products SCIuarcj
200 300 450 675 1013 mpSk2  SkTy (—i’%ﬁzf
. ¥
Linear | -2 =1 0 41 42 50 357 2,549-0
Quadratic +2 —1 -2 =1 +2 70 29 12-0
Residual — - — — — — — 650
Totals of

TCSPONSCS, Tp 273 308 319 391 410

in Table 6.6. That for the quadratic term is identical with the
mean square for deviations from regression. The lingar term
is as before, and the insignificant contribution of the quadratic
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term—predictable from the previous finding that the mean square
associated with deviations from regression was smaller than that
for error—is also determined. The residual mean square, with
which are associated two degrees of freedom, is obtained by sub-
traction from the previm.lsly-determincd sum of squares attributable
to dosage effects. [t could be obtained by calculating the sum of
squares for cubic and guartic terms, which together account for all
the possible departures from linearity not included in the quadratic
term.

We used cocfficients based on logarithms to base 2 and base 15 (
in the analyses of Chapter 6, because of their mathematical con-
venience. We can abandon such devices now that we have adopted
polynomia! coefficients, which are identical for the linear tegnywith
our log doses. This is not an accident, but a feature, f(t'ﬁc con-
venience at which we aimed. What should we hayé @one if the
number of doses had been even? Then we should’ have had to
interpolate imaginary doses between the re;{k'ones and get a
symmetrical distribution of log doses by tl{Q féllowing steps:

Actual doses I ) 2 O v 4 _ 8

Imaginary doses V2 N 2V2 4v2

Logy, dose 0 n & @ w.dbdulibr{By org.ib
‘dose’ . N

Logys (;_, ,\'7,) -3 (=2 (0) 1 2 3
242 &

Whence we arrive atghbJpolynomial coefficients for the linear
term for four dosagegroups: —3, —1, +1, +3.

7.3. Calculation :()ﬁthé regression line using polynomial coefficients
The sinwiale;“l:u\lﬁ' for determining the slope, b, of a dose-response

line when Q@inmmial coefficients are used is:
..\
™ kT,
NN b= %12 for an odd number of doses
O In,Sk?

V :
and JJ=2E’- for an even number of doses
In,S5k?
where T=the interval in logarithms (or any other unit) between
successive doscs. )
The position of the line is determined from the equation

(E=T)=b(X—X)

\ghere ¥ and ¥ arc the mean response and mean }og dose to any
ase.
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After conversion to base 10, we obtained the regression equation
E=41-55440-55X%

for the data of Tables 6.4-6.6,
From Table 7.3,

357
_ =F1r61x50 0>
" whence
E—6804=40-55(X —0-6532)
E=41-55440-55X. \ﬁ\
Oy
=
O
>
o
N
A
4\5/
NS
O
www.dbraulibra(‘}:org,jn
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&
N
O
>
N\
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CHAPTER 8

COVARIANCE

8.1, Correcting for initial or concomitant differences befween test

objects

In calculating the dose-response line for the responses of rats™
injected with thyrotrophin in Chapter 6 we were able in the desig
of the test to allow for the elimination of various possible sources
of error. We did not allow for the correction of any conpbiiﬁitant.
variation cxhibited by the animals themselves. The,w@i'ght of a
guinea-pig may determine in part the weight of its.{h?roid gland,
whether this gland has increased in response to stimulation during
the test or not. (Guinea-pigs in such a test are\n,orma]iy chosen so
as to vary as little as possible in weight, but;i\,t is rarely feasible to
choose large groups of animals of so nédrly the same weight that
differences belween them in that respect can be neglected. We
shall now investigatc a methad by ’\'xg‘fﬁt':li thg\i@ﬂg%@ﬂapg}ghgr\ggght
of the animal, or any other variable'in which we may be mterestf:d,
may be examined. This is the method of covariance analysis.

Tablc £.1 shows a series{di coded body weights which have been
assigned to the pigs i .fhe corresponding positions of Table 6.4.
If the weights of the ‘etiginal pigs had varied between 130 and
250 gm., then for ;hi;::.é,xamination of the effect of weight on response
it would be sufficient to take the weight of each animal to the
nearest 5 g ahd to subtract 150 gm. from each weight and divide
by 5. Thiswould give us such a series of numabers for easy working
as in Table 8.1.

_Covariance is computed by an expansion of the methods used in

e\dhalysis of variance, For each sum of squares of products
defived from X and ¥, we must compute corresponding sums of
squares of W, the weights of the animals, or, as in this case, a coded
figure representing them. A third set of values, the sums of the
products WY, must also be computed. The rule for forming this
third set is that at each and every stage where a number is squared
in calculating sums of squares for W and ¥, the paired values of
W and Y are multiplied together to obtain the sum of products,
WY. Thus we run the calculations in Table 8.1 in parallel with

75
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those of Table 6.4, computing the various totals indicated by ¢
(not to be confused with “Student’s” “£7 for the various restrictions
in design and calculating the sums of squares and sums of products
2
which are shown at the bottom of the Table. From SW?2, %,
(s

ST,

2 .
etc., we subtract — to obtain Sw?2, Sw?, etc. From SWY,
n 1
etc., we subtract n to obtain Swy, Sw.p, etc. TFrom these we
n

then build up an analysis of covariance similar in design to ﬁqc
analysis of variance in Table 6.6, }

TABLE 8.1 AN

a\ 3
DATA FOR THE ADJUSTMENT OF THE MATERIAL IN TABLE 6.4 FOR
VARIATION IN THE WEIGHT OF GUINEXRIGS

Strain Cage \ Totals, #
1 - 2 3 47 5
1 c 10 E 14 A 9 Qa2 D1l 50
2 F O 818 D15 OF20 A l0 63
3 Al9 1D 2 € 6\ E 9 B I 37
4 D\ww dhgaulibrary osglin 4 3 £ 6 35
3 B Il A 6 _BNIB D 9 c12 56
Totals, ¢} 56 43 ~3% 55 53 40 247 (=D
Dose A B\ C D E
Totals, £, 47 ¢ ~49 51 53 47
SW2=3,23§00 Su2="798-64
St 2n,=2d483-80 Saw 2= 4344
St2laiZ2,56700 Suw 2=126-64
gr,}’n j=2,445-80 Snpw,i= 344
o?sm =2,440°36
\\ SWY==17,645-00 Siwy—=839-12
W\ STitin=16,918-60 SuFe=11272
AN STt n,=16,918-20 Snwy,=112:32
\"\, STt an,=16,837-00 Sa, W, 5,= 3112
/ Ttin=16,805-88

We must also determine the slope of the regression of thyroid
weight on body weight. For this we use Sw? and Swy from the
error row only, as entries in this row are free from variation attribut-
able to differences between doses and restrictions in design, The

slope b,= Sw}z’ is then used to correct each Sy2 for variations
in W,
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8.2. The analysis of variance and covariance

Table 8.2 shows the new analysis of variance, omitting the
examination of regression, which will be made subsequently,
using polynomial coefficients. The slope, b, is %g%%f, or 0:93555,
and is used to correct cach Sy2 to form an “adjusted” Sy?, denoted
by S¥,%, where

Sv.2=b, 8w =2b,5wy -+ 5y?
=0-875255w? — 1- 871 1Swy+8)2

These coefficients are shown {or couvenience at the bottom 5}
Table 8.2. 'They are those of the expansion (y—b,w)?=y2—Zbgvy
+b,2w2 since we are comparing quantities (y—b,w). Sinée the
statistic, 5., has been computed from the row for randg)rq”s'}ampling,
we have one less degree of freedom in this row, naméley 11 instead
of 12. With this exception, the mean squares are determined
as before, and F calculated from them. Theselimination of the
one degree of lrccdom associated with coyarfance represents a
variance of 1,008-08 —462:69=545-39, Phis is a highly significant
variance compared with the varianceifpi"error, and in fact has
reduced the variance associated with‘:ranmgow fampling to almost
exactlyonc-half o its former valugtand its eﬁﬁzﬁmaﬁﬂoﬁﬁﬁﬁggﬁ’é}%‘é@ed
the precision of the e-xperiment,tz.%»‘éifold.

N\
A TABLE 8.2
¢ L\
ANALYSIS OF COVARIANCE FOR THE DATA OF TABLE 6.4

Source of ™ Sums of squares and Adjusted 32 | F

I p
- . ! ’
varigtion  Zulets products : ;
PN ' Sum  Mean ' |
N drees o Swe2 Swy 852 of squard !
{\ | dom . Squares | i

BotweonSerains 40 12664 11272 37576 27569 689 1464005
Bepwesnbages | 4 | 4344 11232 00816, 73602 1840' 437005
g4 1
}
3

Bitwepn doses | 544 31412 2,690-96:2,637-40 659-4,1570,-<C-001

Rani Omsamplingi ] £23-12 33296 l,OOS-OSl 46269 421 — © —
Total D23 . 79864 83912 4982968 — — | — | —
Coefficients for | ‘ !

adjusting §y2 | — | 087525 — 18711 Lo | b

——

8.3. Computation of regression with covariance

The same methods are applied in computing the linear regression
of response on dose, and deviations from it. Sums of body
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weights, ¢,, are added to the polynomial analysis, and two columns
of products are formed, Skt, and ST, (Table 8.3).

TABLE 8.3
COVARIANCE ANALYSIS OF THE DOSE-RESPONSE LINE FOR THE DATA OF
TapLE 8.1
Term |= Cocficients for log | Divi- | Sums of Variances and | Ad-
' dose sor | producis . covariances i;msted

|

[2.003-004-50 6:75 10-13 - npSk2 + Skty SkTp| Sw2 Swy 532 | 'Siwd
Linear |—2 —1 0 41 42 | 50 | 4 357 (032 285625490 ; 95-8
Quadratic|[+2 —1 =2 —1 +2 | 70 |~16 29 366 —6-63 120} 276

Residual | — — — — — — = - — — ANM 510
Coefficicnts y
for adiusting Sy2 |0-87525 —{8’?&11 Lo
Totals: f, 47 49 51 53 47 \
T»273 308 319 391 410 N
Mean square for random sampling (error) \ 42-1

W
Three columns of variances and covarra;%es, Sw2, Swy and $y?,

are required, such that: t\ )
(Sk1,)? (Skth) SkT,) {(SkT,)*
g W ipl” b P IR el S
Swi= npSk%rw dbr gl‘fl bral,y @l‘éﬂﬂ? Sy . Sk?

Correction for variations om W is made by multiplying Sw? by
b2 and Swy by —25, and proceeding as before. The adjusted
Sy2, or Sy,2, is shown m\\t“he last column of Table 8.3. From this
Table, it is again¢ a@aarent that a linear regression adequately
describes the relauonsmp between dose and response,

The adjusted\ value, Sv,2, for the linear term determines the new
slope of the{dose-response line. It is designated by the symbol
B2 and related to the slope, b, such that:

N B

“\s ”\ b I‘\/HpSkz
\\; " e 2B

v npSk

where, it will be recalled, / is the log dose interval, and B has the

same sign as SkT (Bliss and Marks, Quart. J. Pharmacol., 12, 82,

1939).

In Table 8.3, B2=2,495-8, whence '

5222,495 8__ 24958
2% 50 017612 x50
and b=40-11—very nearly the same as before.

for an odd number of doses, and

for an even number of doses,
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The corrected equation is then:
E—06804=4011(X—0-6532)
E=41-84+40-11 X,
. 8.4. Correction of mean responses
Each T,, thc total response per dosage group, may also be
corrected by covariance, simply by listing the deviations in ¢,

the total body weight per group, from N their mean, where N=
. N\

number of arrays, and multiplying each deviation by b,. Tlus, 15\

shown in Table 8.4. The quantity bw(tp ;:r) is subtracted from

the total response per group, T, and gives the LOI"I'QQTéd total

response. (M
TABLE 84 \4
CORRECTION OF MEAN RESPONSE AT EACH DOSE T‘{JR\WEIGHTS OF ANIMAILS
Dose in 1p Deviation of Ty X Corrcctccl Corrected
mg. ty from HN ¢N\iotal response  mean response
20 47 —24 2734 27525 3503
30 49 —0-4 3035' 308-37 61'63
43 51 16 Ll 7 0 6350
675 53 3-6 S wedgplrealibrar§ty.in
10-13 47 —2-4

¥ 410 41225 §2-45
' \\ Total 1,701-00
8.5, Reduced sums of sqhares

In the above analydiwe found that after correction by covariance,
the differcnces ih “&ésponse between cages appeared significant,
with an F of 4/3%corresponding to a P of between 0:05 and 0-01.
However, adjusted values of Sy2 are not suitable for exact tests of
significangg,“'because the slope of the lines on which they are
based is\Subject to error. For the precise test, a slope relevant
tostheuparticular comparison to be critically examined is required,
based on the individual comparison plus random sampling. The
statistic to be calculated is the reduced Sy?, which is always less
than the adjusted Sy Therefore, if an adjusted Sy? indicates
that significant, but not highly significant, differences exist among a
set of mean responses segregated in design, it is always possible
that the more critical test will show no significant differences. 1If
the adjusted S$y2 indicates no significant differences, the reduced

ng need not be calculated, as it will always show an even smaller
eifect.
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TABLE &.5
CALCULATION OF REDUCED SyZ FOR VARIATION BETWELN CAGES IN
TABLE 8.2
Source of | De- Sums of squares and Reduced 832, F P
varation grees products :
iooof 1 Sw2r Swy Sl Sum of Mcan i
|frecd0m; squares square i
Beiween cages | 4 | 4344 11232 90816 ' 72831 1821 4-325«-{}-05
Random sampling 11 i 623-12 58296 1,00808  462-69 421 — N\

Total 15 ' 666-56 69528 1591624 1,191-00

To calenlate a reduced Sy2, the sums of squarps\ﬂ@ﬁd products,
Sw2, Swy and Sy2, are added to the corresporiding surns in the
“random sampling” row. Calling these sum§\Sin2, $'wy and Sy,
(§wy)2
) Swz
In order to extract the reduced Sy? fofthe treatment or restriction
in design alone, the reduced Sy2 fertrzi;ndom sampling only (identical
with the adjnsted Sy?) is subtr,attéd from the reduced Sy? for the
combination of efcd ﬁfg'}:ﬁﬁﬂ%ﬁ{ &athpling.

We do this for the respdnses between cages as against error in
Table 8.5, and see thg.I’\\the reduced Sy? for differences between
cages is still signjﬁgagt,}

the reduced S$»% for any particular con}bihzition is S'y2—

8.6. Multipte covariance

It is possibl@to extend the method of covariance to deal with
more thqp)&he set of concomitant observations simultaneously.
Thus, ° e age of the guinea-pigs as well as their weight might have
becp,@ered in Table 8.1, and its effects, if any, eliminated as were

- those'of weight. However, the computation becomes increasingly

“laborious and difficult to check as more variates are added, and it

\would frequently be easier to increase precision by enlarging the
groups initially or by exercising greater control over the degree
of variation shown by the experimental material, Multiple
covariance would rarely be suitable in routine assays—even the
valuable increase in precision that may often be obtained by simple
covariance analysis may be offset by the labour involved in making
additional measurements, if these are not already madc as a routine,
and in additional calculation. The methods of increasing precision
to be adopted must be left to individual choice.



CHAPTER 9

PREDICTING FROM DOSE-RESPONSE
LINES AND PLANNING ASSAYS

9.1. Errors of estimation

The variance of the ¢stimate of the position of a log dose- 1'espon§l\\
line is determined by the variance attributable to error (rando

sampling) in the analysis of variance. Thus, in the line :’» )
(Y—P)=b(X-X) or Y=a+bX RO
-_ Ve A\
VY=_ 2%
n . \\

and if ¥=0, VY=V«
where # is the total number of obscrvations'aﬁd Ve is the variance

- associated with random sampling. NS

The variance of the estimate of the sh)pé b, is determined by the
error variance and also by the Spdung ‘of the dovadibrerpyprg.in

®

Ve
Vb
=L-‘Lfs}:ti,.:'c,,
W\
. . . Ve 2Ve
| If polynomiai coeﬂimems.h}we been used, Vb is i8S or 73 Stk

for an odd and CVeI nu%bm of doses respectively.
When we haves corlccted for covariance, the mean squarc for
error is the adjuistéd mean square, which will have been reduced
in magnitude! {ccmding to the degree to which allowance for the
concomlta‘{shfautor increases the precision of the test.

9.2. R}anmng an assay

the a dose-response line has been established, we shall wish to
plan further work in which the potencies of other preparations will
be compared with that of the standard. If the line is sufficient to
describe the relation between dose and response, we can predict
the probable {imits of error within which we shall be able to assay
potencies under various conditions. If the departures from

linearity are significant, we are faced with two alternatives. We

can allow for the discrepancy by using the mean square for
7 81
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departures from linearity instead of the mean square forerror. ‘This
will not be a safe procedure unless a large number of dosage
. groups has been used, since the mean square will otherwise be based
on too few degrees of freedom and be subject to large errors.
Instead, it would be better to experiment with the data to see if a
different way of expressing them gives a linear relationship, or to
note that perhaps the largest dose produced an insuflicient increase
in response to fall on the same line as the others, and thus to limit
the range of assay to the remaining groups. Further cxperiments
will show if this is justified. o \‘
Assuming, then, that we are dealing with a linear functiqm,\we
shall wish to know the probable standard error of an assay, ~The
most favourable conditions under which a substance of wiknown
potency can be compared with a standard are that eq,gzd numbers
of responses are obtained to each and the mean & ‘s;}mses are the
same, Then the standard error of the log ratio &" potencies, Sar,

will be B AV
5 —EJ%_J2V¢' ™
b Hs g&
where n, is the™ritrdberuldroeymumsés to each substance, This
follows from the fact that the‘.\{z;i:iancc of the difference between
two means is the sum of theirgeparate variances, and that we have
assigned to each ¥ a varidnce of Ve .
¢ ¢t \.J R
The number of obgervations with each substance required to
attain a giveni level of accuracy is thus at least:
</
O 2Ve
N Ho==————
\ VM
In }hé\assay of thyrotrophin examined in Chapters 6, 7 and 8,
if weidesired the estimate of potency to be ascertained within
ab@u’c +20% of its true value in 95% of cases, then, sar must be
Bbout 0-04, for antilog +£0-04¢ is approximately 0-8 to 1-2 if »
is greater than about 20. If we correct for covariance, Ve is 42'1
and

- © 2x42-1
Hi=re—————————— = .
40-11)2 x(0-04)2 327
We shall thus require at least 33 animals per substance, however
they are grouped. Twice as many animals would be required if
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we did not plan to correct by covariance, as the value of Ve for
such a test is 84-0.

The number of observations we may require to attain a certain
standard of accuracy may in practice exceed the predicted minimal
aumber appreciably, by up to even 1007 if our dosage groups are
not very happily chosen.

9,3, Combining chservations

If a dose-response line is calculated from the results of a well-,
planned experiment, it will necessarily have been determined from\
simultaneous obscrvations. 1t is, however, a frequent and often
necessary custom ol research workers to conduct pilot tests "?;Iiﬂ‘[ a
new substance, and to put a few animals on one dose at.a time to
see how the responses are shaping. While a certagin\\am'ount of
such work may be needed to find the range of dosesAQwhich graded
responses are to be expected, it is not wise to bowibine these hap-
hazard observations into a single set and to attempt to treat them
statistically. They should form the basis fer*a well-set-up test, to
be conducted as soon as the investig:]a}tei' feels that he knows
enough about the responses to the substance not to waste time and
material by giving the wrong range .'&jf'dosww.d braulibrary.org.in

If observaiions made at varius times are combined, either by
adding to groups of observg\{iohs on previously tested doses or by
adding groups on new dpges, the form and position of the dose-
response line may 'bezo’@oxneously estimated unless the new data
are added in & planded Manner, with restrictions in design to allow
for the segregatipf?0f a mean square attributable to time-to-time
variation in respomnse.

Temporalywdriation in response is frequently met in all types of
assay, and&”s” 4 fruitfal source of annoyance, as an admirably
planngd é}pcri_ment may go astray simply because the position of the
lipe G&ating dose to response has shifted beyond the predicted
ﬂmi%s and some of the responses are useless. This cannot be helped,
unless it is due to laxity in controlling the experimental conditions,
and the worker has no option but to repeat his work if the amount
of information salvaged from the previous test is insufficient.

9.4. Missing items
Tn tests such as the Latin square, where the restricted randomisa-

tion requires an egual number of observations per group as an in-
tegral part of the design, the death of an animal or the dropping of
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an observation for other causes upsets the analysis of the test
and an estimate of it must be made. One missing item may be
supplied in a test designed to scgregatc one source of possible
variation other than regression and error, such as in Table 6.1, by
the following formula:

v dA+rB=T
T @d=1r-1D
where ¥'=the missing item,
d=the number of dosage groups, ’ {\
r =the number of arrays in the restriction in design Q e the
number of litters), ~\ -

A=the sum of items receiving the same dose asy Y“'
B=the sum of items in the same array as Y/ AN
T=the sum of afl known items. '\*

If the weight of the first uterus in litter 8 Qf Tab]e 6.1 had been
missing we should estimate it as

7

&

v 3x452+8x22ﬁ‘«—2 133

2 %77
wiwrw .d bl'afbl lfr‘al'y_or‘g_m

One missing item in the doﬂbiy restricted Latin square may be

replaced by: A\
(FLNULR+C)—2T
X : (N—1(N-=-2)
where N=the, fiimber of dosage groups (=number of rows or

\eolumns),
ﬂ}c sum of items receiving the same dose as Y7,
=the sum of items in the same row as Y
4% C=the sum of items in the same column as ",
m:"} T'=the sum of all known items.

"1 more than one item is missing, but it seems worth while to go
on with the analysis, a reiterative method may be used. First
enter a rcasonable value for ¥ and use it for determining Y7,
the second missing item. Then insert the value found for Y
and calculate Y by leaving it out, and so on until successive values
of Y and Y" are practically identical. With three or more items
the process is the same, but correspondingly iedicus. The degrees
of freedom available for estimating the variance due to random
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sampling must be reduced by one for every missing item that has
been estimated.,

In general, the metirod minimises the sum of sguares for random
sampling, If we actually insert the algebraic symbol ¥ and work
out the analysis of variance, we shall get an expression:

Sylt=d—-2BY +CY"?

- . . B
This is & minimum when Y’=E, and the sum of squares for error

is then 4 —-%, with one degree of freedorm dropped. . N
}m; u“:

9.5, Limitations of the analysis of variance

If the variance is not independent of response the\ﬁnalysm of
variance loses theoretical validity. A funddmentd} condition of
the F-test is that the two mean squares which xd compared shall
be independent.  Frequently the variance of\\w mean response is
correlated with the response—often the Qercentdge standard exrror,
or coefficient of variation, is relatively constant. When this is so,
logarithms may be substituted for the. orlgmal data before analysis,
but if the data fitted by the ong,mtﬂ Tog dose ldcl%béjllrg%‘ eolrihot
depart significantly from ]ll‘lea.ﬂty, it is more than likely that the
new line will not fit them aswell, and we shail be faced with a new
difficulty. Tt is fortunate, th<\t slight degrees of correlation between
mean and variance dnd\i‘mte large departures from normality do
not seriously affect the F-lest, so that this type of difficulty, aithough
it must be guarde@,dgainst, is not too often insurmountable. If
we decide to ignGre a small correlation between variance and mean
we shall be well advised to require a higher degree of significance
in the F. tes{‘\sqy a P of 0-01 instead of 0-05, as we are really misusing
the tests a}d must play for safety. Howevcr in a balanced test,
when! }he mean responses to cqually distributed groups on the
Sl‘%lddrd and unknown are nearly the same, high correlations may
often be safely ignored. The question is discussed further in
Chapter 19.5,

9.6. Test of homogeneity of variance

When any doubt arises about the homogeneity of the variance
of several groups of observations, Bartlett's test should be applied.
Sample calculations for such a test are given in Table 9.1, in which
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five groups of varying numbers of observations are tested for
inequality of variance.

An index of dispersion, x2, which is described on page 134, is
- calculated from the approximate formula:

y2=log,10[log¥.S(r,—1) —S(n,—1) log V],
where V, is a variance based on {n,—1) degrees of freedom, and |/

is the pooled estimate of variance from & samples, cach yielding a
separate estimate, ¥,. The value of log,10 is 2-3026.

s &\
\
TABLE 9.1 K O
TEST OF HOMOGENEITY OF VARIANCE . o
Degrees of \\“
freedom &
(n, -1 Sy Variance (V) Eml’—'_l iolg‘l’:o Ve (my—1Dlog Vy
\ Y o m——
9 45918 5-102 OLY 070774 63697
7 16387 2341 0}4286 0:36941  2-5859
10 §8-090 8809 040000 094493 94493
5 20,365, dblaulqﬁqgg &giﬂzoooo 0:60991  3-0496
8 72656 9- 082 012500 095819 7-6655
Sums 39 243-416 .\“‘ 0-67897 29:1200
— QO

X Y%

In Table 9.1, we" list the degrees of freedom in each sample,
(n, —1); the sum of Squares, .Sy?; the mean square, V,; the reciprocal
of (#,—1); theJog of V,, and then multiply the last two together.
Then, in thejgresent example:

\§ P=S(ifi21) =24§9416=6'241
\/ D log PS(n,—1)=0-79525 x 39=310148 -
2 =2:3026 [31-0148 —29-1200]
4363

This estimate of x* should be corrected by a factor, C, such that:

1 1
C= 1+3(k—~1)[ n—1 S, —1)]

unless, as in the present example, it is not significant as it stands,
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when the correction is superfluous. Applying the correction for
the purpose of illustration, we find:

c=1 +—-1-—[0-67897—1}

3x4 39
=1-0544
2
2%
Then A=
4-363 O
=" =41 .
rrh 4 approx ,\\

This is tested with the Table of x2 (page 132), entering t‘hé::}aﬁie
with k—1 degrees ol freedom, 4 d.f, in the present exa ple. The
value of ¥2 for 4 d.f. would have to exceed 9-438 to{r@ te signi-

ficant heterogeneity at the 59, level. NN
5} }\\w
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CuapTrr 10

THE ESTIMATION OF RELATIVE
POTENCY

10.1. Comparison of the action of two substances o O

\

When the potency of a preparation of unknown strength ig t(J\be
compared with that of a standard preparation, we sh?.,lf, i an
adequately designed assay, have protocols from which two-separate
dose-response lines may be calculated.  If these l;wé\‘[i'“nes depart
significantly from parallelism, the relative potency'qxfit e substances
depends on the particular dosage level at whic¢hMlie comparison s
made. It is therefore possible validly to edmipare an unknown
with a standard preparation only when the‘&zo dose-response lines
are substantially parallel. Tests forss{gnificant departures from
parallelism will be explained later in this'chapter.

When the twe destbrespbnseylagsinlo not differ significantly in
slope, they are to be regarded as;t’xivo sgparate estimates of a common
slope relating response to the dose of both preparations. We
therefore pool the information from both samples and calculate
one vatue of 6 in the eqqggon

! ) E=u+bX,

where, it will lge\fernembered, E is the estimate of responsc. The
relative poteficy of the two preparations then depends on the
difference between the two mean doses and the difference between
the twoincén responses to all doses. If M is the log ratio of the
DOtQ]flC?‘Of the unknown to that of the standard,
~O s ¢  T,—7

O M=F = K
where X, is the mean log dose of the unknown and X, is the mean
log dose of the standard, ¥, the mean response to the unknown and
¥, the mean response to the standard.

10.2. Use of the method in practice

We now examine the determination of relative potency in the
case of a simply planned assay of the potency of a preparation of
88
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insulin. This assay involves only the restrictions that there shall
be equal numbers of observations per dose, equal numbers of doses
per substance and equal logarithmic spacing of doses.

In assaving the potency of insulin by measuring the fall in blood
sugar of rabbits after injection of the drug, groups of animals are
taken at random and their blood sugars measured by chemical
estimation, The drug is then injected and the fall in blood sugar
is measured over a period of several hours by taking successive
samples of bleood, and the mean percentage fall over the period off™
examination is used as the response. This is a rather elabo;até‘

4 3

20k

[}
tn
L

1]
=]
T

L]
[#2]
T

f.org.in

% FALL IN BLOOD-S5UGAR

bl
L1
¥

i ¢NJ L )
08 %Dd  -p2 0-0 0-2 04 06
.\ LOG DOSE
Fic. 10,1, A 2% 3 agsa®»0f the potency of a sample of insulin. The standard is
measured in unighand the unknown in mg. {Table 10.1.) A common slope
has been fittegstduthe data.

g £/

15

mode of %féssion and was introduced because the percentage
fall in blood sugar is more constant than the absolute fall after any
given:@ se. Covariance analysis, in which the initial level of blood
sugar would be used as the concomitant variable, would make this
rather arbitrary step unnecessary.

A series of such responses is shown in Table 10.1, which is
adapted from Bliss and Marks, Quart. J. Pharm. Pharmacol., 12,
182, 1939, Six groups, each of eight rabbits, are involved, three of
them receiving three different doses of the standard and the other
three receiving three different doses of the unknown. The assay
is llustrated by Figure 10.1. The ratio of successive doses of both
the standard and unknown is two. In Table 10.1 we have summed
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the total responses to each dose and the total responses 1o each
substance and also recorded the grand total.

TABLE 10.1
PROTOCGLS OF AN ASSAY OF THE POTENCY OF A PREPARATION OF
INSULIN
{Adapted from Bliss and Marks, Quart. J. Pharm. Pharmucol., 12,
182, 1939)
Standard (units) Unknown (mg’.}S
Dose Dose A\
025 050 1-0 08 I- 6~& A2
Responses: 112 165 327 19 8 39 ¥ 454
(% fall in 212 232 140 407 286
blood sugar) 187 256 289 26 »293 304
2-8 127 402 32-2 T 481 477
272 398 351 285 456 500
251 284 362 \J20-2 0 353 124

758 400 378 <O 357 142 390
22 24 40N %1 79 381

Totals, T, 134-2  188-6 2643 2103 2588 3116

Grand totals ~ "5§7 fﬂt‘“%'?ral’y \FE-n 7807 (=T,)
r=1,367-8 .

Sums of squares .\y32+ F2=T780-85

',\“:\ SF,2=2,489-92
N 52=7,77671

It is someﬁmcs'worth while to make a preliminary analysis of
variance on §uch material, the results of which are shown in Table
10.2. ThéEums of squares of the difference between the mean
respon@‘tb each substance {(all groups combined) and the general
meal';t\response, which is:

~O F+ 7t

\1$ determined in the usual way and is found to be 780-85, and with
it is associated a single degree of freedom. The sums of squares
of the differences between the group means and the general mean,
87,2, is found to be 2,489-92, and with it are associated five degrees
of freedom, the sum of squares associated with one of which has
already been determined, leaving four degrees of freedom for the
sum of squares between doses of the same substance, this sum of
squares being:

2,489-92 -780-85=1,709-07
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The sum of sguares of all deviations from the general mean
¥, §p2, is 7,776-71; from this we subtract 2,489-92 in order to
obtain the sum of squares [or random sampling, This completes
the preliminary analysis of variance shown in the Table. Each
mean square is divided by the mean square for random sampling,
- with which are associated 42 degrees of freedom (6 X7 degrees of
freedom, since there are seven independent comparisons within
each dosage group) and it is seen that the values of F obtained are
significant but not highly significant, P being less than 0-05 but,
greater than 0-C1 in each instance. When we proceed to examing\
the results of this assay it will be well to bear in mind that we may he
dealing with a low level of significance and of accuracy, butywe are
not sure of this until the further analysis is made. \ &~

~
N
i

: O\
TABLE 10.2 &

PRELIMINARY ANALYSIS OF VARIANCE FOR THE DATAMF Taste 10.1

Source of variation Degrees  Sum of L Wean F P
of sguarcsg " { fquare
freedom N\

Between samples 1 7810-\353 ;o 780-9 62 <003
Between doses of the same N\

substance 4 0907 4273 34 =003
Random sampiing 42 U528699ww dissulibramy orgin

Tolal 470N 777671

16.3. Factorial coeﬁ‘lcients&'\

In balanced designsf ‘the type we are examining, where equal
numbers of doses ofdhe* standard and unknown at equally spaced
logarithmic intecvals~arc given to groups of equal numbers of
animals, we sin ll\Y\ the analysis of the dose-response lines by the
use of faciopicl’ coefficients. Factorial coefficients are a logical
developmeii&of the polynomial coefficients we examined in dealing
with a_siple log dose-responsc line. Most comparisons of the
potency, f a standard and unknown can be made by administering
twWo, Jthree or four doses of each substance. When we have
_examined the dose-response relationship for the standard prior to
conducting assays—as we should have done—it will rarely be
hecessary to excecd four doscs of a substance. :

Denoting the 1—4 doses of the standard by §1-S, and those of the
unknown by U—-U/,, we may tabulate the factorial coefficients to
be used in the isolation of individual effects, as in Table 10.3.
These coefficients are the factors by which we shall multiply the
total of responses on cach dosage group of the two preparations.
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When two doses of the unknown and two doses of the standard
are administered there are three degrees of freedom and thus three
independent comparisons which may be made by factorial analysis.
The three sources of variation concerned are those due to differ-
ences between the response to the two samples, to linear regression
and to departure of the two dose-response lines from parallelism.
In this examplc, it is easy to see the logic behind the application
of the factorial coefficients; the difference in response between
samples is clearly T,-T,, the linear regression coefficient is i;z%%l\
and the departure from parallelism is the difference between thetwo
separate estimates of (¥,— Y;) for the standard and unknown® -

When there are three doses of each substance, thexg, are five
degrees of {recedom and in addition to examining the; three sources
of variation already enumerated, we may examiné\the curvature
of the combined curve and the opposed cumvature of the two
separate curves, both of which should be in$ighificant in a satis-
factory assay. When there are four dosest of each substance, two
more sourcaes of variation may be exarjﬁ‘m:d, namely, those due to
double curvature of the combined and separate curves. Thus, by
the use of factorial coefficients wé~are ¥Bi¥ thradtiheiryitrmitin-
formation relevant to the dose-ré3ponse lines, considered separately
and together. The application-of these coefficients now follows in
the example under discussion.

¢ '\\.‘
18.4. Factorial analysis of the dose-response linc

Table 10.4 sholvé"ﬂw analysis for the data of Table 10.1. We
read off the reléyant factorial coefficients from the central columns
of Table 103.and at the foot of each column representing a dosage
group WE\“I}@TG the totals of the responses in that group (7;). These
are thedptals from Table 10,1,  The factorial coefficients, which we
will (@efiote by k, are squared in each row and the total of Sk?
fultiplied by the number of observations per group, =#,5k?
* Is written in a column under the heading “divisor.” Each total is
then multiplicd by the corresponding coefficient in each row, to
form the quaatity kT,, and the sum of these quantities in each row,
which is the sum of products, is written down in the next column.
This sum is denoted by Sk7T,. In forming it, the algebraic sign of
each coefficient must be taken into consideration. The variance
attributable to each source of variation is the square of the sum of
products divided by the divisor, and with it is associated a single
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degree of freedom. The sum of sguares for random sampling is
the error sum of squares and the mean square for error, in this case
1259, is written at the foot of the variance column.  The importance
of each source of variation is then examined as usual by the F-test,
entering the table of F in our present example with one and 42
degrees of freedom for the two groups respectively,

TABLE 104
FACTORIAL ANALYSIS OF THE DOSE-RESPONSE LINE FOR THE DATA {)F
TaBLE 10.1 .\
; O
- Source of Factonial coefficients (&) fDr Divi- | Sum of Whariance
variation dose sor prou
! H;;Skz
H ’6{\5-
. ! St 8 & U U s r
Differences betweenl —1 -1 —1 +1 41 41 &V 1936 . 7809 (DY
samples N i
Linear regression -1 0 +1 -1 0 44732 @ 2314 11,6733 (B3
Departure from NS
parallelism e B R . -H .32 —288 255
Curvature of com- N\ i

bined curve Dt d-kﬁ*auhlbraﬂy( orﬁan +1
Opposed curvature

of separate curves)| —§  +2 — -f—l —-2 +1

9 ' 256 ' 68
96 |—170 . 30
Totals, Ty 134-2 188 6 264 3 1032588 31 I -6 Error 1259

\

N \

The mean square‘f \the difference belween samples is the samie
as in Table 10.2 and_ in fact we need not have determined the values
separately in the“previous Table. We denote this mcan square
by the symbcal\l)2 and its £ value shows whether the potency of the
actual dosds,of the unknown which were administered differed from
those in\fhe standard. We have already seen that in this assay
they. \d;,c[ The variance attributable to linear regression, which w¢

Xgote by B2, measnures the average Increase in response due 10

eqlivalent increases in the doses of standard and the unknown, -

as determined by the combined slope, B2 must be significantly
greater than the error variance or the assay is not valid, since the
slope does not differ significantly from zero. Our present B2
‘gives an F of 13-3 and shows that the value of the slope is in fact
highly significant—a point which was not apparent from the
preliminary analysis of variance in Table 10.2. This high sig-
nificance of B is found because the variances attributable to the
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various departures from linearity and parallelism are particularly
small. :

10.5. Computation of the log ratio of potencies, using factorial
coeflicients
The cquation givén lor M in Section 10.1 reduces, when factorial
" coefficients arc used, to: -

-M:Xs_z_fu-’-k%‘D

where k=1./8/3 and +/5 for assays with iwo, three and four®
doses of cach substance respectively, I is the interval in logarithms
between successive doses, and D and B are the square roots of
D? and B, the first two variances in Tables 10.3 and 204, For
use in this equation, D and B must both be given thgs :s%né sign as
the sum of products {rom which they are compute&. " The terms
k and I convert the log potency from the answeg\given by factorial
coefficients back to normal logarithms, \\~

In our present example we measured the doses of the standard
in units, sincc we were using InternatiQnaI Standard insulin, but
we administered our unknown i11‘.mgﬁ;1\;w\}vd%r§1%ﬁ]?13_apf SLourse,
wish to find the potency of the unkalown in terms of the Humber of
uniis it containg per mgm. th:th'is purpoese it is mercly necessary
to assume that the standard amd the unknown are of equal potency

and that both are administéred in the same dosage units and thus:
£\ - .

N\ X=X,
and the equation redutes to:
AS
S kID
. M=
R, B

The antil'aig\Sf M is the number of units of the standard required
to givohe same response as one “assumed unit” of the unknown.
Th@;hi\ghest dosc of the standard was one unit; our assumed unit -
fonghe unknown is thus 3-2 mgm.  Substituting in the equation, we
find that:

= V8i3X0:30103 X V780D _ 3358

V1,6733

Thus the logarithm of the potency of 3-2 mgm. of the unknown is
0:3358, the antilog of which is 2-167. Hence, 3-2 mgm. contains
2:167 units, 1 mgm. contains 0-677 units of insulin.
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10.6. The standard error of M
The standard error of M, sy, is approximately glvenr by the
formula:
skl v _:BZ-—ITDZ

Spy=—— B

where s js the root mean square for error from the analysis of vari-
ance and all other terms have the same significance as in the
equations for determining potency. We use sar in conjunciion with
a table of 7, with n, the number of degrees of freedom, egual tO\the
number of degrees of freedom for experimental error in the gi{alysis
of variance. The value of ¢ for any required degree of sighificiince,
usually for P=005 or 0-01, is read from the table apd, Arultiplied
by sur; then the potency of the unknown prcpqlzaﬁ‘en’ has been
determined within the limits of antilog (M<isy) and antilog
(M—tsy). If we wish to know the perceniage accuracy of the
determination, we give M the value 2. /0~

It will be noted that the logarithlqicf tfansformation has the
result that the upper limit assigned t@\the value of the poiency at
any given level, of, sigRifleaRse, 1. IH}H&[‘ from the most probable
figure, given by antilog M, thar}‘ }st e Jower limit. In our example:
5= /1259 % /33030103 x V24542

1,673-3

¢ L\
The value of ¢ far R=005 with 42 degrecs of freedom is 2:021
and the limits 'of' Brror at this level of significance are therefore
the antilogs of 03358 —2-021 x0-1673 and 0:3358+2-021 X 0-1673,
or 19977 and0-6739. These limits are therefore (0-995 and 4-720
for the\(eléttive potency on the assumption of equality of units.
We dg@e these limits by 3-2 to obtain the number of units per mgm.
of-the unknown, which has therefore been determined within the
(Tipits 0-311 and 1-475. These limits are very wide, for we have
determined the potency within a percentage ervor of 45-9to 217-8%
at the Jevel of significance P=0-05, and thus our value for antilog
M could not with assurance be said to differ significantly from as
much as half or twice its value. In the next chapter it will be seen
that even these limits are not as wide as exact calcnlation reveals,
since they are approximate limits, derived from a formula which
closely approaches the exact formula only if the slope of the dose-
response line has been determined with little error.

={-1673.
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10.7. The four-point assay

An assay in which only two dose-levels of each substance are
cmployed, usually called a ‘““four-point assay,” cannot supply
evidence about the nature of the dose-response line. 1t should not
be used uniess it is already known that the log dose-response line
is either straight or can be represented by a second-degree equation
—ie. it exhibits simple curvature. In the latter instance, it is a
surprising fact that, with a balanced design, the relative potency is
correctly estimated by the four-point assay although nor by assays .
using more than four dosage groups in ali (Gridgeman, N. T \\

Biochem. J., 37, 127, 1943; Wood, E. C., Narure, 153, 680, 1944L W'
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CHAPTER 11

THE ESTIMATION OF RELATIVE
POTENCY WITH UNBALANCED
DOSAGE GROUPS

11.1. A badly planned test LI\

The relatively simple procedure available for the estima.tio}\of
relative potency and its crrors when a balanced design las been
used in the test is a forceful argument in favour of thé.ddoption
of such designs. The addition of various restrictions ‘in design,
possible only in balanced designs, adds but liitle .té%he compiita-
tional procedure and may reduce error very conSklerably.

We shall now consider the computational pijOthdure which must .
be applied when the doses of the standard;&rﬂ unknown prepara-
tions are unequal in number and do npotbear the same relation to
one another, while the groups do ne{fjbbntain cgual numbers of
observations. This i the gorst J}%}iéan happen, and the reader
will appreciate that 1t 15 a sﬂuﬁﬂnn to be avoided, if possible, at
almost any cost. Not only, :rs.“;fhe amount of information which
may be extracted from thesmaterial much reduced, but the arith-

metic becomes tedious. o\
¢ o\“:
N TABLE 111

PROTOCOLS OF AN ASSAY OF OESTROGENIC HORMONE, WITH UNEQUAL
> GROUPS AND 'SPACING OF DOSES,

N
OV Standard Unknown
Dose ( N 0-2 0-3 0-4 10 2:5
Respoitses (weight 54 59 152 61 102
of nteri) 49 85 71 74 73
V 51 143 112 51 112
81 60 38 60 130
63 - 74 102 83 105
126 72 — 83 118
— 103 — — 105
_ 110 — — 131
Totals, T, 24 6 495 412 876
Means, 7, 707 883 990 687 1095
", 6 8 5 6 8

98
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Table 11,1 gives the basic data relating to an assay of cestrogenic
hormene, in which three doses of 0-2, 0-3 and (-4 g, of the standard
preparaiion were given to three groups of unequal numbers of
rats and two doses of ! and 2-5 pg. of the unknown were given to
two further unequal groups. The assav is shown in Figure 11.1.
The procedure was the same as that described in Chapter 6 for
the test using the response of rat uteri o injected oestrone. In
Table 11.1 we list the total of each group, the means of each group,
and it is useful to jot down the value of », itself below these figures.
The means were used in the computations, but it should be note(‘
that for full accuracy in working they should be taken to one o
two more decimal places than has been done in this example,& “The

No/

1 T
110 p, }
o A
= W
z STANDARD OWN
Z100 £
L
¢
o 20
z
y
= 80 {
I o Www.d.
a LN
"
=z - ~ 3
3 701 N
al T
E -
3] L 1 ] L L L I r i 1 .
03 04 05 pe QRN 08 08 10 M 2 3 14

()" Loc posE

Fi, ILE An assay of ocst}’ogerﬁc hormone, with unbalanced design (Table 11.1).
A common slope hag'been fitied to the data. To avoid negative numbers, each
dese has been muliiplied by 10,

\ &/

effect in the pp@e”nt instance is trivial. It is, however, always safer
to work iri\fetals where possible. In Chapter 4.6 we saw how
to calculate® weighted means and a regression line when groups
were aiot equal, and this procedure must be followed here. If
théra¥s any doubt about the significance of the slope of the com-
bin®d dose-response curve, a point which can often be settled
by inspcction of the data, it is worth while to save involved com-
putation by performing a preliminary analysis of variance, as
in Table 11.2. On the other hand, if the investigator is reason-
ably sure that a valid assay has beer performed, it is quicker
to run the whole analysis together, as in Table 11.3. The deter-
mination of the separate quantities which we need to establish
in composing Table 11.2 will therefore be described in the general
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calcnlations based on Table 11.3  When the relevant data have been
extracted, we shall therefore refer back to 11.2 and point cut how
the required quantities could have been filled in.

TABLE 11.2
ANALYSIS OF VARIANCE FOR THE DATA OF TAEBLE 11.1
Source of Degrees  Sum of Mean F P
variation of freedom squares square
Between samples 1 3378 337-8 0-50 >0:{){*
Between doses of « \
the same sub- O
stance 3 80717 2,6901 400 5005
Random sampling 28 18,8450 673-0 A& —
Total R 245 — ) —
TABLE 11.3 3
\/
CALCULATION OF REGRESSION FOR THE«'@TA oF Tasre 11.1
log (dose Mean No \ \1
x 10} re-
ypmsgdhmyhbrary on, g.m
Xz s np npXa ipXo? #e¥o npXp¥yp np¥p?

G301 707 6 1:8306% (- 54361 424 127-62 29,9768
Standard < 0477 833 8 3816  1-82023 706 33676 62,3398
0602 99-0 3 AG 010 1-81202 493 257949 49,005-0

Q0 , i
Totals ’{9, 8-632 417586 1,625 762-37 141,321-6

Un-  § 1:000 68-7.\6 6000 6-00000 412 41200 28,3044
known { 1-398 IQB'S. & 11184 15-63523 876 1,22465 95,922-0

MNfotals 14 17184 21-63523 1,288 1,63665 124,264
Grpnfgs}otals 33 — — 2,913 — 265,5480

<\
11.2 ,ébmbined cafculation for analysis of variance and regression

-~ "fhe calculations which are required for this purpose are excm-
\p]jﬁed in Table 11.3, We list for the standard and unknown,
first, X,, the logarithm of 10 times the dose (to avoid negative
logarithms we multiply the dose by t0), next, ¥}, the mean response
in each group, and #n,, the number of rats in each group. From
the third column onwards we also requirc scparatcly for the
standard and unknown the sums of each column and the grand
totals for both standard and unknewn. The last five columns of
the Table give the quantitics required in calculating weighted
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means, sums of squares and sums of products. From them we
determine the following quantities:
Sn,X, 8632

For the standard, X,= —= = (45432
or the standar S, 5 _
For the unknown, %,=""z%e 17184 _ 5743
Sn, | 14
For the standard, ¥,= S;f r 1% ~85-526
P
= , &\
For the unknown, Y“=S”"Y”=l’—2§§ =92-000 R N
Sn, 14 O
For both standard and unknown together, O
o Sn¥, 2913 oo nma\
~Sm, 033 2& ’
In the above, SY, and SY, may be read~fé:r5\the respective
quantities S, Y . D
For the standard: ,x> u
_ TZ %’\.
Shyi,?=Sn,Y 2 — = =141,3246<138,980-3=2,341-3
9 ) '.:.“3& www . db ihpar oy i
Syz=sy2 -1 — 156,505°0 -~ TRE SR T 9T
Sy, 7y =S, X, ¥ pm KT, ~\é%62-37—738-27 —=24-10

5’ﬂpfp2=5n,,f’,,2—(—S.\”’%\)Zsz;-nssa—s@zms =0-25421

where S22 is to be:determjned from the sums of squares of all the
individual obsepyations on the standard.
For the unknown, by analogy with the above:

\ij;" Sn,5,2=5,730-4
O 2= :
N Sy,2=8,992-0
O Sn,%,7,=56'56
Vo Sn,%,2=0-54310

For both standard and unknown:
2
Syr=S Y2t =27,254'5
H

The analysis of variance in Table 11.2 is constructed as follows.
The variance associated with differences between samples, with
which is associated one degree of freedom, is:

Sy2—-Sy2-Sy,2=13378
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This may be checked by determining the quantity:
nsf)sz-[-nuf“z:ﬁs(fr—F)2+}1H(}?u-——-?)22337'8

The variation between doses of the same substance is, lor both
the standard and unknown:

8§8n,y,2=2,341-345,730-4=8,071-7

with which are ussociated three degrees of fréedom.
The sum of squares attributable to random sampling is deier-

mined by subtraction of thesc two quantities from S»? and iS':\Q

27,2545 —8,071-7—337-8=18,8450 O

"These mean squares, compared with the mean squarg fo random
sampling by the F-test, indicate that while there is i fact no signi-
ficant difference between the mean reSponses.’tb s*mmlc,s the
regression of response on log dose, as meas{ined by the mean
square for differences between doses on the“same substance, is
significant, but not highly significant. .‘ﬂere are two further
sources of variation which may be excu;mned namely, departurc of
the three points determined for the ‘standard substance from a
linear dose-response reiattonshm,n&nd the departure of the two
separate dose-respdieaPiRigsd Fora parillelism.  The first of these
departures may be tested, agy explamed in Chapter 4.6, using only
the data relevant to the ,standard since the unknown contributes
no information on this, p}phlt. The deviation from regression, with
which in this case is¢ ai‘@oi:idted one degree of freedom, is compared
with the error mean square as in Table 11.4, It will be noted that
neither it nor tl\w Yegression for the standard alone is significant.
It is only the{¢embined evidence of both samples that cnables us
to postulatela significant regression of response on dose. The
second {;bm"ce of variation cannot be examined until we have learnt

)
~ > 3

\\ TABLE 11.4

M
X]:TALYSIS OF VARIANCE FOR THE STANDARD ALONE FROM TEHE DATA OF

TABLE 11,1
Source of variation Formula Degrees Sumof Mean F P
of sguares  square
frecdom .
TaPald
A. Linear regression (S0 972)2 {22808 2,2808 234 =003
S}’Ipxpz

B. Deviation from

regression Snpyy?—A 1 605 60-5 0062 =005
c. Random sampling Syz—(A+8) 1o 15,5834 9740 — —
Total Sy 18 17,924-7 — — —
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how to calculate the variance of the slope, Neither will be found
to be significant. The analysis of variance having indicated that a
valid assay is possible, although not with as high a degree of
significance as we might desire, we may proceed to calculate the
combined slope and its errors.

11.3. Calculation of the slope and its standard error
The combined slope for the two substances, b, is given by the

equation: .
b= 551555y N

S‘S'nijpz (:..’x
where 85 means “the sum of the sums of . . .” since(we add

together the two separate totals for the standard a :‘unknown
as described above. We also determine the slopes separately
because we shall require to examine them separately” “Each separate
slope is given by the equation: O
b= Sr&ipjj ) £ "\ i
S HPJ-CPZ "\‘ s\:
The combined slope is thus: A
. ey www . dbraulibrary.org.in
_ 241045698 07
0-25421 +.0:34310
The two separate slopes arel
bs=si;;>ao and b,=10414
for the standard ang }lnknown respectively.
The variance 01: sthe slope is:

DVb=_ ¢ 18,8450 _g44.18

N

whence w95.05.

It mslght be judged from the figures involved that the two separate
estithates of the slope do not differ significantly, but we may if we
wish test the point by determining a separate. variance for each
slope, that for the standard being given by:
= Ve
T Sh,%,2
where Sn,%,2 refers only to the doses of the standard. The corre-
sponding variance for the slope of the unknown is similarly
determined. The reader may care to do this as an exercise and
will find no significant difference between the two slopes. The

Vb,




104 PRINCIPLES OF BIOLOGICAL ASSAY

variance of the difference between the slopes is given by the

formula;
Vb, —by=Vb+Vh,

b,—b,

and “Student’s” ¢ 's S n with the same number of degrees
V' Vb, —
of freedom as for determmmg Vc.
11.4. The estimation of relative potency L\
From the formula: A N
M=%, — X’—Y -Y, z'“; )
we determine relative potency as before. :t\'\"‘.
—6474 N\
M=—077311-——= Q709
7 10117 !

Antilog —0-7091, or ¥-2909, is O 1954{ The unknown is thus
0-1954 times as potent as the standdrd\
The approximate formula for the efrm of M is given by:

wgyr dbraulibraragor
g w(?+ij s

h2\n, ny bt
67307 1 ) 64742 X 844-18
101:1‘,*2 19 14 101-174
<0 308496,
whence 5 Wo 09217,

The limit O.f error of our determination of potency at any given
level of s;ggﬁﬁcance arc therefore given by the antilogs of:

&\ —0-7091£0-09217¢

whérc ¢ corresponding to any desired level of significance is read

\from the Table with 28 degrees of freedom. The value of ¢ for
P=0-05 is 2-048 and for P=0-01 is 2-763. Substituting at these
two levels of significance, we find for P=0-05,

—0-7091 1:0-1888,
ana for P=0-01,
— 07091 £0-2547

whence, taking antilogs, we obtain the limits 0-1265 to 0-3018 for
P=0-05 and 0:1087 to (+3594 for P=001.
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11.5. Fiducial limits of error

1t has been indicated that the limils given so far for the estimation
of relative potency are approximate. The approximate formula
is sufficiently accurate as long as si gnificance of the slope, b, is high.
However, when our estimate of the slope of the log dose-response
line is not well determined, the approximate formula may give
grossly misleading results. It is possible to calculate exact limits,
usually called fiducial limits, in which the error of the determination
of the slope is taken fully into account. The point is fully disy
cussed by Irwin (J. Hygiene, 43, 121, 1943). When the highest
possible accuracy is required it is always worth while to calgﬂlate
exact fiducial limits unless the slope is greater than abom:t}eig"ht
times its standard error. A%

The fiducial limits of the results of an assay require tl{&albu lation

of the following ¢uantities: AN
AT 1, 145
A= Ve(~—+-—)=52(---+—x;‘)‘“
H, Ry T \'Hﬁ,
NS
C\Y g
Vb:_Ve__. O
SSn,%,” AN
. b ,:.t{;éz www . dbraulibrary.org.in

= gﬁ_'—,gg—g;i" B i1
The limits are given by \ '
o ¥ : v
X:“Xn'"'gg})—yl) iz_\g_C(A_},_C_‘VL(;;S_Y_ﬂ) )

A/ .
When lactorial cocfficients have been used in the calculation of
the potcna%"a‘;ﬁd dose-response relationship the limits are:
N\

u;.\ 1 D2 \?
»\\ CMi_Zﬁx/_C( +BT_S_2{2)
Vo b n,Sk?

(Bliss, Biometrics Bulletin, 1, 57, 1946) where n,Sk* is the number
per group times the sum of the squares of the coefficients for the
row detcrmining the difference between gamples in the factorial
analysis.

For an odd number of dosage groups:

pe_ B _
IV Sk
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and for an even number of dosage groups:
2B

_ b IVn,Sk?

where 7,Sk? is taken from the linear regression now in the factorial
analysis.

1t will be seen that these limits must be determined for each level
of significance which it is desired to investigate, as the first part of
each expression giving the limits is not identical with M, the log
ratio of potencies. The range of fiducial limits does not havesyd
as its central point. Thus, in additionr to 'underestimating\\the
width of the fiducial range, the approximatc formulag'sites a
biassed estimate of its position, unless ¥,=Y,. The ;tﬁﬁi'oximate
formula equates C to unity, which is only the case ifo\Vﬁ.js infinitely

#

small, but C rapidly approaches unity as sé increas&{s‘.' When — =8,
b 9 §p

the calculation of approximate limits invo]vss.aliout a 5% error in
the value of C at the level P=0-05, and/the fiducial limits differ
very little from the approximate limitg™ ’

11.6. Calculationmfrﬂdneiaiblhﬂ@@ig.ﬁ; practical example

N ™ . .
The ratio - in the examplédwe have been examining in this
&y \ ‘“
chapter is only 3-5.  HenCe we may expect that the fiducial limits,
particularly for high le\v}}s of significance, will differ considerably
from the limits ag determined by the approximate formula. We
calculate: )

\;:’.\" A:673'07(%+-114)=83'501
\O~ =S7307 _ gy
RS 079731 e
N 101-172
"\ ¥ C= : -
O 0117227632 x84 18— | 0
v/ C=1-643

where we have taken ¢ for the 0-01 level of significance=2-763.
Substituting in the formula for fiducial limits, 'we find that these
limits are given by —0-600340-4302 and are thus 2-9695—1-3299.
Taking antilogs, the potency of the unknown is thus judged to fall
within the limits 0-09322 to 0-6759. Since the estimate of the
most probable potency (antilog M) was 0-1954, we calculate that
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the potency has thus been determined within the limits 472°% to
345-0% of its most probable value at the level of significance
P=001, :

Our estimate {rom the approximate formula was Q- 1087 to 03594,
or 556% to 183-9%,. This very large difference arises because the

value of 3-5 {or \b is unsatisfactory (also ¥, differed a lot from ¥,),
b

and serves as 4 warning that when the significance of the slope is

not véry high, fiducial limits must be cafculated in the place of the

approximate limits. At the level of probability where the slopé.
loses significance and cannot be censidered to differ from zerogthe

fiducial limits for the result are 0 and infinity, but the apprgxfm'afe

formula still gives finite limits at this level. It is imporiant,

therefore, to calculate exact limits for a high level of si rligﬁ?:ance, if

that level of significance is not far exceeded by the leve}@f significance

of the value of the slope. \

The approximate limits calculated for thesdssay discussed in
Chapter (¢ were, at the Tevel of probabiiityj’:O-OS, 45-9%, and
217-8%,. If ihe reader carcs, as an exeflsis?xe in the calculation of
fiducial Hmits, to compute them for this\a8say, he will find that the
fiducial limits arc 53-2°% and 373-7808° Note dbavilibthiy caseinot
only was the range of error underestimated but that the lower limit
of error given by the approximate formula was in fact below the
true vahuc, whercas the upper limit was considerably short of it.
This fairly serious discrepdney between the fiducial and approximate
limits at a probability lTevel of 0-05 is again attributable to the fact
that ;b takes a low\'{:aiue (approximately 3-6)., The two examples

b O~

in Chapters 10Gnd 11 were in fact selected with a view to impressing
from the sps)\i'tifhc need for the calculation of exact limits of error
when thf.:zs]bpe has not been determined with any very high degree
of prepision. In a great mumber of well-designed and well-
coffdueted tests, sich as that we are about fo discuss in the next
Chagter, there is no need for the calculation of limits other than
those indicated by the approximate formula, since the slope will
have been determined with considerable exactitude.



CHAPTER 12

A 2x4-POINT ASSAY WITH
RESTRICTIONS IN DESIGN

12.1. Protocols of the assay

The majority of examples of adequately designed and qdeq'ugzely
analysed assays is found in the published works of a Cry few
authors. We owe in particular a considerable debt to the work of
Dr. C. 1. Bliss and his collaborators, from whose publlshed material
the following example is taken (Bliss and Marks, x@\(ﬂ!f J. Pharm,
Pharmacol., 12, 182, 1939). 1t illustrates the treatient of an assay
(a 2 x4 assay’”) in which four doses of the standard and four doses
of the unknown are given in a balanced design)in which the variation
attributable to differences between animals’and the two successive
days on which they were injected may‘be segregated.

The example > compares the rela ive potency of Iulernational
Standard insulin of two lsflgfz SIVE ¢ days and was made for the
purpose of testing the action Of ‘the drug during the restricted food
intake of the test, but the" eomparison of the action of the same
compound on two suceessive days involves exactly the same
statistical treatment s loes the comparison of standard and an
unknown substance\on the same day. International Standard
insulin administéréd on Day 1 may be regarded as the standard
and the same\cempound administered on Day 2 as the unknown.

The tests 34§0 exemplifies the comparison of the rcactions of the
different{animals (rabbits) used in the “cross-over” technigue.
Each x\bbn receives each of the four doses once on the first day
augl ohce on the second day, but within these restrictions the animals
“are assigned at random to doses. As described in Chapter 10, the

\test is conducted by the injection of a dose of insulin and the
measurement of the percentage fall in bloed sugar which it evokes.
It is not possible to make four such measurements on one animal in
one day, and Days | and 2 therefore refer only to the first and
second of four different pairs of consecutive days on which each
animal was used. Since the initial level of blood sugar was known
to have an influence on the percentage fall, this level was also
recorded for use in correction by covariance analysis.

108
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The protocols of the test are given in Table 12.1. As often
happens in practice, certain accidents during the course of the test
had the result that a few rabbits were rejected from the experiment,
and of the 16 rabbits originally used only 12 were retained for
analysis. This disturbed the original balance of the experiment,
so that the different doses were not equally represented on each
day of the test and few substitutions were made to restore the
approximate balance. These are indicated in the Table. In
Bliss's wicw, since scparate analysis showed that the apparent
variation in sensitivity from one day to another could be accounteég
for largely by changes in initial blood sugar, the partial lack
balance between doses on any one day should be adjusted @uto-
matically in the correction by covariance for differences i initial
blood sugar. These details need not worry us furthe{;‘:s.ince the
example is merely illustrative of the statistical méthods to be
employed on the assumption of complete balancen™

12.2. The analysis, using covariance e \4

In Tabie 12.1 the total reactions for, Qaeh"rabbit and the total
reactions of all rabbits on cach dosage Iebel are tabulated, together
with the corresponding totals for thelinitial develnibfabjaad shgar
measured in mgm./100 ml. X, isstbe logarithm to base 10 of a
hundred times the actnal dose a@ministered.

The data in Table 12.1 are\now analysed, using factorial coeffi-
cients, as in Table 10.3, apd covariance analysis to adjust for initial
differences in blood sugdc.™ The first stage in the analysis is shown
in Table 12.2. In this Table we list the cocfiicients for treatment
effects Nos. 1-7.dPable 10.3, and below cach column of coefhi-
cients we write the'totals, 7, and T, the total of initial blood sugars
and percentagetreduction in blood sugars ai each dosage level on
cach day.AFhe divisor, 7,8k, is written against each row of fac-
torial caefficients and the two sums of products for W and Y fall
in the'hext two columns.  Then follow three columns of variances
aitd govariances, from which an adjusted Sy,2 for each treatment
effect wil} be calenlated.

The coefficients for adjusting Sy* shown at the bottom of the
columns of variances and covariances are determined from the
regression relating ¥ to W. To calculate this regression, the sums
of squares und products for trcatment effects are transferred to
Table 12,3, which shows an analysis of covariance for the complete
data, The only additional calculation needed to complete Table
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12.3 is the variation ascribable to differences between rabbits,
with which are associated 11 degrees of freedom. The method of
calculating these sums of squares and producis should by now be
apparent—they are, of course, calculated from the total responses
" of each rabbit and the total initial blood sugar levels. 1In Table
12.3, treatment effects Nos. 4-7 are grouped together, since we are
not really interested at the moment in knowing anything more
about the combined regression line than whether it sufliciently
- describes the trend of the responses and whether the two separate
lines composing it are substantially parailel. N\

The 96 separate responses in the test, representing 95 delsges of
freedom, have already been employed in calculating, stitistics
absorbing 18 degrees of freedom. We therefore have 77 degrees
of freedom for the computation of error. The valiie ©f the slope
to be used for correction by covariance is givel} by‘

b LTTTST - AN
"T5677:28
using the sums of squares and prodp¢ts from the error row only;
hence b,=0-313102. The coefficignts for adjusting Sy2, which are
b2 —2b, andwl vetpeatishlyyastherefore 0-098033, —0-626204
and unity. _ A\

The standard deviation ef :él single observation, s, is determined
as usual from the errof wow by caiculating Sy for crror and
dividing by the number,\ef degrees of freedom. The valne of Sy?
was 3,149'51, wiily Swhich are associated 76 degrees of frecdom
(not 77, because(We have “used up” one degree of freedom in the
calculation of #,); hence:

Res ) - Ve=41-441
,§~~‘ §=6-437
W@ffx"ﬁy note that the variance of 5, which is given by:
PAI

~O _ve
\ | wa—gz

. 4144t
567728

The observed regression of the percentage level of blood sugar on

the initial level of blood sugar is thus highly significant. Were it

not significant there would be no justification for correction by
covariance,

Rabbits with a higher normal blood sugar tended to be less

whence: o, =0-0854
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sensitive to the effects of insulin than their fellows, and correction
for mean initial differences between rabbits therefore accentuates
the differences in sensitivity, The combined effect of insulin
treatment and starvation significantly raises the normal level of
biood sugar on the second day. Hence the apparent greater
potency of the same dose of insulin on the second day might have
been due to the general rise in blood sugar. However, although
the adjusted Sy, 2 for the effect of day of injection was reduced by
correction for covariance to sfightly over half its original value, it
remained highly significant. Insulin therefore had an unguestions™
ably greater potency on the second day, even when the changs i
the initial level of blood sugar was discounted. The mean sgliages
3-7, measuring departures from parallel rectilinear dose-résponse
relationships, were less than the experimental error i “both the
correcled and the uncorrected material. Hence the dssay is to be
regarded as satisfactory and relative potency can & determined

from the adjusted D2 and B2 \

12.3. The estimation of relative potency.\.; v
From the eguations on p. 95 we estimate the log ratio of potencies
as: _ “‘::, www.dbraulibrary org.in
= Yixﬂﬁ‘ﬁlﬁf?ﬁ:g.lz] 4
75790

The error of this estimate 15‘\?
_ 64375 X VS X QUB0S (VS TA407+T4T1D) o 530
p 5,744-07

The same dose of .ifg}snlin was therefore §-3224 times as potent on
the second day z(&,(m the first day. At the level P=0-05, the limits
within which~this ratio has been determined are the antilogs of
0124 :I:O-QBQ&?I’ The value of # with 76 degrees of freedom at the
005 leveiis 2-000; hence the limits of error are 1150 and 1-522.
Sian;“\; 3

\ 3

M

Sa

__ 2B __ ZXT5T0 45068
IVn,Sk? 0-15051v/480
and its standard error is:

V' SSn,%,2
the value of L far exceeds that at which it is necessary separately to

S
compute exact fiducial limits.
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12.4. Tests for consistency

Referring to Table 12.3 we see that the variation due to dilerences
between tabbits is highly significant with an F of more than 20,
Scgregation of these differences in the analysis, made possible by the
adequacy of the experimental design, eliminates errors due to the
variations in the level of response between different rabbits. Tt
does not, however, ensure that each rabbit has reacted similarly
to the others despite differences which it may show from the average
level of respense. It is ofien worth while to fest how consistefisly
the animals used in an cxperiment have reacted to the rapnge of
doses to which all of them have been subjected. R

We have so far always treated those sources of error.which could
not be segregated in the design of the experimcmi"’or were not
purposely segregated as equivalent to variatio 1’@uc to random
sampling, to be used as the term for experimental error.  Tn statis-
tical terminology, however, this error tcrm\Qf‘ten consists of infer-
actions between experimental treatments, &nd restrictions in design
which remain after the sums of square§™for these particular factors
have been subtracted from the totalshm of squares. In theory,
each single degres, ofpfigedom, ailible in the remaining sum of
squares used as the error terpilin a test like the present example
has associated with it a partidilar comparison of the mingled effects
of treatment and restrictions in design, These mixed effects are
known as interactiong\In this case they measure the extent to
which the type of ’fés;\abnse to insulin varied from one animal to
another, Thus tHe rabbits may have differed in the slope of their
separate dosa—résbonse lines and the elimination of particular
relatively imsemsitive individuals with low slopes might be worth
while in fuftire tests, since in testing the potency of preparations of
insu]_ip%e can use the same animal time and time again.

If\we desire to test this possibility, the interaction between
«andividual test animals and the non-significant treatment factors,
stch as those mecasuring departures from parallelism and recti-
linearity, may serve as a restricted experimental error by which to
assess the importance of those interactions which have been
isolated. Table 12.4 shows the computation of the interaction
between rabbits and each of the first two treatment effects shown in
Table 12.2, both of which are significant. The factorial coeflicients
for effects 1 and 2 were applied separately to the responses of each
animal to obtain the individual sums of producis in the top two
rows of Table 12.2.  All the sums of products in Table 12.4 were
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TABLE 124

SUMS OF PRODUCTS WITH TACTORIAL COBFFICIENTS TN TABLE 12,2 FOR

INDIVIDUAL RABBITS USED IN COMPUTING INTERACTIONS BETWEEN RABBITS

AND EACII OF FIRST TWO TREATMENT EFFECTS (COLUMNS 2-3); ORIGINAL

AND ADIUSTED Sp? FOR TREATMENT EFFECIS 3-7 IN EACH RABBIT
{CoLuMNS 6-7)

(From Bliss and Marks, Quart. J. Pharm. Pharmacol., 12, 182, 1939)

Rabbit Treatment effect Treatment effect Treatment effects
No. (L (2) 3N
Criginal Adjusted
Sk W SEY SEH SkY Sy2 Sy? \\
i 27 60-4 85 2004 37371 19304
2 12 126 —18 92:2 9633 3940
3 3 40-6 —31 750 85-92 A0
4 38 344 0 1570 7672« WA-52
5 11 371 75 154-9 328-8F%4, 355-66
6 59 40-4 —73 124-4 69 b 19-25
7 18 233 26 1013 3274 32084
8 22 18-8 20 2004 {MN2-45 1049-84
Q 27 3-8 — 125 931 22424 169-09
10 I 125 — 17 -3 \ 25562 21648
11 20 16 6 1650 £  340-17 34318
12 36 45-8 —40 15020 & 535-93 483-53
- -— ) _A__‘: JE—
Total 274 3536 =112 1,625% 2,822-48 2,456-94
Sk2 8 8 40 4 40

Swww.dbraulibrary .org.in

then squared, the squares totalled, gmd divided by Sk2, the sum of
the squarcs of the factorial coefficiénts, to determine the sums of
squares and, since each totah includes both the direct effect of
treatment and its interaction’ with individual rabbits, the direct
effect was subiracted figin“the total to obtain the value for inter-
action alone, The interaction between days and rabbits for initial
bloed sugars is: « €

Sw a¥.27 +122-|é . 367
Then Sk V(%vas multiplied by SkY for each entry corresponding
to individual rabbits and the product summed and the total inter-
aCUQpﬁetermlned as for Sw?. Thus,

—782-04=363-21

§y=27x60-_4+12x32‘_68+ L H36X458 1 00 josl,
and Sy2=60-42+32-62+8 o HASE  3425.80.

The other interactions were isolated by analogous methods and
Table 12.5 was consiructed from the results. In jt, the interaction
between rabbits and (1) differences between days, and (2) the slope
of the dose-response line are compared with an error term calculated
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by subtracting these two particular items of interaction from the
total interaction, comprising the error term in Table 12,3, Since
this is to be a critical test of significance, we must calculate reduced
Sy2s by the method described in Chapter 8.5. There was no need
to test the significance of our estimates of D and B, since the value
of Ffor the lesser of them was 18-0, which, with one and 77 degrees
of freedom respectively, exceeds the 0:01 level of significance.
Reduced comparisons need only be made if the variance ratio falls
between valucs giving a 2 of 005 and 0-0l. We see that the
mean reduced Sy?s are less than their experimental error and wé'
may conclude, thereforg, that despite their wide differences in oyer:ﬁl
susceptibility, all rabbits reacted similarly to the differences between
days and dosages. If a significant interaction had been detected
the discrepant individuals would have been sought ix(Tablc 12.4
from the products S&Y for individuals. O

Atypical individuals may not only reduce th# ﬁecision of an
assay by differing from the others in the slope of\their dose-response
lines, but also by reacting very erraticaﬂy,a;%"thus enlarging the
experimental error. Erratic reactors will\end to increase experi-
mental error by departing in their feactions from the parallel
rectilinear dose-response relationship on” WHiR e SEEY 968 Rsed.
When the present experiment wasiexamined with this possibility
in view, it was noted that cxpeffméntal error for the dose-response
fine on the first day in rabbits 1-8 was 2848, as compared with the
equivalent 41-44 for the fulbexperiment. This observation occurred
becausc part of the fedt. Rad been used separately as an example
of the analysis of Biological assays. Bliss and Marks therefore
tested the possibifities that either one or more of the four additional
Tabbits rezlctqd\:afratically to insulin, or that the response on the
second day &vas less consistent than on the first day.

The fis§tpossibility was tested by computing for each rabbit the
sum ofSsquarcs measuring departure from a parallel rectilinear
deséresponse relationship. The factorjal coefficients in rows 3-7
ofiFable 12.2 were applied separately to the eight percentage falis
in blood sugar for each rabbit and the 12 series of products SkY
were obtained, and from them Sy?, with five degrees of freedom for
each rabbit. Since unequal initial blood sugars caused part of the
variability in response, each Sp? shown in the penultimate column
of Table 12.4 was adjusted by covariance for the corresponding
individual Sw? and Swy, using a regression coefficient (0-28114)
computed from the Sw? and Swy for all 12 rabbits. The adjusted
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Sy,2 thus determined for each animal is shown in the last column
of Table 12.4, It was seen that eight of the rabbits reacted more
or less consistently to insulin, Nos. 5, 7 and 11 were semi-erratic,
and No. 12 was the most erratic of all. It was therefore suggested
that in selecting individuals for future work these four rabbits
might be replaced to advantage, but so far as the present experiment
was concerned the log ratio of potencies and its error was practically
the same, whether computed from part or all of the data, since the
reduction in the mean square for experimental error was b*tlanced
by the lower reliability of the smaller number of obserthlons\
The second possibility was tested by comparing the reduced Sums
of squares for curvature in the separate dosc- -TeSponse hnes for the
first and second days and it was found that the respefise was quite
as consistent on the second as on the first day, the'réduced mean
square for interaction with the quadratic and cubiciterms being 3223
on the first day and 31-23 on the second dayboth with 23 degrees
of freedom. Bliss further tested the possibilities that larger rabbits
(the weights of rabbits are shown in j"\ettz]e‘IZ.l), since they received
relatively less insulin than smaller ofies; showed a cor respondingly
smaller reactlogm%bggﬂ;lw}lggé@ﬁtlal blood sugars, shown by
covariance to be productwe «af*a more pronounced response,
significantly affected the results However, within the wide limits
of the experiment and ayith a balanced design, comparison of
potencies was as acculsa\te as if injections had been made at a
constant rate in mg@ #kg. body weight, but differences in initial
blood sugar, toggthet with differences in body weight, were respon-
sible for a mgr‘gﬁcant amount of the variation between individuals.
The percentage fall in blood sugar per unit increasc in the initial
level decreased more than five {imes as rapidly when comparing one
rabbit- N&hh another, as it increased in comparing one test with
another within single individuals.
These various refinements by which an assay may be tested for
ihternal consistency, although they may sometimes suggest improve-
ments in methods of conducting future tests, mean a considerable
amount of statistical computation, but may be worth the effort if
it is desired to increase the accuracy of tests to the highest possible
level and to be fully satisfied about their internal consistency. [n
other cascs the additional statistical labour involved and the frequent
finding of doubtful or negative conclusions makes it easier to aim
at an increased precision by increasing the number of observations
made in an adequately designed experiment.



CHAPTER 13-

FURTHER DESIGNS FOR ASSAYS

13.1. General remarks A

The rcader should by now be sufficiently familiar with ,thB\
principles to be followed in computing the ratio of potencies :whan
comparing an unknown with a standard substance to bg able to
work out the details of tests and their analysis. 1t see s desirable,
however, to give a few more examples of the genéral structure
which the design of the experiment may take undeaf '\;\Arious labora-
tory conditions. The particular structure of ah experiment will
depend on the number of doses of the stand-; “and unknown that
we wish to administer, on the number O&as;jrrials or other units of
test material available for the experimént‘and on the time at our
disposal, Tt will also be modified .aseqrdipaie st fepgated
observations can be made using th&same test object, as in the use of
rabbits for testing the potency.'qif insulin, or whether, as when an
animal is kilied, the test okg@ct can be used once only. Another
factor will, of course, bg:.\th\e limits of error within which we desire
our results to fall. _ X\~

13.2. Latin squaré-designs

The Latir)...gq\farc is a particularly useful basis for the design of
tests in whieh it is hoped fo segregate a number of sources of
variatiotio\which may affect the estimate of error and in which, as
in_theyinsulin test of the previous Chapter, interaction is unlikely
t({b: significant. It may be used singly or in replication. If we
plan an assay in which two doses of the standard and two doses of
the unknown are to be administered to the test objects, we can design
our experiment in units consisting of 4x4 Latin squares, so that
each row and each column of the square will contain examples of
all four treatments. Jt would be a rare test in which a sufficient
accuracy were obtainable by the use of a single 4 x4 Latin square,
i.e. in which only four animals were used per dosage group. If
we had decided that 12 animals per dose should give a sufficiently

121
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accurate answer, we could design the test using three 4 x4 Latin
squares as shown for example in Table 13.1.

TABLE 13.1

ARRANGEMENT OF A TEST USING THREE 4 X4 LATIN SQUARTS

Square No. Animal No. Date of Test
1 2 3 4
1 1 Sz 51 uy Uy . \"
2 U, Uy 8 8, .\
3 51 82 Uz TUr 280
&\
4 iy Uz S3 SN
2 5 31 81 Ua '\Q‘S”j‘
6 51 Uy Sap :.\ s
7 Sa Uy S L
8 Us 5y I 5
\/
3 9 U s'z> LSRR
10 8, NG, 8y Uy
t 1 51 i‘ ) \ Ul B2 [)

www . d bl'au‘ ﬁn‘al'y.ongﬁﬂ ) 51 Yz S2
Under certain conditions, ad;‘m‘this assay, in which columns
represent days of injection of a Urug to animals and the treatments
are completed in four daya\;\ve could run the analysis by combining
the columns from allghree Latin squares together, the differences
between the four cplutns representing differences between days,
it being assumed #hat each dose of the standard and unknown can
be tested on a si:n\gle animal. Thus, as an example, in the assay of
- parathyroidﬁ?{h‘act in which a single dog can be used [or successive
determinations of serum calciom, but only one determination can
be mad'g\per day on each animal, the rows in Table 13.1 could
reRrgstént 12 different dogs, the columns four different days with the
ses as shown in the Table (cf. Bliss and Rose, Amer, J. Hygiche,
31, No. 3, Sec. A, 79, 1940, for a practical example). Nevertheless,
we should not be precluded from analysing separately the contribu-
tions of each Latin square, each of which might perhaps represent
a batch of animals, and thus could compare groups of animals
one against the other,
Correction by covariance for any concomitant measure which
might be thought to influence the results of the test will follow the
usual scheme and need not be further elaborated. It must be
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noted that the use of the Latin square precludes a ful! analysis of
interaction, as confounding occurs; but it is fortunate that in the
general run of biological tests interaction is frequently negligible.

13.3. Symmetrical pairs

Anctiacr design which may be extended to any number of treat-
ments and which has the advantage that each test object need be
used twice only is that known as symmetrical pairs. The arrange-
ment is illustrated in Table 13.2.  Tn this table it is supposed that
12 animals are tested on four different doses, two of the standard

and 1wo ol the unknown. .\
l: 2
& W)
TABLE 13.2 O
ARRANGEMENT OF ONE REPLICATION OF A TEST USING sy{i@iénlcu
PAIRS \
Animai  1st Test 2nd Test Animal IstTest 2nd Test
No. No. .\\J
i Uy U,y 7 X ¢4 U U;
2 Uy 51 8&\\ 81 Ui
3 Uy 8z 2 82 Ug
4 Uz 51 ..’nwlﬂ‘w‘dbrauﬁbrary.01‘31.121
5 U Sy RN 8y U,
6 S 82 o 12 Sz 81

When only two observation§ have been made on each test object
the segregation of variation)between test animals is computed in
terms of the differences Befween the two readings on each individual.
There are then the. §ame number of differences and degrees of
freedom as thereafe’ individuals and the usual correction for the
mean is omitted “The effects of treatments are determined from
the sums of fie differences for the six combinations of treatments,
with theﬁj&‘ of factorial coefficients. These are not the same as
the factprial coefficients in other designs, and the coefficients for
twg'amnd three doses on the standard and unknown are shown in
Tabl’'13.3. Each dose difference has a factorial coefficient relevant
to that particular comparison and the divisor, sum of products,
etc., are computed by the usual formulae. The scheme for com-
puting the totals at the bottom of each column for factorial coeffi-
cients in Table 13.3 is exemplified in Table 13.4. Note that the
divisors in Table 13.3 are formed from the quantities 7,Sk?, where
n, is the total number of observations in each comparison such as
U, —U,. .
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TABLE 134

SCHEME T3 TABULATING DIFFERENCES IN THE ANALYSIS OF AN ASSAY
USING SYMMETRICAI, PAIRS AND & REPLICATIONS

Pair Treatmen! differences Total Pair Treatment differences Total Totals
No. No.

1 =05 (& replications)  T1 7 Uz-Up {k replications) Ty U (=T-T7)

2 U5t - 7, B S5i-U) » Ty Ui=St (=T»-Ty

3 U5 o Ty 9 S-Uy - 1y U5z (=T5-Tp)

4 U5 ™ Ts 10 S-In o Tio U8y {(=T4—T10}

3 U8 s Is 11 §-U; “ T UVam-S2 (=TT

& Si=52 - Ty 12 858 » Yo §1-852 (=Ts-T12)

Totals for all 12 pairs: Ta, Tp . . . Tk A\

If there are scveral replications of the experiment using, & for
instance, four sets each of twelve individuals, the total dii’ﬁe}eﬁces
for all sets together are computed for the purposes of anél}?’sjs, but
we can scgregate diflerences between sets in the analysi ' Of variance
or covariance from the totals of differences within eggh set, The
final analysis of variance then takes the form sthn in Table 13.5,
with an error term based on the residual sGfn of squares after
eliminating the differences between sets and(the differences between
the various {reatment effects. In this Table D and B, computed
from the mean square for differences \Betiestbroatipleryatid-slope
respectively, have the same meaniné;és wsual and the computation
of relative potency and its error isimade by the usual method.

'\
(TABLE 13.5
¢. & \/
THE ANALYSIS OF VARIA}JCE\IN A 2X2 DOSE ASSAY USING SYMMETRICAL

) PAIRS
Source of variation” Degrees Sum of squares Mean square
o\ of
\:"x'w freedom (Tt Tt iTE T2
. » Ta2+Te P & A Re
k rephcdtmnz\’\ k - 3 TAk
(1) Differegices berween samples 1 , . nz
(2) Lingityregression 1 From factorial analysis B2
(3)Deprf{ure from parallelism 1 —
Randem sampling Sum of 5
{n pairs of obscrvations) n—k~—3 Computed by subtraction I-II?I —k _Clgafes
; sa. . Sidiffs.)? Stdifis.)?
Total within pairs n L;) { :I’.rrsu}_

13.4. Balanced incomplete blocks

Sometimes the limitations of the experimental material, as when
animals are segregable into litters each with only a small number of
members, make it impossible for each treatment to be given to each
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test object, but it may be possible to give more treatments per test
object or set than in such a design as symmetrical pairs. Advant-
age of this possibility may be taken by the use of balanced incomplete
block designs, in which the number of units per block (block implying
a statistical unit, such as the Latin square) is less than the number of
different treatments, i.e. doses, to be administered. Differences
between blocks can be eliminated if the design is such that every
possible combination of all treatments occurs in the same number
of blocks. The handling of this design is not simple and it would
be inadvisable to attempt to base tests on such a design wi@out
professional assistance, We note here the existence of the .m}thod
so that if the occasion appears to warrant it, the reseq;:éh"iﬁorker
is aware of the possible application of the method to, his material.

There is only a limited number of solutions,éf’ihe problem
presented by this technique which employ a };{acticable number
of blocks and which are available to the assayigt. These arc given
by Fisher and Yates (Statistical Tables ﬁgj\Biofagical, Agricultaral
and Medical Research, Oliver & Boyd, oEEh'ﬁburgh) for 10 replica-
tions or less, As with Latin squares,\\@’e can cope with aimost any
desired type of @s,s@mpyagg;fgltyogpgg}pf these solutions, alone or in
replication. NN

As an example, four dosedé?cls of the standard and four of an
unknown can be tested in failrteen biocks of four test objects gach
(e.g. four litter-mate-s&iwith seven test objects per dose. The
arrangement is showi{ i Table 13.6.

O
O TABLE 13.6

AN ARRANGEMENS FOR TESTING FOUR DOSES EACH OF A STANDARD ARND -
UNENOWN, USING BALANCED INCOMPLETE BLOCKS

,&B‘l;ﬁck Number Doses of Standard and Unknown

R\ 1 $) S2 84 S4
NS 2 U Uz U3 Uy
\W 3 51 Sa Us Uy
/ 4 83 S4 I, Uz
5 8y 83 u; Uy

6 Sz 54 1 Us

7 Sy 54 Uy Uy

8 Sa 34 1551 Ug

9 5 Sa L85 Us

10 S3 84 s Us

11 S Ss U Us

12 hT) 4y Us Ug

13 51 Sq Uy Ly

14 53 S3 Uz Ujz
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In gencral, il
b==the numbecr of blocks,
# =the number of test objects per block,
n,=the number of test objects per dose,

F=the number of doses of the standard and unknown
together,
then ra,=bk,
and n(k—1) _ {the number of blocks shared in common by any
r—1 iand every two doses levels. "
We calculate the set of » quantities 4Q,=kSY,— ST, whpre\\
ST, is the sum of the total responses in all blocks containigg-d

test object with response Y, (responding to dose X,). O
The adjusted mean responses, ¥, are given by the que@ti;ies
_ K7\
7,= 742 =1) &
rafik—1) 8

where ¥ is the general mean. D
The general scheme for the analysis of vari}ﬁ‘fée is discussed in
Fisher & Yates (ref, above). ~}(;‘;
L

13.5. Confounding . “‘:\’v;»;;w_dbraulibl'ary_org_in

We have met previously the con{;épt of confounding two or more
possible sources of variation. 48 possible purposely to confound
certain sources and to elimin@te any effect they may ‘thave on our
estimate of error as a whgte,\ Sometimes confounding is unavoid-
able. When in experir’néﬁféttion with animals we can place only
one animal in each cage or pen, the differences between animals are
unavoidably confoun'ded with differences between cages. On the
other hand, whert is possible to cage groups of animals together
it is not théoretically necessary for confounding to occur. In
practice, it(fnay be very much more convenient to confound differ-
ences belween treatments with differences between cages, simply
because’it is casier to inject the same dose into all the animals in a
cageuthan it is to pick a particular animal in each cage and give it
its allotted separate dose.

There are sometimes conditions in which it is undesirable to give
different doses to animals in the same cage, as in experiments where
a preparation of the active material passes into the excreta and
may be rcingested by the animals. However, if it is at all possible
to avoid this type of confounding, especially in the carly stages of
work and until it may be shown that differences between cages
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are of no importance, the attempt should be made. In the last
resort we should at least split the total dose group among two or
more separate cages. There has been in biological work a con-
siderable tendency to ignore the possibility of differences in recaction
due to animals being caged in distinct groups and it seems to have
been tacitly assumed that variation between cages must be negligible.
It must be a rarely designed animal house in which conditions are
so uniform that this assumption can be justified, and in the light of
our knowledge that a variety of responses are influenced by health,
temperature, light, feeding and many other factors, it would alw{ys
seem worth while so to arrange our preliminary trials 1hat\the
contributions of these factors to differences in the locatiof ‘of test
objects may be examined. _ \J

When dealing with tests in which a series of reéldtively rapid
observations of the cffects of a drug takes in ¢ {4 considerable
time, it is also important to avoid confounding ¥edponse with order
of treatment. If it takes only half an houy %0 inject 100 animals
and the total test period is several days,:hﬁ'e order of injection
need not worry us, but if each comple@\measurement of response
fo]lo_ws trez%tme‘{;g“gaég%%l&%{_ I%g%r_ iz]’i_lncf we musi& spend the whole
day in getting through a comp}lre,te ‘test, it is advisable, and sore-
times essential, to randomise the order in which treatments are
administered or, alternativelfi™o arrange the test as a series of
replications, just as is do{ge when a complete test covers several
days of separate treatmgﬁts.

It is frequently easy to enumerate more possible sources of varia-
tion which may be\of importance than can be coped with by the
restrictions in design. When this is so, we must arrange for the
individual segregation of those sources of variation which arc known
or believed t0'be of the greatest importance and for the confounding
of thog€ ‘believed to be of the least importance. If the magnitude
of the“variation attributable to the confounded factors warrants
it\,,itli’ey can be examined separately at a later period,

13.6. The twin cross-over test

A test designed by Smith, Marks, Fieller & Broom (Quart. J.
Pharm. Pharmacol. 17, 108, 1944) for the routine assay of insulin
with rabbits is a neat illustration of the isolation of the most
important features of a test, and the confounding of relatively
unimpertant sources of variation with differences between rabbits,
In this test, the general design of which is of wide application, a
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more accurate estimate of the difference in response to the standard
and unknown and of their combined slope is obtained than of the
extent of departures from parallelism of the two scparate dose-
responsc lines. This is a particularly useful design for routine
work, where we are in any case reasonably certain that the slopes
of the two preparations are identical.

The test is complete in two days of laboratory work, and involves
four groups of animals receiving the following treatments:

Group Ist day 2nd day .
i 83 uUg \\
2 Sy U, AN
3 U 8 ,,‘: o
4 Uy 82 WV

where &, and S, represent respectivety the Jow and l}iéﬁ'“doses of
the standard preparation and U; and U, those of thg test prepara-
tion, the log dose interval being the same for each sybstance. There
should not be less than three animals per group.)

Comparisons which can be built up fromifferences between the
reactions of individual groups on the twd\days of testing are made
with an accuracy dependent on the vafiation within rabbits, while
those which depend on differences peﬁ%e‘ﬁ“fﬂ’e%’éﬂi%’s“@f ‘BifdPent
groups are made with an accgnﬂaf:ir dependent on the variation
beiween rubbits, which is norma'li}"' greater than that within rabbits.
Although the analysis of vaffahce is simple when all groups contain
equal numbers of rabhi ;&t is more informative to analyse in terms
of sums and differenges; since the case of unequal group numbers
is then easily managed.

We write dow’ the mean responses to each treatmeni as in
Table 13.7 and’also their sums (¥; to ¥;) and differences (y, to i)
within grq)\sbs:: The variances within groups for the quantities ¥

.'\

- TABLE 13.7
4 n\’ ' 3
ARRANGFMENT OF THE RESULTS OF A TWIN CROSS-OVER TEST FOR ANALYSIS

Group  No. of animals Mean response 10: Sum  Difference

1 Hy $3 U, Yy Y1
2 " 81 Us Yy Yz
3 3 81 Uz Y3 Y3
4 Ry 52 Ui Yy Ya

and y are estimated from the individual sums and differences for

each separate animal, each associated with (Sn,—4) degrees of

freedom, where #, is the number of animals in group p. These are
10
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denoted by F¥Y and Vy. The following quantities are also caley-
lated:

gl 1__ 1,1 1 1

w o m’ W om onp ny ng
Departure from parallelism of the two dose-response lines for
substances is indicated if the quantity (¥, —Y,— Y3+ ¥} signifi-

. . . VY
cantly exceeds zero; its variance is —.
W

The log ratio of potency is given by: A
M=ISy/—y1+y2+yi—y4, P N
where { is the log dose interval. PR\~
The fiducial limits of error are obtained by the following steps:
(D) Ffor | and (Sn,—4) d.f. is taken from thedirst column of
the tabie of F at the required probabil@tg:l\evel.
() U2=(=p b robps—p? =0 2, whighiWhust be posicive if
14 )

-\

real limits are calculable. O

EP
(iif) UT=(~py1+y2+y:—ys) SJ’T';%

o NW
(iv) The Limif¢ PR PSaEY BEHMR equation:
U2m2 =20 T+ T2 f;’Q,‘ solving for m.

A difference in slope between days 1 and 2 does not invalidate
the assay. 2\

It is to be noted th\ab although some of the degrees of freedom
associated with difierences between rabbits are confounded with
differences belween groups, there is nevertheless available in this
test the remaining degrees of freedom from which to estimate the
variance ofbetween-group comparisons.

Thestést can be extended quite simply to a “triplet” design, with
three{dosage groups per substance. This allows departurc from
lil{éziiity to be detected with a variance based on the mean square

~Dbetween rabbits, but the analysis is relatively simple only if there are

équal numbers of animals in all groups. The intermediate doses
are crossed-over in the additional groups;

Group 1st day 2nd day
I ' 53 Uz
2 S5 Uz
4 U; : 8
5 Us - 8o
6

U 33



CHAPTER 14

DISCONTINUOUS VARIATION

14.1. Epumeration data
So far we have been dealing with the analysis of a series of
responses, cach of which is a separate numerical measure forming{’
part of a theoretically continuous distribution. We now pass 4o
considering the statistical methods applicable when the respfmse‘
is quantel. A quantal response occurs when all that we, vecord
about a group of test objects is whether or not cach of iIs(ﬁftmbers
exhibits some characteristic effect.  When a poison is administered
to a group of animals, some may die, while the yést)remain alive
and the response of that group will then be sin{pl.y the proportion
dying—a matter of enumeration. QOther char,ag}ei:istic examples of
quantal responses used in biological assagdihvolve the presence or
absence of certain changes in the blood, i the vaginal smear or in
the ovaries, and the presence or absentevofiolgamdrhsainy sampies.

14.2. The Chi-squared test
If we have a number of ’ouﬁs of observations in which the
presence or absence of a on{"%%C attribute is enumerated, we may
wish to know whether %o fiot they form a homogencous series.
Table 14.1 shows theproportions of dead and living animals in
QN

. 9 TABLE 14.%
Q{I;CULATION OF ¥2 IN A TEST OF TOXICITY
an N
2 N ;

R\ '
Group (88 Observed: ‘ Expected [ Differcnces X2
s_“\: ]t Dead Alive Total | Dead Alive I Dead Alive ' Dead Alive
iy 33 50 | 1731 3269 031031 | 0056 €029
2 22 36 | 12:46 23-54° —1-54 154 | 0190 0-107
3 g 15 28 9-69 18-31 069 — (69 © 0-049 0026
4 ‘ 13 21 34 11-77 2223 —123 123 0128 0-068
5 10 24 34 11-77  22:23- [77 —177 | 0-258 0137
Total | 63 119 182 .,53-00 11900/ 000 000 | 0681 (367

Porcentage| 3462 653 100-0‘ _ | |

x2=1048, degrees of freedom=4, P>>(-50
131
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five different groups of rats, each receiving a standurd dose of
nembutal. Nembutal is an anaesthetic which, if given in too large
an amount, causes death. We see that the percentage of dead
rats in each group varies between 291 %, and 38-9 7/, and therefore
wish to determine whether these five groups can be regarded as
five samples of the sume population.

We approach the problem on the null hypothesis. The best
estimate we have of the death rate in the homogeneous population
from which we will suppose the groups to have been drawn is the
mean death rate calculated from the totals of all groups. These
are 63 dead and 119 living, or 34-62% dead. We then, s this
percentage to predict in each group the expected number o dead
and we write this expected number, together with the ,cQgréspondin g
expected number living, in Table 14.1. We ’n@« proceed to
calculate the statistic x2, where N\

_(Y—Ey \
=S

Y is the observed number living or dyi:n\g%ind E the expected number

living or dyingwaied adesnnst-de salenlated for both classes. Since
we calculate the value of 2 fgr.’éach class separately, y? for each
group is written in the last t%o'columns of Table 14.1. The ten
values of x2 are then swmmed,- since x? is additive, and from a
Table of ¥% (Table 14,23 entered with the appropriate number of
degrees of freedomg, We-test whether or not x? exceeds in value a
reasonable figure.

The number gf degrees of freedom in a Table of this type, when
testing a nu]{}:lypothesis, are, as usual, the number of independent
comparisgngvhich may be made. Thus, although we have added
togethgts\tm‘:n separate determinations of x2 to determine the final
value,\IM048, there are only four degrees of freedom, since there are
only “four independent comparisons possible between the pro-
portions dying in the different groups. The proporticns of living
are merely the proportions of dying subtracted from 1 (the per-
centages living being the percentages dying subtracted from 100).
We therefore enter the Table of y2 with four degrees of freedom and
see that a figure as high as 3-36 may be expected in 50 %, of cases,
and hence that no significance can be attached to the value found.
We conclude that the five groups are five samples from the same
homogeneous population.

A shortened form of this calculation applicable to the type of
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data under consideration is given in Chapter 15.3. The extended
form used herc exemplifies the general theory, and the shortened
form is based on the identity:

(Y—E)  (Y—E)*_ n(Y—E)
E n,—E  E(m,—E)

When dealing with graded responses we would have calculated
the variance between and within groups and compared the two
values by an Ftest to arrive at this type of conclusion. x* is in,,
fact n,F, where n, is the number of degrees of freedom associated\
with the greater mean square in an F-test in which »; is infigite.
x2 should not be calculated from very smali classes. 1f the exﬁecta-
tion in any cell of a Table is less than 5, we should combine the
data in that cell with the data in another cell, if possgbie,\to obtain
an expectation greater than 5. N\

S}

14.3. The binomial distribution A\

If p is the proportion of members of a p,g'pulation which show a
characteristic effect and g=1—p is the pl}b.p'ortion not showing the
effect, then the number of mcmbers;,ii\"a sample ‘of n members
showing the effect in question will ey 172 W dpauibrREressettive
proporlions of cascs ¢, nq'.‘f'fl'ﬁ,‘ n(nz— QQ‘"— 2p2 , ., . where in
general - individuals will she’@& the effcct p is a proportion of samples
given by the formula: ¢ '

¢ "'l

N rln

=

L

Readers famﬁiar with the binomial theorem wilt recognise that
thesc are t&é.‘s:ﬁccessive terms of the binomial expansion of {g+p)"
The mcai}}af such a series, when measuring the number showing the
charaCigtistic effect, is #p and the variance exhibited by samples of
#Ss yipg. The variance is thus correlated with the -mean and is
greatest when p=g=0-5. We could test the homogeneity of a series
of results, such as those in Table 14.1, by utilising this theorem,
but the ¥2 test is more adequate and easier to apply. Once more
we sce how the parameters of populations from which groups
exhibiting quantal responses are drawn are calculable on theoretical
grounds alone. We have no practical measure of the variance
within groups, but we know what this variance should be from the

binomial theorem,
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14.4. The dose-response relationship

1f a series of doses of a preparation is given to groups of test
objects and the response of each group is the percentage showing a
characteristic effect, we may relate dose to response by plotting
percentage responses against dose. If we do this we shall obtain
an S-shaped curve, illustrated in Figures 14.1 and 14.2, This
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Fi1g, 14,1, The percentage of Drasop.-’ula eges surviving various doses of roéntgen
rays. (From Bliss and Pa.clga‘rd > Amer, J, Roentg. & Rad. Therap.. 46, 400,
1941.)
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curve is still S-shaped if we plot the response against the logarithm
of the dose, although in the majority of cases the upper and lower
arms of the S then exhibit similar curvature and the curve is thus
symmetrical about the mid-point. A special transformation is
necessary which, as long as a similar relationship holds between
log dose and response as often does with graded responses, will in
theory convert this curve into a straight line.

To understand the implication of this transformation we must
consider the effect of individual responses. The smallest dose which
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FiG, 14,3, Freqyéﬁc} distribution of the indJZvidual Tethal doses of a tincture of
digiiaﬁs&ﬂmiﬂistered to cats. (From Bliss, J. Amer. Pharm. Assoc., 33, 225,
19443 AN

Will;ﬁiﬁdﬂuce the characteristic effect in any given animlal is the
ifdividual effective dose. In a population of test objects the
i%ividual effective dose will vary from object to object. The
distribution of individual effective doses will be represented by a
frequency curve in which the abscissa is the log dose and };he
area of the curve to the Jeft of the ordinate represents the proportion
of animals which will respond to any particular log dose (Figures
143 and 14.4). The transformation -we are about to discuss
assumes that this distribution will be a norma! distribution, or,
in so many words, that the logarithms of the individual effective
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doses are normally distributed. This theoretical expectation is
often fulfilled in practice, If we call the logarithm of the individual

a2

28
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|

NUMBER OF CATS
N @
i f

4 yd
ISNEN &
o 0N : \L\ ;\
60 .84 &8 72 76 80 g4\ Vs 8z 98 oc 104
INDIVIDUAL THAL ~DOSE = LOGARITHMS.

www .dbrauli Tary.or
Fig. 144, The frequency distribution in_ 1& 14 3 plotted on a legarithmic dose
scale. The smooth curve is thats gxpected from a theoretical normal dis-
tribution. (From Bliss, J, 4mer, nP&a%m Assoc., 33, 225, 1944

effective dose X, X is its n@san value in a large population of test
objects and the quantn{\
\ X-x
~: ..: Y_ bl
x

o

is calied the nQrmaI equivalent deviation. ¥ is related to P, the
proporti &ﬁf animals reacting when given the dose X, by the
EC[lldthI’\'\

¥

O Pe—i | eivyy

v v "

If we know the value of P we can calculate ¥, and by determining
the values of X and ¢ we can estimate the linear dose-response
rclation between X and Y and the errors relevant to it. The
goodness of fit of our original abservations to the calculated line
may be judged by a modified form of x2 test.

Tables of the normal equivalent deviation corresponding to
percentages from 0-100 have been calculated, but since for per-
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centages below 50 it has a negativc value, it is more convenient to
add a constant to Y large cnough to make all the practical values
positive. The constant adopted was 5 and the quantity (5+7Y)
is called the probit and is used in calculations just as would be the
normal cquivalent deviation itself. A normal equivalent deviation
of —5 eguals a probit of 0 and corresponds to an extremely small
percentage of test objects showing the characteristic effect. Figures
14.5 and 14.6 show the dose-response lines in Figures 14.1 and 14.2
plotied as probits against log dose. :
s &\
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F1G. 14.5. The dosagc-surv@c{lrve of Fig. 14.1 plotted as probit against log dose.
{From Bliss und Paclkard, Amer. J. Roentg. & Rad. Therap., 46, 400, 1941.)
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F16. 14.6. The cumulative curve of Fig. 14.2 plotted as probit against log dose-
{From Bliss and Hanson, J. Amer. Pharm, Assoc., 28, 521, 1939)



140 PRINCIPLES OF BIOLOGICAL ASSAY

14.5, The variance of a probit

We have seen that the variance of a binomial distribution is
correlated with the mean and is smallest when p approaches 0 or 1.
In transforming proporiiens or percentages to probits we “stretch
out” the tails of the distribution to such an cxtent that the variance
of a probit is least when p=0-5 and increases as p approaches § or 1,
i.e. as normal equivalent deviation approaches —oe and 40,
In terms of percentages, if P and Q are the percentages of reacting

and non-reacting objects in 4 group, \\‘
lVJP=l[£2 and VY= —Q, where Z-—L e—i¥? :::.':
Hy anE \/—JJ ;"‘}

V'Y is the variance of the probit. The log dose- res\p@mc ling is
fitted by least squares, but since the variance off a\p10b=t is not
constant for afl values it may assume, different grotips do not have
equal weight even when the same number of observations are made
per group. The weight of an observation @8)fiversely proportional
to the variance and is thus: O
mZ2 N\
www . dbrauliby alﬁQrg ﬁi’w

where n, is the number of dmrﬂal‘s in the group and w is the weight
Jactor. The straight linesis then fitted by finding the minimal
value of Sh,w( Y—E)2 Wh}re E is the estimared valuc of ¥, as in
fitting graded resporigés by the principle of Jeast squarcs.

14.6. The estimatimi of the dose-response line

The dosepgsponse line is estimated by the usc of successive
approximations. To start with, a provisional line is fitted either by
eye or_ ry\xfi'aprommate computation. If the reader decides that he
cannd$¥fit a good enough provisional line graphically, he may use
wezg)nts and probits corresponding to the actual observations in the
“ealculation of a provisional line. It is unfortunate that the method
of fitting the dose-response line involves a series of approximations,
and a little trouble over obtaining a good initial fit is worth while,
as with a good provisional line it is often unnecessary to rcpeat
the procedure more than once. Naturally, if the first caleulated
line practically coincides with the provisional line there is no need
for further computation.

Probits corresponding to the crude observations are called
empirical probits and from the provisional line we obtain, by reading
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them off from each dose level, the values of the expected probits.
From the empirical and expected probits we compute at each dose
level a corrected probit, ¥,, which is used in the actual calculation of
the regression line. This procedure may be used not only with
percentage responses lying between 0 and 100 but also when no
reactions are observed or when all the animals give the charac-
teristic response. The empirical probits for 0 or 100 7% responsc
are —o and 4o, but the expected probits obtained from the
provisional line, using the remaining points with, if possible, some,.,
allowance in the graphical fitting for the presence of 0 or 100 %N
responses at other dosage levels, will be finite values. ‘O
The equation for computing a corrected probit is:

Qg q A\ 3
c:Y e 9.\
Y, +Z Z e

where Y. is the corrected probit, ¥ is the expecged’probit as read
from the provisional line, Q is the area of the ,ta'i‘fof the normal curve
beyond the point Y, Z is the ordinate Q(thc"norma! curve at the
point ¥, and ¢ is the observed propqijfdn of non-reacting test

»

objccts.  When ¢ is 0, the corrgét’éé!»;pmbibr&l%dm%,oagqh this

value of ¥, is called the maxim}'tﬁi carrected probit. The inverse

relationship: p
.”,\\ P
i Ny vyt
T =Y Z+Z

S

gives the same rg.mhéi as above, using p, the proportion of reactors
in a group, anduwhen p is 0 the value of

N P

ad
N
N

RN . o1 .
g{ég wis the minimum corrected probit. The quantity 7 by which

we correct the cmpirical probit is known as the range. Table
14.3 gives the values of probits for transforming the dosage mortality
curve to a straight line for various values of the percentage reactors.
1t is normally accurate enough, particularly when the percentage
reacting falls between 10 and 90, to take the percentage to two or
at the most three significant figures. Table 14.4 lists maximum and
minimum corrected probits, the range and the weighting coefficients
for each value of the expected probit in steps of ¢-1.
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THE HEADINGS

DISCONTINUOUS VARIATION

“ MaxiMuM CORRECTED ProsiT ™

TABLE i4.4

CONSTANTS FOR DETERMINING THE CORRECTED PROBIT AND THE WEIGHTING
COEFFICIENT FROM THE EXPECTED PROBIT, Y. CORRECTED PROBITS FOR
100 aNp O %, MORTALITY, RESPECTIVELY, ARE GIVEN DIRECTLY UNDER

CorrecTeD PrROBIT.”
From Bliss, GQuart. J. Pharm. Pharmacel., 11, 192, 1938,

AND

147

o MINIMUM

0045

811°5

Ex- |Mc1pumum Range ‘M]mmum Weight- |Maximum, Range Minimum Ex—\
pected corrcctedl 1/Z ‘corrected | ing co- |corrected | 1/Z icorrected | pécted
probit¢ probit | i probit |efficicnt | probit | | probit *prc-bit

Y | Y+07Z Y-PIZ |. Z2/PQ - Y+0/Z ? Y—P,fz 0y

50 | 6253 | 23507| 3747 ' 6366 | 6253 | 2:307 3&1}7« | 50

51 6259 | 2-519| 3-740 | -6343 6-260 2-519 4-9

52 6274 2:357 3719 1 -6274 6-281 2'55? 3724 48

53 6-302 2-622 3680 - -6lel i 6320 24622 ) 3 698 4-7

54 6-336 2-7151 3020 ( 6005 | 6-380 2 | 3664 4-6

55 6-376 2-840| 3-536 5310 0 6ed6d, \2'840 3-624 45

56 6423 30011 3422 35379, 6378\ 3001 3577 4-4

57, o475 32030 3272 | -5316 | & 3 3-203| 3-525 4-3

55 | 6531 ‘ 3452 3079 - -5026 ' 653 3452 3-469 4-2

59 6592 | 3758|2834 | 4714 4 J,;[\ﬂv dbradib a0y i n 41

60 | 6656 , 4133, 2-523 -438’6 7-477 4133 3344 ; 40

&1 6723 | 4590 213 4047 _f 7867 4590 3277 | 39

62 6793 5150, 1-643 3703 . 8357 5150 3207 - 38

63 6-865 | 5-835| 1030 3359 1 8970 5-835| 3135 ‘ 37

64 6932 6679 0261\‘ -3020 | 5-739 66791 3061 | 36

65 7-016 ‘ T-721| % \v\ 2691 — 7721 2984 35

66 7-094 90150, - -2375 — G015 2906 34

67 ;i 7174 | ey — | 2077 i — 19633 2-826 33

68 | 7255 12-(581 — 1798 —  1zeesl 2745 | 32

a9 7338 {5 2 -1544 — 15240 26682 ; 31

70 T 421 ¢ ~ \8-522! — 13t — 1§8-5221 2-579 f 30

1| 7 <§\~ 22736 — 1103 — | 22736 2494 | 29

T2 7302 28-189 — ‘0918 — 28-189| 2408 : 28
C 73 a7 35-302 — . 0756 — 35-302| 2321 | 27

T4 #NTTe6 | 44-654 —_ II 0617 | — 44-654| 2-234 i 2:0

?\-& /| 7854 5703 — 0498 - 5705 2-146 | 2-5

76 . 7943 | 7362 ; — ‘0398 — | 7362 | 2057 : 24

77 | §-033 95-96 — REETE — 9596 [-967 | 2-3

7B 8123 12634 — 0246 — 126-34 1-877 1 22

79| 823 16800 — 0190 — |16800 | 1787 : 21

80 8305 2256 — ! 0146 ! —  [22546 {-695 i 20

%1 ‘ 8396 |306-1 — Q110 - 13061 1604 5 19

82 §-488 (4194 — Q083 | — 4194 1-512 ‘ 1-3

&3 | &581 5805 — 0061 |s80-5 1419 | 17

84 1 8673 BIs | - . 1327 | 16
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In calculating the first approximation to the dosage-response
line, it is sufficiently accurate to determine the expected probits to
the first decima! place, but in further approximations, if these are
found to be necessary, it is best to calcnlate cxpected probits to
the second or even the third decimal place and to interpolate in
Table 14.4 to obtain the correspending values of the corrected
probits and range. The easiest method of interpolation mayv be
illustrated by supposing that we have an expected probit of 6-031.
We then read off the maximum corrected probit correspondingsto
an expected probit of 60 and multiply it by 0-69, read oﬂ\}h
maximum corrected probit corresponding to an expected pmb,tt of
6-1 and multiply it by 0-31 and add the results together. (This will
be the maximum corrected probit for an expected pmhit of 6-031,
The interpolated values of the range and the weighti g coeflicient
are determined in an exactly similar manner. T,hc\w eighting coefi-
cient corresponding 10 a corrected probit is thevalue of w in the
same row of the table, multiplied by the nmirba of observations in
the group. When the empirical proh{t Giffers from the expected
probit by less than 005, particularly it the' range from 4 to 6 probits,
the empirical \v@Lqugul,gggp§ §}gﬁg1ent1y well with the corrected
probit for most purposes of calgulation. In calculations aiming
at extreme agcuracy, however cOrrected probits should always be
used. )
;>}

14.7. A numerical example
Writing the equation for the corrected probit:

’\ _ Q d
N K‘(Y+*)"Z

N

- we usef %ble 14.4 by reading directly from the Table the value of
the«mammum corrected probit (Y+ g) and from it we subtract

}( times the range, where it will be remembered g is the observed
proportion of #on-reactors. For expected values of less than 5 we
read off the minimum corrected probit in the next to last column
and add to it the range multiplied by p, the proportion reacting,
according to the complementary equation:

. Py p
Yf=(Y—— =
27

No correction for the range is necessary in the case of 0 or 100 %
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response. With an expected probit of 5-5, and an observed pro-
portion, 74 %, reacting (empirical probit=35 643):

Y,=6376—0-26 X 2-840=35-538
with a weight factor of 0-5810m,. It may be noted that the corrected
probit is not necessarily nearer to the expected probit than is the
empirical probit, but that it usually is.

This rather involved procedure for the computation of corrected
probits is necessary because we are dealing with a discontinucus
variate, p, the gradations of which may be very coarse whert &
small number of anmimals is used. The computational procedure
is concerned with smoothing the effect of this coarse gradation and
relating it to the continuous variable, Q.
14.8. Correction for reactions in the controls \\\

When untreated control groups contain a<preportion of test
objects which exhibit the characteristic response, it is necessary to
correct the observed responses in treated gf@hps. If p, p, and p
are respectively the observed control,‘ﬁércentage response, the
observed experimental percentage re§pc§ﬂse in any given group and
the adjusted percentage response,,juhén:wWw,dbmuhbrary‘org‘m

_100’(}’0’_19()
'~ 100—p,

1t is unsatisfactory toxcbhduct assays by a technique involving
control groups with faany responses, but sometimes unavoidable.
Tn such cases, weighting coefficients and certain other parts of the
computational pfocedure need modification. This has recently
been fully de.scir‘ibed by Finney (Probit Analysis, Cambridge Uni-
versity Pres§)1947) and will not be further discussed here. The
need for{ts use with other than toxicological data is rare.

7\

/0N

\‘:



CHAPTER 15

CALCULATIONS INVOLVING PROBITS

15.1. Unbalanced data

As with other material, we can simplify calculations nwo]\mg
probits by a suitable choice of doses and of the numbers of anﬁv\als
used in a group. The calculation is, neveriheless, cll\\’cbfﬁ. more
involved than when dealing with correspondingly simpljﬁed data
for continucus responses. There is always the weisht fuctor by
which allowance is made in computations for inéi}}talities in the
variance, despite our using the same number off a;\i}hals per group,
and the calculation of corrected probits further mgreases the
amount of work involved. When doses ars\\uneqmlly spaced on a
logarithmic scale and the number of. dmmals varies from group
to group, computational procedu(e Ms correspondingly miore
complex and aﬂ@@edmﬂg%@rgy‘@gﬂy made about simplification
in design are applicable here. 2N

We shall get the worst OVER by computing a line, as an example,
from a test containing mpequal spacing of doses and varying
numbers of animais p, oup. This is sometimes unavoidable,
but rarely so, and thé\&'édcler must be familiar with the computa-~
tional procedure i il cdse he needs it. [If it is anticipated that some
test objects will pe fost in the course of the test, this can sometimes
be provided. §Or by putting extra members in each group and
selecting stejetly at random from the remainder, if an excess stilt
remaingdrSome groups. The procedure must be used with extreme
cautieh,'as it would bias tests if applied uncritically in circumstances
wh@l:é’ loss of a test object may be correlated with the presence or

“absence of a response. Table 15.1 lists the protocols of a test,
designed for establishing a dose-response line, in which groups of
spayed female rats received doses of 1 to 6 international units of
International Standard oestrone. The characteristic response used
in this investigation was the disappearance of leucocytes from the
vaginal smear after injection of the drug. Since therc is no regu-
larity in the spacing of the log doses, we take logarithms to base 10
and list them against the dose in units in the Table: next we list the
number of animals per group and the number reacting and from

150
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this derive the percentage of reactors, which varies from 0 to 100.
Empirical probits are then read off from Table 14.3 for the four
intermediate dosage groups and a provisional line is fitted, the
dotted line in Figure 15.1.  This provisional line has an approximate

Br - I
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Fic. 15.1. Fittinga dose-resp%ﬁsc line to enumeration data (Table 15.1).

O-— ==, empirical}r bits and preliminary line.
€C1l-—1, correact((}mobits and first approximation.
»2—2, cor‘re‘éte probits and second approximation.

siope of 5-90. Irplotting a provisional line we may conveniently
use log graphepaper, so that we can plot the actual dose directly
against the probit.

2

R\ TABLE 15.1
B&su{‘;ﬁ?&m FOR THE ESTABLISHMENT OF A QUANTAL LOG DOSE-RESPONSE
3 LINE
BSSG in Logip No. of No. Percentage Empirical
uniis dose animals  reacting  reacting probit
1 0-000 25 0 00 —
2 0-301 il 2 18-2 4-092
3 0-477 27 i3 48-1 4952
4 0-602 19 7 . 36'8 4663
3 0-699 12 11 917 6-385
6 . 0-778 17 17 1000 —

Provisional #=35-90.
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15.2. The first approximation to the dose-response line

We now proceed to determine the quantities listed in each column
of Table 13.2, writing down in the first two columns the logarithm
of the dose and the number of animals for convenience in computa-
tion. Expccted probits, as read back from the provisional line, are
listed in the third celumn of Table 15.2 and from them, as described
in the preceding chapter, we compute corrected probits and the
weight of each observation; the last five columns in the Table are
then computed for the determination of the weighted sums of X, ¥,
and of their squares and products. The last column of all, under \
the heading n,w, Y.2, is not needed in the caiculation of the dose;
response line, but will be needed when we test for homoge,ﬁélty
Columns 5 to 10 are summed and the weighted means X and ¥,
computed by dividing the sums of colamns 6 and 7 resrqutwely by

the sum of the weights, Thus: ,\
o 231477 21512975
14775 7, =217 585223
= {l.ago ~ 0337924, and 414890

The weighted sums of squares and peructs of the deviations
from the two means are:

Snow, 52 =Snw, X,2—XSnw,X,=13 625\/7\@#1311?&4}1&61‘3/1&{& in.
S,y 2=Snw,Y2—Y Snw, ¥, .1’148 3402 —1,115-4955 =32-8447
St wyipy,=Snyw, X, Y, =¥ oSHWy I,F124 0009 —120-0260=3-9749
When using this method if, computation, calculate two more
decimal places than are {qired in the final sums of squares and
products. In this instanCe, the dropping of one decimal place
would not seriously, aﬁéct the accuracy of the result.

A\ S/

Tae slope b fbich s %”f:p‘;ﬁi =27 55906, The dose-
response liné\Js then determined by substituting the guantities just
calculated\in the formula:

o E=T.+hX-X)

)7 whence E=51852+55906(X—05579)

or E=2066145-594,

15.3. Goodness of fit

We compute x2 for estimating how well the data are fitted by an
analogous method to isolating the sum of squares attributable to
departures from linear regression in previous assays:

x2=Sn W,y 2 —b(SitgWpReyd)
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In this example:
x2=32-84—-2222=1062 _
The significance of x? depends on the number of degrees of freedom
"in the experiment. This number is two less than the number of
original percentages from which the curve has been plotted, since
two constants have been computed from the observations. Bliss
(Ann. Appl. Biol., 22, 134, 1935) has suggested that this conventional
rule for the number of degrees of freedom is not strictly applicable
when some of the doses have elicited 0 or 100 %, rcsponse, for the
corrected probits corresponding to these responses have t@n
determined primarily from the evidence of the remaining observa-
tions. An approximaiion to the “true” number of degregs ol “free-
dom which he suggests is to combine groups showing © or 1007%
response with those next to them, if necessary at bp@l ¢nds of the
curve, until the sum of the cxpected actual nupiber of reactors,
or non-reactors as the case may be, exceeds oné\ndividual. In this
example the expected percentage response atlie lowest dosc is 017
and on the highest dose is 92-2 and we shouldthus expect 0-17 X 25=
0:043 and 7-8 x 17=1-33 individuals in)these groups to react and not
to react respeshived¥raullheagrovp jgx}‘ﬁhe lowest dose, when com-
bined with that on the next higher@ose, gives an expectation of 120
individuals and the two together.lare counted as contributing only
one degree of freedom. We ate thus dealing with the equivalent of
five groups and the nun}b{r\ of degrees of {reedom is 5—2==3, We
therefore enter the Table) of ¥2 with three degrees of freedom and
find that a value ofy?"as high as 10-62 should be expected in between
1% and 2% of cases (P=0-02—0-01), and thus the series does not
test as homogeneous.
1t is difficdityto justify this procedure and a more cxact evaluation
of ¥2 m}\f“.be made in these circumstances by the “longhand”
metth&Br‘ calculating, from the regression equation, expected
prqbité' and from them the expected percentages of reactions.
{E‘agh’ofthese in turn multiplied by the corresponding #, and divided
BY 100 gives the expected numbers of reactions.

. : : a2
Then 2= S(_number reacting minus expecied f;!i{?ﬁ’! )_
P(1— P, ’

where P is the proportion of expected reactions. Groups in
which ncarly 1009, or 0%, of reactions are expecred should be
separately combined with the next group(s) at each end of the dose-
response line as in a usual ¥2? test with small expected mumbers.
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Finney {Probit Anralysis, Cambridge University Press, 1947) finds
that in groups of up to 10 test objects it is probably safe to have not
less than two expected reactions, but in groups of 30 or more there
should be the conventional number of five expected reactions.
There will be two less degrees of freedom than there are groups
rermaining after these combinations have been made. In the com-
bined groups, cach contribution to x2 is given by:

o Su,x(Number reacting minus expected number)*
N Expecred number reacting X E,!;‘pected number not reacting . \\‘

The calculation for the present example is shown in Table 153,
in which the first three groups and the last two groups are combined”
The new x2) is 10-45, and since only one degree of f‘rengn’i'how
exists there is no doubt of the heterogeneity. The:o@lﬁber of
degrees of freedom with which the x2 table is entered isJindicated by
the bracketed subscript to x2 N4

R0
TABLE 153 O

¢
CALCULATION OF X% FOR THE DATA, OR JABKE 433 ¢ in

Dose Number Expegt.eéi” Difference x2
in units reacting reactgrs
L 0] 004
2 2015 \ﬁ?ﬁ 11-88 312 1-01
3 13 ¢« fores |
4 77 A NieT 567 762
5 11 ags™ 10027 <. , i
: s | 5_6?} 2569 231 82
O Sum 1045
um 10
A\ R
O

]5.4,\ :Si:fcénd approximation to the dose-response line

s view of the lack of agreement between the provisional slope
(5-90) and the slope of the first approximation to the dose-response
line (5-59), and also in view of the bad fit as demonstrated by ¥,
we must conpute a second approximation. The results are shown
in Table 15.4. .

Expected probits have been calculated from the first approxima-
tion to the third place of decimals, although this is a rather un-
necessary refinement in the present instance, and the corrected
probits and weights determined by interpolation. In view of the.
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small numbers of observations involved, the calculations in Table
15.4 have in fact been carried to more decimal places than strictly
necessary. When working with a machine it doesn’t much matter,
and these places were carried for safety. Without a machine,
however, the carrying of these extra figures would mean unnecessary
labour. Computational procedure is exactly as before and we
arrive at the following values for the various statistics:

o 2362173
=" =)
5953 05525163 <
L 220-82903 N\
== =51652 A\
2753 0 1652289 9
£ Y
Snywpi,?=1392526 —13-05139=0-87387 R

Snyw,yi=1,17685781 —1,140-63249 = 3622532
Sy, %, w2 = 12668653 —122-01164 =4-6T489

467489 \
#0-8?38?_5 34964 \\,
2 =36-2253 —25-0090= 1122,
and with three degrees of freedom, P Jigs, betissm $;0). and 0:02.
The value of x%u calculated by the method of Table 15.3 1§ 10-86.
The new line is estimated as; «§"
E=51652+5-3496(X —0-55252)
=2-209+’5\-': X.

Our new values différ\quite appreciably from those previously
obtained, but 2 stillshows as bad a fit. If this were not the case
it might be worthfifting a third approximation (but if x2? did not
indicate signifidatit departures from the computed line the two
successive ‘approximations would probably have agreed better).
It is noxyas'.l%ar that the series of observations is not well fitted by a
linear, ..Qrﬁi'bit-log dose relationship and there is no point in trying
for"a 'more exact line. Examination of the general trend of the
I‘g‘sxits does not indicate that the departure from linearity is of a
systematic type, but merely that the scatter of the points about the
line is too great for us to suppose that we have sampled a homo-

geneous population.

b

15.5. The estimation of errors
If ¥2 does not indicate a greater variation between the observa-
tions and the computed curve than is to be expected by chance,
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i.e, if the variation is within the limits for £=0-05, we may compute
the following variances as:

-1
Vi=_"-
Sn,w,
1
o= Snwin

When x2 indicates a significant departure [rom homogeneity and
these statistics are not really an adequate description of the data,
the variances are: 8

=X AN
c—'kaIpr-, smf e 3
d Vb X
an T kSnw,E2 e\

7

where & equals the number of degrees of frccdo}n”for the x> test.
This follows from the fact that the averagc{\-’alue of }5_“ in sampling
NG %

is unity if the normal hypothesis is truey but when x? shows signi-
ficant departures from the line, we g&nnot hold to the normal
hypothesis. Qm@ﬁmm@@e@@iﬁariance are then multiplied by
NN 2
the “heterogeneity factor™ whighlfs the fraction Xk
15.6. The median cffective dose
In describing the results of fests o determine the dose-response
relationships andsrelative potencics when the response is quantal,
it is usual to determine the median effective dose (M.E.D.). This
is the dose to’which 509 of test objects react and therelore give a
probit of 5?)“ The median cflective dose is computed by sub-
stituting}?»vfor E in the cquation above, whence M.E.DD.=antilog
0-5217\ A test designed for the computation of the median effective
dese gains in accuracy as ¥ approaches 5. The variance of the
“median effective dose may be computed from the general cquation
\for the average variance of log dose X corresponding to a given
probit, Y _ _
 VB(Y=Y)24(VY)b2
=
This equation can be used when the data are not homogeneous,
as decided by the ¥2 test, as well as when they are.
In the present example, where 2 is based on so few degrecs of
freedom, the new variances are practically useless, as they must be

VX
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used in conjunction with the statistic #, and would give such wide
limits of error that almost no information about the effectiveness of
the treatment is in fact available. In the absence of other tests of a
like naturc from which an overall estimate of the value of the
heterogeneity factor could be formed, we shouid conciude that a
repeat test is indicated. If x2 did not indicate significant hetero-
geneity, we should estimate

. 1
|
VT o= ey =002339
Vo= L1144 ' W
T 087387 <
1. 6572 10 . @
When . Uy 1144(01652)2-+002339 X 2862
— 81928 xS
=0-0008551 ' &

The approximate limits of error for M(P—0-05) avethen:
M ++/0-00085351¢, where r=1 *9:60
or 0-4643 to 0-5789, v

corresponding to 2:91 to 3-79 units qs’sihé limits for the M.E.D.

When allowance is made for hgt’gfﬁg@ﬂeiﬁr;auubrmhi@)m the
variances by 3-74C for the Bliss appi:oximation, and by 10-86 f‘or
the more exact evaluation of x2 s NOrCover, we usc { corresponding
to three and one degrees of ff(eedom respectively and arrive at the_
limits: A\

Bliss. méthod: 2:20—5-03 units

¥y =10-86: 020558 units,

the M.E.D. itselfbéing estimated throughout as 3-32.units. These
arc still appljg)?g}xﬁhte limits. The fiducial limits of error of .the _
M.ED. wou(df: be still wider, since Vb is relatively large, but since
these argz@t usually of practical interest except in actual assays,
discussion is postponed to the next Chapter.

\/; '



CHAPTER 16

PROBIT ASSAYS

16.1. The design of assays

Since the variance of a probit is not constant at all lev of
response, the analysis of variance is not directly applicabi®y, par-
ticularly when responses give very high or very low pgfi:efrthges.
However, when dealing with quantal responses we usg 2 theoretical
estimate of the variance unless the x2 test indiegtes) significant
departure from homogeneity; therefore the pekformance of an
analysis of variance after the style used in assays involving graded
responses is not necessary. V)

The normal use of the analysis in assays.of potency is to reduce
the error mean square by eliminating jxfelevant sources of variation,
and since in agsays,ysingperages ggiponses there is no theoretical
estimate available of the mcan ’squre for error, the analysis per-
forms a very necessary functiony"This does not mean that when the
response is quantal proper randomisation and the use of certain
restrictions in the design\of the test should not be carried out.
On the contrary, by, @sing one of the restricted randomisation
designs from which the maximum of information may be exiracted
by a variance analysis in other cases, we ensure as far as is possible
that the test forHomogeneity by means of x? will show a minimal
departure ffom a linear dose-response line if, indeed, this line
adequatel\(’:ly,ﬂ‘éscri bes the relationship between log dose and response.
We s}wfﬂ not, however, introduce unnecessary sources of variation
thg.\‘eﬂ"ects of which we cannot eliminate, and thus would not
'di§tfibute, for instance, different strains of animals between dosage

\groups unless this were unavoidable. If we had to do so, as when
cealing with litters of animals, we should nevertheless follow the
usual plan and allot one animal of each litter to each dose, for we
should thus help to guarantee that any extra variation introduced
would tend to lower the value of b, with minimal elevation in the
value of x2, and should still give a satisfactory assay. Mecthods for
the statistical handling of such tests so as to eliminate differences
between litters have yet to be described.

160
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16.2. Computational procedure

(@) If the standard and unknown may well differ in slope.

The computation for an assay using probits follows the same
method as in Chapter 15. Weighted means of X and Y, and of
their sums of squares and products are computed for each substance
separately, by fitting separate provisional lines for the standard
and the unknown and computing expected and then corrected
probits by the usual method. In a well-designed assay these
provisional lines need not be fitted by eye, but can more accurately A
be computed by the following simple method, A

The unweighted sum of the empirical probits for each substdneg
is divided by the number of doses and this gives an unweighted
value of ¥; a simjlar unweighted value of X is also comg’tr’eg:d and
an unweighted value of b is obtained by the following férmula:

1. I{ there are two doses of the standard and unkAgwn :

where ¥, and ¥, and X, and X, arethe responses and log

doses for the two doses for e‘%@ﬁ@ﬁ?&ﬁ?&fﬁﬁ?‘?ﬁd.1‘n

2. If there are three doses of eagh substance:

b:ﬂs
) &\ X1—X3

3. If there are four dq%}éf each substance:
543( 1—Y)+(Y3—Y))

o 107

where 7 jg$he interval between log doses.

A provisiefal Tine may thus be calculated for each substance and
the cxpecfed” probits obtained by computation instead of by
graphicallfitting. From these values the first approximation is
calevlated and a second approximation follows by the usual
techmique if it scems indicated. With a good initial fit the second
approximation is often unnecessary. When the line to be finally
used has been computed for each substance, we test the value of y2
for each separate value of & and for the difference between the two
values of b where:

x3E=8tWpY 2 — D StgWp XY,
for the standard and similarly for the unknown. The added
values of these y2s should be tested with four degrees of freedom

12
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less than the fotal number of dosage groups. The value of y?
for the difference between slopes is given by the formula:

(b;—b,)?
2
Xaig 1 1

Sa w0 Syt wp¥,?

With this value of ¥? is associated one degrec of freedom. Hence
it should not exceed 3:84 if there is no difference between ihe two
values of the slope at the 5% level of significance.  If no significance
is to be attached to the value of x2 it means that the samplesare
qualitatively similar and that one combined estimate of the slopsmay
validly be employed. Otherwise, of course, the assay isnot valid.

The value of the first approximation to the combinad-slope, &,
is such that: N 3

b STV S Wein o N

S0 S w2

\

(b} If it is probable or certain that com@;ﬁ slope is valid.

It may be clear by inspection that as¢drmon slope for standard
and unknown can be used, whereupQm the above process can be
shortened and,a-fusbhesi weleyof-galetlations probably avoided by
plotting provisional lines whic&xﬂ:«ire parallel initially. These lines
will have a common slope est’lyﬁated by combining the unweighted
values described above. ,The x* calculations can similarly be run
together, this method ,of}alculation being particularly useful when
several unknowns al‘a\'being simultaneously assayed against a
standard. O

In the generalCase, we calculate:

[y Total x2=8S8n,w,p2—bSSn,Ww,%,y.

It the’e(a%e k dosage groups per substance and N substances in
all, this\total x2 is associated with S(k—1)—1 degrees of freedom,
or Mk —1)—1 if there are equal numbers of doses of all substances.
Wealso calculate a similar x? separately for each substance, in-

\cluding the standard, and obtain N values for x,2 and x,2. With
each of these is associated & —2 degrees of freedom. By subtrac-
tion, the following analysis of ¥2 may be constructed:

Source of variation  Degrees of Sum of squares, etc.
freedom
Parallelism N—1 By subtraction
Heterogeneity S(k—2)  Fromsum ofindividual x’sasabove

Total S(k—1)—1 As above
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Ii' the y? for heterogeneity is not significantly large, we test the
significance of the ¥2 for paralielism with N—1 degrees of freedom,
but if there is significant heterogeneity we determine mean squares
by dividing cach x? by the relevant degrees of freedom and test these
by the F-iest. In the latter case, the heterogeneity factor must
enter all further calculations as in the example of the preceding
Chapter.

, 1 . .
The veciprocal of b, —, sometlimes termed A, is the standard devia-

b,
tion for the population of the minimum effective log dose. M)
the log ratio ol potency, is then given by the equation: ¢ N
J‘1{=‘fs_)‘7w'“ !'(Ys"“fn) ad g
b( i
. o o
The variance of b, is given by: LV
Vb, I

Sty %, % + Sytty Wy XpdNJ

The variance of M is then such that: g\
R W A1 0% o

L p Sedswew d (3 VR
bﬁ(S_cn,,wI, +S“{IRW1!N i Tft‘hb‘l y.org.in

This, as before, is not the formu‘lté’ﬁiving fiducial limits and should

VM=

be wsed only if ;’ is rel\&'{iveiy large. Fiducial limits may be -

calculated exactly as fo)'\hther types of assay, but when calculating
fiducial limits for qiantal assays 7 is normally distributed and the
value nsed is thedfofe equal to that in the ¢ Table for an infinite
number of degr{:es of freedom. The calculation is described in 16.4,

16.3, AKMpIe using balanced dosage groups

'Tab\iéf'o](a.l and Figure 16.1 illustrate the computation in the
comparison of two yeast extracts as curative agents in pigeons_
deficient in vitamin B; (Burn, Biological Standardisation, C.U.P.,
1937). The birds are prepared for the test by being fed on a diet
of polished rice and water. After a few weeks many of the birds
develop a neuritis, the indication of which is retraction of the head
and sponianeous convulsions. They are then ready for the test.
Groups of birds with persistent retraction of the head are random-
ised and given the vitamin preparation by mouth and are scored
as cured if the symptoms disappear for at least one day.



164

PRINCIPLES OF BIOLOGICAL ASSAY

STOLE-989
TOEEE-PEE
9L26¢-9tT
LPEP8-C3

16568-8¢8

£1065-92€
[PCLEDIE
LETEG-So1

A My

/o
© &)
:w\\w
PT6698E1 b mm\\ — — 9ol sEioL
08V0L-09  OPOl ““/~L€8S  PLS  THRS  0Z/91 I 091
8519675 971 ..,w@wﬂ 89 vty 019 0 08
982£0-€7 9 i), we  oswe 0k T— o
07¢89-791 60-Ct — "\\\\,M. wot-51 S[eI0L
86TIPS 6% $£0-9 nmwmw« 9609 0T/LT 1 08
PELRE-T9 0%-21 066'Y N?m It. 000-5 0z/o1 0 or
SS0LTSP  orO1  sIev b @m\m‘.ﬂ. 0z/s - 0z
). samo  (x) asop
i & ‘mfy  2x ‘nqord g “:.moa :noﬂmw_\\ Jo uon no...o_ 0] ‘Fw ul
WA PRICaLI0)) @Bouﬂxm [eorardity /y1odoig pileg 850(]
SNO#OId NI SINADV OLLIMNANIINY SV mwbﬁﬁwm ISVIA ok,,wv /A0 NOSRIVAWOD EHT,
I'9T d18V.L \w\w
| 7,
,.H.M.w

()

(s}

JoBIIXT



PROBIT ASSAYS 165

Two yeast extracts are compared in the Table, one of which, the
more potent, we will call the standard, and the other the unknown.
Twenty birds were given each level of dosage and the doses were
equally spaced on a logarithmic scale for both preparations,
Empirical probits were summed and the provisional dose-response
ling computed as described above. The provisional values of &,
and A, were 0-85 and 1-06 respectively. It was not expected that
a second fitting would be necessary, since the deviations of the
points from the two provisional lines were small, and that is why .
the expected probits were determined with some accuracy. ’lth\\

w P
{

O
601 Y
STANDARD AN 2
s5 !
50
-
=)
o
-3
a5
g ‘:r»gww_dbl'aulibral'y_:n‘g_in
apf A\
EEY S ,
\\
i A I I 1
20 AN 160

40 a0
p. DOSE, IN MG. {LOG SCALE)

FIG. 16.1. Comparisefl/0f the yeast extracts in Table 16,1, A common slope is
) \ »~ fitted to both sets of data,

corrected \‘bﬁits differed little from the empirical probits, confirm-
ing the goodness of fit of the provisional lines. This example might
perfeetly well have been computed by method (8) above. Method
(fi&i}: Wsed for illustrative purposes. _

@ usc the coefficients for the logarithm of the dose to simplify
the calculations. These are the polynomial cocfficients we have
already met. The weight factor, w, is multiplied by 20 in all cases
to give the weights, weight factors also having been determined by
interpolation to the second place of decimals. It is not necessary
to tabulate more than two further columus. These are m,w, Y,
and mw,¥.2. Values for nw,X, mw,X,? and nw, &Y, are
determined by inspection, since the values of X and XZ are
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always plus or minus unity. We then calculate the [ollowing
¢uantities: _ _
X,=—0-04643191 X,=0-14632435
¥,=35-0695918 Y,=4-8092663
Sapw, X, =1943—0-06918 = [9-360%2
S, 5,2 =165 —0-61749=15-96251
St wp Xy, =8-854 104755369 =16-40779
Sw, 3,1, =37-67194 —-20-29510=17-37684

S,y 2 =838-89591 —824-73742=14-15849 O
Sy =686:57015—667-04158 =19-52857 ¢\
b,=0-8474739 O
b, =1-0886032 ) '\“’a

x2=14-158—13-905=0-253 \\

a2 =19-520—18-016=0-613

X&ZE(I‘08186—0-8[1?5)—__’0;%0’9

1936 T 1596
www.ébﬁ%%@ﬂ‘%&org@ﬁx ’
1T 8
Vb= ———. 0% =(-028313
19-36%1%-96

S0 =0-1689
Since all values of y%tested indicate no significant departures from
homogeneity of responses to samples and slopes, we calculate the
combined slope and4ts error. We note that:

A\ S
O b, 09564 . .
5«? ' sbc'_o‘mss_s 68

The pr \?’%Efmd values for the two slopes were 0-850 and 1-062.
Thesetagreed quite well with the first approximations of 0-847
and 1-089, confirming our belief that one approximation will
Beall that is necessary. The approximate formula for the crrors
of M will have to be replaced by a calculation of the exact fiducial
limits in any critical examination of the results.
0-26032 _

The log ratio of pot =0 — = —0-46494
g ratio of potency, M 019276 0-95644
Its variance,
1 1 1 (0-26032)2 x 0-028313
M,_____ - = ‘12?25
0-91478(32-09+28-84+ 091478 ) 0

s =0-2725
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The value:
MEsy=—046494+0-2725

is in logarithms to base 2 and each dose on the unknown is double
the corresponding dose on the standard in mgm. Hence, to convert
the determination of potency and its standard error to common
logarithms, we first multiply M by logy2 and then subtract tog;s2
from M, and multiply sy by log2:

M b5y =( —0-46494 % 0-30103 —0-30103) £0-2725 X 0-30103 .
— —(-4410+0-0820 O\
=T1-5590+0-0820 ~A '

The approximate limits for P=0-05 are thus —1- 55901 960 X
0-0820, which, taking antilogs, gives antilog M= —0‘3‘622 range
0-2301 to 0-5246. The approximate limits for thls\level of signifi-
cance thus indicate that we have established thieMrelative potency
with an accuracy of between 69-1% and \}448 % of its most
probable value. AN

A recalculation of these figures using @xpected problts and weight-
ing coefficients derived from thc cbm’p é:é:l pe, 09564, gives
practically identical results: AR FBratiibrar y-orgih =

b, 88419
&,}—10822
5, =0-9594

.ﬁl‘ M=1-5587£0-0818

It should bc\noted however, that such a rapid approach to the
best fittir “Lme and an accurate estimate of M and its standard
Error arg ften not experienced. It may be necessary to make a
numb{:z‘oof successive approximations before the changes in these
\’dlue% arc negligible. The need for a further approximation is

ays indicated if the difference between successive values of b,
is more than a small fraction of the standard error of b, say
onc-tenth. In this instance, the provisional b, was 3(0-85+1-06)=
0955, and the first approximation was 0-936, demonstrating no
need for further computation of the slope.

16.4. Fiducial limits of error
Fiducial limits of error are calculated for quantal assays in an
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analogous way to that explained in Chapter 11.4, with the following

modifications;
1 1

Sapwy,  Sunw,
1
SHW T2+ 81w, X2

Vb,

In the present example, since {l is only 56, we calculate the
S

exact limits, although we do not anticipate any serious discre@h{:y
at the P=0-05 level. Using the above formulae:

P
" 4 s

i 1 :..,;
A_3@+28'84 \
=0-06383 O °
Vb =0:028313 O
0-956442 )
From 11.4, = Swhere 7=1-960
rom ¢ 0-956442 00283138~ '
=1-1350 2O

N\
Substituting in the f}?rmula for ﬁdug:}al limits, they are:
™ i TR o ) s N
_0192‘76 mo‘j_g,o"éf_xlﬂ;{al Y ??f{'ﬂ
095644 ¥
1-960v'1-1350 _"6583+1_-__1350 X 0:028313 xo-zﬁoszz)*
0‘95644”’:\ 0-956442
“8= —0-50168 1057000
Hence the log linhils are —1-07168 to 0-06832. We convert these
limits to common logarithms as before, with due allowance for the
difference jpzdb’sage scales, whence they are found to be:
(—1-0 68 x 0-30103 —0-30103) and (0-06832 x 0:30103 —0-30103)
or 13764 and 1-7195
J:h@}i:brresponding potency limits are: 0-2378 and 0-5242. These
“fiduciat limits range from 657 (o 144-8 % of the mean, and thus
differ little from the approximate limits. Note that only .the lower
limit has in fact shified,




CHAPTER 17

ASSAYS BASED ON REACTION TIMES

17.1. The use of time as the dependent variable

When either the duration of a response which would otherwm{\
have to be scored as a guantal reaction or the time taken for a
response to ogcur can be recorded, each observation supphea*more
information than if it had been scored quantally. The speed with
which individuals react to the dose of a drug sometlmcs{ames with
the dose or with a function of the dose. Alternati vei\y, the time
for which they continue reacting may also be relatéd to the dose.

In a simple instance, time may thus take the\place of a graded
response and the statistical treatment of the reSults resembles that of
assays based on graded responses. An 1L1ustratlon of this method
is the use of adrenalectomised drakes m cstlmatmg the potency of
extracts of the adrenal gland. Dramﬂardla'dnéﬂamMS@d and
then receive injections of the exn’acts for some arbitrary period,
such as one day, and their subseﬁuent period of survival is recorded.
The survival time of uninjgfted adrenalectomised birds averages
about 8 to 10 hours, but on\he injection of cortical extracts it may
be prolonged for several days. In this particular test the time of
survival has been fotind to be linearly related to the logarithm of
the dose, and ¢He; computational procedure therefore follows
exactly the samsil»jhes as with any other graded response in which ¥
is the survival'fime in any convenient units, such as hours.

Often ; %&ér relationship between the duration of response and
the Jog anthm of the dose is not found, and for various other types
of aassay the logarithm of the survival time has been found to be
]n}eaﬂv related to the logarithm of the dose. The appropriate
relationship for any particular test has, therefore, to be determined
empirically. In the assay of the vitamin B; employing the duration
of cure of polyneuritis produced by vitamin depletion in the rat,
different anthors have related the time in days or the logarithm of
the time in days to the dose. The logarithm of the time seems to
be related with more frequent success to the log dose than the

time itself.
169
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17.2. Reaction time at a given response level

Where it is inconvenient or impracticable to score the individual
reaction times in full, it has been a frequent practice 10 determine the
reaction time in groups of test objects for a given level of response,
such as 50 %, mortality. This may be done by repeated ohscrvations
at fixed intervals on a single group, given a standard dose of the
substance being tested, or by determining at a constant time¢ or
times after treatment the percentage response in groups receiving
various separate doses. In the assay of tetanus anti-toxin at the
State Serum Institute, Copenhagen, the time at which 50% ‘of\a
group had died was chosen as the response. This time wast Jeter-
mined for each group of animals by observing the numbcr of
survivors daily lor six days and then determining fqg],‘th(} time at
which 50 % had died, according (o the formula: /5

N S(t—tion) SO
SN - Nt

where N equals the number of animals injeétt\ed, f1o0 equals the last
day on which 100 % survived, 1—f140 eqlials any day reckoned from
f100, ¥; equals the survivors on the ¢th-day and N—N, cquals the
total number ‘of vdébraglipsaty. fth%“?th day. The curves obtained
were not fitted mathematically a{rd thus no critical examination was
made of the adequacy of this mcthod of scoring results.

In general, a more accurdte way of dealing with such a problem is
to determine a series ,df)Curves relating mortality to time after
treatment at various™dosc levels or a series of curves relating
mortality to dose, at varigus times after treatment. In such in-
vestigations it has for instance, been found that (he reaction time
for a given pe?sentage response is lincarly related (o the logarithm
of the dgsé.) Various methods of relating, first, one of the three
\farlwbles\hvolved to the second by means of regression lines and
thenw(el.i‘mn0 some arbitrary level of response or time of reaction

O_I‘@puted from these lines to the third variable have been tried,
% commonest of which has been to relate the time taken to achieve
& certain level of response to the log dose. In the process of
determining such relationships, a aumber of mathematical assump-
tions and semi-arbitrary corrections have [requently been found to
be necessary and the amount of time and labour involved in the
calculations must often have been considerable. None of these
methods is really satisfactory {rom a mathematical point of view.
There is, on the other hand, a more elegant and satisfactory method

W

flon-l-
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of dealing with the problem which will generalise easily, however
many factors arc involved.

17.3. Partial regression

Before passing to the more general selution of this type of
problem, we must consider the concept of partial regression.
We shall not deal with the completely general case, but confine onr
attention to two independent variates,

When the response depends on two factors, such as dose and
duration of trcalment, we may wrlte the relationship between them\\
according to the formula: ¢

Y“a—}—b Xl +b2X2 i"‘z -
where Ay and b, are called partial regression meﬁ‘iaen§~ and the
equation is the partial regression equation. This formu’lﬂ aS8UMes
that the two factors influgncing any particular resparrs} are linearly
related to it. By analogy with the equation mvolvmg a single
regression coefficient, we find the two equdtmm "/

b walz—l-szwxlxz-—&oxly
by Swxy2 4By Swv1x2=~wa2y
where w is the total weight of an obséﬁya‘fi&?’w"b};ﬁﬂi)mﬁb% is
the sum of the products of each werght factor and the square of the
deviation of X, from X;, and the: other sums of squares and products
have analogous meanings, \111 our usual notation, but omitting
subscripts in a gencral & d\on of this type. These equations can
be solved directly to g gwecHﬁe values of b, and b,, but it is more useful
to apply a method kiown as the inverse matrix, since by using this
method the variapdps' may be more readily obtfained.
,mli\,if by=c1Swxy+ci2Swxyy
%“ﬁnd bz =C1QSWX1}’+C’ZZSWX2)}
we detgri‘l;}ine the values of ¢;; and c¢;; from the following
relatidiiships:
9, ) c11Swx 248w =1
C118WX 1 X3 +¢125Wx,2 =0
We then determine ¢, and ¢;3; from:
C12SWJC12+C22SWXIXQ=0
C128wx 1 xyFe2aSwix?=1
A check on the caleulations is provided by the duplicate determina-
tion of ¢;5. By the use of ¢ multipliers we may test the significance
of any linear function of two or more regression coefficients by
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calculating its standard error, using the ¢ Table (or the normal
deviation in the case of quantal responses).

17.4. Application of partial regression coefficients to dose-response
data with two dosage factors

We are now in a position io examine the application of this

method to "dose-response data. This application invoives a
generalisation of the analysis in which one independent variate is
related to the response. We first determine empirical probits by
the following methods: \\\

1. If the experiment has been arranged so that a scries of doges is
tested at each of several different times, we may dpaw provi-
sional lines, one to each of the dose-response ;glaﬁbnships,
for each separate time interval, using the probit against log
dose, but these lines should be parallel to oie Wnother and at
distances apart proportional to the differendes in log time.

2. If the experiment has involved a sepigs of tests each giving
the response to a constant dose at,jfariable times, we plot a
number of provisional probit-lq’g #ime lines parallel to one
anolhext and at i}s_etlgﬁg.ggrabp&%mb’portional to the log dosc.

3. If a series of doses and scrig8 Of times are used in all or nearly
all of the possible combiﬁé’tiéns, the probits should be plotted
against the sum of log dose and log time (X,+X,). Points
with constant X; afeMitted by one set of parallel lines and
points with cor)st\'an’t X; are fitted by a second set of parallel
lines, and a planerepresenting the three-dimensional relationsh ip
of probits tolog dose and log time is obtained and provisional
probits a{ye\:’read from the two intersecting sets of parallel
lines,.ctr\}wn by eye, or provisionally calculated, if the logarith-
mi&rr’iervals make this easy.

Qaﬁe,\over drawing the provisional lines should ensure that a

's«a;t“'l}j‘actory fitting is obtained with the minimura number of
Sstages in computation. Corrected probits and weights are derived
from the expected probits and the percentage response, exactly as
when only one factor is involved. If the equation calculated from
the first approximation differs substantially from that appropriate
10 the provisional lines, which should have slopes near to A, and b3,
it will be necessary to calculate a further approximation, and so on.
For the standard and unknown in an assay we shaill then have two
probit planes instead of lines as when one factor is involved; each
plane is a regression plane. These regression planes can be tested
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for homogeneity and parallelism just as with two straight lines by
means of y? or the analysis of variance. The way to do this will
be explained in the practical example which follows.

17.5. An analysis with probit planes

Data obtained at Rothamsted Experimental Station on the
toxicity of a pyrethrum oil spray on Tribolium castaneum have been
used by D. ). Finney (dnn. Appl. Biol., 30, 71, 1943) as an example
of the arithmetical procedure of fitting probit planes. Finney’s
analysis Is used here as an illustration of this procedure, which he
himself elaborated. This particular test compares the percentage\™
kills of 7. casraneum when the poison was sprayed directly onto the
insects and when the insects were placed on a disc whicl@";ha’d
previously been sprayed so as to cover it with a film of ‘poison.
Four differcnt concentrations of poison in oil were spra&ed; SO as
to give three different final concentrations of deposit-{1)"as a direct
spray and (2) as a film, so that the two variable3,\&) and X,, are
concentration of spray in mg./ml. and the strefigth of the deposit
in mg./sq. cm., for the direct spray and film téchniques respectively.
This example does not contain observatjens’ of a time factor, but
the technique of analysis is exactly the @mpmlfgga}%sg%nﬁe the
four concentrations had been tested\for three different peﬁ s of
time, the insects being exposed {0 the spray during each of these
three periods. No practical test hsing time as one of the variables
appears to have been reportédin which the results lend themselves
so well to analysis as in thisparticular experiment,

Tests made with the oil alone, in which the poison is normally
sprayed, killed 3-9 %-0finsects, and thus adjustment had to be made
to cach observeddmortality, according to the formula:

R _100(p,—p)
N =" 100—p.
where p.oand p, are respectively the observed control and experi-
mentalpercentage kills and p is the adjusted kill. The results of
thetedt after correction for the mortality amongst the controls are
shown in Table 17.1.*

* This baok was in press when Mr. Finney's volume Probit Analysis (Cambridge
Uiniversity Press, 1947} appeared. Although references to this work have been
inserted if has not heen possible to do fall justice to the many refinements it discusses.
Among these s a recalculation of the 7. castaweum data with weighting factors
corrected for reactions in the controls, which even at a 42; level of control mortality
affects the estimate of 4 and its variance to a sarprising degree. The new value for
4is 0203 and its variance is 00216, 10 be compared with 0169 and 0-0191 on page
179. Tables of weighiing factors for percentage of control reactions from § 40%;
are given in Finney's book.
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TABLE 17.1

PERCENTAGE KiLLS OF T. castaneumt BY A PYRETHRUM OIL SPRAY,
ADJUSTED FOR 3-9%] MORTALITY AMONGST THE CONTROLS

{Numbers of insects shown in brackets)
(From Finney, Ann. Appl. Biol., 30, 71, 1943)
: Deposit {mg./sq. cm.)

Cone, Spray Film
mgfce. 029 057 108 029 057 108
05 00 103 1638 67 114 257
en Q9 (30) 29 @) @
1-0 498 641 610 307 430 A59]
(29) (29) (24) (30) (28),. L 428)
20 896 961 1000 821 9680 926
(30) (27) (31) (29) A28} (28)
49 1000 1000 1000 1000 /000 1000
28)  (30)  (19) el ey U

Expectled probits were determined by the metl{od outlined in the
preceding section from a figure similar to, thet'shown in Figure | 7.1,

g

KL, tH PROBITS

g$
=

7,

%

2y
& #

30

i 1 ] 1 R
o) &5 10 SPRAY 5 20
o 5 FiLM 1D 15 20

LOG CONCENTRATION + LOG DEPQSIT
Fia, 17.1 Toxicity of pyrethrum oil spray to T. castgmewm, > direct spray

technigue; - film technique; * 0% or 1003 kilt; ---— effect of change in concen-
tration for fixed deposit: - - -~ effect of change in deposit for fixed concentra-

tion. (From Finney, Ann. Appl, Biol., 30, 71, 1943.)
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which in fact gives the final result of fitting. Weighting coefficients
and correcled probits were calculated cxactly as described in
Chapter 14 and the first stage of the calculations is shown in Table
17.2 for the fitting of the probit plane for the direct spray technique.
In this Table, log(2 x Xy) and log(10 x X,) have been used for con-
venience in working. From the data in the Table and from further
columns giving SwX,2, SwX X;, SX,2, SwX; Y, SwX,Y, and Sw¥z2,
the values of the sums of squares and products of deviations
were calculated as listed in Table 17.3. We conlinue to omit
the rather ponderous subscripts—thus SwX X, would, in\sur
usual notation, be Sn,w,X,1X,., but the meaning should be glear.
All computations of sums of deviations of squares and’ produc,rs
for both methods of applying the poiscn were wmp‘uted by the
usual technigues. The sums of squares and prcrdbcts in Table
17.3 are the totals for all 12 doses of X, + X3 givend l}y ‘€ach technique.

TABLE 173 D
SUMS OF SQUARES AND PRODUCTS FOR ExPBRIKiENT witH T. casianeum
(From Finney, dnn. Appl. Blol., 30, 71, 1943)

www.dbradlibr ary .ol g i

Description Spray, s Film Total
Swx,2 5190 5437 10-627
Swxix; —1-363 —1326 —2-689
Swix,2 AS3MS10 5821 11-331
Swx 1V, 25390 21-018 46408
Swxzy, \ —0-520 2:043 1-523

Swy.2 N 13523 95-57 230-80

The sums J‘op:{h\e' two techniques together are then added and are
given in the third column of the Table, since the provisional probit
lines sug\gésfed that the two corresponding lines for the two tech-
mques Nere parallel and thus that two parallel probit planes could
mest probably be fitted to the data. From this column of totals

\{hé regression coefficients b; and &, were calculated by means of the
ifiverse matrix, and it was found that:

¢11=0-10011
¢12=0-02376
€3, =009389
whence: :
by =46-408¢,,+1:523¢,, =4-682
b;=46408¢,,41-523¢c,,=1-246
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The total sum of squares of the deviations of ¥, Swyp2, was
23080 and of tlis total, the amount represented by the fitting of
parallel planes to two sets of points—analogous with the sum of
sguarcs due to linear regression in a one-factor experiment—is:

biSwx v+ b2Swx,y,=219-18

The separate values of b, and b, for the spray and film methods
respectively were also calculated from the separate totals for the
spray and film methods and found to be 5-205 and 1-193 for the
spray technigue and 4184 and 1-304 for the film technique. The
sum of squares attributable to the fitling of two scparate planes™\
was then calculated exactly as above, but separately for gich)
technique, and found to be 131-53 for the film and 50-60 £&r) the
spray, totalling 222-13.  The differcnce between this sum f.gdrares
and 219-18, the sum of squares accountable by the ﬁtting}}s parallel
plancs, is 2:95, and this is a measure of departure from\parallciism.
The residual sum of squares is 230-80—222-13 =867, and this is
u measure of the heterogeneity of the poinj;s’\éb’out the parallel
planes which have been fitted to them. The total sum of squares
was thus split up as in Table 17.4, in whigj'} the degrees of freedom
were determined by the following consiigati@Rgulibrary org.in

TABLEL 17.4
ANALYSIS OF y> FOR WTHE T. castanewinn ASSAY
Degt 35 of Sum of Mean
_[tesdom squares square
Regression plane o\ 2 21918
Parallelism of plagests 2 - 2:85
Heierogeneity 70~ 18 867 0-48
Total NO” 22 230-80
ota %

The~ﬁ’tft'ing of parallel planes requires two constants and this
refioyes two degrees of freedom. .

1%1@ fitting of two distinct planes requires the calculation of four
constants and removes four degrees of freedom, two in addition to
the degrees already used in the computation of paraliel planes.

As there were 11 degrees of freedom available in each set of
results, therc remain 18 degrees of freedom associated with the
residual sum of squares of 8-67. The 23rd degree of freedom,
representing differences between substances (techniques), does not
enter into this Table. Remember that Table 17.4 is not, strictly

13
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speaking, an analysis of variance, but must be tested by x2. The
residual sum of squares, that associated with possible heterogeneity,
is tested by x2 with I8 degrees of freedom; for the total data the
value of 25 would have to exceed 28-87 to indicate heterogeneity
at the 5% level. There is clearly no suggestion of any heterogeneity
in these results. In consequence the significance of the departure
of the two planes from parallelism is tested with two degrees of
freedom by ¥2, and found to be well below the 5% level.

If the ¥2? test had shown significant departures from homogeneity,
but departurcs of such a kind that a different relationship from that
tested was not apparcnt from the data, so that the assumpgion’ of
parallel planes would not be rejected, the test of paralleli{s:jﬁ would
be made by an F-icst, in which the mean square for para}lghsm would
be compared with the mean square for heterogen rq,“ Then, to
allow for the heterogeneity in calculations of crrogs;\xall‘l the variances
in the subsequent analysis would have to Belsultiplied by the
mean square for heterogeneity, as in the\&dse where the same
phenomenon is seen in dealing with or’d\mary probit-log dosc-
response data. ',\;‘;

It may be nqted that the pa?_ssjgjl{tlg $hat x> might indicate hetero-
geneity if calculated by a mor% ezéa,g’b method (cf. Chapter 15) was
not examined. In view of the smah value found for the x%y above,
it is reasonable to neglect this\Possibility, as this value would have
to be associated with asgfew as three degrees of freedom before
significance at the 5%, level could be attributed to it.

The dose-responge” ﬁ]ationship, i.e. the equations of the probit
planes, may be written:

JOE=T 45Xy = X)+b:( X, = X)
each ¥ and\¥ being taken separately for each technique, but the

commomy ilues of b, and b, are used. The equations found were:
',,\C g E=2-853+4-682X,41:246X,
“\s. N/ and Ef=2'684+4682X1+1'246X2

3
where E, and E; are the estimates for spray and film technigue
respectively. The variance of the mean probit for each technique
is given by:
-1
VYi=—, (where w=n,w,
Sw ( o2)
The variance of by is ¢y, the variance of b is ¢, and the covariance
of b; and b, is ¢12. (When dealing with a graded response the



ASSAYS BASED ON REAETION TIMES 179
corresponding variances and covariance are ¢y, Ve, ¢;Ve and
¢2Ve) From these the variance of the predicted probit E for any
dosage is:

VE=VT 4 e X — X2+ 200X — X HX, — X)) + 02X — X2)?
The last column of Table 17.2 gives the values of E for the direct
spray technique; these are little different from the expected probits,
showing no neccessity to repeut the operation of fitting.

~

17.6. Relative potency X4

In experiments relating one dosage factor to response, it is qsu.a}
to compare the relative potencies of two substances by thefami-
logarithm of the horizontal distance between the two lines, §~When
probit planes have been fitted, similar computations fqr{é\é’éh of the
two variables separately, holding the second constant,’\h‘«lay be made,
In a test involving both a reaction time and dgsage, the ratio of
times of exposurc and of doses eliciting theysame percentage
reactions measure different aspects of relzﬁ}v% potency. If the
probit planes are parallel, these relative)s@tencies are independent
of the level of response chosen for making the comparison. Thus,
although we may choose to returp‘.j&;‘“gggnggjﬂm%%gglmls of
one or cther factor alone, the ﬁﬁfing of probit planes will never-
theless have cnabled us to. compute relative potencies with greater
precision and to make conm'\arisons by other methods if we after-
wards feel them to be necessary.

Finney suggests thaka more useful comparison is given by the
mean probit differencéy denoted by A. The mean probit difference
is the differencé\Between the predicted probits for the two sub-
stances at give?i‘d'osages. When the regression planes are parallel,
A is indepe{?laﬁﬁt of dose level and is the vertical distance between
the two pldues. In terms of the standard and unknown:

\‘N A=}7S_Yrﬂ_‘bl(fls_‘r/lu)_bz(YZS“XZu)
w‘@f; 4 variance: ‘

VA =-—1— 4- 1—-+(711(f15-—f1 u)z+2(.’12(Xf15'_A_flu)(fzs_f&i)

Sw,  Sw, : B B
+020(X2— X2.)?
In the example just considered 4==0-16% and V4 =0-0191.

17.7. Interaction

The eqguation:
Y=a+le1 +})2X2 +512X1X2
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is a more general equation, which, however, may still be reduced
to a linear form when one of the Xs is held constani. If such
an equation describes a dose-effect relationship, it mcans that
the eficets of the separate factors are not independent and additive,
but that although ¥ is linearly dependent on either dose factor
separatcly, the slope of the regression of ¥ on X increases as X,
increases if by is positive and decreases i’ it is negative. The
regression coefficient b, represents the intcraction of the two
factors. The fitting of surfaces of this form can be done by sh@le
extension of the methods uscd above, but the possibilities offered
by the equation do not yet seem to have been realised in phactice.
In one case in the literature examined by Finney, where iti{o fit given
by probit planes was significantly less good than ,it},»sfif)uld have
been, calculations including interaction did not i'rrr;sﬁ‘ov‘e matiers.
& A ‘}
O
£ \\\;\
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CHAPTER 18

GROUPS OF TESTS

18.1. Groups of simultaneous tests

It is often desirable to determine the potency of several substanees
at the same time. The object of the test may be to save time.an
labour by using one determination of responses to the standafél“ﬂér
comparison with several difterent unknowns, or to comﬁafe the
relative potencies of several substances with one al;f%ﬁér in the
absence of any particular standard. \ 4

Il several restrictions are to be included in the design of the test,
as in a test based on the Latin square, we must choose a design in
which all dosage levels of all substances con;}iﬁute equally to the
totals of responses in rows and columns}cir; to totals for any other
restrictions in design that may have been imposed. However, it
is usually difficult-to cope with mang sibstdbeesldbranceipisuch a
design, as the number of cells req;ﬁfed in the square mounts rapidly
with the number of substancesito be tested. This leads to diffi-
culties in planning the assa¥, particularly if litter-mates or similar
groups of limited numbq;@'bf test objects are to be used.

Methods of surmoutiting some of these difficulties will have been
suggested by the d€signs discussed in Chapter 13, but it mwust be
admitted _that, MaCpractice, the simultaneous testing of several
substances usgdly necessitates simplification in the design of the
assay or thé usc of balanced incomplete blocks. Thus, the advan-
tage of te'@bmg several substances together may be offset by the loss
of a gelitain degree of precisjon.

“Fhe’ results of a group of tests conducted simultaneously can be
p}ofed to give estimates of the slope of the dose-response line and
of the error variance, as Jong as there is no reason to believe that
any onc substance is evoking an atypical response.  Thus, the slope
of the line for each substance may need to be examined separately
if the results suggest that there may be significant differences between
slopes, or the responses to one substance may best be compared
scparately with those to the standard if the variance of these
responses is significantly greater than that for the other substances.

181
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Such rejections must only be made on good grounds, for in the
absence of significant differences between slopes or variances, the
best estimate of the slope and error variance for the assay is that
derived from all substances together. Methods for {esting differ-
ences between variances have been described in Chapter 9.6, and
methods for testing differences between slopes are discussed below,

18.2. Comparison in a group of tests

The following example shows how a group of substances nv&y'\\be
compared simultaneously with a standard. By the “cylindepplate”
method of assaying the potency of penicillin a warm aggm'medium
is sceded with Staphylococcus aurens and poured ir]tg)xﬁ’ shallow
container and allowed to set around a series of {small upright
cylinders, into each of which a quantity ol sol}(mn of penicillin
is placed. The penicillin diffuses into the $Usrounding medium
and inhibits the growth of S. gureus over \a circular arca, the
diameter of which may be used as the respbn@e to the drug. This
diameter increases with increasing apddunts of penicillin and is
linearly related to the logarithm of the dose over a wide range.
In the presentviestdbhaekbpsepanafimns of penicillin are compared
with a standard, each at three .d’om levels, and three cylinders were
used at each level, a total of 36 ¢viinders, all on one agar spread. The
diameter of each area otkggowth inhibition is given in thousandths
of an inch in Table 1847 _

The analysis of varance takes the usual form. There are 24
degrees of freeddmy for the estimation of error-—two within each
cell of the Table/ The actual cylinders were distributed over Lthe
agar surfacepfot grouped as in the Table. This point will be re-
ferred te Bglow when discussing the results. Differences between
substanices account for a further three degrees of freedom, leaving
cig]t@fdégrccs of freedom which will be accounted for in the examina-
tign’ of the slope and departures from linearity and parallelism.

\Tﬁcsc cight degrees of freedom may be conveniently grouped for
preliminary analysis as follows:

Source of variation Degrees of freedom
1. Linear regression 1
2. Combined curvature of dose-response lines l

3. Departures from parallelism and opposed
curvature of separatc dosc-response
lines

oyt

Total
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TABLE 18.1
AN ASSAY OF THREE SAMPLES OF PENICILLIN BY THE CYLINDER PLATE
METHOD
Sample Dose in ml. Totals (77)
03 10 1-25
Standard 607 673 740
577 615 645
603 643 700
Totals (7},) 1789 1931 2085 5805\
U, 614 661 742 O
582 615 652 'S\
590 630 689 A7
Totals (7,) 1786 1906 2083 5775
U, 608 652 758NN
580 611 633N
605 630 684
Totals (73) 1793 1893 \.(2@75 5761
\ }
U, 606 661 ()Y 723
568 596, 637
' 562 S84 ww dbiG§ibrary org.in
Totals (T},) 1736 _«\1841 2019 5596
Totals (73) 7104@\ 7571 8262 22037=T

Ttems 1 and 2 abf}v‘é\\?fre calcutated from the three totals (or

means) of all respehses to each of the three dose levels and thus
refer to the combined slope and combined curvature of all four
curves, Iterpy32is the differcnce between the sum of squares
for the iﬁéﬂ‘totais of the Table and items 1 plus 2 plus the sum of
squares,{x;z “differences between substances (it is thus the dose/
substahee' interaction—see Chapter 12.4). The analysis of variance
thus fakes the form shown in Table 18.2.
\Jt will be seen that the sum of squares for dose/substance inter-
action is much less than would be expected by chance. This does
not imply, as it might in some circumstances, that the results
have been “cooked” to make them more consistent and that we have
uncovered this charlatanism by statistical analysis, but almost
certainly derives from a peculiar circumstance of this particular
assay. The three cylinders contuining the cqual doses of any one
preparation were not distributed at random over the medium, but
were distributed systematically, so that they sampled the inequalities



184 ' PRINCIPLES OF BIOLOGICAL ASSAY

TABLE 18.2

ANALYSIS OF VARIANCE FOR THE DATA OF TABLE 18.1

Source of . Formula Degrees | Sum of : Mean F P
variation of SUATES square
freedom
Bcetween doses | Snava ()
A. Lincar I : ;
1 7 1 H
fegression ‘ (Srutufa)? 1 558735 | 553735 442|006
! Sxq? ' \
p. Combined °* N\
curvature ! StaVt—A4 [ 6969 6960 053 \{05
c. Between | ; NS T
substances Sngpge 3 2043-9 933K 0FR o003
D. Dosefsub- | : & i
stance inter- ' ,'\\ ’
action ISPy —(A+B+C)Y 6 1937 | €323| 0025 <0001
Error Sy2—8nyFe 24 303324.N 'D\S}S| — —
Total Sy2 3500 900404NNT — L | —
. . A ) ;
A

of the medium more effectively than Weuld usually have occurred
by chance. However, since they }xzcijt:' not arranged in a design,
such as a Latint’ é"q”ﬁ‘zglbé",aﬁl#%ﬁ}féﬁﬁﬁ%{ﬁn of squares for such items as
row or column variation could be eliminated from that attributable
to error, this balanced desizn has effected an increase in real
precision accompanied,.Rm'adoxically, by a decrease in apparent
precision. Such variatioh as occurred between parts of the surface
of the medium is rgp’%ented excessively in the sum of squares for
error—which is'nio.’longer. properly named “random sampling,”
for the sampling“was not at random. It is of interest that the
present authgh was unaware of the physical lay-out of this assay
when ana{y&}ng it, and only after the above finding suspected and
estab]jsb’eﬁ that a non-random arrangement had been employed
and"t:héi the sensitivity of the assay is thus impaired.

“Wssuming an unbiassed estimate of error, however, we can pro-
éed without further analysis and use the combined error sum of
squares and the combined estimate of slepe for determining the
errors of the three assays of substances Uy, U, and I/ against the
standard by the usual mecans, with the advantage of a larger number
of degrees of freedom {or the estimation of these crrors than wounld
have been available had each to be compared separately with the
standard. Fiducial limits of error will be narrowed in so far as
5, is reduced by combining estimates of & from all substances.
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18.3. Significant heterogeneity in slopes

Had the mean square for dose/substance interaction in Table 18.2
proved significantly greater than that for error, we should conclude
that the individual dose-response lines are not sufliciently alike to
be treated as samples from the same population of such lines. We
must then examine in more detail the contributions to the six degrees
of freedom associated with the interaction in order to eliminate the
line or lines responsible for the excessive variability. The method
has been discussed in Chapter 12, but the analysis in the present
instance, where the presence of replication gives 24 degrees ofiN
freedom not associated with segregable interactions betwéen
restrictions in design, is simpler. N\ 4

The sum of squares attributable to opposed curvaturg, of the
four individual dose-response lines, with which are asgoq’ated three

degrees of freedom, is: y x\
NG +Tn3ﬂZsz)z_(Tn-l'Tds—z&%)z:bI '
6n, by N
where T, =the total of responses to 't'hei‘;]c‘)‘west dose of each
substance, e
 T,,=the total of responseg..yﬁ@%hdmﬁdmerafmwgmﬁ gach
substance, R

T,3=the total of _respo’néés to the highest dose of each
substance, {\

T,,, etc., are the corregponding totals for all substances together,
and n, and n, are the humbers of observations in each group.
The sum of squared; attributable to departures from parallelism,
with which are waiss’ociated the remaining three degrees of freedom,
s :"‘;,"

B e P
‘..Q‘ \* 2n, 2ny
an@ D1 +D2 should, as a check, add up to the interaction sum of
squires, D, in Table 18.2. v '

Bach mean square, when tested against the error mean square
in the F-test {with three and 24 degrees of freedom respectively
in the present example), may differ significantly from .it, and
inspection of the individual items calculated in forming the first
half of the lefi-hand side of each of the above equations will show
which of them is contributing most to the sum of squares concerned.
Note that this method, in which the factorial coefficients of Chapter



186 PRINCIPLES OF BIOLOGICAL ASSAY

10 have been employed, is only applicable with a balanced design,
with equal numbers of observations per group and equal spacing of
log doses. Without this, full analysis will be extremely tedious or
even impossible,

Assays in which covariance analysis has also been employed can
be examined in just the same way, using reduced sums of squares
as explained in Chapter 8,

18.4. Series of tests made over a period

Another frequent occurrence in assay work is the accumuia 'sfn
of a series of results in which the same or diflerent substances thS
been compared from time to time by the same test meth@d “We
may be interested in combining such tests to give am 1mproved
estimate of the slope of the typical dose- 1esponse J,Q{e or of the
potency of an unknown.

It is commonly found that, whereas the slope bEthie dose- -response
line remains substantially constant, the res onse to a given dose
of the standard varies from time to time. ¢Fhis is not alwayvs true,
but it is so likely to occur that it woulékbe unwise to assume that
time-to-time variation in response cam be neglecled unless strong
evidence to thE"CHRRERNRE aﬁ:\(rﬁgomm'g Thus, we may often be
justified in combining the slopes QF various tests made at different
times, but rarely justified in eafbining a series of responses to a
standard dose. We cangbowever, always combine a series of
estimates of potency in{order to arrive at a mean estimate, which,
if the test is reliablg, W\N] have a greater precision than any of the
individual cstimate§.)

A
18.5, The combined estimate of exror

When a §ebics of tests has been conducted by the same technique
and the(Mean square for error has been determined after the
eiimigét’ion of the sume sources of variation in each instance, we

tayncombine the estimates of Ve by pooling all residual sums of
Sg}l.ldl"es and dividing by the added degrees of freedom with which
they are associated.

This combined estimate (F2) may be used in computing the errors
of combined cstimates of the slope and of potency in sections
18.6 and 18.7 and in predicting the mean square for error to be
expected in fulure tests. A combined estimate of the error variance
will, of course, automatically be computed when a series of tests
can be subjected to an overall analysis, in which time-to-time
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diffcrences in response are antomatically eliminated in the estimation
of potency and its error.

18.6. The combined estimate of the slope

If we have a series of r estimates of 5, the slope, the mean of these,
b may be estimated from the weighted mean of the separate estimates.
Each value of b is weighted inversely accerding to its variance, or
alternatively, the weighted mean may be computed from:

e S8 Wp%y Py RN\
SSn,w,x,2 O
and Vh—_ V€ O
S8, %1 A~ ;

\

Note that with graded responses w, will in g,eneraloi e-unity, and
with quantal responses ¢ will usually be unity, N x\

Differences between individual estimates of the\value of the siope
may be significant. If the series of tests h}t}“been of balanced
design, an analysis of variance covet;mgs the whole series and
segregating sources of variation which can be eliminated from the
estimate of error will detect any such q;gquq%l lb;g lvx)f(eog.‘rc Roolm g
a series of estimates from tests whrch cannot easily bé co bined in
this way, we compare the two esnmates of the variance of the mean

slope: LN\
(a) VB O
a _—_ 2 INJ
SSnmy %, AN
Swipy~b)2 1
d {(h) Vb gy - = _.,
and {b) VA= S‘.‘.’.G’_U , where w i

If (a) is si rmﬁg:antly less than (b), the observed variance is greater
than that¢predicted from our knowledge of the individual deter-
minatiqné, of the slope, and thus the slope is not constant over the
seruas of assays.

‘{his comparison may be made with the x2 table in both quantal
and other cases:

I G b)2
X [r—1]7 VE
which is a modified form of
b2 b

N
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18.7. The combined estimate of potency

A combined estimate of potency is made by analogous I‘flEthOdS.
The weighted mean log potency should have a variance VM given
by:

I
. —S__
© VM VM
which should not differ significantly from the alternalive estimate:
Sw(M-—-M)? 1 .
dy VM="" """ wh =—, o &N
(@ Swir—1) =T S\
Using x2 as before: ...‘:
M
X r— 11—-5 —'MS ,u:’;
VM VM \\ \

If the variance of the mean log potency is significdntly greater when
measured directly from the series of estimateg\wnder examination
than when computed from the combined.data of the individual
tests, it means that the method of assaying these substances is
unreliable. However, the best estihate of potency available
remains the weighte% an, whigh»has a variance given by
equation (d). el rauh 1ary an gun

3
N

18.8. The use of combined e’sﬁfhates in future tests

K it has been shown,rkiht the slope of a dose-response line docs
not vary signiﬁcantiy,'\imé may be made of the fact in assessing the
results of further assdys, as long as the further evidence added by
the now assaysydbes not disturb previous conclusions as to the
constancy of t@é ‘slope. Furthermore, for pilot tests of new sub-
stances oraapid surveys of the potency of several preparations at
once, théwmean of previous slopes may be used without always
deter‘mﬁﬁmg the slope anew. It is perfectly permissible under thesc
conﬁmons to make pilot assays with only one dose of an unknown,

though it is best always to include two doses of the standard, so
that evidence is continually accumulating about the slope of the
dose-response line. Any full determination of potency must,
however, ensure that the slope of the dose-response line is the same
for the unknown as for the standard. If it is for any reason
imperative to attempt an estimation of potency in the lirst test
made with a new substance, two doses at least must be employed,
unless the exact chemical constitution of the substance is known
and only its degree of dilution is in doubt,

" N
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18.9. Combined estimate of linearity of regression

I # tests have been made, with r different estimates of the vaiue
of b, we may wish to test the validity of the assumption that log
dose is linearly related to response. For this purpose we compare
v, derived from all tests, with the variance attributable to devia-
tions from regression, which is such that:

VrmLS'(.S‘,**zpw,,yI,2 — b, SHaW,Fp X}
S(r—2)

where w,, J,, tc., refer to the weight and mean response, etc., to\”
dose group, p, in test £, of which b, is the slope, based on observas
tions from #, groups. There will be S(n,~2) degrees of freédetn
available for the comparison with Ve in the F-test. If Vr.signi-
ficantly exceeds Ve, we cannot maintain the hypothes@”that the
log dose-response relationship is linear, and that Ve adequately
measures orror. Since this test will only be used When a rather
heterogeneous series of assays is combined——otherwise an overall
analysis of variance can be used—general inspe@tﬁén of the data must
be employed in deciding whether the dosérresponse line is curved
or whether the individual mean resporises depart morc than is to
be expected from a supposedly lineaferelatitinshipsrary org.in

In assays cmploying a quantalnijésﬁ:onse, the above test is most
easily performed by adding todether the valves of x2 for hetero-
geneity; the added values{ase again tested as x2 with S(m,—2)
degrees of freedom. (Iﬁ'ahyone is worricd by the sudden intro- -
duction of x? into assays based upon graded responses in Sections
18.6 onwards, he maybc reassured by remembering that, as long as
1, is large, x2=.}?f§|.)"

N :
18.10. 'dl”{eial Yimits of error -

~ . . . ) b -
When{Coimbining a heterogeneous series of tests, if p is greater
AN P
than('8,' fiducial limits of error need not be caiculated, as Mdts7

&l be sufficiently accurate. The calculation of fiducial limits
when this js not the case, or when b varies from test to test, has yet
to be described, except in a few particular instances. It is always
possible to calculate such limits when the whole series of tests is of
balanced design, and the problem is only likely to arise in acute
form when a hotch-potch of tests bas to be handled, and the estimate
of potency derived from the whole series is clearly subject to large
errors. The obvious answer at the moment is not to arrange one’s
own tests so that this situation is likely to occur.



CHAPTER 19

CHOOSING AND MEASURING
THE RESPONSE

19.1. The choice of responses

Where there is a choice in the response or method of meast ‘i:w
the response in a biological assay, we naturally wish to fild ‘the
response which gives the most accurate assay and is not ap~ t}le same
time toc laborious to measure or compute. In gencral “a simple
measure of response is as likely to give results as ag\‘wate as more

complex and involved measurements. ,\
A quantitatively measurable response gwes Jwlore information
per animal than a quantal reaction, and Jatter is thus rarely

to be preferred to the former. Where responses can be arranged
in order of magnitudc or in gmdes Bu’t not given a numerical
score other thamﬁ@mtﬁuﬁ%@m@ﬁy value, it is possible to use
the method of Fisher (Statisticgf-Methods for Research Waorkers,
Qliver & Bovd, Edinburgh), by which numerical values which will
best diffcrentiate between doses of a drug are assigned on the
assumption that the individual effective doses are normally dis-
tributed, but the anth@tic is rather forbidding.

The choice of crit€rra will also depend on a number of other
factors—the mean squares for error, linearity of regression, the
steepness of the Gose- -response lines, the amount of work involved
in altemau\e\types of measurement, and the statistical method by
which thbiresults will, or can, be treated, The latter may be of
partlc.ul\r importance, as in some tests so designed that an analysis
ot wartance and covariance is possible, it may not matter, as (ar

18 the accuracy of the test is concerned, which criterion is chosen,
since the efficiency of the statistical procedure may be such as to
yield equally accurate estimates of potency in all cases. Where such
an analysis must, by the nature of the data, be incomplete, it is
important to know whether one method is likely to give greater
accuracy than another, and how this accuracy is affected by such
corrections as adjustment for concomitant variation.

It is usually pointless to measure the response {or to give the
drug) in terms of a percentage or ratio relating the crude response

190 :
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or dose to some such concomitant variable as body weight. Any
influence such a faclor may have is best measured subsequently
by covariance analysis. Measurements of response based on such
criteria as the mean percentage fall in blood sugar following the
injection of insulin to rabbits are unnecessarily involved. A
recalculation by Marks (unpublished) in which the results of a
number of such tests were examined using only the final level of
bloed sugar at the second hour after injection gave rather more
precise results than the originat tests, if no correction were made ing
these latter for the correlation between initial blood sugar level qnﬂ\\
tall (series 1 aud 2), and as precise a result in a test in which{the
correction was made (series 3), although no correction for{ initial
blood sugar was made to the final blood sugar values,in any
comparison. The standard errors of the determinatipﬁ%f potency
were: N\
Series 1 Sepigs™?  Series 3

By percentage blood sugar reduction  0-049 4 0:075 0-030

By final blood sugar values 0-04{1\' ‘}]-066 G030

It would thus appear that much of the u‘éui)le to which the assayist
goes in the determination of the potémw\afdmuhnrb}yﬂ}eg 1pbbit
method is unnecessary.

_S
.

19.2. The choice between dkﬂ'erences or final valaes

It seems to be almostamiversally assumed that, when both initial
and final medsurcments of the responding tissue are possible in
the same test objectyitds preferable to employ the difference between
them as the cr Ltehbn of response rather than to use only the final
values (on wh.u,h one has to depend without choice in the many types
of assay \which no initial measurcments are possible). This
preferenée\must be based on the belief that more uniform results
wﬂl ba obtained by the elaboration of technique and that some
dderad” of “animal variation” is eliminated by the procedure.
Bound up with this assumption is the further one that if, as is very
frequently the case, a correlation between the initial measurement
and the subsequent change is demonstrable, it must be more
accurate to use differences than to use final values, particularly
if either an arbitrary correction or no correction for the initial
levels is applied. In any assay employing differences between
pairs of observations in which no correction is applied for the
initial readings, an improvement in accuracy cannot be expected
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compared with that attainable by the use of the final member of
each pair alone, uniess there is a sufficiently high correlation
between members of pairs to compensate for the addilional variance
contributed by the initial measurement. The value which must be
equalled or excecded -by the correlation coefficient concerned will
depend on the variances of the two seis of measurements.

19.3. The regression equation

{f the three variates, final level ( Y), initial Tevel (Z£) and the .dose,
or any [unction of if, such as log dose (X), be so reiated that: ' A\

Y=g +£I?zy‘xz+byx_2X ms’ \ o
bzyx and byx  are the partial regression coeflicients, iﬁdépendent
of X and Z respectively. (N

In tests with randomised animals there will béiho correlation
between X and Z, and the partial regressioncdefficients will be
identical with the corresponding total regressidprcoefficients.  Thus,
the same mean values for the 4s will be fougé,"if multiple regression
is ignored.  Then: - O

www.d bra%flﬁfga-i!‘-%) GFéﬂl{‘b vxX

Y—“Z=ﬂ'+(’bzy.“’-])z+byxX ]
Hence (¥Y—2) is linearly 1'el,sz;,é’d’to Z and X, aund the slope fyx
is not affected by the change*to (Y—2). Thus, in discussing the
relative accuracy of ass,zg’@* based on ¥ or (Y —Z), the effect on the
slope of the regression line relating dose to response may be ignored.
We are therefore mainly interested in the standard errors of (Y —2)
and ¥, which must be determined by trial. It will be preferable
to choose the' aiethod of expressing the response which has the
smalier stauj&hrd ¢rror, since no correction, by covariance or other-
wise, calx”o’é expected to reduce the variance of the other measure
“of respense to a value below that found by applying the same type
) gf"éprre‘ction to the measure exhibiting the smaller crude variance.
\19.4. The characteristics of a satisfactory assay
Gaddum (Biochem. J., 25, 1,113, 1931) outlined some basic
considerations which determined the choice of the best measure of
response, They were:
i. A linear relationship over the widest possible range.
it. A standard deviation which is independent of the response.

ili. A mininial value f'or the ratio g (called A2 by Gaddum).



CHOOSING AND MEASURING THE RESPONSE 193

Thisratio may not be minimal when Ve is minimal, but depends on
therelationship between the two quantities, and a steep enough slope
may compensate for the choice of a measure of response which does
not have the smallest Ve of all available. These requirements
bave been enlarged upon by Bliss (cf. Ind. Eng. & Chem., 13, 84,
1941), who makes five points regarding a satisfactory assay:

i. Different samples of the same drug should show the same
relative potencies in biclogical assay as under clinical test,

ii. On the cc-ordinates used for biological assay the curve
relating response to log dose should be a.straight Ijne.ajﬁ
relatively steep when compared with the variation aboatthe
line. Either the curve should have been shown to:]javé a
constant, known slope by repeated tests over a censiderable
periad of time or the slope should be detgmﬁne’d as an
integral part of each assay. Assumed relabions between
dose and effect are to be avoided. y

ili. The potency of the unknown or samplesheuld be determined
by comparative test with a stable. fcference standard and
expressed in units of this standard

iv. The living material exposed to dlﬁ‘eren ose of the standard

rauiib rar
and unknown must be as nea,rly eqmvaﬂent as it can b8 Made.
Potential sources of variation, such as differences between
individuals, litters, dates Of treatment and sexes, should never
coincide or be confounded with differences in treatment, but
within these limitations the dosages and samples must be
assigned at random.” The analysis of variance or an equivalent
technique shenld -be used to segregate from the estimate of
error the sources of variation that have been quarantined by
the desigmief the assay. Varjations in an initial measurement,
such}@t’he initial blood sugar in the rabbit insulin assay, or in
a goncomitant measurement, such as body weight, should be
~adjusted not by assumed relation, which is sometimes con-

“\‘cealed in the definition of response, but rather from the
infernal evidence of seff-contained experiments by covariance.

v. A determination of potency should always include an estimate
of its error, computed as an integral part of the assay.

The first of Bliss’s points applies, of course, to assays destined to
determine the potency of therapeutic substances. It is not often
possible, however, to be sure that this requirement is satisfied, as
few drugs have been assayed in any real sense of the word, using

human beings.
14
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To the above should be added that the assay method should give
reproducible results, which should be consistent with internal indica-
tions of precision, and that this precision should not alter violently
from test to test or from time to time.  If this occurs, the cause of the
undesirable fluctuation must be sought in the procedure of the
assay, when it may be found that apparently unimportant details,
environmental or otherwise, may cause large changes in the mean
square for error, in the slope of the dose-response line or in the
effective doses. An extreme bui most instructive example is the
assay of sympathomimetic amines. Chance {J, Pharmacol., 89\%89
1947) found that the toxicity of these substances to mice ,Was in-
fluenced by the degree of hydration of the animal, thes external
temperature, the degree of confinement and the number Sf mice in
a given space, as well as by sach more usual f'tctor\i\as sex, body
weight and strain differences. The influence Of“these various
factors was such that more than a tenfold ‘difference in median
lethal dose couid be produced for one comi@und by manipulation
of the external environment alone.

The extent to which the design of ’t\sts may contribute to their
precision has glesady hess-aticssgdy.Up to five-fold or six-fold
increases in precision have been jéported as a result of segregating
differences between individualSamimals in assays of coal-tar anti-
pyretics with cats and parathyroid extract in dogs, Twofold to
threefold increases in pre@mon as the result of the climination of
differences between hiers in the assay of vitamin ID in rats werc
indicated by Bhss

4 "\ /
19.5, Trangf@imations of the yesponse

Transﬁs(rrﬁations of the response may be employed to equalise
varianges, but are not always likely to be successful. Transforming
the 'ﬁgsf)onse to log response has been used successfully in assays
in¥olving direct enumeration, such as bacterial counts, as a means
of obtaining a constant variance when the variance is a linear
function of the square of the mean response in a group, but ifsuch a
transformation Icads to a curved relationship between dose and
response, nothing may have been gained. The analyst may choose
to work over such a limited range of responses that curvature may
be ignored, but this involves difficulties in planning the test and does
not really solve the problem, as we then have a measure of low
precision by which to assess the parallel nature of the lines relating
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dosc to response for the standard and the unknown, and a large
error for the slope.

When an assay is well planned, so that the means of all responses -
to the standard and to the unknown are about equal and the same
number of doses are given to all groups, quite large inequalities
in variance at different dosage levels may be ignored with com-
parative safety, as there will be no bias in the assessment of potency,
There may, however, be a bias in the estimation of mean squares
associated with restrictions in design in the Latin square, and care\"
must be exercised if this design is used. Again, when the variance\_
changes with response, the regression line should in theory be fitted
bv the use of weights inversely proportional to the varianee and
proportional to the number of observations per grogpﬁ"{This is
again of little moment as long as the assay is so bal@a} that the
mean of all responses to the standard is not much different from the
mean of all responses to the unknown, \

While every effort should be made to d,e.tp&t' departures from
lineasity or from equality of variance, and’@o‘borrect for them, it
must be remembered that the numbers f)dbservations made even
in a series of tests may be insufficient te-keveal significant departures,
and that when really large numbers of ot RSt RIS Wi thade,
it frequently turns cut that botht types of departure occur. Thus,
in the absence of sufficient evidence to the contrary, we assume that
a linear relationship holds'éxnd that variances can be pooled, but
must bear in mind that it%s rarely justifiable to attempt too much by
way of statistical refinements when we are not even sure that our
basic assumptions, dre Sufficiently valid. i is much better to repeat
an assay than ta'spend hours trying out various transformations or
tests for the rejeetion of aberrant responses and so forth.  These are
better sub'é&\c’d to critical examination in the light of much evidence
from repé’a ed tests, when judgment can usually be passed without
much\i&)ﬁbt. : _‘

N/ :



CHAPTER 20

THE RESPONSE LINEARLY RELATED
TO THE DOSE

s &\
20.1. Introductory remarks A\

Recent work in which micro-organisms are grown 111' Lmdﬂ
containing all the substances necessary for growth excbpt the
substance being assayed has shown that the response, which may be
a measurement of such factors as the acid productro‘n\or turbidity
of a culture, frequently bears a linear relatlormh\p to the dose,
instead of to the logarithm of the dosc. These micro-biological
assays have been studied mathematically{\hy Finney (Quarr. g
Pharm. Pharmacol., 18, 77, 1945); W.Q&d (Analyst, 7%, 1, i946_)
and Wood and Finney (Quart. J. Ph{)rm Pharmacol., 19, 112,
1946). www.dbraulibrary.ovgil ¢

Such an assay may be conduet’éd along familiar lines, and, lor
instance, a four-point design asWtitlined in Chapter 10 may be used.
If the ratio of the potency of the unknown to that of the standard is
designated by R, then; ,",\\

A\ R“%

A

5

where the equa‘u@ns of the dosc-response lines for the standard and
unknown argi™

§ff Y=a,+b,X

..';.\ and Y=a,+5,X
dud \bu and b, are respectively the slopes for the unknown and the
‘s(gnddrd preparations. In a four-point assay:
Yul - Yu?
FPa—¥,

Ve {1 I 1

and VR—de 21-’%1 +Hu2+ RZ(Hn +?7 2)}

where d=the dose interval for both substances and # is the number
of observaticns on each dose level as indicated by the suffixes.
In assays with more than two doses of each substance the usual
1586

R=
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tests of linearity may be applied, but there is, of course, no corre-
sponding test for parallclism, as the slope of the regression line for
the unknown will only equal that for the standard if R is unity.

20.2. Objections to the usual design -

Unfortunately, the simple modification in the estimation of
relative potency suggested above, although adequate for assays in
which it is impossible to use the procedure we are about to discuss,
is olten insufficient to do justice to the possibilities of the test.
tor if it so happens that the linear dose-response rclationshjp\\
holds over a range of doses which extends as far as zero dosg;\the
four-point or general 2 Xn-point design does not yield as:‘muéh
information as may be gained by distributing the same totalimumber
of observations in a different manner. Wood and,x]?‘i}me'y have
shown, for example, that with a four-point assay, KR\Js 4 minimum
when; )

o, O
R R 2{?—{-2‘
where n=the total number of observatidny; whence:
VR _(Z_ijﬁﬁu;v}.’dbraulibrary_org_in
talo, — > SR N .
Jnd? b2
whete K is not greater than paity.

Now, suppose that the\?* observations had been distributed
between three dose-levcl{\o‘ver as wide a range as possible within
the limits of linearitydof the dose-response curve, namely, zero dose,
dose X of the slaryfarﬂ and dose X of the unknown, with 7,, #,
and #,, observi tions at each level respectively. Then, if X=X"=12
arbitrary upjts of each preparation:

W 2 2 1
§\ VR= Ve {(]_R) +‘R_+ 1_g

A N 4b2|  #, n, M)
av{\VR is a minimum when:
# H F
e — E =", -_,-)
—~R R 2
whence:
L
min. 7 . Bsz

If we suppose that the doses in a four-point assay are as widely
spaced as possible, d canpot exceced 2 (the two arbitrary units
referred to above) and hence the variance of the threc-point assay
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is necessarily tess than that of the four-point assay (and may be as
Jittle as one-quarter of it}

20.3. The “Common-Zero 5-peint” design

In practice we would not prefer to use the three~-point assay just
described, because no test of linearity is available and no check on
the similarity of the unknown to the standard is possible, except
‘in so {ar as the unknown is seen to promote growth or whatever
activity may be measured as a response. In a four-point assay
in which the log dose is linearly related to response, parallel dosdx
response lines guarantee a specific degree of resemblance. Ihua a
five-point assay is the least we should accept, as it prowdeaa test of
the linear response relationship on which the validity afy the assay
depends. In such an assay, VR depends on the dxs}rlbutlon of
observations over the different dose levels and oﬁ\the particular
levels chosen. A high, but not maximal levelvof precision in
estimnating R is combined with a high, but a{so not maximal pre-
cision in detecting departures from hneanty if equal numbers of
observations are made at all dosage le\x\!s and if the doses of the
standard and umkmpaapﬁntg%ho@g 11,1 1n arbitrary units {(with the
0 common to both).

If, for example, 20 observatwm are to be made in total, four at
each level, and the assay is to“be considered satisfactory if R lies
between 0-7 and 1-0 (the \'imndard will always be administered in
doses calculated to cm@r Jas nearly as possible the complete range
of linear response)ythen VR, as estimated from the equation given
below, will lie bqt“{een.

.\:j;“ OLVe . . 00803.Ve
b2 b2
The cor é§p0nd1ng VR for a distribution of five tubes per dosage
level m a four -point assay with d=2, will lie between:

’\; O 02.Ve 0-149. Ve
\ b2 and “pr

Hence R will always be less efficiently estimated if this design is
employed, although not so efficiently estimated as if a three-point
“common zero™ assay were feasible. '

The five-point assay with unequal distribution of observations
among the five dosage levels can give a rather more precise estimate
of R than if observations are equally distributed, but not only does
it allow a less accurate test of departures from linearity, but also
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the statistical estimation of R and VR becomes tedious, with
relatively little gain in information. We shall therefore confine
discussion to the balanced type of design. The general problem is
discussed by Wood and Finney.

20.4. Fstimating relative potency and its variance

The values assigned to b, and b, are not independent, since they
share information from the common-zero group. The restraint
put upon the dose-response lines, that they must intersect at X=0"
(although not necessarily at ¥, the response at zero dose),.is
reflected in the equations determining them. The constants of the
two regression lines—which must share a common vatue of d—-are:

\
7%

g ¥, Lt L 7\
7 L
=(_f52"‘170)+(6_L’{__L3)
’ 2 (W, \
_ (=¥ (6L<B)"
b=t B

where L,= 1’_’0—}- Ysz—Z}_fn and L;,Effg &tﬁﬁmag_{ﬂulibral‘y,org,jn
Thus, unless L,=L,=0, a cofiection is introduced for the

restraint. Note that the respofite to the middle dose of each

preparation, ¥, or ¥, in fhis instance, does not normally in-

{luence the slope in a th;cg’print line with balanced dosage groups,

but that it does have some influence under present conditions.
The variance of I,Eisr given by the relationship:

¢ = .(BR2—9R+3
OO TR g BTTD
Ve, the qr.;jq'}* mean square, is calculated in the usnal manner from
the sum~of squares within groups (including the “blank™ at zero
dos€e™
K 4 Sy,2
Ve=—"—
n—>5
20.5. The test for linearity
The quantities L, and L,, defined above, measure the departures
of the two dose-response lines from linearity. Their common
variance, VL, is given by:
_ 30ve
n

VL
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If either L, or L, significantly excecds zero in a rtest, using n—5
degrees of freedom, the assay is not valid.

20.6. A practical example

Table 20.1 lists the protocols of an assay of the riboflavin content
of a malt extract, using riboflavin as a standard. The assay is
illustrated by Figure 20.1. Tubes containing a constant quantity

REZPONSE

L )

i
DOSE,IN ARBITRARY UNITS

FIG\QO\’ :The common zero five-point assay of Table 20.1,
of a bas medlum inoculated with the micro-organism, L. helveticus,
recelvesl\m addition 0-0, 01 ug. (1 unit) and 0-2 pg. (2 units) of
r1b@avln and 0-025 gm. (1 unit) and 005 gm. (2 units) of mali
(Weod, Analyst, 71, 1, 1946). The response is measured by the
\mlhht.res of N/10 alkah required to neutralisc the acid produced in
each tube., Four tubes were used at each dosage level, 20 tubes
in all. In this particular assay the basal medium itself contained
a small quantity of riboflavin, so as to make the “‘zero” dosc fall
on the linear part of the dose-response curve, since the response at
the extreme lower range was found not to be linearly related to the
dose. There seems to be no valid objection to this procedure in
the present type of test, although one can imagine circumstances in
which it would be a hazardous practice.
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TABLE

20.1

PROTOCOLS OF A TEST OF THE RIBOFLAVIN CONTENT OF MALT

(Adapted from Wood, Analyst, 71, 1, 1946)

ml. of N/10 acid produced in
individual tobes (¥)
200,
525,
7.95,
450,

Dose (X7}

X, : Zero i-90,
X;1 @ 1 unit riboflavin  4-85,
Xz : 2 units riboflavin §-35,
Xy ;1 unit malt 4+ 00,
Xy ¢ 2 unils malt 608,

6-10,

220
450
7-80
4-10
10

L;=2-08754+8-0750-2 x 5-0000=0-1625

Ly=2-0875+6-1125—2 % 4-2500 = —0-3000

a= 20875+ 5 =2:1071

b= 9625_2-9&5?
-02

b="C0 L0 2 0307

Srp2=0-46756

>

Means
(¥p)
2-0875
5-0000
80750
42500
6-1125

We determine the various gquantities shnwh in Table 20.1 by the

foregeing methods, whence:

Rl 20307
b, 26{5‘7

Hence the content of rlboﬂ@'h in the malt is:

02 (668472274 pe. per gm.

0-C 05
‘0’46?56

The value of V(]S 5=

§ 2Ve(8 x 0-68472

=0-03117. Hence:

—9X0:6847+8)

~\ VR=
NN

\\ ' and sp=001632
0 Ve

="_—"=1-5V
Also, VL= 0 e

7 % 20 % 2-96552

w}w dbraulibrary.org.in

0 6847

s, =0-216 (whence L, and Ly do not significantly

exceed zero).

The fiducial limits of R are given by:
Rtrsy
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For P=0-05, t with 15 degrees of freedom is 2+131; hence the Aducial
lirnits of the result are:

(0-6847 2-131 x 0-0168) 600% Mg per gm.

=260 to 2-88 ug. per gm.

In microbiological assays, there is usually very much less variation
between replicates than in other types of assay, and the need {or the
calculation of exact fiducial limits of error should not usualily cLQse
as the slopes are well determined. Fiducial limits for, ds¢ in
examples where this is not the case are discussed by Finneyi('séférénce
above), _ \ 7
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APPENDIX

NOTATION

A, the dose of a preparation given to an individual test object.
X’ the dose given to a member of group p.
. the mean dose given to members of group p (X, is normallyx\
equal to X)) ¢\
X, X,, the (weighted) mean of all doses of the standard ;md
unknown respectively. Y
X, the (weighted) mean of all doses of both standard and}ﬂnknown
Xp the deviation of X, from X, (normaily nil).

%, the deviation of ¥, from X .
x, the deviation of X from X PNy
¥, the response of a test object. A\

Y, the response of any member of grQl}p P, Or in guantal assays

_ the empirical probit for group p., www dbraulibrary.org.in

¥, 7., etc., are (weighted) means as) above

Vp, Py, otC., are deviations, as above‘

T, the total of all responses in group p.

T, T, the total of all resp@)nses to the standard and unknown
respectively. XA

T, the total of all rcsponses to both standard and unknown.

W, a concomitanty variabie, such as the body weight of a test
animal. ’

W, W,, etc.dfe (we1ghted) means as above.

Wy Wps etc%are deviations, as above. In gquantal assays, w, is the
weight of the probit for group p. In Chapters 17 to 19, w is
&“bso used to denote any weight factor.

,,\thae total of all concomitant observations, W, in group p.

ts ta 1, etc., the corresponding totals for Wto T, T, T, etc.

n,, the number of test objects in group p.

n, 1, the total number of test objects receiving doses of the
standard and unknown respectively. '

#, the total number of test objects in an assay.

S denotes “the sum of . . .,” thus:

S X=the sum of all values of X,
Sn,%,=the sum of all values of (7, X %,).
203
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S8 denotes “the sum of the sums of . . .,”” thus:
SS8X,=the sum of the suras of all members of groups p, p’,
p, ete.

SSx,y,=the sum of the sums of all values of (x,xy,), for ali
groups, p, p’, p'’, el¢

V denotes a variance or mean square, thus:

Ve=the error mean square,
Vb=the variance of b.

s denotes a standard deviation or standard error, thus: . \‘
s alone=the square root of Ve. ) N
sy=the square root of V5. R

o denotes a theoretical standard deviation or standard erwr thus:
o alone=the theoretical vatue (if any) of s, ) \,

o, =the theoretical value of s,. O

E, the value of Y as estimated from X. O

R, the ratio of the potency of the unknown te\hat of the standard.

M, the logarithm of the ratio of the potency\};f the unknown to that
of the standard, R

b, the slope of a dose-response line, re}a}ﬁﬁg Yto X.

b,, the slope of the ]&Branﬁlg 11’ o W

In factorial experiments: &\

1, the interval between logadoses.

%, a polynomial or factolq 1 coeflicient,

B2 the mean square, ag‘socmted with linear regression.

D2, the mean square associated with differences between substances.

X, y, etc,, are usgd ds column headings in Tables describing factorial
tests or tests using polynomial coefficients to indicate the type
of sum ot product being formed line by line in the Table.

WIHIE the above notation is standard throughout the present
VO]’L‘L[‘IIC it has been impossible to avoid the occasional use of the
sanie symbol for different purposes. Thus, in Chapter 13.6, ¥
becomes the sum of a pair of observations and y their difference.
Such departures are always described in the text and should lead
to less confusion than the introduction of unfamiliar Greek or
other symbols to denote functions of responses. The use of
W and w to denote a concomitant variable and its deviations and
of w as a weighting factor is not, perhaps, to be admired, but since
these do not occur in the same context they have been allowed to
stand.
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AMounT of information, 1, 13
Analysis of X2, 162, 177
of variance, 27 et seq., 40, 47, 60,
64, 69, 91, 100, 125, 184
and covariance, 77, 109
hmitations of, 85
Animal units, 3
variation, 3
Assays, balaneced,
&t seq.
comnion zero, 198
four-point, 97
graded response, 8! ¢f seq.
planning, 87 ef seq.
quantal response, 160 ef seq.
reaction time, 169 ef seq.
uanbalanced, 98, 150
various designs for, 121 er seq.

108 er seq., 163

B, 95

Balanced assays, 108 ef seg., 163 at” N

seq.
incompleic blocks, 125
Binomial distribution, 135 ,x\

%
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A
»

CHI-SQUARED, 1{1,153 161, 162
table of, 132« {

Coding, 21
Cocfficient 8N ananon, 20
Coeflicients, factorial, 90
partiat regression, 171
Glghemial, 70
%gvéssmn, 34

Combined estimate of error, 186
of lingarity, 189
of potency, 188
of slope, 187
Common zero assays, 198 ef seq.
Cenfounding, 127 _
Consistency, tests for, 116 ef seq.
Covariance, 73 ef seq., 109 et seq.
multiple, 30
Cross-over tests, 108, 128 et seq.

DEX

D, 95

Degrees of freedom, 21

Dependent variate, 34

~ time as the, 169

Dose-response Tines, 34, 48, 8! er

seq. ’
factorial analysis of, 93 ef seq.
polynommi analysis of, 70 er scq
‘ \

z

\\\

Errowr, fducial hmtls Jof,  see
Fiducial Limits¢
fimits of, 20, 96,104, 115, 158
standard, sec'Staidard Error
Errors of esﬂ{ng{ion, 81

&
\
O
F, see,  Variance Ratio
Fgctmmdhh@lﬂlsfadyss:{,gggpnse
‘,’w line, %3
coeﬁiments 7|
table of, 92, 124
Fiducial limits of error, 105 et seq.,
130, 167 et seq., 189, 201
Four-point assay, 97

GoobpnEss of fif, 153
Groups, differences between, 24
unbalanced dosage, 98, 150

Groups of tests, 181 er seq.

HeTeErRGGENEITY factor, 158, 163

of slopes, 185
Homogeneity of variance, test for, 85

INDEPENDENT variate, 34
Individoal effective dose, 137
Interaction, 116, 179, 183
International standards, 4
Jnverse mafrix, {71

5
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L ATIN squares, 59, 65, 121

Linear regression, 34 ef seq.
deviations from, 40, 47, 93, 97, 154

Log dose-response lines, 41, 48 ef seg.

M (log potency ratio), 53, 88, 130,
166

in factorial analysis, 95, 115
Mecun probit diffcrence, 179
Median cifective dose, 158
Missing itcms, 83
Multiple covariance, 80

Normar distribution, 8 ¢f seq.
Notation, 203
Nuli hypothesis, 25

www.dbraulibrar y or gim’:tonal coefficients for, 124
\Wystematic arrangements, 183

ORTHOGONAL coefficients, 70

PARTIAL regression, 171, &
Planning assays, 81 er seﬁb\
Polynomial cocfficients) 7

table of, 71 79N
Probit plancs 173 \'
Probits, 139 e, s*eg

table of, 142 5

variar'ace\skf~ 140
Provisional Hose-response lines, 140,

151 M6l, 172

o»\'Q

Q

QUANTAL responses, 131 ef seg.

RANDOMISATION, 36 ef seq.

Reaction in controlq 149
times, 169 ef seq.

Reduced sum of squares, 79

Regression coeflicients, 34
linear, 34 ef seq.
partial, 171
plane, 172

Relative potency, sce M

Response, linearly related to dose,

196 et seq

measmcment of, 190 et seq.

transl ormatlons of, 194

Restrictions in destgn 56, 108\

SeRTES of tests, 186 \
Simultaneous te%t?
Standard demuo\
error, 13 4
calculatlo.q of, 16
of M, ,96\I04 166
of sl epe, 103°
Surpofisquares, 16
Symiwactrical pairs, 123

f-DISTRIRUTION, 20
tablc of, 18

VARIANCE, 13
homogeneity of, 85
of a mean, 13
of M, 86, 104, 163
of probit, 140
ratio, 25
tables of, 30-33

WEBER-FECHNER law, 50
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