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Preface

THIS VOLUME CONTAINS THE FUNDAMENTAL THEORY ON WHICH
sampling methods are based together with derivations of the forfinlas
and proofs of statements made in Volume I. Volame I gives the ‘prin-
ciples and methods of sampling and their applications to vafious types
of problems, and states without proof the formulas appropriate to the
methods presented. The two volumes combined are aattempt to pro-
vide a comprehensive presentation of both sampling théory and practice.

The first three chapters of this volume presetitthe fundamental the-
orems on probability, expected values, and vatidnces that are needed
in the development of the sampling theo i the remaining chapters,
Chapters 4 through 11 contain derivatiof§, proofs, and some extensions
of theory for the corresponding chaptess’ of Volume I, and provide a
convenient summary of sampling fotimilas. These chapters have been
designed primarily to facilitate refgrence from Volume I, and therefore
suffer somewhat in continuitys\ "They do not contain 2 discussion of
the application of the resulfs ‘derived; for this the reader is teferred to
Volume 1. Chapter 12 ~cii§usses some of the practical implications of
the treatment of resp&se errors in surveys, and develops a theory for
the methods descritfed.  Applications of recent developments in decision
theory have nopbeén included.

Readers desiring only the ability to understand the derivations of
sampling.erﬁmlas can apply the theorems of Chapters 2 and 3, without
proof, as\they are introduced in the proofs given in Chapters 4 through
12. »Many will wish to have the fuller commanad of the methods and
the\ability to extend them that comes through understanding the theory
in ‘Chapters 2 and 3, where proofs of the theorems are given.

For the most part, the mathematical background assumed for this
volume is college algebra, although some caleulus is used for a few of
the proofs.

For textbook purposes, the following suggestions may serve as guides
in the organization of courses in which proofs are given. For courses
with proofs either volume can serve as the text, the choice depending
on the emphasis desired; the other can serve as a reference book and
providé sapplemental material for the teacher. A one-year course may

¥l
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begin with Chapter 1 of either volume, the development of selected the-
orems from Chapters 2 and 3 of Volume II as indicated in the intreduc-
tions to those chapters, followed by Chapters 4 through 6 and selected
materials from Chapters 8 through 12 of either volume. The appropri-
ate additional theorems of Chapters 2 and 3 may be developed as they
arc needed, For a one-semester course, material from Chapters 1
through 6 and 11 may be sufficicnt. Throughout Chapters 4 through
11 of this volume some of the sections are footnoted “May be deferred.”
For these, in particular, if may be convenient to read the theorems but
omit the proofs if only selected materials are to be covered.

Most of the theory of sample survey design is an immediateé conse-
quence of statistical theory that has been developed and“exténded by
many persons over a long period of years. No attempt}.‘lfzis been made
to trace or give credit in the text to original sources of\sampling theory,
except for quite recent developments. Over and, above the specific
credits noted in the text we are highly indebted %" Miss Blanche Skalak
and Dr. Margaret Gurney for their assistane¢\ih preparing this volume,
Miss Skalak developed a number of the proofs in Chapters 4 through
11, wrote up most of the proofs, and rewewed and made numerous help-
ful suggestions on the entire manyscript. Dr. Gurney reviewed - the
manuscript, made many he]pqujfghggestions, and prepared the index.

™

Morris H. HanseEN
¢ WILLIAM N. HUurwrITZ
. N WirLiaMm G, Mapow
May, 1953 L\
&~
(N
:“\".
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CHAPTER 1
Introduction and Definitions

1. The scope of the theory of sample surveys. The contents of thi
chapter. The theory of sumple surveys is concerned with developmg,
analyzing, and improving methods of formulating the information Manted
from a sample survey, selecting the sample, obtaining the information from
the sample, translating that information into statements relatmg to the pur-
poses of the survey, and evaluating the accuracy of those)gtatements.

As a preliminary to considerifg the parts of the theoty of probability
and mathematical expectation that are needed for the effective study of
the statistical characteristics of sample surveys, me.shall, in Sec. 2-5 of
. this chapter, introduce some of the more importht definitions. In Sec. 6
we shall discuss why probability methods; ~of selectmg samples shouid
be used. :

2. Definitions of population, element and list. By a finite population,
%, is meant any well defined sgt Ot class containing a finite number of
 elements, A, Ay, + +, Ay. 'THese elements may be plants, farms, persons,
blocks, counties, busines eg; electric light bulbs, insects, and so on. The
" population will then conit of certain of these elements: the plants of a
certain kind in a spemﬁed field, the farms of over a specified size, the
unemployed persogs) ifi the United States, the blocks i in a specified city,
the counties in, whkh coal is mined, the grocery steres in a specified state,
the United States income tax returns for a stated year, the electric light
bulbs produccd in a given plant during a stated period of time, the insects
ina gwen field. Thus, to define a population we must be able to state
theind of elements of which it consists and to give rules for including or
excluding any particular element. These rules may take the form of an
~ enumeration of the elements of the set or may be a statement of the
conditions the elements must satisfy.

When the elements of a population have been numbered or otherwise
identified, we call that population together with its identification system
a list. (In some other studies of sample surveys the word frame is used
as we usé the word lisz.) For example, if the population consists of the
blocks of a specified city, we may obtain a map of that city on which the
blocks and streets are outlined and assign numbers to the blocks, The

1



2 INTRODUCTION AND DEFINITIONS Ch. 1

map and numbers constitute a list. If the blocks were numbered in a
different order, we would have a different list.  Similarly, if the population
consists of the cards in a file, the list is determined by a particular arrange-
ment of the cards. For two lists to be the same they must consist of the
same elements with the same identifications; consequently, a single
population may yield many lists.

For some methods of selecting samples the order in which the popula-
tion is arranged in a list will not affect the precision of the information
obtained, whereas for others the order of arrangement may influencg, the
precision considerably.

We have introduced the term Jist because the recommended nmthod%
of selecting samples will all involve the use of some form of list.” With
such lists, it is possible to select a sample of elements fr0m~thc population
with known probabilities of selection, a prerequisite of the samplmU theory
to be considered. We will ordinarily select a sample” of elements by
selecting the numbers that identify them. ThusNif"we were selecting 2
elements out of a population of 10 elements, Wbmtght identify these 10
elements by the numbers 1, 2, - + +, 10, seleb{;‘Z of the 10 numbers, and
say that the sample consisted of thc eiemems ‘identified by these numbers.

Sometimes the list is such that any ofseveral numbers in the list identify
the same element of the population., “Suppose that we want to select a
sample of law firms and use aswd list the names given in a register of
lawyers. Then, if a law firm has 10 lawyers in the register, any of 10
numbers will identify that ﬁ(m

The numbering of the{gléments of the population need not be simply
i, -+ -, N, but may fer various administrative and other reasons be more
comphcated For example, a given household in a city may have 2
numbers that ]omtly identify it-—the number assigned to the block on

which the househiold is located, and the number assigned to the household
within the}ﬂeck

3. Deﬁnmons of characteristic, elementary unit, and population

of analyszs. By a characteristie of a population is meant any quantity
or relationship relating to the population.
Hlustration 3.1. Hlustrations of characteristics.

PopuLATION SOME CHARACTERISTICS

All persons in a city. Average height; total income; per cent of
. income spent on food at diﬁ'erent levels of
income; number of females; distribution
of total income among famrlles b) size of
income; attitude towards taxes; intentions
to purchase refrigerators;  relation of
education and amount of crime.



Sec. 3 DEFINITIONS OF TERMS 3

POPULATION CHARACTERISTICS
Electric light bulbs produced ~ Number of defective bulbs; average duration
on a given date in a given of burning of bulbs; variation in length
plant. and intensity of burning of bulbs; relation-

ship of all these quantities to the order of
production of the bulbs for each machine
producing thern.

We mean to give to characteristic the broadest possible meaning. It may
or may not be numerical. It is anything we may wish to learn about(the
population. A

Sometimes it will be convenient to speak of the characteristies*of the
elements of the population, ie., the total income of all persons'in an area,
the height of the person, whether the bulb or the group of bulbsiis defective,
and so on. R4$%

Often, particular interest will center on a particulai" class of elements
for which frequency distributions or averages of\the characteristic are
desired. The particular elements for which s eh&istributions or averages
arc desired will be referred to as the e;‘emgn?hy units. A characteristic
of an elementary unit may be an astribute,e.8., a person is male or female;
or a value of a variable, e.g., the incodi® of an individual or of a family.
Since the same survey may yield difidrent characteristics, it may also refer
to several elementary units, e.g.,~Hie person and the family. Usually the
objectives of the survey will defermine both the elementary units and the
population consisting of ghenl. The population whose elements are the
elementary units is calletl. the population of analysis.

TMustration 3.2. Sdppose that the population of analysis consists of all
families in the Djstfi¢t of Columbia, Then we may say that X, Y., Z;
are the respectiye characteristics—food expenditures, rent expenditures,
and incomgx@,‘é‘speciﬁed period for the ith family, 4,, in the populati?n
which comSists of alt ¥ families 4,, - * *, 4y in the District of Columbia,

We, vgﬁl"then say that X; is the value of the characteristic X for the ith
elefiiont, A,, of the population. For exampic, Z; is the value of the
chatdcteristic Z, total income, for the #th family in the District of
Columbia.

¢ ¢

Exercises

3.1. Suppose that the population of analysis consists of N electric light bulbs
and the characteristic is the proportion of defective bulbs. Define a numerical
characteristic for each of the bulbs such that, if you know the value of this
characteristic for each element of the population, you can compute from these
values and the size of the population the characteristic of the population.

3.2, State a popuiation of analysis and define two characteristics of the
population.  Also define characteristics of the clements of the pepulation so that
you can compute the characteristics of the population from those of the elements.
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3 3. Suppose that the population of analysis consists of 5 families, A4,, A,

, A, and that the values of X, ¥, and Z, designating, respectively, food

expendltures rent expenditures, and total incorne for these families, are as
follows:

Family X Y 4
1 10 20 100
2 15 15 210
3 13 18 &0
4 13 25 a0
5 24 16 70 A\

Compute the following characteristics: total expenditures for food (md rent,
total income, and per cents of income spent on food and rent.

4. Deﬁnitions of terms such as sample, sampling plagiand sampling
unit, A sample is a subset of a population selecied 1o @Brain information
concerning the characteristics of the population,sjies’ if the population
consists of the ¥ elements 4,, 4y, - -, 4y, then the sample will consist
of some of these elements, e.g., 4,, A, A4, ("¢ We shall be concerned
only with probability samples, i.e., all clem@ats of the population have a
known probablllty of being included ins ihe’ sample. (Probability is dis-
cussed in Sec. 4, Ch, 2.) We select a S'lmplc and obtain certain informa-
tion for the elements of the sdmple’ 'de the values of the characteristics
X, Y, Z, and combine this inforiation in such a way that we shall have
useful information concermn& certain characteristics of the population.

Sometimes the populatiom used for seleciing the sample is the popula-
tion of analysis, but th&\a different population is defined. For example,
the elementary unis,may be people but the populations from which we
select a sample are'the populations of blocks and families. Thus, some
populations d@'}ieﬁned as a result of the problem we are investigating;
others are defined to help us select the sample.

For a5§1stance in selecting a sample we may define several populations
and m&thods of selecting samples. By the sampling plan we shall mean

l<\thc steps we take in selecting the sample once the popuiation of
analysis is defined.

Tlustration 4.1. To select a sample of the families of New York City
we might first define a population consisting of all the blocks in New
York City and select 2 sample of those blocks. Then we might define
the families living on the selected blocks to be a population and select a
sample of them. Thus, the final sample would consist of families, but .
we would have first selected a sample of blocks to help us select the
sample of families. In picking the first sample we might use as a list a
map on which the streets were shown and the blocks numbered. In
picking the second sample, i.e., the sample of families, we might construct
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a list by sending people to the blocks selecied in the first sample and
‘having these people list the addresses of all families living on the sample
blocks. Each line on the listing would identify the corresponding family.
(There may be two or more lines for one address, if there is more than one
family at a given address.)

This method of obtaining a sample of families is an illustration of
cluster sampling where the cluster is a city block and the family, is\an
elermentary unit. In general, by cluster sampling we mean thaty'for
purposes of selecting a sample, we have defined a populatlon whose
elements are groups or clusters of elementary units, and_that we will
select a sample of the clusters from that population. thsters may be
natural, like the blocks of a city, or they may be constructed as in
Tlustration 4.3 below,

The elements of the population from which we select the sample are
called sampling units. 1If, as in [llustration 4.1 of\}hls section, the elements
of the sample selecied initially are clusteg&x\and a subsample is taken
from the selected sampling units, we ofteq sefer to the clusters as primary
sampling units ot as firsi-stage samplingyinits, and to the clements of which
the second sample consists as secowtl-Stage sampling units. The sample
selected in Tllustration 4.1 was selgcted in two stages, but we sometimes
continue the process to three or more stages. The sample sclected at the
second stage is a subsamp!«e\of that selected at the first, ie., the sample
obtained in the first selatfbn is defined to be a population from which a
sample is selected atthe'second stage, and so on. We refer to all such
sampling plans ag muﬁ:-stage sampling plans.

THustration 4.2, > In order to pick a sample of people living in cmcs
we might begid y selecting a sample of couniies {the primary sampling
units arescolinties), then select a sumple of cities within the counties
selected: inthe first stage (the second-stage sampling units are cities}, then
selqct A ‘sample of blocks within the selected cities (the third-stage sampling
uhits are blocks), then select a sample of families within the selected blocks
(the fourth-stage sampling units are families), and finally select a sample
of people within the selected families. This is an example of a five-stage
sampling plan. Counties, cities, blocks, and families are all clusters of
elementary units and are also elements of populations from which samples
are selected. Thus, the counties may be considered to be a cluster of
cities, of blocks, of families, or of pecple, but also may be considered
elements of a population which bhas counties as elements. The important
thing is the flexibility with which the words element and cluster are used,
i.e., cluster simply stands for a grouping of elements that is convenient
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for the selection of the sample, but once the clusters are defined they are
themselves the elements of a population from which we select a sample.

In order to avoid confusion in using the terms population, element, and
sample, it is sufficient to state exactly what the elements and population
are for each stage of the selection of the sample. It may be remarked
that, although the population of analysis and, sometimes, the elementary
units that make it up are uniquely determined by the purposes of the
survey, ordinarily there are many ways in which populations may be
defined for seleciing the sample to obtain information concerninglany
specified population of analysis. Whenever we select a sample, there will
- be many possible samples of which we select one to be “the” saiple! We
can say that these possible samples are the clements of a poputation from
which one element is selected to be “‘the” sample. S

Ulustration 4.3.  Suppose that we are selecting a 104pér cent sample of
the families in a city from a list by first selecting Waf\the first 10 families,

Ay As, -+ ¢ vy Ay and every tenth family afterwards. Then, if 4, is
selected, the sample consists of 4,, 4,,, An,{ oy if A, is selected, the
sample consists of Ay, A, Agy, * - -, a@d 50 on. Thus, there are 10

possible samples, of which we select 1 to be’‘the” sample. Each of these
possible samples is a cluster but not a-narural cluster.

Exé{'};:'ées
4.1. Buppese that a populatidn, consists of 5 families, 4;, 4, Az, A, A,
where A4, contains { persons, &1, 2, - + +, 5, List all possible samples con-

sisting of 2 families and shéw the number of persons in each sample.

4.2. A population cgpsists of 10 families living on 2 blocks B, and B,, 5
families living on each\block. The 5 families living on block B, are denoted
by Ay, ¢+, Ays, Whete the first subscript identifies the block, and the second
identifies the family’ within the block, and the families consist of 3, 2, 1, 3, !
persons, respgctively; those living on block B, are denoted by Ay, Aas, * * -,
Ags, and consist of 1, 6, 2, 3, 7 persons, respectively.  The sampling plan is a
two-stagg\plan; the list for the first-stage sample consists of B, and B,, of
which.lNs to be selected, 1f B, is selected in stage 1, we select 3 elements from
theiseid,y, - - -, 451 if B, is selected in stage 1, we select 3 elements from the
listA,), Agy, -, Aps- List all possible samples, showing the number of
persens in each sample.

4.3. State a three-stage sampling pian for estimating a specified characteristic
of a papulation you define.

4.4. 1s there only one population that is “correct” to estimate the values of
certain characteristics for the population? If we wish to estimate total personal
income, can we regard people, families, blocks, or file cards listing personal
income as elementary units of the population?

5. Definitions of estimate, sample design, precision, true value,
accuracy, survey design.  After a sample has been selected we prepare



Sec. 5 DEFINITIONS OF TERMS 7

estimates based on the sample for speeified characteristics of the popula-
tion of analysis. Often, as in estimating the average pzrsonal incoms in
the United States, the estimate may be a number, e.g., the average income
is $2350; but also the estimate may consist of an interval of numbers,
¢.g., the average income is more than $2200 and less than $2600; and
often the estitnates consist of several numbers, intervals, and functions.
The sample design will consist of the sampling plan and method of -
estimation.

Alithough, as we shall see later, there are many estimation equations\,
we shall for the present consider only one, the arithmetic mean.

Suppose that the population consists of the five families listed in EXy3.3,
and that when questioned they give the data listed in the table\m that
exercise, Suppose also that we wish to estimate Z, the axe’faﬂe family
ingome, If we knew the data of Ex. 3.3, we waﬁ]d calculate
7_ 110 4- 200 + 80 +- 90 + 70 550

5 5
do not know the data for the population, and jg\order to estimate the
unknown value, Z, we decide to select a sample™of 2 families, learn the
values of Z for these families, and use the average income of these 2
families as an estimaie of Z. There arg 10 possible samples of 2 of the
elements of the population. These p0$s1b1e samples, the corresponding
values of Z, and the estimates of Z,ate given in Table 1. Each of the 10
possible samples wil! yield an estlmate of Z.

= 110. BaiN suppose that we

Table 1. Samples\o}z from a population of 5 elements

Possible samples A\ Values of Z Estimates of Z
FRVARS 100, 210 155
Ay A 100, 80 90
A 100, 90 95
' 100, 70 85
A, 4, 210, 80 145
‘ Ag, Ay 210, 90 150
J A4 210, 70 140
Ag, Ay 80, 90 85
Ay, A 80, 70 75
Ay, Ay 90, 70 80

By a measure of precision of the estimate we shall mean a measure of
how close the set of possible sampie estimates for a particular sample
design may be expected to come to Z.  Such measures of precision, to be
useful, must be approximately known from other information, perhaps
an earlier survey, or it must be possible to estimate them from the sample.
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Ordinarily, we would use an approximate value of the measure of precision
in designing the sample; and then, if we had a reasonably large sample,
estimate the measure of precision from the data obtained from the sample
itself.

1t is not enough, however, to consider measures of precision.  Was the
information that would have been obtained and listed in Ex. 3.3 correct?
Did some families understate their incomes? Did the interviewer forget
to ask some families about income from pensions and similar sources?
Did the interviewer make a mistake and substitute family 4, for-family
Ay, which was supposed to be in the sample? By the frue valugsof the
characteristic we shall mean the value that would be obtained if ne*errors
were made in any way in obtaining the information or complting the
characteristic. By a measure of accuracy of an estima’té\ we mean o
measure of how close the estimate nway be expected tg eohe to the true
value of the characteristic. Thus, even a complete galmeration may not
be entirely accurate, but, according to our dcﬁn\ftion of precision, a
compleie enumeration is precise. \

By the survey design will be meant thq:’s“hﬁplc design together with
the questionnaire and the method of\oBtaining the information from
the sample, or, more generally, the me}h’od of measurement. Thus, the
survey design includes the plans fomall the parts of the survey except the
statement of the objectives. It jheludes:

(@) The questionnaire, £

(5) Decision on methédvof observation or interview,

(&) Sample desigrix ()

{d) Choice and¢training of interviewers,

(e) Assignmebls of interviewers,

(/) Decisions on treatment of noninterviews,

(g) Estimation equations,

(h) Processing of questionnaires,

(iR Preparation of tables,
~(J) Studies of precision and accuracy of information,

 §

as well as instructions and methods followed for carrying through these
operations. It will be seen that each of these parts affects the accuracy
of the information to be obtained. Since the objective of survey design
%s to maximize the accuracy of the estimate (or, more generally, to minimize,
m some sense, the losses that may result from the fact that the estimate
will almost certainly not equal the true value), it follows that the expendi-

tures for the different parts of the survey should be allocated with this
* objective in mind.
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6. Why probability metheds should be used in selecting samples. There
are many possible methods of selecting a sample from a population.
Some of these depend on the judgment of people who claim to know the
population; others merely consist in defining the sample to be the part
of the population that is most conveniently available; others (and it is
these that we shall study in the following pages) are based on the use of
the theory of probability. In applying these probability methods, the
following two points must be kept in mind as the justification of their use
and as the condition of their valid application: ~

(@) Methods of selecting samples based on the theory of probabilLt} dare
the only general methods known to us which can provide adnedsure
of precision. Only by using probablllty methods car, $bjective
numerical statements be made concerning the preclsmn of the resuits
of the survey.

(#) It is necessary to be sure that the conditions Jmptlsed by the nse of
probability methods are satisfied. It is not\eénough to hope or
expect that they are.  Steps must be takew’ #0"meet these conditions
by selecting methods that are tested ’?md are demonstrated to
conform to the probability model, "

It should be obvious that we are not presenting methods based on
probability theory as just one more! means of selecting sampies. Rather
we assert that, with rare exceptlcms the precision of estimates not based
on known probabilities of selecting the samples cannot be predicted before
the survey is made, nor ca,uKhe probabilities or precision be estimated
after the sample is obtaﬁted If we know nothing of the precision, then
we do not know whethepto have much faith in our estimates, even though
highly accurate piedsirements are made on the units in the sample.
Hence, when the‘mformatlon to be obtained is of real importance, it will
be desirable &g choose methods based on the use of th=- theory of
probabilitg,

Tt i.s.\'édﬁetimes argued that any sample is selected by probability
metfigds; that the interviewers who select a sample by approaching
peoble they meet in certain localities are using probability methods when
they do their jobs as they should, not selecting more than designated
numbers from one specified group or another. Such probabilities are,
however, unkuown; they may vary from enumerator to enumerator, and
they may vary over time. It is not adequate to test to see whether the
probabilities seem to be what they should, because the conditions existing
at the next application of the procedure will differ from what they were
during the test. Considerable evidence exists that only carefully tested
methods of selection which are capable of being repeated can be depended



£

10 INTRODUCTION AND DEFINITIONS Ch. [

upon to yield either equal probabilities or any other specified probabilities
of selection.

We ask for greater care in selecting samples than is customary in many
other applications of statistics. Vet in these other branches of statistics
we would ask for such care if it were physically, administratively, and
economically possible as it usually is in survey design. One of the most
important facts about the seclection of samples is that, if a list can be
constructed and if proper methods of selection are used, we need not
guess, we can defermine the probabilities of sclecting the possibte saraples.
Furthermore, the increases in precision and the ability to measure precision
that thus become available will in general more than repay théeost of
applying these methods. <\)

The uses to which some survey results will be put are sufficiently crude
so that almost any method for selecting the sample wilbwield satisfactory
information. Obviously, the cheapest method that dneets the purposes
of the survey should be chosen. Tn some instaneés ‘probability sampling
methods may not be feasible. Probability statements cancerning the
precision of surveys should, however, not7be" made unless probability
rethods have been employed. It may\be very misleading to apply
probability stafements to nonprobability surveys. In fact, the need for
such statements might be taken as\he test of whether, if feasible, the
sample should be selected on a}.’]:')r.obabiiity basis.

Exercises

6.1. Assume that a sasiple of families is selected by means of probability
methods of sglection; %ﬁslionnaires ate sent to them by mail, and the informa-
tion is then chtaingd only for those families that return the questionnaire. 1Is
this a probability-sethod of sampling in the sense that there are known proba-
bilities for speelfied families being in the sample? Can a population be defined
from whichpis“a probability sample?

6.2. Sofistimes a sample of people is selected by first estimating the propor-
tions of\the population that are in certain classes, e.g., 52 per cent female, 48
per ecut male; then distributing the sample in those same proportions; and
fipally asking the interviewers to find specified numbers of people in each of these

“earegories, these specified numbers being so selected that the total sample is

selected in the correct proportions. What ate the problems with this kind of

sampling? Under what conditions would it be good or bad?  Is it a probability
method of sampling?



CHAPTER 2

Fundamental Theory—Operations,
‘Events, and Probability N

¢\

1. Introduction. In this chapter, we shall give the minimf) introduc-
tion to the theory of probability that permits us {o develppithe theorems
that we need for the theory of expected values. Of, (Hese, Thcorems 3
and 5 of Sec, 6 (p. 28) on the probabilities of “pr&duct" and *
cvents, respectively, will be found excecdingly usefol.

The notions of probability and the operaumé of selecting an element
from a population, discussed in Sec. 3 and 4, iust be clearly understood
and related to sampling.  If not, much of the remainder of this chapter
will appear to be a formal treatment wirelated to reality.

As a preliminary we introduce sliimation notation in Sec. 2. This
notation is used throughout the ‘volume

2. Summation notatwn—*why we study summation notation. A know-
ledge of summation nckaﬁon is very useful in statistics in the following
ways: A\

{@) It provides, (& convenient shorthand for expressions that would

olherwmé\be very cumbersome,
(b} By foving theorems concerning the notation itself we obtain
resu'}ts that would otherwise need Lo be proved in many special cases.

:{he\ m:‘egers We will tefer to the positive integers 1, 2, - » -, the
r}t;gatlve integers — 1, — 2, - - +, and zero as integers.
Summation notation. The symbol 3 is the Greek capital letier “sigma”

and is the notation used to indicate summation. The expressmn V f )

stands for (1) -+ f(2) + - - - + f (M), and the expression =1
Zl iif(ff)—"f(l D4+ LN+ 2D
FFQNY QL) M, Ny)

whatever may be the functions () and (7, f).
n
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Whenever the summation is from [ to some i_nclicated value, the “= 1"
is omitted below the summation sign. Thus % has the same meaning as
2}“ If the lower limit of summation is diﬂ‘crenttfrom 1, it will beindicated,

=1
lustration 2.1.  The heights in inches of 5 people are measured and

turn out 1o be 67, 72, 63, 68, 70. They are denoted by %, s, 4, 7, and
zg5. The mean or average height is calculated by
674724+ 63 1684+ 70 340
= —— = 68 "
5 s N\

which may be more concisely written

— 68 ,".'

k]
27
g ,
TS

o

A\
In general, the arithmetic mean i is defined by tli¢ equation
~ 3 2aK°
w, ‘o
if there are N observations. It is lmportant to realize th'lt & is not a
function of i, Tt would have tha,.same value if £ werg written:

."5
ad

S
o L Z
N
& ’
£ ...\
\/ Exercises
2.1, Show that A\
O x N ¥
P\ 2PE= 2P = E P
O .
2.2, Euate Z(x — &), where & = 1 X
‘Fi ’ N3

1{3&. If @, =a,i=12- " - N, evaluate Ex,, Le., Za
e \’ w4
N/ 2.4. Write out Z:“x

2.5. I fi) = a + bx; + cy,, evalvate (i) in ferms of & and 7.
T

X N N
2.6. I z; = =p, + ygq,, where 2 p, = g, = 1, evaluate Dz,
i 1 i
2.7. Iffs(iJ = (x;— %)% where i =1, 2, 3, and 2, — 0, x, = 4, ity = 2, then
evaluate > f(§).
i
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2.8. Show that
X—1 ~

E‘_: T = Z.’s,—— 2y
H

IHustration 2.2. Summation with respect to two subscripts, Let us
ar N

evaluate the product Yz, >, This is, by definition, equal to
T

@+ )+ )

or o\
n by et e+ Fadn - K4 )
ot \5\ ~

oy + oy o Yy P\Y

e R T e R 7 ':,\ .

4+ \\::\

+ Xyl T Xl + + ‘R‘L)J'\

which may be written, according to the dcf'mubn‘ofsumm'lllon notatien,
as p. ‘t

L >
N/

\_{ N
>.. Z‘Tx%:
1) _‘,I s:’:;“
Henee we have proved that, whatey€rmay be the terms z, and y,, we have
oy N ‘\'
2 zarw = 2 2 2.1
For example, il z, = Iog\*a}ld ¥, = J5, we havc
p L \w X ar Ry
.‘\‘) 22} log i "ZIOL£3J"
, .s.; i
HM=N nﬂi.f;;,- =x;, then Eq. 2.1 becomes
O oy Moye ,
3 Sna, = (3n) 22)
N ij i
7" \ w 4
and it is easy to verify from Eq. 2.2 that
M \r BRI
2’.-. -+— xE = (}_1,) 2.5
X L _
where > means that the summation extends over all possibie values of
ivg
i and j, excluding those for which i = j, and
s M AR
Saf 2>, = ( 3_;?:,) (2.4)
i i1 {
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i
where ¥ means that the summation extends over all possible values of

g
i and j for which / < j, so that

M .1_{
Swary v= 22 8
i i

For example, if M =: 3, we hav

W

Zau =1 Xy + S B v SR N BRI S A 8
i4]
and N\
3
T N M R S KoY
r,--:} \\ o
L 3 \”,
Exercises N
2.9. Prove Eq. 2.2 and 2.3 of this section 4
2.10. Prove that NS,
MON N 5
ZZT!J = 2.,_, i \J’r ',%‘;J
~\

A M
where y; = >-”5; and z; = 22 #» DY writing | out.athc summations and matching

(Thls is called m\erting the ordenof summ'mon 3

terms,
2,11, Prove that
3

i
by writing out both summatiohs'and matching terms,

2,12, Show that in ge ra}
g‘\ Z ¥ 1;
'3”9’1 T /.l‘ .f1

o
although equality{may occur for 5pcc:1ﬁcd values of the x’s and ¥'s
2.13. Show.tha
\x:\' by '
O Z(x +y) = ?a“ + 24,
‘;.l'éf‘Show that in general
\ B
/ E{f:t,‘; ]% ,
e o N2
Sy, 2T W
T
. {This

a]though equality may occur for specified values of the s and #'s
result is also true when 2 is replaced by M)

2.15. Show that
A

3
dfax; + by Y = a*>af + 2{1!:22:3,!3 + b 2 y;
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2.16. Show that

M

Dlag + axy + ayry; 0 0 0 4 agrgg)

’ . M M M
= May + allei a2 %y + 0+ ag e
3 1 7

= Ma, + a@, + - - -+ agrg.
where
A M
xl‘ = lei! Yy T, = ij'ﬁ’
1 1
N\

3. The notion of probability. Experience suggests that magy an
operation is such that, when the operation is carried out under. stitably
conirolled conditions, it is impossible to predict exactly which\ 0]' the several
possible vesults of the operation will occur on a pamcufar Pperformance,
even if one has complete information about the Qutéomes of preceding
performances. Nevertheless, experience also indledtes that we may
expect a high degree of stability in the proportionof ¥mes a particular result
will occur in a sufficiently long series of pgg(mmances of the operation.
Tllustrations may be found in such operatibps as tossing a coin or in the
production of goods after the process ol'preduct:on isin a state of control.

Our ability to use data obtained: fom a sample in order to make
inferences about a larger universe frot which the sample has been drawn
depends upon our ability to selget the sample by means of an operation
having the above-mentioned“ptoperties. Experience has indicated that
such operations may be based on the tables of random numbers, and it
is for that reason that Fhese tables are important in sampling practice.

In order to devgl,op the properties of such an operation quantitatively
to the extent negéssary for their application to sampling work, it is con-
venient to agggi:}é’te numerical values with the possible outcomes of the
operation,‘iQJhc following manner: [f the operation has K possible
outcomes dy, - -+ -, Ag and nfnis the proportion of times that the outcome
A 19 obqerved in a series of # trials, and if we can expect the proportion

740 be arbitrarily close to a number P, independent of # prowded n
stifficiently large, we shall say that the probablllty of 4;is P The
numbers P, are clearly non-negative and their sum is 1, since

# kg =n
We shall often refer to a p0551ble result as an elementary event. Thus,
if 4,, - - -, Ax are the possible results of an operation, then they also

are Kelemcntary events, one and only one of which wilt occur when the
operation is performed. If A, occurs when the operation is performed,

* For a more rigorous development of the theory of probability, the reader
should consult W. Feller (2).



16 PROBABILITY Ch. 2

we say that the elementary event 4, has occurred. We shall denote the
set of all possible results or elementary events associated with an operation
by .

By an event, A*, we shall mean a subset of the set, &, of elementary
events, Thus, 4* may consist of, say, 4, A, and 4, We shall say
that the event 4* occurs if and only if one of its consiitueni elementary
events occurs. In the above iltustration, A* would oceur if and only if
Ap or A, or A; occurred. The event A* may be & itself, or a specific
A,, or any subset of #. The complementary event to A* is designated
by A* and consists of all the elementary events of & that are notdh A*
and none of the elementary events of & that are in A*. \

Abstraction from experience sugpests the following deﬁni\ﬁbﬁ of the
probability of an evenf, since in n performances of the speration the
relative frequency of occurrence of 4* will be the S}m’r:’of the relative
frequencies of occurrence of the elements that constifute 4*.

Definition. 1 A* is an event consisting of theféL}mentary events A;,

-+, 4;,, then we define the probability of A*\tq be

P =P+ P, £ 4O 5 P,

where i, + - -, i are k of the K integeré i, - K.

Thus, if the set, &7, consists of K pessible results all of which have equal
probability, i.e., P; = /K, i = ]34 - K, and if the set A* E:onsists of k
of these elementary events (possible results), then, by the definition of
probability ~

2
7

.:'\\ P’(A*):j_z
Since A* andyA* include all elements of &7 and since Pr(of) == 1, it
follows that £\

A 3 Pr(A%) 4 Prid*) = 1
4, \Probability selection methods and the cqual probability selection
lp{thiid. The operation that is basic in sampling is the selection of one
\'T‘glcment from a population in such a way that each element has a known
probability of being selected. To do this, it must be possible to assign
the appropriate probabilities to alt possible results of the operation. If
the elements of a population are A4,, Aa, * + -, Ag, then the selection of
one clement from that population has one of the possible results: 4, is
selected, or A4, is selected, or, - -+, or A is selected.  If each of the
possible results of the sclection has a known probability, we say we have
2 probability sclection method. More specifically, by a probability
selection method we shall mean an operation applied to the elements of a
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population such that when the operation is performed one and only. one
element of the population is selected; the probability that the element A,
s qc!cctcd from the popu\ation consisting of Ay, v - o, A s P00 ],
LK P=0 P+ + o= Pro= 1, where the P, are known numbers.
A 5c]cc1mn method is called an equal prebability selection method or
epsem if Py =+« « = Ppo = 1K, Le, if all elenents are equally likely to
be sclected. The sumple itself may be selected by first selecting one
clement, then another, and so on, or by defining an auxiliary population
consisting of all the possible samples and selecting one of the efements of;
this population to be the sample. A widely accepted prictice of assigning
probahilities 1o the resulis of a selection methed is the use of a tabledf
random numbers. (See Sec. § for detailed description of the prigicriics
of tables of random numbers and illustrations of their use. ,~le:tptcr 4
of Yol. I gives some further illustrations.) 9
[Mustration 4.1, Assume that the elements of the papuhtmn o are
AL As Ay, and that we wish to select two elements fday the population
<7 with equal probability. We can select the figgh ¢lement with equal
probabiitty, and then select the second ckmcn{\mh equal probability
from the remuining two.  In this sclection nlu’hml the possible resuits of
the first selection are R
Ay dy, A.I

The possible results of the scconnL};gélcclio;x are
Ayor A—H 4,85 5 fected on the first selection,
A, ot Ay—if A\isé\.;clcclcd on the first selection, and
Ay or Ay—iR Ay is selecled on the first selection,

Henee, the possible sesults of first selecting an element by an epsem, and
then making tllg\cond selection by an epsem from among the remaining
two cluncn}‘{\n ‘the population, are

~N By == A, A, B, - Ax Ay

~O B, = Ay, Ay B, Ay A
3

N\ By = Ay Ay By Ay Ay

Instead of selecting the first element from the original population and
then selecting the second element [rom the remaining clements of the
population, we can also select two clements by defining another population,
A, whose elements are the pairs listed above.  We can then select one of
the clements By, Ba, By By Bi. or 8. If say, By 1s the element selected
from &, then the sample consists of As and 4,.  Thus, the elements of 4
are the possible samples of elements of /. Note that, since each pair is

Q"
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selected with equal probability, the probability of selecting onc of the
elements of #is §.

The selection method iltustrated here is a special case of simple random
sampling without replacement, which is defined later in this section.

Dlustration 4.2. Two coins are tossed.  The elements of &/ are 4, 4,
Ay, and A4,, where 4, is HH, 4, is HT, A, is TH, and 4, is TT, and
HH stands for two heads; HT stands for the first coin a head, the second
coin & tail; TH stands for the first coin a tail and the second coin a head;
and finally TT stands for two tails. In this Hlustration, the opegation
counsists of tossing two coins; the results of the operation are givtn by
A,, Ay, A, and A above. Finally, the probability of cach of o results
for “true” coins is 1. O

Tlustration 4.3. Two coins are tossed. The results ofuthis operation,
Ay, Ay, Ag, and A,, are as defined in illustration 4.2, f/ilso assume that
the coins are “true”™ so that the probability that ong-ef the results 4, 4,,
A, or Ag occurs is equal to 3. Let us now find the probability of
obtaining exactly one head. Thus, 4* in thivillustration consists of
HT and TH. By the definition of the prqb%}b’llity of an event

Pr(4*) =Py + Pa 2 } + § = §

Similaly, for finding the probability of at least one head, the event A*
consists of HT, TH, and HH. Hence Pr(4*) = %.

Tlustration 4.4. Three blgeks B,, B,, and B, contain 3, 8, and I houses.
To select one block by the'wiethod called selection with probability pro-
portionate to size we\pfocced as follows: select one of the integers
1,2, - -+, 12 by an‘epsem; if the selected integer is 1, 2, or 3, then B,
Is selected; if the’selected integer is 4, 5, - -+, 11, then B, is sclected;
and if the sglécted integer is 12, then By is selected. What are the
probabilities\of selection for each block ?

Since the-Selection of integers is by an epsem, it follows that Pr(i) = %,
i= 124", 12. Hence, by the definition of probability,

O

PN

)™ o Pr(selecting B)) = &
Pr(selecting By) = ¢

1z

Pr(selecting By) = 3,

For further theory and application of probability proportionate to size
see Ch. 8 (Vol. T and IT) and Ch. 9 (Vol. I and 1I).

a. Defmition of sampling without replacement. 1If a population consists
of N elements, and if a sample of » elements is obtained by first selecting
one of the N elements, and, without replacing it, selecting one of the
Temaining N —1 elements, and, without replacing the two selected
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clements, sclecting one of the remaining N — 2 elements, and so on, so
that at the sth sclection, there are N—n + 1 elements, then we say that
the sample has been selected without replacement.  Since there are A
possible results of the first selection, N — | possible results of the second
selection, - -+, and N — 4 - | possible results of the nth selection, it
follows that there are N(N — 1)+ - *(N— 5+ 1) possible results of the
n selections.  (This evaluation of the number of possible results follows
from Theorem A.2, p. 37, of the Appendix to this chapter.)

As a special case, i we let ¥ = n, we have #! = aln— 1){n— 2y &N 1
as the number of possible orders in which a specitied set of » glements
may be sclected without replacement. Each possible selection "is’ then
simply an arrangement of the » elements in the order of selection.

b. Definition of simple random sampling without replgcement. If the
method of selecting a sample of # clements from & elements is such that
each of the possibie C; n-combinations of elemenl§Js equally likely to
be selected, then the sampling plan is called a sirpple random sampling
plan without replacement or, simply, simple,fapdom sampling. It will
be assumed that the term simple randomXsampling applics to sampling
without replacement unless otherwise qualified. The symbol C¥ is the
number of combinations of ¥ things.;ékcn n at a time, and is referred to
as the number ol #-combinations. ~{Combinations and permutations are
discussed in the Appendix to thﬁfchapter, which should now be read by
the student who is not alreadd; ncquainted with the subject.) ?

Thus, a simple random sampling plan is such that each of the CJ
combinations has probaﬁﬁty 1/C¥ of being the sample actually SCIC"{ted‘
Also, if A* is an eveAfloccurring if any of a specified N 44 combinations
(where N . is thelamber of elements of 4*) is selected, then by the
definition of prabability (Sec. 3 of this chapter)

AN Y
N Ny

O Pria*y =&

SN
Q‘rs example, if the elements of the population are 4y, A, * * % Ax
and'#f 4* is the event “the sample of size n contains A,,” then there are
C' of the C¥ possible samples of r elements containing the element A,

N A = C.;iv__ll, and CN_ll B
*Y e B
Pr(a% ==& =

If A* is the event “the sample of size » contains Ay, Ay, =+, Ay {07

any other specified m elements),” then |
crr»  nn—1--i—m+ 1)

P =" “J—1- - - (N—m+ 1
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Theorem 1. [n sampling without replacement, if each of the n-permuta-
tions of N elements has equal probability of being selected to be the sample,
then each n-combination of N elements has probability 1/C of being
selected.

Proof. There are NI/(N— n)! possible n-permutations of N elements
so that if they have equal probability then each has probability
(N — m)}{N!. Each of the n-permutations is an element of &/, 1f A* is
the event occurring if a specified n-combination is selected, then there are
n! elements of &7 in A*. Hence, by the definition of the probability of
an event (Sec. 3), N\
{N—m)
=

|

N
AN
'\
L 3 N

Pr(d*) = n!

Q

Thus, one way to select a simple random sample of & “glements is 1o
give each n-permutation an equal chance of being sel cted.

The probability is 1/N that, in a sample seleeted by simple random
sampling, the element A, is the jth element Selected, since there are
NUY(N — n}! n-permutations and the numb%;}'possible selections of f
elements such that 4, is not selected befoda(fhe jth selection and is selccted
at the jth selection is, by Theorem A2 (p. 37) of the Appendix,

(N — 1)+ + «(N—n+ 1), no mattep¥hat the value of ;. Then
Pr(4, s the jth selected eleneit)
(N (Nent D)1

NS (N—rt DN
Note that this is eql}i\{héﬁt to saying that if # selections are made withouwt
replacement, thenCthe probability of 4; being selected at any one of the

N

n selections is\e;q\ual to 1/N. (This probability is also evaluated using
conditional-prebability in Sec. 7a.}
Similariy,”

.f}'(.}ztl, * + v, Ay are the first M selected elements)
\”“;“ (N—MYN—M—1- - (N—u+1
NN—1D- - (N—-ML+-IXN—-MN—-M—1) - (N—-n+1)
1
CONWN— - (N—M+ 1)

(This probability is also evaluated using conditional probability in Sec. 7a.)

¢. Definition of sampling with replacement.  Assume that the population
consists of N elements. If a sample of » elements is obtained by first
selecting aue of the N elements, replacing it, then making a second selection
and replacing the element before making a third selection, etc., until #
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selections are made, then we say that the sample is selected with replace-
ment. Since there are N possible resulis in each of the selections, the
number of possible results of two selections is N2, of three selections, N3,
and of n sefections, N*. Note that there is no restriction to the number
of times a particular element may be included in the sample.

d. Definition of simple random sampling with replucement. 1f the
sampling is done with replacement, and each element has probability I/N
of being selected at each selection, then we call the system of selection
simple random sampling with replacement. Now let us find Pr(4%j,
where A* i Is the event “the sample of size # contains the element A;\ at
least once™; we have : AN
N* == number of samples (5.1 ’

(& — I)* = number of sampies that do not contam )
N® — (N — 1)* = number of samples that contain Aii At least once

n__ (N — Iy \
N_(__) = Pr{d*) ‘x:\\.
NP A

X 3

Ulvstration 4.5. Let a population consist df L sets of elements such
that each element of the population is in%ene and only one of these sets.
Let the ith of these L sets consist ofs N elements, 7 = 1, -, £, where
N=N+---+N; Ifa slmpl'eoranclom sample of » elements is
selected, let us find Pr{A*), whefe, A* is the event “the # elements are so
distributed that n, witl fall ingldss 1, n, in class 2, + + +, ng in class L.”

The number of ways ln\Wh.lCh n, elements can be selected from N is
CZ¥:. Hence the number of samples in which there will be exactly n; in
class 1, ny in class 2,405, ny, in class L wilt be CXCH- C"“ Since

there are C possﬁlie samples of 2 elements, it follows that
”\5
N N
K\ Pr(A*) = — e
Titis, i a simple random sample of 10 elements is selected from a
popu tion consisting of 20 elements of one kind and 80 elements of
another, then the probability that the sample contains 4 elements of the
first kind and 6 of the second is
C2Uc80
Cmo

e. Definition of systematic sampling. Let us suppose that a population
consists of the elemenis A4;, 4,, + - *, Ay arranged in some fixed order
and that the possible samptles from the population are defined to be the
subsets A¥, A%, - - -, A% of the population, where the elements of AF.
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are Ay, Agsy Appeaint s Agpepygers £ = 1,0+ = K, where a2 is the Jargest
integer for which (7 ~ DK -+ i <5 N. Then, if one of the possible samples
A¥,+ - -, A% is selected, either by an epsem or with probability proportion-

alc to the number of clements it contains or by any other ateans, we suy
that a systematic sampling plan is being used.

We shall now suppose for simplicity that N = Kn. Then, since cach
A; oceurs in one and only one of A7, « + A%, it follows that

Pr(A, is in the sample) = Pr(4} containing A4, is the samplc)
1
K 0. “
just as in simple random sampling. O
Also, note that, whereas there are CY possible simple rakdom samples

of n elements from a population of N elements, there ase only K = Njn
possible systematic samples of # elements from a popitiition of N elements.

=la

N

Exercises ¢ \\ ’

4.1. It is desired to select a sample of !awﬁrm‘b For selecting this sample an
up-to-date register of lawyers is available. (Bhiere are N lawyers listed in this
register. To ebtain a law firm, it is p’lafmcd that 1 lawyer be selected by an
epsem, and the firm to which this lawyet*belongs will be in the sanmple.

Does this procedure select law firins by an epsem?  What is the probability
of selecting a specified firm containing 1 lawyer, 3 lawyers, k lawyers?

4.2. A city contains 1000 blecks of which 10 are vacant. A block is selected
by an epsem.  What is the, Pr\obability of selecting a vacant block?

4.3, In a town of 10@&.{amilies, 100 consist of | person, 300 of 2 persons,
500.of 3 persons, and00 of 4 persons. One family is selected by an epsem.
What is the probabjlitythat it consists of 2 persons? Two families are selected
so that all pairs ofifamilies are equally probable.  What is the probability that
both consist of 3,persons?

Ten fa%é&’arc selected by simple random sampling. What is the prob-
ability thas3 of them consist of 1 person, 4 of 2 persons, and 3 of 4 persons?

4.4. If simple random sampling with replacement is used, then what is the

probability that aeither 4; nor A4, is obtained in a sample of size n from A;,
LNy

3. Product events. Independence. Conditional probability. Let 57 be
the set of possible results A4y, + * -, 45 of an operation and let these

. K
possible results have probabilities Py, Py, + + ¢, Py, P; >0, S P, = 1.

Let A* and B* be two events; ie., 4* consists of cerfain of the‘elements
of o7, and B* consists of certain of the elements of 7.

Let A*B* be the product event, i.e., the event that occurs if both A*
and B* occur when the operation is performed. In other words, the
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event A*B* consists of all elementary events common to A* and B* and
accurs if and only if one of these common elementary events occurs.
Consequenily, if 4,, - - -, 4, (where £ =Z K) are the only elementary
events common to A* and B*, we have, by the definition of probability

{Sec. 3),
Pr{A*B*y=P; ++ -+ P, (5.1

Niustration 5.1. Population & consists of 4 elements, 4, 45, 45, A,
A simple random sample of 2 elements is selected from this populatiomy
The possible samples of 2 elements are -

O\
Ay, dy; Ay, Ay; Ay, Ays Ay, Ays Az, Ags Agy Ay NN

Let 4* con51st of the possible samples containing A4,, and let B* consist
of the possible samplies containing 4, Then, Pr(A*{O\ Pr(B*) = £,
and Pr{A*B*} is the probability of possible sampleg containing both
Ay and 4, and is equal to }.

IMustration 5.2. Two cmm are tossed. The eve}r A* is defined to be

“at ieast 1 head occurs.” The event B* is dgﬁbed to be “at least 1 tail
occurs.” Then, & consists of the 4 elements"HH, HT, TH, and TT;
A* consists of HH, HT, and TH; and B¥ eonsists of HT, TH, and TT.
Hence, assuming the four elements teybe equally probable, Pr(4*)—=
Pr(B*) = %, The product event A*B* then consists of HT and TH, so that

PrA*B*)e Py + Pra = }
__\______

If A%, - -, A} are M\évents, then the product event A}¥: - - A%
consists of the elements gommon to all M events.

Definition of indepbrdent events. Two events A* and B* are called
independent it ap\dje’hly if

AN PHAYBY) = Pr(4*) Pr(BY)

I]lustg'aij(;h 5.3. Assume that the population consists of the 4 elements
Ay, )4, Ay, and that a simple random sample of 2 is selected from this
population with replacement. The following are the possible samples of
2 10 be selected from this population where the element on the left of each
pair listed below represents the element drawn on the first selection and
the element on the right represents the element drawn on the second
selection:

AIAl AzA] A3A1 AéAl,
Ay A, AgAy ApAy Ay
A, Aq Ay Asdy Agdg

Ay Ay Aydy Az, AgAy
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Let A* be the event that A4, be drawn on the first selection of a sample
of 2. Let B* be the event that 4, be drawn on the second sclection of a
sample of 2. Pr(A*) = Pr(B*) ==}, since, in 4 of the 16 pairs listed
above, A, is the first selection, and similarly in 4 of the 16 pairs Ay is the
second selection. Now A*B* is the event that 4; be drawn on the first
selection and A, on the second selection. Hence, Pr(4*B*) == ;. By
the definition of independence A* and B* are independent events, since
Pr(A*B*) = Pr(4*) Pr(B*) = 5.

INustration 5.4. Let a dime and a quarter be tossed and let the result
of tossing the dime be listed first. Let the tossing be such that &b 4
possible results have equal probabllity % Define A* to be the, event
“heads occurs when the dime is tossed” and B* the event * heads occurs
when the quarter is tossed.” Then

Pr(A*) = Pgg + Pur = % RS
Pr(B*) = Pyp + Prg =3 :
and ,\\'

Pr(4*B*) = P = &

Hence, A* and B* are independent, singe Pr(A*B*) Pr(A*) Pr(B*).
If the events A* and B* were deﬁned as in Tllustration 5.2, then we
would have
Pr(A*) = Pr(B*) =8
and Q
\”\ Pr(d*B*) =1

so that 4* and B* would not be independent.
\Y
Exercise 5.1, ,{horw that 4* and B+ in [lustration 5.1 are not independent.

Deﬁmtw)v\—a? conditional probability. Let 4* and B* be two events.
If Pr(B*)‘/ 0, then the conditional probability of the occurrence A*
subjestto’ the occurrence of B* is defined to be

vV . Pr(4*B%)
PF(A |B*) W

Conditional operation. We shall now consider the following operation,
which we call a conditional operation. Let B* be an event, 0 << Pr(B*) = 1,
and suppose that the only change in the original operation is that all
resulis possible originally which are not contained in B* become im-
possible.  Physically, this could be accomplished by skipping any per-
formfmce in which B* does not oceur. Thus, the possible results of the
conditional operation are the elements of B*. We shall denote their
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probabilities by Pr(4,|B*). Then by our previous discussion of the notion
of an operation we have Pr{4,|B*) > 0 and

5 Pr(4,|B*) =

At
where by > we mean the summation over all elements A, that are in B*.
deR*

Note that 4.eB8* is shorthand for “4, is an element of B*” Also from
the definition of conditional probability it follows that

Pr(d;|B*) = if 4, is an element of B* \

Pr (B*) i : <

'\
=0 if 4; 18 not an element of B* ™

7%

Mustration 5.5. Assume that the population consists of\S ¢lements,
Ay, Ay, Az, Ay, and 4. Assume that a simple randem sample of 2
elements is selected without replacement from this populahon We shall
denote the result of the first selection by a, andybf'the second by a,.
Then the possible samples are given in the follo.ﬁdi‘rg table, where a dash

L3

}133 Al ’ Az Ag 3 ;44 A

*

At — \/ V vV
A4l v vV
gl vV~ v
T R e

A AoV v VW

s\

{(—) indicates that ?he sample is impossible and a check (4/) indicates that
the sample congsists of the elements shown in row and celumn headings.
It is clear from the above table that the possible selcctions for a, depend
on whlch\element is sclected for @ In fact

O Pr{a, = Ajay — A) =0
Pria, = Ajjay = Ay =% ifi#]

where Pr(a, = AJay = A,) is read “the conditional probability that
ay = A, given that (or subject to the condition that} ¢, = 4, Note
that @, and ‘@, are random events (discussed more fully in Chapter 3).
Illustration 5.6. Suppose that a population consists of 2 blocks B and
B, on the first of which are located 3 houses A,;, 4,5, A5, while on the
second are located 2 houses 44, and 4,,. We first select 1 block by an
epsem, and then from the selected block select 1 house by an epsem.
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Denote the result of selecting a block by b and the result of selecting a
house by a. Then

Pria = Aplb=B)=0 ifi#]

where we read Pr(a = A|b = B)) as the “conditional probability that
the selected house is the second on block { subject to the condition that
the selected block is the jth block.” Here a and b are random evenis
(see Chapter 3 for fuller discussion).

Tlustration 5.7. Suppose that, of the N persons in a popul.‘tion
N 4> 0 have incomes over $3000, and N ;. have incames over
$3000 and expenditures under $2500. An epsem is used'tq ‘sclect one

of the N persons. Then from the definition of the probah&hty of an event
we see that )

| N
Pr(the sclected person has over $3000 mcom&b = Nl

Pr(ihe selected person has over 33000 lpcomc

% D N * fix
and expenditures under 32500) Q = _%
Pr(the selected person has cxpehd:tures under
52500 if the selected person has over $3000
income) ) \\ = N
L\ : N g

N\

Exercises

52, A populatlon\conswts of M blocks, the ith of which contains N; > 0
houses. A house is selected by first selectmg a block by an cpsem, and then
selecting a2 homse¥rom the selected block by an epsem.  What is the probability
of selectmg\ci\Spemhc bousehold on block j?  What would be the probability
of selectmg that house if one house were selected from all the houses by an
cpscm‘?“

5 3Bupposc now that, instead of selecting a block by an epsem, we select a
blogk so that the pmbabthty of selecting the ith block Is NyN, i= 1, - -, M,
N == Ny 4 -+ -+ Ny. From the sclected block a house is then se}ec’tcd by
an epsern, Answar the two questions asked in connection with Ex. 5.2.

5.4. Suppose that a simple random sariple of 2 elements is sclected with
replacement from the population given in Iliustration 5.5, Show that

Pria, = Az[ﬂ& =A;) =1

Prigy = Ajla; = 4) =1  forisj

6, Stfme theorems on probabilities. Let A%, - - -, A% be events associ-
ated with a particular operation. Then by A% 4+« - « 4 A%, the sum
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event, we mean the event that occurs if at least one of the AF occurs. By
AYAY -« A%, the product event, we mean, as earlier defined in Sec. 3,
the event that occurs if A, A%, - - -, and 4% all occur.

Hlustration 6.1, Let us suppose that N = 10 and that 4, - + -, 4,,
are the 10 spots in Fig. 1. As shown by the figure, A, 4;, and A, are

the elements of A¥; i.e., if Ag A3, or A, is selected then AT is selected.
Similarly, 4, and A, are 1hQ clements of AY; 4, Ag and A4, are the ele-
ments of A¥; and A4, anM, are the elements of A* Then the elements
of A + A¥ + A¥ 44 AF are Ay, - - -, Ay Ag © 0 v, Ag, since if any
element but A, and'&éio is selected at IE.d.St one of the events AT, AX, A¥,
and AF will occm‘ On the other hand, A*4¥A¥AY can never occur,
since no el en‘t s an element of all four of them. We call ATAFAYA}
a aull evem\ ., an event that cannot occur. The product event A743
will ogewr” if and only if 4, occurs, while the product event A*A*A*
is ¢&\null event. The compiementary event to A7 +- - -+ Ai is

AF ¥ 7T A7, which consists of A5 and 4;, and is nof the same

as Ay 4 A¥ + A7 + A}

Theorem 2. IfAf, o <., A% are events such that Pr(ATAY - - - AR) >0
then Pr(dTAY - - - AF)Y > O for any integer i < K.

Proof. By assumption, there is at least one elementary event A, with

probability P; > 0 common 1o all the events AI, < AT Any such
event 4, will necessarily be common to 47, - A,;, so that the sum
of the P,. over the elementary events common to Al, « v oo, AF will be at

least as Jarge as the sum of the P, over the elementary e_vents common
W0 A* - - - A%
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Theorem 3. If AY, - + -, A% are events, with PriATA} + -+ 4%) > 0,
then

Pr(AYAS - - - A%) = Pr(4}) Pr(d§[AY) - - - Pr(aglA} - - - A%).

Proof. 1f K =1, then each side of the equation is Pr(4Y). Suppose
now that the theorem is true for K =j Then wc shall show the
theorem to be true for K =j + 1, which will complete the proof by
induction. This means that the theorem is proved for any positive
integral value of K by the following steps: The theorem is true if X #\].
Then, putting j=1, we show that it follows for K= 2. Then\lhe
theorem is true if K= 2, and, putting j = 2, we show that 1t \fo‘ilows
for K = 3, and so on.

Now, by the definition of conditional probability, treaung A*A* -4f
as one event, we have \\

PriATAS -+ < AF) = Pr(Af | AT+ - - ADPRAT - - - A7)

\J
By the hypothesis of the induction, Theorem (4% true for X =/J. Sub-

stituting for Pr(4347 - - - A7), we see tha; {(Theorem 3 is also true for
K =j+ 1, which completes the proof. |
Several events A¥, - - -, A% are sa&d to be mutually exclusive if no

element is commen to 2 or more, ofithem and are said to be exhaustive
if AY + - ¢ -+ A% = the entire ‘populatmn

Thus, 1f A* is ap event, then* 4* and 4* (the complementary event)
are both mutually exclusw& and exhaustive.

Ilustration 6.2, Let}:s deﬁne the event A% to be A¥ +- - - + A%,
Then, in Mustration, 61 A¥, » -, AF are exhaustive but not mutually
exclusive. A} and 43 are mumall}r exclusive but not exhaustive. The
five events A* '\é*A{‘, A¥, AXAF, and A¥ are both exhaustive and
mutually e Rusive.

Theoremﬁ If A* is a subset of o/ then

} Pr(4*sdy = Pr(4%)
Froof. Every element in A* is also in &7, and hence the elements in
A*sf are exactly those in A*,

The following theorem is of considerable importance in calculating
probabilities.

Theorem 5. Let AY, - - -, A% be mutually exclusive events. Then, if

L AR =AT AL foﬂous that PHA*) = Pr(AT) 4+ - - + Pr(A ).

Proof Smce A* = A* v -+ A%, and since 4%, A%, - - -, A%

are mutually exclusive, the theorem follows immediately if we subsutute
for Pr(4*) and Pr(4%) + - + + 4- Pr(4%) the sum of the probabilities of
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the elementary events of which they consist, using the deﬁmt[on of the
probability of an event.

Corollary 1. Let AT, - -+, A% % be mutually exclusive, and fet B* and
C* be any events. Thr:n, if A* = A¥ 4+ - - L 4% it follows that

Pr(A*CY|B*) = Pr(ATCHBY + - - - + Pr(4%C*|B%

Proof. Since AF, - - -, A% are mutually exclusive, it follows that
AFC*, » « o) 4XC* are mutually exclusive. Furthermore, the set A*Q* :
consists of exactly the same elements as the set AFC* ++ - - 1 A w0,
ar . O\

AXC* = AFC* 4+ -« + AXC* O
znd similarly PA N
AYCHB* = AYC*B* 4+ + « - AXC*BY»,
\
where ATC*B*, -+ +, AXC*B* are mutually exclusug since Af, A%,
", A% are mutually excluswe Then Y,
R Dk
Pf‘(A*C*!B*} :M .".‘\
Pr(8%)

== Pr(ATC*|B*) 1 Pz(A*C*[B*) +o e PrAECY By

An alternative proof for the speclal case where an epsem is bemg used
is as follows: Suppose that A} consists of N, elements, i =1, - - -, K.
Of thesc N, elements suppo e that N, are also in C*. Then 4}C*
consists of V;, clements*none of which can be in AFC*(i # ), since the
N, elements are in A% and no element of A is also in A¥.  Furthermore,
A*C* consists of $€/N,, - Ny, +« + + + Ng, elements which are both
in one of the A¥and in C*. Hence, from the definition of the probability
of an event,\w?liave :
AN PrAXCH) = PrAFC*) + - + - + Pr{4%C*Y)
AN
hére are several other interesting corollaries to Theorem 5. Of

these’ we give the two that follow:
Corollary 2. If A%, - - -, A% are exhaustive as well as mutually

exclusive, then Pr(A*C*|B*) = Pr(C*|B*) and we have
Pr(C*|B*) = Pr(ATC*|B*) + - + - + Pr(A%C*|B*¥)
Corollary 3, If AF, - - -, A};- are mutually exclusive, then
Pr(A*C*|B*) = Pr(AF|B*C*) Pr(C*|B¥)+- + ~+Pr(4A%|B*C*) Pr(C*|B¥)
= Pr(C*|AFB*) Pr(AF|B*)++ - -+-Pr(C*|A%B*) Pr{A%|B*)
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7. Some illustrations of the uses of theorems on independent and con-
ditional probability. a. Evafuation of some probabilities associated with
simple random samp;’mg We have previously seen that the probability
of any specified possible sample is 1/CY if simple random sampling is
being used. Let us now prove that result and others by conditional
probability.

(1) First, fet BY be the event “*A, is in the s&mple Then the product

event B*B* -+« B} is the event “Al, st % A, are in the sample”
since the product event occurs if and only if ail the component evens
occur. By Theorem 3 N
Pr(B}By . « - BY) = Pr(BY) Pr(B§|BY)- - - Pr(By|BY - - -'?ﬁ‘.._'\l)
Now N Ny
* i &,
P8 =% RS

Also Pr(By|B}) = (n— 1)/(N — 1), since the conditioﬁ that 4, is in the
\J
sample reduces the problem to one of selectingn= 1 elements by simple

random sampling from a population consmtr\g of Ay, » + =, Ax.
Similazly a
=i+
P,‘(BTIB? ﬁt* 1) = _ 'i, _}_ 1
so that ~f‘ '
nprp—1)y---1 1

P 1 ists of Ay, ¢&04,) = =
r(sample consists o b4 N4, NV - tN—niD O
(2) The probability\that A, is the Kth element selected for the sample
is obtained smularlg “Let B* be the event “*4; is not obtained at the ith
selection,” i ,k;- K—1, and let BY be the event “A; is obtained

at the Ki salectlon Then we wapt to evaluate the probab:hty of
BFB¥ - + 8%, and by Theorem 3

PrCBEBY - - - BY) = Pr(BY) Pr(BIIBY) - - - Pr(BR|BY - - - B:_))

{E" _N—IN—2 N-K+4] 1
N N—1 N—K+2N—K-+1
1
~%

b. Definition of strarified simiple random sampling. Suppose that the
N elements of a population are classified into L strata, the ith of which
contains N; elements, i = 1, » L. Buppose also that simple random
samples are independently selectcd from each of the strata. Then we say
that a stratified simple random sampling plan is used.
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It is instructive to compare the numbers of possible samples of size n
when simple random sampling and stratified simple random sampling
are used. ' _

There are Cy possible samples of size # from a population of size N
if simple random sampling is used.

Letn=mn +- - -+ ny. Then, from Theorem A.2 of the Appendix,
there are CCix- - - Cr possible stratified simple random samples

consisting of n; elements from. stratum 1, n, elements from stratum 2‘&
- -, iy, elements from stratum L.
Clearly, since each possible stratified simple random sampls,*of

n=m < - -+ nyelements is also a possible simple random gampfe of
n elements, it follows that G\
NyNa. .. O N \ 3
Crajl'cnz CnLL < Cn '\'\

and, in fact, since every sample of size » will, for sonie'values of iyt
7y, consist of m elements from stratum I, n, elements from stratum 2,
» », iy, elements from stratum L, we have & &

NN, L, o, ONeN
Ecﬂ\‘ i C‘,"LL C,

where the summation is over all';‘r]:;,"’ -+, nz such that », >0 and
A+ g = . N\

We have already seen that if ’simple random sample of size # is selected
then the probability that soms, specified element, say 4,, is in the sample
isn/N. If that element i§élassified into the Jjth stratum, and if », elements
are selected from thalstratum in the stratified simple random sample,
then the probability Hat 4, is in the sample becomes #,/N;.

Furthermore, if\ptoportionate sampling is used, ie., if the sampling

ratio a;/N; = fiy'=1, - - -, L, then n; = fN, and hence
G:Z\ N e it . ..

Tmé, if proportionate stratified simple random sampling is used, then
the probability of a specificd element being in the sample is the same as
when a simple random sample of the same size is selected; whereas, ‘1f‘
the sampling is dispropertionate, then, of course, this will not be so in
any stratum for which mlN; # niN. _

¢. Cluster sampling, By a cluster we mean a sct _of elements that are
ireated as a single element for purposes of selecting a sqmple. For
example, the peopie within a family constitute a cluster if we s?elect
families, the people or families within a block constitute a cluster 1’f we
select blocks, the people or families or farms within a county constitute
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a cluster if we select counties. Thus, clusters may be small or large,
They are treated as units in selecting a sample.

We have already derived the probabilities nceded for simple random
sampling, stratified simple random sampling, and systematic sampling of
clusters. Once the clusters have been selected, however, the selected
clusters may themselves be treated as a population from which a sample
is sclected. When this is done, we are using cluster sampling with
subsampling.

Let the clusiers be denoted by A, A4, « + +, Apr and let the clugter A4,
consist of the elements A, A, * * *, Ay i =1, - - -, M. Suppse that
we select a simple random sample of m clusters. Then thg p‘mhqbi[it\_f
that we select, say, 4,,* * -, 4,15 }/Cy/. Once we have selgeted ™Ay, - - -,
A, we may treat these ciusters as a single population a,nd select a s1mple
random sample or systematic sample from it, or we may'tréat the selected
clusters as substrata and select & stratified simple random sample or strati-
fied systematic sample from the strata. We theniSe Theorem 3 (p. 28)
to calculate the prob‘tbi]ity of obtaining a sp@i’ﬁed sample of elemenis.
This probability is obtained by muluplyiqg 1/CY by the conditional
probability of obtaining a sample of elefhénts from the selected clusters.

Suppose that m of the M clusters aggselecied by simple random sampling
and that from the selected clusters. ) subsample of n, elements is selected,
again by simple random samphr}g Then the probabﬂnt_y of sglecting a
specified element is \

A mey
«O M N,
where N; is the totdlnumber of elements in the jth cluster. In the special
case where m,/Ni&E /N, the probability of selecting a specified item is
mA{MN = n/z\[ the same probability of selecting a specified element as
existed fot simple rundom sampling and for proportionate stratified
samplmg\ The probability of obtaining a specified pair of elements
diﬁ"crs and it is this difference which has a bearing on the relative accuracy
of\the three sampling designs.

For simple random sampling the probability of obtaining a pair of

A1)
NN —1)
depends on whether both elements are in the same or different strata even
if proportionate sampling is used. If both elements are in the Jth
nn;— 1)
N(N — 1y

elements is —————- For stratified random sampling the probability

stratum, the probability is whereas if they are in the jth and

kth strata, the probability is RT_ %k—. For cluster sampling, if both elements

itttk
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f( i
M NN, — 1)
size of cluster and &, the size of sample selected from that cluster, whereas
if the elements are in the thh and kth clusters, the probability is
m(m— 1) n, ny
M{(M— 1) N, N,

are in the same cluster, the probability is — where N is the

8. Methods of achieving probability (or measurable) sampling plans.
The table of random numbers. By a probability (or a measurable) sampling
plan we shall mean a sampling plan where the elements are selected awith
krown probabilities. We have already indicated the importancé Ofh list
in sefecting samples; i.e., when the list is known, each of the &lements of
the population is identified by a number and if that nuniber is selected
then the corresponding element of the population is in¢the sample. For
this reason, in sampling, we often want to select asample of numbers.
If we can use a probability selection method for“gbtaining a sample of
numbers, then our sampling plan is a probability plan for obtaining a
sample from the list or population representethby it.  The most important
and frequently used tool in obtainin g a prob'zblhty samplmg plan is the
table of random numbers. o™

Tests have been performed on the tables of randem sampling numbers
in common use that make it redsonable to assume that the following
statements are true for all practlcal purposes:

(1) Each number is the résult of performing an epsem.

{2) The selection Oper{tions are independent.

It follows from the\above two statements that each possible pair of
numbers in the taBlé may be interpreted as the result of performing an
epsem to selectsoné number from 1, - + -, 100, where 100 is said to be
selected if an@\only if we obtain 00.

The resylts of 100 performances of the operation can also be used to
obtain the results of 100 tosses of a true coin by referring to an odd
numlg’e}eis heads and to an even number or zero as tails.

Problems on the table of random numbers
(1} Select an integer from 1, + - -, 113 by an epsem. - Two methods are in

COMIIONn use.

Method a. Choose any 3 columns of a table of random numbers* (p. 117,
VYol. I), say columns 5, 6, and 7. As we go down these columns, the numbers
are 422, 044, so that 44 is the selected integer since it is the first integer found
between 1 and 113 inclusive.

Method b. Divide the first number found by 113, Now 422{113 = 3%,

* M. G, Kendall and B. Babingtor Smith, Tracis for Computers, No XXIV,
Cambridge University Press, second edition, 1946, p. 8.
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Then 83 is the selected integer. One precaution must be taken in using method 5,
The basis of this method is that, since all the numbers 004, - + -, 599, 1060
{1000 is denoted by (00) are equaliy likely in columns 5, 6, and 7, the remainders
yielded by these numbers will occur with equal probability. Yet, we would
obtain 113 if any of the 8 numbers 113, 226, - - -, 904 occurred, whereas § could
occur if any of the 9 numbers 1, 114, 227, - - -, 905 occurred.  Thus, the numbers
1, - -+, 113 wonld not be equally probable. We can avoid this diffizulty by
passing by the numbers 9035, ¢« - -, 999 until a smaller number is reached. In
this way, while preserving the epsem we reduce considerably the number of
numbers to be passed by.

(2) Select three integers from 1 to 113 by an epsem. Let us first note shat
the statement of the problem needs clarification. Shall we permit an jhieger
t0 occur more than once among the three selected ?  Since an epsem was defined
in terms of selecting one element, how shall we interpret the selectigh, 68 more
than one element? Let us answer the second of these questions first.  If we
wish to select several elements from one population we can eighiex, explicitly or
implicitly define a second population whose elements are the/pelsible selections
of several elements from the first. Then we select one element from the second
population by a selection method that gives to each of it3elements the desired
probability that it be selected. Another method is that\of choosing one number
at a time until the saniple is obtained. Suppose, oW, that we do not wish any
of the infegers from 1 to 113 to be selected moreghgn once.  Then after selecting
44 on the basis of columns 5, 6, 7 we continué\dh down and reach 9, and con-
tinuing in columns 8, 9, 10 we reach 67,\ Thus, these are the three selected
numbers. If we had been willing to pesinif'a number to be selected more than
once, and if we had come upon 44 agajn as the second number as well as the
first, we would have selected it. BUE if we did not wish to include the same
number more than once, we would pass over 44 the socond time we came upon
it just as though it were a nupther greater than 113,

N

4 \ ) Exercises

8.1. Toss 2 coins A08Aimes.  For each toss define the possible results to be
0, 1, or 2 heads. ACempute the relative frequencies with which each of these
possible results/oceGrs in the first K tosses, K = 1, 2, - - -, 100. Is there any
tendency of fhesé relative frequencies to become stable? What probabilities
would you-associate to each of the 3 possible results?

8.2. Qpen a book 100 times, trying to do so in such a way that you do not
know-gtiwhat page you wilt open the book. If the next to the last digit (for
pagesd, 3, 5,7, 9 we assume this number to be 0) of the right-hand page number
15972, 4, the resnlt is 0, otherwise it is 1. Calculate the relative frequencies of
0'and 1 for each of the first £ performances of this operation, K = 1, - - -, 100.
Is there any tendency of these relative frequencies fo stabilize? About what
values? I the relative frequencies do not seem {o stabilize what conclusions
would you draw?

8.3. Use a table of logarithms to 4 or more places. If the last digit is odd,
say that the result 1 has occurred.  Otherwise the result 0 has occurred. Calei
late the relative frequencies of 0 and 1 for each of the first X performances,
K=1,-"-,100. 1s there any sendency of these relative frequencies to stabi-

lize? About what value? Repeat this éxercise, using the next to the last digits
of the logarithms. :
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8.4. Which of the following ways would you regard as most closely approxi-
mating an epsem: (a) by opening a book at various points and using the page
numbers; (6) by vsing a table of logarithms; or (¢} by writing the numbers
on identical-appearing cards or chips, shuffling them very well, and selecting
blindfolded? What are the dangers of employing such methods instead of a
table of random numbers ? :

8.5. Suppose now that in using a city directory you number all the Iisted
dwelling units and use an epsem to select one of these dwelling units. Ts this
the same as using an epsem to select one of the dwelling units in the city?

8.6. Suppose that, on the basis of an up-to-date and complete listing of, the
population, a sample of say 10,000 is selected by means of an epsem, and\ques-
tionnaires are sent to these 10,000 by mail. Of these 10,000 questionnaires,
3000 are returned immediately, 1500 more after one follow-up letgei",‘ahd 500
after an additional follow-up letter, or 5000 in all. Suppose that these 5000
are kept in a file in the order in which they are received. Severalitests are made
comparing the results of these 5000 questionnaires and their,Serial numbers to
those of the entire 10,000 questionnaires. None of thqﬁe‘\tiests contradict the
assumption that the 5000 questionnaires were obtajngd )by using an epsem. -
Should these 5000 questionnaires be treated as though“obtained by means of
an epsem from the same population as that from\which the 10,000 elements
were selected? What is the danger that the 5000 Who returned their question-
naires were essentially selected by an epsem ££6m those who felt strongly about
the subject matter of the questionnaire? ‘Can we by an essentially internal
analysis of a sample ever obtain satisfactosy‘evidence that it was selected by an
epsem from a specified population? «Discuss the following: Suppose that a
population is expected to have somgWhat more males than females and we want
to estimate the proportion of malésiin the population by choosing 100 persons
by means of an epsem and uging‘the proportion of males among them. After
the 100 pieces of -data are,l‘e}nrded someone loses them, and, being afraid to
admit it, replaces the df tfa:by tossing 100 times a coin having probability of
heads equal to .51 and’ cording male when heads occurs, female when tails
oceurs,

£/ %



APPENDIX
COMBINATIONS AND PERMUTATIONS

Combinations and permutations are introduced so that we vanhive
convenient tools for spcc:lfymg certain scts of elements and lor ;uunimﬂ
the numbers of elements in those sets.  The discussion is brigft Ghde these
topics will be known to many of the readers of this volume.

Theorem A.l.  Suppose that one operation has K prmfﬁh results Ay,

 Ap. Suppose that if A; occurs when the first o{r}(w.-rm is performed,

then a second operation has M, possible results!Bad - o, By i L,
, K. Then, the mumber of pomhk’ f('sm’f\af pi'rfornmw these b
oper anons is My - Mg 4 - - M. nts

Proof. The possible results of pCl’[‘Ormch these two operations miy
be denoted by:

Aan, A Bl”o. ) AIBIJI,
112831, A B“)y ) 'y A:‘.B? M,

N

AAB}L\ AxBga *  AxBg My

where the ith row abox lists alt the M| possible results of both operations
such that A, occuts when the first operation is performed. Countmc the

number of po Sib}e results Jisted, we see that there are Af, <5 My
possible results
COI'D"QS'Z f M =My,=-+-=Mg=M, ie, if the number of

p0551blfs vesults of performing the second opcranon is thc same, whatever
t,he tesult of the first operation, then the total number of possible results
Sefperforming both Operatlons is KM.

The proof consists in replacing A, by M in Theorem A.l.

Dlustration A.1. (g) Suppose that a population censists of 3 blocks,
Ay, Ay As, and that A, contains 2 famities, By, Bz A, contains 3
families, By, Bya, By and A; contains 1 family, By,. Then there are 6
possible results of performing the 2 operations of first selecting a block
and then selecting a family from the selected block. These possible
results are:

AiByy, AiByy, AuByy, AyByy, AyBo, and 4,8y,
36
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(b} Suppose that a population consists of 10 elements and that first
one element is selected and then from the 9 remaining elements a second
element is selected. . There are 10 possible results of the first operation,
so that K = 10. 'Whatever result occurs for the first Opel'cltIOI'l there are
9 possible results of the second operation, so that M, = = My, = 9.
Hence, there are 90 possible results of the pair of operations,

It will simplify the notation if, in the generalization of Theorem A.1
above to &V operations, we assurne that whatever may be the results‘ef the
first i — 1 operations, the ith. operation has a constant numbef\K; of
possible resulis. A similar theorem holds when the number of poss1ble
results of the ith operation dcpends on the actual results of performing
the first i — 1 operations (f = 1, - N). {

Theorem A.2. Let us suppose that the ith of N operqrsons has K, possible
results no matter what may be the results of performiing the first i— 1
operations (=1, - - -, N). Then the number Q( pomble results of per-

< Jorming all operations in a specified order is

Proof. If N = 2, this theorem has alreddy been proved in the corollary
to Theorem A.I. Then the results of perfefming the fifst two operations
may be considered to be those of pe.rformmg one (complex) operation
with K, K, results so that we Obtdll‘l (R KK, = K KK possivle resulis
for performing the first three operatlons Continuing, the results of the
first N — 1 operations may Be\considered to be those of performing a
complex operation hdvmg\ 1 « Ky_; possible results, so that by the
coroliary to Theorem A\l the number of possible results of perforiming
all N operations is (KK, - - - Ky_ Ky =K K+« - Ky.

Definition of pexpuitation.  Let a set consist of N elements 4,, 4s, + - -,
Ay. Then angppermutation consists of any # of those elements arranged
in a specifiéd) order. An N-permutation. of N elements is called a
permutatiom :

Thug‘ two n-permutations of Ay, - - :, Ay will diffec either if they
comtain different elements or if they contam the same elements arranged
in'different orders.

Theorem A.3. The number of n-permutations of N elements is

N1

N(N—])“‘(N—H—l-l)-—m

The proof is left to the reader.

" Definition of combination. Let a set consist of N elements Ay, Ay, - - -,
Ay. Then an n-combination consists of any » of these elements.

Thus, two #-combinations of Ay,  + -, Ay will differ only if they do not
contain exactly the same elements.
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Ilustration A.2. (@) The number of 2-permutations of A, B, Cis 6.
They are A8, AC, BA, BC, CA, CB.

{6) The number of 2-combinations of 4, B, Cis 3. They are A8, AC,
BC. The permutations 48 and BA are distinet permutations, bat they
are two ways of stating the same combination.

Theorem A4. Let n elements be selected without replacement from N
elements and let two selections be considered different if they are distinet
n-combinations. Then the number of possible distinct selections, or
n-combinations of N elements, is

CN__N(N-—- - (N—n-+1) N! .
" n! NN — n)!\' \)

N

Proof.  We have already seen (Theotem AL3) that lhc,rc}‘;t\fé NN )
© (N — n - 1) possiblie selections of » elements I'rqn*p}\} dlements with-
out replacement.  Consider a specific selection of agelonients.  There will
be n! possible arrangemenis or a-permutations gfdiese »# clements, cach
of which will occur among the NN — 1) s (N -~ n |- 1) possible
selections or #-permutations of V elements,ifeYeach distinet combination
gives rise to n! permuiations. Thus, P\

n! - (Numbert of combinations) Number of selections
AN = NN (N~ D

~

or .
Number of combindtibns = NN=D - W=n £ D) cy
3 :\,,. n! n
which completes tha, p\roof 5
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CHAPTER 3

Fundamental Theory—Random Variables,
Expected Values, Variances, Covariances,
and Convergence in Probability

1. Introduction. In this chapter we establish the theoréms we shall use
in detiving the expected values, variances, and covar:ar{ces that are needed
for the proofs given in the subsequent chaptersi{ Of these the more
important are the following: (1) The expected vdlie of 2 sum of random
variables is the sum of their expected values (Theorem 5, Sec. 3, p. 48).
More generally, the expected value of a linéar combination of random
variables is the same linear combination &f their expected values (Theorem
6, Sec. 3, p. 49). (2) The expected walue of a random variable is the
expected value of the conditional, c?cpected value of that random variable
(Theorem 14, Sec. 5, p. 61). 3%

Theorems 11 and 12 of S€e. 4 (pp. 56 and 57) oun the variances and
covariances of linear combinations of random variables greatly simplify
the problem of deriving/variances in a number of practical sampling
designs. Theorems('15, 16, and 17 of See. 6 (pp. 65 and 68) on
conditional variarees simplify greatly the development of the variance for
a multi-stage sampling design in terms of its components.

2. Randbrﬁ variables—mathematical expectation. «. Definition of ran-
dom vdrdable. The values of one or more variables are usually associated -
with the elements of a population. For example, if a population consists
ORAV families A, + - -, Ay, then associated with the family 4, are values
of such variables as the age of the head of the family, the number of
children under 18 years of age, and the annual family income. 1If the
elements A,, - + *, Ay of the population are farms, then associated with
A,, the farm identified by i, are such variables as the number of acres,
vields of different crops, income, and expenditures. If the elements
Ay, Agy+ * -, Ay of the population are the N* possible samples according
to some sampling plan {see Ch. 2, Sec. 4}, then with each 4, is associated
the value of the estimate or estimates that will be obtained if that possible

39
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sample is selected to be the sampte.  The value of any variable, U, that
is associated with A, will be called U, Thus, in the above discussion ¢/
might stand for age of 1he head of the fumily und U; would be the age
of the head of the family identifted by /, or ¥ might stand for estimate
of average family income of this population and U, might be the value of
that estimate for A,, the ith possible sumple.  Then, if the probuability of
selecting 4, is P, and if we denote by u the value of U thut we obtain
when one of the clements Ay, + - -, Ay 15 selected, it follows that w has
possible values Uy, -+ +, Uy and

Prin = Uy = Pr(A) = P, i 1, N .

. . . w e\
where Pr(u -~ U,) is read “the probability that « - U, jkﬂfuuld be

noted that some of the vatues Uy, Uy, + - -, Uy may be the s nemer-
fcally but they are distinguishable by the different subscripis that associate
them with different elements of the population, R4

In a case such as that deseribed above, we calNwa random variahle,
ie., uis called a random variable if it has o fiite number of possible
values Uy, Uy, =+, Uy and if with czlc}]'\xpossiblc value {f, there s
associated a probability "

Pru = U)==P, m»."J‘ d L o N
where .\'"&'
P, =0 and‘j:}?l'—}- Cee Py

We can treat any real{Sgle-valued function defined on a f(inite
population as a randojnyvariable; the probabilities of the possible values
of the function arth\f{e" probabilities of sclecting the correspouding
elements of the population,

It will be nqted.‘that we do not require that the probabilities 7, all be
posttive. Tb{lg}'{;ome of the so-called “possible values™ of v muay hiave
zero probability of being assumed.

ll[us(rja:tion 2.1. Suppose that ¥ = 5 and that 10 4,, 4,, 44, 44, and 4,
correspond the values U, = 2, U, =2, Uy =T, U, =6, Uy -= 3.

\"Thén
Pr{u = U) = Pr(4), and Pr{u=2) = Pr(4*)
where A* consists of 4, and 4, so that
Priu=2)= P, 4+ P,
Also
' Priy =< &) = Pr(4A*%)
where 4* consists of 4,, A,, and A, so that

Priu<<4) = P+ P, + P,
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Suppose that, in addition to the values of u above, the values ¥, = §,
Ve =3, ¥3=15, V=1, V5= 3 are alsc associated with the 4,. Then,
if u= 4, it follows that 4* occurs, where 4* consists of Ay, Ay, Agy i1
v = 6, it follows that B* occurs, where B* consists of 4,, A4, Ay, and Ag;
if both #=C4 and v =6, then A*B* occurs, where A*B* consists of
only A, and Ay, since only if 4, or A5 occurs will we have both u =4
and » =< 6. Hence,

Pr(u<4,v<_6) = Pr(A*B*) =P, | P, ~

Also we can evaluate the conditional probabilities that these random
variables assume certain possible values. For example, R\,

N\

PHA*BY) Py 1P
Pr(B*) Py + Bk P+ Py
AN

Pr(u << 4]v < 6) = Pr{4*|B*) =

We now need to define independent random variagles.

Suppose that u, * + +, u; are k random variablédand that «, has possible
values Uy, Ugp, * * %y Uppo d= 1, * + +, kagThen the random variables
uy, * * v,y are said to be independent 1f 'md only if,

Pr(uy = Uy ttg = Uy - ',’3"1;" Us)
= Pr(u; ~ lel) Pr (Ua U2z,)  Priu, = Uh*)

for all possible values of u,, \ »ty, where Uy, is any one of the possible

values of w,, d = " kS

Suppose now that twb\elements are being selected from a populdnon
consisting of Uy, + + { Wy. Denote by u and u, the results of the two
selection operahon& Now, if we select at random with replacement

(see Ch. 2, Sec. 4{;} it follows that _
Pr:@, U,y tty = U = Pr(uy, = U)Pr(uz U)

I

=i

N

Lj=1-" N

whereas if we select at random without replacement {see Ch. 2, Sec. 4a),
then _
Pri, = U,y =U) =0 ifi==jf
[
TNN—1)
so that in the latter case
Pr(u, = U, uy = U)) = Priuy, = U)) Pr(uy = U)

These results hold not only for two but also for » selections so that,
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whereas the random variables that are the results of the individual selec-
tions at random with replacement are independent, those that ure the
results of the individuai selections at random without replicement are
dependent.

In Feller (2), p. 87, and Cramér (1), p. 162, will be tound simple
examples showing that even if the random variables w, -+ - u, are
pairwise independent, i.c., n; and u; are independent for all /- j it may
still be true that the random variables w, - - -, u, are dependeni. How-
ever, from the definition of independent random wvariubles, 1t s not
difficuit to prove that if u, - + -, u, are independent then any subselgsiy
2y, sty Wy, <<k of wy, e r e, g are independent. To see this forsay,
k =3 we notc that by Ch. 2, Sec. 6, Theorem 5 {p. 28} it i'ullf}{&-k.fmt, 1)
uy, ty, and ug are independent, and if Uy, and Uy, are particglwAalues of
uy and 1y, and u, takes on possible values Uy, j - 1,2, - & ¥y m,, then

. ey

By

: N\
P."(h‘l = U“I' H‘; = U'Jl',) == 2 Pr(”l = Ul r-.] [’r(“._! Y U:,-} [)r(ll:; {)'r:jl_')}
r

T Pr(ﬂl = Ulil) Pr(‘\ﬁt;.\\_-:u'-;'))

X )
1y 2\

2: P"(”z = Lil;ff). t'.: i
b &N

since

A generalization of the term rgffffa}n variable that will be helpful is the
term random event. A~

If, when an operation is\bcrf‘mmcd, one of the K exhaustive and
mutually exclusive event{ {ste Ch. 2, Sec. 6) AF, - « -, 4% must oceur,
we cali the result of }hgit operation a random event, and denote it by a*.
We call 4%, - -, ﬁ\’}}.the possible states of the random event.

If Pr{Af} = Py we will write Pr{a* = A}¥) == P,, where, if a* is a
random evenpand 4¥ is onc of its possible states, the statement “g* == A*"
is to be r'e‘akx“a* takes on the state A*”

Thus $a¢ resuli of performing a selection operation to select one of N
elemg:r}’ts Ay, + +, Ay of a population is a random event a* having possible
states A, - - -, Ay and

Pria* = A) =P,
where P, is the probability that 4, is obtained when the selection operation
is performed.

Dlustration 2.2. (@) One of 5 blocks Cy, « - -, C is to be selected.
The result of that selection we call a random event with 5 possible states;
these are “C, is selected,” « -+ «, “Cy 13 selected,”

(b) Two of the 5 blocks are selected by an epsem. Then the result is
a random event having 10 possible states each of probability 4.
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{¢) A sample is selected. Numerical information is cbtained for the
sample and an estimate is calculated. Then, the result of the selection
is a random event, and, as previously mentioned, the estimate is a random
varizble.

The definition of random event includes that of random variable if by
the states of the event we mean the taking on by the random variable of
its possible values.

Let us consider how a*, the random event, and u, the value of some
variable for the event, are related. Oy

First, although a* need not be numerically valued, # must be, aébording
to the definitions we have given. The random event may bethe'selection
of a block or a house or a person or a set of them; but the random
variable must refer to something like the number of falm]}es on the block,
the income of all persons living in the house, or thelage of the person.

Second, a random event may and often will determine the values of
several random variables. If we denote by U.thé'number of persons, by
¥; the total income, and by W, the total expenditures of the ith family
Ay, then the selection of the /th family }mp]fes that

u="U, v= V’J:::étnd w= W,

"

Pr(y = U, v = VW= W) = Pr(a* = 4) = P

50 that

Third, sometimes the e}é’ments of the population may be taken to be
numbers. I we wish, ,td estimate the average size of family, then we may
say that the elemeptstof the population are U, Uy, - - +, Uy, where U,
is the number of'pérsons in the ith family. However, it should be kept
in mind that\ihe probabilities of selection are unaffected by choosing
10 represent, an element by the values of certain variables for that
clemen‘;.\~j .

F?x:th', just as we are interested in the probability of a random event
which”consists of several of the elements of =7, so we are concerned with
the probability that » takes on one of its possible numerical values. Let
A¥ be a subset of the possible values of . Then, since the values of u
are determined by which of the A, are selected, it is clear that

Pr(usA¥) = Pr(a*e4*) .0

where ¢ is read “is an element of,” and A* consists of all elements of .«
such that if one of these elements is selected then u takes on one of the
values contained in A¥, -
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Let us note that if #, * * +, 1, are random variables, then funcnc:ns.such
as those given below will also be random variables.  For exampe, if

I i S L
1,{ T e
k
and 13
St — 1
L. 1
' k1

then &, cii (where ¢ is a constunt), $%, 5, s/t are all random variablegs, To
sec this, let us recall that to define a random variable we nccd’wii}’ state
its possible values and their probabilitics. To find the pﬂf;ﬁtl?\lc\"t?l“‘lcﬁ of

a function of the & random variables i, * + -, u, we must ghewo v, * 5 iy,
all their possible values. The possible value of the furctign thitt 00919’5
when = Uy, uy= Uy, * -, u,= U, 1}"1@;'}1;15 probazbthty

Prisy = Uy, » - -, up = Up,). Usually, Eq. 2.8Js.used to evaluate the
probabilities of the possible values of functions 8 random variubles.

IMustration 2.3, Let «, have the possib@;\{\ulucs 0, 1, let u, have the
possible values 1,2, 3, and let Pr(y, = [,l{=) = Py, i == 0, 1,j == L2 3.
Then, if we define u = 1, 4 1o it folows that # has possible vatues
0+ 1,0+2,043,1+ 1,1+ 24801 +3,0r1,2 3,2, 3,4, or more
concisely 1, 2, 3, 4. Also Pr{b= 1) == Py, Pr(u = 2) == Py - ff‘ll’
Pr(u = 3) == Py, +- Py, and Pripp = 4) = Py, As an exercise, determine
the possible values and Rl‘{rﬁabilities of w1y, and 1, fu,.

b. Definition of mathernatical expectation. Before discussing tt}e
intuitive meaning of ‘Mathematical expectation let us define it and troin

N\

ourselves in its computation.

If % 15 a random variable with possible values U}, - « -, Uy and prob-
abilities P73, Py, then the mathematical expectation or expected
value of v{ﬁ

O

¥
N Eu =P U+ Py + -+ -+ Pyly == 2PV,

o N i

\ JThus, to cajculate the expected value of 4, we multiply cach possible
value by its probability and add the products thus obtained.

Dlustration 2.4. Suppose that « can take on the values 1 and O with
probabilities } and . Then

Fu=1+03H=1

Iustration 2.5, Suppose that x, and u, are independent, u, takes on
the values 0, 1 with probabilities } and 2, , takes on the values 1, 2, and 3
with probabilities &, §, and 1, and u =14, + 1. Then, as shown il
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THustration 2.3, u has possible values 1, 2, 3, and 4; and, using the.
assomption of independence, we have

[l 'y
Plu=2 =t +14=1
Priu=3=1}1+34=3
Prlu=4)=1}~1
Hence
Eu=1(s7) + 2(1) + 3D + 4P = 28] ~\

As exercises compute Eu,u, and E{u,{u,) for this jllustration by deterdiining
possible values and probabilities, aud using the definition of 1ndep&ndence

T#ustration 2.6. A populauon contains M elements, of w];nc;h M, have
the value U, i =1, LKy M+« + My — M. Qhe element of
the pepulation is selectecl by an epsem (Sec. 4, Ch. 0.4 ¥et us find the
mathematical expectation of the value associated with the selected element.
Since an epsem is used, the probablhty of selecigx‘g, an element that has
value U, associated with it.is M, [M. Hence%‘ u denotes the value
aszociated with the selected element, it follaWsithat

K M\ -
Eu=2 =V
%;M !

If the element of the population ivselected by a method that gives prob-
ability Py; to the jth of the M\elements that have the value U7, then

X O g ZP,‘U%-

where \<" »
’\" P = ZPs':r
\‘"\.~¢
since P; 1s~the probability that # takes on the vaiue U; (Ch. 2, Sec. 6,
Theorem 5 p. 28).

We now consider the intuitive meaning of expected value. Suppos_e
that an operation is performed N times -and that U, occurs N, times,
My +- - - Ng=N. Then, the averdge value of u in these N per-
formances is '

. N
N1U1 ~ c+ NglUg Nl Ul R _EUK

where N/N is the relative frequency of the occurrence of U in the N
performances. As the number, N, of performances increases, we expect -

M=
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the relative frequencies N;/N to come closer to the probabtlitics £; so that
i will come close to Eu as we have defined it.  Since we will be selecting
samples by methods, such as the epsem, that assign known probabilities
to each of the possible values, it follows that we can caleulate Eu and
thus learn to what value the average result of selecting sampics by this
same method would be expected to tend. (This result is obtained in
Sec. 7.)

Let us prove two simple theorems about expected values.

Theorem 1. {f the possible values of the random varioble u are non-
negative, ie., if U; =0, i=1,-+ " N, the expected value of u is don-
negative. O\

Proof. Since Py, + * -, Py are non-negative, it follows that ™

N \
Fu—= ZP‘.U:. "'( ~

is a sum of non-negative terms, and hence
FH "“:- 0 \o

Theorem 2. If f(u) and gt are two ﬂt!i{,‘fl(}m‘ of u, where the possible
values of u are Uy, » « ~, Uy, such that |

Pl

FUY<gUY SNP=1, - -, N 22)
then N
Ef(u) < Eg(w)
Proof. Since \

fg(u)\ Ef() = zP-[gwa - F(U))

the theorem follcm}s f‘rom Eq. 2.2 and the fact that probabilities are
non-negative, 75"

¢. Biased\and ‘unbiased estimates. Let u be an estimate and let U be
the quaptl‘ty we wish to estimate by w. Then, since the value » takes on
is deteﬁmmcd by the particular sample that is sclected, it follows that u
is@ r,a:ndom variable. If Eu = U, we call u an unbigsed cstimate of U
Othérwise we call # a biased estimate of ¥, and refer to the difference,
Fu— U, as the bias.

Then, if # has possible values U, - - -, U, with probabilities Py, - - *
N
Py, it will follow that  is an unbiased estimate of > P, U,.

B
It is not necessarily an advantage to use unbiased estimates, since it
has been found that often they are not as good as biased estimates in the
sense that the biased estimates may tend to come close to the guantities
that one wishes to estimate with higher probability than the unbiased
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estimates. We delay any fusrther discussion of biased and unbiased
estimates to Sec. 7 of this chapter.

Exercises

2.1. (@) A population consists of the 5 elements. 4;, 45, 4y, A;, A, having the
values 1, 1, 3, 5, 10, respectively (say 4; represents the ith family and the associ-
ated values are sizes of family, or the A4, are businesses and the associated values
are incomes). One of the elements is selected by an epsem and the associated
valug is taken to be an estimate, ».  What is the expected value of u?

{h) Select 100 samples of size 1 from this same population, using a table o
random numbers. Compare the average value of the first 10, first 25, first €0,
and sll 100 samples with the expected value. O\

2.2. Repeat both parts of Ex. 2.1 when the element i3 selected. sg\ﬂfat the
probabilities of selecting A,, 45, Aj. Ay, and 4; are 2, 4, .1, .1, and 32/ respec-
tively. Of what quantity is » an unbiased estimate? N

2.3. Let » have possible values | and 0 with Pr(x = 1) = Ppand Pr(z = 0)
= @ =1—P. Calculate Ex, Fu?, Eu®, and Ei, where j 5.0, "

2.4. Let u# have possible values 1, 2, 3, 4, 5 with probabilities %, %, ¥, &,
15 Caleulate Ex.  Of what quantity is » an unbiasiﬁestimate?

2.5. Let u have possible values — 1, 0, T with pro&a'“' Hies 1, 1, 1. Calculate

En, y

2.6, In Ex. 2.4 calculate Ex# and £u, AV

27. In Ex. 2.5 calculate Ew? and Eu®. Of*what quantities are «% and #®
unbizsed estimates? N

ol
ON

3, Some theorems on mathemidtical expectation. The following
theorems are helpful in compufing expected values, since they reduce the
calculation of the cxpectcc{ Values of relatively complicated random
variables to the calculatfal’ of the expected values of simpler random
variabies. O

Theorem 3. If & d@wd d are constants and u is a random variable, then

(N
\\ Eley 4+ dy = cBu + d
Note that t’h}q theorem implies that £d = d. _
P{gof.{ If the possible values of u are Uy, - - -, Uy with probabilities
P& )T Py, then cu + d has possible values eU; + di=1--+N
with probabilities P, + * -, Py so that
x

¥ ¥
E(cu 4 d) = SP(cU; + d) = SPU, + d2P;

=prFu-+d
Let & and » be random variables, # having possible values Uy, - - -, Uxis
v having possible values ¥y, * * -, Vi, and Prlu="U,, v = V) = Py

f==1, -+ N, j=1,-+, M We consider the occurrence of both U,
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and ¥; to define an elementary event 4, with probability Py, i =1, - .,
N, j=1,- - M, sothat there are NM elementary events, some of which
may have probability zero. Let A be the event y - U, Then A}
oceurs if and only if 4, or A, or- - - or A, 3r occurs.  Hence

Pf(“:Us):P"(Af)ZPﬂ‘f""‘i'"P',-u:Pa'- (3.1)

T

M
where Py is, by definition, SP,,. Similarly
i

Priv =V,) = P, 3v2)
where A ¢
X ¢ \A
P 4= ZP 5 \\
Theorem 4. [f u and v are random variables then ‘ h

#%4

E@+v)=Eu+Ev N3

Proof. From the definition of expected valL;eQ\ye have

X M ¢*{
E(u+ v) = 3 5P U, 1K)
i f T\

K M o N M

I NS 1 -

= E ,\-_Pfg*U;“”-" Z EPH V:i
IR N Y i
N "z” Ar

& Eu 4- Ev, from Eqg. 3.1 and 3.2 above.
"N\

Using Theorems 3 an}};‘ct; we proceed to prove two generalizations that
are very important{

Theorem 5, Thelexpected value of a sum of random variables is the sum
of their expegtrvalues. .

Proof  Let’u, + - -, u, be random variables and let g ~ 2u;. Then
we want™to show that :

N,
¢

.

AN Eu = JEu,

.\ W4 3

\Wé prove Theorem 5 by induction, i.e., we prove thgntﬁif the theorem is
true when r = |, then it is true whenr = 2; and if it is true when r — 2,
then it is true when v = 3: and s cn; so that the theorem is proved
for all positive integral values of r. The theorem is an identity if r = 1.
In Theorem 4 we have proved the theorem to be true for r = 2. Now

P

supposc that the theorem is true for all j, J=1, - r—1. Let

-1

A —1
v == X u; then by the hypothesis of the induction we have Ev = 3 Eu,.
i1



Scc. 3 THEOREMS ON MATHEMATICAL EXPECTATION 49
Also, u = v + u, and, by Theorem 4, we have

En = Ev 4- Fu,
which completes the proof.

Theorem 6. The expected value of a lincar combinarion of rintom
variubles is the same linear combination of the expected vafues of thewe
random variables.

Proof. Let wy, « - -, u, be random varizbles and let ¢, - - -, ¢, be
constants, Let

r

U= Ycu,
:

N ¢
be the linear combination of u#, * + +, #,. Then we want to show ¢
NS ©

Eu = 3¢ Fu, i (“}'«:
By Theorem 5 M'\"’
4 r \
EYcu, = SEeu,
i ‘ a\)
By Theorem 3 D
y '\ W

Loyt 2 €, s N »

Combining these results, the proof is cogiplefed. 1t should be noted that
since ny, © ¢ v, @, are any random yAritbles they may be funcions of
other random variables, fe., if w5 (v, « « o 1) where v, - 5 1y

r
are random variables, and ifffe, * ¢« v Nefiley, o ), then
.\ ]

. ¢ P
{;Jf(?__rl e e ): z(‘_ 3 (‘r e }
* L] A + Tmd
Mustration 3.1, A/Let wy, 1, and w, be random variables with
A%/ B ’

. il
L = fand B =2/% i =1,2,3. Letw = Jin,. Then, by Theotrem 6,
4 [

~&
8NJ 3 -t
.\’§” Eu = ¥ilu, = Ni* - 1
Alw,,"s} v = —u; + 2u3, then Ev «x — Fuf 4 28 14,

\QJY Let Elogu, == b, and E10% -~ by, and let ¢ < 3ogn, & (L0
Then Eu = 3, 4 1.75,.

From the consideration of Theorem 6 and llustration 3.1 it will be
clear that, when we wish to calculate the expected value of 2 tincar
combination w of the random variables 1y, + - -, 1,, we first use Theorem 6
to reduce the problem to one of computing the expected values of the
component random variables uy, * * +, #,. For the computation of these
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latter expected values, it will often be necessary to return to the definition
of expected value,

Mlustration 3.2. Let u, have the possible values Uy, - - -, Uy with
N,
probabilities Py, =+ 4 Piyo Py =0, DPy== 1, /== 1, - - r, and let
j
u=oy++ - -+ cu,
Then, by Theorem 6,
Ev=cFEu + -+ ¢ Eu 3.3
and by the definition of expected value \
.\:\
EH _ZPxJUu ;.:l,‘ s NS © (34.)

Ny

Computing the values of Eu; from Eq. 3.4, we subst:tutc thcm in Eq. 3.3
to obtain Eu. Q\

Further illustrations of the uses of Theoret:gs 3-6 will be found in
Sec. 1, 2, and 4 of Ch. 4.

L&
Exercises‘ \

3.1, Let u = 4u; 1 u,, where Euy = Land Euz = — 7. Calculatc Ex.

3.2 Let @ be the arithmetic mean oftwy, #,, - - -, uy, where u; has 2 p0551ble
values, 1 and 0, with Pr(u, = 1) = F, and Prin, = 0) =] —P,i=1, , N
Calculate Ed. What does Eif “JBecome if P, = =Py~P? I uis
equal to ) 4w + > - -+ u,,(compute En. Of what quanllty is 1 an unbiased

estimate?

33, Let u= ot + - N where u, has 2 possible values 1 and 0 with
Prig; = 1) = P; and }’:&(u =0)=1- P Calculate Ex. What does Eu
become if P, = =Py =P? Of what quantity is & an unbiased estimate?

34, Letu= 5!41\—1- 3y, where u; has possible values 1, 2, 3 which are cqually
probable and u{,\has possible values — 1, 0, I which have probabilitics ¢, i
Compute Eu £

3.5. Lx;‘t\g be the arithmetic mean of uy, + « +, u,, where y; has possible values

 for all { and these possible values are equally probable, Corupute

\If ' is the total of uy, » - -, u,, compute Ev. Of what quantity is # an
u&b;ased estimate?

.6. Show that, if i is the arithmetic mean of «,, -

-, u, and « is their sum,
then it always follows that Eu == nEg.

4. Variance, covariance, mean square error, rel-variance, coefficient of

variation. The variance, 62, of the random variable u is defined by the
equation

0% = E(u— Eu)? (4.1)
Thus. if u is a random variable with possible values Uy, - Uy and

x
probabilities Py, - - -, Py, then 02 = EP (U, — Eup.
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It is easy to see that o} > 0, and that o2 = 0 only if U, = Eu for all i
except, perhaps, those having probability 0.
The covariance ¢, of the two random variables u and » is defined by
the equation
Oup = E(u— Eu)(v — Ev) . 4.2

Thus, if 1 is a random variable with possible values U, - + -, Uy and v is
a random variable with possible values V,, - + +, ¥y, and if

P,=Prlu=U,v="V)

then
N M A

O = 2, 2P {U; — Eu)(V;— Ev)
i g

" Hence

:(‘;2

23
AN 13 y

The variance and covariance of random variable"s:gre very important
in sampling theory, since measures of efficiency arefargely based on thenn.
Also important in the interpretation o ‘eStimates are the siandard
devigtion, o, which is the positive squarp{root of the variance, the mean
square error, which is defined to be” E(u ~ ), where u is the estimate and
U1s the characteristic that is being eStimated, and the rel-variance, which

is defined to be

SN,
N % (4.3)

A (B

The positive square dUof the rel-variance is called the cocfficient of
variation. The relabion between the variance and the mean square error
will be found in, THeorem 7 below. Inasmuch as the siandard chi{:itiF)n,
the mean squa{e Yerror, the rel-variance, and the cocflicient of \:anatm.n
all depend solblosely on the variance, we shall nat discuss them in detail
~in this chapfér. However, they are often used in Jater chapters.
Theetem 7. [f ¢ and d are any constants and if U = Eu, V = Ev, then
PRI

DY Elu— o = ot + (U— o @4)

i.e., the mean square error is the sum of the vaviance and the square of the
bias. Hence, the minimum value of E(u— c)® oceurs when ¢ = U,
Moreover, .
CEu—op—d) = o, + (U— )V~ d) (4.42)

where o, is given by Eq. 4.2.

Proof. Sinceu—c=u—U-+U~c

(== (a— UF + Au— YU~ +(U—ef @45
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Equation 4.4 follows from Theorem 6 and the fact that
Eu—UXU—~¢): - AU~ Yu—-Uy: . 0

The fact that the minimum value of K )2 occurs when ¢ & then
follows from the Tuct that {7 ¢ in Fy. 4.5 is preater than O whenever
U =# ¢, The prool that Ey. 4.4a holds follows the sume reasoning s the
proof that Eq. 4.4 holds.  Note that Eq. 4.4 is Eq. 4.4 when v — 2 and
c=d _
Corollary. If 1 is a random variable, then

N\
ot = Fu* — (Euy Ay (46)
Eu* = (Euy? \ o) G
(Evyh = Elu \ o (4.8)

&
where |u| stands for the absolute value of r, i€y be| -1 if w0 > 0 and
|} = —wifu < 0. Y
Proof.  Equation 4.6 follows from Eq. 44 4f Theorem 7, with ¢ = 0.
To prove that FEu® > (Eu® we ﬁrsg.‘f{@tc that from Theorem 1
0% = E(u— Uy >0. The proof thus fellows from Eq. 4.6.
Finally, (Ev®)'s = Elu| is obtainpf:l"fr"om the following:

aty = Elul*— @E]ul} from Eq. 4.6
E|u]* = (EJGN? from Inequality 4.7 above

'\
= i, wehave
O Eu = (E|u|?
and PN\

. (Eu?)'s > Elu]
K,

and since |4

IIIustrg&\@z’iﬁ.l. {a) Let xhave possible values U}, « - , Uy all of which
are equilly probable. Then
o N

w\\ W

5 1 o
QO =520, -0y

We have already seen that Ev = U, Also, Pr(u = Uy = Pri{(u— Eu)
= (U, — Eup*}. Hence
b

E(u— Eup =3 %; (U, — Oy

We could also obtain this result by using Theorem 7 with ¢ = 0. From
Theorem 7 with ¢ = 0 we have

02 = Eyt — [
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Since Pr(uil U?) = Pr(u = U,) we have

1 ¥
W= Ut
50 that
LT S
%= %U U3
Bince
N N _
(U~ O = 303~ NO> .
we have the desired result. \ \
(b) Suppose that » has possible values U, - » -, l\, lyls posmb[c

values V5, - -+, Fy, and that \

Priu=U,v=V)=0 1f£#i\\"
Privn=U,v=V)=P I Q\ - N
( =2, 1=h

Then, since .&"
Pr{u=U)= Z Pr(a =, v="V)
i o\
it follows that O
Pr{="U,) = P,
- R
and similarly AN
Priv <K)) = P; i=1, , N
Hence, ¢ g\\
N N
w‘:) w=2PU,
P, :
LD
R ZP(Uf Eup
OY
N
N Ev = ZPs ¥,
O L
g w4 ¥
Y g% = SP(V,— Ev}
i
and

N
Opp = an(Ui - EH){K - ET")

Exercises

4.1. If 4 has possible values 1 and 0 with probabilities P and @, then show
that o, = PQ.
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4.2. If « has possible values U, - + -, Uy and v has possible values ¥y, - « -,
Voo it Prise = Vv =2 V) - 0if i o J» and if the possible values ol u are equally
probable, then show that

zl-

i\' -
Typ = Z(U, — I V,— )
7,

4.3. If u has possible values o, 74y where

I ‘\." r .
(?i_":ﬁl.?_.{’ij P— 1, A "
and if O\
- N, ‘ re
Prin - U) =~ i1, M \\\
where A
hr o NI. _}, PR _i_ J\{:” ."': s.s
then show that ,\iy
- “{ N,- - . Q ."’t
0% -—-=Z_—N—(U,-— i) v/
where \ \\\,
TN AN
U= =2 504
NT 74 N\

/
2" N

),’:’ 3 .
Theorem 8. If u and v are r’nr.’s:fié?}den!, then Fuv =: FuEv. Also, if
Uyt v, g are independent, themEihu, -+ -, o= EwmEuy - - - Eu,.
Proof. By definition N

KA KoM
:,.\bn: = Z _P”-U, V,
N/ i3]
If u and v are indepghdent, then
o P:‘;‘:Pt-P-j

where s

§' Po=Prlu=U), P,=Prv=1"V)
R\
Substg&tjgting, we sce that

£ ) N Ar
<\ - Euv = 3P, U, 5PV,
i J

= EuEv

To evaluate Eu, - - - u, we note that, if u,, - + +, u, are independent, then
the product », - - - 4, is independent of #,. Hence, by the first part
of the theorem we have Eu, + * * u, = E(u, + - - ¥._,) - Eu,. Continuing
this procedure, we finally prove the theorem in k — 1 steps.

Theorem 9. If u and v are independent, then ¢, = 0.

Proof.  From Theorem 7 with ¢ = d = 0, we have Gy, = Euv — Eukw.
Then the theorem follows from Theorem 8.
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It is possible to have o,, = 0 without » and » being independent, For
example, let the possible values of # be 1 1, 4 2, each having probability
£, and let v = 1, Then

Prlu=+ L, o=0)=Prlu=—Lov=1)=1}
Prilu=+2,v=4 =Prlu=—2,v=4=1

and
Prlu=1,v=4)=0
whereas X
Prlu=1=1% and Priv=4)=:1 O
and hence O

Priu=1,v=4)%Priu= D Priv=14)

Thus, 1 and v are dependent. Yet Ev = 0 and Euv = & S‘(;ﬁ:that 64, — 0.
Ifg,, = 0, we shall say that w and » have zero covar{é{it:e.

Let us define the correlation coefficient i) by the equation
Pup = Ouufo,6,. Then, if o,, = 0, we have % 0, and say that w and »
are uncorrelated. e :

Theorem 10, The correlation coeﬁcient'p}v is such that — 1 =<Z p,, << 1
and p,, = £} if and only if u=c H dv, where ¢ and d are constanis,
except for values of u and v having Zero' probability.

Proof. Since NN

E(u“ B v Ev)

MGy Oy

it follows that, if we iﬁand the square, then, from Theorem 6 and the
definition of variape and covariance, we have

2
=0

"¢/
) 1—2p,, + 120 4.9
O o
o\:’": 1— Puv = 0
Le, | j\
o) ) 1= pye

\Sh;]jl'ztrly, since

: _ 2

E(quu + v E@) ~0
Oy g,
it foliows that '
I+ puy =0

so that — 1 << p,.. ‘ -
If p,, = 1, then the left member of the Inequality 4.9 is zero, and since

E(u~—Eu__v=Ev)~i0
. oa Gu
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only if the quantity in parentheses is zero, excluding possible values that
have zero probability, we have

u— FEu  v— FEv

Oy ay
or

uﬁEu—-E‘Ev—l—ﬁ‘v

v L1

N
Hence, the third part of Theorem 10 is proved, if p,, —.1,\With
¢ = Eu—(0,/0)Ev and d= g, fo,. A similar result is obtained if

Py = — L. ‘“\

Remark. Theorem 10 is a special case of the more; gcneral theorem

Euv << (Eu*Ev®)'s for any random variables » and vj;mhng finite second
moments. .

Just as the theorem on the expected value ofe lineatr combination of
random variables plays a fundamental pasi\in sampling, so does the
theorem on the vanance of a linear comblnatron of random variables.

Theorem 11. [f u = Zc i, uhere ul, -+, u, are random variables and

€1, " * ", Ly Gre conslams, then gf'. ’

{Z Z ZC’ C'Uum;

where o, is the covqr}nce ofu and u,.

Proof. Since uv*Eu = Ec {u; — Eu,), it follows upon squaring both
sides of the eg'\atlon (see Illustranon 2.2 of Ch. 2) that

N
N Eu—Ey =E 2 Z cicfu; — Eu)(u; — Euy)

N\

’”\\ -
\:

aMau

ic c;E(u, — EuYou;, — Eu))
i

by Theorem 6. Then, the theorem follows from the definition of the
covariance.

The following four corollaries are obvious conclusions from Theorem
11.  Their proofs are left as exercises.

" Corollary 1. If the u, are uncorrelated, then

k
2 __ 2 0
Oy = Z('i gu,—

i
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Cerollary 2. If the u, are uncorrelated and have equal variances, o?
then ' 2
ot = o?3c!

B

Coroltary 3. If the u; are uncorrelated and have equal variances, o?, and

g—= WAt
k
then o2
0“2.:"— P
Also, f 4 = wy +* * * + U, then Oy
_ A\
ok = ka® &

Coroliary 4. The variance of a constant fimes a raud\'c:m i{ariable is
the constant squared times the variance of the randomrvariable, ie.,
a2, = ¢ N
Htustration 4.2, In stratified sampling the gopulation is first divided
into 1. classes or, as they are usually calteds steata, such that each element
of the population is in one and only one“stratum.  Then, samples are
independently selected from each statum. If u=cyy + -« - -+ Co¥,
where 1, is based on the sample fgon¥ the ith stratum, then by Theorem &
and Corollary | to Theorem Lk, we have
N\ i
NS Eu= 2cky,
and N\ E

L D

i\ L
¢ 2 Sp242
"\ of = Delo;
T

S

where of ig\?{jié‘variance of u, Hence, the knowledge of the expected
value and(Variance of each of the u; permits us to evaluate the expected
V'alueugﬁ,d variance of u when stratified sampling is used. The following
theorein is sometimes useful.

& w
Theorera 12. If u = Ycu, and v = 2d; then
i Eom i
Ty = Z Zcidiaﬂil'f
i3

Proof. The proof almost repeats that of Theorem 11.° It is obtained
by using Theorem 6 and the fact that, by Tltustration 2.2 of Ch. 2, we Lave

(4 Euo— Ev) = 3 Scdfuee— Buv,— Ev)
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Corollary. If u; and v, i 5% j, are uncorrelated, and & = m, then

Ty Z.C i g’“ B,
and if ¢, = d; == 1/m, then
1 m.
==
Ult!? ’ng .;Uu v
The proof is omitted.
Iustration 4.3. (@) If 6§ = 0% i=1, - n and 0., = ¢ 1/}
i, j=1,* - n, then N
02_‘::5'_}_ = lc )
“on n e\

N/

where i = Zu Jn. To see this, we turn to Theorem 11, T(ﬁz reduce that

theorem to thlS special case, we first put & = n, ¢, =" Nn thus obtaining

o 133 \’
oy == — Frd
a3 n g ?. H u,
We have already noted that o, ,, = Also it is easy to verify that the

double summation above contains n“‘tt:r'ms of which exactly n arc of the
form @, .. so that the remamlrlg‘n*— n=n{n— 1) terms are of the
formo,, ., 7 #j. Hence )

QO

SN 1
G?E :\%2 Ty + 3 2. Trn,
\sﬂ i N igj

where the first surrg}é,tion has # terms and the second summation has
n{n — 1) terms. /Flerefore
'\..
‘S M 7 n(n— 1) a n—1
A 2
o§ U ¥ c n .

&

»‘.

() Let u#; have two possible values, 1 and 0, and Ict Priv,=1)=PF,
Pfhs—o)—Q,-—l P,i=1--n Letu—Zcu Then, if the
u, are uncorrelated, it follows from Corollary 1 to Thcorem 11 that

— o}
In this special case i
0y, = Elu;— Eu® = (1 — P)*P; + (0 — P)?Q, = Q3P + PIQ;
= P,O0(P,+ Q) = P,Q,
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Hence

= ZCEP'SQE

Further illustrations of the uses of Theorems 7-12 will be found in
Chapters 4 and 5.

Exercises
4.4, Consider
P W ol T A o5
M O
where ay, ug, + + , uyy are random variables. Show that N o
oA
1 M 2N
= h?g %Z‘J Gﬂ-ru’-l \ \J/
Now assume that u; takes on the values Uy, U, * * 1, U Nivztﬁ equal proba-
bility. Show that £7 = U, where KV
: _ 1 ¥ x N
U —
TR EN

Assume, also, that
Prip; = Uyt == Usg) = 0 m%\ﬁ =12+ N

Then
Z(Ulg.'s_‘ U&)(Ujm UJ‘)
Ty, = ‘f:‘o - 5
where “ v
. Tl
N 2 Usy Z U:ra

and ;=

N

>

N

Evalnate of.
45, Let u = 3ul\+- Suz, where a3, = 2, ok, = .25, and 0y, = .6 Evaluate
O'u '\ N/
4.6. Showsthat :
\ — 0,0, = Oy = 00y

for all r’.'mdom variables # and » having finite variances.

AT “Show that . .
) 0 < Fju| < .(Eus(Be%'h

for all random variables.

5. Congditional expectation. The following definitions and the‘orcms
are important in evaluating expected values associated with multi-stage
sampling. .

Let PB*) be the conditional probability that the random variable u
takes on the vatue U/, subject to the occurrence of the event B, i.e.

P{B*) = Priu=UJBY . i=1-- "N
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Then, by definition, the conditional expectation of the randein variable u,

given B*, is N

E(u|B*) == 2 P(B*}V,
1

In other words, to calculate the conditional expectation we apply the
same procedure as that for the expected value except that we use con-
ditional probabilitics.

Ilustration 5.1, Let © and 2 be two random variables with
Prlu=U, v="V) =P, i1, -+, N, j=1, -+ M Compute
E@le = V). Since v=V, if any of the elementary events usx U,

v="V,i=1- - N, should occur, it follows from the dchmugmof the
\
probability of an event that Pr(v = V) == 2P = P, A~I»o by the

definition of conditional probability, ! O

Priti = U, u *\’:}

Priu=Ujlv = V) =

Pr(v =¥}
. N
...‘2 | IJ » N
P.f N\ ¥

Hence, defining B* to be the event ’a ='V,, we have

E(u[u = V) = ZU
.\ "
Tllustration 5.2. (a)d&b¥ be a random variable with possible values
Uy« + o Uy Thenpkulu = Uy) = Uy,
Proof. Since C

P'r’(a Uyu=U) =Prlu= 1) ifi=1
it follows &ﬁt

."\":3 Priu=Uju=Up=1 ifi=1

a\Y;

V =0 otherwise

When we substitute in the definition of conditional expectation, the result
follows.

(b)) Let u and v be random variables with possible values Uy, * - -
Upy Vi =+ 5 Vo Then E(ue|u = U) = U Fpju = Uy). Ifi=1,

Priu=U,v=V)
Pr{u=1U,

Prlu=U,v=Vjiju=U)=

=Priv=Viu=Up
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Ifi+#1,

Prlu=U,v=V,u=U) =0
and heace

Priu=U,v=Viju=U)=0

Heuace, by the definition of conditional expectation, we have
M
E(urlu = Uy) = SOV, Pr(v = Vju = Uy
“ g

It is clear that a theorem comparable to Theorem 6 can beStated in
terms of conditional expectations as ) e\
Theorem ¥3. The conditional expected value of a linear eombination of
* randor variables is the same linear combination of the coxditional expected
values of these random variables, the same condition béing used throughout.
Insymbols, if g, © * +, u, are random variables, and s ety + + + -+ -+ cu,,
then , Y, :
E(|8*) = e a5
7 N )
The procf directly parallels that giv;qn'fdr Theorem 6. It is left as an
exercise. ON° ' '

C XY

Exercise 5.1.  Prove theorems.domparable to Theorems 3, 4, and 5 stated in
terms of conditional expectatigng.

Sometimes, the event 'B}is one of the states of a random event &*.
For example, in Tilustfation 5.1 the event v == ¥} is one of the states of
the random event % takes on one of its possible values.” In such a case
E(v| B*) is one pifHe values of a random variable. If the random event
b* has possibleStates BY, » - -, B% with probabilities Py, - - -, Py, we
define E(uLb}) to be the random variable which has possible values
E(uiB}i),fj\= ¥, + -, M, with probabilities Py, * * -, Py Then, we have .
the basic computing theorem:

“Theorem 14. The expected value of a random variable is equal to the
expected value of the conditional expectation of that random var:'fzbfg, the
condition being a random event. In symbols, if uis a random variable gnd
6% Is a random event, then

;M
Eu = E[Euld*)] = ZPJE(u[B}’)
j
where P, = Pr(h* = BY). .
Proof. By the definition of conditional expectation

¥
E(u|BY) = SUPLB)
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and by the definition of conditional probability
Pr(u = U, b* = B})

P:’

Pi(B;() =

so that M MK
2P E(u|Bf) = Z ZU.- Pr(u= U, b* = BF)
3

Z Z Pr(u = U, b* = BY)
i .\
But the event u# = U; will occur if and only if onc of the elementary
events 4 = U, b* = BY, j =1, + -, M should occur. Hen@\'%bh. 2,
Sec. 6, Theorem 5 (p. 28), we have «\

Priu=U)= 2 Priu=U,b* = B*)
s0 that 4
EPSE(ulB*) ZU{ Pr(u = U = Eu

Corollary 1. Let 4 and » be random va’r,l}JIes and let E(u|v) denote
the random variable havm g possible value& F(uly = V) with probabilities

Priv="V),j=1,+ - -, M, where Vl, v* -, ¥y are the possible values of
2. Then

Eu N E{E(u]v)}
The proof consists in usmgs Theorem 1[4, the possible state B} being
v=V,i=1+"- M O
Corollary 2. Wlth*t,he same conditions as those given in Corollary 1,
P\ Euwv = E{vE(u|v)}
Proof. Sj,ncié,\ as is shown in detail in Tllustration 5.2(8},
wio = V)= VEuy=7) j=1, "M
we h{i,\f\e,
N\ E(uv|v) = vE(uv)
T}en', by Theorem 14
Euv = E{E(uv|v)} = E{vE(ulv)}

Hlustration 5.3. Suppose that a population consists of 3 blocks on
which 35, 6, and 9 families live. A block is selected with probability
proportionate to size, and from the selected block 1 family is selected by
an epsem. Let # be the number of persons in the selected family. Com-
pute Eu. Let 5* be the random event having 3 states B%, BY, and BY,
where, if Bf occurs, the ith block is selected. Then

Pr(p* = BY) = o5, Pr(0* = Bf) =, and Pr(p* = BY) =
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since the block is being selected with probability proportionate to size,
Now,
L.’

EulB) = S0, = 1

- where U, is the number of persons in the jth family of the ith block,
M, is the number of families in the ith block, and ¥, is the number of
persons in the ith block, Therefore, by Theorem 14, we have

3 "\
Eu= 2 Prb* = B;")E(u]B?) . \
i 2\
NS ¢
S M, U, %
T2 u "M': 7\
where '.."\‘
Mi - * __ px ’
J—M— = Pr(b* = B} )x'\\:

2%
S

and Eu is the average number of persons p'ég\family
Further illustrations of the uses of Theofems 13 and 14 may be found

N

in Chapters 4, 6, 7, and 9, )
E:x‘ermses
5.2. Let 9 have possibie vaiues’ 0, 1, 2 with probabilities &, £, ., and let
Elule = 1) = ¢, where ¢ = 376 = — 1, and ¢y == 7. Then evaluate Eu.
5.2, Let u have poss1blc §a es Uy, » + -, Uy, and v have poss.lb[e values
Vioe- 7 and let e Priu == U, v = Voo WUp=gi=1--4N,
and ¥ == f, j== |, . M, eveluate:

E{u;vg{é)," Euvlu +v < 4), E@*—1in=1)

6. Conditignglt variance and covariance. Just as conditional expecfta.uion
is useful ig'multi-stage and other sampling problems, so are the conditional
variancgand covariance.

L»et  be a random variable and let B* be an event.
dﬁwnal variance of u, given B*, o2z, is defined by the equation

o2y = Bl — EG| BB 6.1)
Thus to compute the conditional variance we first compute the conditional

expectation and then compuie the conditional expected_ value of the
square of the deviation between the random variable and its conditional

€xpectation. ) L. )
The conditional covariance of % and », given B*, is similarly defined:

= Ef{u— E{u]|B")}{v— E(v|B*)}| B*] (6.2)

Then the con-

G| B%
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Diustration 6.1. (a) Let u and v be random variables with possible
values, Uy, « -, Uyand ¥y, - - -, Vy,and let Py = Priu = U, v = AY
Then, if Pr(v = V;} > 0, it follows that

= Uo = ¥) = 3
where N
P." — ZP’;J'
and

E@ly = V) = ZU By R

£ A\
Also, using Eq. 6.1 with B* being the event v = ¥, we have { )\ i

N p Py '\"s
Cuwmvy = 2 5 [U E(ulv = VialEe
i -
\\ \
(b) If B*is the event » = ¥; or For* » - or n (m = M), then
7, N
Pr(u = U, B*) < ZA
and -
Pr(B*), mé‘ ZP,,
so that N\
'\ ZPu
‘{r(u— U,|B®) = F1—
SO 2. 2Py
4 i 0§
Then ::;\" v
SO BB = SU, Pr(u = U}BY)
RN .
~O° y 2Py ,
) t:"3|B"\r = Z ﬁ_ [U;— ‘_‘E'(I"[Bh‘j]2

P 22Py
L
(¢) Let B* be defined as in Illustration 6.1(4) above. Then

Pr(u:Usi”v:Vj’B*):P:‘f {I::l"",N
. ' .}:]!"',m
J=m+ls s, M



Sec, 6 CONDITIONAL VARIANCE AND COVARIANCE 65

so that
Pr{ux[&,y:p}]gi):i_ {f=1g"',N
Py =1, um
=0 otherwise
and
Pr( V,|B* s Ly
ry = : = — . e
J[ ) % P!'( B*) _} 1, 3 n
=0 otherwise A\
Hence m N
Fv[B%) = 3, Prev = V,{5%) O
and ' T i“'
MJ U £ *
o = z S s B*) (U, — B BV, — E(vlﬂ 3

If b* is a random event having states BY, BM wzth probabitities
Py, - - -y Py, then by Uu|b* we mean the random éﬁable having possible
values %. B ", Oqpt with probabilities PL, <\ -, Py, Simitarly Ty
Is a random vanabie having possible value 8y, 55 * © Oy, With prob-
abilities #,, - » Py Then, from tho efinition of expected value, it
follovrs tnat

E‘Tuw* & ZP 1R
R

¢ Eo-mjb* - Z‘P:I‘Gui,[B;
\\..

Mustration 6.2. Id Hlustration 6.1(a) let &* be the random event
having possible statés’By, - - -, By, where B} is the event v = V;, and let
I’ ¥
7'\W
\wi"r(b* =B}y =Prv=V) = ZP,-J- = P,

Then oﬁb is the random variable having possible values Ooir = Ohp=V2
anek
Pricipe = aag) = P; j=1, M

Also : M
2z
Eofy = 2P 005"
k)

where o2 5» was evaluated in Illustration 6.1(a).

Theorem 15. If'u and v are random variables, and b* is a random event,

then
= EgﬁIbi- + U%'(uw*) (6'3)
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Ch. 3

Our = E0 e 1 o pm i (6.4)

Proof. Since Eq. 6.3 is a special case of Eq. 6.4, we shall prove only
Eq. 64. Since wu— Eu=—u— Eulb*) - Fu|b*)~ Eu and v — Ep
= v— E(v|b*) + E(x|h*) — Ev, we have

Oy = E[tt — E(u|p*)|[» — E(v|b*)] + E[u— E(u|p*)][E(e

h*) — i)

+ E[E(ujb*) — Eu][v — E(2|b%)] + E[E(u|b*) — Eud[E(v])pY) ~Ev]

By Theorem 14 we have L\
ELE(u|b*) = Eu O
EWEQ|6)] = E[E@]BMEW]6%)] o
so that o\ N
Efu— E(u|p*)][E@|b*) — Ev] O '
) ‘t\ W
= E[uE(v|b*y — uEv — E(u]o™) E@h®Y + E(u|b*)Ev]
=0 \ 1;:*
Similarly Y
E[E(u|b*) —Eud][v — E(v]p*)] == 0
Now o~
Els— EGQS")[v ~ EQ}6*)] = Eo,pe
Finally \\t
E[E(H[&.’?} — EH] [E('vlb*) — E’U] = Uf:(ulbi)f“(h’bt}
by the deﬁnitiogw}%ovariance. Hence

I
O Oy = EGppe + O BiulotyEqe )
as was t(\% proved.
NS
“\/ Exercises

A. Suppose that a random variable #, has possible values U Uge o o sy U,
with equal probability, and that if , assumes the value U/, then the random
variable u, takes on the possible values Uy, Uy, - - -, Uy, except Uy, with equal

X :
probability. Show that o}, = 62, where 0% = Y(U, — T)/n,
Hing: '
0%, = Egzu:]lh *+ CFual
N

2U;

Euy— 21 . 7
N
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N.

2U;— U

; U NU—U;
Elupliey = U) = 2 - 7
(un] 1ty ) Vo1 N_1.

. 14 2
O'u:-:K,Z(Uj- Oy = gt
J

a2

Gi’(“ﬂ“l) = 05'1 = W
where
. et o
TON—I N
and, simnilarly, ' D)
NN = 2) O
3 — « N\
Bl =y N
6.2. Give the details of the proof that \ 0
Ga'llul =0 i
Tulp = 0 x\\

For some illustrations of the app[tcauon of t}e above theorems in the
evaluation of expected values and variances of estimates for some standard
survey designs, see Sec. 2, Ch. 4; Secek'Ch. 5 and Sec. 1, Ch. 6.

Often, as in sampling designs mvol'vmg three or more stages, we nsed
1o con31der the followmg extension\0f Theorem 15.

Let 5%, <., b% be rargd\»sm events, and denote by
| (O B
the expected value of @) given the results of the first j random events,
=], -, K. NS/
Define iN”
\V - -
o z=Eujy j=1,-',K 6.5}
so that ~¢,'~'\\ .
AN zg = EulK)=u
B{ ' : - J= LK

js meant the variance of 2, holding only the first j— 1 random events
fixed, so that - '
: oot = Ohtuny = O,
Finally, by
LY

is meant the expected value of o%;_y); over all possible states of the first
7 — 1 random events. Then we have the following theomrn
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Theorem 16.  If u is a random variable, then
2 _ 2 Ce 2
o, = EU?El(K—I}'l =+ Eo'zh,_ls(x—'zn + -t E‘-”z,111 -+ UE,

where z; is defined by Eq. 6.5,

The preof is an immediate extension of Theorem 15.

CoroHary, In applying Theorem 16 to a K-stage sampling design, u is
the sample estimate and thc jth random event is “selection of jth-stage
sampling units,” j =1, 2, , K. Thus, 2, is the conditional expected
value of u, holding the results of the first j stages of sampling fixed;

a2y5-1ys is the conditional variance of z;, holding the results of *t{m first
j— 1 stages fixed; and Eo?j; ,,, is the expected value of this Jarditional
variance over all possible results of the first j— 1 stages, of sumpling,

j=12, , K. Note that z;- = u, since the condltlomﬂ expectation
of u for all K stagcs fixed is u itself. &
The quantity \%

Ea?fl(?"]-)‘ fDrj = 1 2 y \I', K
is referred to as the centribution to the v\'mance of the jth stage of
sampling.
In multi-stage sampling we use thc’followmg notation:

”5=E(u[[l!2s‘ ."‘:’)"1) }2 1,2v' * ’sK
Oh -1 = o, 2, K Napi 2, - ey J= L2
Thus, for a three—stag%:}esign we write

2 N 2 2 2
% S Eoun, a1 + Eogun, epyy T CEGan

A result si lar to Theorern 16 can be obtained for o,,, using the
followmg\:){anon )
The quantities E{(v|j!), w, = E(»| 1, a%,l(j_m, oG- 1y EOmjrj—1ys @04
Eo, qp21): are defined as were similar expressions in # and thez’s; for

ex@m}n € Tou—1y 1S the covariance of 2; and w,, holding the first j— 1
‘rapdom events fixed.

Theorem 17. If u gnd v are random varigbles, then

O'u'u - EO’ZKWKI(K_]-.)! + EUZK—I“'K—]KK-?JI + e + Eo‘z,w,ﬂ! _{- 0‘2.11.!:1

The proof is omitted.

Corollary. A result similar to the corollary to Theorem 16 can be
obtained for ¢,, by applying Theorem 17 to a K-stage sampling design.
In the application of the theorems above, if one wishes to determine the

contributions from all stages of sampling it may sometimes be convenient

to apply Theorem 15 in successive applications. When one wants 0
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determine the coutribution to the variance or covariance from a particular
stage of sampling, then the coroliary to Theorem 16 or 17 is appropriate.
These corollaries were used in developing the variance for a three-stage
sampling design in Sec. 4 of Ch. 7. The derivation of the variance for a
multi-stage sampling design by a successive application of Theorem (5 is
given in Chapter 9. The latter use makes it possible to indicate, for
example, the contribution to the variance from the first stage of sampling
and the combined contribution from all subsequent stages.

7. The Tchebycheffinequality, Convergence in probability. Cousistencj}
In the preceding seciions, we have developed the tools by whichywe
compute expected values and variances of survey designs. In order to
utilize these quaniities, however, it must be possible to evaluatg“at least
approximaiely the probabilities of  specified differences, ‘befween the
estimates and the quantities we wish to estimate. It\m to questions
atising from this need that we turn in the present sectiof.

a. The Tchebycheff and Markov inequalities. Ogg of the more remark-
able theorems of the theory of probability is thatdue to Tchebycheff by
which bounds are derived for the probablhires vof the difference betwsen
any random variable and a preassigned, value, the latter usually being
taken to be the expected value of thesrandom variable. The Markov
inequality is a generalization of the: T chebychcﬂ‘ inequality.

Theorem 18 (the Tchebycheff iitequality). Let u be a random variable
and let ¢ be a constant. Then\for any & > 0,

Pr([u *}‘> &) < —————-——-G“ + (Eu— o

g2

.y

\& ot (Bu— o
~Pr(luf~f:1£s)2l **—;r"
so that if 6‘\ Eu the inegualities become
MY 2
\\ Pf(]u——Eu!>€)<_*
N/ .
Ui&
Pr(ju— Eu| < £) > 1“‘;“2
Proaf. Suppose that # has possible values Uy, - - Uy with Pmb'

ab]imes Py, - - -, Py. Suppose that of the ¥ dlﬁ'erences U—e Uy—

. Uy — ¢, exactly m of them, say th—e * " 5 U, — ¢, have thelr
absolute values > g, while the other N—m havc absolute values < &
Then

Pr(lu—c¢| > e)=P + Py,



70 EXPECTATION AND CONVERGENCE Ch. 3
By definition

Eu— of = 3P (U~ o

m
= Z,Pi(Un' — ¢y

e
> S PP
i
since, if |U; — ¢| > ¢, then (U; — ¢ > ¢% Heuce QO
. 2 " ) "\...\‘
Ew—of > 2P QO
g2 i \ 7

P
< 3

Now, by Theorem 7 of Sec. 4 (p. 51) of this chapEE{;:j
Elu— ¢ = o> + (Fu— .:')2 v

which completes the proof of the first part\o:f Pthe theorem. The second
part follows from the fact that

Pr{ju— ¢} > &) —j-’Prﬂu—— d=eg=1

The importance of the Tchsbycheﬁ' inequality arises {rom its generality
and its usefulness in proying limiting results. The bound set by the
inequality is valid for any‘random variable.. However, if something more

than the theorem e Xlu}res is known about the random variable, then
closer bounds campusially be set.

Some general conclusions may be given at once.

Corollary 1" (‘the Markov mequahty) Let # be a random variable.
Then, for, Q’% e> 0,

s§ Pr{lu— Fu| > ) < E_I%ﬁ‘ﬂf :
Y% Pr(|u——Eu]£s)21ﬂE-—-I1:k—E—uﬁ
ifk=1 ’

Proof. Since, by the definition of expected value,
¥
Elu— Eul* = SP|U, — Eul*

the steps in proving Corollary 1 follow exactly those of Theorem 18 and
are left as an exercise.
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Corotlary 2. Let w,- - -, 5, be uncorrelated and have the same
expected value U and same variance 0%, Then, for any & > 0,

mPr(lg— U] > ¢) =0

Proof. From Corollary 3 to Theorem 11, we have

g2

i

a3
Using the Tchebycheff inequality and letting # - oo, the resultls
immediate. O\
We can easily generalize Corollary 2 to the case where thelgatdom
variables uy, - « -, u, are correlated. Lo
Coroilary 3. Let Ew; = U; and 6, = o,;, i, j = 1, - -&,%, and let U
be the arithmetic mean of Uy, Uy, + * +, U,. Then, for:’}@(é > 0, we have

n
Z"a‘f \
Pr(la—U| > ¢) < AL
rie™
and hence if ’
" % e
Z_qgj’:..
lim 'szz—- =0
g fl

it follows that . _
limBrglz — U} > ) =0
T
\ \ ) Exercises _
7.1, Let u have pQ'ésfble vatues 1, 2, 3, 4, 5, each being equally probable,
If e = .1, 1, and 15 Compare the probabilities of the inequality [u— En] > &
obtained from ,{}gc\"i'chebycheﬂ‘ inequality with the truc probabilities.
7.2. By setfing ¢ = 30 in Eq. 7.1, show that no more than one-ninth of the
possible rgs%s will differ from the average of all results by more than three
times thewtandard deviation, no matter what the population.

~Hemark 1. With the aid of the Tchebycheff inequality it is possible to
\ho&v in what sense the relative frequencies of occurrence of ﬂ_w possible
values of a random variable tend to the probabilities of those pos;tblc valt_ms.
Let wy, + + +, u, be n independent random variables each having possible
values Uy, - + -, Uy and probabilities Py, = - -, Py Then, we say that
4y, * + *, u, are p independent random variab!e_s_havmg the same distribu-~
tions, ie., same possible values and probabilities. Let v,; be a rundor_r;
variable having two possible values 1 and 0. Let ¢;; = 1 if and only i
#; == U, and let v,; = O otherwise. Thet, ¥y, » - -, ¥;, ar¢ independent and

Privy = 1) == Priu; = Upy=0; {": LN
Privy =0V = Priy; = Uy =1~-PF; |j=1," 1
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Also, if "
2 Vi

_a

n

=2

i
then the possible values of @y, are the relative frequencies with which U,
may occur in pesforming the » operations. Since

Evg = 1P+ 01— P) = P,

it follows from Theorem 6 that E5,, = P, Since 03, = P{(l — P, for all
J, and since vy, © © v, U, aT€ independent, it follows from Corollary 3-t¢ N\
Theorem 11 that

. _P{1—P) (D
Oy, = ™\
. n W
Then, from Theorem 18, we have R N
_ Pl — P; %
Pi"(l@m—" Pis > e < L("—_‘) .'“:,\\

ne2
50 that

%
/

lim Pr(l,— P > &) =0
n—ron \ g
ie., the probability that the relative frequcrfc:y’ of U; differs from its proba-

bility by more than any positive quantit§yhowever small, wili tend to zero
as n increases. ™

b. Convergence in probability, "Consisrency. We have already defined
biased and unbiased estimatesMin Sec. 2 of this chapter. We shall now
defins consistency, whlcglk often a more useful property than unbiased-
ness. To do this weshall first define convergence in probability, from
which the definition bf consistency follows almost immediately.

Definition of :cio}wergence in probability. We call a set of random
variables »), 4(* - - that are identified by the positive integers a sequence
of random'Wetiables; ie., given the positive integer /, there is exactly one
random}irariable v, that is identified, =1, 2, - - -.

A “sequence of random variables vy, %, - - « is said to converge in
g{oz’;ébiﬁry to a random variable or ¢onstant  if, for every & > 0,

lim Pr(lv,— v} > &) =0
or, equivalently, n_w
lim Prfe, — o] < s} =1

Definition of consistency. A sequence of estimates y, Uy, *
10 be a consistent estimate of U if the sequence #,,
probability to U. Thus, if iy, Hy,

- js said
Uy, * * * COnverges in
* » are uncorrelated random variables
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having & common mean U and common variance o2, and if fyy By * * °
is the sequence of arithmetic means, where
i R '

uﬂ '—_n— }‘1:1,2!-..

then we have proved in Corollary 2 to Theorem 18 that the sequence of
arithmetic means converges in probability to the expected value U,
Therefore ¢, Is a consistent estimate of U, Alse, we have shown in
Remark | (p. 71) that the relative frequencies with which each of thé\
possible results occurs when the same operation is repeated will conyerge
in probability to the probability of the occurrence of that possiblex reilt
as the number of repetitions increases. Thus, the sequence of\selative
frequencies 7y, 55, - - - defined in the Remark is a consisten{ estimate of
Pui=1,2, N R4

Tn general, the expected value of the limiting valug{of a sequence of-
randem variables is equal to the limiting value O(Ihe sequence of the
expected values of the random variables. Therg/dre some minor excep-
tions, such as in Iflustration 7.1 below, but tf{ese,\exceptions cannot ocour
if all the variables are constrained to be le§s)than some common upper
bound. o _

Diustration 7.1.  Convergence in pfobability may occur without the
expected values of the sequence ~Of*random variables “tending to the
expected value of the limitin%;i‘andom variable. For example, let u,

have two possible values O gn 7, and let
Ny n—1
O\ Priu, = 0) =
&

N 1

\\ Pr(u, =n)=—

O n
Then the géEquence: of random variables uy, w4y, - - * converges in prob-

ability..i\b:]‘),' since, for any & > 0,
i lim Pr(fu,— 0] > &) =0

—1 1
Euni()(n )4-;1(-):1
74 n

fim Eu, 5= E(plimu,)

-0 q—00

where “plim” stands for “limit in the sense of probability.”

However,

for all n so that
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The defivition of consistency given above is useful when the sampling
is done with replaccment or the population is infinite. However, a great
deal of its usefulness is lost when sampling from a finite population.
For example, suppose that a population consists of 2000 e]ementqry. units,
classified into two groups ¢ach consisting of 1000 elementary units, all
units in the first group being 1’s and all units in the second group being
0s. Suppose, also, that the sample is obtained by selecting elements
from group 1 until the number of elementary units in the first group is
exhausted and then selecting the remaining elements for the sample frem
the second group. Now suppose that the estimate #, of the proporntion
of I’s in the population is defined to be the proportion of 1's in thesample
of sizen. Thenu,=1,n=1, , 1000, and u, == 1000/af s == 1001,

+, 2000, If the sample were selected with replacemenk, #, would not
be a consistent estimate of the proportion of 1’s in the. populatlon since
the estimate would always be 1,

To avoid this type of contradiction, we shall make the followmg assumip-
tions for any finite population. We shall requite ¢'that to meet the defini-
tion of consistency the following two conditigns be satisfied:

(1) As the size of sample n increases,;tl-}e size of population N will also
increase, and for all » and Nwe wﬂi haven << tN, where 0 << ¢ <= 1.

(2) As the size of popula‘uon 1ncfeases the quantity U that we want to
estimate will remain copstant.

2

If these two assumptmps are made, then the sequence of estimates
discussed in the emmmq ‘above would be inconsistent.

When “lim” is written, we mean the limit as # becomes infinite, subject
to the above twp,ebnditions if we are sampling from a finite populatlon

We give two\&mple theorems that enable us to prove consistency in
many cas

Theoreﬁs 9 Let Eu, =b, and let o3 = o2 Then a sufficient con-

dition, )‘hat the sequence w, uy, - * - be a consistent estimate of U is that
{mh 9f the Jollowing conditions are sansﬁed

(1) lim |6, —~ U] = 0
(2) im o2 =0
Proof. By Tchebycheff’s inequality (Theorem 18), we show that

2 . ]
Pr(luﬂ-.... U| o E) < gn—t&;‘___@_
' £

L fo'llnws that if {1} and (2) hold, then the sequence uy, u,, * + i5 a
consistent estimate of U,
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Coarollary. If v, is an unbiased estimate of U, n =1, 2, - - -, and if
lim a2 == 0, then #, uy, -+ + is 4 consistent estimate of U, _

FProof. The proof consists of noting that b, = U in Theorem 19.

The following theorem states that any continuous function of consistent
estimates is itself consistent and the value to which it tends is the same
funciicn of the limiting values of the consistent estimates.

Theorem 20.  Let the sequence u,, be a consistent estimate of Uy, i = 1,
< hyandlet f(ty, 0 ¢ -, 1) be a continuous function of 1, ¢ ¢+, 4. Then
the sequence f(uy,. + + +, uy,) Is a consistent estimate of f(Uy, -+ », U)).

Proef. Since f(f, » + -, 1, is continuous, it follows that, givdg any
& > 0, wecan find 6 > Osuchthat, if fuy, — U] < 8, -+, |up, O] <4,
then |.ﬂu1m Cros ) (U Uk}‘ <& Hence  o\©

P"‘”_f(.“l:rn T ”kn) _'_f(UD Y Uk)} << E] . (‘.:‘" .
2 Pr(|”ln - UI] << é’ " “:;\I&k:ra - Uk[ << '5)
Now $
Pr(fuy, — U] <0, <+, [y, — Uy] < ) IPr(at least one of
the ineq\uef:ﬁfibs [ty — U = 8) =1
since one of the two events in parent]jéséé is certain to occur, Also
Pr{at least one of the ineqqa‘iiﬁe’swum — U = 0)

E
= EP"([Hm“ Uf] > 0)

*

g

N
since if the event in ej)arenthesis on the lefi occurs, one or more of the
events on the right will'occur.  But, since the sequence u;, — U, c:fmvcrges
in probability tatzgro, i = [, + - -, &, it then follows that the right side

R

tends to zero,\izind hence

litx(é}fét feast one of the  inequalities |u;, — U;] =) =10
O
50 thatfor any ¢ > 0
oY =1
O P Sl ) =W Ul < =
which completes the proof. o h
Corollary 1. 1f f{z, * « * f) is a polynomlal m Iy, 5 s t. en
S Gty + + -y ) is a consistent estimate of f(U3, © Uyp) iy 15 2
consistent estimate of U, i=1,* - » k. ) .
Carollary 2. A rational function of consistent estiir : o
estimate of the same rational function of the guaniltles being est;;nate’ ¢
provided the denominator does mnot vanish. More folrma .y, 1)
[, + - 1) is a rational function of &, « * % % thenf(_um, ) | : “"gf
is a consistent estimate of f{U,, -+ - Up for all possible values

mates is a consistent



76 . EXPECTATION AND CONVERGENCE Ch. 3

U, * -+ U, except those for which the denominator of f{t, - - -, 1)
vanishes provided that u;, is a consistent estimate of U, i=1,- - - k.

Proof. A rational function is continuous for all finite values of its
variables except these for which its denominator vanishes. Henee, if we
exclude the values for which the denominator vanishes, we will be limiting
ourselves te values for which £(t, - - «, 1) is continuous, and Theorer 20
applies.

It is easy to show that an estimate may be consistent and yet have
infinite variance as n increases. If we consider the sequence of random,
variables discussed in Remark 1 of this section, then we have already
shown that w4, ., + + - is a consistent estimate of 0, since the sequ”nce
converges in probability to 0. We have also shown that Eu,, =" Now

o n—1 1 { .}‘I
Enr;;:(](I )—:—n2—=n A
H £l m\\‘

so that o2 = n— 1 and hence 6% becomes larger and larger as n increases,
gven though iy, wy, + + - converges in probabilityozero.

Remark 2. Satisfactory discussions of the no}mal limiting distribution
may be found in almost any standard text Ohyprobability theory. It has
been shown {sce, for example, W. G. Madow, “*On the Limiting Distribu-
tions of Estimates Based on Samples fram Finite Universes,” Annals Marh.
Star., 19 (1948), 535-545] that these. 1|m|tmg distributions also are valid
for samplcs from finite populationsh™s

&

7
N



APPEMDIX A

SuMs oF POWERS

By 1he Kth sum of powers about a is meant &\
ar O\
- W)
T~ K=12 - A
{=1 « \J
Ordinartly we shall be concerned with sums of powers .1(13'(1[ 0 m
and sums of powers about £ (¢ == £, the arithmetic mc.Q\aI'.: b A Tyl

Sums of powers about 0 will be denoted by -\*. MR and sums of
powers about £ will be denoted by S, Sy, -

In order to evaluate the S’ in terms of the S¥ Q"I us recall the binomia
theorem for pasitive integral exponents. x\

Binomial theorem. If K is any positivg fufeger, then

(a+ &) =a¥ + Cfa“"g;;:iif;‘r;“"'f!;f I l
N (A

K RY
- K Kt
= }: C‘ a : }?)w J

=1} e
where ¢ \

N
CF == T(?\é—? aned b ii-- e e - (20D
i

and we define Cﬁf\:«'L [
Proof. /A= 1 or K = 2, the theorem may be proved by expanding

the pare th“e}:s Suppose now that the theorem is true for AL Then we
will pr(\}s it to be true for K - 1. Sinee it is true for & 1, this will
theis cnmplctc the proof for all pm:lm integers,  Stnee fa - M*
(\’\;L'b}(a - B)%, and since Eq. Al is assumed to hold, we hase

(“ 4 B = (a4 b) } Cha® i

[Ea\)
— C!\!\rlban\chhn},ul
|§J i--n
@KV (CF 4 CFYaRb 3 (CF (Wt
A SR T & G SR P W

=l
-1



78 EXPECTATION AND CONVERGENCE Ch. 3
Hence we want to evaluate CX | 4 CE. Now by the definition we have

K! K!
G+ DIK—i-] + K=

B K! ( 1 i____1”)
DK —i= Nl K

Cih-ri-l + CiK =

— (K+ l)l i C{\'-i-l
((+ DIK—Hr A\
Hence we have proved the important equation ke Y

. . N
CEU'=Chi+ G =0 K K>0" (A3
<™

Substituting in Eq. A.2, we have £
. E+1 . ’~\
(a+ b)h+1 = z C§x+lah+l—1bv' (A.4)
i=i A

P
which is the same formula as Eq. A.l but\\\)lth K replaced by K+ L
Hence, the theorem is true for K 4- 1 1f 11.15 ‘true for K. (This is a proof
by induction on X.) \
Let us now apply the binomial «theOrem and some previous results to
obtain some relations between S@nd S*,
Theorem A.1. If we deﬁn@ So =8} = M, then

\
\»\Sﬂ :JZ:UC;‘(— l)J:E’SﬁZ_j (A.5)
< : * & Kz
w\) Sk = 2 Ci&8_; (A.6)
\:‘\ i=0
\ A
Proo[ \\iy definition Sg = 2 (x;— &%, and by the binomial theorem
”\-’ i=1
"‘\ ‘,/
N/ (z,— B = 2 CPH(— 1)len
Hence

I

M
=3 3 Cf(= el
i=1 j=

K M
=73 > CF— 1Y&%F~ (by Bx. 2.10, Ch. 2)
i=0 i1
3

K
= 3 CF(— 1Y% Saf~1 (by Eq. 2.1, Ch. 2)
i=0 =1
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Hence Eq. A5 is true.  To prove Eg. A.6 replace z; by x; — & + & in the
definition of S% and apply the binomial theorem with z,— & = a, & = .
This is left as an exercise.

Let us now write out Eq. A5 for K =1,2, 3,4

8 =8 - Mi=0
Sy = 8F - 228F 4+ M3 = 8§ — Mz
8, = S~ 388% 4 326X — Mi® = §F — 388F + 2mz®

Sy == S¥ — 4E8% + 685§ — 48°8F + M&* O\
= ¥ — 4TSF + 6325F — IME <y
It is easy to verify that the last two terms of Sg will alw@s combite,
since they are : RO
C;(—l(“ l)K—le—IS;«- 4 (— 1) MEE ' /\\
— K{— DELMEE 1 (— 1)EMES :Q(;‘ YK — 1) MEE
Also, from Eq. A.6 we have . \‘\\\J

S* =8, + Mi = Mi \
Sy = 8, + 288, +Mx2:=S§—;~M9:2
S =8, + 385, +3a,-"-5’ +Mx3 8, 4+ 3E8, + ME®
S =8, + 428, 4 6;6‘383 48, + Mz
— 8, + 4xs,,} 65, + M

since 8; = 0 as p]:ewously shown,

J N N
Let us nm(exraluate >, 2 i% and Et Let
\i & i=1 i=1 i=1
) N
OO SN = 31
u :
N SHEN + 1) - SE(N) = (V + DF (A7)
But also
1‘?
SEHN 4+ 1) =1+ 20+ DF
i=1
so that

SEN -+ 1)~ SF0) = 1+ 2[(;+ HE — i

=1+ c{‘ x (N) 4 CFSE_ 2(N)
4o+ CESINY N

(A.S)
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Combining Eq. A.7 and A.8, we have
C{;S}i’ﬁl(N) + Cé(S}(—ﬁ(N) + 0+ Cj'f_lsf(N)
=N+ DF— (V41 (4.9)
= (N + DIV + DF1 — 1]
Putting X' ==2, 3, 4in A.9, we obtain
2SH(N) == (N + DN
3SF(N) + 3SHN) = (N + I)(N* + 2N) .

o\
4S3(N) -+ 685(N) + 4SH(N) = (N + 1N + 3N+ 3N) N\
so that, as may be verified, §\ v
NV 4 1) ) \
2 «':V"S
N
SHN) = NN + DEN + 1) \i’v
6 )
2 ' 3 &
SXN) = M \(».:}\V
4 {’*}

\ ¢

SYN) =

(4.10)

v J



APPENDIX B
MOMENTS

The rth moment of the random variable # about the quantity, ¢ris
defined to be A L
Eu— o (\))
O
If & has possible values U, » - -, Uy with probab;htles Pi,‘ 7o v, Py,
then, by the definition of expected value

Eu—c) = sz(Ui -

Iy and » are two random variables, then the [{aﬁ‘uct moment of order r;

£ 2hout ¢, 4 is defined to be
E(u~ c)’(v - al)8

If the possible values of ware U7, - -.,’,JUN and those of vare V3, - -, Vyr,
and if ’f’:; v '

P, = Pr(u“z U,v="V)
then '\ N M

E(u— C)’(V\ 4) = Z ZP:;(Us o (¥;—dy

If P,; = 0 when #’%%AJ; i.e., the elementary event U;, ¥; is impossible if
! 3 J, then we dcnote P, by P; and

\\ Fu— ¢y(p — df = zp,w — YV~ dy

™"

wher.e\}"\?‘ls ‘the minimum of N and M.
Moments about 0 and about the expected values of the random variables

are the two most important special cases. We define
k= B

and
.uw‘ = E(u - EH)’

Also, by definition,
pE = Eu'v®
trs = Eu— Eu)'(v — Ev)°
81
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Remark. If r is an integer, then by the binomial theorem
¥
{n— o) 2_ (— ALt
and . _
(v—d) = ¥ (— 1WChditp4
f=-u
Also
o= [(u— o)+ )
r
=3 Cic*{u— ¢y N\
X =1}
.. o £ “\’
and similarly N R,
=3 Cud'v— dy-# . ‘\3\
B=6 PR
A 3
Hence, if we let ¥ = n, we have '\;“\'\i
\/
Z (— D Coprp o RN
=0 P\

Also y “{:1:a
pE = Z‘C e

A\

O

=3 [)(——l)”‘C.;p“‘uf_a £ - Dyt
. X

K= Z Cot*fhrasz + p'

since \\‘ }

N

..l) pry =0

It is left as an‘éxermse to express the u,'s as a linear combination of the

u%’s and con\ersely

Tlustraty n B.1.
valuesi} and O with probabilities P and @ =
arnq‘,u,,_; =1, 2,3,4. By definition

#f = Eu = 2 pPUI

(@) If u is a random variable having two possiblc

1 — P, then compute uj

=Pl 4 Q¥ =P i=1--"

Similarly :
#y = P(1— Py + Q(— PY
= PO + (— 1YQP'
= PQIO™ + (-~ 1YPY

j=1,0
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Hence
Hy 0

Ha ro
ry s POQ* - P = PQ(Q - P)
ry o POLOY A PY
(B If v and » are random variables with possible values 0, § and if
Prilu=14v )y P, ij - 0,1, then A
g1 (P, - (03P - (O Py + (000)Pg = Pu S

i Pl 1-)(1 —~ P} + Poy(— P - Py) \ 3\ )

Pl — PL)(— P.y) f‘Pon(“Pl){"Pl)\h
‘r,tlQI-Q Putp QI_PIIJP Ql +P00P¥
where
P« Py Py e Pr(u = 1) :311\* O

Py By i Py = Pr(v D= i- 1~ 0,
() Let & be the arithmetic mean, of ‘“1’ <+, u, Then, as may be

verified by multiplication, N

’os

uhGi) ;E(Eul - -p};:ﬂ}
\\\ /

#a(@) = = ZEptg + E Eu u;}

i b ivj
iL ;I.ﬂ ]
*(i \. ~
:“3(“35{\”3 iélEJ -+ 333&131 +; %LE.:: il
(0 Vs 242 Euduu
\”P}(”) = [12‘1 ul + 41%&"?& +3 Z Eufus -+ 6#£k W5ty
+ 2 Eu‘-u,-ukum}
igjEkEm

Also u(#) is of the same form as pf(#@) but with #,— Eu; in place of u;.

Exercises

B4, If » has possible vatues U, U, with probabrhtles P, 0, compute uFs

F=1223 4,
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B.2. Verify
@) pp=py —
B =y — 3upy + 20
o = p3 — dppg + Gy — 3u
®) uf = po + 1
HE = o+ Sppy 28
P =ttt A+ S, +
B.3. If « has possible values 1, - - -, N with equal probahi]itics,o@pute

BF, g5 Bvaluate p¥, py, = 1,2,3,4,if N=11. (2)
A\
\O
S
'\(,
O
O
2
o
\ ¥
N
&
~N°
A
N
<O
éc’ o’
Nl
A\



APPENDIX C

RAPIDITY OF APPROACH TO LiMmIT

. ) :.'..\
Let £, be some function of »# and suppose that

. (\)
im n* £l =K< AN
) ) \/

where K is a constant. Then we write ™3

fo= 0
and say that £, tends to K with n%. If K = ()\@,e will sometimes say

v/

5

/

fo= ol BN
Simitarly, if f, 5 is a function of # arld:N nd if

fim 3 = K < o0
fi, N—o (08
ANn <IN
O
e 0<t <1
N/
. A\ N\ .

where K is a constand; then we shall also write

2N/ .
?\“ Juw = 0™
of cours\‘%tﬁay be 0, which we indicate by replacing »=* by 1. If
Jo= Q{Q\i\)r fv =01 or f,x = 0(1), then £, or fy or f,y is bounded as
n, Nyor'both # and N become infinite. Thus if
N\ "/

N/

it follows that

N—nd?
fm\!ﬂN‘—-I P

. 2
N "5:0(2)
N—1n n

Since by the Tchebycheff inequality

) 1 N—nod%
Pr(jf,y— Uyl > &) < SN1

85
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if @, is the mean of a simple random sample of n elements from a popu-
lation of N elements having Uy as mean and o% as variance, it follows
that, if a% is a constant or if 6% = 0(1), then

Pr(li,y— Uy} > 6) =0 (’l’)

It should be noted that even if lim o% = « it may still be that

N

i,y — Uy converges in probability to 0O but the rate of approach m.n be

less, For example, suppose that o = VN K and n=N, 0 < A 1,
Then

2., \
1 N (0—n K
Pr(lit_n — Uy £ - == { N
(|t N > e < EN_1 1 VN ”(,‘
For simplicity we shall now suppose that uy, - .-‘»;:\u:, vy, " " v, T, are

obtained by sampling the pairs u,, v, with replacémietit from a population
such that Euv, = U, Ev, = V, a2 = 0%, 0}, =/a30 0, = Gy { = 1,7 - -,

n. Then, if ~N\
G, =- S, and W, =- Y
it follows that N
2 A
o o I
n r i
o\\
2 o (L
ot = =0\~
N\ n:
A%/

\./E(H —U)3_—=ZE(H - U)3+3'9E(u — UPu, — 1N

4 3 Eu = Uy — U)o ~ U)

ivisik

-tr-a(
n- n

if g, = E(w;— UY, i= 1, + -, n, and similarly

?? n

E@,— vy =1t 0(12)
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if pg, = E(v;— V). Now

n 1]z
B, ~ VP, ~ V) = 5| 3 B Uy, ¥)
=1
+ 2> Eu, — UP(v; — )
0]
A 22 B, — U)oy, — Ulw; — V)
i
+ 3 B D= U= 1]
tEfrk A
Jis 14 . . .’\\\'
= _};22_1 =0 (;1_2) if gy = Elu; — UF(""}"Q‘ <]
.~.}} "}:: I! R ]
Theorem C.1. If the random variables u,, « + -, u:{ are :’}tdependent and
Euy= U, B, — U =y, i =1, - -, m j=100y" - - (y = 0), and if

&, Is the arithmetic mean of uy, * - -, u,, then

W

'g\f if j is even

H 7l
lim »* E@@, — UY = L ag

3 v
o A0
R VA
,j_ ".};' )
lim n° E@@, &0y =0 if jis odd

~

NS
Tl e

Proof. We can suppese'without loss of generality that U/ = 0. Then
"\

SN R = L pSuy | .1
vy
is 2 sum of term$like ‘ )
R/ Eududy -+ < u) ©2)

where j; N N
IE®A= 0 then Eu; = 0,i = 1, - - -, n, so that any ferm such as Eq. C.2
withy any of the j’s equal to 1 will vanish. Hence we can limit ourselves
o' terms in the expansion of Eq. C.1 for which each of the j’s is at Jeast
as large as 2. Then

Bl ) = w1 ©3)

and in the expansion of Egq. C.1 we will have g u; + * * g with a
mag— 1) - (r—h -+ 1)
hl
pendent of n. Now, if j is even, then the maximum value of 2 will be j/2,
which will occur if jy = « - - = j, == 2; and if j is odd, then the maximum

times a factor that is inde-

coefficient equal to



88 EXPECTATION AND CONVERGENCE Ch.3

value of A will be (j— 1)f2, which will occur if one of the j’s is 3 and the
others are all 2. Hence, if j is even

nn—1)- - -(nﬂ%-if-l) %

T _d
Ei, ==1C; - Ha | + o(n )
mlog (l)g
2
so that
TR I o
lim r2E# = —2 4,2 if nis even A
#t—r0 ) (i) 1 ' '\' Nt
2 \/

Furthermore C wiil be the number of ways of dlstnb‘utmg j elements
N

into j/2 boxes each containing 2 elements or

: AN
_}? J!'x‘\
Clz j:E\’
En O
If j is odd, then O
izl
o v
Euﬂz—}; Cﬁ_;l 1 ty © pgp ol 2)
Q\’ ( 2 )!
But \

R 7 [ o
N\
so that, if\j\is odd, the
.’sog " 1
» Eil = o(n ¥
{mch completes the proof.
1t may be noted that Theorem C.1 holds if we sample with replacement
from a finite population and let the size of population become infinite in
such a manner that its moments are unchanged. It is also possible to
prove theorems like Theorem C.1 for sampling without replacement and
to show that
. j‘ﬂ
E@w,— UY(F,— VY =0n 2) ifj+ giseven
_i4a+1
=0nr ? ) ifj+gisodd
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Corolfary. 1t jis odd, then
JEES
Ela,—Ul'=0( *)

Proof. For any random variable w we have

Oy = Elw|?— (E|w[P = 0

so that
Elwf? = (E|wy
and since
Jwi? = w? 2\
we have A
(Ewd)" = Elw| &y
AN
Hence, puiting w == (&, — UY, we have A
N
Bl — U < (B, - 0PTh
and thus \:"\,\
hm ni't E{u — U < lim W EQ1, — l{):’] < o
\\

f — 1
But the order of Eld,— U]’ must be Lnregra] If it were "L—i-—, then

1 .
llmn2E|u — U|? would be mﬁmté Hence it must be i , which

s O 2
completes the proof. N
We can similarly show that if f + g is odd then

_iEgtd
ﬂ-—U[ [, V{F=0m %)

A\
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CHAPTER 4

Simple Random Sampling

N\
DERIVATIONS, PROOFS, AND SOME EXTENSIONS,_ OF
THEORY FOR CH. 4 OF VOL. I* (D

Note. In this chapter we shall present a number of derigations and proofs
for simple random sampling.  As indicated earlier, a simpleyrandom sample of
n elements (sampling units) is a sample so drawn that\gvery combination of
n elements has the same chance of being selected. \Simple random sampling
with replacement is introduced in some cases in arder to simplify results and
at the same time to provide approximate theo;{ for sampling without repiace-
ment. O

Many of the theorems and statements 1§roved in this chapter are applicable
to other types of selection methods. Forgxample, the derivation of the variance
of a ratio of random variables, and ;he derivation of the variance of estimates
of precision are applicable to morgieomplex systems of sampling.

.1, The mathematical egq{e"ctation of the arithmetic mean of a simple
random sample (Vol. 1,,€h. 4, Sec. 7). To prove: A sample mean for a
simple random sample\df # units drawn from a population of A units is

an unbiased estimate’of the population mean,i.e.,
\¥/

O EF=X

:"\5.
where E“Qstands for the mathematical expectation of the expression
following it,

'\ % Iz\’_‘
w\i w4 ;__,xi X(
N\ F=%— XY=~ (1.1)
b N

x, is the value of the characteristic obtained on the ith drawing, and X
is the value of the characteristic for the ith unit in the population, An
estimate is said to be an unbiased estimate of a specified popuiation

* Appropriate references to Vol. I are shown in parentheses after section or
subsection headings. The number following I- after some equations gives the
. chapter, section, and number of that particular equation in Vel L

20
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characteristic if and only if the expected value of the estimate is the
popeulation characteristic.

Proof. Since the expected value of a constant times a variable is the
constant times the expected value of the variable (see Ch. 3, Sec. 3,
Theorem 3, p. 47), we may write

1= 1. =
n%x& HE“E%

Further, since the expéctcd value of a sum of random variables is equal
to the sum of their expected values (Ch. 3, Sec. 3, Theorem 3, p 48

we may write _ KO\
J s\
Ef =~ 3F, N
i &N

<

We now need to evaluate Ex,. By deﬁnltlon the e ected value of a
vatiate, u, is the sum of the’ products obtained by multiplying each
possible value of « by its probability, sunimed ovet\dli the possible values
w takes on.  Applying this definition, we ha»{*;,\ '

Er; = X\Py + XpPy -+ - ""E‘ XnPy

N (1.3
= 2X;P; N :
i A\
where X, - -+, X, are the pasiﬁ}lc values of z,; and P,, * * -, Py their
Iespective probablhtles
We now must evalu thc probability that X, the jth element of

the population, is selecte dt the ith drawing, This probab1hty can be
written
N*—IN 2 N—igl 11
b N N—it2N—i+1 W

(see Ch. Z8ec. 6, Theorem 3, p. 28, and Sec. 7a of Ch. 2), where the
first fac(:or is the probability that X; is not selected from the whole popu-
1& {on0f A at the first drawing, the second factor is the probability that

§ not selected from the remaining N— 1 elements at the second
d:aw:ng, and so forth, the last factor being the probability that X; is
selected from the remaining N — i 1 elements at the ith drawing.
Evidently 7, reduces to 1/ for all values of i, i = 1, - - -, n. Therefore
the probabiiity of selecting any element at any drawing is equal to 1/N.
Substituting P, = 1{N in Eq. 1.3, we have

N S S 14
j
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which shows that the expected value of each observation is the arithmetic
mean of the population if simple random sampling is used. Substituting
X for Ex; in Eq. 1.2, we have
1 n
Ef=-SX =- {nX)
"

=X
and hence & is an unbiased estimate of X.

Exercise. Show that, if the sample of n elements is selected {rom a population
of N elements at random with replacement, then £f = X Hint: The only
change in the proof occurs in the methoed of evaluation of 7 (wh;gh\st:il has
the value 1/N). 2N

Ny

v’ 2. The variance of the arithmetic mean of a simple randeT;{ g‘ample (Vol. I,
Ch. 4, Sec. 9). To prove: The variance, of, of the sdmple mean of a
simple random sample of 7 units selected from @\pepulation of N units

. - SN, ,
without replacement is given by (1 — /) —};,{1@3‘ if the sample is selected
with replacement, the variance is given dyve®/n, where

B N .
f= s the.,sg'lmplmg fraction

™

%(X : X)2
St ——— (2.1 or I-4.3.10%
\. N—1
o’ \ J"‘- —
@7 Sun oy
\ ot = l——j;'—- (2.2 or I-43.9)

OV
X8 thg‘@ﬂe of the characteristic for the ith unit in the population, and
Z and _&\are defined by Eq. 1.1; i.e., if we sample without replacement

A~ o2
vV 03 = Nn_“_(l-"f)'— (2.3 or 1-4.9.2)
if we sample with replacement
2
o= @4
n

Proof.* The variance of any random variable is defined to be the
expected value of the square of the deviation between that variable and

* See Remark 2 for an alternative proof that does not make use of conditional
expected value theorems.
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its expected value (Eq. 4.1, Ch. 3), ie.,
o2 = E(F — Exp

and since, from Sec. 1, ¥ = ¥, we have

= F(&— X (2.5)
Since
5
z = ; O\

then # is a linear cornbmatton of random variables; ie., T can %e\wntten_ .
in the form u = Zcfue, where ¢, = 1/n and u, =% Therefore, by

Theorem 11, Ch. 3 (p 56},

"y \‘
0} =2 2= 0y \ (2.6)
i % .:
where O
0 = Bty — D= X) 2BI = 1,2+ n
Equation 2.6 can be rewritten ) ,.’; .
s_ 1A 12 @.7)
o = S \V6; - T4 .
ok % oo i%j o

Thus, for a sample of 3,4ve have
& =34, + %?2\}‘\%‘3:3
= '.;i_(‘r{ ‘\i"‘:"z; -+ )
and the variance of  is
“3%\;(0'% + 05 + 03 4 0y + 013 + Oy -+ O3 + O+ 0z
AN = 3o+ of - o} + 200 + 2045 1 204)

‘hm-e 63, o3, and o2 are the variances of the values obtained on the first,
second, and third seleciions, respectively. The remaining terms,
Opo = Oy, Oyy = Ty, And Oyy = gy, are the covariances of the values
taken on by #th and jth selections with 7 not equal to /. Thus, oy, is the
covariance between the values taken by the first and second selections.
Note that there are 3 variance terms and 6 covariance terms, In general,
for a sample of size n, the first term of Eq. 2.7 will consist of » variance
terms and the second will consist of n(n-— 1) covariance terms. The

Z in Eq. 2.7 denotes the sum over these n(z — 1) covariance terms Now,
i#]
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since (z;— X)? takes on the possible values (X, — X)2, (X, — X)2, - - -
(Xy — X)?, each with probabifity 1/V, we have, for ¢f, in Eq. 2.7,

= flx,—~ X)) = %%Xi — XR =gt (2.8)
Hence, 0% == ¢% for all .
Now, to evaluate the second term of Eq. 2.7, we must find
o5 = Ex;— X)(x;— X) ~N
By Corollary 2 of Theorer 14, Ch. 3 {p. 62), we can write (%),
B, — Dl - X) = Bl — D@~ D @9

where Ef(z; — X)|(x;— X)} means the conditional expectcd value of
{z;,— X) for a fixed value of (x, — X). \

To evaluate this conditional expected value, when sampling without
replacement, one must in effect list the posabla}mlues of (z; — X)for the
Jth selection for a fixed value of the ith, sblectlon and determine their
probabilities of selection. Thus, for N— 3, if (x,— X)=(X,— X),
then (x;— X) takes on the values (»X1 X), and (X; — X) with prob-
abilities equal to /(3 — 1) = {. In general, the probability of (x;— X)
taking on a particular value on the jih selection other than that of
(x —X)is . e

PGS Dlte,— D] = —— C.10)
4 -
since, with the ith,selection fixed, the only possible values taken on by
(z; — X) are those left after the value taken on by the ith selection is
withdrawn fro’hq the population. Hence

W 1
E[(a: — D) — X)) = [Z(X Xy— (z,— X)j‘ (2.11)

Rnce

Eq. 2.11 becomes

¥ . X _
i — X =3X,—NX¥=0
2 2 :

B~ D~ Dl ==z @~ 5 @1

Substituting Eq. 2.12 for Ef(x, — X)|(z; — X)} in Eq. 2.9, we have
Elz,— X7

B — Doy — Xy = — T
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and from Eq. 2.8

o2

N—1

for all 7 and j. Substituting Eq. 2.8 and 2.13 for ¢? énd oy in Bq. 2.7,
we have

B, — X, — By =~ @13

2. _"l a2 ?’:‘(?‘I—- 1) a
o= & AN a
N—n O\
=" @14
Since . N,
N : :s\;
N=1% =% )
N—ni2 Sz....:\g’
o o e (1= )RV 23)

of Eq. 2.7 since oy, in that equation 4N}
— Ew,— X)w,— X) = B@ - D)Ew,— X)=0 (215

Hence, for sampling with replacgfient,
s.:‘” 62

N o= — | (2.4)

:<\ n

"\
If the sample is selected with repIacemer{,‘&% is equal to the first term

¢ 1“\ 5 = .
Remark 1. For afgstimated total, 2" = NE, the results are

<O oy = N{l—- iy
when s@p\ﬁhﬁwithout replacement and .
W o
4 2! == 2 -
~.\\ chx=N .

. iten sampling with replacement.  This follows from Corollary 4, Theorem

QL cn 3. 5n.

Remark 2. Following is an alternate proof which makes use only of
the definition of expected value and basic expected value theorems. Re-
turning to Eq, 2.5, we have

0% = E@E— X

%(‘v‘i“ )_{) ) 1 P _ 2
- Eli—_——{ = EE{Z{{C,——-X)} (2.18)

Iy *

an be written as the sum

Now, the square of an algebraic sum of z items ¢
ss products

of the squares of the » individual items plus the sum of the cro
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of the n{n — 1) possible pairs of the # items, ie.,

2 " k)
£§m—®}=zw—fﬁfgm—hmhx>
1t i LR

(See alse Eq. 2.3, Sec. 2, Ch. 2)) Using this expansion in Eq. 2.16, we
may write

i

2E{i(x,—— Xy +_§:k($f— X, — X)

I
2
w R

a1 _ , -
E@x,— X+ e .%;kE(x"_ X, — X) (2. [11

The probability of obtaining (X; — X)? on the ith draw is the same aé.the:
probability of obtaining X; on the ith draw, namely I/N. Therqf\é?e.
x \J
2 (X- X
E@,— Xy =m0 K7
.\ N
= g? \ (2.18)
Consider now the second term in the right-hand\shember of Eq. 2.17.
When the sampling is carried out without replaGénient, the probability of
obtaining (X; —X) on the ith draw and {Xp~ X) on the kth draw is
1/N(N — 1). This follows from the fact thatfe probability of obtaining X;
on the ith draw is 1/N and the probability of obtaining X, on the kth
draw, knowing that X; has been drqw,;;, 15 1N — 1), Hence

AN K- D~ D)
B, — X)) = 22
RAQ
when the sampling is¢@ithout replacement. Substituting Eq. 2.18 and
219 into Eq. 2.17 giyes ™

MN— 1) 2.19)

N

2 (X~ XX, — 1)

DL e, 1% i
\\i_ g n{Zr NN—-D

but \/ :

) : ©

KX - - ¥y +_Fy X -
2,0 D= D= Zo T Dl - S 2
:w\:o J3Fm i i
.
A =— > (X, XY
r)

and therefore

2 M, mn—1) o
R o N—1
N—no> N—n&* )
= —= - 2.3
N—1n N =n @3

3. The covariance and correlation of arithmetic means for a simple
random sample (Vol. I, Ch. 4, Sec. [8). To prove: The covariance,
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oz 10 & simple random sample of # units selected from a population of

N units without replacement is

Sy
=(1—=5 —n"i‘— gl fan (3.1)
and if the sample is selected with replacement, the covariance is given by
cxyih, where ¥ .
X,— X)Y,— ¥ N :
Sxy = Z( _)(1 ) _ =w_3%% (3.2)

X;is the value ofa characterlsuc for the jth unit in the populauon, Y Is
the value of another characteristic for the jth unit in the populatlon,
& and X are defined in Eq. 1.1, and # and ¥ are similarly defified.”

For simple random sampling, the correlation betweﬁ;n two sample
means & and ¥ is independent of the sampie size and NS equal to the
correlation between individual observations, i.e.,

SYY’ b .
== R = 4 \' (33)
Pz == PXI 8.8 9 \ .
) ) . X.. "N/

Note that U'z» which was derived in 86¢¥'2, is a special case of o
since o, = oF, where oy is defined by, Eq. 3.1 with & substituted for J

(X substituted for Ythroughout) »S;mﬂarly,

SXX = "S'X ﬂ.nd JlSYY = S%r

Proof. The proof follows. Steps analogous to those given in deriving
the variance in Sec. 2% (Thus, since & and # are linear combinations of
random variables, the, covariance of & and 7 is (by Theorem 12, Ch. 3,

p-37) 2O Lz o1z
'\" 2 i 12 E«j O-xa:i.-’f (34)
\W i
and since § 4 ¥ A
R\ S(X,— XXV~ D)
PR ’\. ’ O‘ﬁryf == N =0xy (3'5)
S )
Oy = — Ni Fl for i+ f (3.6)
therefore, by substitution in Eq. 3.4, we have
= Z Oxy — 2 2 ?I
— XY, —F) N-
— N n E(X‘x X}(Yz ) _ f) (3 1)

Nn N—1 o N
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where Sy is given by Eq. 3.2. Now, by definition,

P = oo (3.7
and from Eq. 2.3
S8

g0y = (1 — ) ==k (3.8)

and therefore, substituting Eq. 3.8 and 3.1 in Eq. 3.7, we have

N
g Bxy | oxy (B3
Py Pxy SXSY ax0y '\"’\. .

'\
~ 4. The mathematical expectation of the sample varia‘ri‘ce for a simple
random sample (Vol. I, Ch. 4, Sec. 12). To prove: I\n a simple random
sample of n elements s* is an unbtased estimate 0}‘84 if the sample is
drawn without replacement and 52 is an unbiaséd estimate of 62 if the

sample is drawn with replacement, i.e., to pre}e

(@) Es* = S%if the sample is selected w1%0ut replacement.
() Es* = o? if the sample is selected Wwith replacement,

‘

S«,f; E(x, — &)

n—1

where

(4.1 or 1-4.3.12)

and &% and o2 are deﬁned by Eq. 2.1 and 2.2, respectively.
Proof. 'We note th it

@7 Sw—mr  Swr oap
WEst =E : =F e E 4.2
\'\"ES n—1 n-—1 n—1 -2
and that\\.
.}\ g: .
Ny ¢ . 2 4 T
O JoR s A (4.3)
) p—1 n—1 N
\ow :
Ef* = o2+ X* 4.4
and, when the sampling is without replacement,
N—n
o3 : N =Tn o* . from Eq. 2.14
Hence
e n N—n .
E = . 2] 4.5
n | n—l[(N—l)n“+ S



Sec. 5 REL-VARIANCE OF ESTIMATED VARIANCE 99
and, substituting Eq. 4.3 and Eq. 4.5 in Eq. 4.2, and recognizing that

Fi

N—1

o = 82, we have
Es? = &2

As an exercise, show that when the sampling is with replacement Es? = o2,

5. The rel-variance of the estimated variance for a simple random
sample® (Vol. I, Ch. 4, Sec. 12). 7o prove: The rel-variance, ¥V'%, of the
estimated variance, §%, of a simple random sample of # units selected with

replacement is given by A
Vg_l(ﬁ n~—3);1(ﬁﬁl) ~"5\""\51)
T h n—1/ n d .
where N
) _ &
oo S o
n—1
N :o,i_,./;
§ = yith o, = ﬁi%;_l (5.2 or 1-4.12.7)
22 AN
and ' O

"
3

N AN
— Fr™
Gg — Z(X'f “'X:’ )"
A
Proof. By definition \{
,  EE~¥ED  E(s*—-o%)  Esf— ot
V= N (Es)2 - ot R
since, by Sec. 4, Esﬁ":}"a?. _
We now neeg\ia.’evaluate Es*,  Apply the foliowing transformation:

(5.3)

e ﬁ
:s.; mg - X = zg'
RN T
A\ F— X =3z
Theny%
& 4 n _ 3
\ 4 2z, — 2
Est = F &t 22
n-—1
- ! 5 E [(zzg)z_.znzzzzg + nﬂz4] 54
-
Now
. ki3 " H :
(AP = 22f + 22l (5.5)

iw]

* May be taken up with Chapter 10 instead of Chapter 4,
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where there are #2 terms on the left and # terms in the first sum, and
n*— n terms in the second sum on the right.  Also

- ﬂ. N l n‘ . n. 5 u\ W u‘ . !

IR - - [l“_‘ 42 >l 2.‘:;.‘:; Ao et (5.6)
= | i (7 isiik

where there are #% terms on the left and # terms in the first sum, sin — 1)
terms in cach of the next two sums, and »wln— ¥ — 2) terms in the
fourth sum on the right.  Finally

1 ] s n it
73— - . ..'3-. N ooTal a
= [5’:’“‘ A 22 k3 2R O
H i irj ivf .
T
+ 6 2 2oz ¥ M'H*‘\”'"I (5.7)
iFieR lf)rk.ran‘

where there are ' terms on the leflt and n, n(nw 0, nin -1y,

n{n— D)(n — 2), and afn — 1) — 2)n — 3} terms m\ihc five summations
on the right, respectively.

Since we are sampling with replacement, :st\\» + -+, z, are independent,
and hence, by Theorem § of Ch. 3 (p. 54),\7(’: have

B} = BR3P Ez if : 7 g
Eflz; = Ei}Ez; = 0 1‘3".' 7 fsince £z, = Q
Exfez, = E22Ez.Ez, = 0 ‘j:. 1?1 = ; # k since Ez; =0
Ezzazz, = EzEz, Ez,\E~,,, & 0 ifistj+k# msince £z, =0

(5.8)

Hence, from Eqg. 5.5 &\ui Eq 3.8,

: E(Zzz’}@ = Aty + Hn— 1ot
where ;e4 = Es.f" ‘and ¢* = F2f = EZ}. From Eq. 5.6 and Eq. 5.8,

E‘ 53 = 5 e+t~ Do = 4 (22 o

H

me Eq. 5.7 and Eq. 5.8,
W } w 3n—1)

E# = " [n2eg + 3aln — Dol = i—: + o ot
Substituting these quantities in Eq. 5.4 and subtracting o*, we have

1
Est— ot = [.f?;,t4 + nln~ Do — 2uy —~ 2n — Dot

(2 — 13
214+3( l) o4~(n——1)2r.r“]
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4
:fi'_i_t_ o (n—2—i—§—-n+i)
F: n—1 R

e ot (n—3)

B R 59
Finally
Est—ot 1 ( n-3)
Ve = ———— =~ | — . A
y ot n p n—1 (5\ 9

For reasonably large v we may assume (n— 3){n— 1) = 5, m which
case VI is given approximately by AN

£ \
Ve = ; B-—1 N (5.1)
; L9
Remark 1. If the population mean were kriowh Jand were used in
estimating §%, then AN
Z(xg 2

2 —

5 e (.11
is an unbiased estimate of o® and 3%

O
I{§\.’,= -(F-D : .12

The proof, which follows: the steps above, is left to the reader.

Remark 2. It ig téemaﬁs but not very difficult to obtain a similar resuit
for sampling w1thqut,rep]acement The result is:

. (N — 88— 12 n—l o
Vi = N(«q'ﬁ 1)2{ - HJ‘?(N (rr 2Xne— 3)— {n— 1)}
% dn— Din—2)n—~3 6 — 1)n—2)(n—3) P
.“\.:';o N -~ DN = 2) (N — DV —~ 2D(N —~ 3)
o..\' “,’_ .
} (N—1® ((n— DN
N\ N~ 1) {n(N W1 42
. 20— iYp—m— YN 3 — Dpe — 2¥n— )N
HAN—DN—D " (N — DN = N 3)
N~ 1)? _
-y } (5.13)

From a comparison of Eq. 5.10 and 3.13 it will be apparent why we use
sampling with replacement in approximating the variance of s* whenever
possible.
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Remark 3. When sampling with replacement, the expected value of any
term in which z; appears only to the first power is zero. Hence, an easier
development of ¥} can be made by recognizing that

7

N
sz 2,242
2 __ 1 LY N
5% = —_
n nh— 1)

and

(3]

Et= E-t L E

1 2
_Z,Zn‘z:‘
i}

" — 1%

Q.

6. The rel-variance of the estimated standard deviation* (Vql .\I,\ Ch. 4,
Sec. 12, Eq. 12.5). To prove: The rel-variance, VZ, ofythe estimated
standard deviation, s, is given approximately by )

V2 = 12 AV (6.1)

and it is desired to investigate the order of apgqximation.
Proof.  Although the proof is expressed id/tetms of s, the results are
valid for any positive random variable s,

Q"

Let Es?2 = o2 Then, since QO
E(s—- o) = E;f-’:;“— 20Es5 + o?

;7*"2;:?(0' — Ey)
it follows that N

.\'93 - 2(““ E“) (6.2)

a

and hence the investigations of approximations to the bias of s and to

the rel-variancendfs may be carried on simultaneously. Furthermore

Eq. 6.2 showsgsthat for any random variable s such that o® = Es* £ 0 it

follows that("}"”
%.. o— Es

.""‘-\-»,

() (6.3)

that the bias, Es — g, is non-positive, i.e., the expected value of the
estimated standard deviation never exceeds the standard deviation.
1t is not difficult to verify, by using the fact that 5* — o = (5 -+ 0)(s — @),
that the following is true for all values of s and o:
s—o6 (s2— oY) (s2— o) 4 {52 — o%)?
o 2 8o 165*
(5% — o2)t

 160%(s + o)

43

(s2 4 450 + 56%) (6.4)

* May be taken up with Chapter 10 instead of Chapter 4.
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Since Es®* = ¢ it follows from Eq. 6.4 that

a-— Es 1 l
B B\ B2 3
Pl = E(s* — 0% E(s c)
1 {52~ o)Hs? + dvo + 567
E .
+ 1609 _ (s + 0)* 6.5)
Therefore, from Eq. 6.5 we have
E N
o Es . .
. ——é—~E(52—-0'2)2+16 5 Els*— o%)® \}
\\
1 (82— s+ dso 5029
T 1608 (s + o)t ,:Z
Since O\
Vi o—Es \g
2 o o

from Eq. 6.2, we have \“

VA ) '

v 4 + 'é_f-" E(sz. ’a”)3 (6.6)
1 (SN 4 dso o 50 —0
Scr“,<\ (s + o)t
Now \\
: o7 5% - dso + 50
N < <5
¢ .;..a (S + U)“
5o that O N>
Vi‘ 1 2 2y3 2{_@__[_ 2 g3
.&7”@5@ — PV L g EEE o)
QO 5
AN —— E(s?— 0%
N\ 7 80*

N

1 5
For sufficiently large n, ;S—U-EE(SQH a?)® and é}—aE(ﬁ— o)t are small

relative to (V2)/4, and we can say that V2 is given approximately by ; V3.
This is the approximation to V? for any sample design. For a simple
random sample of » units we can substitute Eq. 5.10 for V. to obtain

n—3
Che -
peo ol f) 6.7

*’ 4n 4n
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or ——1
v, = Jﬁ (6.8 or 1-4.12.5)
4n

7. A condition under which the approximation to the cocfficient of
variation of the estimated standard deviation is reasonably satisfactory*
(Vol. 1, Ch, 4, Sec. 12). The approximation to the coefficient of variation
of the estimated standard deviation, V, = ¥V./2, as obtained in the pre-
ceding section, will be a reasonably good approximation for sizes of
sample such that V. is less than .3. This is indicated by the fo[[d'}aing
line of reasoning.

Note that, if we use the approximation to V, given in SeQ 6 of this
chapter, an approximation to the confidence limits (limits ‘ef sampling
variation) on s with a reasonably large sample would bc 3

i (1 N i’s_) \‘
5 )
Another formula for obtdining confidence b@}lflds for s is ‘
VT LIl (7.1

This follows from the confidence lmuts for 5%, which are o7 (1 4- V),
and from the fact that s and 5% are ma,thematlcally dependent.

Values of ¥, for several levelg ol error in the approximation 1o the
confidence bounds are given in the accompanying table for 7 == 1, 2, and 3.
In the table r is the ratio of the approximation to the confidence limits
to the limits given by, E.qx? I, ie,

V%
1—_&{—1

p “) F=

Y, V1L W,
and any vs%x}éféf V. less than that shown in the table will yield a smaller
value of &'than is indicated in the table for the corresponding values of
t and {' * Hence, except when a very high probability is demanded for the
conﬁdence bournds covering the true value, such as that associated with
3, V,j2 will be a reasonably good approximation for sizes of sumple

such that V. is less than .3,

Vi for given values of + and ¢

r=1.10 r=1.12 r=—=1,14 F=1.16 r =118

1 39 .62 .65 .67 .69
2 29 3 A2 34 35
3 19 21 22 .22 .23

* May be taken up with Chapter 10 instead of Chapter 4,
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8. The rel-variance of the estimated standard deviation for a simple
random sample drawn from a binomial distribution (Vol. I, Ch. 4, Sec, 12),
To prove: For a binomial distribution, the coefficient of vasiation of the
estimated standard deviation, 5, in a simple random sample of # elements
drawn with replacement is given approximately by

laleim) @

where P is the proportion in the population having a specified charaeter-
isticand @ =1—P.

Proaf. We saw in Sec. & that the coeflicient of variation sq.l.iafcd of
the estimated standard deviation, s, in a simple random g&wiple of #
elements drawn with replacement is given approximately by '

ﬁ*n——3 \\
] a—1 }
Vs ————
: A N

where f = p,/ot. For a binomial dis'tribytfeff:

PG et —P(I P4 QO P!

N 3
= PQ~ 3P2Q2 . (8.2)
Aot =P (8.3)
and therefore \ "\
fm— 3 | (8.4)

&

substituting fq{:@:\m. V2 gives
& - _1_(-_1____4,'1—6) 8.5
N\ Vo= PO n-—1 (®.3)

-9 Slze of sample required to estimate the standard deviation of a pro-
Poxtion with a prescribed precision, say ¥, = .1 (Vol. I, Ch. 4, Sec. 12,
p- 131). a. To prove: For n greater than 60, ¥, is less than .1 if
.20 =2 P < .80, and it is reasonable to assume that V' will be less than .1
when the sample proportion, p, lies between .30 and .70.

Proof. F¥or a binomial distribution, from Eq. 8.5,

1 /1 4::—6)
2 - — - 9.1
Vi 4n (PQ n—1 ©-D

Note that V2 decreases as PQ increases, for a fixed #.  If we fix the size
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of sample at # = 60, it follows from Eq. 9.1 that V, will be less than .1
for .20 <L P < 80. Moreover, when the sample proporuon, p, lies
between .30 and .70, the population proportion, P, is likely to lie between
.20 and .80. Thus, when p = .30 for a sample of 60, then

PO 20 % .80
p— 2 =.30—2A/¢—=.30-2N/——~«:,zo
P 2% . 60

and therefore, when p = 30, it is likely that P is greater than .20, Simi-
latly, when p = .70, then .70 + 20, = .70 4 .10 = .80 and it is likely
that P is less than .80. Therefore, we can be reasonably sure that' a
sample of 60 will be sufficient to estimate the standard devia,t{én of a
sample proportion or a total which is between 30 and 70 per(eent of the
population with a coefficient of variation of less than 10 per cent.

b. Taprove: IfnP and nQ are both greater than 25, V,i$ Jess'than . 1, and

it is reasonable to assume that V, is less than .1 if ng}ﬁnd nQ are 35 or
greater. ’

Proof. From Eq. 9.1 above, solving for n, \}’Qahlain

F§+4V2*4*~/(4_4V2 I%Q\) 16V2(P1Q 6)
S

DL

=

H ==

' N\
since Q@ — 1 and we hayey hm rP =23 for ¥V, =.l. Further it is reason-
able to expect that nP il be greater than 25 when np is greater than
33, since v
np - 2a{n,,,\7 35— 2 VaPQ = 35— 2VnP=35—10 =25

and theref@sg 4P is likely to exceed 25.
10. A, 51mple random sample of a population contains a simple random

pI& of any subset of the population (Vol. I, Ch. 4, Sec. 7). Suppose
th a simple random sample of » elements is drawn from a population

of N elements. Let K be the number of elements belonging to some

subset of the A elements in the population, and let k¥ be the number of
elements in the sample of # belonging to that subset. Then the sample
of k is a simple random sample of the K elements, with the same expected
sampling fraction as the sample of ». That is, o prove:

a. All combinations of k elements are possible samples and are equally
likely.

b E

=1

k
K



Sec. 11 VARIANCE OF RATIO OF RANDOM VARIABLES 107

Proof. a. Fix the vaiue of k at k. Then any particular combination
of k, elements among the Cf possible samp[es of Ky from the subset will
occur exactly C¥E times among the C¥ possible samples of r elements
from N. Therefore, all samples of &, are equally likely.

b. Let X, = 1 if the ith element belongs to the subset;

= ( otherwise.

n N
Then 3w, = & and 2 X; = K. Hence,

& O\
o, N n ¢(\A
E-=FES .~
K K K N O

1L The rel-variance of the ratio of two random varigﬁiéé’(\e’ol. 1, Ch. 4,
Sec. 18). To prove: The rel-variance of a ratio of t#o’'random variables
w and w is given approximately by Y,

Vi = Vi+ Vi— 23%17 V., (111 or 1-4.18.12)

Proof. An approximation to the vzimance of a ratio of random
wariables u/w may be arrived at ag f@HOWS Let

RN
AN

\vu— Eu
Aa - Eu
then ' '\'\
' SSu = (E{l + Au}
Similarly, O\
SO w=(Ew{l + Aw}
~0 {z _ §3}
\% O, \w Ew _ {1 + Au }2
iy = =

o = 755 [+ Aw
A (2)
m~\J Ew

)}
4

(&)

= E{(1 4 Aw)(l + Awy?—1}2 (11.2)
Now '
!
=1— Aw)? —
T 1— Aw + (Aw)

which will converge to (I + Aw)~L if Aw is less than 1 in absolute value.
When Aw converges in probability to zero, it is not necessary that Aw be
less than ] for alt possible values of w in order for the initial ferms in
this expansion, when substituted for (1 + Aw)™! in Eq. 11.2, to yield a
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useful approximation to the rel-variance. Thus, Eg. 11.2 becomes
approximately

E{(1 4+ Al — Aw -+ (Bw)] — 1)
== E{Au— Aw -+ (Awl — AudAw + Au(Aw)}

Retaining terms of the second order or less, and noting that FAw = Edw
== 0, we have

E{Au? 4 (Awl — 2AuAw) = V24 V2 —2p V.V, ({(I11.3)
since O

Ty N\

EAulw 2= ——2— = p V.V, (NS (114

AW = By Peet P L0 (1.4

To see that Eq. 11.3 provides a useful approximation {©thie rel-variance

of the ratio of sample means, for n sufliciently larg{:,{we note first that
Eq. 11.3 with u = &, Eu = X, w = §, Ew = ¥ nidy)be rewritten

E{(:E— Xy (@- f)z_z(:g‘\f)(gﬁ F)}
Xz re N X7
NP S L "
—:_E{(x*X)?:;Y(y Y)] I (11.5)
Also \\
r X\ /X
V(ffﬁ)_E(:a—_)"‘/) ?‘z
R0 20 G L
=E[(Zf- =560 Y)] e
& PR G L e i
"\.S“ﬁE[(x—X)-_Y(?—-Y)] (“172_) (11.6)

where }hg\ﬁfst term is Eg. 11.5, the approximation to the rel-variance.
We need merely show that, for some value of » sufficiently large, the
secOnd term of Eq. 11.6 becomes very small relative to the first term.

“Fo’ do this we note that (see Remark in Sec. 4, Ch. 3, p. 56)
. _ ¥ _ R St — e
fon-to o] (£57)

_<__{E [(a': —-®) - %{;(g — }"’)TE [%]2’3 (11.7)

Now find a value #, which represents the smallest of the sample averages
from the population, and assume all i, > 0, and let us call that value ¥’
By substituting ¥} for 4% in the denominator of the right-hand side of
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the inequality in Eq. 11.7, the inequality is strengthened and the right-
hand side becomes eaual to _
{2 — Yz}alll,

{E [(as o —io - f’)] b .

By evaluating the expected values of the terms in Eq. 11.8 we find that
the order of the first factor® is 1f#?, and of the second factor is 1fn, and
therefore the order of Eq. 11.8 is (1/n)'": = (i/n)", Since the first term
of Hq. 11.6 is of the order 1/n, it follows that, for # sufficiently large,
Eq. 11.8 will be small relative to the approximation to the rel-variahde,
A similar proof would hold for estimated totals and other(Sample
estimates. NN

Ny

(11.8)

“12. An indication of a sufficient condition for the app:;fﬁiila{ion to the
standard deviation (or coefficient of variation) of an qgﬁgﬁéteﬂ ratio to be
reasonably satisfactory (Vol. I, Ch. 4, Sec. 18).f Toprove: The approx-
iration to the standard deviation {or coefficient of variation) of an
estirnated ratio, r = #fw, will be reasonahl "Szhisfactory provided that
V,, << .05, or provided that p = V,fV, algd:)}wg 135, where ¥, is the
cosfficient of variation of the denominator'ef the ratio, ¥, isthe coefficient
of variation of the numerator, and p_ifs’the correlation of w and w,

Procf. Fieller] has shown thqt«ﬁ:ééct confidence limits, B; and R,, for
the ratio R = U/W are given bynille solution of

(22 — £252) — BR{uw — 1%5,,) + R(W*— %2) =0 (12.1n
where ¢ determines thé\épbropriate probabilities of the normal distribu-
tion, u and w are normally distributed, and 52, s3, and s,,, are the sample
estimates of theyvapiances and covariance of w and w. Then, at the
significance leyel, AR, is the relative length of the upper part of the
conﬁdence{n‘?}z'rval, and AR, is the relative length of the lower part, where

Q)

Rj—r

Q . AR, =
¢ v F : -

~\J (12.2)
AR, — F— Ry

r
We can estimate the rel-variance of a ratio r by 'substituting sample
estimates for each term in Eq. 11.1; that is, an estimate of Viis

12 =22 + of — 2p'v,2, (12.3)

* See Theorem C.1 in Appendix C to Ch. 3, p. 87.

T By Margaret Gurney, Bureau of the Census. _

1 E. C. Fieller, Supplement to J. Rey. Stat. Soc., Vil (1540-41), 51.
* May be deferred.
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where %, +2, and p’ are the sample estimates of the rel-variances and
correlation of 1w and w.  With this estimate of the rel-variance, symmetric
relative confidence limits are obtained in the usual manner by computing

r+ (12,4}

Thus, rv, plays a role in defining confidence {imits similar to AR, and
AR,, and we can get a measure of the closeness of the approximation of
Eq. 12.4 to the limits obtained from Eq. 12.1 by comparing v, with
AR, and AR,. Let O

QRI — I(UE'_ P"U“'Uu,) -+ '\/'L‘f — 121}3?"30(1 - P,zy '\“1\
£ = = 4

i, (1 —2olw, .
twx + V1 — 53] — 29 "G
— —_ ¢ 7 2
T 1 RX (12.5)
where ’
I; b— kgD
ot e LT RGN (12.6)

U AV i 26 p'
k=, fu,, and b = v}, — p'e v, is the saniple estimate of the refative bias
of r as an estimate of R (scc Eq. 143 and Sec. 14-16).

£y is defined analogously for th€¥ower part of the confidence interval
and is obtained by replacing 8.5y —.

Note that

A8 (ko'
T 0 —kpP R0 =59

and cannot exceed j

If we let ¢+ andl be positive in Bq. 12.5, we have the maximum of the
absolute valgesol ¢, and ¢,, which we shall call &, Then ¢ is monotonic-
ally incecsing with increasing @ when o, << 1, and for any specified

(12.7)

1, << 4 the maximum possible value of ¢ is obtained by setting x = 1 in
Eq.J25. We then have
PN
W) 1
\ } r(max.) - =~ 1 (12.8)

Since Eq. 12.8 is monotonically increasing with rr,, we can set a reasonable
maximum vafue on £, say £ (max,) = .15, and determine for a particular
probability tevel (i.c., a specified ¢) the maximum value of 2, such that
£ 15,

For example, if we specify 1 - 2.5, we have

l -
F.15 = *i—:—z—s-l—r or t,.-< .05
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Thus, for v, 27 05, the use of - 1, s confidence Dimts wall pree approt
inuttely the same results as obtained (For normally disrerhuted saeates
from Eq. 12,5, This is interpreted as evidence that v, prosudes @ reason

iably good approximation to the coeflicient of variation of ¢,

it

Remark 1, IfS =0, thenx - 0and forr-

ShSandy tmany — 14 we
have, by substituting these values in Fq. 12,5,
|
s = -
Lo - (!,25!"? ~

ar vy, <7 .15 is sullicient for the '1pprm|m Mion to be good,
Rl mark 2. By substituting - 7 and the observed values of £ and', \n
Eq. 12,5, the value of £ can be determined for any patteular mmplc\scmlh
Remark 3. The results above apply alo 1o the pum:f:nm Yanan -

B VL V= 2pb, V. by substituting 1L 1, and forl SYL and pf
in Eq. 12.5.

%4

m\\'
13, The variance of the ratio of two random variablés estimated feom a
simple random sample drawn without replaccmgn\\i’nl. I, Ch. 4, Sev. 1y,
Ey. I8.1). To prove: The variance, of, of ;,!.,‘i{li"m rfue o simple random
sarmple of n units drawn without replachment from a population of ¥
units is piven approximately by \

"

VIR V3= 2p0 1 W, 1o
at = RY(1 f)(A«———-—H—ll SAXE } {4 o

L4180
where
P fi 't ".(
Y 15 an estimuile o K P ¥
N
N S(x, - KR
(N 1R
~
AR
AN C{N=-D)
O~ ORI T Y N SR
R - Sar
Py VaVy = pyy {7} EE = (5- “;}“f{* """"" £F
Proof. By Sece, 11 with 1 - - Fand w - § we have
0% = RVE = RVE - VY- 2p,,000,) (13

By Sec, 2

g SE_ Q-8 0-04
1‘_"17:! = ‘?: . "
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and similarly for V% By Sec. 3

P:EﬁVny = Py & = Pxy

=y
4
=y

Substitute these values into o2 (Eq. 13.2) to obtain the desired resuit.
N

14. An approximation to the bias of 2 ratio cstimate (Vol. A, Ch. 4,
Sec. 18). The bias of r = u/w as an estimate of R = U/ W,,v(h\erc u and
w ate random variables and Eu = U, Ew = W, is given approximately by

<

RV — punVuV) (14.1)

B~ B) = ROVE— V)
~

Proof. The procedure for generating ap @pproximation to the bias is

the same as that given in Sec. 11. Hergwe'let

To prove:

b Eu
Ai{_r' Eu
= (Bl - Au) = U(1 + Aw)
Similarly ¢\
w BN+ Aw) = (L + Aw)
then A\
‘w U 2o~
Ze =) = 1 __
E( W):.\E [0+ AL+ Ayt — 1]
N
N B 4 Al = Aw 4 (AnP— QWP - - )= 1]
’"\\‘ -4 U
N\ = @E [— Aw + (Aw)® — (Aw)® + Au — Audw + Au(Aw)?]

and, ignoring the terms of order 1/#* or higher, we have
U
— [y — V.Vl 14.2
W{ w ) puw ™ ‘bJ ( )

In a mannec similar to that given in Sec. 11, the remainder teym in the
approximation can be shown to approach 0 faster than Egq. 14.2. Hence,
for sufficiently large n, Eq. 14.2 is a satisfactory approximation to the bias.
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Remark 1. Whenever the regression line of u on w passes through the
origin, the approximation to the bias is zero, '

This follows from the considerations below. The regression line of u
on w is given by

N
u= U= pyy—(w— W) (143)
T
If this line goes through the origin, then

7

U= puw W
Pua W ’
and _ N\
) Vw : ’ N
p‘uw - V-u ‘ '\0 \“\

Substituting this value of p., in Eq. 14.1, we see that the appmpﬁniation to
the bias is 0 when the regression of # on w is through the orgin’

L " ki)
Remark 2, For simple random sampling with » =:@‘y and x = 3z,

n
and ¥ = Dy;, the approximation to the bias of r as @eslimate of R=X{Y
is given by : N>

1 — P\ :

Tf R(VPY — pxp VX>y) (14.4)

15. Decreases in the bias of the 'rsii;_i‘ci estimate relative to the standard

deviation with increasing sample size (Vol. I, Ch. 4, Sec. 18). To prove:
With simple random sampling, the bias of a ratio estimate r = xfy
decreases faster than the stafidard ercor of r, and with a moderately large
sample the bias of » willbe negligible in relation to its standard error.

Proof. From Eq./Md.4 the approximation to the bias of r is given by

¢ ‘:\ i “j 2 .
> A=R T (Vi—pxyVxVy) (15.1)
:"\.50
and fl‘Om.\Eé."B.l, the approximation to the variance of 7 is
\ J o = R ]_:.{(V‘zl 4 VR 2 Vi V) (15.2)
N/ n
Consequently
é?i 1=/ (Vy — pxyVxV)®
, a  on Vi+Vi-2oxrViVy
or

A _Jl —f (Vi —pxyVxVy )
a N on NVY+ Py—2pxxVxVr

which decreases with increasing ».
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16. Two condifions under which the sample ratio is an unbiased estimate
of the population ratio (Vol. I, Ch. 4, Sec. 18).

a. The ratio ¥ = u/w of two random variables u and w is an unbiased
estimate of R = Eu/Ew when u/w and w are uncorrelated.

b. If u= Jz; and w= Dy, the ratio r==>wx, />y, is an unbiased
estimate of R = X/¥ when the conditional expected value of %, is equal
to Ry, for any pgiven %,. This is a special case of 4 above.

a. To prove; N\

u U A
— = — when o/, =0 O
w  Ew tufieh, 2 N

Proof. By definition N\

I
Ty, e = Eu—E ; Ew .

If Tihit, w — 0, then :
u '\ w
Ey— E— Ew :0;.
w ’\
and ”
| U w\Fu

— = —

& B

@ )\— — when E(x;|y,} = Ry,

Proof. By Tl}qo'rems 13 and 14 of Ch. 3 (p. 61) we may write

b. To prove:

N z“" — Eo- SEe)
K\ Sy, _2%
Wheg\
\”\‘ v Ez,|y) = Ry,
it\follows that
52, " X
2% _ gL Spy,— Er - R=7

2 2Y:

17. The variance of an average and of  total for a subset of the population
(Vol. I, Ch. 4, Sec. 10 and 16). For the class of populations for which

X; = 0 whenever ¥, =0
Y,=1lor0
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a. To prove: The conditional variance of r = /7 for a particular
simple random sample of 7 Units is
N,— Ny—n, o
N, °

and the cxp\.cted value of this conditional variance over all samples of n
units is given approximately by

2

o =U=/+Vioy UAN
¢ ) <
where [ = n/N, O
N, is the number of units for which ¥, = I; ’ ‘:f o
n, is the number of such units in the sample; o N
&2 is the variance among such units; \::\\\.
ie., ] A
- (X . X )2 {
S2 2 i (17.2)
v N, I C
where ¥ ,‘
o _ &
X, :77
N,

and V2 is given by Eq. 17.9>
An unbiased estlmate\gf??

O r;gzﬂ_ﬂ%:% (17.3)
A\ X n :
o ISy

% O ) ) .
In 3z, t er;is the value of the X-characteristic for the ith element in
the sample\havmg y, = L.

Pragf,™ By definition
gl ,,
/ ot = E(r — Er)®

n, N, 2 .
_F (Zi _ Zﬁ) (17.4)

n N

7 n

By Theorem 14, Ch. 3 (p. 61), we may write

2
t = FE, (Zx‘ ',) (17.5)

ﬁ"
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where £, means the conditional expectcd value for a fixed #, of the
expressmn immediately following it. By Sec. 2 and 10

Hy 2 Ny _
(S _) N,—n, 1 S(X,—~ %)
E — ¥ g 17.6
e ( n ! N, n N,—1 (7.6

o i

From Eq. 17.2, 17.5, and 17.6, we have

S8 L '
,_E('._—i)rﬁﬁ(ﬁ-———) 7.7)
' ;

2 o L, N, )
Since P v'\t‘“;\
E
1, = {En)(1 + An,), where An, == ———b—&’\/
A
and &
s\
1 -+ An, \,
it follows that \\'
| 1 AV
E—=—Ffl — 2 .
n, En, { +_ (ml F- }
= —{] 4. V‘E; -V 17.8
B, 3 = ) (178)
'\
since, by Sec. 10, En}\A—“,(n/N)N = {N,.
Furthermore,
g,\’ V2o — —:2 [7.9)
IN” T ( 7 P Pu (
where OV
A N,
A\ P="— Qwtl_p
«* N

Sgysmute the approximation of E(ljn,) in Eq. 17.7 to obtain the result
given by Eq. 17.1.

b. To prove: The rel-variance of 2%, an estimate of a total for a subsel
of the population, where
N )J N H
Is approximately

{17.10 or [-4.10.6)
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where
N
P=-% Q=1-P
and
X,
e X R
¢ (N, — 1) X2
Proof. By definition
e _ a2 N\
T (ER A
Now . :’,\3\\..“.
=X W W
and : “<‘
o — =) Z(X 2PN
# #n —1 )
where ’::\\3
5 ¥, L
7. 2% 280
N\ N

and if N is large, so that we may zgs;,{iﬁe N{N—-1D =1,

5 *.}::‘ X,
py = 1S (ZX2 1\)i__lf_f( X 1)
* n ANI? S n \NPX?

<O

L) = 1 '
S s )]

P\% n LPANXE P
"\’\50 V2 _| Q
O ~ ()P E
N
the resild given by Eq. 17.10.

]\8 The rel-variance of the estimated variance of a ratio estimate* (Vol. I,
- Ch. 4, Sec. 21, Eq. 21.6). To prove: The rel-variance, V,, of the esti-

mated variance, s, of the ratio r = xfy for a simple random sample of
n units drawn with replacement is given approximately by

b= AVY dp ViV

Ve = (18.1)

n n 28

where p,.p is the correlation between Z7 and Yy, Z; = X, — RY,, iz

* May be taken up with Chapter 10 instead of Chapter 4.
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and V. are defined in Sec. 5 and 13, respectively, and either

- o
™ 2 K
2 2 z : 2 X o2 !
e v — 2vy), with v} = = v = —
r ?;2( vy £5) 2T g ¥ ni*
where 5% and s3. are given by Eq. 4.1, and
r -—
S ¢ 2l — Dy — )
T ngg (n — Dnzy ~
or \
f n :~\.
1 S4%r, — 2 . x, XTI Nt
s = *AIL—-:;. with 7, = < and § - ;‘—‘ O
n (n— 1)y Y, PR
. N
Consider o \

n o
o ISP — RE 132 o\
A *ZJLE—’-——) = = L if z; = &> Ry,
n ni* n ni
. : o
The rel-variance of 5}2 will be a good approgi@ation to the rel-variance
of 57 for large enough #. The derivation here substitutes r,— R for

r;—r. For the effect in an analogous, sitiation where X is substituted
’Q’

for &, see Sec. 5. &N°
Therefore, for » large, SN "
3 =2
NS prin
2 . 2 z - _2' L
Ve = Vs;.\“\— Vg where i = .

Sampling with rcp]aceméz; has been assumed for simplicity and will be
a good approximatigfiyto sampling without replacement whenever & is
large relative to n, &0~
Proof. By BgM1I, with u = &, w == %,
"\‘.
(18.2)

i, gt

\\\” Vi = Vi + Vi — 2V

Considen the first term in the right-hand side of Eq. 18.2,
\'”\; - . »
H "

By the procedure used in Sec. 5, we find

@6 w

op . 4V

P I

Similarly,

(18.4)

Ve, =
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where terms of order 1/n? or higher are ignored (see Sec. 6). Finally,
n n i)
2 A2 Sl
Vigr = [E (..Z_"f&) (.Z_Ei) _ EZE& Egr2] /Gifz
n i i

- 2ppy VI"/ﬁz — 1
n

(18.5)

which is left to the reader to be developed as an exercise. Substituting

Eq. 18.3, 18.4, and 18.5 in Eq. 18.2, we obtain Eq. 18.1. £\
Exercise. Prove that pye, = Py When O\
1z 12 O
a:;iz:c,- and w:;;y,- A

and » is very large, “\ )
A\

19. Condition for the ratio estimate to have a sialer rel-variance than
the simple unbiased estimate (Vol. I, Ch. 4, Sxf'\&.,l 9). To prove: The
approximation to the rel-variance V7 of the ratid.of two random variables
ufw will be smaller than V2%, the rel-varianee\of an unbiased estimate of a

fean or total from the same sample, whep’
wV

L Yo 15.1
e 3, (-1
The proof is left to the reac}%"
Special case of Eg. 19.l-\Let
oy = NE
>x ) — y: _ Ny
”\’i\ W = ¥ = Y
and \J
& u
,r‘:’o — ="
Q) W
RQm"Sec. 2 it follows that
2
V2 = (1 ‘"f)'f (19.2)
Similarly, it follows that '
V2
Vi g = (1—f) -;1—’ (19.3)

From Eq. 3.3, it follows that
' Py iy = PXY (19.4)
And, substituting Eq. 19.2, 19.3, and 19.4 into 19.1, we see that the
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condition for gain through the use of the ratio estimate 2 over the simaple
unbiased estimate x” is
;!
.
2Ky

P

*20. Consistent estimates of averages and variances (Vol. I, Ch. 4, Sue. 12).
To prove: The sampie estimate & of . and the sample estimate § of 2
are unbiased and consistent estimates of ¥ and S5°, respectively, where
% and X are defined by Eq. 1.1, 5% is given by Eq. 4.1, and S by EqN\2.1.

Proof. The proof that & is an unbiased estimate of X is Liven in
Sec. 1, and that s* is an unbiased estimate of 82 is given in Seel %) Since
o} and o% approach 0 as r increases, it {oilows from th,clc\n)rc)llui‘y of
Theorem 19, Ch. 3 (p. 75), that & and &* are consisteith estimates of

at ¥
A\

X and 82,

*21, Functions of random variables which are Q}nsistcnt estimates of the
same function of population characteristics (Vsl':f{,'Ch. 4, Sec. 18 and 21},

a. #/jj is a consistent estimate of X/ ¥y where & and 7 are defined in
Sce. 1, and ¥ = 0. 3\

b. s/ is a consistent estimate ofﬁi’f’ = V¥, where s is given by Eq. 4.1
and S* by Eq. 2.1, and ¥ 49"

¢. s[5 is a consistent estingate of $%/X2 = V2, and £ + 0.

d. 5% = (BN e? + L:ﬂ—\ ér_w) Is o consistent estimate of o?, where s2
is defined in Sec, 1862 is given in Sec. 13, and ¥ -% 0.

The proofs folloxi"irﬁmediately from Corollary 2 of Theorem 20, Ch. 3
(p. 75), which sj%t:es that a rational function of consistent estimates is a
consistent estiglate of the same rational function of the quantities being
estimated, .Q{"the denominator does not vanish when the quantities
cstimat;d;.farc substituted in the rational function.

*’"l\(i[a}" be deferred,

N\
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CHAPTER 5
Stratified Simple Random Sampling

DERIVATIONS, PROOFS, AND SOME EXTENSIONS OE{M
THEORY FOR CH. 5 OF VOL. I*

N

(N
N\S *

NOTE. A stratified simple random sampling plan is one in which the elements
(sampling wnits) of the population are divided into groups, refegred,to as strata,
such that each element is contained in one and only one strafitel. ~ The sample
is then chosen by selecting a simple random sample of~clements from each
stratum, The sampling fraction may vary from stratmn}e stratum or may be
uniform in all strata. If the sampling fraction is upifosm the sampling plau is
reforred to as proportionate stratified sampling. 7

Note that the theory of stratified simple random?amp]ing is equally applicable,
once the sampling units have been defined] whether the sampling units are
elemmentary units, as assumed above, or clisters of elementary units.  Specific
consideration of the theory of cluster sappfing is deferred to succeeding chapters.

The notation in this chapter is the gate as that foilowed in Chapter 4 except
that a subscript (k) is added to desigpate the strata.

1. The expected value, \jafi;.uce, covariance, and correlation of unbiased
estimates from a stratiﬁe{lﬁample (Vol. I, Ch. 5, 8ec. 3). To prove:
a. Estimates of theXorm '

Iz
O 2N o
9 .\ ok 5.3,
e & % (_1.1 or 1.5.3.2)

’§ . : "

4 - o . .
are unbiased estimates of X == 2N, X;/N, where &, = x,/n, = me,’nh is
\ I i

AN .
Samhple mean based on a simple random sample of z, units from the
hihvstratum, 2,, is the value of a characteristic for the ith unit in the

sample from the /th stratum, N, is the number of units in the Ath stratum,
%

L - — .
L is the number of strata, N = 3N, X, = XN, = 2 X5,/N, is the
#i 13

population mean for the Ath stratum, and Xy, is the value of the character-
istic for the fth unit in the population in the Ath stratum.

* Appropriate refcrences to Vol. T are shown in parentheses after section or
subsection headings. The number following I- after some equations gives
the chapter, section, and number of that particufar equation in Vol L

121
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b. The variance of £ is

o fh 40
= T N AS v . —3.4
o3 N*% ,{ y {1.2 0r [-5.3.9)
where
Na
Z(Xﬂl Xh)a
82 = J——ATh:—l—ﬂ (1.3 0r1-5.1.2)
and '
L ~
jh N;; y \\'
¢. The covariance of £ and 3"; is A\
g5 = ZN # fh Snx b ~( ™y (14}
where ) "‘\\
B (X — XY (Vi F)
= : e .5
;Z N d (L.5)

and ¥ and § are sample means for two different characteristics of the units
included in the sample. \ &

It follows, by definition of the,’coeﬂicient of correlation, that the
correlation between & and #is )

Qo= f—*; (1.6)
Note that the vananee\‘ts a special case of the covariance, i.e.,
N 6} = Oy
where g;; is gwe:n %y Eq 1.4 with # substituted for #, and

'"\" Sty = Syxx

where S,ﬁ%is given by Eq. 1.5 with X substituted for Y.
Proc{/'" a. For the hth stratum: &, depends on the sample and is 2
adom variable, and N,/N is a constant. Consequently ¥ is a linear
ombination of random variables.* If we take the expected value of &,

* A linear combination of random variables is a sum of the form &« = 2auiy,
where the u, are random variables and the 4, are any constants. Thus, if
uy, = Zpft,, where z, and %, are random variables, we say that u is a linear
combination of the u,’s but not a linear combination of either the x,’s or the 2,’s.
Similarly, if u, = %, where b is different from 1, we again say thatLu is a linear

combination of the #,’s but not of the x;'s. In the case of & = ZNha,ka we

let oy = N/¥ and u, = %), and we say that £ is a linear ccmbmatton of the
xh S
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we have EF, = X,, which follows from Sec. 1, Ch. 4. Consequently,
Ei =X, and £ is an unbiased estimate of X. This follows since the
expected value of a linear combination of random variables is the same
linear combination of the expected values of the random variables’
(Theorem 6, Ch. 3, p. 49), and by substituting X, for &, in Eq. 1.1 we
obtain X, '

b. Since the sample selection is carried out independently in each
stratum, &, is independent of &,, where h and X designate any pair of
strata, and & is a linear combination of independent random variabjes.
It follows from Theorem 11, Corollary 1, Ch. 3 (p. 56), that if »'is a
linear combination of independent random variables of the form’)

'\
u = Xa,u, « M (1.7

where the a, are constants and the », are independent ~r?ndbm variables,
the variance of u is R :
2 . V2.2 \J
of = Enla?

(L.8)

Since & is such a linear combination with’a}a\\-——f-Nk/N and w, = &,, the
variance of ¥ is . ~

L ?;'x
NG .
o = (1.9
e

where o2 is the variance of &,. o3%

From Sec. 2, Ch. 4, we havel(since &, is based on a simple random
sample of n, units from th&'hth stratum)
Ny 2 i r ‘Ei_'l
| O g =y (1.10)
where 8% ¢ is gw«qn by Eq. 1.3; and by substituting this result in Eq. 1.9
we obtain Eg,\12. _ o
e. Since/P, s the mean of a first characteristic of the #; units included
ina sam%k"from the Ath stratum, and 7, is the mean of a second charac-
teristieyfor the same », sampled units, then, from Sec. 3, Ch. 4, the co-
Ya:;i;a}ni:e of Z, and 4, is S e
A Orgy = (0 = fi) = (1.11)
T _
and, since the samples are selected independently in the respective stratz,
the covariances o, = O for A different from &. It foliows from the
corollary to Theorem 12, Ch. 3 {p. 58), that since & is a linear combination
of the random variables &,, and # is the same linear combination of the
random variables 7, | & -
029 = 3 2Ni0 (1.12).

and, substituting for o, (Eq-1.11) in Eq. 112, we obtain Eq. 1.4.
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The proof in Part & is seen to be a special case of this resuft', obtained
by substituting & for 7.

Remark 1. When a proportionate sample is selected, i.e., n,/N, = n/N
= f, the covariance becomes

F4
1= f DNSuxy
Gag = =t S (1.13)
and the variance becomes
L
. 4 _‘N S“: - N
ok = fSi,, with S% = 2N:Siy (t.14)
N .\\\'

Remark 2. For cstimated totals ' = Zthn andy' = ZNM& the results
PN
corresponding to those given in (q), (6), 'md (c) becomq
\.
Ex' =~ X=NX . A

Oy = Nigzy

A

2 2 %4

o = N} L&
Cry (6%

Poy = 7 ST T = Pry

Gz"f"y’»: 00y

".

2. The variance of the ratio ESnmatc (Vol. L, Ch. 5, Sec. 4). To prove:
The variance of r = &/j is approximately
\

'\
¥ = -1— SN2 f’*S (2.1 or 1-5.4.5)

where R4

\:S2 =83y + R2387y — 2RpyxySyxSny (2.2 or [-5.4.6)

and wher%xﬁ‘ﬁl and 8}y are given by Eq. 1.3, pyxy = S,x1/SxS,p 18
the cocreldtlon between X7, and ¥, in the Ath stratum, SM ¥ is given by
Eg 4 “1\5 and R = X/Y = X/¥. The other terms are defined in Sec. 1.
\Proaf From Eq. 11.1, Ch. 4,

o = RYVE 4 VE— 20,V V) (2.3)
where V; = 0;/X and V; = ¢;/¥. Then

ﬁ-’os

t

AT

; —Ju 1 &
= B (i SVE mﬁs,%ﬁwgzw

L

N"'}F = 2N ﬂhf PIaXl’S}LX'S?AY) 2.4



Sec. 3 ~ VARIANCE OF RATIO ESTIMATE 125

which follows from Sec. 1, above. Assembling terms, we have

ﬁa

‘3: —
TNy

(Six + RS}y — 2Rp ¢ SuxShy)  (2.5)
which is equivalent to Eg. 2.1
Exercise. Show that S}, is the variance of Zj; = X,;,— RY,,, Le.,

Z(Zka 252)2 o
S2 T_:l__ < \
¢ ;«\'
3. The variance of the ratio estimate based on the welghted Javerage of
ratios of random variables (Vol. I, Ch. 3, Sec. 4). o proyes\ The variance
of the cstimate D ° '

£ '€
o 2Tl "‘,\
re=y \
is given approximaiely by
S
o2 = N Yf’* ZN2 >, br"‘6‘2 (3.1 or I-5.4.12)
where RN »

SPAZ = 4 kY + R% R’If" 2RkPIaAI’S X‘qu (3 2 OrI 5 4 13)

the terms in 8%, are definedin Sec [ of this chapter and rh = 2,/y,, the
ratio of the sample aggrag\tes in the Ath stratum.
Proof. It is seen mnﬁ Sec 13, Ch. 4, that the variance of r, is given

apprommateiy bX, d I 1};‘27 Consequently, by Eq. 1.7 and 1.8 with
x>
a = 7, ;\( }{h = r,, the variance of
D 1 83,
O Z n s approximately — 3 Yn —f Sz
Qv mo T

and, since ¥, = N, ¥, and ¥ = N¥, we have Eq. 3.1.
Exercise. Show that 83z is the variance of Zy; = X — Rp Y 16

My -
. _ 2Zu= 22

hZ = N—'l

Nh—l
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4, Comparison of biases of two ratio estimates, using proportinnate
stratified sampling (Vol. I, Ch. 5, Sec. 4). To prove: If A, and A, are
the approximations to the biases of

L

> N.&
,— %#

z‘V!r?7fl

respectively, and if of and 0% are the approximations to the vzlria@es,
then for proportionate stratified sampling:

a. Both Af/a? and Aj/o}. decrease for increasing size of samplePrdvided
the number of strata, L, is held constant. N\ *

b. 1f the size of sample is increased by increasing the nuﬁr}l;er of strata
(and If the total size of sample is small relative to the population), then
Alfo} decreases, but A3fo? may increase with increasing sample size.

c. If the number of strata is L, and if the X, anti\Fy do not vary widely
between strata, then A, is of the order of L li:n\és.’as large as A,

d. Tt follows from Parts ¢ and b that a sufficient condition for A, to be
small relative to ¢F is that the total sample be large, no matter how
small the average size of sample per“stratum. It will be zere if
poxy = Vur{Vwx. A sufficient c;oﬁ;difion for A, to be small with any
size of sample in a stratum is that® p, v =V,p/Vyx for each stratum
(which is the condition for the régression line for X on ¥ to go through
the origin for cach stratum){ The bias of 7' can be small for small samples
per stratum under less §fsingent conditions, but unless the condittons
given are approximately met there is a risk of serious bias if 7' is used.

Proof. 1t followpdirectly from Sec. 14, Ch. 4, that the bias of the ratio
estimate r is ap‘elio\ximatcly

I
' thr}.'.
and ' s St
n r %

2\ .
:§ w4 A] == R( VS — Py Vx' Vy) (4 ¥
and thevbias of ' is approximately
~ ) 1 &
\ 4 A2 = ? 2 Yth( V%v — Phry Vku:VMr) (42)
where '
1—/ [ G S
V2 i . V2 ; V2x E— N2 - A S.. .
hax m, LN x x2 Z 3 n, hX
¢ E‘ = xh
x = 2Ny, Fp=—
Yn
X X
R==, R,="=%
Y Y,
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and the other terms are as defined in Sec, 1, 2, and 3. For proportionate
stratified sampling Eq. 4.1 and 4.2 become, respectively,

1 —
‘5*1 = “’;TJR(VE:Y = Poxy VexVey) ) {4.3)
Z V22 RT»
2NY IV iy — = paxyv Vix Vix)
Sl % R (4.4
" N2 ’
_ O\
iz, N
& Oy

Iz - In .Y
by =~ % 2R ; J Vv — ouxy Vix Va?)z ™

T-’L <\

and, since #,/N, —fh = f, YRy = X, = N X, we Qawe

Ay = fzfn(Vw = Prxy Vw&%?) (4.6)
. X
L(l "'f) §X ZIXh(’V@Y — PhX} VaxViv) 4.7
! s 'zf‘:’:“ E:Xfr :
.t ) A3 \) 45

i

The values of 4 and AL are constant for any fixed set of strata,
From Eq. 4.5 and 4,8/ and substitating vaiues for ¢} and o} for pro-
portionate stratified sampling obtained in Sec. 2 and 3, we have

A/ —_ _
\ (1. . f_)_. A2 E._._J_FAzN

S AL ”2 S (4.9)
Ve v (—’-ﬂ .-\_,\ - 2
O TSNS SNSh
AN n N
Vo IX1— [P 1 Lz(l"f) N
éég‘ _ e ; B ;r @.10)
71— fINSY SN2,
n N :

both of which decrease with increasing size of nif L, 4, and A" are ﬁxec‘i,
Thus, with a fixed set of strata and for samples large enough, the approxi-
mate bias of either » or " will be trivial relative fo the approximate
standard deviation. :
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Z L

Note that, although A*N/> N, 8%, and A2N/ON,S7, depend on the
stratification, they are ratios of averages that may not be sensitive to
altering the stratification, and sometimes may be affected but slightly as
the number of strata is increased. i i

We shall consider the case where A*N/> N, 8%, and A*N/Y N, S}, are
about constant as the number of strata is increased. Suppose, now, that
the size of sample is increased by keeping the same average sample lake
per stratum, but increasing the number of strata, so that nfL =4 =
constant. This dees not affect Eq. 4.9, which still decreases with ingeeas-

ing », but now Eqg. 4.10 becomes O
N\S ©
2 —_ 2
S AN AT @
o2 AEN,SE S, A\ 3

which increases with increasing # provided f is sm}r]l for all sizes of
sample considered.
Also, if the approximate blases are not zcrg:a}td if we lake the ratio of

Ag to A;, we have A, i A \ i
Al o "’. 1’4.“' '

which will be approximately equal¥@ L when 4" = A4, which latter con-
ditions will hold approximately. (feom Eq. 4.4 and 4.7) at least when the
X, the ¥, and the N, do ngtdiffer widely between strata.

Finally, it follows from\'Eq. 4.9 that A% will be small relative to the
variance with a large eaough sample (for any number of strata), but from
Eq. 4.7 it is seen, with,7 fixed, and with p, vy 5= V,x/Vyy, that &, need
not decrease as mingreases unless the sampling fraction becomes large; but
a sufficient congition for A, to be zero or small is that pyyxy = Vix/Vay
for all 2. (\™

Tt appedrs reasonable to assume that relationships essentially similar to
those given above may hold in practice for disproportionate sampling
dgsigns, although the exact relationships have not been developed.

5. Difference between the variances of two ratio estimates (Vol. I, Ch. 3,
Sec. 4). It is shown below that the difference between the variance of

%‘
__ 2N,
r —= _I'r__“'-_
ZN J‘ayk
and the variance of
L
o 2.t

Y
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is given by

I £ 1— T .
Aot =555 1L e,
3 n

—2R{(Viyr — puxyVaxVarXR—R)] (5.1

Note that the first term in brackets in Eq. 5.1 is positive and will increase
as the variation in the R, increases, and the second term involves the
approximations to the bias of the 7, and will be smal{ when the approxi-
mate biases ave small, {e., when the pyxvy = Vux/Vyp. This is an
indication that the larger the difference among the stratum ratios,the
greater the gain in using " rather than r, so long as the secopid térm is
small. However, if the second term is large relative to the fif3t) then the
use of +* should be avoided. (J.’; ’

Derivation of the difference o2 — o2 is as follows: /™ *

The variance of r is given by Eq. 2.1.  The vagiatee of ' is given by
Eq. 3.1. The difference is : '
N L o .

i ot = g 5 M =8, — 530 (2

Now '
ig — Sig == Six + R3Sir .t zjfjﬁ;r;ﬁrysk.xsw _
—‘{Six + RiShy — 2R pax v SaxSar)
= Sﬁ}:’(Rg."“\’ki) — 2psxxSixSur{R— Ry)
L
27 TRy — pxrVaxVi )R = B (53

Substituting\"h:'S.B into Eq. 5.2 and substitating ¥ = N¥and ¥, =N, 7,
we obtaidhEq. 5.1. o

«ﬁ.f”fotal population variance expressed as 4 sum of components (V‘o]. 1,
“Cl. 5, Eq. 5.6). To prove: For u stratified sampling design the variance
between clementary units in the population, o% cai be written as the sum
of the variance between the stratum means, o}, and the variance between
elementary units within strata, o}, i.e.,

o% = af + of (6.1 or 1-5.5.6)
where
I Ky .
DS AT B .
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L
zNh(‘Yh - A_/]SE

2 __ _
af N (6.3 or 1-5.5.4)
E N,
Xp— X
0% = —Z—Z(—i‘h—,—#—’l (6.4 0r I-5.5.7)
Proof.
No? = Z Z(XM_’ XP = Z Z{(XM - Xh) =+ (X X)}a £\
L Ny _ L N L N,
:ZZ(XM‘“XHP‘FZE z(th'_ n)(X - X)—}-EZ(X; \X)
O
and, since > (X, — X,) = 0 for each stratum, and since 8+
L, X7, \ A
22— XF= ZNR(X; X)2~~ \\
we have
L Ny _ i _ »‘
3 Z Z(XM - Xh-)g ZN.?A(XJI —{’@ 3
a® = N + N'x\ = G T O'b

7. Gain due to stratification nsing p}'f)ﬁortionate sampling (Vol, I, Ch. 5,
Eq. 5.3). To prove: The absoluteigain due to stratification with pro-
portionaie sampling is S\

AN 1— f( 32,)
2 _ a2\ 2_ ¥ . I-5.5.3
%;'fﬁs el (7.1 or 1-5.5.3)
where o} is given by Eq.\éf?’, and
Qe 1L N, .
CNR2 = 2 7.2
PAS IR Ch TR vy B2 — X;) (1.2)

\s
where o2 t{presems the variance of & for 2 simple random sampte, and
of, represents the variance of  based on a proportionate stratified sample.
Pra?y‘ The variance of a sample mean based on a simple random
squple of n elements is {from Ch. 4, Sec. 2)

81— N 1— N
a=0-p==d I o NS 0y

where ¢} is given by Eq. 6.3 and o2 is given by Eq. 6.4.
The variance of a sample mean based on a proportionate stratified
sample of # elemeuts is (from Sec. 1, Remark 1) -

e .
of, = (1 =f)=F (7.4 or 1-5.3.10)
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Therefore,
2 2 1 _.}‘ o a
o — 03 = — (82— 82) _ {7.5)
Assume that N is large enough that the approximation Nf(N — 1) = 1 is
good, and the N, are either so large, or so nearly constant, that the

approximation N,/(N, — 1) = N{(N¥ — 1) is satisfactory. Then

S2 b‘& - ._.ﬁ,_. G?'

N l !
~
and
(o ) = L o s
TP St | BELSUDFS I 2 o N i)
0:5 6.53 # N’—— 1 aw P GD + Ou: N .__:\l}ow /
I_f(z 530 'j‘:‘
= OF = —=———
7 \° NLH
t—ff . 53)
p '(f’f’\ 5 7.1
x\‘

8. Variance between the stvaturn means with' Yandom grouping of elements
into strata (Yol. I, Ch. 5, Sec. 5). To»{z}m’i"e If strata are formed by =
random grouping of elements, the vamance o, between the stratum means
is approximately equal to SZ/N. &

Proof. If the N, elements iz the “kth stratum were obtained by dis-
tributing all N elements of the population at random : ':mong the L strata,

so that &, elements we& (put into the Ath stratum, 4 = 1, -, L, then
EX,= X, and
L
O_E — ZNI}F}?J: X)z Z h X, ZNJLEXh /172
\, N N N
\G N~N, .
W\ ON, (82— N + A2
NS u — X
,..\\‘ 3 h?'
N L . N—N,
ZSE 3 7 Y2
_ N 1 2NXE 72
N N
_SL—1y_ SL
N N L

= %, if Lis large.
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Also, from Sec. 4, Ch, 4, ES? = 82, where 83 is given by Eq. 1.3, provided
the strata are made up by random assignment of the units in the popula-
tion, and therefore £SZ = 8%, where S is given by Eq. 7.2, or 85 = &2
for a reasonably large population.

It follows that of = SZ/N provided there are enough strata that
LiL—1) = 1.

9, Optimum allocation to strata (Vol. I, Ch. 5, Eq. 8.1). To prove:
The values of #, which minimize the variance

N\
1 i 1 —ff .
5% =2 SNZ 20 S LN (9.1
o N:E Z k ”;a h K \‘,. ( )
subject to the condition A
L I "G
Sny=n or Jm—np=10 \\ {8.2)
are )
NS \
= e N (9.3 or 1-5.8.1)
ZNJ':S.’; ,",\“

where &, is given by S,, 8,,/ 7, or S,léj'f’,’ depending on the form of the

estimate, a>
Equation 9.1 is the variance Qfﬁ}" (Eq. 1.1) when §2 = 9% as defined by
Eq. 1.2; it is the variance of o~
R I“'N .
\ 2%

\* r=7=

O 2N
when S2 = Sfd{f"?‘z and 82, is defined by Eq. 2.2; and it is the variance
: PAS

of ¥ = zx@jy when 82 = St,/ 7% and 8%, is defined by Eq. 3.2. The
form of ghe'variance, and thus of the optimum values of n,, is the same
for tpf&élé’ estimated by multiplying the above estimates by a constant.
Preof. To obtain the minimum &* subject to a fixed size of sample we
. - -
sa\up the Lagrangian F)* i.e., we define the function

f‘:F0+;,1F1+22F2+'"“I_;uka (9.4}

where F, is the function to be minimized, F, is the relationship determined
by a first condition to be imposed, F; is the relationship determined by a

* For a discussion of the Lagrange method of obtaining a relative minimum
or maximum value of a function subject to conditions se¢ E. Goursat and
E. R. Hedrick, Marhematical Analysis, Yol. 1, Ginn and Co., 1940, p. 128,
Sec. 61, or other texts,
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second condition to be imposed, etc.; and 4, and 2,, etc., are Lagrange
multipliers whose values are obtained as a part of the solution.
In the present problem £ is the variance to be minimized and is given
£

by Eq. 9.1; F; = Dn,— nis the condition to be imposed (from Eq. 9.2).
There are no other conditions. Consequently, in this particular problem,
we have

) j** 4 A(Z!fh—u ) (.5
ON

N3
Z I ( Nh

We ascertain the optimum values of the »;, by taking dertvalives of F
with respect to the n, and setting each of the derivatives equal i zero.
This gives L equations in L + 1 unknowns (the n,’s and i) "The con-
dition given by Eq. 9.2 makes L 4- 1 equations. With as, many equations
as unknowns we can solve them simultaneously to ob{a‘m the values for
the n, that minimize (or maximize) F, subject tosthevcondition F;. One
can examine the resulls in.cases where there js any doubt to ascertain
whether the solution gives a minimum or a rgzgﬁmum value for Fy,  Thus,

N Y

oF S;, .
é;ﬁ“ N22+J—=»0 (h—- L0
or v’.:" » _
N Nrg,i
(N = (9.6)
¢\ "NV
7'\ : -

Summing over the L chaﬁiens, we have

and from Eq. 9.2 we substltute n for Znh and solve for \/1 By substi-
t'u\mg ‘this value for V7 in Eq. 9.6, we obfain :
n, = I—Ni‘i f (9.3)
}:Nh"gh ' .

To see that the substitution of n, given by Eq. 9.3 yields a minimum
we note that the variance
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can be written as

L L NS0\
NP = —SN,SE + 2 (—‘:F)

1

=— DN+ 2 | T — K| 4 2KZN,S, —nK* (97)
y,
where X is a constant. The sccond term of the right-hand member of
Eq. 9.7 is the only term involving the n,’s. Therefore, * will beddt a
minimum when this term is zero, 1.e., when K = N, /m, or A .

¢\
Nhgh ' ":
Hy = —— R (98
b K ) N )
e 4
and, summing both sides for A= 1,2, - -, L, \S
L AL
L ZN; g“\\
Znh =H= K: X -
- or : O
Loy
_':zyhbh
‘,‘,:'v P

When this value of K is ‘su?;s\tituted into Eq. 9.8, we obtain Eq. 9.3, the
values of n, which makgi&\/"" a minimum.
The variance at the\optimum is given by

P 1\ 7 I
N 1 ICNS)E &
Y et (opt) = {-Z—Lf— — ZNI‘S,%] (9.9 or [-5.8.5}
N/ N n
which3s' obtained by substituting Eq. 9.3 in Eq. 9.1.

m\‘ 7
\

10. Gain of optimum allocation over proportionate stratified sampling
(Vol. L, Ch. 5, Eq. 8.6 and 8.7). To prove: The relative gain over pro-

portionate stratified sampling of optimum allocation of a.fixed size of
sample to the strata is given by

#(prop)— ot (opt) W}
a* (prop.) TS

(10.1 or 1-5.8.6)

= 1T V2 - {10.2)
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where
£
; 1L - = NS L
o =5 20, - S = 2B _
2
o3,
Vi=w
L
O E"th};
Y, \
Proof. We have already seen that Oy
L - Lo & . st
T > b 3
o2 (prop.) = 1~-f ZNn*Sk — 285 N ZN;';?%’@
o N Nn N%" .
e\
SN,8 ) §N 82 v
o o QN il
o (opt.) = Nem NTO Y
o S\
Then, it follows (g AW
2N 8
ot (prip.) — af (opi.) :;;’:‘“N}? H
a "."T &
o* {prop.) Y N—a SN,
A Nr N
e 2
\.\"' _ O‘gn
 { \ » - L\-
(1~ 7)Y SN SYN

&
O L
Substituting ai—.«\ﬁ'—\s‘iﬁ for SN N2/N and dividing numerator and denomi-
nator by 32 “we'get Fq. 10.1.
¢ Y \\g get kg

ad

11, O]ithﬁum allocatien with variable costs between strata (Vol. 1,
Ch\S,\EEI 12.1, 12,2, and 12.3). To prove: The optimum allocation to
straia of a saumple of elements when the cost of including a unit in the

sample varies from stratum to stratum is
w8, C,
fy = A (11.1 or 1-5.12.1)
SV CY

where #, the total size of sample, is determined to yield (1) a minimum
variance when the total expenditure is fixed, or (2) a minimum expenditure
when the precision is specified at &2
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For case 1: g
A
"= ¢ Z“A;"_" (11.2 or 1-5.12.2)
ZN Jeg}t\'/c.ia A Ch

For case 2:
Lo
E(Nh*sﬂ --(NhS;J\/E;)
Neg? 3 N,,Sz

(11.3 or 1-5.12.3;

Proof. The variance of an estimated average or ratio from a stpatified
random sample is (see Eg. 9.1)

N

2 AN
82 } o e 1 l.‘.'\“".
= s NI~ = 7 ENAE (- -

N
n ne
A <u,sa

The cost of the survey is assumed to be of the forpy
L S
C = zcﬂnh :'\\;
(1) To determine values of n, which mifimize the variance subject to
2 fixed total cost, C, we set up the Lagrangian F:

Fe 13 25 1“7::."1“ LS
"_}\E‘LNH E ;;._‘Er_h [ ;‘(zchﬂh_- C)
aF Vi NS
1 7‘. —
Bn,,\ TN h TG =0
Solving for a,, we, hﬁ\(e
), NS, 1
A%/ = TS
2O NVC, V72
and \\
O N SSIVE
=My == T
O NV
\}ubstltutmg for V4, we have
NSV,
Wy=3——""—"—"—n

L —
NBIVE)
5
When the total cost is fixed at C == 5C,n,, we have
%
YN SVE,
= 2 q

C = 5
SUNSVEY
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and the optimum # is given by Eq. 11.2,
(2) To determine the values of n, that minimize the cost subject toa
prescribed precision, €, we set up the Lagrangian F:

t I 1
F=53C A SR .
Z whn + [N ZN (Hk Nn) 8]

Proceeding as in (1} above, we find that the optimum values for the #,
are, again, as given by Eq. 1.1,

When the precision is fixed at : £\
) 1 z N?&'S;?L L* 3 O
we have, by substituting for #, its optimum value, . N
% '\’\'
T2 T
Mo o 5 (IS zi\aﬁnfvck) S
NIV C, PN

N’

and the optimum # is given by Eq. 11.3. x\ o

12. Sample estimates of popu]atlou afsmances (Vol. 1, Ch. 4, Sec. 14).
To prove: &3
«. A consistent and unbiased estitnate of §2, as given by Eq. 1.3 is
§ V(a:} i — )

\SA’MY = 1
b. A consistent es\miatc of 8%, as given by Eq. 2.2 is

(121 or I-5.14.1)

\\" 82 =58ty + P2shy — 2Shxy (12.2 or 1-5.14.2)

where Snx fiki sy are given by Eq. 12.1, and
NS -
a\"4 Z(‘Thf "rh)(y."r-i — y?e) (12.3)

\/ Spxy = —1

e. A consistent estimate of 83, as given by Eq. 3.2 is
suxy (124 or 1-5.14.3)

3 _. .2 22
Saz = Shx + TRSar

d. An unbiased estimate of o3y as given by Eq. 6.3 based on a propor-
tionate stratificd sample is

- Znn(:ch-— FPF— f [Ei (1 - }I?) th} (12.5)
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where 5Py s given by Eq. 12.1 and % == n/L. Note that for large 7 the
second term of Eq. 12.5 can be ncglected.

e. An unbiased estimate of ¢% as given by Eq. 6.2 based on a propor-
tionate stratified sample is

FR ___
'Z?(Im 1= Siex {12.6)

B i "
where

i L
== I NSy
wl’ n ?: AAX ~
Note that for large n the second term of Eq. 12.6 can be ncglecmi
Proof. The proofs are left to the reader. AN
Hint: The proofs for Parts a, b, and ¢ follow the same, redsoning as
given in Sec. 20 and 21 of Ch. 4. The proof for Farg a' Fotlows from
noting that ...\‘

Eznh(x,‘~3)2 E“n;l % — nER? )
N

£ _..\ g -
= %nh(cgn 1D — n(e} + X9

and the proof for Part ¢ follows frgfr;:ﬁoting that

L on, . ’ K.
By El 3R S S g (e} + R
h hoi

13. Variance for sjéfiﬁcation after sampling (Vol. I, Ch. 5, Sec. 16,
Remark 3). Supp(jse' that we have a simple random sample of » units.
Classify the units,of the sample into L classes. Let x,, be the value of
the 7th unit xg'\he hih class.  Let N, be the known number of units in the

hth class Jmvhe population, and let n, be the number of uniis in the Ath
class ip\the sample.

C&nstruct the estimate

O | PRI/

5
E Eﬂ?m {13.1)
k By

21*"

it is easy to show that Z is an unbiased estimate of the popuianon mean
X, if we exclude all samples in which one or more of the n, is zero.

The varlance of £ may be obtained in the following way. First, we
note that

= K& — Xy = E{E,(— X0}

where E, denotes the expected value for a fixed set of values uy, #a, ~ - -
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ng. But E, (% — X)*is then the variance of a sample mean based on a
stratified sample with n, elements from stratum A. Therefore,
— 1L Ny~ 82
E,(E— FP = - SNy Al
Na% g no My
1 L 1 1k
—_ Nﬁp2 - roQ2
. Nz% ¥ !gnh NQE:I\'» h
To find the expected value of this expression, we need to evaluate E(l;’n,%
This can be evalualed cxactly,® but the exact value has a complicate

expression. It can be shown, however, that O
E-l = __i_ 1 1__—_fN" Nk] 4 ;;\
o fN, n N, N

This follows from Eq. 17.8 and 17.9 of Ch. 4 wiffb§°: NN and
Q == 1 — P. Hence, !
_ ~NY;
o= E[E, (F— X)% .\ﬂ,,\
L L ENSE LS NI,
CONZT N, T N®T on TN N,

and, by substituting 8% = ZN,SYNY = #/N, and Q, = (N — NY/N,
S L
9 2
ot 0T (S;—; 44 Z—S—’*&) (13.2 or 1-5.16.1)
¢ ’\ ) i L

We note that the first{term is precisely the variance for a proportionate
stratified sample se}cc’t‘éd from the sirata defined eatlier, and that the
seccond term isppositive. Hence, the variance for stratification after
sampling is fafger than the variance for proportionate stratified sampling.

We note{Purther that for a sufficiently large average sample size: per
stratur.na}?,‘ the second term will be small compared with the first term,
singesthe second term is of the order of 1/7 as large as the first. Unless
7 is\stfficiently large, however, the net effect of such an approach by
“stratification after sampling” may substantially increase the variance
over the usual estimate with simple random sampling.

1 £
Kr_g' ZNFA{:,E

14, Increase in variance arising from duplication of a subset of elements
(Vol.I, Ch. 5, Sec. 16, Remark 4). 7o prove: Suppose that from a random

* Frederick F. Stephan, *The Expected Value and the Variance of thf: Recip-
rocal and Other Negative Powers of a Positive Bernouilian Variate! Annals
Math. Star., XVI (1945}
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sample of n elements we select a random subsample of »,; elements, dupii-
cate these n, clements, and add themy to the original sample. Then the
mean based on the n -+ n, elements is an unbiased estimate of the
population mean, and its variance is greater than the variance of the mean
based on the original » elements by the approximate factor

132
I

s
n N '3

)
Proof. Let the clements in the random subsample have gthe Values
y, 2y, * * *, &y, and the remaining elements in the sample hake-the values

Eya1s " " %, The estimate of the mean based on the sarfnpfe of n4-
elements is then . A\ N

2>+

7 — Z e %+1 _2u "{‘Q’J
?1 4-m U EP
Now, :
E¥ = E‘v
iy (2E )

O

t

— N

L

so that & is unl{;a;qéd. Also

e
3 “; 1
N ol
N ,\ E {FI _]_ -’?1)2 (4gu “E Gy + 491:‘9)
Clearly;®
"\ Wi _
A o2 = NA Sy
and
N—(n—mn)
e
It is readily shown that
oy = B
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Hence, we have

A .
82 Nn (1 +3 ;1) —(n 4+ n)

2

L per—
o+ ompe N
For the original sample of n, the variance of the mean is
2 N-— n Si-
g2 = ——— =
N n
so that N\
2 N 2 ] A\
EN (Lo () n
oy N—nintn n N—n PP\ N
If & is farge compared to n, we have ' <~~'.’;' '
" .
1+32 (&
E%' B T n \
2 2 .

S
This has its maximum vglGe {for 0 << nyfn < 1) when my/n = 1, and for .
this value of m,/n, the foss in efficiency is .125.
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CHAPTER 6

Simplc One- or More Stage

Cluster Sampling ~

N
AN
NS ¢

DERIVATIONS, PROOFS, AND SOME EXTEN"S(IG«NS or
THEQRY FOR CH. 6 OF VOL. .I“f\{'

NOTE. A simple cluster sampling plan is a samplingvplan in which (o) the
clementary units of the poputation to be Samplgd’\}m& grouped into clusters,
such that each elemensary unit is associated with“one and only one cluster;
and (5} a sample is drawn by vsing the clusigrg\as sampling units and selecting
a simple random sample of the clusters, “¥he clusters are referred to as
primary sampling units (psw’s) ot as first-8tage sampling units.

If atl elementary units in the selecledbelusters are included in the sample, the
sampling plan is a one-stage samplifg ‘plan. If a subsample is selected from
each of the selected psu’s, with gauniform fraction of the second-stage sampling
units selected from cach prima{f unit included in the sample, the sampling plan
is referred to as a simple, 1wesstage cluster sampling plan. Additional stages of
sampling can be introduéts,g: _

In this chapter we dgvelop the theary for these simple cluster sampling designs
and for certain ex@isions of them. Attention is given to optimum sample
design with diffefent cost functions. Measures of homogeneity are defined,
and their cﬂ'eg{g optimum two-stage sample design is considered.

Yor sin}%jﬁcation in some proofs sampling with replacement s assumed.
The resulfs‘obtained arc to be regarded as approximations to those for sam-
pling without replacement in cases where the sampling fractions involved are
ngt 00 large.

V)

some notation used in this chapter. The notation in this chapter is an
extension of that in Chapter 4, with the listing units (second-stage units)
in this chapter corresponding to the sampling units in Chapter 4, Thus,
N in this chapter is the total number of second-siage units, and N, is the

number in the ith primary unit. The N units are here regarded as grouped

* Appropriate references to Vol. I are shown in parentheses after section or
subsection headings. The number following I- afier some equations gives
the chapter, section, and nurnber of that particular equation in Vol. 1.

142
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into M clusters that serve as primary sampling units. The basic notation
of this chapter is as follows:

M = Number of first-stage units (or primary sampling units) in the
population,

m = Number of first-stage units in the sample.

N, = Number of second-stage units (or listing units) in ith first-stage
unit in the population.

‘n; = Number of second-stage units in the sample from ith ﬁrst-stagc\
unit in the sample. , ;\‘

X;; = Value of X-chqracterlsnc for jth second- stage unit in G first-
stage unit, {== 1, - -, M oandj=1,-+ - N. - ¢ ~5

%; = Yalue of X-characteristic for jth sccond-stage un\t‘m the sample
from ith first-stage unit in the sample, / = K", /m, and j = 1,
MR P \\,

i

4 W - +
are defined similarly for a secondﬁharactenstic.

>

Sums are indicated by dropping subscmpts

Yiand w

BES]

X ak)  a
X Z £ '>X=’ F‘ZZX‘G
Ty '<\ e m i
T = ) U= 2 Z Z'?i.f
¥ )
ap "
N szi' it = an
’¢\‘..o i i
e )
Average va'hkesiper second-stage unit are
O _ -
\\ (= XN, X,= X/N;
A
\\"” X =afn, =

Ratios are
R=X/Y, R =X/,

:
r=uwfly, == B
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Simpie unbiased estimates of totals are &’ and &, where

& is the estimate of X'} gee Sec. 1 for further
o, is the estimate of X,J definitions of these estimates.

Furthermore
fi=m/M, fo;=nfN,;

and when f,; is constant for all 7

fo= for = EAjN QO
and A

f=fifo= EniN -

1. The variance and covariance for a fwo-stage and‘.tfér‘”ﬁ multi-stage
sampling design (Vol. I, Ch. 6, Sec. 6). «. Variancelof simple unbiased
estimate for two-stage sample. To prove: Let us fisghconsider the simple
case of a population consisting of M first-stage walts with N, second-stage
units within the ith first-stage unit. Asswie” that a simple random
sample of m first-stage units is selected, 4n'd ya simple random sample of
n; second-stage units is selected from the ith sclected first-stage unit.
Suppose that the cstimate made from the sample is

M A N, ™

X = T, == — LAY 1 1.1.

P 1;:'L"’ m % n; %x” -H
N\

where x,; is the valuc fm\ the jth selected second-stage unit from the ith

selected first-stage umt “We shall show below that Ex” = X, where

v il M X,

;*l‘* X = z ;x,j
'\...

?md X is\Lhﬁ value of the Jjth second-stage unit of the ith ﬁrst-stage ugit
in thq:po ulation. We shall also show that the variance of @ is

NS
~\/ MEM — m o MYENEN,—n; .
\ } O'E’ = m I 1}1 + — z N Sm\r (12)
where ar _
S(%,— O
S 13

A'-i
Z(X = X, &
B

prp (1.4)

2 .
Stix =
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and o .
' ¥ 24X, >4,
' . - X - <t i X
X": X; X:}—‘—':‘—“—; :—‘L———::-—,
,jZ T M ar & M 3 (1.5)
Proof. We can write :
e M Ll 3
2= — 57
moy
where
7; = N%
Then, by Theorem 6 of Ch. 3 (p. 49), O
. 7'\
Mm y >
Erf = — : N
x o %:Ex‘ )

&
Now Ex;, by Theorem 14 of Ch. 3 (p. 61), is equak td‘%(Exﬂb* = B},
where E{x;|b* = B,) means the conditional expected walue of «, knowing
that the ith sampled first-stage sampling unit is thejth first-stage unit in
the population. For short we shall call E(z}p*="B,) = Ex]. Hence

M® Mn M ( N, )

Ex == 3Fr = —SEEx)=*~ - ;

& m% i m%‘ ( ;:?1:%:’ m%E E:’ 7 jzxi:r
M2 Non, N M
= mSEHEE Sy Sy
m?En-NinX” m,2 ¢

1 £ 'j\
where X; and X are to &g distinguished from X; and X, defined above
in that they are randorh, méri"ables and take on different values dependent
on which first-stage unit4s selected in the sample. The values of X, and
Xy; are uniquely agbetiated with the ith first-stage sampling unit in the
population. FJ.QEHSJ, from Sec. 1 of Ch. 4, we have

"\"’ M=e __ Mn1M _

R\ B = " SEXi= 53X = MR =X

e how wish to express the variance of 2 in terms of the two com-
ponents, one being the contribution arising from the first-stage sampling
and the other from the second-stage sampling.

By Theorem 15, Ch. 3 (p. 65), with # =2 and 6* = [1], where the
expression [1} is used to indicate a fixed sample of first-stage units, we
may write '

' = Eofjy + i (1.6)
In this case, oy, is the conditional variance of #', holding the first-stage
units constant; E(x’|[1]) is the conditional expected value of 2', holding
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the first-stage units coastant; and 6%y is the variance of these con-
ditional expected vatues over all possible samples of firsi-stage units.

Consider the first lerm in the right-hand member of Eq. 1.6. The
variance of &' for a fixed set of first-stage units in the sample is the variance
of (Mfm)x", where 2" is the estimated total for the fixed set of s psu’s,
with each of the m psu’s now serving as a stratum, Consequently, by
Sec. 1, Ch. 5, the variance of &’ for the fixed set of primary units is

M2 ??i Ni‘_“ n‘j ¢
2N e Shix Q.

T t

O =
Hence, by Theorem 6, Ch. 3 (p. 49}, )

M2 m  N,—n \
Eoly; = —5 EoN?——¥ 8% N
2[4} "t Z Y 21,)(' a\

eV

—i_fgz (1.7)
since .

is a random variable hawing M possible values, each with probability
1/M. Equation 1,7 jsqual to the second term in the right-hand member
of Eq. 1.2 and repéie"nts the contribution to the variance due to sampling
second-stage upits*within first-stage uanits.

Consider)ndW o}y in Eq. 1.6, which represents the first-stage con-
trlbuti{)g\iﬁthf: variance. Now, '

Nl B\ =2 & {( 3wz i)

"
& NI
/N = = M
\ where &; = 2_::'35,-;‘1»1i is the sample average per second-stage unit from the

J
fth first-stage unit in the sample. Since the first-stage units are held
constant, they can be regarded as strata, and from Sec. 1 of Ch. 5 we have

Mz - M2
@I = INK = 3K,
* Ngte that Theorem 16 {p. 68) could have been applied in this case, also
and with exactly the same steps as with Theorem 15. Theorem 16 has ar

a?l\glxta;g)e when more than two stages of sampling are involved (as in Sec. ¢
o N
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where the primes are used to indicate that Xiand X; are random variables
(values for the ith first-stage unit in the sample). Henece, by Sec. 2 of
Ch. 4

M

. M—m Z(X‘_‘,?)‘l

Ty = 64 o, N 7 £ L S —

Helh (;—"Eﬁ .\";) T Mm M- | ¢85
0

which is equal to the first term in the right-hand member of Eq. 1.2 and
represeqts the contribution to the variance due to sampling first-stage

units. Therefore, substituting Eq. 1.7 and 1.8 inio Eq. 1.6, we obtam<

If r}ze second-stage sampling fractions are wniform, ic., nfﬂ\,\ﬁ {2
= Ea/N, for all first- -stage units, the variance of 2” becomes W

o M— ]\ -7, D
- = N0 A .
oa = M Mm b N Nmisi iy \ (19)
where 8% - is given by Eq. 1.3, and AN
. WS&e
Sx= g 2o S e RSN (o
N/ i
and the rel-variance of 2’ is given by ”. )
ai M m” N—7 (4.1t or
| 2 4. 2
Vimx= Fim o A 1-6.6.4)
where ¢ N
Siv n Sy o X o X
2IH.__‘_.’ .:";"—, Xﬂ*—*, S = =
& X2> e w TN
N

and where, in Eq, '{9 and 1.11, A is the expected number of listing units
in the sample,perypsu in the sample.

b. Covarianee of simple unbiased estimare for mvo-stage sample. To
prove: Thecbvariance of 2’ and ' for a two-stage sampling design i3

A
) oy = £ = X}y = X)

M*M—n MYNIN, —

= — S lig, 1.12

Y Sy Z{ N, Cwy (1.12)

where ' and %' are defined by Eq. 1.1, and where

M _ _
S(X— X4~ F)

Spyy =t (1.13)

M—1
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Ny _ -
Z(Xﬁ_ Xf)( Yl'j - Y:')
Sy = ———F—7—"—" N._1 (1.14)
with X, ¥,, ¥, and X defined as in Eq. L5, and with Y, Y., ¥,and ¥
similarly defined for the ¥-characteristic.
The component of the covariance of ' and y due to fitst-stage
sampling is

M2M—m )
; M SIXI' .(\1.35)
Oy
and the component of the covariance of &’ and ' due tof Second-stage
sampling is <~.‘.
MYNEN—n A
-2 = UEY N (1.16)

my n N,
Pmof The proof that the covariance, g, '\\for a two-stage sampling
design is gwen by Eq. 1.12 follows the: saﬁle steps as used in Part @ to
prove that o2 is given by Eq. 1.2 and is'left to the reader. Note that
Eq. 1.12 becomes Eq. 1.2 when we, substitute values of X for the corres-
ponding values of Y. Thus, }:g'y this substitution S,xx in Eq. 1.13
equals 87 in Eq. 1.3, and stXX in Eq. 1.14 equals 8% ¢ in Eq. 1.4, Tt
follows that :
:'\"\ Uﬂ'y' = Gﬁ» (1.17)
As in Eq. 1.9, when uniform sampling fractions are used, the covariance
becomes .‘\ 3
0N M-—m 1 N—n
& Oy = M? SlXY + N2 ml&éxy (118)

\:w, - Mm
w]@ré SIXY is given by Eg. 1.i3,

ov\ w4
\ 3

822;1’ = EZN#S{%XI’ _ (1.19}

and 7 in Eq. 1.18 is the expected number of listing units in the sample
per psu in the sample.

c..Rel-yariance of a ratio for two-stage sample. To prove: Let the
estimate of the ratio be

z 1.20)
r== .
?f'. (
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where 2’ is defined by Eq. 1.1 and %' is similarly defined for the Y-
characteristic.  Then the rel-variance of r can be written as

s . MEM —m

1 M‘H’NENS-_H‘:
ToXtm M

SySliiT g (12))

4+
Xem T v N

where _
81 = S§ix + RSy — 2RS v (1.22)

with Sy defined by Eq. 1.3, 83, similarly defined, 8,5, defined By\
Eq. 1.13, and R = X/Y¥, and where

A ¢
A,

82 = Sty + RS%p —2RSxr L OU2D)

with 8%y defined by Eq. 1.4, 8%;; similarly defined, angiqSLi X‘Y defined
by Eq. 1.14. S - N\
Proof. By Sec. 11 of Ch. 4, we have

2igg_l. _q;:_‘zgﬂ'-";;'
V=Tt T g (1.24)

where % and o2 are given by Eq. 1.2,%nd o, is given by Eq. L.12.
By making the substitutions indicat@d above for ¢%, ¢%, and o, in
Eq. 1.24 and combining the first-stgge contributions to the variance and
covariance for X and ¥, we ob@in the first term of Eq. 1.21.  Similarly, .
combining the second-stagg:.é%tributions, we obtain the second term of
Eq. 1.21. AP

When uniform sampling fractions are used, i.e., n/N; = f, = EA[N, the
rel-variance of r béednies

O —
N gL Mo mBE N AWE s o 16610
:§, & T o T (1.25 or I-6.6.10)
where \ '
~O B*= B% 4 B} — 2Byy (1.26 or 1-6.6.11)
with/
S -1 ’
Byy = )?I; (1.27 or 1-6.6.8)

8, xy given by Eq. 1.13,

B.Er = Byx B%' = Byy
and
WE= W+ Wi—2Wyy (1.28)
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with
M

8, - o, )
Wiy = e = 2Ny (1.29 or 1-6.6.9)
; Xy NXY

Ny; v given by Eq. 114,
W= Wyy, Wi=Wsy

and where in Eq. 1.25, 7 is the expected number of listing units in the
sample per psu in the sample. Equation 1.25 follows directly Arom
Eq. 1.21 with nfN; = Ei/N.

d. Variance of wmpi"e unbiased estimate for multi-siage sampk The
variance for a simple random sample of m first-stage units c,t:iea:}ed without
replacement from M first-stage units cun be expressedy mr« terms of the
contribution to the variance from the first-stage units‘@nd the combined
contribution from all subsequent stages of samplmg )

kil

Let >u/m be an unbiased estimate of U,\where u, is an estimate
cbtained from the ith selected first-stage um{e} a samplc of m first-stage
units, i = 1, 2, - - -, m; and also let 2N

Euy, = U, thZ M

where £, designates a condmg)r:ia! cxpccted value for the /ith selected

primary unit {which is, say, thé}th unit in the population of psu’s).
To prove:

“NM—m 1 &

b e g% 1 —— Sg2 .

“dﬁ\ (A{__ l)m oy . Mm ;O‘mi (1 30)
where x
N> , 1 -
P il = — — Uy

\:“\:} o M‘Z(Ug ) (1.31)
.~’\ 0%, = Efu;— Eu)? : (1.32)

and\Zow {Mm represents the contribution to the variance from all

\subsequent stages of sampling.
Proof. By Theorem 15, Ch. 3 (p. 65),

2 __ Z 2
0g = E0z)47 + ‘T"E(mu 3} (1.33)
where the second term represents the contribution to the variance from

first-stage sampling, and the first term represents the contribution from
all qubsequcnt stages of sampling. From Sec, 1g,

2 M—m '
Chalny = 31— 1m ¢ (1.34)
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Also, since the subsampling is carried out independently in each psu,
and since the first-stage units can be regarded as m strata when the m
first-stage units are held constant, it follows that

2 1 e 1 i
5 2
G = e %E:(“s - Ea ) = e < L

3 1

From Theorem 6, Ch. 3 (p. 49), we have

. i 1 M ~N
‘EG?}-![!.! - EZ fe T o Z 2 T
A,
1 u O
= 3 2% (1.35)

Substituting Eq. 1.34 and 1.35 into Eq. 1.33, we hdw& 7 as given by

Eg. 1.30.
AN

2. Estimates of the total variance and of the t;}{hltﬂiﬂ&l“i&ncﬁ for a multi-
stage sampling design where the first-stage naits are selected with simple
rapdom sampling (Vol. 1, Ch. 6, Sec. 7, . Remark)., Assume that it is
desired to estimate the total Varlam‘:e ‘and covariance of unbiased
estimates from a mulii- -stage design, wrthout estimating the components of
the variance and covariance. ™

a. The estimates 53 and .sm%wcn below are unbiased estimates of the
total variance and covarianceMas long as there are at least two first-stage
units in the sample, seiect\d with replacement. The subsequent stages of
sampling are not restribtéd either as to the number of stages of sampling
or the method of s’lm\plmg, so long as the u; are unbiased estimates of a,
where #, is an eﬁ‘rmatc made from the 7th psu in the sample, and the
subsamphng}q any psu is independent of that in any other psu.

Let w,, " - -, #,, be m unbiased estimates of U’ made from each of
m indepéndently selected psu’s.
7 prove:
Km ™
D, — af
o i ol
58 = — ;‘.AI
Yomm— 1) e
is an unbiased estimate of
= E(G— Uy : (2.2)
wherg "o
2,

b
il
2y
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Proof. From Corollary 1 of Theorem 11, Ch. 3 (p. 56),

I
0% = —of (2.3)
m
where _
of, = E(u,— UY 24
From Sec. 4 of Ch. 4, we have
Est = a% (2.5)
b. Assume that u, and # are unbiased estimates of U, w, and i are
unbiased estimates of W, i=1, 2, -+ «, m; and m of the M primary
units are independently selected by simple random samﬁl?ﬁg with
replacement. A WV
T : m . £ "§
o prove . S — B w; — W) D 2.6)
_ e m{m— 1) \ :
is an unbiased estimate of \
. FoNg
O = E(@— U)w —{W)
The proof is left to the reader.
¢. Assume that a simple random samgple of m first-stage units is selected
without replacement. N
To prove: N u
5 A M C},2” thrz
Es2 &£ L 42 el
f.‘.\ﬁM— 1 m Mm @7
o T M a . - Ul’u,w‘
s, M Tow :
O 2 —1 m Mm 28)

::\n
The proofiis. eft 1o the reader. As the following hint indicates, the only

compﬁggﬁbn is the need for using finite sampling corrections,
Hinty"Use the following equations:

o.\ »; "
' 2w, — @yt

I e
Est—E-L - 2 mER
_ mim— 1) m(m— 1) (EE”‘ mE )

EiR = o2 + U2

A

e
. M-m %‘0*”'
= Dm T M

E3uf = m(al + T?)
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Note that 5} is not an unbiased estimate of o2 given by Eq. 1.30, but the
bias will be small if s/ M is small.

d. Assume that a simple random sample of m first-stage units is selected,

m
and It @ = Su,fm.  Assume, further, that a simple random sample of
m’ units is selected from the m first-stage units originally selected. Let

' '
_s Z;E!e' and e Z(at'-ﬁﬁ)g

u = - e
o omm — 1)
r . . '"\
To prove: If the m and m” units are selected without replacement,
‘ A . '.\..\‘
Es? = Es2 = &3 ~\ 2.9)

L 3

where s is given by Eq. 2.1 and &% is given by Eq. 27 N
Proof. The proof follows from the fact that \

Z(u e Rt N
—1 m—,}'.\\"
xS,

3. Estimates of the total variance and rel-Varlance for a two-stage design
(Vol. 1, Ch. 6, Sec. 7). R

a. Let 2" be given by Eq. 1.1; the(},’if M is large relative to m, a con-
sistent estimate of a2 (Eq. 1. 2) 15

\'\ Z(xf — &y
e __ 4 3.1
\ M o’ — 1) G.h
where D
P } M E ,
o Byi= M2 Dxy, = My
:"\1. n" j - 3 2)
‘§ w .
N B = Z_%. :
. :»“\: > mr

and\m' is the number of first-stage units selected by simple random
sampling to estimate the variance. The remaining terms in Eq. 3.2 are
defined in Sec. 1.
To prove: Esi} = o%, when M is large relative to m.
Proof. The proof follows from Eq. 2.7 and 2.9, where it has been
shown that
M
2%,

M o}
L T ik A T 33
B =1 m " 2m (33)
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where
' M _
a2 — Z(Us_' U )2
v M
and
: ' u,:{ = E (u — E; Itf)z
Now let .
H; = -%,; and # = A
Then _ "
U, = MX, O
since ' .',:\’:\.'
%, = Mz, and Egx;= X, AN\
s
and 0 = MX = ZX,. Also, R\
. h” , Z .."
[ RS
S;—F - ;? = M \:\}\ (34)
m(m — 1)

 §

. . AN .
Remark 1. Tt will be convenient for use {i}Qubsequcnt sections to let

f T Z’f&:“‘ : 4
5){ M 547 —», (}ﬂ _ I) ( -S)
and N\
\\n'?'!
From U; = MX, u*&gﬂ’cws that
WO A
2 M(X,— XY
A& 95 = 7 (3.6)
O
Hence, J@%?(M — 1) = M38%,, where 8%y is given by Eq. 1.3.
Frp;i'g\ui = 2; we have
~O7 ot = B~ B = MAEGE— X
\" N .
= MNF = —i Mg _ (3.7)

T+ hi

" where 8%y is given by Eq. 1.4, Substituting Eq. 3.6 and 3.7 in Eq. 3.3,
we have

, , Sy MY
Es2 = E5'? = Mz‘ X zN-~—Nn—- %y (3.8)

Fah )
Note that Es;? approaches oZ. as given by Eq. 1.2 when M is large relative
to m. The second term of Eq. 3.8 is the same as the second term of
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© Eq. 1.2. The ratio of the first term of Eq. 3.8 1o that of Eq. 1.2 i3
M{(M — m), which is near 1 for M large relative to m. Then, for M
Jarge relative to m,

’

&

o

e

by

(5

(3.9)

L

is a consistent estimate of V2 (Eq. 1.11), where s;? is given by Eq. 3.1
and &’ by Eq. 1.1.

Remark 2. The proof that 577 is a consistent estimate of o, with M large
relative to 1 follows immediately from Sec. 2a, when it is Tecognized that |
having M large relative to # is equivalent to sampling the m units W}!‘h
replacement.  Thus, it was shown in Sec, 2a that A\

{ \
' D
PYCARN % N
Esf = E*————:¢} ‘O
# mnt — 1y % S
If we let 4
L
M wa A
i F . “
and "N\
Mw N % W
= D D B F
m g on; RN
then it foliows that Ny
Esdss o}

b. When the sampling fractiah} within ﬁrst~stage units are wniform for
all first-stage units and m' < M) the estimate v% (Eq. 3.9) becomes

X \
— 2
\& Z(E’.__x_) | Sex, (3.10)
A, mim— 1Yt mi®
where \\
O o2&
"< \ @ Yox = " — I

Thls\san readlly be verified by raaking the following substitutions which
hold in this special case:

f m__ —_
E-v;-’-:fz, o =S Sl f

5, = (3.41)
Al

x - £

A fz’ m

!

Tr ==
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For this case a more accurate estimate of the rel-variance is

2
2 Sex
b (3.12)
The reader can verify that this estimate is a closer approximation of V%
than is s2,/mz®.
Note that 5% as given by Eq. 3.5 with »" = m and a uniform sub-
sampling fraction is related to 52y as follows: A

_ six = 5%/3 SO\

Note also that s2; as defined by Eq. 3.10 is referred to as the ‘variance
between ultimate clusters, aud »2 as given by Eq. 3.12 or3:10 is referred
to as an ultimate cluster estimate of the rel-variance @f =”. The term
ultimate cluster is used to denote the units in the satﬁf\ﬂe from a primary
sampling unit. \

¢, We shall next consider an estimate of gh&él-variance of r=a'fy’
for a two-stage design. The rel-variance QfNAis given by

2 2 \J/
pe o= 02 L S 2%y
TOXRAY Xy

From Sec. 2b, and with terms! jaeﬁned in Part ¢ above, an unbiased
estimate of o, is N

S
m’ 7'\ e’
, %, — BN MES @ — 2y, — §' z
Sx'g’ — Z( £ ,)g y) — . Z(‘Tz ::7 )(yi, ?f ) — __Af_ SX])' (3 13)
(> 1) m m—1 m
Similasly O w
- S SG—0¢ MR MR,
NS = e D T m M1 oY (3.14)
N mm—1 m m—1 m
Thqggf'dre, a consistent estimate of V2 is
p\.J
\‘: ,  S2 o Sp S 1 M2
?‘,F:T .——_2ﬂ_=__,_. 2 .
IR i e bt (3.15)
where
S2 :‘S?r"i" rgsir‘_er_Xlr (3-16)

with the 572, 57, an'd Sy defined by Eq, 3.1, 3.14, and 3.13, respectively.
‘When the sampling fractions within fiyst-stage units are uniform for alt

first-stage units and »m’' = m, the estimate above (Eq. 3.15) becomes

gt B s

e e = (3.17)
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where s2y/ma? is defined in Eq. 3.10 above, sZy/m*® is similarly defined,

and "
Sexy | 2@~ Ny, — )

mE;  m(m— DEg - G13)
An improved estimate is
1— e E 25:: :
% = f( = ——_’_‘Y) (3.19)
moo\E ¥ £y

which should be used when the over-all sampling fraction, f; is lagge®

Remark 3. An estimate of 8%, the variance between listing umts 1ﬁ the

population, may be made from a cluster subsample as follows:{ QO
o (’n‘

Z 2(33”—*2‘5) D ‘

n—1 . .w‘\\'

\

(3.20) .'

Although s? is not an unbiased estimate of 52, its bxas wHI be trivial whenever
the number of primary units in the sample is large \Thus, when the primary

units are equal in size, ie., N =N, \ il
82 N—1[r m&ld
. N[ — [NW( 6)—(5?3 ]]{3.21)

and the remainder term will be small for m (and thus N and #») large.
{The terms in Eq, 3.21 are deﬁned’ below.) Equation 3.21 follows readily
from the fact that

£33 0
3 = Ro- it
and
Ex2 =of + Xt
where ‘?’ _
o N\ M—mot N-ndy
¢\ gr="FT""—+ 3 -
"’ —1m — 1 m
Q
"‘;; ot = 0'3 + GE{J
O ¥
\ } 2 = Z(Xi_ X)?
M
M N
ot = > (X — X
¥ MN
5 _ ot — o¥/N
T (N — Doy N
M ¥, .
O_g N ngzZ(X'%J_X)

“AN-1 N
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4. Estimates of the components of the rel-variance of a ratio estimate
for a two-stage sampling design (Vol. I, Ch. 6, Sec. 7). Consistent
estimates of the components of the rel-variance of a tatio, #, for a two-
siage sampling design may be made as follows: The esiimate, r, is given
by Eg. 1.20. The rel-variance of r is given by Eq. 1.21.

a. To prove: A consistent estimate of the within-psu component of the
roi-variance, i.e., of the second term in Eg. 1.21, is

W NN, — n,
Do, W, ~,
o NCEY

o]
re m m A\ ¢
,’\“\

where m’ is the number of units selected from the m ﬁrsbst’&ge units for

estimating the variance, N
7 '\.'
2 2 2.9 . 2\
83 = Sa;x + Sty — 2rsa ) #.2)
with e O
ey )y — I i3
Soixy = A — 1 p x\ (4.3)

S3ix = 62nA zmd ‘2«1‘ = Suryr

Proof. The within componﬁnt’e’f the rel-variance may be rewritten

R l! N’ N —
i x 2
1)12 n, N, %
\‘?2 N A 4-4)
Now, x“
\ ¢/
) NN, —
:'\"’ Z ’Srz -
:~'\l. #; N‘x
N — .5

15 an ’unbiased estimate of the term in brackets in Eq. 44. We need to
find 2 consistent estimate of 8%;, for Eq. 4.5 10 be a consistent estimate of
the term in brackets in Eq. 4.4.  Since the n, elements are a simple random
sample from the N, elements, it follows from Sec. 4, Ch. 4, that

Z(% )Yy —

m—1.

Egyixy = E; = Spxy (4.6)

where S,y is defined by Eq. 1.14, Slmllarly, Essx = 8%, and
Easn v = Shy. Since, also by Sec. 21, Ch. 4, r is a consistent estimate of
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R, 5%, is a consistent estimate of S%,, and
TNiN—n ,
. 2. n N, 52
Pom ot @.7)

r

H

is a consistent estimate of the term in brackets in Eq. 4.4. Also, since
%' is an unbiased estimate of X, Eq. 4.1 is a consistent estimate of the
within component, namely, Eq. 4.4,

For a simple two-stage design with uniform sampling fractions, the
rel-variance whose components we wish to estimate is given by Eq..128,
In this case m/M =f, niN,=fo, & =zxlfifo = r¥lfifo. ¥ =3lh/
= nif{fifo, -and » = mA. When m" = m, the estimate of tbe\@ithin
component (Eq. 4.1), with the above substitutions, becomes _ ()

%

N

1—£, A\ ?
2 ;O 4.8
mij w N ...,t\\ ( }

wherte f
w2 = wh 4 wh - 2wy N (4.9 or 1-6.7.6)
AV
oy o SREY 2V
X3 Eg . @
1 .
Sar = ;3 $te, — 20070 (4.10)
'?

2
wh = VX\R SNand wh o= wpp

Szx \aI\X and  siy = Sy

b. To prove: A‘cgr;msrem estimate af the between-psu component of the
relvarignee, i, c'\'oftha first term in Eq. 1.21, is

.\ ) I MZM -~
\ ;;Té '—';; 1% (52—- Sz) (4'11)
w{lc 5"2 is given by Eq. 4.7,
sg = Si- + r%ﬁ'i;—'— 2?’54\:].' (4'12)

s%, 5%, and sy are defined in Eq. 3.5 and 3.13.
Proof. From Eq. 3.8 it follows that
A N2 N s
2 ~* N. Sm\f

n! 3
Esy = 8%y + = (4.13)
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Since also
MNEN,—n,
2= o T v
Est =83, : : 4,14
Sy 1Y "]“ M ( }
M Nﬂ N J— n!,
2 — : S‘.".ix 1
Esxy = Sy 4 1 e (4.15)
Sxy = P1xy FY; .
and r is & consistent estimate of R, it follows that $* is a consistent
estimate of O
ﬂ; N2 N 389 f:\t\'
S% + _,H_.E_N—’_ \ \“\, ) (4.16)
M l’ ‘

where 57 is given by Eq. 1.22 and 8%; is given by Eg{ Y3, Hence, the
term in parentheses InEq. 411 isa Consmtent cstlmafe of 8%, and, since
«’ is an unbiased estimate of X, Eq. 4.11 is a anSIStcnt est[mate of the
between-psu component.

For a simple two-stage design, with umform samplmg fractions, the
estimate of the between-psu componen’t.(Eq 4.11) when s = m becomes

ON Y
] .._"’i; bg

“m
where &
_ Ubf’éz by + L — 2byy 4.17 or I-6.7.11)
with &\
A\ 1
”BX'Y = %‘é} [Scxp - ﬁ(] —‘f‘z).i'g_xyl (4.18 or 1—6.?.13)
»\'.\ " 5.4y defined by Eq. 3.18,
.\\\“ __r oy
“"; = '-, ‘y o=
) :..\’;: : m n
¢ \;"' bi’ = b\j)—, bi! = blrlr

Remark, thn the number of second-stage units used to estimate the
variance is nf, not necessarily equal to n,;, the estimate of the within-psu
component is given by Eq. 4.1 with

§ = Fawe—= 70

Saiyp —
xF n;—}

(4.1%)

;x_:Z_{

"y
and §e‘ — zyﬂ"

if
n H
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Sec. 5
The estimate of the between-psu component is given by

1 M*AM—
Fz - Af2
2 m M (s 75
L
where 52 is given by 5% with 2} = (N/n})> x;; and ¥{ is similarly defined,
m NE Ni— n
2w
— @21

5% = -
m

(4.20)

Thic estimate of the total variance is obtained by adding the estimates of

the components.

5. Rel-variance of a ratio estimate expressed in terms of 3, the feasiire
ef homageneity; an estimate of 5 from the sample (Vol. I, Ch. 6, Sec 8. a.
To prove: For a simple two-stage sampling design (see Np@e (m p. 142)
the rel-variance of » givcn by Eq. 1.25 1s approximately Quai to

ft?{1+a(nu1); RN (5101’1 -6.8.6)

where ¥2 and 8 are defined by Eq. 5.4 angd¥ 5} below, and in Eqg. 5.1
through Eq 5.10, 7 is the expected number ‘of listing units in the sample

per psu in the sample.
Progf. From Eq. 1.25, the rel-varranée of ris

N YR ey .
L Mowl KW (5.2 or 1-6.6.10)

2
& Mm+fvmn

and if yn js small relativg.to N7 .
Q7 M—1B N—aw® '
NP2 = 222 ua 5.3
~'\“’\VT M m N m# (-
where B amd{w2 are defined by Eq. 1.26 and 1.28. By definition
"\ ' V2= — 1 g + %— we (5.4 or 1-6.8.10}
and\
2
M—1 f |

M N (5.5 or 1-6.8.11)

G

From Eq. 5.5 we obtain
M lp —‘;_— [1 + 67 — 1)} (5.6)

M
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and from Eq 5.4 and 5.6 we obtain

we= P¥1— 8 _ (5.7
If we substitute in Eq. 5.3 for B from Eq. 5.6 and for W* from Eq, 5.7
and simplify, we obtain

. P
VE= — L+ 8- 1) (5.8)

Another approximation to ¥? is given by
1—
vt ==L P g s 1) s
Lesied y ~\.
and ordinarily Eq. 5.1 is a closer approximation to Eq. 5.2 th;@ is Eq. 5.5.
The reader can readily verify this by showing that the differences are

fﬁ"m——l '\\
Eq. 58 — Eq. 5.2 m O (5.9}
N-a e x\r (32 n-—l)
Eg. 5.1 — E 2 = 2 —
4 q 3 M (B ) ( D m

{5.10)

and that Eq. 5.10 is smaller in .abS{)lute value than Eq. 5.9 provided
m>tand B2— (W3N) =0, a,s Wwilt commoniy be the case.

S\
\ \ Exercises
5.1. When N; = & show that
...:':: N—1 e F
¢/ N e
where 9, N
\{;\;“ = VE[ -+ V% — 2V xy (5.11)
and N\ _
R\ M ¥ -
o DXy — XY= 1) (5.12
\\ e (N— 1YY
Vi=Vyx, VY= Vyy (5.13)
5.2. Assume that N, = ¥ for all 7 and define
'ﬁl i
_ 2 2%
: mit
Show that
yi = lr;‘éf VAL + 86— )] (5.14 or 1-6.8.1)
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where

M N,
L 220K — N &
(N - 1))(2 TN X G139
__af—o¥N
V- 1neyN (5.16)
and
@ .
Z(X;M X) 517
O

b. A consistent estimate of d (Eq. 5.5) can be made by substituting
consistent sample estimates, term for term, for the poPulat:on ‘walues
involved in the definition of 4. A simpler but equivalent.. eéstimate
{provided M is large) is given by Eq. 5.18. N

To prove: A consistent estimate of 4 is

'\’\.’
2 =2 \J
. §; — ASy

§ o e M "(5.18 or 1-6.8.14
A — D N (5.18 or )

where AV
52 = 52 + rA - ersgry
with 5oy, 5%y, and s, xp defined by Eq S 10 and 3.18, and where
Sg == S2X +J"‘ 3'2],* - 2r52JLY . (5.19}

with 55y, 53y, and s,y definéd by Eq. 4.10.
Proof. We first note 1h§,§i}‘Mis large, Eq. 5.5 can be written as
e aw
N D= S‘_ _NS2 - {5.20 or 1-6.8.13)
8} + N(N— 183 .

. . A
since, in Eq. S.S,,\~“

’\s B2 . JSE
AV T
AN N—1
O 2z B2 W2
\\; " % + 5
with
83
T ¥

where we assume (M — 1)/M = 1 and where 87 is given by Eq. 1.22,
82— 82 + RAUSZ, — 2RS,xy with Sy 5y given by Eq. 1.19, 855 == Sy xx
and S3p = S,y p. We shall now show that the numerator of 4" is a con-
sistent estimate of £2 times the numerator of 6 and that the denominator
of & is a consistent estimate of /3 times the denominator of 6 and the
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proof that &' is a consistent estimate of 0 follows immediately from:
Theorem 20, Ch. 3 (p. 75).

Let

no

N, =/

sE=f35"
where 5% is given in Eq. 4.12. From Sec. 4b with the substitution
ndN; = f,, it follows that 52 is a consistent estimate of A\

N —1£) s L\
i [Si T : 9] A

It follows from Sec, 4a that sZ is a consistent estimate @f -‘§
It follows from Theorem 20, Ch. 3 (p. 75), that the‘numerator of &,
(s - mg) is a consistent estimate of

FuSi— RSy
2nd the denominator of &', [s* + A(7 —")s3], is a consistent estimate of
F38% + FF - S]]
6. The measure of homogegciij("when the primary units are egual in size
(Vol. 1, Ch. 6, Sec. 8, Eq. 3} The measure of homogeneity, o, between

~ listing uvnits (second- sta,g: units) within primary units when each primary
unit contains N llstmﬁxumts is the intraclass correlation and is given by

pY \ ) ot — oY N
:'\'"” T (N—1)eyN
where a&md o are defined below.

When'a population is composed of equal-sized primary units (in terms
;;,»f ]”‘slmg units) and when a single primary unit is drawn at random and

_ \t\wo listing units are drawn at random from this primary unit, the intraclass
correlation is defined by

P Elx;— f?)(xsk“— f)
VEz,;— X VER,~ X)
From Sec. 2, Ch. 4, with » = 1, it follows that

(6.1 or 1-6.8.3)

(6.2)

MKN _
22X — XY

Ez,y— ¥R = —— e = ® 6.3)



Sec. 7 6 FOR PRIMARY AND ULTIMATE UNITS 165
Substitating Eq. 6.3 into 6.2 gives

da* = Ea, — X))@ — X)
By Theorem 14 of Ch. 3 (p. 61), |

5 _ _
S Xy— DX~ X
80% = EE(w,~ X)ey— X) = E*2

NN -1
M N _ _
Z Z (Xﬁ“ X)(Xine - X)
e BA%E O\
MNKN-1) .
ME - - )y
3 [[ -of -S5O
=5 il . . ‘,‘t
MN(N — 1) A\ ©4)
Equation 6.4 can be rewriiten as follows: ."‘.,\\'
& . . ;M ﬁ_ \ =‘
502 — Z(X&' n X)2 . E Z(Xﬁ}“- Xi}z
M MNN 1)
) Uﬁ) : w
TOTE
where o8
_ VO RN\ MK _
oj = 37 & (X — X\ and Gi ZZ( s~ X
N\ -
and hence \\
SR e/ il )
OO T e (65
N \ /
and since ¢® ﬁ\crb i 0% it follows that -
N\ _
\ S of — o}IN _
N\ _ = 6.1
\ o (N — l)crz;’N .5

’o

? “Re!atmnsh)p between 4 for primary waits and 5 for uitimate clasters
&b I, Ch. 6, Sec. 8, pp. 262 and 266). To prove: The measure of
homogeneity, 8,, for listing units within primary units is approximately
equal to the expected value of the measure of homogeneity, J,, for listing
units within ultimate clusters when the ultimate clusters are formed by
proportionate sampling of listing units within primary uaits. An

* May be doferred.  This development is given to iilusiraie more correctly
the properties of ultimate clusters. Section 5 suffices to show that a consistent
estimate of & is readily available from ultimate clusters.
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ultimate cluster is defined as all the listing units included in the sample
from a selected primary unit.
Proof. Let
M—1 ., i
o M N t
lzm (7.1 or [ -6.8.11)

where P2 is defined by Eq. 5.4, B* and W?are defined asin Sec. 1 and let
MK -1 1,, E[MKnl . ?J

/

MK % E _ MK '?  En

8y = E— = —— A
(fi— YO En E[(7 — DrifEn] (\AH
L

—d

2

where K = N/E7 is the number of vltimate clusters into w h;c}i the listing
units in each primary unit could be grouped without rcpl‘accmcnt where
the expected value is over all possible sets of ultimate&lusters, and wiere

b3 = biy + b3y — 252.\'{ Nl (7.3}
with
MK rw,
23 (Sxe— (z ¥~ 7|
byxy = 7.4
o X 1 (MK’—‘ %3 (7.4)

2, -
bix = baxx, "*5%; = byyy

X;as 18 the value of the X-ch@racteristic for the jth listing unit in the ath

ultimate cluster of the zth\pﬁ Y,,; 1s similarly defined for the ¥-charac-
ieristic, X/

O X=Xk Y- VK

ny = NJK is the' number of listing units per ultimate cluster in the ith
primary unig,'{

N . MK—1 A1

O = — b g (7.5)
and(™
a\Y

\/ W = wix 4 Wiy — 2wy yy {7.6)

with "
1 ME E(X%'xj - }?m)( Yﬁi:(j - i‘x)
= ——= H, A—
Y s Rk ne— 1 a1

R 2
lv2X = H)EXX! 1“‘21} = Wz}. I

=T Y%'-:( =
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We will show

MK M1 W
EbE — 2 (1 f) o
b MK~-I[ A O ] (7.8)
and
Ewi = W* 7.9)

where f; = 1/K and, in Eq. 7.8, # = f;. Substituting these expected
values into Eq. 7.2, making use of Eq. 7.5, and simplifying, we obtain

M—1 B2 ‘fié
a . M N B 6 .\
TRy T L\
Consider first O
EbY = Ebix + Ebly — 2Ebyxy AN+ (7.10)
Now e\
M K Y

oo MK 3 SEX, Y~ MERY a1

PEE T MK - 1 MKjf{. '

Now, X, and Y, are vltimate cluster totals\{o‘r the octh ultimate cluster
in the fth primary unit, i.e, X, = Z &% and 7, 2 s Wherte X

and ¥, are values for the jth llStlﬂé wnit in the fxth ultlmdte cluster of
the particular subdivision into ulmmatc clusters. Since the ultimate
clusters are formed only within pttmary units and all possible subdivisions
are considered, X, and ¥;{are the sample totals for a sunple random
sample of n; hstmg um\fmm the N, listing units in the /th primary unit.

Hence,
N;,—

M‘B& Y‘?JC =
PN N,
Substituti E.q 7.12 in Eq. 7.11, using n, = NJK, ¥ = X/K, ¥ = ¥/K,
and mmﬁfﬁmg, we cbtain

18 vy + nX,Y, (7.12)

\ - M M
~ MK [5G — X%~ F) (-1 ZN;SM]
\ by = MK—1 [ MXY q NXY
MK M-l Wy ] |
MK -1 [ pp Bar tU=RI= (713

where in Bq. 7.13 and also in Eq. 7.14 and 7.15, i = f,N. Substituting
Xfor ¥ in Eq. 7.13,

-y B .

MK [M——l

BL {1 — }—@] (7.14)
A X‘( f2 5 5]



168 SIMPLE CLUSTER SAMPLING Ch. 6
Similarly,

(7.15)

'i.
i

EBSy =

MK [M—l W’]
MK—1

", By + (1 —fo) =

Substituting Eq. 7.13, 7.14, and 7.15 into Eq. 7.10, we obtain Eq. 7.8,
Consider now
EH’% == E”’%‘\' + E“"E]* - 2Eli}2x}' (7]6)

Since the n, clements are a simple random sample from A, elements, we
have, by Sec. 4, Ch. 4,

™\
M K M X \\
2 2n8uxy 2 NSpxy A\
EWpyp = e = e = Wy V(14D
B NXY NXY N
When X is substituted for ¥, we obtain \‘
Eniy = W% 80 (7.18)
. - N :‘\
Similarly, L&
Ewdy = W20 (7.19)

Substituting Eq. 7.17, 7.18, and 7198046 Eq. 7.16, we obtain Eq. 7.9.

NN
*

8. Somc physical properties Qéf'frequently occurrin.g populations, and
values of § under specified,¢onditions (Vol. I, Ch. 9, Sec. 8, and Ch. 6,
Sec. 8). O

a. Many actual popul tions are characterized by the following physical
properties: 7%

\¥/
i. The eie@;}ﬁts within a cluster are positively correlated with regard
to g8pecified characteristic.

ii. Clusters containing large numbers of elements have greater internal
N\ fhetcrogeneity than clusters containing small numbers of elements.

fil. Increasing the size of the cluster brings in correlated elements (e.g.,

in population or agriculture surveys, larger clusters are formed by
including households or farms in adjacent areas).

- The first of these properties is widely recognized, and the losses of
efficiency through the use of large whole clusters as sampling units are
frequenily cited. The second and third properties hold just as commonly

in actual populations, and ordinarily for the same populations for which
the first property holds.
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The presence of these physical properties leads to the following mathe-
maiical relatiouships which have been found useful in making choices
among alternative sample designs.

(1) The sizes of the primary sampling units, N,, are negatively correlated
with the §,, the measures of homogenmty among the elements
within the primary units, where 4, is defined as elther

_ ¥ _
(2, — o

d; = Bl — Xt 2 ) L S [(X— X — MJ
By — X) NN~ 1) 1 A~

or : .

(X’i — Xy e\
55 = '—"—0"2———- - 2 o~
(2) The N, and N,8, are positively correlated. R :“5’«.

(3) The N; and o} are posmvely correlated, whera\r"‘ is the variance
among elements in the #th primary unit.

(4) The N, and ¢;/N, are negatively correla{ed\\ /

The use of these relatlonshxps can oftgn \determine the choice among
alternative sampling procedures in Sltuaj:mns where more specific charac-
teristics of populatzons are unknown » The relationships, of course, do
not necessarily hold, and cxceptlons o them will be found.

b. The following values of {the measure of homogeneity (Eg. 5.5) hold
for a population of clusters \for the conditions specified :

(1) The ma.mmum'pgklble value for d is
\“ 6 (max.) =1 (8.1)

if all lis{i’n\g units in any cluster are alike in that the values of the

chdr'a\\unﬁ:rlstlcs X, and ¥, are uniform for all listing units in a

cluster, but have some different values in different clusters. The
ol ‘clusters need not be uniform in size. '
XZ)‘ The minimum possible vaiue for d is

I .
in)=-——-—. 8.2
4 (min.) 71 (8.2)
The minimum value of & is obtained when B% in Eq. 5.5 is equal to 0.
This will occur .
(1) if the clusters are equal in size, the estimate is a simple unbiased
estimate of a mean or total, and X; = X for all {; and
(ii) for a ratio estimate when X,/ ¥; = R for all 1.
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(3) If the clusters are equal in size, Le., N; = N, and if the primary
units are formed by randomly grouping the population of listing
units into M clusters of N listing units each, then

1
d=———"=0 8.3
N1 (8.3)

(4) For any specified distribution of cluster sizes, Ny, Ny, © « - Ny, if
the N, listing units associated with the ith cluster are a simple
random sample from all listing units In the population, then, for the
ratio estimate x/y, N\

L+ V& . SO
S T O
For a simple unbiased estimate R N
1783 (1_&)_& ~"‘;\§
¥ N N

5— S — (8.5)

7 (R _‘Y":.\fo

' AR

Note that Eq. 8.4 and 8.5 reduce,tg’g.‘?a when N, = N.

The proof of the above theorems;fsj’le'ft to the reader.

*Q, Relationship of the medshre of homogeneity for second-stage units
within primary units to the(m\asures of homogeneity for clementary units
within primary units and\yithin second-stage umits {(Vol. I, Ch. 6, Sec. 8,
Eq. 8.16). To prove{ The measure of homogeneity, 6, for second-stage
units within primary.inits bears the following relationship to the measures
of homogeneity)\8{ and 6,, for elementary units within primary units and

for elemeqt\{r}hiinits within second-stage units, respectively:
A, S UL SR DI [ 0K 1)

Q , 4 1

O V— DL + 8~ 1] e-U

LU+ &K1~ [1 4 0K — )]
V=Dt 4 oK — 1]

In the population, M is the number of primary wnits;

M
N = 3 N, is the number of second-stage units;

(9.2 or I-6.8.16)

M M ¥,
K= 3K, = 2 7K, is the number of elementary units.
* May be deferred.
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A single bar denotes an average per primary unit, a double bar denotes
an average per second-stage unit, and a triple bar denotes an average pet
elementary unit. By deﬁmtlon,

M—1 Vi
M PN o, M| N1
bp = —————; Vi~ B L — W2 93
T A TR AR A
B} = By + By —2Brxy 9.4)
(X — XY= 1Y)
myr — — = & A\ S
Brxy (M- DXT & t9~ )
By = Brxx» Biy=Brry N9
Wi=Wix+ W%r“‘ 2Wixy \:"\f\g’ (9.7
“ A,
Z o7 E (X — XYy~ Ys)\
¥ T 3 9.8
Wixy = NXY (9.8)
Wiy = Wixx: Wir= WLY;}{'):;:’ (8.9}
Also, N
1,72 o
MM 5 A‘<\ M—1 R—1
) S & — BT W (9.10)
TOR- I)f(%‘/’f“" A S
PP an
W2 — e}‘.\};. WEy ~ 2Wixy . (9.12)
’ -&f K" = =
Z—_'_ZZ(XM X (Ym“ Y) o
W&’;} . ©.13)
N KXY
W%x = Wixx, W%Y = Wiry (9.14)
and .
N1, T3 ]
= — K, 172;=N_132—{—£~:—1W§ (9.15)

By = —— B
¥ (R 1DVYK : N K

BE = Biy -+ Biy — 2Byxv (9.16)
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AN, _ -
TNV ¥
5, _ 22K DNV = 1) o.17
o (N—14xY
Bix = Baxx, By = Bypry (9.18)
Wi= Wi+ Wi — 2Woxy (9.19)
J'L I\;; "!'J' K.;x == ==
2.2 K 1 2 X — XY — Yy
Woxy = 2 == 'QQO)
KXY <
Wix = Wexxs Wor = Wary \\\ (9.21)
O
Vi N—1 \ ™
| = oy ——, Vi =B} N 9.22
"Vg f"}: N 1 2 o\ 3 ( )

M'\i. _
Proof. From the pairs of equations 9.3, 9:Q)and 9.15 we readily
obtain Eq. 9.23, 9.24, and 9.25 as follows:

N7
Tl % [+ 0~ ;3?’;3\"
= j%a%wj@"— JIV)BEW [+ (N 1] (9.23)
. Mﬂ; 1 B~ %\[{_!_ 'é.l(f_( Ly -
N; 11933\% [+ 8K — 1] 0.25)

Since B! =/B¥ the right-hand member of Bq. 9.24 = the right-hand
membe;\éﬁ\,ﬁq. 9.23, and by substituting Eq. 9.25 for (N — 1)B3/N in the
nums:gat\r of the right-hand member of Eq. 9.23, we obtain

B o

T 4 (K1 ———‘—_L—'—'-_—%— K— ! N —1
e 1+ 84 )] N LEIN NKU 4 8K — DI + 84N . 2}33)

If we solve Eq. 9.26 for é;, we obtain Bq. 9.1. In most cases 4 will be

close to 1. In fact, when the primary units are equal in size and also the
sccond-stage units are equal in size, then 4 = 1.

10. Optimum values for a simple two-stage sampling design with a simple
cost function (Vol. I, Ch. 6, Sec. 16). For a simple two-stage sampling
design, the optimum number of primary units, m, and the optimum
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expecied size of ultimate cluster, 7, subject to a fixed expected total
expenditure, C = Cym + Cyma, are

C
opt.m = m (10.1)
and
i A/C1 e ¢ 1= (10.2 or
PN OB WHN NG, @ 1-6.16.2)
where & is given by Eq. 5.5 and B® and W are defined in Sec. I, and 7
in Eq. 10.1 is the optimum 7. Q
Derivation. The rel-variance of a simple two-stage design (see Seg, 1,
Bg. 1.25) is ~A™
B? Ay w2 A
— —= 10.3%er T-6.6.10
& (1 M) L + (1 N) mi ( ".3 ™3 )

To obtain the values of m and 7i which make V7 a miﬁi,}lum for a fixed
total expenditure, set up the Lagrangian £ = V7 + %Cym 4 Comia — C).
Then the solution of the equations, dF/om = 0,*8\. &7 = 0, and the cost
equation will give the optimum values. Thu‘s.':.: :

) 2 o LI

B B LT S +am=0 (104
oht mE ot .

2w ""

SR Ay 105)
K f £\

Mutltiplying Eq. 10.4 by n‘{wmd subtracting Eq. 10.5 multiplied by #, we
obtain O

& — WHN
O imt = — 10.6
\\" 7 G (106
rom Eqg. 10680 :
q \\i ot = 2 10.7)
:”\,:":'. m? = o (10.7)

2\

Equating the right-hand members of Eq. 10.6 and 10.7 and solving for 7,
we obtain the optimum 7 as given in Eq. 10.2, Then opt. m is obtained
by substitution of this result in the cost equation.

*11. QOptimum valtes for a simple two-stage sampling design with a more
general cost function (Vol. T, Ch. 6, Sec. 18, 19).* For a simple two-stage

* This development and the proof of convergence are due to B. 1. Tepping
and B. Skalak.

* May be deferred.
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sampling design, the optimum expecied size of ultimate cluster is

(11.1 or
[-6.18.1)

C, B:— WiYN

where the expected total expenditure is C = CyVm + Cym + Cynil and
‘where m, the optimum number of primary units, is determined to yield
either (g) a minimum error when the total expenditure, C, is fixed, in
which case \

2 _ 2N
m= %, ot 2Vm=a (11.2.01%%6.18.3)
and ,‘.}"\
C C + Ch D
N/1+4E—‘4(;—~”—1,m:\‘
a= — " (113 or [-6.18.2)
C]_ + CQ” \’
A
_ Co LA™
or {) a minimum expenditure when tha precision is specified as ¢, in
which case ) ’f' \\
B— W o
Y R N ] Jﬁaé( 1—6 1) (114 or
a ' \Ba Al 1-6.19.2)
N 4 F\—l-— o
O\

where 4 is given by Eq 3.5 and B? and W* are defined in Sec. le.

The optimun{ $dlution for 7 and m subject to the condition of fixed
cost is obtam\éa‘ by substituting any guessed value for @ in Eq. 11.1, then
substituti.@the resulting value for 7 in Eq. 11.3, then substituting the new
value for'w back into Eq. 11.3, and continuing thxs process unti} successive
solufxons for 7 and « yield the same values to the desired accuracy. Then
?ﬁn&l a 1s substituted in Eq. 11.2 to solve for the optimum value of m.
The optimum values subject to a fixed variance are obtained by a similar
process, using Eq. 11.1, 11.4, and 11.2,

It can be shown that this iterative process will converge, but the proof
is beyond the scope of this book.

Derivation of the terms used in the iterative process. The rel-variance
of a simple two-stage design (see Sec. 1, Eq. 1.25) is

B2 ay we
Vfg(l_-ni)— (1_.:)__ _
) m + 7 (11.5 or 1-6.6.10)
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To determine the valtues of m and # which minimize the precision subject
to a fixed cost we set up the Lagrangian F: '

Fo =V HCoVm + Cym + Comi — C)
To determine the values of 7 and # which mininize the cost subject to a -
prescribed precision, ¢, we set up the Lagrangian F.:
Fe= uy(Vi—¢)+C
Then ’

ON
o, WP F, 1
P S + ACom = 0 = Y with 2 = ; 0{6]
O
Fo B Wr W (c N\ OF
i BN ILUARERP | P I GJ£M=‘
om m: omPE T mEN om0t + “’ﬁ \ O om
] v
o= L \ (1.7
wit p N (1.7}
Fron: Eq. 11.6 we obtain . \ . .
we D
Am? = —— (11.8)
o

Multiplying Eq. 11.6 by # and subffécﬁng Eq. 11.7 muitiplied by m, we
obtain o
(N BE oy N
2@;—£~4£&* _ (11.9)
\ f(q&%@+q
Equating Eq. 11.8 and?]9, solving for A, and substituting 2Vm = a, we
obtain the optimufh?? given in Eq. 11.1.  The alternative forms involving
L0 are obtained\b}‘hsing the rel-variance in terms of 6 as given in Eq. 5.1

of Sec. 5. For the case in which the cost is fixed we obtain @ as given in
Eq. 11.3»433\!6 by recognizing the cost equation as a quadratic in V.
For %ﬁ:{cése in which the precision is fixed we obtain ¢ by setting V7 as
given if Bq. 11.5 (or for the alternative form V7 as giveu by Eq. 5.1) equal
to ¢ and solving for m. Then @ = V.
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CHAPTER 7

Stratificd Single- or Multi-stage
Cluster Sampling

N
A ¢
2N

DERIVATIONS, PROOFS, AND SOME EXTENSIONS(OF
THEORY FOR CIL 7 OF VOL. I* (™

40

Nore. The theory for stratified cluster sampling With\ORS or mOre Stages
of sampiing is presented in this chapter, Topics covergd iriclude the estimate
of the variance and its components, gains due to‘.s{g;uilic;uian with cluster
sampling, and the optimum design under sclected gogteonditions.

[t is sometimes necessary to isolate the cofdtfihiition to the total variance
attributable to & particular stage of sampling df W express the varince in terms
of the contribution from ecach stage of sampling. This chapter indicates a

rocedure which makes it possible to write down the variance of sam le esti-
p LS p
muates for any number of stages of sudphing in terms of the components of the
vartange. N\

The notation in this chapterdS\the same as that introduced in Chapler &

except that here a subscript (4} 18 Added to designate the strata,
'\
%\./

1. The rel-variancedf a ratio estimate for a fwo-stage stratificd sampling
design (Vol. I, Ce{%Sec. 5). Assume that we have a population con-
sisting of L pripcéuy strata, M, primary unils in the Il stratum, and Ny,
second-stagesadits within the Aith primary unit.  Assume, further, that a
simple rapdom sample of m, first-stage units is selected from Af,, and a
simple rndom sample of #n,; second-stage units is selected from the Ay,
in e Yiith primary unit.  Now let

o
3 L ,
2,
3
r—-.—"_:—L——' {li)
2
)

B

* Appropriate references to Vol Tare shown in parentheses after section of
subsection headings. The number following [- aller some couations pives
the chapter, section, and number of that particular equation in Vol L

177
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where
& LT } iy
[ L] f (3
xis = Zxﬁi’ Y, = Z/'l Yui
my ¢ my o
and
N LY ; Thar
!
T = 2. Tpis Jm Z Ynes
Hpy Huy

where z,,; and y,; are the values of the X- and Y-characteristics for the
hijth second-stage unit in the sample.

To prove: The rel-variance of r is N\
e N
1 MM, —m P LM NN .Q:
V2 - ___-f! hS M BN 1) { r.)“:
Y X2 2 mh Mh 1 —I_ X) 2 Myy N m ¥
_ 7\ (1.2 or [-7.5.3)
where »\\‘
8%, = S x + R28%,, — ZRSM{}' (1.3 or 1-7.5.4)
with " N
Sipneyr = 2K~ X")( T’“‘ ;\?) (1.4 or 1-7.5.6)
2 ” X
Smx = Suxx sS‘w =S8ury, R= _Y
X, ~ 'g - Y,
Xh—-j-{t;\;\and Yhz-ﬂi
Also O

8 = Shux + R2S%,p — 2RS,,, vy (1.5 or I-7.5.9)
with \ <

. N _ _
p X ; Y. Y. — ¥ .
~ ?.\ ngxf Z( hij T X-’z‘.‘,}( kij Y?u‘) (]_6 or I—?.S.ll)
\\, Npi—1
.\ Shix = Sanixxr S = Soniry

'S

~O _ X, _ Y

/ X =—, and Y, ==

\ * NM n_ ! NM

Proof. From Ch. 4, Sec. 11, the rel-variance of r is

VE=VEpyiooy,, (1.7)
where
Gir 2 0’3' _ gyt

i': 0t s = L and VCU"_ I ]
(B Y (Byy Y (E)EY)

L
First, by Theorem 5, Ch. 3 (p. 48), Ex’ = 2Ex) and by Sec. 1, Ch. 6, it
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follows that Exj == X, when we recognize that zj is glven by z"in Eq. L1,

Ch. 6, with the subscript /2 added. Hence, £x" = ZXR = X. Similarly
Ey = ¥
B}-‘ I-iq. 1.8, Ch. 5,

L L 1A
— N2 2 N2 — N
- Zgﬂt"a’ G‘ll"‘ - Zgy)n’ and gl"ll" - ZUZ"I.?;”i\

Now o2 is given by Eq. 1.2, Ch. 6, with the subscript # added provided
we assume that 2" in Eq. 11, Ch, 6, is an estimate of a stratum total;
o2 is similarly defined; and o, is given by Eq. .12, Ch. 6, with the
subscript /1 added. Assemblmg the terms representing the first-stage
contribution to the variance gives the first term in Eq. 1.2. Sm)ﬂmly,
assembling the terms representmg the second-stage contnbut{o‘n to the
variance gives the second term in Eq. 1.2 N

When the second-stage sampling fractions are the samg jﬁr all first-stage
units in a straium, 1.e., /Ny, = fo,, and my /M, = fm,\then the over-all

sampling fraction in the Ath stratum is f; = fmf\ thie estimate (Eq. 1.1)

becomes 0
D :\\
ML AN o\ (1.8 or I-75.13)
z i.’i_ﬁ
’ ;;‘ ﬁl S
and the rel-variance of r becomes 3
U 2 M3 M, Ao 1 & N3 A:: B
! JL’EZfM,;'\z'M‘r,h 8o+ Xt Zm,m,‘A N, e
with 87, given in Eq. 13, A
% Nadd e
20T g 2N (1.10 or 1-7.5.15)
.'\“’ ) . fu?lNh

and 83,; giv n"ﬁi"Eq 1.5.
Equatton\l 9 may also be wrilten

My—m, B} 1 L N,—/ Wi (Lilor

2. T L Sx - !
V ZX Mh _ m,f xR, o, F15160)
where
Sz S2,
B=—% Wi==;
ATy URXS
v X.h > X]_r
Xh B M}A’ Xk - I\'Ir!r.

and where in Eg. 1.9 and L L1 7, == faul¥y is the expected number of
listing units in the sample per psu in the sample for the Ath stratum.
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2. The estimate of the rel-variance for two-stage stratified sampling
(Vol. I, Ch. 7, Sec. 6). An estimate, ¢%, of the rel-variance, Ve (Eq. 1.2),
for a two-stage stratified design in which a simple random sample oi at
least two first-stage units is selected within each stratum and a simple
random subsample of second-stage units is selected is given by

1 1A M2 ]
5 1 My g o
vy = o Sou (2.1 or 1-7.6.1)
where

Sin = Stux + 35y — 25y (2.2 or I-A0.2)

My ' \\~

x). — Z W — ¢\,

[ —— z ( fit . F.l)(yhr. yh) (2;\3"}0[‘ 1“7‘6,5)

mh"‘“ 1 4
:"’«.

N, ¢
] R
Ly == Tpje == Z xm;’mh m\

fd

¥ and §, are similarly defined, ANV

]
Senx = SenX Xe um—r\%'.u'y
1y, is the number of primary units frogd the Ath stratum used in estimating
the variance and may be smaller than /7, This result follows immediately
from Sec. 3, Ch. 6, with the subscnpt h added to each estimated variance,
since

1
V‘*\‘ Xg\z(% + R: —2Ro

z'nl’)"a)
When the sample\ig sc]f-wawhtmg within strata (i.e., F, /Ny = fon
M, ﬁks aﬂd\fh == finfonh S¢1o EQ- 2.2, becomes

“\‘
1
,:\\ & 2.4)
L fzh
W 3-['@
\’\‘ 33& = Shx + Psgy — 2 Sk XV (2.5)
z (ﬁ’ i — &) T i
Soxy = hi - h){{; ) (2.6)
R
t'a 7MY
ths the‘
B =, §, = e
n i, ¥ o,

e 2
Senx = Sopxx  And S5y = Syyy
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An estimate of ¥2 which is more accurate than Eq. 2.1 is

, 1L i ",
b= 20—/ 7 5:,-.13, | (2.7 or I.-7-5-5)
Note that, when L = {, and when s2, is estimated from the s, units in
the sample, Eq. 2.7 reduces to Eq. 3.19, Ch. 6.

3. Fstimates of the components of the rel-variance of a ratio for a two-
stage stratified sampling design (Vol. I, Ch. 7, Sec. 7). Consigfent
estimates of the components of the rel-variance of a ratio, r, qu 8, two-
stage stratified sampling design may be made as follows: The gstimate, 7,
is given by Eq. 1.1 The rel-variance of r is given by Eq. 12

A consistent estimate of the within-psu component of, the rel-variance,
i.e., of the second term in Eq. 1.2, is LV

m"fﬁg Nps = Pri 2 .?,‘ '
L M? N, MO0 M
R S a

2 J m
X iy, my, {\V A

where mj, is the number of ﬁrst-stagejﬁhits from the Ath stratum used in
estimating the variance and may e Jéss than m,,

Shns = 922@}: + P55y — Senxy (3.2)
with O\
\Z (Tpy — 2o )W — Yni)
SanixXH, = - = 1 (3.3)
PR At
&

O ' 8
I Sapix == SameX 20 and  Siy = Seniry

'\

Equationﬁ\\i Follows from Sec. 4, Ch. 6, when the estimates in that chapter
are assimed to be estimates of the variances for the Ath stratum, and
fowd the fact that the variance of a stratified sample sum is the sum of
thewvithin-strata variances. ,

A consistent estimate of the between-psu component of the rel-variance,
i.e., of the first term in Eq. 1.2, is

1 Z MM, —m,

St ALY O (3.4)
m, M}; ( el 1)

'z

T

where 5% is defined in Eq. 3.1 and s, is defined by Eq. 2.2, This result

follows immediately from Sec. 4, Ch. 6, and the fact that the variance for
a stratified sample sum is the sum of the within-strata variances.
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4. The rel-variance of a ratio estimate for three- or more stage stratified
sampling (Vol. I, Ch. 7, Sec. 12).  To prove: The rel-variance of a rutio,
r==g'fy/, for a stratified sampling design with K stages of sampling can
be expressed as the sum of K terms each representing the contribution
from one of the stages of sampling. In the special case of three-stase
sampling, it will be shown that the rel-variance of &/ is equal to

Vi B 124 =30 Mou'ss Qi Quis = Qo

X0 5 e T Gy Cnii e @0
Q
where Eq. 1.2 represents the contribution from each of the first two Stages
of sampling and where the last term of Eq. 4.1 represents the conteibution
to the rel-variance from the third stage of sampling. Th‘el.ﬁotation s
defined below, N
Proof. From Sec. 11, Ch. 4, we have for the rel-vu{iz{nce of a ratio of
random variables O
2 . 32 2 . 03' .‘\Gﬁ‘-:’ 25.'::’.::’
e Vet e ey = Gy My By

1 \ PA
= G (6% + Rea} — 2R (4.2)
whete .”
R _X
o Ef Y

, R A .
For a stratified populatign'and a simple random sample of units at each

stage of sampling N .

PAY, & =
AN
where #, is the simple unbiased estimate of X,, the Ath stratum total.
For threeité..géi% of sampling the simple unbiased estimate of X, is given
by Eq. 438;"and this form of estimate is extended to obtain the simple
unbiagéd' estimate for any number of stages of sampling. Similarly,

)
\¥
\:

From Sec. 1, Ch, 5,

r L ¢
¥ =2,

L L L
r __ o -
oF =20k, on=20%, and a,, = Y (4.3)

We shall now indicate how to apply Theorem 16 to express %, in terms
of the contribution to the variance for the Ath stratum from each stage of
sampling. The developments for o2, and O fOllow exactly the same
steps. By Theorem 16, Ch. 3 (p. 68), with u = ), 2, == Ea;| /1), the
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contribution to the variance in the Ath stratum from the ;th SldLe of
sampling is
Eof,0,8, 5o (4.4)

7y = E(x.;e![ls 2s 3; v Ur]) . (45)

is the expected value of T, considering the units selected at the jth stage
of sampling as strata. Since the jih-stage units are sclected from the
(/— Ljth-stage units, etc., regarding the jth-stage units as strata implies
that the units selected at all previous stages are also fixed. Now ~

0'lz3,|[1 2,8, -, 5—1] ‘Q-ﬁ)
'\

means the variance of z; (Eq. 4.5), where the variance is evaluated‘ within
ths units selected at the (j — 1)th stage of sampling. If a 51mple random
sample of jth-stage units is selected from each (j — 1)th- stage unit in the
sample, the units selected at the {j— I)th stage of, sgnnplmg can be
regarded as strata; and, from Corollary 1 to Theordih 11, Ch. 3 (p. 56),
we can write down the conditional variance of apylifear combination of
random variables, The final step of taking the‘expected value of Eq. 4.6
raakes use of the theorem (Theorem 5, CEN3y p. 48) that the expected
value of a sum is equal to the sum of the expécted values, or, more gener-
ally, Theerem 6, Ch. 3 (p. 49), for @ linear combination of random
variables. The above steps make it Possﬁ)le to write down the contribua-
tion to the variance from any stage of sampling for any linear combination
of random variables, as will bé Hlustrated below.
Consider the evaluation ¢f\Eq. 4.4, for the contribution to the variance
from the third stage of skﬁﬁng. We must then evaluate

2O Eo? | 9 @.7

where N
N 2 = |11, 2, 3]

Suppose t.hatt\i'lfir;a and s, are the number of first-stage anits in the Ath
stratum ‘Wit'the population and in the sample, respectlvcly, ne and gy
are ©he number of second-stage units in the Aith psu in the population
and in the sample, respectively; and Q,,; and ¢, are the number of
third-stage units in the fijth second-stage unit in the population and in
the sample, respectively, Then

In Eg. 4.4 the symbol

Mh ; s th’j o
> = 2, niih

ot Mee 3 Qg

. A,Ik it N}u‘ Tue Py
= 2, - Z Tyis

My ¢ By

2y == E(xni [1,23) =
(4.8)
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where x,,;, is the value of X for the Aijkth third-stage unit in the sample,
and

Oy
x.;r,a'j: = Thisk (4.9)
Grii &

is the sample estimate of X,;, the value of X for the hijth second-stage

unit in the sample. By Corollary 1 to Theorem 11 of Ch. 3 (p. 56),
since we can regard the second-stage units in the sample as strata,

2 Ha N~ i
o? = kS S gl {440)
lit, 21 = i §
- My T
and since a simple random sample of third-stage units is sclccléd\from
each second-stage unit in the sample, we have O

a Q i L f +50)
Oﬁ'm = Qi:u — q} ! Sahu\ ."s.\\' (411)

S Y
Qhuqku’

and Ones — LA\

5
Sihsx = M {4.12)

Qrm N\ 1
By Theorem 6, Ch. 3 (p. 49), the, éontrxbutmn of the third stage of

*

sampling in the Ath stratum is .'.;'v

;1{ ’lf N‘

a = ”1?5 ¥ J'n n.’n Q.’m qhu

03y, = Eoly o= —2 Z Q3 Nt

3x's 1, 2] B2 M N hid BRIFX
(St 1 Hyy Ny 5 QresFnis

M pald IAQN\ Qhu ‘?.Pm
z 2. Qhay S
T om, i "m i Qni3Gna;
In the same; 'v(ay we can show that the third-stage contributions to
o5, and Gqu “are, respectively,

Bhis X (413)

o\ M, M N, Q
\Y ¥pg Entg  Ynis
A Ry, = Z 2 Qi = —2 Shur (4.14)
. ﬁ‘i\ 7 .?a |3 nhz 3 Qhwq.‘u:
a 3
Mh 'IJ;‘ hl\h Qh ‘}
G3$',U'n = - Z Q; 4 hij S X1 (4.1 5)
ny i My i Q.’mqlm it
where
@ = =
% (KXo — X Xuaie— Yasy)
P\ I — 4,16
BRIGXF Q}n‘j— 1 ( - )

and
- S%Mﬂ’ == S:msﬂ'y (4.17)
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N :
Now, the third-stage contribution to the variance of x = >x, is, by
Eq. 4.3, L

?:0--'23‘1.’;. = G%z’ (418)
't
Similarly, I
I}:agm = a5, (4.19)
i .
L
Zh63m'nﬂ'A = Ogz'y (4-20)
We now have from Eq. 4.2 that the third-stage contribution to the\fel-
q g i
variance of z'fy’ is : Y
1 O™
¥ (62 + Reo}, — 2Royyy) N\
1 L M2 N,, % 08y Cus — nu \‘
_ L5 M N iy Lo — T g (4.21)
X‘% mg, za: Hy; %‘ i hig e
wheare _ }5\
82, = Shux + B35 ‘\ZR 3 XT (4.22)

Tn Sec. 1, the rel-variance of r = m’/y”é{a’s’ developed for a two-stage
design.  Hence, the terms of Eq. 1.2 epresent the contributions from the
first and second stages of samp]jng.f'ﬁlt follows that V2 for a three-stage
design (Eq. 4.1) is given by Eq.i2 - Eq. 421.

5, Gains due to stratiﬁcéﬁ‘on with cluster sampling and a comparison
with gains due to stratification with simple random sampling of listing units
{Vol. I, Ch. 7, Sec. 4).") To prove: Fora proportionate stratified random

sample of equal-sized clusters from equal-sized strata, the relative gain
due to stratification is given approximately by
P #

§ Lo s
) 2 AN (5.1 or [-7.4.1)
NS Lo®[1 + (N —1)]

O _
From Sec. 7 of Ch. 5, the relative gain due to stratification when a simple
random sample of listing units is selected from the same strata is

approximately

L _ aa
zg%_:_& (52 or 1-7.4.2)
. |

The ratio of Eq. 5.1 to Eq. 5.21s equal to

N
N . 53
1+ o(FN—1) >3
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and is the factor by which the relative gain due to stratification with
simple random sampling of listing unils must be multiplied in order to
obtain the relative gain due to stratification with cluster sampling providing
the same strata are used {or both simple random sampling of listing units
and for cluster sampling.

In Eq. 5.1 and 5.2,

I §
%, = 22Dy l he /ith
TN is the average per listing unit in Lhe Ath stratum,
_ Q.
N = the number of listing units per cluster. A o
~ ¢\
M = the number of clusters per stratum. o\

« N

X= ZX;JL is the average per listing unit over all btl’.&td

LK ’\\
X, —
g% = 22 2 A’;” is the populaticn vachc for a simple random
sample of listing units. \ 0

6 = the intraclass correlation among hstmg units given by Eq. 6.1,
Ch. 6.

%
CR Y
L
N

Proof, From Remark 1, Secal} Ch. 5, the variance of a mean for a
propomonate strauﬁcd sample with equal-sized clusters from equal-sized
strata is

\alf .
\ 1— 382
O ei= ——mf 2 7 (5.4)
P4
where o
"\:“f——‘ﬁzﬂ 5 m
§ M M L
:"\.:':3 u o
Q@ 2 A X — X0
N i = & F (5.5)
M (A-/“: _ X’)E == =
=% [ = X)Z] (5.6)
¥Eere Xoe = Xpif N,
us,
1[5 3
— (X, — XP 20X ]
0‘2 - : [ L]
1= % 3 (5.7)
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Now, the variance of & mean for a simple randoru sample of m clusters
is (see Sec. 2, Ch. 4)

338y~ ¥
L=/ 35K~ ¥y
2 _ . Ri
o= Y, (5.8)
which may also be written, from See. 5, Ch. 6,
1—fo? _ . '

2 i — — — .

o3 o R [T+ dN—1Y (5.9)
Hence, the relative gain ~

oy —~0o3 . Eq.5.7—Eq. 58 A

&~ Eq 59 R

is given by Eq. 5.1. A

6. Optimum values for a two-stage stratified sampliiz design with
variable sampling fractions and a simple cost function (V3. I, Ch. 7, Sec. 9).
Te prove: For atwo-stage stratified design with va{iable sampling fractions
ameng strata and proportionate sampling withfinpSample first-stage units
i a stratum, the optimum expected size c:f’lzmmate cluster, 7,, and the
optimum number of sample primary upitspm,, for a stratum, when the

*

expected cost of the survey is oD

& &Y £
C = JCuh, + 2Cowmyi, (6.1 or I-7.9.1)

and the total expenditure isg@:d, are

opt. i, = Wy 7((:1, S [Cu__ Wi (620r
N‘ C S%R_Nh‘ggh Con Brﬂa_ WilN, 1-79.2)

o N 20

¢ .\ - ST
Opt. {nq.;'l__'“b CN?BSQJ‘J”?L (’ﬂh (6.3 or 1_7'9-3)

§ }Z[(Cm + C:ahﬁn)NnS:»nfﬁh\/E‘;;}

wherg a&?; 82, BZ and W are defined in Sec. 1, and where C, is the cost
p&Rﬁrét-stagc unit in the sample from the Ath stratum, G, is the cost
per “second-stage unit in the sample from the /ith stratum, and where

fi, in Eq. 6.3 is the optimum value.
Proof. The rel-variance for a two-stage stratified design with uniform

second-stage sampling fractions within strata is (see Eq. 1.9)
L 2 _ L 2 A 5
Ve = _L %M&Eﬁ 4 1_2: _ﬁ_uggk (6.4
Xt m, M, X2 mi, N,

where the terms are defined in Sec. 1. To determine the values of m,
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and 7, which minimize ¥? subject to a fixed total expenditure C, with the
cost of the survey given by Eq. 6.1, we set up the Lagrangian £
L L
F=¥; 4 M3 Cwmy + 2.Conmiity, — C)

Then the solution to the equations dF/ém, = 0, oFfoa, = 0, and the cost
equation will be the optimum. Now

BF M 1? 821 N}a 2k _ -
— = t - -~ - Ciy + Copfiy) = 0 (65
dm, Toxmd XA, | X'm 2Nh+ HCu + Conhn) (6.5)
™\

oF N2S3,

C =9 N (6.6
Bn;a Xt + ACum, .\"\( )

7NN *
From Eq. 6.6 we obtain «\
252 N
AX°mE = Nh—zg ? (6.7)
Confti \\

Multiplying Eq. 6.5 by m, and subtracting Eq. 6 6 muluphed by %, we

obtain M3SY, — NiSi ’Wk
Can v

Equating the right-hand muembers of Eq, 6.7 and 6.8 and solving for 7,
substituting M, N, = N,, we obta,m'the opitmum #, as given in Eq. 6.2.
The altcrnatwe form of 7@, is. nbtamed by making the substituticns

= 8%,/ X2 and Wi = S}/ X3,

Now substituting \\

\;'}nh. 1 NS,
. \/5 th\/fg:

from Eq. 6.7, 1;1\0 {Fe cost equation and solving for v/7, we obtain

O NS
N\ VR = }_(C 4 Cyity) —22 [ C 6.9
Q‘\ 17 27 h) th‘\/czh (. )

Suhs:tﬁ‘utmg Eq 6.9 info Eq. 6.7 and simplifying, we obtain the optimum
7, @s given in Bq. 6.3.

AXEmE = (6.8)

7. Optimum values for a two-stage stratified sampling design with
variable sampling fractions and a more complicated cost function (Vol. I,
Ch. 7, Sec. 11). . Consider again the situation in Sec. 6 but with an

added term Cy+/m in the cost function measuring the travel and perhaps
other costs of the survey, ie.

L L
C= Co'\/‘a —I" zclhmh -+ 2C2kmhﬁh (7.1 or I“?.il.l)
with m = XZm,,
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To prove: The optimum 7, is '
N, PAS2F‘L — X i Wh

Xa,VCp  XaVCy

opt. 1, = (7.2 or 1I-7.11.5)
and the optimum 7, is

ce - _
opt. my = —22 (7.3 or I-1.11.6)

4d? Sa,

where a, and d are determined from the Eq. 7.4, 1.5, and 7.6 below,
foliowing a process of successive apprommanon similar to that described
in Sec. 11, Ch. 6.

N

M o Xy = "l‘.\’
_f VS — NS ¥ \/82 WilNa ‘:\a('}' 4 or
a, — = ,'
’ Vi Cn, VaT Cyo ) 17112
. ) A S
> Cit 2 Cg;q,_ O
b= é \ O
a 3
' O (7.5 or I-7.11.3)

4 I X, 3N
2Ct + 2 ')?h,ngfa Con

(7.6 or I-7.11.4}

where S3% " Bh, and W2 are defined in Sec. 1.
Proof &l this case the Lagrangian F is
o~ _ I )
\”\;”' F=V;+ A(Cu\/m + Zcmmn, + 2.Contifin — 8]

with V2 given in Eq. 6.4. Then

F  MiSh NS, NS, ( Co S\
1) v PR ] + Cpp + Canfin) =0
am,  X'mi X°mim, X 2N, 24'm v e

(17
oF NZSZ,

_ D% cm, =0 (1.8)
o, X2m, i + Al . : .
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From Eq. 7.8 we oblain
AX' S,

e - T =
N Capfti

{7.9

Multiplying Eq. 7.7 by m, and subtracting Eq. 7.8 multiplied by #,. we

Obtaln S‘I‘h lqgjl
J.Xeff}j . Nt N, (10
Nj; Gy .
— Cu,
2v'm 2\
Equating the right-hand members of Eq. 7.9 and 7.10 and solving {&c iy
we obtain - \\ -
Cl) . ~ % \v/
/“‘ ny CU{ i P 3
R 7 2V'm b:; e\ 3 710
Ay == = 0> 7.
’ " C"’h si}t E‘“(\
Substituting Eq, 7.= and 7.6 into Eq. 7.11, we obl\dm the optimum i1, as
given in Eq. 7.2. Now, if we Jet \:.\ g

L
chhmh Zcﬂnmhnn
mo W

"

then the cost equation may be writt'éh‘

—b | (7.12)

. 3

C& cov’m + bm
Considering the cost equa\tgén as a quadratic in Vm, we obtain

2O — G+ V(214
O . = Cot Vi1 4Ch

7.13
"il: 2b (7-13)
and \\
’\ N/
K = 7.6
2\/m 7o
o) + = b —1
\:‘.l
N(%,’ solving Eq. 7.8 for m,, we obtain
NS

m, = _ e G (7.14)

Vixa,VCpm V7
Substituting Eq. 7.11 for A,, we obtain a,, as given in Eq. 7.4. Further,

I
24
Vi

I
2y, = m= (7.15)
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_ L
Hence, substituting 1/4/7 ~ mf>a, into Eq. 7.14, the optimum m,, is
I, Coa
T ==

5‘a;, 4q? Tak
and %ub tituting a,/v/'4 for m,, NS on] XV 2V Cy, for iy, from Eq. 7.14,

(from Eq. 7.6) (7.3}

my, =

and Bfrkf\/,l for m from Eq. 7.15, into Eq. 7.12, we have & as given in
Eq. 7.5.

b. Suppose that the cost of travel between psu’s varies from one-stftum
to another and thus the cost function is cxpressed as follows: .

¢\

C o ZCm Vi, + Zcmmn + Zcﬂnmh’?f ." :‘3 (7.16)

The rel-variance is again of the form given in Eq. 6.4. Thm the optimum
vatues of m, and #, for a fixed total expenditure araﬁé Tollows:

2
opt. my, = ‘%,”2 AN (7.17 or [-7.11.10)
OPt [ Ar}“jggh — N / "k (‘CM‘IHZ'\ mh) + (’Ut
M = = TS AV,

Xy V' Gy, N 8 R N i Cas (7.18 or

r— 1-7.11.11
_ W = A'H‘f’z (Copf2Vmy) + C, )

X,V Gy Bi— WiN, Con

¢\
where g, and d, are delem‘uned from the following iterative equations:

] «/sl, N2, 3,—” VBI—WIN,  (7.19or

%,\ ~ -7.11.8)
and ~\x\ Vi, + Cy Vi, + Co,
. *%\} )
) (S M2 v cuva o
N/(_%C%\/a_h)zri—élc (iCmak —i—% N;% Cﬁn) _icﬂh\/a; i ]_(;1'
il.9)

7 LY, _
(zcman + Z';f W,y CER) Corf '\/%

£ ); . & —
,,/(Zcmﬁ/ak) +- 4C(Zcmakﬂ“ XJ' W}a\/czh) ICpVay
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The derivation of these formulas follows the same general steps us the
derivation of the optimum values in Part ¢ above and is left to the reader
as an exercise.

8. Optimom values for a sfratified sampling design with joint use of
one- and two-stage sampling, variable sampling {ractions, and a simple cost
function (Vol. I, Ch. 7, Sec. 10). Te prove: For a stratified sampling
design with two-stage sampling in L, strata and one-stage sampling in L,
strata and with the sampling fraction within first-stage units, #,,/N) ;s e{Ral
t0 fos, then the optimum my, m,, and #,, when the expected cosb 0'" the
survey is N

Iy Iy I e
C=>mCy + Sy Co, + 2mC ($00r 1-7.10.1)
p f % N

ak & i

and the total expenditure is fixed, are \\
opt. m, = I/} o‘;,\ £.2 or [-7.10.2)
p & . '\/ET;: ’“:\ (
opt. m, = L, «JF (8.3 or 1-7.10.3)
‘\/Cm &N
\ Clh

opt. i, = N, / 2 (8.4 or 1-7.10.4)

1?: A # 2..’:. 2?«.

I_‘_: £y — La
a == C;’(%Mﬁ\/cm\/sih“‘ Ny + 2N80,V Cyy +
(N &
- D L - _
§‘ C2MSY C;L) (8.5 or 1-7.10.5)

Prqeb(;:"The rel-variance of the design is

a\Y
\ s

\ 3

1 BM; — m 14 N2 N, —7A
g o= 4 L Sz k'R Ta
X2 m, Mh ntye X35 myy, Nh S%
1 L&A — B,
Mr T Hip Sz .
Y e (8.6)

where 8%, and 83, are defined in Sec. 1 and S2 is defined as 83, but over
the L) strata. The Lagrangian Fis

2 (Lg = I +
F=Vy+ M 2Cum, + 2 Comyfy, + > Cim, — C)



Sec. 8 OPTIMUM VALUES 193

Then

OF _ MZSh, NBSh | NESh . .

dm,  Xmi X’min, + XN, ACyp + Coi) =0 (8.7)

ok _ WS,

7y Xemp T A Coma) =0 | ®.8)

P

i, XPm 2 + UG = (3.9)
From Eq. 8.8, we obtain . ' -«

imix? Sgh \
2 C. it . (8.10)
N.‘a ) Cﬂhnh \

Muttiplying Eq. 8.7 by n1, and subtracting Eq. 8.8 mulnphéd by #,, we
obtain

Amix* N33, - S/, m\
N Cm 8.11)

Equatmg the right-hand members of Eq. §: Il‘} ind 8.11 and solving for
#,, we obtain the optimum 7, as glven 1[1 E\q 8.4. From Eq. 8.9
e = «/c,u X\/_

Let IE(X‘\/,Q) = a to obtain my as gwen in Eq. 8.2. Now, solving Eq.8.8
for my,, we have '\
N, n‘g% t

\\ = ANV Cyp XV

and, substituting\l}{}(\/i) = gand 7i, from Eq. 8.4, we obtain the optimum

»1y, as given m\Eq 8.3,
Finall s"ﬁbstltutmg Eq. 8.2, 8.3, and 8.4 into the cost function and

solving £0¥" a, we obtain @ as given in Eq. 8.5.

(8.12)

(8.13)

&

4 ..\’: Y
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CHATPTER 8

Control of Variation in Size of Cluster in
Estimating Totals, Averages, or Ratios

Q.
DERIVATIONS, PROOFS, AND SOME EXTENSIONS OF
THEORY FOR CH. 8 OF VOL. I* NN

s ™

NoTe. When primary sampling units vary in size, i.e.min the nuniber of
clementary units or listing units that they contain, some{ re€thods for control
of variation in the size of cluster in the selection of a4 satniple and in the cstima-
tion are sometimes useful. The derivations in this ehapter relate to this prob-
lem. Ordinarily, the use of some method for conh‘o]ling the variation in size
of cluster is much more important in estimatingdtals than in estimating ratios,
although many of the results for which propfsare needed and are given in this
chapter deal with the problemn of cstimatingwatios,

")

1. Sample estimates and their variances for a two-stage sampling design
when first-stage units are selqctetf with varying probabilities (Vol. 1, Ch. §,
Sec. 14). To prove: If ﬁ'rq-stage units are selected with varying proba-
bilities, with replacemepty\and with any second-stage sampling fractions,

> \ e ; 4 i
\& === (1.0
o
is an unk{?‘eﬂ estimate of the population total X, where z} == N/, i3
an unhidSed estimate of the psu total X, P, is the probability of selecting
the il psu on a single draw, m is the number of psu's in the sample, ¥,
iﬁ{hﬁ?’total number of second-stage units in the ith psu, and », is the number
bsampled from the ith psu. The ratio r == 2'/y’, where 2" and y’ are
defined by Eq. 1.1, is an estimate of R = X/ ¥.
The rel-variance of » (and of " as a special case) is

VES VL 4R, (1.2)

* Appropriate references to Vol. I are shown in parentheses after section or
subsection headings. The number following I- after some equations gives
the chapter, section, and nuraber of that particular equation in Vol. L.

154
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where
pd X, Y M NN g
P |=— = _. e 18
. “_Z ;(P‘ X)(P,- ) +. ZP;? N Sixy %I.g?»l{ir?
S mXY mXY 8149
with s B
.‘Xi:i_‘?a‘ Yz“_' ?i
Sy = 2 Xy = 1) (14

N,—1
Vi =V, and VL=V,

Remark. The estimate given by Eq. 1.1 would be unbiased for sampk}.
drawn with varying probabilities, P; for the ith psu, whether or ziet-the

si's were selected with replacement. The variance, given by\Bg/ 1.2
and 1.3, holds only for sampling with replacement butmay bea satisfactory
approximation for sampling without replacement, especialiy if no P, is
large relative to 1, and if m/M is small. o ° .

m’\'\.'
Proof. By Theorem 6, Ch. 3 (p. 49), \4
1o N, N

Ex' = E=2 3%,
m’y Pz-n,; Y
12 N,

— E - — ZE?:xﬁ (1 ‘5)
Hh g D
and since AN )
~ _; _I.N'X’ _ _;
'l@”‘ﬁ - Najz [ Ng‘.

"\
where Xj; and X} a:ne}*;éd to indicate the fact that X, and X are random
variables depending-on the result of the ith selection of first-stage unit,
NS

N 1=y, 1= X;
N\ e S — “E._‘
\O B =E 35 = nat
O
RN wm M )
_13, Ky
m . g Fi

\Similarly, Ey =171,
Consider now V,, = 0, /XY. By the corollary to Theorem 17,

T

Ch. 3 (p. 68), with K= 2 and u = o, w =17, we may write

G == Eg;r'y’”:]] + Cpe I DEE LY 0'6)

Ty
where [1] refers to a fixed set of first-stage units in the sample. Consider

the first term in the right-hand member of Eq. 1.6. Sin_ce‘ for a fixed set
of m first-stage units the sampling from one of the units is independent of
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the sampling from any other firsi-stage unit in the set, then, by the corollary
to Theorem 12, Ch. 3 (p. 58),
I =1
eyl = o 2. pi T

Since within the ith selected first-stage unit the », units are a simple
random sample from the N, units, then by Sce. 3, Ch. 4

Ny—n
Cuyrin) = N~ Sixy
Hence, O\
1 » 1 A\
Eoyyn = me . EPE OriwllL) \' N
1 = M P, N, H. "’}s )
= — SNy E T g o A\ 3 1.7
m2 i ; PE * N;--'?i- X1 ) '\'\'.. ( )
which when divided by XY is equal to the second t&eh in the right-hand
member of Eq. 1.3 PN
Consider now the second term in the rlght\hand member of Eq. 1.6,
namely, Sxenpge -
By Theorem 6, Ch. 3 (p. 49), o\
ST
E@|l]) = — SEhs — Sz =— > L
e =, Sa TS = L5
Similarly, L
1™ Y,
R N
K | Xy
Therefore, ~. S\
", O p B It = Oimy, 1m
\5 iAo (1.8

and since %ﬁe m first-stage units are selected with replacement, Xi/P; is
mdep:c\r{t}ent of X;fP,, and by the corollary to Theorem 12, Ch. 3 (p. 58),
».\: 7

17
AN Eq. 1.8:;‘526&1’@ (19
PP P
Since the probability of selecting the ith first-stage unit is 2,
X; M X

EZ2=>5p~ =
Py Zi.‘P-

Similarly,
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X’ ¥
o, ,.:E(—‘— )(J__ )
L;}T’? P, P,

G o

i

Therefore,

Equation 1.10, substituted into Eq. 1.9 and divided by XY, is equal to
the first term in the right-hand member of Eqg. 1.3.

2. Determination of optimum probabilities for a two-stage samp‘.lmg\
design in which the first-stage units are selected with replacement,\the
sample Is self-weighting, and a simple cost funetion is msed (Vol.(T; Ch. 8,
Soc 14).  To prove: Consider a subsampling design in whigh primary

units are sampled with replacement and a subsample off “hstmg units is
svlected within samiple psu’s. Suppose that the populat\on consists of L
size classes with A, primary units in the Ath size clasand N, hstmg unifs
in the Aith psu, and that P, is the probability qf%eiectlon of a primary
unit in the fith size class on a single draw. Tm the estimate r = :t:/y ,
where &’ and ¥ are given in Eq. 11 may b, wntten

A X : . @5

where m = th is, the number of psu’s in the sample, and #,; is the

number of elemqn\s included in the sample from the hith psuif it is drawn

If also the'sample js self-weighting, i.e., P01,/ V) = &, then f =
is the overspil sampling ratio, r = xfy, and the rel-variance of # becomes

'S

~\. 1 [£ M — . N&2
N/ Vi< X [Z&: f(&.ﬁ" NS%) + _kj (22
Fi3
where
My 3
(5 .
AZ = ht 2.3
k M, |
Ay
ZNMSEM
8% = A Q4

MRNIJ.
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with 83,, defined by Eq. 1.5, Ch. 7, and where

L
'ZM&NJ&SE& _ 1 M
8=4~ and N, =—3N,, (2.5
2 N ; Mh 12‘ ’

The optimum values of P,, m, and k subject 1o a fixed total cost and
L

subject to the condition M, P, = I, where the cost function is

L o
C = Cym + CimSP,MN, +- ComkN (2.6 or I-8.54%)

+ 7\ 4
are given by A

JAz _ N-’lsgh Y \\'
C, + CiN, N\

ANTNSL O
M /\/ kT Ay 2}'5 NN\
2 h Cl + C v’

Ph:

N
VEYG, L0

ﬁh‘sb’z
Z Jc+qm

m_mc+cimmm+wgm (2.9)

(2.8)

For a particular fixed system\@} probabilities the optlmum k is

\\ o
\

5t (ci + cizpang,)

RSl oy .
\' Clz P Mh(AE - Nhsgh)

and the 0pt1mum m is as given by Eq. 2.9.

(2.10)

% If the estimate is given by Eq. 2.1, the rel-variance is (from
Sech, = Vi + V5 —2V,,, with terms defined as follows:
L M, Y.,
yan (G- ()
V.. = it Ll
i mXY
LM tht N nhi
%% by Nm”m By

+

mXY @1
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Substituting X for Y in Bq. 2.11, we obtain ¥2, and substituting ¥ for
X, we obtain V3. ¥Zmay also be written in the following form:

. 1 L M} L 1anA1 H
Fie L oA+ 23 S} @.12)
i A Tt % ) miffns

Substituting n,; = kN,,/P,, for a self-weighting sample, we obtain ¥?
as given in Eq. 2.2
To obtain the values of P;, m, and k which make V2 a minimum subject
i

to a fixed total cost and 2 P, M, = 1, we set up the Lagrangian F:
) N ¢
oA

i T "
FeViis, ( Cont+ ClmS P M, N, + CankN — c) g (.z%}h}’h - 1)
h S

Then the solution to the equations JFfIP, = 0, aﬁak;; 0, 2Ff3m == 0,
JFJA4, = 0, dF/3A, = 0 will give the optimum valu€s.of P, m, and k.
N
oF 1 M (A2— F,S%) »
RN R s Y X MR, + M, =0 (213
3P, P mx® + 1 1"3 » T A M, (2.13) |

Ne/

ar i SR :
o= - 4G e:l‘) (214
= Emx TG @19
AF 1 [f MN(A“ - N,8%) N NS%]
dm mEXE %:\ P, k

¢. N

N £ =

ﬁt Vi [c; + C;’ZP?,M,‘N;,, + Csz] =0 (2.15)
P\Y

BF/BZ =0 15 ‘the cost condition, and 2F/24, — 0 is the condition

SPM, g:b "From Eq. 2.14,
8 Al

82
M\ltlplymg Eq. 2.13 by P,/m, summing to L, and subtracting Eq. 215,
we obtain

C; S

Ay = mCily = G I

Substituting these values of 4; and 4, info Bq. 2,13 and solving for P},
we obtain

Pz _ (Alza — NhSER) Cakz (2]6)

N C;. + C;ﬁh SE
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b — 1= S / 8 N VG,
Z ME - 2. A A Ci _E' CI N_:‘ an

and
1
£ A2 - N85, VG,
Gy CiN, 5,
Hence,
/\/An - ';\—J?"S Th ‘\
C, + C|N, \
P, = SR A2
L Af— N NE o\
M i3 W iRk 5 \.
=My N Ci- ON, N\

Substituting Eq. 2.7 into Eq. 2.16 and solving feryk, we obfain the
optimum k as given in Eq. 2.8. And, solving the\eost equation for
we obtain the optimum  as given in Eq. 2.9;{\\'

For a particular fixed system of probabitities, we have the Lagrange
equations 2.14 and 2.15, and the cost conditidn.  Solving these equations,

we obtain the optimum X as given in Eq 2.10. This solution is straight-
forward and is left to the reader. 3

3. Optimum values for a_two-stage stratified sampling design with a
mniform over-all sampling feaction and a simple cost function, and a com-
parison of optimum pr abilities with stratification by size as a contrel on
variation in size of pst(Vol. 1, Ch. &, Sec. 12 and 14). To prove: Fora
two-stage stratified/design with a uniform over-all sampling fraction the

optimum 7, ancimh when the cost function is of the simple form
'"\5.

L
s\ C=Cm+ ComN, + CfN  (3.1orl-8.121}
and lhé total expenditure is fixed, are

O

opt. 1, = NS, «/E;%;:—_;%,%—j (3.2 or 1-8.12.2}
and ! VR
opt. m), = thr M x@ f\f’@ (330t
B VO O, S, 18129
where _

L ) .
Sg — ZN?ASEIP.

I (3.4 or 1-8.12.3)
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~ and the optimum f is

opt. f = 3y

__TL — _
VG, [z«/c; + CIN, M, V'8, — N,8%, + vV C NSZ]
(3.5 or I-8.12,6)

Progf. When the sample is self-weighting, ie., f=f2fsn the rel-
variance given by Eq. 1.9, Ch. 7, becomes
5 : 1 &1 .
vi= s (B st 3 Lo nms @9

where 82, is defined by Eq. 1.3, Ch. 7, and 83, is defined by\ﬁq 1 10,
Ch, 7. The cost function may be written

N
27N
 { %

S 7.\
= 4 G fN ™ 3.9
i +- ﬂY\ ( )

To obtain the values of £, and f which mmlmme V2 subject to a fixed
tatal expenditure set up the Lagrangian F: \ &

L
C=2(Ci + CIN)M,

Ffan i 2) = V] + A{Z(C + C;Nn)MnJrf + GofN— C]

Then the solution of the equatiogs’ aF/a,gh =0, aF/af 0, and the cost
equation 3.7 will give the optu‘num values as shown below:

IF Mh'Slh N k}g.zn, (Cl 4+ C N, h)th

=0 | (3.8)

aﬁ?h i X 2]‘ \ W f 25
L NS Lk I
OF  3M8ufu 2N | 2NSifw
of DX X3 X3
N\ L .
O S (CL -+ CiNIM,

+CN[{=0 (3.9

+ 2
."\" f:}k

thplymg Eq. 3.8 by fy, summing to L, and adding Eq. 3.9 multiplied
by f, we obtain

I :
ZNRSER
2 _ - 3-10
y CoNX? (3.10)
- From Eq. 3.8 S RS
A= .__!L.T._T‘_zf:___.i-’ﬂ (3.11)
X¥HCl + CiNy)

Equate the right-hand members of Eq. 3.10 and 3.11 and solve for the
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optimum expected size of ultimate cluster in the /ith stratum, i, - N, f;,,
to obtain Eq. 3.2.
Now, since m, = M, flfy, substitute Eq. 3.2 for N,f,, to obtain the
optimum m,, given in Eq. 3.3, Substitute Eq. 3.3 into the cost function
5

for m = >m, and for m, and solve for f to obtain the optimum / given
in Eq. 3.5.

Comparison of optimum probabilities with stratification by size. 1f the
stratification is by size and the strata are the size classes used in Sec, 2,
then 83, and 8% in Sec. 2 are the same as S3, and 83 in this section, {'We
saw in Scc 2 that the over-all sampling fraction is /== mP,i, /N, lla.nce
mP,, is comparable to m;/M,. Note from Eq. 2.7 and Eq. 3, ? £t mP,
and m,{M, are proportionate to quantities that differ only STie lh it Af in
Eq. 2.7 replaces 85, in Eq. 3.3. The difference bet\\eqn A and &%, s

approximately i '»,'\
a4 §°

}’h Y ) x:\\:
s0 that the two expressions are approximat?l)‘f the same whenever the
Xyl Y, do not vary a gre'lt deal from strafunt to stratum.

Proof. From Eq. 2.3, R
RIS 2 |
A‘Z N Y2 ( hig _X) — X, — a
M}t i Y?u' ’ Y M}; %( " ht]
g
= A_a'— Z Xﬁ}--}— RY: —2RX, Y3 (3.12)

with R = XJY. From Eq. 13, Ch. 7,
St = Shix ‘KRQSIH — 2RSyxy
"1\’ My M _
= (ZXE;"“MR “‘RZYM RM, Y}
SO~ 1)\ o

s .u,

{’\\; w - ZRZX}”-Y_:”- + 2RM};X;& Y}a) (313)
For M, large, so that the assumption M, = (M, — 1) is valid,
) = Y 5. R AL
A%“" ’th ={X,— R Y@= 7Y; (?: — _}“,)

4. Comparison of 72 (Eq. 5.4 of Ch. 6) and V2 {Eq. 5.11 of Ch. 6) (Vol. 1,
Ch. 8, Sec. 1 and 11, also Vol. I, Ch. 6, Sec. 8). To prove: For the class
of populations described in Sec. 8, Ch. 6, we may expect that (F2/ V%) > 1,
where P2 is given by Eq. 5.4 of Ch. 6 and V2is given by Eq, 5.11 of Ch. 6.
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Proof. V?and V2 can be restated in the forms

M s N~— N, '
Nz >, >_ (Zy— 2
2= e L
JM'A.QXZ + N)?z (4])
Mo M _
ZN{Z? Z Z(Zz';‘ —Z)
T T e
MmNy T N (42
where for ¥* we have assumed that NV is large so that N/(N — 1) ds\wery
close to 1, and N\ -
Z, = Xy— RY, PR CX)
LA O
Z, = Zzs':‘ = X,— RY, .'“.\\’ (4.4)
i v
and \
7~ % a 45)
In 5':\ .

The last term in Eq. 4.1 will be neatly equivalent to the last term in
Eq. 4.2 provided the N, are moderat‘gly large (it may be about equal
under less stringent conditions). When these last terms are about equal,
then A

252 =3
P J» ZN £ - NZN Z
MRX?

N
L >

& Ox, NG

¢ B T 4.6
:t\... MN‘ZXﬂ ( )
"\s

where oy, y337is the covariance of N, and NZ% For the class of

pOpulaumrs described in Sec. 8, Ch. 6, this covariance is positive, and

thus for\many commen sampling problems

QO 72

Ilustrations are given in Case Study D of Ch. 12, Vol. L. (Compare,
also, Sec. 2, Ch. 9, where it is shown that sampling with probability
proportionate to size, under the same conditions, gains over sampling
with equat probability.)

5. Effect of variation in size of cluster in estimating tofals (Vol, I, Ch. &,
Sec. 4). Consider a one- or more stage cluster sample design with a
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uniform over-all sampling fraction, f, and with m primary units included
in the sample; it is desired to estimate X. If a simple unbiased exfimate,
%', 15 used, where
1
= (5.1)

7

m
and & = Jx; is the agpregate value of the X-characteristic for the units
in the sample, then,

V25 & V24 VR4 2 VLV, (5.2 or 1-g4.1)

where 7 == 'n; is the number of elemeniary units in the sample{oxsome
other aggregate measure of size associated with the units inghe shmple,

and where V} is the rel-variance of /n, V3 is the rel-vapidnee of », and
P, 15 the coefficient of correlation of r and ». e \ I
-\ Ny
Exercises ’
5.1, Show that Eq. 5.2 holds approximately an{i,’thnt the last two torms
become zero if the sample selection is made in ﬁich a manner that, il two or
more stages of sampling are used, the first-stdgeymits are selected with proba-
bility proportionate to N, the size of the ith{unit.
5.2, Let n; = folN;, where N; is the sige.’gf the ith first-stage unit, and where
the first-stage units are a simple randomiSample. Show that the last two terms
of Eq. 5.2 vanish if the estimate (zfm)Wis used,

Remark. The importance of the relationship given by Eq. 5.2 is that it
separates the rel-variance gf an estimated tetal into a compenent due to
the variation in size of gluster and a component representing the variance
that would arise if the p\jblem were to estimate the ratio /7. The variation
in size of cluster usially has much less effect on the variance of a ratio than
on an estimatedytotal based on an expansion of the sample by the reciprocal
of the sampIi,Q’g, fraction, and therefore the latter two terms in Eq. 5.2
represent theé{principal contribution of variation in size of cluster. The
last term\(‘ill'often be simall, in which case the contribution of the variation
in size.@f cluster is given approximately by V1.

AN

U REFERENCES

(1) U.S. Burcau of the Cepsus, Sampling Staff, A Chapter in Population
Sampling, WU.3. Government Printing Office, Washington, D.C., 1947.

(2) W. G. Cochran, “Sampling Theory When the Sampling Units Are of
Unequel Size,” J. Amer. Stat. Assn., 37 (1942}, 199-212.

(3) M. H. Hansen and W. N. Hurwitz, “On the Determination of Optimum
Probabilities in Sampling,” Awnals Math, Stat., 20 (1949), 426-432.

{4) D. G. Horvitzand D. I, Thompsen, “A Generalization of Sampling without
Re})lgccmem from a Finite Universe,” J. Amer. Star, Assn., 47 (1952),
663685,

(5) Hireshi Midzuno, *“An Outline of the Theory of Sampling Systems,” Annals
Inst. Stat. Math. {Japan), 1 (1950}, 149-156.



CHAPTER 9

Multi-stagc 'Samph’ng with Large Primary
Sampling Units

DERIVATIONS, PROOFS, AND SOME EXTENSIONS{OF
THEORY FOR CH. 9 OF VOL. I+ \

W
77
S D

NoTr.  So far as the theory is concerned, there is no distingtioh in multi-stage
sampling whether the primary sampling units are large\dn Small. However,
some principies and methods become more important\with large psu’s, and
these are emphasized in this chapter.  They includc substtatification in sampling
second-stage units, extensive use of varying pro éltjﬁlitics in the selection of
primary units, inclusion of a small number o piimary units in the sample per
primary stratum, the determination of optimanysizes of strata, and allowance
for travel within psu’s by a separate term im\the cost function.

Of course, the theory introduced hegg for large psu's is applicable to any
problem in which the principles are gpplied, whatever the size of the psu’s.

Seme notation used in this ehapter.

Xyiasr = value of -thc.X=<£haracteristic for the Aigfkth third-stage unit
in the popu!gtkh"; i.e., Xp a5 18 the value for the kth third-stage
unit in thé\jth second-stage uxnit in the ath substratum in the
ith primdry unit in the Ath primary stratum.

Lo = vah@i}ﬁ' the X-characieristic for the Afajkth-third-stage unit

Q\'tk'e sample.

A\ P . .
Y piuse BN Y005, Tepresent similar values for a Y-characteristic.

\N"
{mbérs of sampling units and strata are as follows:
IN THE SAMPLE [N THE POPULATION

Number of third-stage units in higjth

second-stage unit Quiss - Onins
Number of second-stage units in ath .
substratum of Aith primary unit Hysq Npia

* Appropriate references to Vol. I are shown in parentheses after section or
subsection headings. The number following 1- after somc equations gives
the chapter, section, and number of that particular equation in Vol. L. -

205
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IN THE SAMPLE [N THE POPULATION
Number of substrata in hith primary

unit Dy D,
Number of primary units in hth stratum  m, M,
Number of primary strata L 1

With the notation above the following additional notation is definsd:

IN TiE saMpLE IN THE POPULATION A
Turny Qn.:u
Tpias = 2 Upiajx Kias = 2 Xniajn f\":\
k k AN &
Paia Niia @
Lhia = Z Znias km = \7 Y?m‘y
i J.~\\
- R (,
S
Y
. N\
L ,x'{\\” L
v
x =2, (:}\ X =3 X,
1 ANV k
Tava « \/ oo
Tria = 2 Jsas PN\ Onia = 2. Qhias
2 "‘ *
N
(\
j3 {5\ L
J— N
9= 2fn, o g=20,
Nk O i
9 ud L
m ?‘ma M= sz
x'\?! I

Average Que’s per third-stage uqit

whm; == ZpiailGnies

hinj — X.ina:lleh{aJ’

</\~/ . )

= z/g X =x/0

Average values per second-stage unit

al

2!

Thia = Tpiaf e Xrin = Xyt Npia

.

Z = zfn X = XIN
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IN THE SAMPLE IN THE POPULATION
Gria = Grialfinia Qhio = Qriol Nasa
g =q/n 0=0/N
Average values per primary unit
;E?l = mﬂl{nh! ‘fk = A,Ji-r'(M}a \
T = xfm X=xm &
. . e\ il
A = nfm R=nm O
Averags values per primary stratum O
. R
X =XD
#1 = mfl, M. N WL
N NI
Ratios AV
r=x/y A R=XY
&N
Fp— ‘T’h/yh '}:::; R?e = X}J Y}e
Fri = TpifYni N Ry = Xpf Yy
{If no substrata are used the,&is omitted, and if no primary strata are
used the 4 is omitted.) ¢
\\s,,z

Simple unbjased esti‘rr\zfijteé of totals are
' is estimate of ¥,
x, is estim&t‘\h:\df X
Z,; is estjg}’ﬁ}e of X,,, etc.
-Pk«;,@"’éff)%abi]ily of drawing ith psu from Ath stratum in a single draw
N/ (i.e, for a sample of 1 psu).

See Sec. 1 for further definitions of these
estimates.

Sampling fractions are _
Jhsas = Qriasf Oniay s the third-stage sampling fraction.
Jria = B0/ Nys is the second-stage sampling fraction in the ath sub-
stratum.
Jis a uniform over-all sampling fraction.
S = 1,Py; fria focas TOT three-stage sampling with a uniform over-all
sampling fraction.
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*1. The rel-variance of aratio estimate for a multi-stage stratified sampling
design (Vol, T, Ch. 9, Sec. 14 and 26). «. General case.  Assume thit we
have a population consisting of L primary strata, M, psu’s in the hth
primary stratum, and D, substrata in the jth psu of the fith stratum.
Then an estimate of R == X/Y is given by

ki ] w ]

- > e "L"
. der = fet
& It "”h i it
i WL (1.1)
-?J L‘ l m_: l 2\,
:2. ?”n
oy TPy

A\
where m, is the number of first-stage units included in the & nsnph, from
the Ath straium, P,; is the prob'lbmly of selection of lhcqih psu of the
#th stratum on a single draw, and a7, and #,, arc llnbi"l%d estimates of
X,;and Y, Assume further that the first-stage uml\é are selected with
rcplacemcnt but that the second- and subsequentiafie units arc selected
without replacement. N

To prove: We shall show that \

% 3

V = Vz + V",ﬂ—ZV_”‘, (1.2)
with &N
L] ,..}'v L i,
2 " Sm{'} >_4 Z T Faali'n
. A ”"lh ~ b h q 1 Ri
\
. Vi = v and Vg. == Vy.y.
where )
A Xy Yii
"\.\Sﬂ,\y =3Py (; - Xh) (P— -, (1.4)

and frx-my,‘;i}s the covariance between «; and ¥}, the estimated totals for
the ith p&il in the Ath stratum.

PJoéf From the general theorem on the rel-variance of a ratio (see
Ckg 4, Sce. 11), the rel-variance of r may be written

VE=Viuy = Vet Vi—2V,, (1.5)
We shall show that ¥, is given by Eq. 1.3. By definition,

Ty
XY (1.6}

Since the sample is drawn independently from stratum to stratum,

Vx, v =

L
Oy = %qg:r-’w’a : (1.7

* May be deferred.
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where
, 1 m 1 , 1 mi | ,
= 25 ks x i .
" Iy, aZP Rt " y} A %P ni Y (18)
and .
ESE;“: = XM! Ey;xi = .YM. (19) .

To evaluate o, ., we make use of Theorem 15, Ch. 3 (p. 65), which
expresses the covariance in terms of a contribution from sampling first-
stage units and a contribution from samplmg within first-stage units.
T}'as from Theorem 15, Ch. 3, with u = ;, » = ¥;, and the random

vent b* being the selection of a set of m, first-stage units, we hayq )

Tunyn = B, i) F O, nman (i 10}

where o0, 1) Tepresents the covariance between ) and ?J’,rs Wlth.m fixed .
first- stagc units, and Eo,., . is the expected valug o&ﬂns conditional
covariance. In the second term of Eq. 1.10, E(x;,}[l]), which we will also
write as Ejx;, represents the conditional expectefbvalue of x, for a fixed
set of first-stage units, E(y;|[1]) is similarly defined, and O g, E[l]yn is the
covariance between first-stage units within sfrata.

Consider the evaluation of U'E'ux'h B By Theorem 14, Ch. 3 (p. 61),

[l]?f ‘
’ ¥
B = 33 2. Bty
L

where E with a subscript représents the conditional expected value of the
expression following it fer(the fixed values represented by the subscripts.
Since 7}, is an unbiased estimate of X},

\&~ 1m 1

O - — X.. 1.11
”.\" E[J]xia m, %P}“‘ XM ( )
Similarly, \O~ |
.s\ me |

] .
,‘ :3 E h— Y i
'S : th ™y, ; P "

Théefore, since the psu’s are selected with replacement,

1

= . 1.12)
GE ' B T z 0‘1:\: YM ( *
i m‘r‘ £ PM Py
Now,
X, p.£¥
E—== Z P = X,
PM P.’u

since the probability of selectmg the Aith primary unit is Py, Similarly,
E( YR!IPM) — Y
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Hence,

1 < YM

1 M X Y
=; ZPM( X}a) (_fu_ Yh)

P.‘n P?n’
_ ! 8 (1.13)
- m, AXY .
where 8, xy iIs given by Eq. 1.4. O
; . '\\\'
Consider now the evaluation of Eo,, .. By Eq. 6.2, CE},\S,:
Oy yalit] = £ l:(x;a - E[ux;;)(y;¢ — En]?;";)J[.}:]’:f:‘: (1.14)

AV
Since the sampling is carried out independedily within the sclocted
primary units, the conditional covariance, Eq.\L.ld, becomes

1 M ‘
AN E[ Z P2 (x.’n. N X}‘a;)(yﬁt Yh:)][l]]

-h i £ n
1 m L ™ \ ,
= Z 11 BN (xm X)) — Yo
m { Jn
1 md 1
= = A T O
and . ja \g
1 ¥
7 ‘;\ / EGI'W'»”_” = ;; % F:“ U&C'afal (1‘15)

Substitut&Eq 1.13 and 1.15 into 1.10 and then substitute Eq. 1.10 into
Eq. 1.6{to'obtain ¥V, as given by Eq. 1.3.

b.The rel-variance of v for a three-stage design with substratification.
«Fo:\thls design r is given by Eq. 1.1 with

DZM 1 ?‘%g: Dy )
Ty = toy = 2 s (1.16

fhm H fhm: Thias @ me ’
where fo2 = Mpiol Nyias frias = Gias/ Cniair Naio 18 the number of second-
stage units in the population in the ath substratum in the Aith psu, QG
is the number of third-stage units in the population in the higjth second-

stage uuit, 7, and g,,,; are the corresponding numbers in the sample,
Ghiog

and ., = 2 Tpiase- The y),; ate similarly defined.
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V3 is given by Eq. 1.2 and 1.3 with

Dn;

Nyta ™ Hpes S

— ] hig hig “hieX 1

Gx'ny’ai - Z N}u‘a
@

Naia Mriq
fhe A Naie

-~ fa s iaf faj S 1 X
y 2 hia 2’ Q%mi Qh dx R X (] .l?)

—+

a Ppg Oias Grias
where
Fova - _
Z (Xiu'as‘ — Xaial Ynfaf — Yy
Shia Xy = : fl\IS)
Nhia_ I _

Fo Knia 3 )

_ z th: z Y.’:m; &

inﬂ = 1 > ka - .(’ }“

_ Ny * Nia 0N ?
and Qe
QMM’ = \ N }E
Z (X — X, nias X ¥ highp ™ Y pias)
S ) . .I‘, o\ l !9
ARini XT — e ( . )
Qkiaiﬁ.\l

Quior O o

— % Xpsasn R %’ Yriuin

)_(h‘a' = > ”;?M

i Oriag “ O hin

Equation 1.17 may be obtaified i)y applying Theorem 15, Ch. 3 (p. 65),
t0 @, .. The details aré the same as written out in Sec. 1 of Ch. 7 and

Sec. 1 of Ch. 6 and af\ileft to the reader. _
Note that by combining corresponding terms of V2, V5., and V., we

may write the qel{fafiance as follows:

4\ .
I 1 L 1 M1 Bu N},m_nhm S%a‘a
PR kS S S - S o 3 N, e Shie
’ ,(%5?5 my, ! Xxd %mn % Py % he Nyia My
7 "“:; L My Iy . Nﬁd o — G .Sg,
M\; } _1_2 Z _i z _1_. Z &‘;‘_‘f‘ 2 QF”‘Q” Qhw} ‘hm higf (1‘20)
\/ Xewmy, T Pui’a Pue 5 Drias  Fuios
where '
2 =85+ R2S}y — 2RS, x v (1.21 or 1-9.30.1)

Stia = Shrex T RSy —~ 2RS,uxy (1.22 or 1-9.30.2)
S?u‘ai = S%fu:’X + -RzS%:'aJ'Y — 2RS,0x v (1.23 or 1-9.30.3)

¢. Special case when Py = 1/M; (ie., equal probability of selection of
psu's within a stratum) and the sampling of primary units is made without
replacement. The evaluation of the covariance proceeds exactly as above
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for the contributions from the second and third stages of sampling.
However, the evaluation of the first-stage contribution is made under the
assumption that the psu’s were drawn without replacement, and with
equal probability of selection within a stratum, whereas in Part a it was
assumed that the psu’s were drawn independently (with replacement),
and with varying probabilities of selection within a stratum. Hence, by J
substituting 1/M,, for £, in Bq. 1.11 and then recognizing that m, primary

units are sclected without replacement, we have for the first-stage

contribution ~ \
M, ™ M, ™ )
) Bnn) S
Nl MEN '
and, recognizing again that the covariance of ZXh,/rn,, andy ZY,“,’mh is
given by the procedure of Sec. 3, Ch. 4, we havc 0 \‘
2\
. A )
X, — X 1(}’ — ¥
oﬂ'{! nlh 2.( Wi 7T oA X h
Eq. 1.24 = Mi — : P\, 1.25
q LM, M@“— 1 (1.25}

Thus, o, ., 1s given by Eq. 1.25 plus Eq. 1,1% w1th 1M, substituted for Py,.

d. V2 for a three-stage design when wethave a self-weighting sample wiih
my, = w1 for all b, with the second-stage’ sampling fraction smallf relative to
1 and with constant third-stage saipling fractions. In this case the rel-

variance may be written L
LN -
B WE -G W
Vi - —f g 1w 1.26
ri A 0 mig (1.26)
where \¥
B2 + B} — 2By
Y En o gy Y L
ANy 22 Py (“&*X)( - Y?a) >Shxy
:‘é ’2&% Pha Pm K
A LXY LXY
\\} B%::BXX al‘ld BE'ZBI'IY
L L
" X N Y,
X = th and Y = 2.0

and
2 __ 2 2
Wi= Wiy + Wip—2Wyxy
L M, Du

Z 2 zth’a hiaXY
NX

Wixy =

*'-qu
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Wir=Woxx and Wiy = Wy
W= Wiy + Wiy —2W.xy
and where in Eq. 1.26 and throughout this subsection, g = £;0 is the
expected number of third-stage units in the sample per second-stage unit

in the sample, and 77 = fN{fsm is the expecled number of second-stage
units in the sample per primary unit in the sample.

L My Py Nuia

2.2 2 2 QuaSnwxy O
774 _ A F e § A
wX¥y — == AN
oxy A
W2y = W,xx and wky=_u;yy <~§

These results follow from Eq. 1.20 with the appro}mate substltutlons,
namely,

I—fauw=1 N

. W ..
g N
f= Eﬁ_— umfhm hiai

. g
Jf"&fzfa::
3 o L
N X=LY=NE=0X
& Y=LV =NV=0Y
\ n=mA, q=mng

2. Qqh’ahians under which a gain is to be expected by using probability
prop&)‘ﬁimate to size (Vol. 1, Ch. 9, Sec. 11}, To prove: For many
‘onithon populations, and with a fixed number, m, of primary units in
«tihe sample, a smaller variance will be obtained by sampling with prob-
ability proportionate to size than by sampling with equal probability, but
the relative reduction in variance will not exceed V31 + V%)

Proof. Consider drawing a sample, with replacement, of m psu’s from
a population of M psu’s, and making the estimate r = 2'jy’ (Eq. LI).
Then, from Eq. 1.2 and 1.3, the between-psu contribution to the rel-
variance of r can be stated in the form:*

* See also Sec. 4, Ch. 8, for a related comparison,
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(@) If the psu’s arc sampled with equal probability:

] M s _
2= — YNIX,— RY)P
fl mMX‘: = 1( }
1 M . ; 51
e 2N 0
where ~ i
d, = X,— RY, (2.2)
(&) If the psuw’s are sampled with probability proportionate 1 Size
(pps): L\
. I A Ry) :.\ A
Vi = — = N X — « \J
b= e S
= ——= SN} N 2.3
mMN Xt S > (23)

Then we gam by using pps whenever ,V“v Vi> 0, or whenever
mN2X%(V? — V3 > 0. Notice that

RIS M

mNXHVE— V) = L (led-— NEN,.d';’) (2.4)
is the covariance of N, and N;d; and will be positive whenever N, and
Ndi are positively correlated, which is the case for the commonly

encountered class of popqia ions described in Sec. 8 of Ch. 6.
Also, for this class o‘f\p‘opulauons i.e.,, when N, and N, d7 are positively
correlated but N, ahd 47 are negatively correlated, the intercept of the
least-squares regseSsion line of N on N, is positive, and consequently

> pe a
7N\ p b o
\/ — < V5 2.5
o§ VS N (

where\i"\ is the rel-variance of the sizes of the psu’s. This follows since,
1{;:*‘ ¢ - du is the regression of w on w, the least-squares value of the
reept, ¢, is W — (0, /UV?), where Ew == ¥ and Eu = U.
In our case U, = N, and W, = Nid?. Therefore,

S

M A M
_ 3N SN} — NSNd?

—— (2.6)
M MNVY,
Then the condition of a positive intercept, ¢ > 0, is
yoo,oM ¥
e SN2J2 . NS N4z
N SN~ RN @

M MNVE
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from which it follows that
Vie Vi e
—_Vﬁ_ < Vy - (2.8)
1t also follows that
G P Vi
|7 1+ Ve

(2.9)

3. When fo equalize the sizes of the strata (Vol. I, Ch. 9, Sec. 8 and 24}.
To prove: A rtule of thumb which will provide a rough guide to{the
optimum sizes of strata when a constant number of psu’s are sselected
from each stratum is to make the strata equal in terms of X, whén the psu
rel-variances are about the same and remain about the same on’adjusting
the sizes of strata. O3

Proof. Assume that the population is divided intod strata.  Assume
further that the strata are grouped into G classes so.hat the strata within
a class have about the same rel-variances between psu's within strata. If
there is no subsampling, an estimate of X caq‘& writien,

_§ 15T a1
ot ri— AT .
g P RN Py
where X,,; is the total for the ith ';iéu"in the Ath stratum of the gth group,

and 7, = m,, is the number.of psu’s in the sample from each stratum
in the gth group. ¢\

¢ ‘\ g 1 I - .

N\ \ " Gi’ == Z = ZXQ‘?ABQ‘F: (3'2)
O ] g Mg b
where &
O e (X, 2
“\s\ ZPQM (PG! - Xf.rh)

2 _ ghi 33
‘f'\\ ng M ah gh ( )

*

Af, By a shift of some of the psu’s from one stratum to another within
the/gth group, the BY, remain about the same for all L, strata, then the
values of X, which will minimize o2 are determined by finding the values
of X, which will minimize

Ly N Ly
S x2,B2, subject to the condition that X=X,
1) A

This minimum is given by the solution to

JF
oF =0 and —=
X, aa
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where
I fip
F = ‘ZXJI.I Ea’.l + ;J" (%Xﬂh - Xﬂ)

and where 2 is the usual Lagrangian multiplier.

Hence, the minimum is obtained when X, is proportionate to 1R,
and if the B}, are constant, X, should be made the sume for all stratr ina
group. It foliows that if the B,, are the same for all g and A, and /1,
the same for all strata, then X, should be made the same for all strutzt.

The psu contribution to the variance with multi-stage saraplingd$\the
same as Eq. 3.2 above, and consequently the same values for X, m\inimize
the between-psu variance with multi-stage sampling. A\

Remark.  Similar results can be shown for ratio estimates, Nole also,
for ratio estimates that if the variances are about equal, S the different
strata, instead of the rel-variances, then the Y, should He equalized instead
of the X,,. Often the Y, are known, and the X, e nbt, and the X, and

Y, are highly corrclated. Then the measures QF size to be equalized in
practice would be the ¥,,. AN

RS

4. The estimate of the rel-variance of ratio estimates when more thun
one primary sampling unit is taken from each stratum (Vol. 1, Ch. 9, Sec. 27).
As was pointed out in Sec. 2, Ch. 6, \When it is not of interest to estimate
the components of the variance. for a multi-stage sampling design, an
unbiased estimate of the total variance and covariance of 7 and W as
estimates of U and W is gl\(cn by Eq. 4.1 whenever the sampling at the
first-stage level is carrle\ Out with replacement and at least two first-stage
units are included o the sample. Thus, an estimate of o, is

¢ .\ Z(Hf — i(w;, — W

R0 Sap = @.1)
\“ ) e m(m— 1)
and ) O

'o

Espr = O (4.2)
w@e,re m is the number of primary units in thc sample.

u; is an unbiased estimate of {J.

m
2t

7 = *— is an unbiased estimate of 7.
Fis)

w; i3 an unbiased estimate of W.

=
2.9

W = =— is an unbiased estimate of .
m
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a. Multi-siage stratified design with variable fractions. Tn a multi-stage
stratified sampling design with either fixed or variable sampling fractions,
we have within each stratum

wfu y!n
u-;’ =T, w‘. —_
‘P hi P hi
iy ;{r' . Ty
B Y
E P i Z P 1
z1=1, M:x;;, - _ % M:ya’
B, * m, A O\
ﬁ—Xh, W: Yh ,f:\“..\'
and O
gl af, AN
i r i ’ < 3
S () (5~ ni),
S‘:Sr!:1 R ?ai' ‘\~ (43]
U Bal mh(mﬂr“ 1) N ’}
AISO, . \ ;
| Brvu = Oy, (O (4.4)
Henge, N\
Z'Sfﬁsn;n
Uy 4.5
K J
is a consistent estimate o VM( Further,
22 ;\v” and % =w,,  (46or1-9273)
are consistent estlmat §0 Vz. and V2., respectively, and
_}" o= o) + v — 2u,, “.7

is a consistent, estimate of ¥2 given in Eq. 1.2.

b. Fixedover-all sampling fraction. In a multi-stage stratified sampling
design with a fixed over-ail sampling fraction the estimate v, in Eq. 4.5
abpve”})ecomes

I Z(xm - jn)(?fm 1)
H %m}‘ ny— 1

m miy

vy (4.8)

L3

m =
" This follows readily by making the appropriate substitutions as follows:
I = muPosfriafuias

4 Dae Brea Priar
Tpy My . -
- = = with @, = 2, 2 2 Tniosx
Py f a i &
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ha x'”: Ty
— Z_xm'

L N

x + AN
x’ e _‘_H ——ry }r— == - " \“‘
%mhgf’m ! S s\

and similarly for the Y-characteristic. Further, N\

=, and v =u,
and \
v = vk 4+ vl — va.y.,x';\\"
becomes pe
R 20,:,,,:' §, (4.9)
m
Equation 2.7 of Ch. 7 becomes jg:lléhtical in form with Eq. 4.9 above if,
in Eq. 2.7, the finite multiplier 15 close to 1 and if a uniform over-all

sampling fraction is assumedy
'\

*5. An estimate of\the rel-variance of ratio estimates when only one
primary unit is takew from each stratum (Vol. I, Ch. 9, Sec. 15, Eq. 15.1,
and Sec. 28). :.Q’.“-.When only one primary unit is selected from each
stratum, it iy"wot usually possible to obtain a consistent estimate of the
variange, gﬁé’\'vever, it is possible to obtain an estimate which tends to
be an Qeerstatement, and, for many practical problems, the overstatement
will.f{o} be serious. The procedure is to combine the strata into G groups
with/ L, strata in the gth group. Assume that we are estimating the
rel-variance of r = 2'fy, where r is defined by Eq. 1.1.

To prove: We shall show that an estimate of the rel-variance of r that
tends to be an overestimate is

v =) 4 v — v, (5.1)
where
2 ¢ I 2
o Sz 1 L, { ( ’ A ;)
Vp = —p = =0 — = 5.2
= x:z xrg %Lg o 1 g xﬂh Ag 23 ( )

* May be deferred.
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Sew 1 G L, L 4, ,)(, Ay N 53or
ey mrineas )G

v

xﬂ-‘li

gJA:P

i

i

and where x;; Is an unbiased estimate of a total for the fth psu in the
sample from the Ath stratum of the gth group, P, is the corresponding
probability of selecting the psu, and Exj, = X,,; A, is some measure
associated with the ghth stratum that tends to be highly corrélfted

I
with X,,; z, = Zx;,_-,d, and 4, ZAg;a, the ¥, and ¥, are smh]arly

\..

defined; and ¢ = v, is given by Eq 5.2 or 5.3. G

Proof. (1) In order to prove that ¢f tends to be an everst'ltement of
V2 and to indicate the mathematical conditions for th‘e\’blas to be small
we assume for now, and prove in (2), that \

p §

Esg- 1 8L, —1+ Vdsm ZKA\'W ety Z o2
=

(Ex'® X275 L, —f v’
i "-in"..'L L A 2
= (X ——g—"X) 5.9
. X%‘ﬁ' Ly_ 1 % ok Ag 7
where S
< L 2
¢. £ ’\. EI:AQRUIE',»
PAMW, e A}
:,-iin( by . ‘/rgai"
with “}
AN L
\:\l. %Agh N
W i =
“‘g\ P L,J
o ’“\':.‘ ) L’i
Vo 0%, = 2%,
and where
ZAgh
:l,{,.) = L Az‘.

Now for sufficiently large samples (from Sec. 15, Ch. 4), E(s2jx"%) s
approximately equal to Es%/(Ez")?, and consequently Ev%. is approximately
equal to Eq. 5.4, We shall assume that the term Vi = 2Vaum o,
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is small relative to L, — 1 (as will be the case if the strata do not vary
widely in size within groups). It follows that

1 &5 1Y L If_g( A )-’
Bt = — ——3\|x,—=2X 5.5
Pz X%ZA Q%Lg__l% oh Ag 7 ( )

and since the last term of Eq. 5.5 is positive, 22 tends to be an overstate-

& Ly
ment of o2/X2 =3 Yol (X2
¢k

O\
Stmilarly, we can obtain .
Soo 1 & L R, \)
Ev, , =F2f = — % I \J
Um'll x;yr Xy% ng EAPTS Y ".‘}‘
1 & L Agn "%Em '
rypen s e ) v) eo

7

and finally '
By = E 55 = EP | (5.7)
From Eq. 5.5, 56, and 5.7 we have )+
v — B 4 B —2Bn,, 00

any
¢

1 &L 1 &

- a \ )

X2~ h%’ﬂ-’_ﬁ\'[} yvh_-z ZZG PRI

@ oy S A 1 A 2
i (g ) -3 () e
i =

a

Since the sum\of‘thc first three terms of Eq. 5.8 is 67, and the last term
is posuwe \Eq 5.1 tends to be an overstatement of the rel-variance of
afy N
(2), ~I.1' remains to show that Eg. 5.4 holds, We consider the variance

ﬁti})@r than the covariance for simplicity in notation, and the reader can
fol

w the same steps to develop an analogous relationship for the
covariance.

¢ L, 42
% (Z‘rgk ZZ ;,m _Gh 33';. + jfﬁ ;2) (59)

9

Consider the first term in the right-hand member of Eq. 5.9. Since, in
general, Ei® = g2 | (Eu, it follows that

Ez:cgh 2(% X5 (5.10)
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Consider nexi the second term in the right-hand member of Eq. 5.9:

Lf A ’ 3 R
E%:xgkA € _‘E(Z [.rkA +Z g,rk Ayk )

Ay L A,
=2 %}, + X Loy Sy 2
A, % (a3 2 o) PZ 4, g;,Z oh %A

Ed s

ngx
(5.11)

and, finally, the third term in the right-hand member of Eq. 5.9 is.given
as follows:

L, 42 &
> [fzk 7= (Z ""ﬁ)(ai RO A7)

s‘~

Substitute Eq. 5.10, 5.11, and 5.12 into 5.9 and smnpl;fx 0 obfam 5.13.

& L, Ik inggd
— il __g_?s 2 N ) _ m 2
=2 [Z (X“"* p XQ) +"$’=( K3 a ) 22 ]

L,—11% ’
\ ' (5.13)
where O"
0‘3, T‘EGZ i
Mote that “'
2
’\fﬁ_f'* — 1+ Viw (5.14)
$ x“\, v A L,
and N N\
) 2 "\iéAghcg’“ 0‘3”
»\j\ ———[4— — —LJ (]_ + V‘i’(“’a!‘;ytn]) (515)
7 o
\w,

Substltulij\lg Eq. 5.14 and 5.15 into 5.13 and collecting ferms, we obtain
Eq. 54"
\Q\When the sample is self-weighting, the following relatlonshlps hold:

ﬂ}" _ xgﬂ!i) — 'ffﬂ

w P eh{i) f .
x!a'
x;, = }7

7

I

]
I

-
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and similarly for the %'s. Substituting these relationships into Eq. 5.3
ahove, we obtain

¢ Lr.' L. Agh )( @ )
%:LU_ l Z (Ig};_ A ‘T’a yg’h A .?fg

_ M bl ]
v = 5

*6. Rel-variance for a self-weighting sample in terms of measures of
homogeneity (Vol. I, Ch. 8, Eq. 17.1). To prove: The rcl-\-'afi\'i\ncc as

given by Eq. 1.26 can be restated as follows: \ ~
2 _ T3 AT (G0 or
2 . M1 _ —2 11 - £
Ves gl Hodg = DI+ 20, T '52(?;. RN EREAY

where 4, and 4, are measures of homogeneity and 8 defined by Eq. 6.3
and 6.6, and where ?‘f and V% are defined by I::q\é.ﬁl and 6.7, and where,
in this section § == E7 is the expected numbeff third-stage units in the
sample per second-stage unit in the samplé,and 77 = En is the expected
number of second-stage units in the samble per first-stage unit in the
sample. \\

Proof. o )
' BXW: §—j Wi
PEa At = _d (6.2 or 1-9.14.1)
,\??1 it 0 mng

where the terms in Eq GDare as defined in Sec. 1, 4
Consider first B2 MBy definition, for M large,

AN/ 12743
AN B 3
OV b= —= (6.3 or 1-9.17.6)
N\ ! V2
O\ 1
A\ N 0~ 1
O =8+ Q—Q- W (6.4 or 1-9.17.2)
From Eq. 6.3 and 6.4,
o _
B =S [+ 80— 1) (6.5)
Consider next W3 and W?2. By definition,
wi_ W
8, = —Iz;z—Q— (6.6 or -9.17.8)
2

* May be deferred.
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~ " —1
Vi=w; + 5" w2 (6.7 or 1-9.17.7)
From Eq. 6.6 and 6.7,
72 _
W} == 5-2 [1 4 843 — 1] (6.8)
and i
W, = Vil —d) (6.9)

Substitute Eq. 6.5, 6.8, and 6.9 into Eq. 6.2 and simplify to obtain Eq. 6.1,
O\

*7, Optimum allocation for a fixed total expenditure for a self-weiphting,
three-stage stratified design (Vol. I, Ch. 9, Sec. 19 and 20). (%o }::rove:
For a three-stage stratified sampling design which is self-weighting and for
which also the sampling within second-stage units_ds,\constant, the
optimum m, 7, and g subject to a fixed total expendiule dre given by the
iterative formulas 7.3, 7.4, and 7.5 below. TheNrel-variance for the
design is given by x\\

By 2 3 =2
pr LW QT g o rosa)
m  mi (OO0 mg
where the terms are as defined in..S’g'c." 1, 4 The expected cost of the
survey is given by A\

~ ) 3

C = Cyv/m +: \Clm + Cymi + Cymn/f -+ mig (7.2)

The optimum values a’ré@wen by _
R I LS /—C"—_ L, (130r1-9.19.)
e VIE= WL Vi

~ Nyf

W

N — 3 4+ VIHCVE + Cafi + G + Gt 1K)
AN - (7.4 or 1-9.19.2)
m\J
Whgre &k = C3/C and a = Col2V'm,

N\
s.’.

= + )+ (7.5 or 1-9.19.3)
g B 2
Proof. To obtain the values of m, #, and g which minimize the error

subject to a fixed cost, set up the Lagrangian £

F— V24 ACVm + Cym+ Cymit + CynVi + mif — C)

* May be deferred.
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Then the solution to the equations dF/om = 0, 3F/ofi = 0, 0F/o¢ = (),
and the cost equation gives the optimum values.

F B W, 0—4 W,
— —L_= L) Cy+Cy Vit
Sy 5 mﬁ'g_{_ (2\/—_{_ 1T CA+CVA rq)
(7.6)
oF Wi Q—g Wi ( )
—=——a 218 | Com + == .
of mi2 Q mig + + 2V + e @7
N
AF w2 .
. 7\ ©
From Eg. 7.8: o \
2 !
At = = A (1.9)
N
From Eg. 7.7: v
Wﬁ_ 2N
W% —j— =% —,’Eéﬂ'
Amire g’ -\ O (7.10)
Co+ 524§
# ’EZN’?:: 7

From Eq. 79 — 7.10:

§=— (13)
S ,@J

Multiplying Eq. 7.6 bxm and subfracting Eq. 7.7 multiplied by @, we
obtain

'\ / Emﬂ B"‘
'\

..\"’.s"i 1 ( Cy c,,x/“) a0

_.f-
2Vm
Subsutut&‘or Am® from Eq. 7.9 and let C,/2V'm = a to obtain 7 as given

by Eq \7.5. Treating the cost function as a quadratic equation in the
v'm m, we obiain

Y W_ncﬂ+\/cﬂ+4c,(cl+czn -+ GV + 7g)
AC, + Cofi + GV + 77)
Co .
and = g is given by Eq. 7.4
2vVm gren by =
'Reina_rk 1. Note that if we use the approximation to ¥7 given by Eq, 6.1
with
", 7 '
sz:l’ %zl’ and i_(h@_l 51
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the optimum values are given by

=*~/1~62
1= N0, (2«/“

which is identical with Eq. 7.3 above, where &, is defined by Eq. 6.6, and

—=lJ1—62(CSV§ )
ft gN o — tG+ta

which is approximately equal to Eq. 7.5. above.
Of course, a, given by Eq. 7.4, retains the same form since the cost
function is unchanged. \
Remark 2. If the cost can be expressed by the simplified cost functhn

C = Cyn + Cymil + Cyniig (7.12 or I«Q 19 5)

The optimum values are given explicitly by "3},
- W, ~/ J] —9,C G ¢ P (.13 ot
AV o T 5 B 19196
1w, G 1 1= éé tsl -
=z =t 7.14 or 1-9.19.7
PTG BN G TN Eye, THrTRD
m= *————g—’—-—:. (7.15 or 1-9.17.8)

Cl + Czﬁ'i‘" C4nq

Remark 3. T the precision of the survey is fixed at £2 = ¥V}, the numbers
of units in the sample yielding a mihimum cost are given by Eq. 7.3 and
7.5 with a now given by Eq. 716 below in place of Eq. 7.4:

_ lL\ £Cy
JBﬁ 4= (Wﬁ W*") -+ 1 Wi,
\X Q@ nq
( (7.16 or 1-9.20.1)
" £Cy
NV~
\\ V/\/'ﬁl p2 15
R i iq

with ot Vs 4+ ¥% — 2Vyy, and Vxy is the within-strata rel-covariance

gca‘ sttmplc random sampie of listing units, V% = Vyyx, and ¥¥ = Vyy-

development follows the same lines as gwen above and is left o the
reader.

*8. The variance of ratio estimates by specific subclasses that can make
use of both current and past information (Vol. I, Ch. 9, Sec. 23, and Vol. 1,
Ch. 12, Case Study B). Let «, and /., be unbiased estimates of X, and
¥, which are aggregate values for the acth subclass of a population,
-_—

* May be deferred.
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a=1,2+ - kande=1,2,++ -, ! with

i e

k ! x i
X, =2 X0 Xem=2X00e Yo =2V ¥ we 2 Y,
@& [ i ~
Assume that z{ is an unbiased estimate of Z,, an aggrepate value for the
cth class of some related characteristic, perhaps for a past date, and
assume that the Z, and the ¥, are known from sources other than the
sample.
An estimate which makes use of both sets of known data for the
specific subclasses i3 N\

e
:‘cH"-
o

N

/
4

> 4

a W]
SVINE
Hed
AN
N
Tt
7

[ '\".

can be approximated by the méthbd of Sec. 11, Ch. 4,

¢ R\

O = SHXUVE + 3V — 4V + 1) PV 4+ 3V 4V, 1)
= 2X T4 3 2y — 2 V)

"

The variance of 2
and is

%
*ad
R N

+ éd XX+ V2 + VB, 000, + Vi,
o Ve — Vs
+ PR VR IE Vet Vs,
: \ Voo™ Vooy— Viyr.— Vo)
—2X (D Ve VY,

i _
S FE Ix’a e Vx’.g z’d)

~0 ~Veir= Verro=Vor = VpooJl (&1
where AN\
QO o kX,
7, =>2ty,
N\::\':.' [ g Ya ae
\/ kX,
Y. = gz?ac

and where V3 = E(u— Eu)¥(Eu) is the rel-variance of u, and V,, =
E(u— Eu)(w— Ew)/(Ew)(Ew) is the rel-covariance of and w, where u
and w are the various random variables indicated by the subscripts in
Eq. §.1.

The estimate of the variance is obtained by substituting sample estimates
for each of the terms in Eq, 8.1 above.
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The danger of increasing the variance if an estimate of the type given
by 2 is carried into too many subclasses is discussed in Ch. 5, Sec. 3.

*9. Reduction in variance due to stratification, when psu’s are large
(Vol. I, Ch. 9, Sec. ). To prove: Stratification will usually introduce a
relatively lurger reduction In the primary unit contribution to the variance
when the psu’s arce large than when they are small. It is assumed that
the same strain are used for both large and small psu’s.

Proof.  Assume that we have L strata.  Let us denote the average size
of the large clusters within a stratum by N, ;, and assume that aN, ; =@,

the averuge size of the small cluster, where 2 << 1. ',\‘\~
If we et NS
1A a Ty Y N/
x = = 2% N
% iy az ! K7, \
then o\
M N\
Y S N
N "M, =
N M—n‘z?: Y |
Vi = i AV R
m | E‘thz

&\ :.. h
when rm, kM, and m, = numbee of psu’s in the sample from the jth
stratum, Af, -~ number of psu’$Nn the population from the Ath stratum,

and

g\ I
“E‘Mh _ X }th
;f‘.'; _-—-ﬁL , A= Y 0= JL

A%/

Tf the A1, are Lgr{;:ré, then

-~ '\W _ . ~ _ o

e o M ZWEE(X, — X M- [EE(XM — X BME— X)-]
it MR T Thm L ME ME

O (92)

4 \‘ w
B}B the rel-variance of a simple random sample of m psw’s is approximately

M — i TE(X,, — X)?
X MX?

and the relative gain due to stratification is

EM;J(A-;;;— f)z/ZE(XM_ f)g (9,3)
MX? MX?

‘_‘_-__"'_—"————_
* May be deferred.
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Assume that in the equations given above we let M, = M,, for the
number of large clusters in the stratum and = M5 for the nnmber of
small clusters in the Ath stratum. Moreover, we let M = M, for the
number of large clusters in the population, and M = M for the nunber
of sma!l clusters in the population. Then, since M,, = N,/N,,, and
M,,QH—N,/aNkL, it follows that M, /E2Myy = M,g/5M,. Simitarly,
X,q=aX,; and Xy = aX;. Therefore,

EM, (X, — X P _ IM (K — o) ‘
M, X M X% N

or the numerator of Eq. 9.3 remains the same for the change in thmﬁ" i ge
size of cluster. From Ch. 6, Eqg. 5.6, the denominator of Fﬂsb 3 cean be

writften as N
14 _ D
=L+ 6N, — 1) N\ (9.4)
N, O

for large clusters, and as RS
e _ <
S 11 4 8(NsDY ©.5)
NS o\

for small sizes of clusiers, and the ra;titfloi: Fa. 9.4 t6 Eq. 8.5
RV 11+, — U]

N 2.6

S 8us =~ 1) -

It follows, if V3 = V%, 8,> 0, 8;/85 < 1, and (Ng/Ny) <ET Q;
3 L

that Eq. 9.6 is less than}{'ity and hence the relative gain from the stratifi-
“cation is greater foplarge clusters than for small clusters.

The reader cafi'show that in the case where the estimate is &'fy" = r,
the relative g'\lﬁ\is given by

EM% X)Z L EM—’:(FR_ }7)2 EM}t(X}k_ ‘Y)(Fh_ Y)

R 'MX2 ‘ M2 MXY ©.7)
@) N Ez(xm Xy  IE(Yu— ¥P O2EN(X,— X}V ¥)
Mx2 MY MXY
and when 9§ is defined by Eq. 5.5 of Ch. 6, the relationship in Eq. 9.6

holds. 1t is for the ratio estimate that the assumption that T3 = v
witl usually hold.

a3

*18. Consistent estimates of the components of the rel-variance when
more than one psu is selected with replacement from each stratum (Vol, 1,
Ch, 9, Bec. 30. 31, and 32). We will consider a three-stage stratified

* May be deferred.
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samphng desigjn for which the estimare is given by Eq. 1.1 and 1.16 and
the rel-variance is given by Eq. 1.20. Assume that we have a sample of
m, psu’s from the Ath stratum, ), second-stage units from the ath sub-
straiumm in the Aith psu, and g} ,,; third-stage units in the Afajth second-stage
unit, for estimating the components of the rel-variauce.

a. To prove: A consistent estimate of the coniribution to the rel-variance
duc 1o sampling third-stage units, i.e., the third term of Eq. 1.20, is given by

2
z_____ _1_ mz" 1 Du Nma Nhaa z o Qhio; — Gnius Siing do.1)
hiai iy
w oy, PM © Muia Miia Oriai Gniag,
A\
whare PR,
2 ___ B 2.2
Spies = Skaaix “F P Sniaiy — 2uwxy > (10.2)
“’;th ”.\ )
#hems = &'
2 Eniosr — Tria) Ynings T“f"??um}
&
Shingxy = ; TN (10.3)
%m— x~\\.
= T2 Lpyag E \a " Yninin
Lhiag = ram hm; a %

* gm’a.j o) 9'};:.».:}

N

2 RS 2 —
Sniaix ™ ShiaiX XN and Snfafr = Shinf¥ F

e

We wilt show that Eq. 104 with 2 replaced by X and sj,,; replaced by

Sy (defined in Eq. 123)\13 an unbiased estimate of the third-stage
contribution to the rexkvarlance Then we need to show that 22 is a
consistent estimate ©f X2 and s3,,, is a consistent estimate of 3y, for
Egq. 10.1 to be 2, &onsistent estimate of the third term of Eq. 1.20.

Pmof Thexcxpecled value of Bq. 10.1 with z’ substitated for X and
Shias substQ"fed for 8%, is, by Theorems 6 and 14, Ch. 3 (pp. 49 and 61},
equal tos

o Lhop e 1 B Nrﬁm th o E O Qs = Grios S mas
“_42. — Z i H2 Z ; Z niqs L hid 0 g
b Wy My Py * Hyin Hnia 3 hiaf Thiaf

1Z1 1 "’"}‘:" %“ 1 D th Npgg P 1 A%f" 2 s i Prans anisr.i
_ — — P _.’_-. Riad
X = : =2 _
Xy my, m, 5 5 PP W My Mhie 5 Va7 Orior Gnany

= the third term of Eq. 1.20 (10.4)

Now, by Sec. 21 of Ch. 4, r is a consistent estimate of R, Since the
Grqs UNIts are a simple random sample from the Qy;,; units in the poputa-
tion, s3;:xp iS an unbiased estimate of S0xy (by Sec. 3, Ch. 4).
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Similarly, s2,,;¢ is an unbiased estimate of 8},,;x, and s3;,;- is an unbiased
estimate of 87,1 Since also ' is an unbiased estimate of X, then, by
the corollary to Theorem 19 and Corollary 2 to Theorem 20, Ch. 3 (p. 75),
Eqg. 10.1 is a consistent estimate of the third term of Eq. 1.20.

b. To prove: A consistent estimate of the contribution to the rel-variance
due to sampling second-stage units, 1.e., the sccond term of Eq. 1.20, is
given by

/] I, e
1 {- 1 1 e 1 ! - n N:‘lrra Hyin ‘S.flm N\
— S — S Y N3, A hia Chis (10'5)
ty L [ Pg fiin N -
Ty mh my g i hia Huia . ‘\'
'\
where R\
2 __ an s s\ 10.6
Shia = Shin — Shia <\ " ( ‘ )
and N
2 a2 240 i +40)
$iia = Shzax T+ P8y — 2’~\nm.\',):\\' (101
with 3
ﬂ'nm , . .
— »r
Z (xiiiu;‘ - a’hiu}(yfn';ﬁ\\" yha’ﬂ)
a — 3 W
SuieX ¥ = ; { 1 (]08)
Hnig A\
@niat, TN
’ Q.Flm.f >
Znins == 2’. Lisasm (10.9)
qhm; ™ A
ng’a ,
Lhiaj
; (10.10)

Q’) N
n{\ n;t,ia

Yinias A0G Fri simjtariy defined, and

my a2 _ &
O fiux = Saxx A0 Huy = Sary
o

) Waie —d 2
N w o Qnisi — Ghios Shins
z thm'

!
N\ o i Qm’a;‘ q.’n'aj
\ } Sfag =

: (10.11)
Mpia

Proof. 1t follows from the same considerations made in Eq. 10.4
that the expected value of Eq. 10.5 with «" replaced by X aud s;,, replaced
by S%,, (defined in Eq 1.22) is the second term of Eq. 1.20. We wish

now to show that s, is a consistent estimate of S%,.. By Sec. 3, Ch. 6,
we have

N nin — "
‘2": 02, Onioi — Jnias Shiasxv
iy )
i Urvas Ghiai
Nkz'n

Erifriaxy = Siexy + (10.12)
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By Theorems 6 and 14, Ch. 3 {pp. 49 and 61), and Sec. 3, Ch. 4,

N !
Z’”’" 0z Orias = Gnios Swigixv
Riad [}
- . K thr::.l‘ qh- Far]
Epiadniaxyr = N - {16.13}
i

Hence, subtracting Eq. 10.13 from Eq. 10.12, it follows that
EriaSninxy = Eniotriont — Batadninxy = Sniaxv (1)

Simifarly, s3;, ¢ is an unbiased estimate of S%,,, and 57, is ag uﬁ‘blased
estimate of 85, Since also r is a cousistent estimate of' R 53, is a
consistent estimate of Si,,. AN

¢. To prove: A consistent estimate of the contributiont {b the rel-variance
due to sampling first-stage units, i.e., the first term ofﬁq 1.20, is given by

1 &1 N
— >3] L& 10.15
x.rz % mh h ‘..:\ ( )
where >
= 37— % A\ (10.16)
$p = 53?}5”-7 P8y — 2Sxy (10.17)
with P &
¢\ ma ! ' q '”.
Y I LR VS Lo
PP iyl | B Pri Wi T L (10.18)
hX¥ m,; — 15 \Py; m;z P my,
\<
o nw e
R /T 09

’\w” e Mhia
and.x;;;a;’given by Eq. 10.9. The definition of ¥, is similar to that of .
]{m}:l‘ljf, §5in Eq. 10.161s

1 ' ¥ 1 D” Nﬁ, [Nk " H;:r’a o Fyin ~9 }
" o [Noa “Miia o 4 Twin gz 10.20)
th “hia + Nﬁx’a " (

Proof. From Sec. 4 it follows that 2 — §2 is a consistent estimate
"y,

of 1,2, the rel-variance of ¢ for a sample Of Mys Hpiar AN fhm sampling
units, i.e., V72 is given by Eq. 1.20 with /. replaced by M 20d Guses

r

replaced by gpq;
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1 51
From Part b above it follows that — o Z — 32 is a consistent estimate of

PN
' ) ’ 2
1 L 1 )‘Q 1 Dt' Ng N.r;m_ nhx‘a SMa
e 2 25 2 N Y7
X2y my v Py s Nyi fipig
} 3 o ] 43
1Z21% 1 2N, Nuw— e ¥ 0 Cries ™ Grias Ohiias
“1""_52_“2“_2 T “Z Oiai 0 o
X2E my T Poi'd P hia i Bias Frias
L 2 ,
1 5§ M 1 Dn J.\m Dories — Grsay Shing {10}1)
+ -_2‘ Z Z P z l. Qh'm;r ’ N 3
X My i g oa th:i Griai A\

Equation 10.21 can be shown to be equal to the sum of the Sécond and
third terms of Eq. 1.20 but with a,,, replaced by ny,;, and %m teplaced by
Grias Therefore, a copsistent estimate of the total rel;varlance minus 4
consistent estimate of the second and third termsy c&nbmed will be a
consistent estimate of the coniribution to the rel-vaxiance due to sampling

first-stage units, ie., Ry N
z E ¢ L
LIl 12101,
T p I, 4 n’f:x WEE T my

is a copsistent estimate of the first ~term of V% which is the same as the
first term of V2. ™

g

*11. Optimum values fcrr\a three-stage stratified design (Vol. I, Ch. 9,
Sec. 6 and 26). 7o pre¥e’ The values of m,, the number of psu's in the
sample from the Atisstratum, of f5;, = M/ Npse the sampling fractions

for second-stage,) umts and of £y, the sampling fractions for third-stage
units, with ,\1“

Arh]ﬂ
2\ E5 s ‘
O .
§ “ Jrien = yie , where Edy, = ZN‘.?nmg
A\ Qki 1) ™

(i e\,\the sampling fractions for thlrd-stage units are assumed to be
:onstant for all second- -stage units in the Aigth substratum), which
minimize the variance subject to a fixed total cost, are given in Eq. 11.7t0
11.10 below.  The cost condition is given in Eq. 11.5 balow. It will also
be shown that a uniform sampling fraction is optimum when 8,4,/ V Conia
is a constant for all A, i, and a.
The rel-variance of #'fy’ for a general three-stage stratified design with
varying probabilities of selection of primary units is given by Eq. 1.20 in
Sec. 1. If we specify that a uniform third-stage sampling fraction be

* May be deferred.
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appiied to all second-stage units within a snbstratum of a seiecied psu
i i ;]
i.e., if we et

Juiatn = o = friai
Q?nia
the rel-variance may be written
1[}}1 L 1 s [ Dujy . .
Vi = —|2—A — > — LLFA R N
(=¥ X2 %mh vt %ﬁihazpu % fmra ( hia th‘swhm)
N\
L 1M1 %1 | o
+ - - N i Si‘ i ZL\ 11.
%mn ? Py gﬁu‘a Jatan Oni ,{‘\a ";( V
wiiere W\
Hisa £
» z thaisgiaj ’" ‘
Soiis = "= OV (11.2)
Aig T
with 3., given by Eq. 1.23, and where N
Stio = Shiax -+ RESE S 2R oy (11.3)
which is a1so given by Eq. 1.22, K O
NN D
Ay = Sﬁfz}_' 2 NniaShie (11.4}
N\ . iR @

where 8% is given by Eq. I&l and other terms are as defined in Sec. 1.
Assume the tollowing cest function:

w7 L My, Dy
C #lic‘mmh + ity 2. Pus 2 MpiaCania
N\ * 3 i a
x'\: o 5 Ay Dy _ .
T %mn 2 Pri 2 tyaThiaConia (11.3)
T 24

:"\Q~

N .

whete o}, is the cost per primary unit for the Ath primary suaium, Ca,

i§ theyCost per second-stage unit in the ath subsiratum of the ith primary

‘Ql\ﬁ Tu the Ath primary siratum, and Cg,, 18 the cost per ]ist?ng unit i?r

the hiath substratum, and Gria 1S the expecied number of Hsting uits 1n

the sample per second-stage unif in the sample in the gth substraium of
the Aith psu.

The cost function may aiso be written as follows:

L L M, Dy .
C = JCmy, + 2y, 2P 2, Nasafrialonio
& A i 14

L My P _

-F Dy, 2Py 2, thﬁQOaﬁmtﬂ Conta (11.6)
R ) &
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The optimum values subject to a fixed total cost are given as follows:

1 JA_”
e [ B 1.7
" ViN G, e
_— ix/ Cin Sisa— éa‘uu’gihf@ {11.8)
fma N Pm' C‘.’.kr‘a Ah
Cany Sinia
N in uhia__ (11.9
ﬁ?ia(:’) ,\/C:}Mrz S;-:m-— thn'sr:.,‘h'ia (\ }
where O
_ 1 I T: My Dy, . o = o ey -.“
'\/ﬂ = E (Z \/ClhA?i + 2}‘ Z Z A'lfu'a \/*S;lia - Q!n'n ‘Si:'hffl"}y(’ﬁhm
k t i "’}‘.
L My Dy N — :‘
-+ ;Z Z Z th’aSwMa \/C:?"i.m}\ (l 110)

Proof. To obtain the optimum values we sgtaup the Lagrangian I
F= X%, + } (Costfmetion — C)

Then the solution of the equations B,Er’émh =0, FfSf,; = O, OF{fyiain
= 0, and the cost condition, Eg. 1146, yields the optimum values given in
Eq. 11.7 to 11.10. The process~of obtaining the solution, using the
Lagrange multipliers, is illustrated in Sec. 7 above and in Ch. 5, Sec. 9,
and is left to the reader. Ry

Note that the optimumybver-all sampling fraction is a uniform over-all
sampling fraction whemSZ,, /C,... is constant, since for a uniform over-all
sampling fraction,.,\.)

) ::~\ I = myPos frsa friatn

and, subst\im{ing the optimum values for My, frier a0d fo1000, We obtain

Q 3
R :.’ \/I — WA
PR '\: ’ ' f ¥ C:’.?u‘a

\ W
) 2

12. Adjustment for changes in probabilities when initial sample is selected
with varying probabilities.* Given a population classified into strata;
one unit is selected from each stratum with a specified probability. It is
desired to determine a method for drawin g a sample of units with probabili-
ties differing from the original probabilities of selection, but still retaining
a maximum number of the originally selected units in the sample. The
method is applicable, for example, when probability proportionate to a

* This result is due to Kevfitz (3).
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measure of size has been used in the initial selection of a sample, the
measures of size have since been brought up to date, and it is desired to
redraw the sample, using the more recent measures- of size, and siill
retain as much as possible of the original sample.

Htustration of method: Consider one of the strata, and assume that the
population consists of units 4, B, C, and D with original probabilities
of selection equal to «, §, ¥, and & and new probabilities equal to a, b, ¢,
and 4. Assume that a > o, 6> f, ¢ <<y, and d < 4. In this case, i
either 4 or B was chosen originally, it would be retained in the sample.
However, if € or D was originally selected, some chance of rejecting\s
must be introduced. The appropriate probability of rejecting Cn'D
would be {7 — ¢){yp, or (6 — d)f6, respectively. NS ©

Suppose that (C is tht one which was originally selected. W{:‘fr}ay then
determine from a table of random numbers whether or mebo reject it,
by selecting a random number between 0 and 1. C i%.féi@“Cth from the
sample if the random number is between 0 and (y —\é\»? 1 the random,
mumber i3 greater than (y — ¢)fy the original sarg]ée};elccrion is retained.

If we have determined that C (or D) is to bg fejected, our next problgm
Is to choose between 4 and B. The choicé\s.made by selecting another
random number between 0 and 1 and detéfmining whether or not it is
between 0 and (a — w)f{a — o« + & — FPSIf s0, A is selected; if not, Bis
selected. O8N

The proof that this method yiglds n sample with probabilities of selection
proportionate to a, b, ¢, d, apd that it results in the minimum probability
of change from the original sdmple, is left to the reader. The extension to
any number of units irnthe stratum is immediate.

\¥;
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CHAPTER 10

Estimating Variances

N
DERIVATIONS, PROOFS, AND SOME EXTENSIONS, GF
THEORY FOR CH. 14 OF VOL. I* )
.”\.

Note. This chapter contains some relationships {in addili(}r;;lo those given
in Ch. 4) useful for evaluating the precision of variang@hestimates.  Some
methods are also given for simplifying the estimation elsariances from sarnple
returns,  Additional methods are given in Ch. 10 of ¥ah1.

1. The rel-variance of the estimate of the rel :'a‘r\lance and of the coeflicient
of variation with simple random sampling {¥ol. 1, Ch. 10, Sec. 5). «. The
rel-variance of the estimated rel-var’i{)rieé based on a simple random
sample of 2 units drawn with replagement from a population of N units
is N

B—INT a4V ap/Xevd

P2 = e e 1.1
T A + P n (D
where \\ "
\2,¢ 't
RC 7= 25
<" n
s“\x.’:~\”' 2 z(x] - ‘r)g ﬁ — _{li-?
\\' n—1 "+ ' ot
* ;\ N N N
) 2 2{X,— X) 2l =X
\\;“ N > . N
¥
. N
s  CANIN-=—D] . X,
Vis = I
N ~
22X —X)P
Hg = N

* Appropriate references to Vol. 1 are shown in parentheses after section or
subscction headings. The number following I- after some equations gives
the chapter, section, and number of that particular equation in Vol 1.

236
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and where z; is the value for the ith unit in the sample, and X is the value
for the ith unit in the population,

The proof follows the same steps outlined in Sec. 18 of Ch. 4 for
deriving the rel-variance of the estimated variance of a ratio, and is left
to the reader.

b. The rel-variance of the estimated coefficient of variation based on a
simple random sample drawn with replacement is

ﬁ—l_‘__VjK ;.53,33-’31/} B VE

Vi = & (1L20r 1055,

! dn 7 n
This follows immediately from Part « and frem Sec. 6, Ch. 4. '\ \
Sampling with replacement is assumed here for mmphclty and/will be
a good approximation for sampling without replacement whenevcr the
nurnber of sampling units in the population is large rclatl\alo the number
in the sample.

2. The rel-variance of the estimated xarlanQ har a stratified random
sample (Vol. 1, Ch. 10, Sec. 7 and 9). To pmye The rel-variance, VM1

of the estimated variance, 5%, with a Stl’dtlﬁed random sample of n = Z”n
units when N, is large relative to g vlS

( 1 & . 1 ( n,— 3)8"
2 . ; Ny — | g — 22— 2.1 or [-10.7.3
I‘, .= .Nh n3 ﬁ!& H.h 1 A ( )

¢ Si R
where O
.
y x = Y
7 \X k nk
:t\'": 5
N\ . Lo s 2s
= 3Nf 2.2)
\’§ S:& %: 7 n,‘;
with N
) i(xh{ — &)
h 2=t (2.3 or I-5.14.1)
* n,—1
and . .
52 = iNﬁ % (2.4 or 1-10.7.2)
with ,
i(X i Xn}z
82 = = ’ (2.5 or [-5.1.2)
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and
ftan
JIIL?}J == _-4“
Ly

Ny -
Z( Xfﬂ [ Xh) !
AI?:

Han =

and z,; is the value of the ith unit in the sample from the Ath stratum,
and X, ts the value of the Aith unit in the population.  The 1, refesent
the number of units in the sample from the N, units in the i:t}k.\s‘l.:-a:lmn.

N\
Proof. By definition, . O
o [t z“}
Vi == —te "G (2.6)
’ (Est )y O
\:'“§\
By Theorem 6, Ch. 3 (p. 49), and Sec. 4, Ch. 4\\V
a L 2l '::‘$\"
Es? = SN7— 82852 (2.7)
I i NN
By Corollary 1 to Theorem 1, Ch.‘.?g':;(p. 56),
A SNt = ol (2.8)
\“ ) i
&\
and by Sec. S, Ch. 4, p\qh; W, large relative to n,
QO i, — 3
\4 5 L lﬁ]’*n—]
oy Or. = 2NE— ——— &} (2.9}
x”\:' A ”h ”k

Substitth{%qu. 2.7 and 2.9 into 2.6, we obtain Eq. 2.1. It follows that
e ) Vi = V2% , where & = o'/

"Remark 1. If proportionate stratified sampling is used, ie., f; = m/N,
= nj{N = f, s& becomes
2Nk

N
sy = — 55, where s =

/

and V3., = V§,, and with the substitution /, = /. we have

(2.10)

m— 3
ZN;, ( e r:_"——]) "
Vi, = s {2.11 or I-10,7.6)
Hixe
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where
ZN,SE

N
Remark Y. il proportionate stratified sampling is used and also the

strata are of equal size, i.e, N, = N, and hence also n, = 7, and the
mthm sn atum variances are all the same, ie., S~ &% for all 4, then

S;’:. ==

Si= 5 N o N/ and Eq. 2.11 above becomes
tfz n—3
h=—4p— . I-10.5.1
Vi, n(p’ ﬁ—l) (2.120r )
where L Q)
G 2
f= 154 ’\‘\’

Remark 30 If preportionate stratified sampling is used and alBo the
fx’s arc the same for oMl strata, say f3, = f3, for all A, then Eq\ %, 11 above
becomes Ky

- 1 4
VB: - ﬁ"‘ — 1 HM,.‘\S.H .mz\\ (2113)
T n NS v

\Y;
LN S

EAJA (Sﬁ N ,ﬁ
Vg" —

[} N(ZN‘;)

A
ENA‘S&
= NS*
We Ay write ;
Va:';?-}ﬂ:——n + Vi) (2.14 or 1-10,9.2)

Uiy,

and singe

N\

*3. Optimum allocgt:ﬁn to strata of a subsample for estimating the
variance of a straL\ed random sample (Vol. I, Ch. i0, Sec. 9). Supposc

that the orlolngkﬁample consists of a stmnﬁed random sample of # = zﬁk
Samplmg umts with variance 8% = ZN}';_(S 3y, where S} is given b)’

Eq. '5 Suppose also that we wish to estimate the variance 8%, from a

%ubsampie n = ?nk, of the original sample.

To prove: The vanance of the estimated variance, g%, will be close to

the minimum when the subsample is allocated as Tollows:

NSV M (3.1 ot 1-10.9.3)
(N,LSQ' B — 1)

v

1, ==

T ——— e
* May be deferred.
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where

LN L(a i — )
Si- ma N e (3.2)

Py m—1

and from Eq 2.9

5 n,— 3
-
ENE[TR ) —1
oh, = > R\ ——} 5} (3.3)
PR Hy,
5 N
NY (B
=2~ (‘f——) 83, for my, reusonylity turse
AT Hy K
e O 64
and N\
=" ) 3-2)

Proof. To obtain the V'llues of u), which mm\}m‘lzc the variance (Eq. 3.4)

subject to the condition that Zf?n ==, we' b&t up the Lagrangian £

LN (B, — ;
Fest (’ )s' 2 (zn;,_u*)
" Hh *'Iiw:
A

Then the solution to the L + P equ'mons AF)du;, = O and er, in

El

L 4+ 1 unknowns (the .’Iﬂ\.h‘ld 2) will yield #;, us given in Eq 3.1. The
sofution is straightforward and follows the same steps used in Sce. 9, Ch. 5.
4. The rcl—v:.arié’ilﬁé of an estimated variance based on random group
totals (Vol. I,t(;h'f 10, Eq. 16.3). To prove: a. An unbiased estimate ol the
populationatiance based on a simple random sample of » units drawn
withour(feplacement from a population of & units may be obtained by
subdifiding the n == r& units in the sample into ¢ random groups of & units
eat;:h.and computing 5%, based on the variance in the ¢ random group totals,
2 _. g
where

= S, — FPkE— 1) @1

2

x,; = the value of the ith observation in the sample in the gth group
&
%, = 2, is the total value of the characteristic for the &

observations in the gth group
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4
F o= Su lt
i

N
ng — Z(Xl - X)2
N—1

and where Y, is thc value for the ith unit in the population and

X=XX,/N. '
b. The rel-variance of s is given by Eq. 4.2 whenever the sampling is

with replacement or the sampling is without replacement and the numbex ™

of units ir the population is large relative to the number in the s&m;{le
\\ K4

t—3
(5& l) (4201‘,‘[ _10.16. 3
where ; \ . \:..‘:\ o}
=" +3 el N\ “3)
;\4 k ) x:\\#'
g O
=5 Ko
N N R "3:}’ x -
Sx—Xr o8, Sx-D
My = “T_,“ aﬂfi o = N
, N\
Proof.  a. Consider first E@E:\
N1 (
Esps Exl— tE£’2) @.4)
AT k- 1) 2
P\ \ )
Since x, is a totals ﬁ'ofn a simple random sampie of & units (from Sec. 2,
Ch, 4}, \“, )
;:;\ Ex? = k2X2 4 kTSZ

and s@ & = k¥, where & = Zx,fn,
N--nik*
e R

it

It follows, by substituting these results in 4.4, thal

Est = 82 (4.5)
Similarly, if the sampling had been with replacement, we would have
' (4.6

Es; = o®
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Ch. 10
b. Consider next V% when the sampling has been done with replace-
ment. By definition,
o Uz S:; n (’E";-.:}:
Vi, = fo o s 4.7)
(Esiy {Esiy
We may also write s} as
t
&, — 2
= kt——— 4.8
E t—1 )
where O
Ty = :‘\’
—'—- = xa ) '\ " 3
. O
ol n X, :N:“ :
—_— = == — y \ ¢
NS
Make the following transformation \\\"
N
yal_‘Y_zox 4D
{/
- 2 = i‘l:;"m'
3"9‘ - X == zn‘ ‘w"' ‘E
oY g
* _l::;t 7= %‘ _{_
‘Then AL
2 k":\{\\- =33 4.9
Sk::t "I’z{.g_g)“ ()
N\ 7
and o\
¢ 2 t AL
{ &14()? (f— 1)2 I:Z(zq_ )_.J
7\V 7
"\‘m/. Ro ¢ 2 '
O —_— [(3‘52) — B3+ tgz'“‘] (4.10)
s?“‘ ) (I_ 1) I
@‘ﬁrst term in Eq. 4.10 becomes
£ N2 t
E( ) = Ezﬂ EY 523

& gk 2
' (Zzyi) t (Zzgx‘) (sz)
= F i -+ EZ i i
% -k a7t k k
which by Sec. 5, Ch. 4

| 3k~ 1)04] o" AiD
[ka e (41,
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The szcond term in Eq. 4.10 becomes

sl

2 2
efi
. oAy
which by Eq. 4.11 above ~
a3k — ot o
=2 Lﬁ T D G
The third term in Eq. 4.10 becomes . O
Y. N
e L (S e (fa 03 )
t2 F r+h ,"‘:
which by Sec. 5, Ch. 4, O
Vf fauy . 3(k— 1 yo1] 4 }
-1 {, [k'“ 4 M= }r(; (4.13)
Combining Eq. 4.11, 4.12, and 4.13 mto“é“.le and simplifying, we obtain
¢ MDY E-2F3 (4.14)
Bi=pgt k" (¢— 1)

Substituting Eq. 4.6 and 4,144ib 4.7, we obtain

S g 3k—1) :us}
2 —_— - ——— — ——
V{“{T"‘:[k AT TR T

N U k—1) -3
\:...’h I ,;L: + i - t—1
A |

=™ 1—3

& sy

Exercise 4,1, By the procedure indicated in Sec. 2, extend V2, to a stratified
sampling case where random groups are set up in each stratum.

*5. The variance of the estimates of the components of the variance
in a two-stage sample design with 7 elementary unifs ]:I] the sample' fro.m
each first-stage umit in the sample, N elementary units in the popuiation in
each first-stage unit, and the sampling carried out with replacement at each
stage of sampling (or small sampling fractions) (Vol. I, Ch. 10, Sec. 6).

-_“_'__————_—
* May be deferred.
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a. To prove: The variance of an estimate of the between component of
the variance is

ym—3
o Hap™ % m_—l- 4(1,,0'1, 20 mi— 1 ) 4 e
S m Am— 1) mE@— Dm—1) ' ma
(5.1)
m e 5
where st = 262 f? is an unbiased estimate of

m—1 i O\

mon

M M - _ ‘t\t\
8k = o 22X XP T Sy — TP
h Ub__m

M—_1 M—1 > 7 )
M 4 '\.
> &
(Xi'— X b _ = o ;.\ Y
4y = z M ) ; Opg = E[(X, — X)e]y
D
;: A
(Xt) Xx}2 o \ ‘2: Z(x,{i - X:)g
e O 77

The proof is left to the reader. ¢

Hint: Let P
N\ —
“’:'.17,-, = X+ 6: —i Au
where \s_“\:
50 %, — X, and A,=uz,— %,
Then ,’\“’;"'
Sz Z(.’L' _"85} Z Z(x?:r _ ,1:!)2
b J\x 1 amin— 1)
A S
o\ T3 < N R Ay Ay
Q0= 256, HE - | 2000 234,
T om—1 m—1 mii— 1) mim— 1)
where
S, Sa, 3%,
d="—, A,="—, and A=-*—
m m
Now
" 0‘411'1'1! 3
[z(a,-— 5 2] # y
m—1 b m
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Also ' ' “ '

S6.- 9@~ 383, % Ol

m—1 T om mm—1)
and
mn - 6 ~ 12
~ g'A‘ &
E [Zaim_' Ej - - Efﬁiz'ﬁz - %5
mo m(m— 1) A mi(m—1) ,
N\
AyA . SO\
’: 1 i1 FL _ 20,:] :“g\\..".
mia— 1y maE— 1) KO
and RS
1] T2 257>
AN, ‘..,\\’
milm— 1} m(m— ]):ij\’\ >
b. The variance of an cstlmate of theX w\hm component of the
. variance is : O
1 N5 — 3
2 . P ] :
\Lxercises
5.1. Prove that “\:\
o m AR
, PO g o [mG3—20)—3
Ogt, = ————~7— + " — T
Y MR it m— 1
\¥ 2 2 .
O + 2 S | dom (g4
\*“; A(m — 1) ] HIR
where ;{\ m
s _ 2 — &P
O ¢ m— 1

Sho&fhat, when 7=1, Vi, ~ gk f(Est)? reduces to the rel-variance of s%,

H
where s* = 3 (x, — ©)*n, and its rel-variance is given by Eq. 5.1 of Ch. 4.
5.2. Show that the covariance of s and s3./7 is

490 3 2 20 " (i
O3, 8, 'ﬁ=E4_3‘_q%+ é““}‘ . (54}
mn mmn mn® mH
5.3. For 2 simple random sample of # elements show that
P4 = fhyw + 4EO itz + 6EO}ST + ty (5.5}

and
et = o} + 20d0d + ob (5.6)
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*6., Use of known stratum means and totals in estimating variances (Vol. ],
Ch. 10, Sec. 19). a. To prove: When the stratum means are known, an

unbiased estimate of S2, the average within-stratum variance for a pro-
2
portionate stratified random sample of # = >n, units, is
h
Ny

Z(I“- - X’ )2
) N L A N - A 1
i N & Nh _ 1 nh

>y

s (6.1 or 1-10.19.1)

. . QY
where n,, is the number of units selected from the Ath stratum, amd

‘E‘ 32 ’.\‘.\.
2NSE ;\'\ "
82 o= e 672 or 1-5.3.8)
N A0
where 8% is defined by Eq. 2.5. “\\

Proof. By Theorem 6, Ch. 3 (p. 49),
o 1Z N2 1 " ’\\': .

Es2 =— 35— — SEEh— X,

SN, N 7 Nh —1 ”n %x{ta’m h)
Since X, is known, the probability of :aﬁtaining (xp; — X,)* is the prob-

ability of obtaining x,;, namely, 1/Vy." Therefore,
a1 & .
Elays _",,Xﬁ)“ =N 2 X — Xn¥
4 Al

and

A .
w 1B N5 -
B — L S(X,— X,
.'::’ i N%Nh'—l%( h .'r'e,)
:‘l\'} [ o ,,
.“\x;.\". = } %NhSi = S;

b. Ta%‘*e: When the stratum totals are known, an unbiased estimate
of B¥jithe between-psu contribution to the variance for a multi-stage
stratified sampling design in which m, primary units are selected with
H‘eﬁlacement from the Ath stratum, is:

o 1 B rowmix,, L\
b‘v = m ;z ; Z P_ — Xh (63 or 1—10.19.2)
¢ Mot hi

where P, is the probability of selecting the ith primary unit from the 4th
stratum,

* May be deferred.
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X is the total of the X-characteristic in the ith psu of the Ath stratum,

I M Xhz‘ 2
Z ZPM (P_ - Xh)
i

- hoq
B% = 130 (6.4)
Proof. By Theorem 6, Ch. 3 (p. 49),
l i I A X 4
E})2 — E( 154 ) )
YT em iy, T \

Since X, is known, the probability of obtaining (i - X)\ is’ the
R
probability of obtaining X}, namely, P,,. Therefore, <‘~~;,

X )2 M (XJ } \
El—— X | = P et
(Pm' " %Pm P A
and : \\

1. Conﬁdence limits for the median angd other posmun measures® (Vol. |
Ch. 10, Sec. 18). Letx, and 2z be the: estlmated Ath and Bth percenules
of a distribution derived from a sampfe where A is less than 50 per cent
and B is greater than 50 per cent.“Let p be the percentage of items in the
sample which are less than 6,\the true median.

To prove: The x and g constitute confidence limits for 0 with the
following probability:y "\

B{(’a':"'<9 < xp) = Pr{d <p < B)

Proof. Let '\assume that a given population is arrayed by size. The
point & (theit\rue median} divides the population into two equal parts.t
Let us aasmne further that a sample is drawn from this population, and
by proper weighting of each sample item a reflection of the original
pogulation is obtained and ordered by size. This is illustrated graphically
by the cumulative frequency curves in Fig. 1. The solid line is the cumu-
lative frequency curve of the population; the dashed line represents the
cumulative frequency curve derived from a sample.

Now let us draw two arbitrary horizontal lines across the graph to
represent the limits 4 and B.  Then, since these curves are nondecreasing,
8 is within the limits 2 ; and x5 if and only if p is within the limits 4 and B.

* Proof developed by Ralph 8. Woodruff (4).
+ Note that this condition is not met where more than a negligible propertion
of the population has a value exactly equal to 0.
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Symbolically, this can be expressed as
Pr{x ;< 0 <zp) = Pr{d <p < B)*

Since it is often possible to make meaningful statements about probabilities
on the right-hand side of this equation, the limits on the left-hand side
constitute usable confidence limits for the median. For example, if
simple random sampling is used, the probability of p falling within the
limits A and B can be calculated by summing appropriate terms ol the
binomial distribution (either directly or by means of tables QP the
incomplete f# function). More generally, if large samples aregised (with
NS ¢

N,

100

S 3 88
1 T
N

o)
~
|

L8]
[ ]

N
[o=]

Ny
(=]
I

A

N
$

| |

Cumulative percentage frequency
\
7

s
!

hY
\
I

o
V

\‘ xl  xg

N\ Value of item
\ j Fig. 1

A,
any type af'probability sample design), the distribution of p will often be
near ngrmial and a usable estimate of o2 can frequently be derived from
the sample.t Tn this case we can obtain meaningful confidence limits for
N

2\

N For the application of this principle with simple random sampling, s¢e, for
example, “On Confidence Ranges for the Median and Other Expectation Distri-
butions for Population of Unknown Distribution Form,” by W, R. Thompson,
Annals Math. Star., 7 (1936), 122-128; “Order Statistics,” by 5. S. Wilks,
Bull. Amer. Math. Soc., 54 (1948}, No. 1, p. 14; and A. M. Mood, fnrroduction
to the Theory of Statistics, McGraw-Hill, 1950, pp. 388-389.

F Theoretically 62 should be the variance of the percentage of items less than
8, the true median. Since in practical problems ¢ is not known, the value
of of must be estimated as the variance of the percentage of sample itents
less than £, the median derived from the sample distribution. Where large
safmgles are used, the substitution of ' for § has little effect on the estimate
of o,
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the median by choosing our arbitrary limits A and B so that 4 = 50 per
cent minus Ko, and B =50 per cent plus Ko, (K being any positive
number).

The method can be applied directly to other position measures as well
as the median.
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CHAPTER 11

Regression Estimates, Double Sampling,
Sampling for Time Sertcs, and Q
Other Sampling Mcthods ..\"\:,‘

Ny

ol
7N
< %

DERIVATIONS, PROOFS, AND SOME EX”}I‘ENSIONS OF
THEORY FOR CH. 11 OF YOL. I*
o>

Note. Many of the developments prescatedhin this chapter can be applied
as variants or extensions of the methods a;rqa:fy introduced. Included among
the topics covered are alternative methods of estimation; double sampling
(often referred to as two-phase or multisphase sampling); techniques for sclec-
tion of sample units that intreduce negative correlations in the selections between
strata, and thus have the effect B extending the depth of stratification; an
approach for estimation of chacacteristics of each unit in a population from a
sample of such units; and ganipling for time series.

N
1. The difference qh regression estimates (Vol. I, Ch. 11, Eq. 2.1, 2.7,
22, 210). a, The difference estimate. To prove: The difference
estimate, Eq’”\l.‘l’, 1s an unbiased estimate of X, and its variance is given
by Eq. 1,.2e8¢
Progfes Let 2’ and ¥’ be random variables that are unbiased estimates

of Xand Y, and lct & be any arbitrary constant. Then the “difference
estimate™ of X is

\; gy =2 + kY —y) (1.1 or I-11.2.1)
Since " and % are unbiased estimates of X and Y,
Ex]=Fa' +-k(¥Y—Eyy=X

and hence the difference estimate is an unbiased estimate of X,

* Appropriate references to Vol. I are shown in parentheses after section
or subsection headings. The number following 1- after some equations gives
the chapter, section, and number of that particular equation in Vol. I,

230
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The variance of ] is
o} = E{z? 4 2ka’(Y — y) + (Y — ¢')%} — X2
= ay. + K20y — 2kp,,0,0, (12or1-11.2.7)

b. The regression estimate. To prove: The regression estimate, Eq. 1.4,
is a consistent estimate, and its variance is

o3 = ap(l— p},) (1.3)
'\

when @', ', and b are consistent estimates of X, ¥, and §, respectively.
The values of X, ¥, and B, defined below, can be estimated fromisample
designs described in this book, such as stratified sampling, clustés samplmg,
and multi-stage sampling. In each case, one should amxestfgate the
precision of the approximation of Eq. 1.3.

Proof. Let "‘z\

ah =z + b(¥— y) (14 o0r I-11.22)
and let \%
By =+ AT y")

Sincea’, ¥, and b are consistent estlmates of X, ¥,and ,8 it follows from
Corollary 2, Theorem 20, Ch. 3, that'&} is a consistent estimate of X. To
obtain the variance of x, we can wnfe

xz ~\; -+ (5 Y —¥)
53 that
Ex, X)2 rk» 4+ 2E@ — XX Y~y — B
07 B Y —yY (1.5)

The varian “bffc is given by substituting f = p,..0,./o, for k in Eq. l 2
and is equ’fd

d 2, = 02(1 - ply) (1.6)
AN _
“Q"e%'e“”
L ey
Pxy Uz'ggf

If B(®; — X)?is to be approximated by of; = o3, the remainder term is
2E@) — XNY —y Wb~ B+ EG— Y —y')» (1.7)

and it remains to show that, for 2 sufficiently Earge sample size, these
terms are negligible compared to 63, Thus, if @’ is an estimate of the
total X from a simple random sample of size #, o2 is of the order I/n.
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By the incquality given on p. 56, Ch. 3,
E@y — XY =96 —6)
< [E(b— ARE@, — XY —y)T"
< [E(b — B FIERS — XYTHE(Y — o))
Since £, and ¥’ are arithmetic means, it follows that
E@®) — Xyt = 0(r2)

N
E(Y — ') = 0(~2)

B . - SO\
where 0(n~2) indicates that the term is of the order of 1/n* ind 50 that

(B — X = 0y AN
s a1 . My ,':"" ’
[ECY =y} == 00— ") &
Also, since b is a ratio estimate, we have
ANY;
Eb—pR o o% 2l
"(“_T@_ = g e 4 07T
I &y 6% Wy, o}
Since Nl
[Usz.s‘.l g:é'sugs’v
and AN
o, = 0(mH), o, = 00"
we have AN\
b= BP S t 5, o )2
———%Z | ==+ ]+ 0 = 0 1)
»62 \ Oxy Ui’ ¢
Thus
\“\ g Eb— 8P =01
and this a@]}fzsis would indicate that
O » . a
N\ E(@— X)(Y — y)(b— B is 00r™)

NS . . . :
However, since products and ratios of arithmetic means must bave integer
éfdérs, it follows that this term is at least of order »~2, and this term will
be small relative to of, for sufficiently large .

Also

Eb— BHY — 9 < [Eb— BE(Y — )"
= [0(n=)0(n2)]
= 0(r"?)
and we have the second term of the remainder (Eq. 1.7):

E(b— B¥Y — ') of order O{(n>)
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Then
ooy = 0% + 0(n2) _ (1.8)

and the entire remainder term will be small relative to of; for sufficiently
large n.

2. A consistent estimate of the regression coefficient, 8 (Vol, I, Ch. 11,
Eq. 2.6, 2.15, and 2.16). Let the regression coefficient of 2’ on y be
defined as follows:

Ey - XYy - 7) QO
= &
or for stratified sampling as: O
L R S
ES@— G- %) Y
B= I \ "s,\‘\.” 22)
E _,Z(yk — Iy \%

: oY . .
Then, a consistent estimate of # is given by the tatigrof consistent estimates
of the numerater and of the denormnator O0fBq. 2.1 or 2.2,

In the special case where W
’ 2 X
N B
P ey
x!&’;"
A - A
and p
) f\\ wm ¥,
QO > =M
\" yr _ P i
{ =
s m
& h
then O
x"\::' ?’E(XM 517') ( Y}oi y!)
AN\ L2 — &g T
..\§ Z i P?A‘i Pkf (2'3)
N 7 i, — 1)
is s\ﬁ\lﬁbiased and consistent. estimate of the numerator of Eq. 2.2, and
i Y 2
3 ()
R (2' 4)

i oy, — 1)

is an unbiased and consistent estimate of the denominator of Eq. 2.2
Therefore b is a consistent estimate of §, where

Eq. 24
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3. Variance and optimum alincation for double sampling with regression
estimates (Vol. I, Ch. 11, Eq. 3.1-3.5). Te prove: Suppose that an
estimate of X is wanted from a sample, that 7 is the average value of
some related characteristic obtained at low unit costs from a large sample
of size n selected by simple random sampling, and that &’ is the sample
average of the X’s obtained from a smaller sample of size #’, also obtained
by simple random sampling, which is a subsample of the larger sample, of
size n, Similarly, % is the sample mean of the ¥’s for this same subsample.
Then an estimate of X, using the regression estimate with simple rgndom
sampling, is N

¥ =3 4 b — ) (3.01.\o‘r~i>| 1.3.1)

where b is the estimate of 8, the coefficient of regressioon,”{?f'x ony, ie.,

3(33:‘ — )Yy, —F') ~\ '

b= ' (320r1-11.3.2)

v, — 7 \
Ay J)‘x,’\\,

a. The variance. The variance of £ isgiven approximately by
S SOy
o2 = =X {1 —ap2 (1 - 1)] (3.3 or I-11.3.3)
1 o v H

where p is the coefficient of corfelation between X;and Y.
Proof. By Sec. 1, Ch. AI} for sufficiently large »', the variance of
estimate 3.1 is given gppx@hmatdy by the variance of

\

¢ F =3+ py—7) (3.4
The expectec'l’{‘fal'ue of estimate 3.4 is
o\ _
\:\ E{E(;E”[[n])} = X (3.5)

and he:’;{::a\estimate 3.4 is unbiased.
The variance of estimate 3.4 is derived from Theorem 15 of Ch. 3
(‘Q' 05), which, as applied to this problem, states that

2 2 2
03 = b iap T E0iin) (3.6

The variance of Z” is equal to the variance of the expected value of Z”
for a fixed sample of # units plus the expected value of the conditional
variance of Z” for a fixed sample of # units. The first term on the right-
hand side of Eq. 3.6 is the variance of £ = E(&"|{n]) and is, assuming
sampling with replacement,

5%

G?'i‘(:?‘![n]) =, ) (3.7
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The second term of Eq. 3.6 is

. +
s _n—a . , :
ng"l[n] =£ ! (32; + A% — 265 xv)

_kr— " 2, gegre
(S B8 2 )
n—u
— S201 — 2
841 - ) 69
Then Eqg. 3.6 becomes N .
2 S‘%'[l 2(1 ”)} '(\"'\33
Opw — —— — - — N s
E ﬁ’ - I R . \J ( )

%
s
7%

which is approximately equal to the variance of Bq. 3.1,/

b. Optimum allocation for a simple cost function. Assbme a simple cost
function: - f :
C=Cin+ Gt (39)

where C) is the unit cost of including an eiefﬁ}n‘t in the large sample, C,
is the unit cost of including an efement jrithe small sample, and C is the
total cost, varying with the number. 8fielements in the sample; C, is
assumed to be considerably smallétdthan C, for the design to have
practical significance. Ny

To prove: The optimum palies of » and »” such that the variance,
Ea. 3.3, is minimized subjeg't\to the fixed cost, C, ate:

\\... c

opt. 72 = s
.u,:‘ I—-— pz Cl
N G+ € J =
g ! ? Joal 8

(3.10 or I-11.3.4)

and \\ S

. N 2

apt. nf:,“/l £ G @Al or I-11.3.5)
Ny PG

~O
Peoof. Define the Lagrangian function:
S n' ,
Fn,n', 2} = —f [ 1— p? (1 —;)] 4 MCyn + G’ — )

An expression for # in terms of v/7 is obtained from setting oFfon = O,
and an expression for #' in terms of V7. from 3Ffon’ = 0. Substituting
these expressions for » and »’ in Eq. 3.9 yields the expression for v
independent of # and #’. From this it follows that # and »” are given by
Eq. 3.10 and 3.11.
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4, Condition for cost and variance of single and double sampling designs
to be equivalent (Vol. I, Ch. 11, Eq. 3.6). To prove: The optimum
double sampling design with the regression estimate will have the same
cost and variance as for a single (simple random) sample design with a
simple unbiased estimate when

. _8GG
N ToNENGRT

Proof. The variance of the double sampling design having the mini{mm
variance subject to a fixed cost, C, is expressed by substituting the opimum
values of # and »" from Eq. 3.10 and 3.11 into the expressidnyfor the
variance, Eq. 3.3.  Under these conditions 3.3 becomes: ()"~

(4.1 or 1-11.3.6)

2 ¥

iy qg P —__""',_' rf‘
0% fopt) = == [pV'Cy + VI = 0K (4.2)
AN
where the cost function is presumed to be

INTY — o C
C=Cn+ Co' = Cyn + C}g{j P (4.3)

L &*

The variance of a single (simple raqdém) sample of, say, m unils is

S0 5%
= = (4.4)
- Hig]

The cost of such a single samiple is assumed to be

¢\
LAY C=Cpm (4.5)
From Eq. 4.4 and 45} we have

AN

a\J 2 o A 4.6
' .\.:'\ L C C2 ( )
We havqrb\i! to find the condition under which the variances 4.2 and 4.6
are eqadl ‘when their total costs 4.3 and 4.5 are equal. It follows that
the Yriances will be equal with equal total costs when Eq. 4.1 holds.
IRwe require now that only the costs of these two designs be the same
and determine the condition for which the optimum double sampling

design has a smaller variance than the single sample, we have from
Eq. 4.2 and 4.6

S5 8% —
of — oz == G S VO + VI pGE > 0
It follows that this inequality holds for

4C. C
2 =, 12
PG F op
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Therefore, for values of p that satisfy this inequality, the double samphng
design shows a gain over the single sampling design.

5. Variance and optimum allocation for double sampling with stratifica-
tion (Vol. T, Ch. 11, Eq. 3.8, 3.9, 3.11-3.16).. It is desired to estimate a
total characteristic, X, from a population of N units, where N, of these
units have a particular characteristic, Z, and the remaining Nz =N— N,
units have the characteristic W (i.e., they are non-Z’s), and it is assumed
that stratification into the Z and W groups would be advantageous.
(For example, the units might be farms or business establishments, ang
the characteristic Z might apply to those establishments larger thanGome
specified size; or the distinction between the Z°s and H’s might e that
the Z’s responded to a mailed questionnaire within a sPemﬁed penod of
time, and the W’s did not, etc.)

Using a double sampling approach, an initial large\s‘mple random
sample of »# units is drawn from the population of\ ¥ In the » units,
n are found to possess attribute Z, and from the remammg fy, UMits
having attribute ¥ a simple random subsamp(&of 7, units is selected.
The total sample size is n, + ns. N

a. The estimate. To prove: Ifx; is the aggregate of a characteristic for
tite #; units in the sample with attribute: Piind #, for the »j, units ultimately
incinded in the sample with attnbuze W then an unbiased estimate of Xis

k
- — -—5— = &3
Ay
where f == nfN is the sam\h’ﬁg fraction for the initial large sample of units,

and k == ny/ny is the rec:procal of the subsampling fraction.
Proof. Estung@ -1 may also be written

(5.1 or I-11. 139)

\‘ N f;_»
’\ = zmlti _; Zsz'
wheze & represcnts the characteristic for the ith-unit in the sample with
atth@ute Z, and ,, for the ith unit in the subsample with attribute W.
The conditional expected value of the estimate 5.1 for a fixed sample
size of #y units from a fixed set of 72, units is :

m ‘—"is
E{D.T’|H, Hé) = “'th‘ + - me
: n LK

¥ 52

=2
O

:
i

where X represents the characteristic in the ith unit in the initial sample
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regardiess of whether it has attribute Z or . The expected value of
Eq. 3.2 s E{E@\n, o)) = Ex' == X

and estimate 5.1 is therefore unbiased.
b. Variance. To prove: The variance of cstimate 5.1 is given by

LY e N s (53 0r 1-1139)
Nn n
where N\
S(X;— Xy )
R O
N—1
with A\ 3
N &
3K >
=i \
N D
and R
N,
2 Xy — KP N
S & -
i Nz'“.'k"‘
with N
.
>

Proof. The va.rLance Eq. 5.3, is derived by use of Theorem 15 of
Ch. 3 (p. 65), Whlch as applied to this problem, states

\ ’ 02 = ob(x JE T + EU:: g, 'y (5 4}

the Vﬂﬂaﬂce of 2’ is equal to the variance of the expected value of 2’ for
a ﬁx?:d ‘number, 73, of units from a fixed sample of »n, units havmg attribute
\"IW ‘pius the expected value of the conditional variance of ' for a fixed
umber, 15, of units from a fixed sample of n, units having attribute ¥

The first term on the right of Eq. 5.4 is merely the variance of estimate
3.2, which is
A2 N—n

Nn

The conditional variance of 5.1 for a fixed number, n;, of units from a
fixed set of », units having W is

82 (5.5)

Z(ﬂﬂ :
t'}i’!n,, 'y n (;,{fz 1) 2__ ! (56)
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where
Zx?..'

Ho

Iy, =
The expected value of Eq. 5.6 for a fixed number, ny, of W units is

ndk— 1) ,
"5 (5.7
7
There is still the condition on formula 5.7, however, that it is the varjaﬁce
for a fixed sample size of ny, so that the expected value of 5.7, whigh-is
e\

the second term ou the right of Eq. 5.4, is O
. k—1 A3
EU;'hl,,n'. =T %NZSE m'\'\:
N a)
= = (k — NG (5.8)
From Eq. 5.4, 5.5, and 5.8, we have the varidnce of estimate 5.1 as given
in Eq. 5.3. R\
e. Optimum allocation of sample. Sizes for minimum cost subject to a
fixed variance. N\
(I) The following simple co\s"t relationship is assumed:
{e Cyt + Cytiy + Coty (5.9 or 1-11.3.11)

where C is the total o3t of the survey less any fixed overhead costs that
do not vir¥Avith the allocation of the sample.
Cyis thgixin\f cost of selecting and examining a unit included in the
Iz{rﬁs’%’amplc and determining whether it is included at the full
gte or not. '
N - . : ;
~C] is the additional cost per unit for the units that are included at
the full large sample rate but not in the subsample.
C, is the additional cost per unit of the subsampled units actually
included in the subsample.

Let us now determine the optimum allocation for a fixed error and
minimum expected cost. The cxpected cost is given by the expected value
of Eq. 5.9, i.e.,

C.P,
EC=mn (CU + CiPy + -i*)

where P, is the proportion of all units that have attribute Z; Ppp=1-"Pr
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If we specify that the standard error of estimate 5.1 be equal to ¢, the
values of » and & which minimize the expeeted cost are

S“
n = { Lt (= DR (510 0r1-1132)

S — pPLSE T
k= I (5.1 or [-11.3.13)
PS: G b (GofPY)

where

- N&®
R (5120([;13]4)
8 @IN) S
is the size of sample that would be required to achieve €ic specified
accuracy with a simple random sample. N\
This is seen by constructing the function
w7

C"JP»
Fn, k, 2y =n [CO + P + -—~‘—-"]
k AN

N—n &7 .
42 [N'-’ = 4 §{$ :*}E (h — 1);\’25;5_&1

Setting oF/on and 3F/dk equal tog zcro and eliminating 4 and », the

expression 5.11 for & follows. An expressmn for n in terms of £ follows

from setting 2FfdA = 0, This expression is easily shown to be Eq. 5.10,
where the value of 7, givepdn Eq. 5.12, satisfies the relationship

‘ L\ NE E__.:i’ RE (5.13)
O Ni :
Exercise 5.1, As\sume that we have a population consisting of L strata with
M, ﬁrst-stage u'ﬁsts in the Ath stratum, and N, second-stage units in the #ith
first-stage mt "Assume that a simple random sample of a, first-stage units
is selected feom the A, units in the Ath stratum, and n,, second-stage units are
selectad! Jﬁom the Aith first-stage unit in the sample, Assume further that

" H . - . . - .
‘h‘?}-‘ «-ﬁ. i.e., 2 uniform sampling fraction is used in the Ath stratum, and
R

that

My _ ERy
= =
Ny N,
where
T)ﬁ
- Hy;
iy, = =1
iy
and
g M
- Nj : o
N, = M”, and N, = 2N,
H
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LE& . o om .

an- ==n
[}

the total number of second-stage units in the sample, represent the initial sample -
of a double sampling design. Assnme that »; of the » units in the sample are
from class 1, i.e., have some specified characteristic (such as being large farms
or large stores or respondents to a mailed questionnaire) and are retained in
the sample, and that the remaining # — n, == n, cases in the initial sample are
inclass 2, i.e., do not have the specified characteristic, and that we draw a simple
random sample of 1 in & {rom those remaining #, cases, O

Now, in the #th stratum, let (dropping the subscript /) A
¢\
1 m % Eomuy ) A\
# == X D2+ T2 2 Xy >
fF55 575 ~\
N
where xy,; = Xy if the ijth selection is 2 member of class 1, :
= { otherwise. ) NN
Zgi; = Xy if the jjth selection is a member of class'2,
== 0 othetwise. (N

n; is the number of elements in the il ﬁr’sﬁst‘age unit in the sample,

ny; is the number of elements subsa}r;pled from the »,; eletnents in class

. i .
2, with ang = #fa. : LR .
c .

Ny, is the number of elementsin class 2 in the ith first-stage unit.

Show that . N\ -
' A= B, o1 + Okein, 2p
. where the first term of ¢haright-hand expression is the expectation of the condi-
tional variance of «'{for a fixed set of m first-stage units and a fixed set of »,
observations in theuth sample first-stage unit and is equal to

QY Mk—1,1 '
B o= R BT L ESNL A
',‘\ Tz, 2] . f ?: ai¥i,
where 0% :
g ) m Ny 2
\ ) 22 Xy
I T |
m N Kot ™,
2, Ny
Az 1 ] ¥
X 7T e
ZNW 1

and the second term of the right-hand expression is the variance of the condi-
tionat expected value of 2’ for a fixed set of »r first-stage units and a fixed set
of n, observations in the /th sample first-stage unit and is equal to '

M— 1 o N — E (o
0BG, 2 = M” M Si + N NmEr ™"
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where
A

(X — X
] —
Sh="r o
and
. 1 ¥ N N -
Sz, = N% N, — 1 JZ(X.-;— X9

where X; is the value of X for the jth element in the ith first-stage unjt\, and
v

N

Xy = X, is the value of X for the ith first-stage unit,
3

19 . \\
ZXU' et QO
) : “ X; M
%=1, and K- 2
X N an M A 3
(O

*6. Estimate and variance of Latin-square design’/(Vol. I, Ch. 11, Eq.
4.2-4.8).* Suppose that a population consigting of M = L*Af units is
classified into L “columns” of LAf units g{@h, and that each column is
classified into L “rows™ of Af units eachy\Dct the L? parts into which the
whole population is thus classified be’ ealled “cells,” so that each cell
consists of A units. Select a celNat random from the first column.
From the second column select ‘a'.t‘fﬁndom any celi except that in the row
selected from the first colump. ““Continue in this way, selecting at random
in the rth column a cell frdm any of the L — 7 - 1 rows not selected for
columns 1, 2, - - +, (r~4)r In each selected cell, choose at random one
of the A7 units. Therewvill then be m = L units in the sample.

Let z,,; be thevalbie of the ith unit selected from the cell in the ath

row in column;b,i‘ahd consider the estimate of the tetal
0 N
.”\‘.

\( o 1

1211
= Ty =& . 6.1 or [-11.4.1)
. FEETeTy (
w,hefﬁéf: m{M is the sampling fraction, and = is the aggregate value of
B.gharacteristic for the units in the sample.

To prove: z'is an unbiased estimate of

o
&
Q'«

L LA
= Z %: ZXabi
and the variance of 2’ is
~a
ok = I (6% — 6} — &%) + Jie (6.2 0r1-11.4.3)
m—1 m

* This result is due to Jerome Cornfield and W. Duane Evans,
* May be deferred.,
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where
L
= L* Z 2 Xy — X = Lot
P
—ip L
6f =L*3(X,. —~ X )2 = Lis?
. L
s = L3 5(X., — X)* = Lo}
P)
- O
R _ L L . _
G‘w = L2M 2 Z (Xabn' - Xab)2 = L4M20:2.‘.‘ ot\“‘\.
& b % o\
with O
i = s
Xab = ZXabi’ Xap b;M X z abs X\ X fL
: »\\
L &:\
b_EXabs Xb'_X']rL X= ZX TZX
i ] '\\./
and \x\
X = X/L? \S
Proof. (a) Since \f = LA, >
FARY L*.:‘t"“ _ L 11
Ex' = LME 2 3 3%, = LM > Y SEx,,
PR o b i
USRS N A
AR i
DN
{?J 22X =X
_ A \) e b i
Thus, &’ 15 anxﬁntfased estimate of X,
by We n\w ‘consider the variance of 2’, We may write
(6.3)

< o = Edp, + Ol

W, eﬂ‘x |c denotes the conditional variance of «’ for a fixed selection of
celly’ and E(z'|c} denotes the conditional expectation of x” for a fixed

selection of cells.
We frst note that

1 1
E(x’]c):LMZEEZ @anle)
L1 ,iz
:LMaZ%EiXm
L1
_:LZ%XM
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where X, denotes the population total for the cell selected in the ath
column,
To evaluate o}, ., we write

L1 2
B — Ex) — E (LS 3K — X)
w b
Lo ) _
— DE (z S, - xe (6.4)
a b

Now consider

()=o) 5 () (3] 6

L1E L 1 "‘: »
=5 — X; _+ N
%L % Zf‘ L(L‘— l) (erf
L]k L
= E %: ab + 2 L(L l) l: X}N’(r:b) (ZXrb) o %.‘kﬂhch:l
[ aFe — 7]
125 T ff I
==35X — Y ,, — XX,
Ly % o+ L(L,'.-Csl)a,r.c( Ke :2 o E')
1 L IX \'1 L s L
— X2
£33y | (3%) - 3]
."\
<O 1 n(h N Lo,
p — S X,
RONNES =R A
'.\}
,'\~ 1 Li , L (‘:'_ - ) H',) 13X
)¢ I 2 2 6.5
O R Ry L PRSP 2] Rl

and Eq’t\ﬁ 4 becomes
"\
L4 z LX* - Lyt Lx
o= | (F3 - o) - (55 -2 - (57 7))

14 . : '
=777 {0 — 6] — 0B) (6.6)

where of is the variance among the cell totals.
o3 is the variance among the means per cell from the columns.

o is the variance among the means per cell from the rows.

Now consider
o1 = Ela’ — E@|o|c} €7
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Sec. 7

For a sample of one unit per cell
_ L1
ok, = IAME 3, Zbaib
[

where
5 1 # -
Oap = 'ﬁ ‘Z(Xabi — X))

and is the variance within the cell selected in the ath column. Now
O\

L 1 _
Ed, = L33 SE o,
¢ B . N .
_ L1L, R\
= [27f% % I %aab A \/ (6.8)
Combining these results into Eq. 6.3, we have \: ’
1 2 AN
g = L* [ —3 (o2 — o} — d3) —|—\\EM‘303]
where RS
RN
=32, (6.9 or I-11.47)

is the average variance within cells. S
Tt therefore follows from the déftnitions of m, &% &2, &3 given above that
&
2 (6.2)

"\:)‘f—'l (62— — )+~
It should be nofed that this approach easily generalizes to other

¢

experimental deSighs.
*7, The ‘optimum allocation of sample and the optimum weights for

estima!.ipé\a ratio from a stratified sample (Vol. I, Ch, 11, Sec. 6). To
divided into two strata and let

proyéxsConsider a population
N r= wlai,l + wg“_’_? (7.1
Y Ys
where
. . N T , N ity
%=Jﬁﬂ%:§ﬁs

Hy 4

are estimated aggregates for stratum 1, and
’ N i !
Xy = 2>, B
Ny i

Ny ¥
g %y{

* * May be deferred.
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are estimated aggregates for stratum II, and are unbiased cstimotes of
X1, Yy, Xo, and Yy, respectively; the ny constitute a simple random sample
from the N, elements of stratum I, the n, elements constitute » simple
random sample from the N, elements of stratum II, and the selections are
made independently from the two strata. Also, wy and w, are weights to be
applied to the stratum estimates, where w, + w, == 1. Then

N, — Mo m g, .
E(r— R = w2 g2y g0 2 nzSE—i—(RI——Rz)“(lvi } (72

Ny Ny
where Oy
X, X, £\
RI —_ 3;:- and R2 B }"" (‘..}""

and D

Y, ( Y) X\

— R 1 — R,=R=S

y et Y \Y

o
8f = R(Vix + Vig £V ixy) {7.3)
Sj— R(VE\ "f" V)}._ZV2\I) (?‘4}

and Viy, Viy, and V¢ are the n:L V'll']EmCCS and covariance in the first
stratum of the X,; and Y7, and the terms are similarly defined in the
second stratum, Moreovery the values of Wy, Wa, My, #p which minimize
estimate 7.1 subject to the cd’ndltlon thatw; + wy, = land »; 4 n, = nare
determined by \

(82— 8,8, + n [3}:} (R, — Ry)? — SE]

» K N, (7.5 or
R ST 1-11.6.3)
: — 82 R — R)_21_ _2]
AO7 S [( 1= Rt =
NYy , sy
PN { "\' Sz - 8182 + H (R - R2)2 - F
2

%
Ny =

TR (P e
(7.6 or I-11.6.4)

The optimum value of w, is obtained by subtracting w, in Eq. 7.5 from
1 and of n; by subtracting the value of n, in Eq. 7.6 from ».
Proof. For sufficiently large values of », and #,,

E(r — Ry* = E[Wi(r,— R)? + wi(r, — Ry
+ {w(Ry — R) -+ wo(R, — R* (7.7)
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~ where
x, '
ry = —,1 and Fy = :ii;
¥ Yo
By substituting the values for
N,—n
Er,—RP=-1 g
( i 1) N]_ﬂl 1
and
— N
By — R = T2 g
2”2 ’\:\’
where 8215 given by Fo. 7.3 and 82 bv E % ¥ ,i:.?Yl‘
118 given by Eg. 7.3 and 53 by Eq. 7.4, and? Ry %: 1= R,

for R and 1 — w, for w, in expression 7.7 above, we ob%’i‘;ﬁ’
§2 &2 Sé 7 S2
Flay, wy) = .:«‘2(—5-—-—1) L {1 — —i-ﬁ-—z)
() = o (S0 1) + 0= {22

0.'
S

s o

If we set dF/on, = 0 and F/dw, = O,gncf solve for n; and w,, we obtain
Eq. 7.5 and Eq. 7.6. N\

L EJ;ércise’J
7.1. Find the optimum valués‘of w; and w; for fixed vaiues of a,, n,. The
solution to this problem isx{pﬁropriate when the sample allocation is predeter-

mined. A
7.2, Show that as (R Ry) increases, and if the other terms are not sub-

stantially affected, the‘optimum value of w, approaches /Y.
7.3. Show that/)

2N\ a2 Sz
\ ¥ — g - 1 2
.~'§ E(R, ~ Ry) , + N,

if it is asgﬁfﬁed that the first stratum was ade up by drawing a random sample
of Mplestablishments from some very large population for which the ratio
X,/¥, = R, and in which the variance defined by Eq. 7.3 was equal to 5, and
if the second stratum was made up in an analogous manner from another
population in which X,/ ¥, = R and S} was the variance defined by Eq. 7.4.
7.4. Show that if .
RE

(R, — R = }\7; + N, (see Ex. 7.3)

85— 8,8, + H(PiSE— TS
W (opt.) = (Sy— Sp)

* From Vol. II, Ch. 5, Sec. 3.
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Under these conditions, and if the first stratum is made up of largc establish-
ments and the second stratum of small establishments, so that ¥, - ¥, /N| is
larger than Vs = YoM, show that w (opt} increases as ¥, increases relative
to P,, and, as a practical matter, for ¥, large enough rclatwc to ¥, (und for
the other terms constant), the optimum mlucs are then

Wy e 1, Wy ot 0

ny =, iy == 0,
See Vol. I, Ch, i1, Sec. 6, for a discussion of this case.

Q
8. Sampling on two occasions (Vol. [, Ch. 11, Sec. 7} ng.s’:dcr a

population of N units in existence over a period of time, whefe 'V is lurge
relative to the sizes of samples to be drawn or sampling witlrreplacoment
is assumed.* Suppose that on the first of two occasiopgia Simple random
sample of # units is selected. Retain a simple random sample of Pu of
these units for the second occasion, and supplemient these by a simple
random sample of Qu independently sclectedsunits, where £ 0 = 1.
Thus, the sccond sample is also of size a, '\I;ct

#' = mean per unit for the first period; | 07 the Pt units that are common
to the two samples. ™)

& = mean per unit for the ﬁrst~ ptnod for the O units that are in the
first sample only. \\

# = mean per unit for{the second period, for the Pn units that are
common to Ll\ti\*o samples,

7" == mean per ugli{ for the second period, for the Qr units that are in
the secgnd sample only.

a. An es:‘.i@??% of the mean. We wish to estimate ¥, the mean for the
second p@ed by a linear estimate of the form

§—=ar’ + bz + cif -+ df”
Qm‘.e Ei = Ei' = Fand Ej” == Ef’ = Y, we find that
Ej=(a+ DX} (c+dY
If we now require that ¥ be an unbiased estimate of ¥, we must have

a+6=0 c4-d=1
50 that
§ = a(@ — &) +cf + (- F &.1)

* N large relative to » (or sampling with replacement) is assumed for sim-
plicity and as an approximation, The results can be extended to the case where
nfN is large relative to 1 and the sampling is without replacement.
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The variance of 7 is

1 IVo% 26} (1—cPe® 2ac poo
o z(_._)_;f Coy (oo 2acpozoy
Y A U I e ()

where o% is the population variance of an individual observation in the
first period, o3 is the population variance in the second period, and p s
the correlation between the first and second periods for an observation
on the same sampling unit, A\
We wish to choose values of a and ¢ that minimize of. Equating™b
zero the derivatives of of with respect to a and ¢, it follows thaithe

optimum values are _ O
= P—PQ—' o (‘.}‘: I(8.3)
1 — ooy m’\\
P v
&= “1 R Q2P2 . :‘\\; (84)

7
W

. . . N\ .
Thus, the estimate with optimum values for# and ¢ may be written

— PPQ J_}’ —r = ody - - . Q(I — QP2J y
Gy = ——2— (7 - F) + e - s ¥ (85)
A T P R
and its variance is N
ANe 1
e S it (8.6 or I-11.7.3)

BT a1 e
Equating to zero the defivative of o, with respect to Q. we find that fo.r
a fixed sample sizg\the variance of 7, will have its minimum value if
we choose (N '
Y T_ 2 .
8 1—1—
N Q=" (57)
o

#
2 8
«d
NG

NOté}h’at, if 55 = oy, the estimate given by Eq. 8.5 is somewhat
simﬁiﬁed, but its variance is unchanged. Note, also, that an estimate
for the first occasion is given by Eq. 8.5, simply by interchanging Xs and
Y’s if the estimate for the first occasion can await a time until data for

both occasions are available. o _
b. Estimates of the change. One possible obvious estimate of the

change ¥ — Xis _
. A=PH —%)+ 0@ —&) 8.8)
whose variance is : :

gi = (U}Jr— a% — ZPPGXCTy') - (8.9

i
n
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If we consider the more general linear estimate of the change of the form
a®” + b¥ 4 ¢’ + d§”

subject to the condition that this provide an unbiased estimate of ¥ — X,
we find that we must take e +6=—1, ¢ +d = 1. Followins the
same procedure as for the estimate of the mean in the second period, we
find that the estimate that minimizes the variance is

QU —0p% . ., P N
Ay — (&) b T (§ &
= 0% (7 = o5 & — ) N\
L |-z I “?/)-AT (2.10)
In the special case that ¢, == o,, the estimate is gre:\ly simplified to the
form
A, = @ — %)+ —QSQ( Ny — ) (©.1)
1 - Q W
The variance of A, (Eq. 8.11) is ',5,':\
2 = A (8.12)

%~ AT Qp)

and its development is left as artéxercise.

Note that the estimate gf\change given by Eq. 8.10 is exactly the
estimate that would be obfmned if both X and ¥ were estimated from
Eq. 8.5 and the dlffcxgﬂ,ce ¥.. — &, were computed as the estimate of
Y— X

It is also to be, QOth that for p > 0 Eq. 6§.12 is 2 minimum for @ = 0,
ie., the varzanqﬁ-, ‘will be minimized if the units on both occasions are
identical and'pis positive.

c. Estinate of the sum of the means. By the same approach, we obtain
as thg‘:\.})jatimum estimate of ¥ + X the statistic

oY, _en- Qp)

v =0 @& + 7" 1

Q“(I'Jrs'f)

QQ‘; z[("’— )gfnu@”—s?')j—j

In the special case that o, = o,, the optimum estimate is again greatly
sirnplified, so that it may be written

+

_ = o Q(+p)
zw—1+Q( +IV+ T 0

The variance of z,, is readily obtained.

@+ 7
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Note that z,, = %, -+ #,, where §, is given by Eq. 8.5, and &, is given
by Eq. 8.5 with X’s and Y’s interchanged.

d. Joint estimates of change and the means. 1t has been seen that, if
the required timing of the survey estimates is such that the results from
the samples for both occasions can be used in preparing estimates for
each occasion, then the use of Eq. 8.5 to obtain estimates of the mean
for each occasion also results in an estimate of the sum and of the
difference that is the best linear estimate (i.e., smallest variance) that can
be made from the data from the two samples. Often, however, estimates®
must be made for the first occasion before sample results from the sécond
occasion are available; the initial estimate must be made from.\t'h\é" rst
sample only, and it may not be feasible to revise this initial ‘estimate.
Thus, suppose that we have estimated the mean on the firs Occasion as

PE + OF N

Suppose then that we wish to estimate both the Wiean on the second
occasion and the change from the first to the sécond occasion in such &
way that the estimated change is the diffe’réh}e between the estimated
means.  Let us denote the estimated mean.on the second occasion by 7
and the estimated change by A, and xéguire that these are to have the

-rr

forms: § = af —H?ﬂ? o+ df
A = eH P + gl + "
-‘where the coefficients arKQ{;‘nstants. We have already required that
. O a=g-s
If we require fuﬁt&egr’.\tﬁat Ej=Y,9and A may be written
NG P+ PE g T (o
NA e e+ D+ of + (-
It ppay B.';t.l'.lseflll to determine the constants e ar_ld ¢ 50 as to minimizra A
linehrFunction of the variances of 7 and A, Without loss of generality,

we may minimize o2 + wod
A ¥

where w is a specified positive number. The soluiion to this problem is
straightforward and yields

» | .
e= i ( Q2PQ-QP;,‘!*1)
. m |

i 0% w1
c= £ ( i 25—1-1)
1—- 0%t \w+ 1oy
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In the special case that o, = o, and w = 1 (i.c., we wish to minimize
ok + of), the estimates are thus

__PQP(2+QP) o any . D@ 20) (o _ g

I =0 ¢ )( ER R rayes )( )+ g
_PQR4+200— 0%, .., PQH Qp) 7 o

A= 50— 0%Y) (# )+2(I—-Q )(. yy1g—=

*Q, Sampling for a time series* (Vol. I, Ch. 11, Sec. 7). . &\ The
sample model. From a universe of size N, twelve independently selected
samples are chosen at random, each of size n. One of tf\lc‘ I\\LIVL is
enumerated in the first month of each calendar year, a_seéond in the
second month of each calendar ycar, a third in the thigd “month, and so
forth, the twelfth being enumerated in the twelfth mo\kh of euch calendar
year.

During the enumeration, each member of, the S'lmple reporls hoih
sales for the current month and also sales fm‘b}c month previous to the
current month.  After each cnumeration(a \51mple unbiased estimate x,
is made of the totat sales for the currcnt month, and from the same
enumeration a simple unbiased estidmate of total sales is also made for
the previous month, #— 1. Let &3 “and ¥,y respectively, represent these
estimates-as obtained on the uth.enumeratron

b. A composite estimate akthits van‘ance.

(1Y The estimate. An. e?nmate: x,, of the total sales for the larest
month, #, is given by \

:ZC;:: K("r::—l + Ty — Yuur) + Ko, 9.1}
where K -+ K, £)"with 0 < K <C 1.
The est@a{émay also be written as
= Kal}_y + (2, — Ky, ) (9.2)
In th&“special case where K =1, an estimate analogous to a chained
timrate results, while K = 0 makes the estimate the simple unbizsed
:%imate

(2) Variance of the monthly total, x;. To obtain this variance, we
shall first express the estimate for the latest month, 1, in terms of all the
simple unbiased estimates of totals which have been made.

Since, in general, '

ur

i'.ﬂf Kxﬂf + (xi _ K1 a_‘--1)
we can write, after mu]tlplymg both sides of this equation by K¥-%,
Ke=igl! = Kv=tal” | + K¥~Y(z; — Ky, ) (9.3)

* By Max A. Bershad, Bureau of the Census,
* May be deferred,
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Substituting 2; = &; — Ky,_,, and summing both sides of 9.3 from the
first month (7 = 1) through the latest month (7 = u), we have

L3 " M

Ve N Eu—d o 1 .

2 K= —_ZlK My 4 3 Ki iy
i= i=1

i=1
K= L e
= > K¥igf 1 5 Koz, .4
i=t i=1
Cancelling the similar terms on both sides of Eq. 9.4, o XN\
u L\
& = Ky + 5 K", IRNCE
: i=1 « W
But if we take, as the initial estimate {for the first monrhj in this time
series, 7 == Kxy + z; = x, Eq. 9.5 becomes \‘
" = Ku"lﬂ'} 4 ZK“ £ \ . (96)
l—l \\

In the following it is assumed that the variahees of the estimates #, and
y; are equal and are the same from month {8 month (i.e, 6% = af, = a2).
Similariy, it will be assumed that the monthly correlations between #; and
#;_1 are all equal to p. Remembcrmg that all the 2’s are independent
of onc another except those for“months which are a year apart (or
multiples of a year) and takmg :

0‘ \ «57 —{_ ‘Kﬂo‘yz i Kaxi, i
as

,\'".s = (1 — 2Kp + KHo? .7
Crz.—, 2 rK} —1zr + K g‘” w1y Hioa—ger Kgx Weotor Ko‘xi-un%-u
as ,\ N/
N\ = (1 — K)2pp02  for integral r (9.8)
"\ - _ 9
Wh&ﬂ\ v 63' s Ficger Uifr'.-n Miot-rar = Gﬁfr‘. Hio1-asr = O‘iﬁ_m, i P10z
and\/ | .
@ =t o9

we have from Eq. 9.6, ignoring the yearly correlations with 2,

" & —ipret12r—i
2 pu—1).2 , 2 22 ) 3 D S G (9.10)
{‘-zﬁ’ === K W o + (;‘zigzk —f— ZT%].Gz,zngriélé;%z
Substituting j = u — i, we have
EST gigin (9.41)
o2, = K¥u-Dg2 4. ot z K42 LA 2 KK (

_1(!
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Performing the indicated summations, and substituting Eq. 9.7 and 9.8
in 9.11, we have

. K"’(u."l}
0'3:., = F2u-1),2 2 4 G'x(l _ 2KP + KQ) _—K:z-—
1— K?(u—l—FIQrJ . .
+ 21— KPe2 > z K‘zfpmrml—:}g;—* (9.12)

When u is large and when terms involving the twelfth or higher powets'of

K can be ignored, Eq. 9.12 becomes O\

7\S
1—2Kp + K? W .

Ugf = GE_ (W '“'( ‘.;‘: (913}

To find the value of K that makes oZv @ minimunty ’t‘lﬁ derivative of 09

with respect to K is taken and set equal to zero\“ it is found that

K = 1;_\_.4 H\ - (9.1%)
R

minimizes o%.; and, substltutmg th’LS walue in 9.13, we find that at its
minimum

o '=“ 2 /1= 52 (3.15)
.A'u R

Denote as a;, the s 1&1 case of ' which is obtained when K = 1.
Then from Eq. 9 2 &

L D

T, =Xy + Xy, — Yuy (9.16)

‘ X

Since Eq. 9. l?r\does not apply when K is equal to 1, we must refer to
Eq.9.12. \Shlbstltutmﬁ‘ K = 1in Eq. 9.12 and remembering that the

2 &

”:. R - Eau=1) |
~O MmN T
\(e\:have :
% = o2l T 2(1 — p)u — 1)] ©.17)

In the special case of K = 0, K, = I, 2 becomes the simple unbiased
estimate x,, with variance o2. '

(3) Variance of the month-to-month change, ¥, — 2,,_;. From Eq. 9.6,
We may write
-1

AY . P - - 2(K__ l)xl + z, + 2 g(Ku i_ K’u—l—i) (9_18)

= K HK— 1), 42, + 3 (KV = K

j=i

9.19)

W—3i
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o = KM — K 4 o1 — 2Kp + K?) [1 + (1;1("{{)2 (uf}!@"]
1

r=1 1

L A—K) ,
T‘ oz Z K%, (9.20)
N
Equation 9.20 ignores yearly correlations involving z. Performing the
indicated summations, we have N
. 2 K2{u‘~*21(1
Oam = KM= — kY [— 2Kp + K2 [ ]
A zK ( )+Ux( P ) “\l—i-K
\
(1— K)? 12 2
LSt r + Qi — 24 1 21
XK % EK pizr [1 f ] (8.21)

O.’\
When u is large and when terms involyingithe twelfth or higher order of
K can be ignored, Eq. 9.21 becomes O

B 2Kp o+ Kﬁ]
A = — 9.22
s 202[ 1+ K 0:22)
Comparison with Eq. 9.{3;shows that
\‘ e = 21 — K)o (9.23)

N\

In the specnﬂ Jease where K =1, the variance of the difference
Xy — T, _ bccon{es on substitution in Eq. 9.21

X

\¢

'\\, o5 = 20%(1 — p) (9.23a)

in. The\special case where X = 0, the variance of the difference between
'\two independent smlple unbiased estimates becomes

as = 202

{4) Variance of the total of 12 months, " = 2 ;. Since by Eq. 9.6

{=u-11

w — Ru— lx + Z Kz“_J (963)
i=
) 12

11 _ peidt [—K®% u—12
2" =3 Zy—i (']_IL) B I— K K1 Z Zy— JK + — K K T
’ (9.24)

i=
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Then

1/ — KAHINE w-pf] _ KABNZ
=t [3 () B (e
ot [11—_!(1:]21{2(“—12)
7] — KIN f) - KD S
+ 2r§102'2—12r LZJ( 1— K )( 1— K ) (K lir_’!]}
4 u—2z—12r (1 — K12)2K5“11K5+12r—11:| | :\5 \\ ©.25)
=1z 1—K "\

al
<

The above ignores yearly correlations with the iditial value, x,. Per-
forming the indicated summations and substituting Eq. 9.7, 9.8, and 9.9
in 9.25, simplifying, and then dropping termginyK of the twelfth order or
higher, assuming u to be large, Eq. 9.25 pe'{fomcs

1+K2—2pK)( Nk ) K ]
»= o\ —a-rxe JVASY . (9.26
% O‘x[( (1— Ky 12’~ 1— K2 +2 | _ gafre {9.26)

In the special case of K = l‘aﬁ’d'u = 12, there are no yearly correlations,
and the variance of the annual total is derived by utilizing only the first
term in the cocflicient of ®*and the of term in Eq. 9.25.

After evaluating t gindeterminate forms, and, because x, is one of the
first 12 terms, suraming the coefficient of crf only through 10, we have

2_a

P/ LR
om=lor 3 (4 12+ 12%7,
& j=0

X _ 2 p)gi(u— DI2[2(12) — 1

o 5 + 12%%,
)
@ i 12— D[2(12) — 1
V = 12%5[1 - p ;Elg) ) ]} (9.27)
In the special case where K = 0
- 12—2 o
o2 =02 3 (1) + a2 = 12a2 = 122—é (9.28)
i=0

o

(5) Variance of the month-to-month-a-year-ago change, x,/ — %, 13-
From Eq. 9.5 or 9.6, we may write

11 u—2
Ty — Tygy = .anu—ij - Zl 2y KT (1 — K1) — o K711 — K9)
i= i=1z

(9.29)
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The variance of @] — x7/_,, is equal to

. K] — 1 2 u—g
03 [.EDKQ? + ( ren ) z Kz:] + & XZ{u 13)({(" )
G

13
2 Z Gz L 12T|V ZKB (KKIA I) Kivie

w2120 FRIZ | ;

+ ( - ) Kigi+ 2r] :

2, 5 030

Ignoring yeatly correlations with the initial value x,, performing the

mdlf‘atcd summations, dropping terms of high order of X, assunu{lg ]z;rge
and simplifying, we obtain

. L. 2 l.y“
ol = 02 T g2 + 20%e-12 |~ eV (9.31)
Substituting Eq. 9.7 and 9.8 in 9.31 yields v
‘ : K7
Gy = T 20— 20K+ KBEDpull — 000 032

For the bpecml case where K == 0, Eq. 9. 32 ‘Becomes
21 '“‘Pra)bz 9.33)
¢. An analogous composite esumcme and its variance. Analogous to the
¢omposite estimate \

@ =K@, v — v + K, 9.1)
is the estimate . \‘"' .
S\ = Kay ) — 4 Ky, (8.34)
N \ / y w—1

The variance of '\w can be written as
4% = &[@J‘f’ + o2 4 0k )+ A, v — T o™ Tl
:”\‘,; e {C’r ]
\M\}“' + 2KK2[0'z:.”_;, v T Tanza™ Ty xd 9.35)

The variance of ;) can be written as
Ex_ Ex NP oo .
Oy = ("'—“—Euy:_l u) KV, A Vo + V)
+ 2( Vx:’_l, T Va{:’.,,y,._. - V'r ym)]
+ (Ez,PKE[V ]
£z (Ex, P

o —E— ZKKQ{ Vz:;".x', T - Vrc.., x, V]‘J’u R J'u}
Eyu—l

(9.36)
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Now, if Ex", Ex_,, Ex,, and Ey,_, are approximately equal in level, and
if both sides of Eq. 9.36 are divided by the square of this leve!, the
resulting equation will be 9.35 with Vs in place of ¢'s.

For ready reference, the following table shows the cquation numbers
of the variances of estimates based on 77, which are given in this section,
and the corresponding equation numbers of the analogous rel-variances

frt

based on ), which are given in Vol. L.

Equation number of the variance O N
the specified estimate ¢
. £\
Estimate A
In Vol. I, based In thig velume,
on pTy basgdon ;.o
&
Monthly level 7.23 o 817
Annual level 7.25 9.27
Monthly change 7.27 x\\ 9.23a
Monthly level 7.30 £ © 9.13
Monthly change 7238 ) 5.22
Annual level T35 926
Month-a-year-ago change RN 2L 9.32

Remark 1. It will be readity-ndticed from Eq. 9.1 or 9.34 that the com-
" posite estimate, x,,, does not tvolve ¥, an unbiased estimate for the supe
month. The reason, of'c.'o\rse, is that the observations necessary to make
this estimate are obtairied during the (# + 1)st enumeration, at which time
observations for bath &, ., and ¥, are obtained simultaneously at very little
additionat cost fehebtaining ¥,,. Consequently, as a general rule, ¥, i5
obtained one mofth too late to be used in making the estimate zy; for the
uth month. 73
Hothé?:.in many citcumstances, it is possible to obtain the obscrvations
for y,dntime to be used for the uth estimate. {If one were willing to pay
for @btaining ¥, and z,., separately rather than together, this could always
mbpf\;ione.) When #, can be obtained in time, an improved estimate for
\n;lonthly levet over Eq. 9.1 is

8 = KUy — Yuorl + 2, + (1 - 5) Yo (9.37)
p P
where as before, y, as well as_:vuis an unbiased estimate of the sales for the
uth month and K = 1-—\/;&2_
The different variances o? x}7 can be derived by methods similar to those

used for af. The variance of the monthly level of sales, for example, is
smaller than that of x; and will be found to be

Ol = gii—{«/ T— gt (9.38)
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(These latter results coincide with the results given by H. D. Patterson in
“Sampling on Successive Occasions with Partial Replacement of Units,”
J. Roy. Stat. Soc., Series B, 12 (1950), 241-255, for 50 per cent overlapping
sample.)

Remark 2. If the sample model is altered so that the sample for any
month is independent of that for any other month {ie., the samples for
the months of one year are not repeated in subsequent years), then it can
be shown that the best linear unbiased estimate x; for month « (u being
large) of the form

eer

Ly = dgTy + A Fyq T STy g R ol T
- blyu—l - beyu—z ettt au—ly}.

Q!

is the composite estimate (3.1). Ko\
Similarly, the best linear unbiased estimate ;" for month u (x beingJarge)
of the form >

Xy =@, Ty @, e+ 7+, 40
+ biltu + ity + bt AN T Bty
is the composite estimate 9.37. ' ’
X'\\:
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CHAPTER 12

Response Errors in Surveys”

1. Role of nonsampling errors in detiermining survey design. A% di}cussed
in Ch. 2 of Vol. I, the nonsampling errors in a survey invol¢ing original
collection of data may often be a more serious problem than'the sampling
errors, Many of the limitations placed on our chorcc of sample désigns
arise out of response error rather than samplings ’GI’I‘OI’ Lonnd:,mtmns
(more precisely, arise from the joint consldeml‘wn of response and
sampling errors). As an example, one basicNimiitation imposed by the
Census Bureau in designing its Current Popu‘\kllion Survey {Case Study B
in Ch. 12 of Vol. 1) was that there be & ‘full-time supervisor for tach
primary sampling unit. This limitatidavhad a very substantial influence
upon the cost cquation for the GPS”and, in consequence, upon the
ultimate decision regarding the rulmber of psu s to be used. The decision
to have a full-time supervisor)f for each psu was not based on sampling
considerations but on the heli#f that close supervision of the interviewing
process would reduce nousampling errors, Fewer supervisors would, in
fact, have allowed thg"ySe of more psu’s and a reduction in the sampling
error.  Implicitlyssuch a decision assumed that the reduction in response
ercor achieved, by increased supervision outweighed any increases in

sampling erretywhich might result. Actually, very few data are available
 for detern{uhng whcther, in fact, decisions made on the nonsampling

featurgs\of survey design contribute to an improvement in the over-all
accuracy and value of a survey.

The paucity of dependable data on response errors is unquestionably

\thc greatest present obstacle to sound survey design. In survey after

survey, losses in sampling efficiency are taken on the basis of quite dubious
assumptions about the magnitudes and distributions of response errors.
Frequently, this point is obscured by the implicit (practically “uncon-
scious”) nature of survey designers’ assumptions regarding response error.

For a demonstration of the relationship between response and sampling
errors in survey design, the student is referred to an article,f “A Case

* This chapter represents a minor revision of a paper by Morris H. Hansen,
William N. Hurwitz, Eli §. Marks, and W. Parker Mauldin (9}.
t Marks, Mauldin, Nisselson (7).
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History in Survey Design: The Post-Enurneration Survey of the 1950
Census.” This article outlines th& numerous decisions which had to be
made and indicates the mixture of opinion and habit which had to be
relied on in making such important decisions as those on questionnaire
design, interviewer selection, length and type of interview, and training
and supervision of interviewers.

Although work on the measurement of response errors is relatively new,
several excellent analyses of sources and types of error are available. A
summary of the main sources of response errors is included in Ch. 2.0f
¥Yol. [. For more extensive discussions of this topic the student is referred
to papers by Deming (3), Marks and Mauldin (6), Marks, Mauldin, and
Misselson (7), and Ackoff and Pritzker (1). Mahalanobis (5yhas devel-
oped several important techniques for measuring and contrpli,iﬁ'g Tesponse
errors, particularly those arising from the interviewer. ) \

Most of this chapter is devoted to the explicit formulation of a mathe-
matical model for “response errors.”* An essentigl preliminary to such
a formulation is a determination of some of thevithportant requirements
that a mathematical model should meet indofder to muke it conform
reasonably well to actual survey conditions.\,One important feature of all
survey designs is the estimating pr'oce’d;li'e.' The processes of sampling,
data collection, coding, and tabulatiig introduce “errors” into survey
results. These errors may be aﬁ‘edtéd by the choice of an estimating
procedure. The present chaptéridoes not involve cS}nsic.leration of the
relationship between respons® etrors and choice of estimating procedures.

N\

2. Some requiremeqts\éh a mathematical model for response errors. 1:}
defining *‘error™ we start with an “ostimate” and a “value estimated.’
The “estimate” i$\$ome value determined from the survey data and, for
any particular Survey, is a definite number but_ varies from survey to
survey. - Ir%ﬂfiny surveys, the “value estimated” is not defined exphcn_tly,
and the problem of survey design is complicgted_ by vagueness rf.:gardmg
what,i§ being measured. However, if the aim 15 01:derly planning of a
sufi?éy rather than catch-as-catch-can methods, 1t essential that the
“value estimated” be defined precisely. o

Estimating an average or aggregate. A common type of “value
estimated’ in social surveys is one which is an average or an aggrcgatfa of
the values for the individual elements that make up the pOpu[E.Lt{OI‘L
Each element of the population has attached to it some value of a variable,
. * a5 used here includes both processing

hapter is oricnted primarily towards
is directly applicable to the

* In the broadest sense, *‘response error
ang data collection errors. The present chapte
data collection errors, but most of the discusston

control of processing errors.
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and we want to know the average or the aggregate for some or all these
“values. For the present, we shall consider only the case in which we are
estimating an average or aggregate for all the population c¢lements, or
an average or aggregate for a subgroup of the population, where the
members of the subgroup are identified as such without error.

In making a sample survey to estimaic a population agpregate or
average, we observe the values of some of the populition clun:,nts and
derive the estimate from these abserved values. Phe fact that we have
selected for observation some but not all the elements ordinarily infroduces
some error (sampling error). In addition, we frequently fmsl thit there
are response errors in the individual observations.  Thus, gvenil we were
to observe all the elements of the population (i.c., take & c€iishs), w= would
usuaily have an error in our estimate of lhl.. popmmuon average or
ageregate.

1t should be noted that errors of nonrespomc p|.ly a peculiar role.
Failure to secure a rcsponsc can be considecedh a2 sampling bias on the
assumption that the *nonresponse” clems}ns have a zero chance of
inclusion in a sample.  Failure to secues Nesponsc can also be considered
a response €1or, since any csumalmg‘proccdure involves assigning values
to the nonresponse clements eithendmplicitly or explicitly; e.g., estimating
the population average on the basis of the respondents alone is equivalent
to assigning the average of,pﬁzn‘responses a value equal to the cstimated
average. ~

The concept of * mdn?u’m! true values” In defining the “value to be
estimated” we shali{d#fine a true value for each of the individuals who
make up the pophlation and define the value to be estimated as an average
or aggregate, &P these individual true values. fThe individual true value
will be copeeived of as a characteristic of the individual quite independent
of the suruey conditions which affect the individual response. /Thus, age
is usyally defined as a time interval between two events, and this definition
is qultc independent of how we determine an individual’s age. It should

mbe remembered, however, that the number you get whea you ask a person
his age is not necessarily the true value for the age as defined. The
respondent may not know his “true” age. Sometimes he does not know
exactly the age of his wife or others for whom he may report. Even if
he does know the correct answer, he may misunderstand the question or
become confused in “recall,” or he may purposely give an incorrect
answer. n

Difficulties of ascertaining individual true values. - For some variables
(e-g., age or sex) a survey may get the true values for a large proportion of
the individuals. For other variables (e.g., income, brand preference, Or
.purchases) the true values may be obtained for a much smaller proportion

£
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of the population. A survey rarely pets the true vaiues for all the indi-
viduals regardless of the characteristic measured. Frequently, by a
sufficient expenditure of well-directed effort we can come much nearer to
the true value.  For example, in many countries the determination of age
could involve an examination of birth or baptismal certifications, or of
primary school records if no birth certificate exists, or of the first census
in which the individual was listed if neither bicth certificate nor primary
school record exists. Exhaustive record searches might give the true age
for most Individuals, although there would obviously be persons for
whom we could find no records and other individuals whose records were
inerror. The searches would, of course, be relatively expensive compared
with methods ordinarily used for determining age. \Y

Criteria for a definition of true value. There are many cases™in which
we might encounter tremendous difficulty in defining,&\"true” value
{entirely apart from the problem of determining the yalue once we have
defined it). What, for example, is a person’s “tryeltelligence,” “true
attitude toward revision of the Taft-Hartley Act,X b “true brand prefer-
ence for cigarettes”?  No definitive answer ca@c}iven to these questions.
We would suggest, however, three critesig for the definition of “true
value”: W W

) The true value must be unigueQ defined.
(2) The true value must be dgﬁiﬁ,éc’i in such manner that the purposes
of the survey are met. s o
(3) Where it is possible to'do so consistently with the first two c.nterla,
the true value sheuid be defined in terms of operations which can
actually be carhied"through (even tho‘yit might be difficult or
expensive to gerform the operations). -

M is possible.tblti'eﬁne true value in such manner that a survey .is subject
to no {or "’iéible) response ercor. It will be‘us?fui_ to consider such
deﬁnitions'l?]%“true value” in the light of the criteria listed 'ftl?ove. For
cxamp@,.’ﬁve could define a person’s “aftitude tfjward revision of” zze
TaftsHdrtley Act” as the alternative (in 2 set of six alternatives) that €
firstéetects after an accredited interviewer for the survey has asked him:
“What do you think of the Taft-Hartley AcF?” We ’could‘ deﬁneha
pecson’s birthplace as the answer recorded for him by an interviewer w ‘,S
is instructed to ask: “In what state or foreign country were you born?
These definitions meet {or, with a liitle expansion, can be mac;e to meet)
two of the three criteria: i.e., they are unique and are defined in terms of
opcratioﬁs which can be carried through. In mc:st cases, howe}:er, th}ey
will not be acceptable as “true values.” There might, pE["hapS, & sun;y
directors who would accept these definitions as the things they really
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want to measure, but most consumers of data are after something less
dependent on the particular interview conditions {even thouph results of
this type may be quite acceptable as approximations to the true value).
We may want to know how a person is likely to act toward a Congressman
who favored or opposed the Taft-Hartley Act, not what his casual reply
is to a rather vague question asked by a person whose motives and
sponsorship may generate a very complex reaction in the respondent.
We may want to know where a person was actually born, not what gets
recorded as his birthplace when the interviewer fails to ask the question
propcﬂy, or the respondent misunderstands the question, or the inter-
viewer misinterprets the answer, O\

Use of an expected response value to approximate the treecvatie.  In the
examples cited (and in many other cases) it may be }u].poss;blt. 10 define
a true value which meets all of the three criteria ligted. * Often, however,
we can define a value which meets the first two. crttcrltt and cun at least
define an operation whose “expected valhue will give a satisfactory
approximation to the true value. An example is a study donc by the
Bureau of the Census. After the 1950 Qensus of Population was com-
pleted by the large number of perso,m}el hired as enumerators, carefully
selected and highly trained intervic{vers recanvassed a sample of areas,
taking with them a record of the" engmal enumeration, looking carefuily
for persons missed in the or:grnal enumeration, and checking a sampie of
those persons who were gnumerated in the area to make sure that they
should have been enupigrated. The individuals who did the recanvass
were (in general) ¢w€lltrained, conscientious, and thoroughly familiar
with the rules that ‘prescribe which persons are to be enumerated in a
given enumeratjon district. The recanvass procedure did not, of course,
insure a perféct measurement for each individual, but it came nearer
to doing sq\han the procedure used originally.

Con‘s\\de interviewing each individual a large number of times under
exa.ctly the same conditions as the recanvass. This would yield a popula-
tmn of responses for ali individuals. We might draw a sample of
_individuals and then a sample of one of the possible responses from each
of the individuals in the sample. 1n practice, the conditions for subsequent
interviews might change because of the conditioning effect of earlier
interviews, but we can conceive of a set of independent recanvass inter-
views of a respondent and can regard the particular interview made on
the recanvass as a sample from this set. The expected value of an
estimate from this sample could be regarded as approximating the true
value. For a reasonably large set of such observations, the estimates

made from the recanvass would then be close to the “‘true population
count.”



Sec. 2 REQUIREMENTS ON MATHEMATICAL MODEL 283

The concept of an individual response error. The term individual
response error will be used here to denote the. difference between an
individual observation and the true value for the individual. For
example, the survey might want age as of last birthday as a difference in
whole years between date of birth and some specified date (say April [,
1950). If onc of the persons covered by the survey was born April I,
1897, but in 1950 is reported as 50 years old, the “individual response
etror” would be 3 years.

A less obvious case of response error is the failure to report an
individual in a census of population (or in a sample survey uset\to
estiriate total population). Here the “true” value (the value the(Cerisus
is trying to obtain) is 1 (I person), the value obtained for this(individual
is 0, and the response error is 1. Since the direction of <frer may be
important, it would be better to call this an error qf*—f-l. Similarly,
counting the same individual twice would be an ecror®f 1.

Variance and bias of response errars.  As here défined, an “individual
response” is the value obtained on a particqla{\,observafion (e.g., the
result obtained in a specified measurement érémterview by a specified
interviewer with a specified respondent apd\given time), Under shightly
different conditions, therefore, the valu'ea‘dﬂfhc individval response might
be different.  Thus, the individual response is influenced by the conditions
of the ohservation or interview og $sitten response.

The variability of individua{ réesponses has aften been trfeated in terms
of random variation. Altbqugh this approach has certain defects, we
shall adopt it for purppges\of the present analysis. Consequently, the
respense error of a payﬁ&ﬂar individual tn a given survey will ‘be thought
of as having an expebted value (the individual response blas.) z.md a
random componghief variation around that expected value. ~ Similarly,
the aggregate aaverage of a set of responses for df&"erc:t?t individuals wiil
have a respouse bias and a response variance which will F:.)e c'le_termmcd
by the r;spc}nse biases and variances for the popula.tiop F)f individuals. )

Essepiial conditions of a survey. To say that an individual response i3
a réndem variable is not, however, sufficient—we must define somewhgt
more:precisely the universe of individual TESPONSES involved. F(?r tth'ls
purpose we shall consider all responses: obta:[[lable und‘t;:r cer alf:
“essential’ conditions. In general, these conqmons are ‘Sp'SCIﬁEd
{either implicitly or explicitly) by the survey design. As z rr;m;num a
survey design must specify the subject of inquiry, the method of 0 ‘aéniﬁg
information (interview, mail inquiry, drrect. observation, ctf’:-): af;i =
method of recording the information (checking a box, s-,ntf:r{ng a IBUI‘:’
writing a description of the response, eic.). These specifications may be

general or specific,
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Particular surveys may invelve additional specifications, e.g., that the
survey be taken during a particular, period. There are also “essenual”
conditions of a survey which arise implicitly as necessary conseguences of
the explicitly specified conditions. For example, if we specify that a
survey of individual income received during 1949 be taken during April
1950, there is implicit in that specification a certain “recall” situation for
each respondent and a relationship of this “recall” situation to income-
tax-filing activities. If we also specify that responses be obtained by
interview, the fact that the survey is to be done in April 1950 implicitly
specifies a certain condition of the labor market and this may infpose
restrictions on the type of interviewer obtainable. The compensation
paid and training given to interviewers, the wording of qpe\s:t‘ions to be
asked, and the sponsorship of the survey are frequentipa-part of the
specified survey conditions, and these specifications détgrmine, in turn,
other conditions which will distinguish this responsg-situation from other
response situations.

* On the oiher hand, there are usnally present, at'the time of any response,

conditions which may affect that response bug Which are neither specified
survey conditions nor the direct consequenees of specified survey condi-
tions. If the survey design specifies theitypes of interviewers, the sponsor-
ship of the study, the compensatian, ¢ffered, and the hiring procedures
used, these specifications may make it certain that John Jones will be
interviewed by one of a certain class of individuals (e.g., persons over 30
years of age who have had®af*least 2 years of high school education and
some experience as intefyiewers for other surveys), but the exact identity
of the interviewer rday $till vary within the limits of the specified class.
The survey design{hidy instruct the interviewer to ask certain questions,
but it cannot insupe that the questions will always be asked in exactly the
same way, /Rhe survey design may specify a certain approach to.respond-
ents, bugAtwill not specify how that approach will be received by a
reSpor;giént who happens to be interrupted while she is doing the family
taunduy.
Jp general, the survey specifications (explicit or implicit) restrict the
range of response variation but by no means eliminate variation com-
pletely. Under some conditions the range of variation may be narrow;
undet others it may be wide. Similarly, the response errors may be
compensating in character or they may be more or less systematic in
direction, thus creating a response bias. The expected value of the
response errors and the random component of variation around that
expected value may be regarded as determined by the essential survey
conditions.

In practice, some of the essential conditions of a survey will be difficult
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to separate from the unessential ones, but the fact that some are essential
and others are of an accidental character needs to be recognized,
Basically, the “‘essential conditions” of a survey are these variables which
ve are consciously trying to keep umiform over all cases covered. The
“uniformity” may be in a rule rather than being absolute (e.g., in a study
of sex behavior, we might require that female interviewers interview
iemale respondents and male interviewers interview males}, but the
mmportant point is that we deliberately attempt to bring these conditions
“under control” {or are forced by circumstances to accept a unifesmity
in certain conditions). Often the problem of improving survey\design
will be to identify and deal with some of the more important essential
conditions. _ O

In contrast to the essential conditions of the surysjz, the “random
errors” are controlled not by the introduction of ghiform rules and
procedures but by taking several units—several QIHSE}S, several elements
for the variables discussed in earlier chapters, 3e¥eral interviewers for the
“interviewer variance” discussed in this ghapter, or several coders or
punchers when we are dealing with “codifig'or punching variance.” The
use of “scores” based on several questions in attitude surveys and other

psychological measurements is anatherexample of the control of random

variation by increasing the number of units {in this case the number of

questions). )

Correlation of response errors when inferviewers are used, It would be
convenient to assume thlin any particular survey the random component
soffor one individual is uncorrelated with the random

of the response er S
component of thig F\chonse error for another individual. Unfortunately,

such an assumpptien does not accord with known f;cts about response
variation. I .\parricular a mathematica! model which po‘stulates ‘mde~
pmdcnpn&;&ﬁénses of all individuals will not fit a survey \:\"hlch uses inter-
viewers\imless the interviewer is assumed io‘have no 1nﬁ1_zence on the
response.  Jf we were to assign at random a different interviewer to exch
ineiiv;fdual, the effect of the interviewer on the ,r.espc_mse would be
Jiic ‘_'ﬁ“dlnarlly, however, 2

given interviewer obtains and records the responses for a number of
individuals, and often we have reason ts/j;eheve that the errors.' mad; by
a particular interviewer are correlated, Even _cas?tal observatn:_nn_o an
interviewer at work reveals the presence of interviewing patterns dlstlpctlve

abor force status an interviewer,

to that interviewer. In an inquiry about c
who implies by his manner that he does not expect to find a housewife
loyed, may tend to record fewer employed

with children gainfully emp a
women than an interviewer who seems to nsist that every adult should

be gainfully employed.
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The present analysis uses a mathematical model which assumes that
responses arc uncorrelated if they are obtained for different individuals by
different iuterviewers. However, there may be correlation between
responses even when both the individual and the interviewer are ditferent.
For example, the presence of a common supervisor or participation in the
same training class may result in correlated errors for two different
interviewers (unless these common influences are specified as essential
conditions). Correlation between responses ebtuined by different inter-
viewers may also be introduced in processing; e.g., the same clerft\may
make similar errors in coding both responses.  We shall assumeihat these
correlations are small and can be neglected, although the modelcould be
extended to include them. o >

Specification of a mathematical model.* The diséuSsion thus far
presented leads to a mathematical model for the analysis of response
errors in which we have: )

(@) A population of N individuals and a pepifation of M intervicwers,
both of which will, for convenience, /b assumed to be large.
(b) Associated with each individual, a trie value,

(¢) A set of essential survey conditidns which determine for a particular
individual and interviewer the'expected value of a random variable.

{d) Zero correlation betweerthe random components of responses for
two different individ}@ls with two different interviewers.

(¢} The order of i%tiwiewing respondents by an interviewer either
randomly detérmined or not affecting the responses.

Tn many suryeys’interviewers are available to interview only certain
classes of the/population and only in certain geographic areas. We shall,
therefore, \Casiceive of our interviewers as divided into L groups with M,
intervig\ye}s in the #th group who are available to interview a particular
N, imdividuals and no others. Where all interviewers are available to
idterview all individuals, L == 1, M, = M, N, = N,

3. The effcct of interviewers on the variance of sample estimates. Effect
of response errors on estimates of sample variance. One major advantage
possessed by probability sampling as compared with the other types
of sampling is the possibility of estimating the sampling error from
the sample. In situations where the sample results are uniquely deter-
mined by the act of selecting the sample individuals (i.e., given the fact
that the /th individual is in the sample, there is one and only one

* Sce also Sec. 7a ol this chapter.
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value to be ascribed to the ith individual} there is, of coutse, no
question of our ability to estimate sampling ecror from a reasonably
large sample. _
When the individual responses are subject to error, we shall see that,
with appropriate methods, the sampling variance of a statistic such as a
mean or total will reflect the response variation as well as the error due to
tncluding only a sample of individuals, Appropriate analysis of the
sources of error will point to the methods for minimizing the total variance.
However, although the use of probability sampling will insure that t@
variance of the individual true values will be appropriately reflected inmthe
variance of a sample estimate, the accarate reflection of response ¥ahidnce
will depend on the applicability of whatever mathematical“model is
assumed. P
The response bias of a statistic such as an estimated medn or total will
not be reflected in the variance of a sample statistict.iﬂthough its effect,
if it can be estimated, will be reflected in the meaussguare error and its
influence on accuracy thus taken into accounts Réesponse bias is _m?t
per se a “sampling” problem, ie., bias arisiqg.}rom response errors is
ordinarily independent of the sample desighand s, in fact, of thc. same
magnitude for a study involving a compiete ‘canvass of the populat;on as.
it is for a sample survey if both thescomplete canvass and. thel sample
survey are taken under the same essghtial conditions. Postgonmg io a
later section the consideration of'response bias, we shall examine fll"St the
other component of survey ¢ rfoY, i.e., the variance ofz_L sam_ple estimate,
and shall examine particularly the contribution of the interviewer to this
variance. \y ) -
The design of a suriep to evaluate response variance ffue. 0 interviewers.
In evaluating sampiiig variance we must.consider the particular techmg{ue
of drawing a saiple and making an estimate from l_hls sample. In studies
which involvgthe use of interviewers we must consider also some specified
technique for s]a]ecting the interviewers and assigning them to the various
individpals' included in the sample. _ _ . i
Acthally, survey practice in the making of interviewer a_SSI\gﬂme“E; B
far Yoom standard. A common pattern is to.group the units selected in
the sample by geographic areas and then to assign the‘umts’m a given a_tre?
to one or more interviewers, making the different interviewers’ assign
ments approximately equal. The sampling units may be individuals {c)ir
clusters, but in either event, in surveys in which interviewers are uscl,
costs of travel and time required for idemifjlcatiop of the Sa”_lple usua:l ¥
suggest some clustering of the assignments 10 mtc_rv:ewe::s. Tf'ns clustering
of interviewer assignments led to the introduction of interviewer grﬂfg?;
inta the popalation specifications outlined above.  la terms of the specifie
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mathematical model, this practice can be approximated by the following
sample design:

(@) n of the N individuals in the population are sclected at random
~ without restriction.*

(b} m, interviewers are selected at random without restriction from the
hth interviewer group to interview those sample individuals selected
who are available for interview by this interviewer group. Let

L ,
m = ym, = the total number of interviewers selected. N
] N\
(¢) An equal number, 7, of individuals is assigned to ,fiht“h\of the m
interviewers, The /i individuals assigned to any jmtervicwer are a
random subsample of all the sample individuals available for

interview by this interviewer group. (¥

The applicability of these conditions to actual\surveys will be considered
later, The conditions stated apply reasonﬁ,b}y well to many surveys.

It should be noted that n,, the number of sample cases drawn which
will be available for interview only by iiterviewers in the Ath group, is a
random variable. In designing g"sﬁr\;ey we could decide to use a fixed
number of interviewers from theith group and adjust the size of assign-
‘ment given each interviewer. AFor example, if we were using 2 interviewers
for a given group and happened to draw 84 sample cases available to this
group, we could give each.interviewer 42 cases; if we drew 76 individuals,
cach interviewer we@ﬁ’ be assigned 38, etc. Another method of deter-
mining interviewghassignments is the one used here, i.e., to fix the size
.of the assignménis’and let the number of interviewers vary. The restric-
tion that thesiZe of the interviewer assignment be fixed does not represent
any great<dss of generality, since the variance of most sample estimates
will bg:%ﬁout the same whether the size of assignment or the number of
integviewers in a group is fixed. -

~(The sample estimate and its mean square error.t  Assume that a simple

\Jandom sample of n units is selected from a population of N units. Let

Zpy; = the value obtained for the jih sample unit by the ith sample inter-
viewer in the Ath (population) group. Let the sample mean be

Lo B
ZZme

T =

-
=

G.D

* We shall restrict this discussion to simple random sampling. The results
can be extended to stratificd and cluster sampling.

T See Sec. 7b for derivation of the formulas presented in this section.
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With the survey design specified, £ would be used as an estimate of the
true population mean Y. The mean square error of & is:
MSEZ = B + of (3.2)

where By = EF— ¥,

EE == the expected value of .

Section 76 shows the derivation of an expression for ¢2 as. approx-
imately* equal to: ' '

] ’
oo ZX T Oxr 3 Ox1 N\
* n m N
2 (NAHD)
6y R—mMy NS
-y K e
n noom

S S

Here o% tepresents the “total variance” of individual fesponses around
the mean of all individual responses in the population; ie., it is the
variance over all responses for all individuals to\all interviewers in the
interviewer group, and over all interviewer ’p,(}ups, and ¢ y; is the co-
variance between responses obtained frgm ifferent individuals by the
same interviewer (this covariance being taken within interviewer groups
since independent selections of intcf.{:jiéwers are made from each inter-
viewer group). If we divide the ed¥ariance ox; by the average variance
of rtesponses within interviewer® groups, we have 6, the intraclass
correlation; ie., & is thesCorrelation between respouses of different

individuals for the same i{ﬁt}rviewer. Thus:

Z 2 2
N\ 0% = Tpx - Opx {3.4)
</ o
A -~ (39
..\‘ Oux
where a;’;"%s the variance of responses within interviewer groups (t.aken
N over all responses of every individual to every interviewer

O in the group).

N
%
‘ - -
\ 0}" ¢ is the variance of expected responses for interviewer groups,
i - -
i.e., between average values for interviewer groups.

in cifect, to sample “clusters” of responses
e interviewers) and, within sample
i that no two responses are for the

The sampling design used is,
(the responses obtained by each of th
clusters, to subsample 7 responses (suc

nterviewers used in the

- * Assuming that N is large relative o # and _tha? the_i in the
Ath group at'c{;a random sample from a potential infinite supply of such inter

Viewers,
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same individual). The similarity to cluster sampling may be more
apparent if we express o as
2

o= {1+ 4= D] + 5;- (3.6)

In the above expressions, ofy/n represents the variance arising because
individuals were sampled independently of the interviewer groups, i we
had only one interviewer group (L = 1), 07y = 0 and o%y = a¥, so that

Q
§= L (1 4 83— D) B
N\S ©
and if we sampled individuals within interviewer groups(,\'so that the
mterwewcr groups served as strata, ¢f would be g:vcn by’ Eq. 3.7, but
with o2 substituted for o%. m\

This formula is identical with that for the varkinee of a sample mean
when we draw m clusters of /i elements each (op$ample m clusters of cqual
size and subsample 7 elements from cach clgster). There are, of course,
differences from straight cluster sampling*arising from the restriction that
we must sample only one rcsponse for“any individual, but the basic
sampling principles are analogous. .

Estimates of variance from the sample From the sampic we can
obtain unbiased estimates of Yoy; and o%. These estimates are,

respectively, )
L g ™\ e, . L oo &
2 Z Eos — TP 2 2 2(@ny — Fn)
7 m,‘ —17% ]
Sxr= - ~ 3.8)
b X m n(i— 1)
't\"
:~\". L my w _
C\\ 2 Ea: 21: Z(xh” (n—m)sx;
Q = + s (3.9)
SN n—-l (n—1 m
Lo
2Znes
Ty = -"—; = average for the ith sample interviewer in the Ath group
(3.10

Hin
> Zx.w Z:EM
g, =L =

myh my,

= sample average for the Ath group 3.11)

* For derivations of the formulas in this and the following sections se¢
Sec, 7Tc.
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Thus, an unbiased estimate of o2 is

oy 7

LI
s‘zz__%az%(x”" D myse 312
? n(n— 1) (n—1) m )

Contribution of interviewers to the variance. It should be noted that the
effect of using interviewers is to introduce into the variance of  a term
involving theintraclass cotrelation within interviewers’ assignments. Except
as indicated below, the techniques given in Vol. 1 and in earlier chapters
of Vol. IT for estimating the variance of  (and of other sample estimates)
from a sample disregard the contribution of this intraclass carfelation.
If we disregard the intraclass correlation within interviewcrs"as:signments,
the estimate of the variance of # would be the first term pfEQ. 3.12. It
can be scen that the result will usually be an underestimdle'in cases where
there is a noticeable interviewer contribation to thestatal variance.

If m = n, each interviewer interviews only one\pdit, and there is, of
course, no effect of the intraclass correlation. sn/this case the formulas
for the variance given in earlier chapters inc‘fude any interviewer contri-
bution to the variance.* On the other Band, the larger the interviewer
error, or the more individuals we asdig to an interviewer, the more
important it is to use Eq. 3.12 to gsti;’nate tite variance of £,

Equation 3.12 is useful in indicatinig the effect of interviewer error upon
the variance of a sample mean. ~ Where there is no need for a separate
estimate of sy, Eq. 3.12 cat be written as

i\’%_ I E(ﬁﬁar —ay '?‘Eﬂh(‘if; — &)

2 ooty — | (3.13)
e\ min— 1) * n(p— 1)
and, if L = L/ m ,
: S(E—EF
.~'§ P (3.14)
A\ _ “ mm—1)

N

< :’"\i&" étudy director would not ordinarily assign a single individual to an
. intefviewer, but, with cluster samples, a single cluster rmght b(_& assngr}ed t(_) one
ot more interviewers, Where an interviewer or group of interviewers s assigned
to a single cluster, the estimated variance b_etween ultimate _c]usters, bly tthi
usual analysis, will include interviewer variance. Thus, with large—c‘uie(:_
sampling, discussed in Chapter 9, it may often be ‘true th_at ong (;lr_ mort:l in er
viewers will work in only a single primary _samplm_g gmt. In this eve , ] !
“yliimate cluster’” estimate of the total variance will include the appropriate
interviewer contribution to the total variance (see, for example, Sec, 4 and §,
Ch. 9, and Sec. 15 and 28, Ch. 9, Vol. I). W_here more than one clustetr IIS
assigned to an interviewer, we can estimate the interviewer variance separatcly

by the methods given here. :
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The covariance, oy, reflects the effect on response of the interviewer
and the interaction between interviewer and respondent. 11 the obswerva-
tion is of a type which permits a large effect of the interviewer on the
response, the contribution of the term involving o vy to the varianc: of F
may be quite substantial. In many cases, however, oy, will be negligible,
We might, for example, expect o large variance among interviewers for
estimates of farm acreage under corn, where the interviewer does the
estimating by direct observation without measurement, Where the
farmer furnishes information to the interviewer on the number of £aitle
an a farm, there may be little or no effect of the interviewer on thegesponse
and oy, may be negligible or zero. R

Reducing interviewer contribution to variance. WhegeNdnterviewer
contribution to the variance is important, it may be possiifedo reduce this
contribution significantly by training and adequatelysupervising the
interviewers, and this should be the first line ofttack. Sometimes,
however, training of the intervicwers beyond a‘gertain point will have
very little effect on interviewer variances. ,Ifstead of trying to muke
additional reductions in interviewer varidgee” by increased training and
supervision of the interviewer or using\gther (and perhaps expensive)
techniques to obtain greater interview®&® uniformity, we might devote our
attention to another method for rediiting the effect of interviewer variance
on our final estimate. From Eqy3.3 it will be seen that, for fixed values
of oy, the efleet of intervig@dr variance on o2 decreases as we inerease
the number of interviewm‘\é.\ Thus, if cost were not a factor, maximum
accuracy with this sample design would be obtained by assigning onc
individual to each iftérviewer.*

Determining the<dptimum number of interviewers. With the ordinary
survey whichbas’a fixed total budget, increasing the number of inter-
viewers will{increase costs and will require a reduction of expenditure at
some other point, e.g., reducing the expenditure per interviewer or per
indi\jic\lhﬁl or reducing the number of individuals included in the sample.
When the cost function is simple, as in Eq. 3.15, optimum values of #
and’m can be readily determined by joint solution of the cost and variance
functions. With more complicated cost functions, the optimum values
can be determined in the same way as for subsampling desiens (see
Chapters 6, 7, and 9).

* This statement is subject to the limitation that response bias and variance
between Interviewers remain fixed. Ordinarily, it will not be possible 1o make
extreme changes in size of interviewer assignment without changing the response
bias and interviewer variance, but the analysis is acceptable within reasonable
Jimits of variation.
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We shall consider the case in which the cost is given by
C=Cn+ Cyn (3.15)
where C = total budget for the survey, excluding fixed overhead costs,
€y = cost per clementary unit included in the sample.

€y = cost per interviewer used in the survey.

With this cost function and the variance given by Eq. 3.3, the optimum
values of n and m are §

— .
0% — 6xy ¢
= S
o T B
_, [ex1 "~

m a,\/c‘) R (3.17)

where o ’

' AN

(3.18)

&£ = — e
\/CL(O'% —dxy) ‘Il“;\xczgxf

Some illusirations. Assuming that qqsf functions are known or can be
roughly approximated, application gfithe technique may be illustrated by
data from two studies where intefviewer assignments were randomized.
However, for a satisfactory estiftate of interviewer variance, we will need
more interviewers than the, dhgtbers used in the studies mentioned here.
The interviewer variangesestimates of Tables 1 and 2 (pp. 297 and 298)
are based on a ve:y‘s}ﬁz’ill number of cases and are, therefore, quite
unreliable.  They are presented only for purposes of illustration.

The Indian StaeStical Institute has pioneered in the design of surveys
s0 as to make pdssible the evaluation of response variation associated
with the itdryiewer.  Methods similar to the survey design described in
this sectibi® have been used for some time by the Indian Statistical
Institu{é.’}to control and measure the effects of the “human agency.”
* Sethevof these techniques are described by Mahalanobis (5). One such

d%g'n was used in an inquiry to determine the economic conditions of
factory workers in an industrial area at Jagaddal. The entire area was
divided into 5 subareas. Within each subarea 5 independent random
samples of structures were selected for interview. Each of th‘e 5 sa'mples
was assigned to a different interviewer, but the same 5 Interviewers
worked in all 5 subareas. _

This design is similar to the one described above. In this case ali
interviewers are {presumably} available to interview the entire popu[atlon,
so that L = 1. There is a stratification within interviewers’ assignments
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(the sampling by subareas). Results are presented on a “family” basis,
although the sampling unit used was actually a structure and thus might
involve a cluster of families. To simplify the use of Mahalanobis™ data
for illustrative purposes, we shall ignore the stratification and clusiering
and treat the sample of families as if it were an unrestricted random
sample of the population surveyed, the families being the individual
members of this pepulation.

Mahalanobis did 3 studies in the Yagaddal arca (in 1941, 1942, and
1945), all involving approximaiely the same design. He also repogts a
study using a similar design (5 subareas but only 4 interviewers) sdvricd
out in the Nagpur in 194243 by M. P. Shrivastava. Tablé ) shows
estimates of ¢% and o, for various characteristics made frofiy the results
of these surveys, assuming an unrestricted random sampling design.
With a suitable cost function, these variance estimatés,'can be used to
determine the optimum number of interviewers, <Suppose, for example,
that C (the total survey budget) was $2000, that)Cy'(the cost per family}
was $2, and that C, (the cost per interviewenfer training, supervision,
travel to the five areas to be enumeratedﬂe’tc.) was S80. With these
values (and the cost function C = Cyn A\€ym) the optimum number of
interviewers, m, and the optimum nuirber of families, #, would be those
shown in the last 2 columns of Taklg'l. The analysis would point to the
use of somewhere between 5 andl 8 interviewers for the Jagaddal study
and to about 5 interviewers for the Nagpur study. It should be remem-
bered, however, that the estimates s, ; are based on 4 degrees of freedom
for the Jagaddal stuck(.@md only 3 degrees of freedom for the Nagpur
study. ‘These estimates'are, therefore, subject to a high sampling variance.
As a matter of fagty the values reported for s are entirely consistent with
a zero value foi:'\axf. This situation points to the need for using the
resuits of mo.r} interviewers if we wish to make reliable estimates of
interviewiigeéntributions to the variance from the sample.

If thi}:cost per interviewer, C,, had been taken as $4 instead of $80,
thg;o‘ptimum number of interviewers for estimating monthly per capita
€xpenditures in Jagaddal would have been 49. 1In this casc the use of
only 5 interviewers would mean an 80 per cent increase in the variance
of our estimate as compared with the optimum.

A small experiment similar to those of Mahalanobis was conducted in
Baltimore by the Bureau of the Census as part of the December 1947
Current Population Survey. In this study, segments (small areas) were
selected for interview in the Baltimore area. These segments had an
expected size of 6 households. The households in 25 of the segments
were divided into 2 sets of alternate households. Two interviewers were
assigned to each of the 25 segments and given (at random) 1 of the sets
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of households for interview. Interviewers A-and B shared 6 segments, *
J:Hterviewers B and C shared 3, interviewers 4 and € shared 5, an,d
interviewers [ and £ shared 9.

The siteation in this study is approximated reasonably well by the
specified mathematical model if we assume that interviewers 4, B, and C
were drawn from one interviewer group and interviewers D and E from
another. The sample design is, of course, different, but the difference
requires only minor modifications of the formulas presented above.

Table 1. Some examples of interviewer covariances and of optimom « {\
defermination of number of interviewers

Ax‘\
P N 2N
Estimate ) Optirtlu%lpumber
of intet- Estimate AR
Py : { total S
Study Characteristic viewer ort ~. .
covariance | Yartance '\:I_ﬂter- Indivi-
Sys Sk NN wicwers | duals
m 1t
PPN
Jagaddal, [ 1. Monthly expenditure (v
1942 {rupees per capita) LOL &\ ) 1780 8 680
2. Consumption of cereals A}
(pounds per head per | W
month} . &N I3 100.8 5 800
Nagpur, |3. Total monthly expendi- |
1943 tures T \ .80 399.1 6 760

* Values giving minimu}: Variance subject to the cost restriction that 2n -+ 80m
= {'= 2000. N

To determi 1ih\e optimum allocation of resources for the Baltimore
study designgi¥e let # equal the number of segments and assume costs of:

C = tofal budget — $400.
Cy x 'éost per segment (using one interviewer to cover each segment)
7 =36
, = cost per interviewer = §7.

Table 2 shows the values of s% and sy, determined from the Balt‘imorc
study data and the optimum values of n and = with the cost function of
Eq. 3.15. In the Baltimore study 2 interviewers were assigned to ea:fh
segment. The optimum values # and m were determined for the case in

which only 1 interviewer is assigned to any segment.

* To simplify calculations, 1 of these segments was ¢liminated at random.
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It wili be noted that sy, is negative for 3 of the 5 characteristics,
Negative values of sy frequently will be obtained when &y, 1s near zero
(since sx; is an unbiased estimate of 6x;) and are particularly likely to
occur when sy is based on a small number of degrees of freedom (ie.,
retatively few interviewers), making the variance of sy relatively large.
Where s+, Is negative, we have taken o y; as zero in estimating o5 and the
optimum values of # and m. In these cases, of course, the optimum
requircs that m be as small as possible {i.c., m = 2, the number of
interviewer groups).

Q"
Table 2. Variance estimates and optimum values of 7 and # fot | th‘
Baltimore study conditions N
A
Characteristic to be cstimg’téﬁ"’
‘\ N
It Persons Persons Persons
€m ' employed at | operating
' Total under ) Tot,gl\\' nonfarm job | own busi-
persons 14fyear.~. "“."Pk’)’Cd for wages ness or
obage | \\V or salary | profession
Variance and covari- AN
ance estimates RN
s 64.5 4 4.98 34,3 440 1.51
Sxr 1. Ofi-\‘ — .68 — 013 1.28 -- 14
Optimum values ¢
n 587 | e 64 56 64
m gqD> 7 2 2 9 2
si OF 123 078 sS4 90 024
Variance of & w{ﬂ;“ '
n==64apdms<2 1.51 078 54 1.32 024
n=62 ang m=—=4 1,28 080 S5 1.01 024
n= 3N and m = § 1.24 088 .60 91 26
n= 43 and m =16 1.39 104 .71 .96 031
”n\’—: 31 and m = 31 2.08 1861 1.11 142 049

For 2 characteristics (total persons and persons employed at a nonfarm
job for wages and salaries) there is some contribution of interviewer error
to the total variance. For these characteristics the optimum is fairly
broad, i.e., for m between 4 and 16 the variance of & will be within 13 per
cent of the optimum.

4. Use of the specified mathematical model in minimizing the effect of
both bias and variance. The preceding section indicates a method for
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determining the eptimum under fixed essential conditions. In many cases
where it is evident that a particular survey technique is subject to sub-
stantial response bias, alternative techniques may be available that will
reduce the bias. We must, of course, consider the relative cost of such
alternatives,

Choosing a single sampling design. We may have a choice of alternative
methods, each with different essential conditions, response bias, and
optimum values of n and m. For a fixed total cost we can determine the
optimum values of # and m for each such method. Then the optimum
method among those examined is the one which gives the lowest meas
square error.  For example, experience in determining farm expenditties
by direct questicning of farm operators has shown that the results afe
often subject to considerable error. Determining farm expenditutes by
other techniques, such as detailed examination of purchaseﬁréé{'irds, may
be more accurate but considerably more expensive. W dan determine
the optimum for direct questioning and for detailed ¢xautination of pur-
chase records, subject to a fixed total budget, and selgbt'the method which
gives the lower mean square error.  The optim ethod for one budget
level may be different from that for anotheg budget level.

Use of double sampling. In some ca;e:s,’instead of using a single
method, a combination of two methodsdf®a double sampling design may
prove more efficient. For example,owe'could interview a relatively large
number of cases (possibly even the entire population) by one of the cheaper
{and less accurate) methods and reinterview a subsample by one of the
more expensive methods. Shich a double sampling approach is Jikely to
be useful in instances whére’methods with low response bias cost many
times as much as methiods with higher response bias. ’

Suppose that oupgrginal sample is drawn as described in the previous
section and we Maye sampled = individuals and s intecviewers {(m, from
the Ath gro 3.0 For this sample, we obtain responses ¥ u'nder the
essential conditions of the initial survey, which we shall designate as
essentialoohditions X. For the subsample we take (at random) an equal
numgBer-out of the individuals assigned to each interviewer, giving 2
subsarﬂple of #’ individuals. For the subsample we shall use a set ?f
L’ interviewer groups (which may or may not be t'he same as the O“gmjﬂ
interviewer groups). We draw m’ interviewers (m, from the{)th group) IE
such manner that an equal number of interviews can be given to eac
interviewer. It will be noted that the interviewers for the subsan;lple are
drawn independently of those for the original sample and that mh cantze
less than, equal to, or greater than m. For th.e subsample we 1 ElWil €
Tesponses &,; obtained by the original interviewers and w; also iﬂ;‘
TesSponses z,,; obtained by the second set of interviewers under essentl
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conditions Z. We may use as an estimate* of the true population mean ¥:

==t

. Iz
2= (4.1)

j!

where & = mean of the x,;; values for the entire sample of # individuals.

=r

& = mean of the ,,; values for the subsample of #” individuals.

=

z' = mean of the z,,; values for the subsample of #" indivirluals.

Actually, it might be more efficient from a sampling vicwpoint {o/draw
the m’ interviewcers for the subsample of clusters as a subsample.ofthe m
interviewers used for the original sample of clusters. l{owcyp\f}bﬁe main
purpose is to reduce the response bias, and this may meanjihe use of
better-qualified or better-trained interviewers. Conscquéntly, the second
set of interviewers may be drawn from a dif’f'ﬁ:rcntm&oqi’ulation of inter-
viewers. 3

The mean square error with double samplingsh It is assumed that
interviews under conditions Z are more expghsive than under conditions
X and that method Z has a considerably. ‘sqﬁ.}iler response bius,  For the
specified mathematical model, the meéan square error of z will be

approximately Ny
L LU YW
MSE z = B}« '2° (—; A= H,) (4.2)
N n
where &
Z = EZ = ‘2\
¥ = B~ %'
B,A7 -7
v 2px20x0; OF— Oxg
- U = — 2 — — 4.3
s§ X7 X? “3)
AN 6% — o
Ns\' W 4 V — ————Z — ZI J— 4-4
Q P U (4.4)
Oz
W=z (4.5)

pxz == the correlation between the expected X and Z values
for the samé individual

* This estimate 2 is, of course, a ratio of random variables and is biased but
consistent.

T For the derivation of the formulas presented in this section, see Sec. 7d.
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An optimum double sampling design. With a combination of twa
methods there is, in general, a set of optimum values for n, n', and m’,
As in the preceding section we shall consider only the case where the cost
function is simple and the optimum values can be determined directly.
We shall assume the cost function: :

C=Cn+ Com-+ Cx + C’ : (4.6)
where € == cost per individual under conditions X,
C, = cost per interviewer under conditions X.

(3 = cost per individual under conditions Z. A
o)
C; == cost per interviewer under conditions Z. N\

C = total survey budget (excluding any fixed overhegd’f@o’sts}.

Since MSE of z does not invelve m (to the order of approximation used
in Equation 4.2*) but the cost increases with m, the ogtfmam design would
cail for making m as small as possible. Usually,the* minimum number
of 1nterviewers will be determined by adminis{fﬁﬁ\!e considerations, i.e.,
an interviewer can be expected to complete @¥€ertain number of interviews
a day, and, if the survey results must be available at some specified time,
we must give an inferviewer no more;fhén the number of cases he can
complete within the time period allawed. If, then, we decide that an
interviewer shall not do more thah 7y interviews, the smallest value we
can give to m is m = nfty, aqd the optimum valves of #, n’, and m' are

X (4.7
"\f\" —
Y V
‘ ‘,\\ " =a a (4.8)
N ) —”;
~C , W (4.9)
\/ m=4a I
where
C {4.10}
g =

e v
X

. ca i d
* Equation 4.2 is an approximation which ignores terms of tthe ;h;i a%e
higher order. Where m, a, w', or @ is small, some of these terms may

appreciable and the approximation to g may be poor.
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Using the optimum values in the equaticn for MSE of 2 (Eq. 4.2) will
permit us to compare a combination of Methods X and Z with either
method alone or with other methods and combinations to dcetermine the
optimum design.

Estimation of variances and biases.  We must, of course, have some idea
of the costs and of the values of U, V, W, and B,. We can cstimate ¥
and Z from: a sample (using & as an estimate of X and £ as an estimate of
Z). The variances can be estimated by means of Eq. 3.8 and 3.9, and an
unbiased estimate of p 40407 is provided by ~
-

D Enifipg — HEE O\
pxzSxsy = 77— S RN
n—1 « M

Estimation of the response bias, By, is a more dlf’ﬁeu‘lt problcm since
this error involves the unknown true population me}lﬁ Y. However, a
satisfactory comparison of several methods car\sdwietimes be made in
instances where one is justified in assuming a I\ég,hglble response bias for
the method which is considered most '1ccuraQ3~fmd (from previous exper-
fence or a pilot sample study) estimatingthe/diffcrences in expected value
between this most accurate method apd e other methods considered.

For example, if Method Z is one which is subject to negligible response
bias, as an estimate of bias for &d{'ne other method we can use either

by (4.12)
. :.(\ bx— (4.13)

These estimates are; D?Ynourse, subjcct to sampling error, and formulas
for the variances arc given in Sec. 7e.

Hlustration of joh‘?t‘[_}’ minimizing variance and bigs. To illustrate the
technique for détermining the method which minimizes the mean square
error, we shall use a problem which involves estimating the average dollar
mventary of a group of retail stores, Let us assume that the population
conswts of all retail stores in a large city and that our budget for the

r\’Ey is 315,000, of which 52500 has been set aside for fixed overhead
(so'that € == 12,500}, We shall also assume that the maximum assign-
ment to an interviewer, fy, s as shown in Table 3. Suppose that pilot
studies and previous experience give cost, variance, correlation, and
response bias estimates for five different techniques and that we wish to
determine which technique (or combination of two techniques) to use.
Let us assume that the estimates of unit costs, response bias, and variances
for each technique are as shown in Table 3 and the correlations, pxz,
for each pair of techniques are as shown in Table 4. We shall take
¥ == §100,000.

E->|

Ex I 1]
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Table 3. Cost factors, maximum assigmnents, biases, and variances
for a study of retail store inventories

Unit costs Square root of varj-
(dollars) Maximum .1 ances and covariances
assignment Response bias) (thousands of doltars)
Method er inter- | (thousands of
: Per | Pefinter doli
P . : ollarsy
T inter- viewer B
store . fy X bed Voo,
c view / X X!
1 C2
! 1 25 100 ~ 110 83 250
2 2 50 60 - 6.0 80 NS T
3 6 100 40 —25 7% A
4 12 | 150 35 ~ 3 73, LN 9
3 20 150 35 D=6 K4 6
| S

Table 4. Correlation between expected values of \iﬁl‘%ﬂual responses (p ;)

Method”
Method _ad-
1 293 3 4
2 19 N
3 &2 LN B4
4 s, AN w7 91 :
5 85, K 88 92 95

Table 5 shows e fean square error which would be obtained for ez.u:h
method and e }:fc'bmbination of methods, using with the singie sa{nplmg
method the\@lﬁcs of # and m given by Eg. 3.16 a“?i 3.17 and with the
double sa(ﬁ’;}ling method the values of 7, #', and ' given by Eq. 47,48,
and 4 SWwith m = nft .

& Optimum, if only a single metho ; :
with — 723 and m = 25. However, double sampling permits & furt}.le}:
reduction of 35 per cent in the MSE by using Methods 1 and 2 ‘mf
n = 3480, m =35, »' — 382, and m = 21. In many _cases do:;b €
sampling will not give gains of this magnitude over a good single samsp ing
method. It should be noted that the figures 1n Tables 4 and 5 are
hypothetical and are used only to illustrate the methods. rease

In situations of this type it may frequently be necessaty too:lse bias
expenditures per unit many times in order to .reduce thﬂl I'CS}Z:Gm any
from 10 per cent to 2 percent. For example, the A.C. Nielsen panz.

d is employed, is to use Method 4
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which compiles data on sales of commodities by retail steres, has found
that it can obtain sufficiently accurate reports on sales only by personally
checking physical inventory and purchase invoices. As another example,
the Bureau of the Census reinterviewed 2 sample of respondents, using
in the reinterview professional personnel from the Washington office.

Table 5. Comparison of minimum mean square crrors for five alternative
methods (and combinations of them)

Minrimum mean, sgtwre
Methods n nt 7y m error for the indfsited
methol )
1 12,022 380 — — 212
2 3,197 122 — - R <X
3 1,350 44 Np— — (O 127
4 723 25 _ — 11.1
5 508 16 — _ 12.5
_ N

land2 | 5242 52 1,869 123 39.7
land3 | 4,382 44 883 | w30 11.2
1 and 4 3,582 36 503 | \>31 7.6
Tand 5 | 3,480 35 320 21 7.3
Zand3 | 1,521 25 690, 4l 13.8
2and4 | 1,340 22 | 392 27 10,1
2and 5| 1,329 22 AN 302 18 9.5
Jand4 | 703 158y 260 23 13.1
3and 5 718 8. 201 16 12.0
4and 5 481 [ 14 129 14 15.7

The average cosbyper interview was of the order of 7 times the average cost
for the og}ginal interview, and there was a significant increase in the
accuracy\ef certain items such as coverage of persons. On the other
handmsome cases increases in cxpenditure may yield only small gains
in{adguracy or large gains for some items and smafl gains for others. In
the'same study by the Bureau of the Census, the per cent distribution
into 10-year age groups, for example, was practically identical for both
interviews, with none of the 10-year age groups differing by more than
1 of 1 per cent from the original interview to the reinterview. If the
primary aim of the survey were to obtain an accurate per cent distribution
by age, the more expensive method would not be justified.

Frequently, it is also possible for very small increases in expenditures
to produce large gains in accuracy. In one instance, for example, the
Bureau of the Census in its Current Population Survey had been getting
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a large number of persons erroneously reported 2s not in the labor force.
A revision of the questions asked added neatly 2 million of these “missed”
persons to the labor force (2). The revision added practically nothing to
the cost of the survey. _

Thus, there is no “typical” relation between cost and accuracy. Each
survey presents its own picture. The method outlined is general in its
applicability, although the answers obtained will vary,

It should be noted that the work of determining the “optimum” design
can frequently be shortened by eliminating from consideration alternatives,
which aze obviously inefficient.  For example, Method 5 in the illustration
above involves a cost per store two-thirds greater than that of Methodyd,
but the response bias for the two metheds differs by only a trivial amteutit.
The higher expenditure per unit in Method 5 improves tl{a,}fa\[ues for
individual stores, but the individual response errors of Method 4 are
largely “compensating” in nature. Although the combin;ft,i‘on of Methods
1 and 5§ gives the lowest MSE, the result does not differappreciably from
that for Methods | and 4. Thus, consideration(\af,both Method 4 and
Method S was really unnecessary in selecting af dptimum.

5. Effect of uncorrelated and compep.sa‘tin’g response errors. A con-
sideration of the specified mathematiCal model leads to the conclusion
that response errors that are uncartelated with each other and compen-
sating in character do not nccessatily need any special attention in survey
desigi whenever the purposg4S\o estimate a mean or total for the total
population or for a sube-c’mp when the members of the subgroup are
identified without error. “Furthermore, in this case, the formulas pre-
sented in previous chapfers for estimating sampling error Ie}qec‘i the re-
Sponse error pro éﬂy and no special atfention need be given to the
presence of rqspogge errors. This situation is, however, often assumed
to exist withdue~valid evidence. It is pot at all uncommon for the results
of the sur¥dy to be justified on the basis that “some of 1.he' errors wge
positive~and some were negative, so that the net effect is gndouble y |
clo 19" zero.”  Of course, it is not possible to assume that just because
there“are both positive and negative errors their effect 1s necessanl}sf
Compensating, and such an assumption can very of.ten lead to er‘roneou
conclusions. Moreover, as we have already seen, if th.c res?onbﬁ_ﬂfmrs
are correlated with each other (as within the work of a S{ngle interviewer),
the variance is increased and the chances of errors being compensating
are reduced. However, let us consider the situation where there. 18
evidence that the errors are, in fact, compensating and ““corre{atedfm fe

The essential points can be seen MoOre easily with the very S t\F;o
situation in which the response errors ate uncotrelated for any
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individuals in the population and a random sample of individuals is

drawn without restriction and with replacement. The variance of a

sample estimale of the true population mean under these conditions is
) 9%

ol = (.1)
1

Since X;; = ¥, - R;; (where Y is the true value of the characteristic for
the /th elementary unit of the population, and R,; is the response error on
the jth measurement for the ith elementary unit), we can express\o"ﬁ- as

hi] 2 2 ’
oy = 0y - 0 + 2pr pOrOR N\ (5.9
. € N\t
where o} = variance of the true values. N\

Ny
oy = vatiance of the response errors, which ig“cemposed of the
variance of response crrots for an individual around the
individual's expected response erro’T;\md the variance in
the expected value of response erfers between individuals.

pyr = correlation between the ¥iland the R, Note that
Pradyln = PyE0ropn, WHBIEp g 1s the correlation between
the ¥, and the R, the'eXpected response error for the ith
individual. o

Response errors are reflectéd in usual sample variance. We see from
Eg. 5.2 that a% refiects any cHects of the responses as well as the variance
of the true values. Simlilarly, if we estimate o% by

£\

\ ) %(xsf — &y
\J 2 i

- (r— 1)

t}fle effg:c{;ﬁf'the respense errors will appear in the estimated variance,
sincg theexpected value of 5% is equal to 6% Consequently the estimated
vzm}lnce of the sample mean will include appropriate allowance for the
AABSponse variatiot,
\"’\; " Reducing the effect of response variation. f we assume a fixed total
budget (after deducting fixed overhead), C, then the number of cases

which can be sampled is equal to € divided by the unit cost Cy. Thus,
we have “

s —
2K <

C
O — —C— GX . . (53)

Let us compare the results of Method X (which gives the response Xy
with those of Method Z (which gives the response Z,), assuming that

Method Z has a unit cost €, > Cx,that oy << og,» and that R, = Ry
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= 0. Then, Method Z is preferable to Method X only if

o° < g2

or if AN (5.9)
o5 _Cx
2 <C, (5.5)

}nequality 5.5 provides a test of the relative efficiencies of two dara-
coilecting ‘Eechniques which have either no response bias or the s:;n;e
response bias.  Let us consider a hypothetical example. Suppese thay
we have a choice between two methods of estimating a characteristic, hoth \

N

methods using a simple random sample of families: ¢\
For MeTrop X For Metioo Z O
Cyp=$2 Cp=85 N
Op, =10 g, =MQ§"
Prre= ! PY g !
gy = [0 \

Since both methods have the same responst 'Ei}s, Method 7 will be
more efficient than Method X only if Inequality 5.5 halds.  Using the
figures just presented gives D

: e
il 4' EZ $ - 49

Cz = ggy 220

Thus Inequality 5.5 does n'%;ho]d. and we gain more by putling our
funds into the larger samplegermitted by the fower nit cost of Method v
than by putting them intétie reduction of respouse crror permitied by
Method Z (even thoughy this reduction in respome creor is quite sub:
stantial). It appeaesdhat ordinarily any appreciable increise in cypend-
ture to decreasesgesponse variatian will be unwarranted Jf there 1 po

effect on ther€spanse bias.
If we are”edtimating the proportion of the elementary units Baving 2

given characteristic, any expenditure to reduce fesponse errers will b
wasted_\hencver the resporse errors are compensaling so that 7Y,
sin&,}n this case,
PORENT D Y | IR IR § B

As a praclical matler, the difficulty is that there is r.lm*l_v AN WEALE
that response ¢rrofs ire, in fact, compensating, and it is notsate, withou
extensive investigation, to concenlrate on sampling vafiance and asame
that response errors are of no imporfance,
sampling error 10 negligible proportions by Eihon
might still have a cubstantial MSE because of response bres

Eren af we were [o radue

oo cenplele vens, we
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6. Applicability of the specificd mathematical model. The analysis
presented above applics, of course, only when the conditions of the
specified mathematical model apply. 1t is important, thercfore, that we
examine these conditions in terms of the situations actually previlent in
typical surveys. With regard to the selection of individuals or other
sampling units for interview, it is feasible to use techniques (e.g., selection
dependent upon a table of random numbers) which give random samples,
However, a determination that individual responses behave like random
variables will require much more experimenial evidence thuan is now
available, and will necessarily be subject 10 some guestion.

As previously noted, the conditions which determine the regfonse of
any individual may be regarded as divided into two groups: (%

(@) Those conditions which are “‘constant,” ‘“‘contrgiledy"’ and pre-
determined for a given individual response, c.g., théquestions to be
asked, the type of interviewer. We have refdered 1o these as the
essential survey conditions. N

(b)Y Those conditions which are adventitiou and “unpredictable,” c.g.,
the mood of the respondent, a momemaxr_y distraction which results
in a question being mxsunderstood

This division is similar to the d]VlSlOH between “assignable (i.c., con-
trollable)” causes and *‘residual’d\ gauses of variation in discuss:om of
quality control. We have treated these two groups of factors in the
same way as they are treah&d in the quality control field. Thus, we
consider the “adventitiousactors as giving rise to a random variable, the
response obtained for’a gwen individual being one of the values of this
variate. The “controlled” causes would determine the expected value of
this random variable. They also affect its variance.

It should de*noted that the present analysis does not provide for
measuringthe response variance of a singie individual apart from the
variancgibetween individuals. Such measurement would be feasible
c;gpe{&rﬁentally were it not for the conditioning of the respondent, But,
in pgActice, repeated interviews on a single respondent are not independent.
Thus, a direct test of the random nature of individual response variation
cannot be made by using the specified mathematical model. We can,
however, determine the total variance and, by applying the specified
mathematical model in a large number of cases, test its approximation to
actual conditions.

A further assumption, which can be accomplished in fact, but ordinarily
is not, is that the available sample individuals are assigned to interviewers
at random and that, within an interviewer group, the selection of inter-
viewers is independent of the selection of individuals. The survey
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supervisor will usuvally try to arrange an interviewer’s assignment to
minimize travel costs rather than making up random arrangements, and
deﬁm_te steps must be taken to make it possible to measure the variable
F:ontnbution of the interviewers. More experimental work in this area
is needed. The implications of this entire problem need thorough
exploration, and the analysis presented in the present chapter can
be considered ounly a step toward a systematic treatment of response -
ereor, ' '

1t was indicated earlier that the results presented were applicable to the
estimation of aggregates or averages for a total population, or for sub-
groups of the population provided that the assignments to subgronps are
made without error. If the identification of whether a unit, is.?:ur is not
a member of the subgroup involves response errors, respongesbias usually
will be present in estimates of subgroup means even when' estimates of
the population mean are unbiased, unless the errors inyolved in identifying
a unit as a member of the subgroup are independedt\of each other and of
the characteristic to be estimated. The effect ©olerrors of measurement
on correlations has sometimes been considered,”but the situations dealt
with ordinarily have been restricted to the®as€ where errors are independ-
ent and “attenuate” the correlatioq.o.'gTﬁe effect of correlated errors
requires much more attention than it has been given but is beyond the
scope of the present discussion. &3 -

7. Derivations and ’pm(;l%. a. Description of the population. The
mathematical model ‘u§e’d in this chapter for the analysis of response
errors assames a popuilation divided into N units. The unit may be an
elementary unit’efit may be a “cluster” of elementary units {(e.g., &
household or @ group of households living in an area). The N units are
divided intonL “groups” with N, units in the Ath group. There are M,
intervi(:w?c}s available to interview the units in the Ath group (and only
theseitnits). On any particular interview of a *“unit’” by an interviewer
a'i’@épbnse occurs. It is assumed that this response is a random v?.riable
fof any interviewer and any respondent; ie., a given response 1s con-
sidered to be only one of the possible responses which might be obtained

from this respondent. Let

Py = the probability that the response value Xy, will be obtained
if the th interviewer in the kth group interviews the jth unit.

= the probability that responses X550 20d X,y 2re obtained
(in the Ath group) if the ith and uth interviewers interview

the jth and vth units.

P}aijkuww
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‘We have then
thfjk =1 (?-I)

EManffk = ‘YMJ = %PM'J'A-XMJ'A‘ (7-2)

where the sum is taken over all possible responses of the jth unit to the
ith interviewer.
We also have

%me'mtww = %Pm‘jk = men-w -1 Q?’)

Cow ; "

Ehiiut'(X?:fijhurw) = ‘;2 zthikut‘lt"\,hr'ijhm'rr: '.\..'\ (7’4)
Foow '\

where the sum is taken over all possible responses of thg_.ﬁ.h' unit to the
ith interviewer and of the wth unit to the uth interviewerpand £,,,,., is the
conditional expected value for fixed interviewersgacand x, and fixed
respondents j and v.  We shall assume that, if N6 and j =% » (ie., if
both interviewer and respondent are different),lie’responses obtained are

independent. Thus, if § =2 u and j # v, \

P.Fu'jkrww = P!u;kaa Rt (?5)
EflfjltUXf!fij'Mt:!;f:U’; ‘X-fhffrhtw (76)

b. Contribution of interviewer érj}of's 1o the variance of a sample estimate
Jrom a simple random sampléN Let us suppose that the sample design
calls for drawing units f‘,r\f)hi the population as a whole and drawing
interviewers independén\ﬂy within each group. These selections are
made at random. 'Tg\¢ach sample interviewer drawn from the Ath group
we assign, at randdfi, a certain number of the units in the sample from
the /ith group. ,We fix in advance:

(Hhn = fetotal number of sample units to be drawn.
() , r\l ¢ number of sample units to be assigned to each sample
~3% Interviewer from the Ath group.

\‘iiﬁée the » units are drawn independently of the groups, the number of
units falling in the sample in any group is a random variable. Let us
designate the number of units in the sample from the 4th group by #,.
Since we fix the number of sample units per interviewer in the Ath group
at 7, the number of sample interviewers to be drawn in this group will

be m, = nyfA,, and m, will also be a random variable.
Let

%ni; = & particular response obtained for the Jjth sample unit when
interviewed by the ith sample interviewer drawn from the Ath
(population) group.
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I e Fis
2 2 2Znige
Fom Lot 4 7.7
(1
The summation for & is omitted because only one response is recorded
for any individuat in the sample.
Contingent upon drawing a unit from the Ath group, the probablhty that

Xpon = Kpigp 15 Py and there are n, values of @,,,;. Thus

Ny My O\
L
P ACHA AN L\
Ef=2t— N7 (1.8)
n % N/
_/’*.k .
Ey (0,50 = En[nnEn(xmklﬂh)] = Eﬂ(”}a‘XD ’ (7.9
where _ o\
M, ¥y My K/
_ z 24 Zthj'k hiik Z\%kaf
X = ; . (7.10)
M WV ..\ “M,N, -
ZX}E.&(”R)
" Therefore Ef = f——n—- (7.11)
Since ) ‘~5L
aN,
Eyn) = _—‘h
\s,,,
p. L M. Ny,
N, X %,
”\'az Z 7 M“?Jz - =X (7.12)
SO N N '
£ 3
,\\"' 11 f T . «
R\ : 2 2 2%k _
Ny o= Eit— X2= E\2td— . ¥ (7.13)
~\J ' n
5
S1“0 evaluate

L m. 2
Z Z zxmjk .
2= E L T E

1

we shall make repeated applications of Theorem 15 of Ch. 3 (p. 63).
First, let us assume that condition 4, is that the sample of households
and the sample of interviewers assigned to the households are fixed.
Then, from Theorem 135,

0% = Eofs, + o, | (7.14)
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Now, since
L i s?xl L fhn E\ _
2 Z 2% sk 2 2 2 X
E\A—2—"d|pf =2 ‘nf (7.15)
n

it follows that

LR Loms 2
2 Z Zx?aijk 2. Z ZXM;
0‘325|3;le L I S | |b1

n n ~
1 L my iy _ 2 a :
=3 2 . Eyi [[Z(xnﬁk — Xm)] I 51] ()
now i £\
1 L ) ETY _ (N.}‘.
=2 2 > Enif(Tae — Xpe)® D
A1 “\
1 Zm i - ¥ -
+ pr3 2 2, 2, Epgj o (Cnip— ;X?ﬁ})(xmw“‘ Xuie)  (7.16)
kot few \ &

where E;; represents the conditional expe’qtt,eil’ value for the interviewers
fixed, E,,, represents the conditional expected value for ith interviewer in
the sample and jth household in thesample, E,;; , represents the con-
ditional expected value with theyjth and wth sample households fixed.
Then, Eq},, where o}, is giv{m by Eq. 7.16, is

o 1 L m, 7, 2% &
—— —— —_— 4 i ]
Eogp, == EZ IY; NEM;E(xhﬁk ~ Xpip)
h MMy NgN
<"
1 szm Fﬁ_h Ay~ 1M Xy

+ ;"\; M, N, N, — 1 22 Eyis o Ensix — inj)(xkfvw_ Xoiv)

A\ PR (7.17)
and sincg \"
\\ D Emfi, = En, = n X;I
we have
. 1 2 1 3m _
Eﬂzlb1 = n_fcr Zk: E ; ; Epif@yin — Xnipl
1 LA, —1 1 M2 _ -
+ nN g N,—1 M, Z é Enis it — Xnid@nion — Xy (7.18)
h ot J [

To complete the evaluation of o2, we must evaluate O%zpy» the second
term of Eq. 7.14.
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Now E(&|by) is given by Eq. 7.15 and

L my 7, _ 2

% E ZXM:' _

Opapy = E\—L——X (1.19)
e

We can again apply Theorem 15, Ch. 3 (p. 65), to Eq. 7.19 with the con-
dition b, that the interviewers in the sample are fixed. First, let

Lty By _ . O
2,2, 2% s O\
Foe=rid N
« N
Then ,\§
k) = OF RAZ (7.20)
NN
Now, from Theorem 15, N\ 4
 od = Eody, + ohly” (7.21)
Si "
ince L:m{:}
,’Z E_:ﬂhXh:
B(E |by) o . (1.22)
where ) N\ .
:\\ ZXMf
'S ¥. =2
\\“} ki Nﬂ
then ”'ﬁ:;
"';fmnr'al_ I}m;__ 2
O {22 2% ZZ% &i
0,2 \;';\E h i A i | bz
’r{bi" n an
O\
s?a” l AR fia _ _ 2
'"\;”\a 2 2. ZEM [Z(XM; - an):! (7.23)
\ Bt i
/ _ .
1 Lo Z(Xhi.f_ XM)
e i
=— A
nt % 2{ " N,

1 Lmg, A —1 g T e WX — ¢ )|
=53 == 5 M Ariv L
+ 4 k Nk 3217’( "

and since

Emhﬁh = Enk =4h _A_I
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we have
1 L 1 Mo Ny

Nn A Mh P
I 21 A— 1 & _ _
— b'e N KXo — X)) (524
N.’I A JM’;A Nh__ I %: ;Zv( hij = J'u)( hiv .Fu) (" )

and to complete the evaluation of ¢%, we must find Ok, it Bg. 7.21,
From Eq. 7.22

EU- ]bl

Loy N\
ZZF‘.&XM £\
E(flbg) _ \. \,,“\(»-‘;‘25)
n @
and N\
Loy 2 PN :
2 Zﬁth 1. R4
hrpy = B\t = XLV (7.26)
7 \/

If we now let E(¥'|b,) = &", we can again a } Theorem 15, with the
condition &, that the number of 1nterwewe1's is fixed. Then

) O3 = ng'[a,ﬁ?;?'};(z "1bs) (1.27)
Now N\
L Tl ..:ﬂ.fn"_ L
. 2 m” v My
EF by =22 1 . 2 7.28
@1b) \\ n n (7.28)
and LAY
O\ L s _ I _Z2
2}' %Zﬁh){hi ?ﬁ-‘:Xh
G b, = E * . — = . | &5 (7.29)
{o\i.
A N/ 1L [m 2
& N\ = ‘_E thHE [Z(X?n, - X-‘J):I
NN oy i
O 1 % A,
&\ 4 L omy, M _
N/ = %ﬂﬁ o, é(Xm-— s (7.30)

since E(X,; — X)(¥,;— X,) =0 when the interviewers are selected
independently (i.e., with replacement).

Now, since
Emyfi, = FEn, =n Ny
REh ) N
My
"y 1 £ Z(XM - Xk)2 .
Ec3-, N%n N, £ i, (7.31)
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and

L 2
(;n ' ) (Zn,aX ZN X,,')
0isrny = E L - —=F -
B(#"ibs) . N (7.32)
L_ fn N
= F X & i&)jl
[% “-(r N
L_. {n, N2 Lo {m NN - (n, N,
= FE Xﬂi(_"‘__._-’i) E X(J__“)X_(J_._J) ¥
%’n NJ“;,%*“H w5 G 0B
Now, to evaluate Eq. 7.33, we have for the first term \ :‘~,,\’
n, N N—n L_.N Ny AT
B (-
2 n N (N— Dn ,a* "N NS °
" w\"
N—n L_, N, Nsn o  NE

(N—l)mX"N {1){— 1)n§ NP

To evaluate the second term of Eq. 7. 33 we: ﬁrst let

The second term then is

E z )?,knk\Xn _ 3 ETAT,

i b
N\ : 7 o
.\”'x” :hz E(EXR ; nf)
O #5
Since \x\"
"."\'§~; Znh Z!I =0
the\s'f%-fénd term of Eq. 7.33 is equal to
—N\ N
No \ N—-nLX.,X,_Af_j(N ,) h_
_ké_aEXka (N—- N,-) ST WD NN N JN-R,
& ? Lyape
(ZN?&X_}}) ZNPAXJ‘J
_ N—n %')Z-Nf{\r—” __N—rz _ _nNg
T WSe NN @Dl N
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Combining the evaluation of the first term of Eq. 7.33 with that of the
second term, we find that Eq. 7.33 is equal to

!f
SN, X2
N—n (%‘ A h—XQ)
(¥N— Dn N

and for N large relative to #, we have

L
2Ny(X, — X O\
2 ?
N e ’\:\(?-34)
We finally have, collecting terms, N

\/

of = Ed}y, + Eogyy, + Eofry, + Ufzs(f“ma}m( o3 (7.35)

where the terms in Eq. 7.35 are defined by Eq. 7.18, 124}731, and 7.34,
Equation 7.35, after considerable algebraic manipalation, reduces to

My K, B ) :1\\3
1 XN, Z ZEhx‘i(xﬂ:'ik—' X)? A\ Qg
0’3 ==7 hi N\
ny N MN, Y
N O » _ -
1L N, E _;;}ERB,«;(%%— XX Zpi0 ~ X,)
-2\, — 1 Lt 7.36
* g(n" N Ve M,N(N, — 1) (7.36)
Now let \\
‘M-'E N _
L Nu\z ZE-’za‘j(xh:'fk — Xy
et ——J = g% 7.37
R M,N, 7x (7.37)
We note that "
\ M, ¥, _ _
N\ Z z Eyii o @iy — X)) @pin — X)
W ooy = I 7.38
\' e MuNYUN,— 1) (7:3%)

’"\‘ N/
is the average covariance among the responses for a given interviewer.
Then Eq. 7.36 can be written

A b

(7 — DN,y 1
N
where o% is given by Eq. 7.37 and o, 5, by Eq. 7.38. Assuming

1
2 2
i = -g% |
z -.’I X

Wl e

(7.39)

ﬁ-’i: =

Fl=
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for all /4, Eq. 7.39 becomes

1 o '
~(0%— ox) + f (7.40)
where
o ZN wOrxr
XI="
c. Estimates of variance from sample results. Let ~
Ty Th - . L3 _ = \
g é(xm - By g(xm — &) ¢ ":\'
s = — \\ 7.41
X 1y, my— 1 4D
To prove: “'(”'5
Estyx = oty = E@— K '\\ (742
. . \ &
Proof. . N
M Fa ma Tin
2, 2@y — Tpol 2 Zg;_,zm\ thf
J o DE—— R T Ky (7.43)
i, mnﬁn iy,
Since _ o\ -
E:EM = Xh_ aﬂdv ::;Ea:hi - mhagm'i" X%
Bq. 743 = a8y + Xi—moi— X}
SNk — Mo, (7.4

N\ )
Moreover, from Sec\z \Ch. 6, the expected value of the [ast term in
Eq. 7.41 is '

£ )

THa
<" (@& — &)

O i =yl (7.45)
- ’\ £ m, — 1 BE
Thereforey ™
S Edty = dix (146
Foprove _

QX Esnx1 = Oxxr (747)

where .
B lZ(ffu' — ) B 2 Z(xw — &) (7.48)

axzr = m,— 1 m}ﬂn(ﬂn 1

Proof. From Sec. 2 of Ch. 6

ki _
Dl — &)
E : = mkogn
mh - 1

(7.49)
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and ) )
Z z(xm';' — Tpe)? Z szﬁ Z‘f}:;
L = —— (7.50)
(i, — 1) m (i, — 1) my(i, — 1)
R Y .
mi (i, — 1) #,—1  #—1 '
and " A
=2
¢ md, | W <
- =" -} = WS A.52)
ma,— 1) a4,—1 A —1 O :
("}‘.

and from Eq. 7.49 and 7.50 we have

2 712 o\
E _ Inx M2 0NJ

th! - = 2 1 = ]

P = Ny
From Eq. 7.39 ¢*{
2 3 —_
2 Ghx (7, — Dasx:
Gz, = -+ 4

iy R
Espx; = Eq. 7.53, and, substituting gt 7.54 for o2, we have

Essgr = Ouxy

To prove: N\
¢. O\ L _ _
\ A\ DN (X, — X)P
S NEsty =t
&~ N
where AN
'S x-S Lafn—n)m™ .
A\ 1, (E, — )2 — S (T — E )
Q- IR
AN bx n—1 nin—1)

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

o \Y
FProgf. Now the expected value of the first term in the right-hand side

of Eq, 7.57 is

I A
S =2 Sna
E = F —_ E 2
n—1 n—1 n—1

F
o n?a(ggn + Xr%)
=F

n—1

n -
Ta_ @D

(7.58)

(7.59)
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5.
N, X
:n%&(ﬁ—l—n;kh— RN
a—19N ™ n—1 N " p—17% n—1
L
Ny, — X
I;N z ) h
— n Z_hﬁ'i"i" I _ 0"2
n—15 N ™ n—1 N n—1
Since
L -
2y
F=12
il
* then, by Theorem 15 of Ch. 3 (p. 65), . @

L Loy
Zniﬂék | 2mX &
=Et—— 4+ E\4—& |
. . n v

e

Since, as shown above, En, = n(Nh;’N), it f@lto\Ws.that

zx zmm be
. A NS s

A

n . . Nn
We have - B '
Q z-”-’n“m SNE,— X
h .
o’_% y R s+ N
\ H
Therefore
N SN, — TP
Z”h(ﬁ?ﬁ\(‘ {E) n LN, n % (X
S -_—
E ’\M‘, l H—— 1 ]ZA g.ﬁ o 1 . N
R\ Lo o
A ' 1 L SN{(X,— X)
U - R
\M\) _n(n—- I)E%nkah _ Nin—1)
Now
Z(xf — &) I ¥
- — — g{fa
zn?‘(n—n"‘) mp—1 E%ﬁ(f____t-
E w(n— 1) n(n—1)
L < 5 3
Srnos, 210%,
—E*X —~E-Z
T Tan— 1) nn—1)
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(7.60)

(7.61)

(7.62)

(7.63)

(1.64)

(7.65)

(71.66)
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L L
203 a3
Hoow ) K
-~ F
n—1 N nin—1)
Hence from Eq. 7.65 and 7.67

L d— —
2N(X,— XY

Es?, =2
[5's N
Thus, if we let
L L
%"nﬁx %(ﬁ »— DnySaxy ng
52 = =2
‘ nt + nt T n

Ch. 12

{7.67)

(7.68)

N

’ i ) N
n" .(? 69)

where s is given by Eq. 7.41, 5, x; by Eq. 7.48, and sbx\by Eg, 7.57,

...\\
A &Y
%Nhgix z(nn D)N,o5 3 ":g.gl
Est = — 24
z nN +_ nN .‘f} T H
= 2 \
= g2 ».

sz can also be written in the forms: 4%

L my Ay A A
Z Z z(ﬂ”m — fﬁ)i"v 20— DysSpx s
s3 = + 2
n(n — \b) mn—1)
and QO
1 L
"gg"(ml_l)‘ Z(xm R Im(E, — £)?
52 4 aan(m, — 1) +- )
"\'\” nin—1) nin—1)
When L = 13
RN\ LR
{\’::“ \ %(x{_ z)
a\ . 55 = S
) mim— 1)
If A, = 7 = njm,
L
znhSkXI
Sxr =
n
L m, o L m R _
Z 2 (& — F) > Z 2(@pi; — Tpy)
_ I3 mh_ 1 4 L

(7.70)

(7.71)

(1.72)

(1.73)
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L
. %”hfgx
— P
Sx n + 5z
L wm # . L o, m
2 . 2@pgy ~ Eg)* 2 2(&y — EP
R i Fm,— 175
= +
n m
L _ L n—n, ™ y”
om(E,— B YA 2 2(Ey— I, \
) Fom,— 175
=+ — C
n—1 nrn—1 D)
7"\
Lom & )
2 2 2wy — 2P = N R
R n—1 ¢*0
= 1 + n—1 Sx7r ‘..,}\\ (774)
L my R A\,
2. 2 2@ — B i1 ‘O
g BT BT sy O (1.75)
rnr—1) n—1 O

d. Variance of a mean with a gféué?e sampling design. ‘This section
considers a case where n individua]‘sﬁre drawn at random, and from these
» individuals, 7 individuals areassigned at random to each of m sample
interviewers (mz, interviewef$\from the hth group). For this sample we
obtain responses %,,; gud¢r essential conditions X. From the # sample
cases assigned to cac}\ Interviewer we subsample at random 7 cases,
giving a total subsample of n” = m#’.  We also have a set of L' interviewer
groups (which hay or may not be the same as the original interviewer
groups). Of the subsample cases 7, are available for interview by inter-
viewers in\the pth of the L’ interviewer groups. We draw my(= m'my/n’,
Where.r'ﬁ’ i% determined in advance) interviewers from the pth interviewer
group’ and assign at random to each of these sample interviewers
(S n'fm’) individuals. The second set of interviewers obtains responses
2pe; under essential conditions Z from Each of the #' individuals in the
subsample. We use as an estimate of ¥, the true population mean,

5 — “_7:2‘: (7.76)
T
where
L oma @
Z Z.za:?m

Sl .17
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L my &

2, Z wa
F=tid (7.78)

Fi

I owm'y
Z Z _z;m:‘
St ___ P g

R

'-aM‘al

The expected value and variance of £ have already been derived. The
expected values and variances of £° and 2’ are identical with the yalues
for a random sample of ' cases drawn without reference to the sample

of n cases from which & is calculated. Thus ()
O
L 1 X _ \ W
; }l_cf_z 2% RO
g —x=rMig T 0 19
EE X N A (7.79)
where X,,; = the expected response value for fhe jth individual in the

population interviewed by the Gth interviewer in the Ath
group under essential conditions X,
and S
LN, N,
))ﬁ? % : Z:an (7 80)
F =722 7 ;
~ N
where Z,,; = the expected( response value for the Jth individual in the
populatiaqi.i?nterviewed by the gth interviewer in the pth
group amder essential conditions Z,

Using the usyal< ﬁf)proximations to the expected value and variance
of 2 gives /0~ '

O~ EENEZYy XZ
A E: = %)—- =5 =2 (7.81)
AN 2 2 o

~O 2 . oy |0Et 0k — 2050 | o7 _ 2opr— crﬁ,)] 789

Since ¢, = o2,
£ Fa . i~ 0—2, — g:% 0’%, 2(0';512—1 —_ 055') 33
A B T T (7.83)

and

MSEZ = (Z— P2 + of (7.84)

It will be noted that the bias of 2 is approximately (Z — ¥). Thus, if
Z is closer to Y thanis X, 2 may be a better estimate of ¥ than %, even
when the variance of £ exceeds the variance of .
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As previously noted, the variances of & and Z° are the same as the
variances when the subsample of »’ is drawn independently of the sample

of n. Thus

We also have

where

and

Thus i"\ S
/"\ Ne”

where

2
Ox —%xr , 9x1
e 7.85
2 " + " (7.83)
O — O a
ot =L —-H L 2 (7.86)
n m
- :
of = ETIX | O RELN
. H m t*\.
NN
~

' EZ7 = 0 E(@250) + 70— DE@%00) "5&\"/
= 0 Byt + 08— DXZ o 0 (e8)

Z \:“\s\\o
Efs' — B2y p0) — X + 77 \Y (189)
. PN
Oy == 7xz '\ (7.50)
n "
N ~
N ZXka
Oxz = E(x.hr pa{) XZ = - Xz (791)
:\\
N )
(n'm’é' S Baytpes 10— DB (1.92)
& N Bty + 00— DEZ (1.93)
='\?\ _Ixz . (7.94)
\d Ogy = [}
n
v v W 705
a§=za(;+;,+;n—,) (195)
_20xz ok~ 9x1 _ (7.96)
- X2
L k. (7.97)
22
9 | (1.98)
W=
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Unbiased estimates from the sample of o% and oy, have been derived
above. Estimates of ¢% and a,, will have the same form as those for
o and oy, using the values z,,,, As an unbiased estimate of Ty
we have

N

?xhﬁ“rm nr's
i — 7.99
Sxz n—1 -1 (7:99)
I s n > Uxy _
ESXZ = n’_.__._l (E:t'_,“j..mj E T2 - .,_‘_I' —_ I (04\'2 + XZ - '_”; N x&)
= Oyy ~N(7.100)

e. Variance of estimates of response bias. We have cotisiglered the case
where samples are drawn as described in Part d (‘doublc sumpling”
design), and it can be assumed that 2 = ¥, In:tRi$ situation estimates
of the bias of & as an estimate of ¥ are N

Ve \‘ (7.101)

.

5\-:5'3

and

w {) m

3
b\' :1:

(7.102)

Thus 5y is an unbiased cstmlmc OFIhc response bias B, (= X —2)

The “ratio” estimate b is a.€onsistent estimate of By. For the variance
of by we have \

\ o = 03 + ok — 20, {7.103)
Substituting valuc&obtmncd above for o}, 6%, and o,; gives
:'\“’ o
ok —oxr oy, | 0h— Oz1 | Oz1 20y,
A X OXr | Oxp 927 Oz1 | Tz1 9%z 4404
\t{k‘ n T m 1 + m’ n ( )
For thg Variance of 3, we have
\ o = o+ of— 2ug (7.105)
and
O = Tysr (7.]06)
Thus
o%x = a'g.r -+ g%—- gzg, (7.107)

1 1\ {20 ai — @
(1Y) (r_gen) e
b noon Xz Xz (
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Confidence limits, for estimated stand-
ard deviation, 104
for medians, 247
for order statistics, 247
for ratio estimate, (09
Consistent estimates, 72, 74, 75, 120

or two-stage

176, 193,

standard  deviation,
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Convergence in prebability, 72, 107
Cornfield, Jerome, 262
Correlation coefficient, 55
of sample means, 96, 122
Cost functions, see Optimum allocation
Covariance, 517 sce also Variance
conditional, 63
of linear combinations, 57
Cramér, H., 38, 42, §9

Dalenius, Tore, 141
Deming, W. E., 120, 141, 176, 281,
325

Dependent random variables, 42
Difference cstimates, 250, 272
Double sampling, compared with sim-
ple random sampling, 256
to reduce response bias, 299, 321
with regression estimates, 254
with stratification, 257
Double summation, 11, 13

Dugplication of a subset of elements,

139

Element, 1, 5, 6 )
Elementary event, 15
Elementary unit, 3
Equal probability selectlon mcthod 17
Epsem, 17
Estimate, 7 "
Estimating varianggy, isee Variance esti-
mates \
Evans, W. Dt&me 262
Event, 16\
Exhaustive &vents, 28
Expf:r\tafi'on, 44
~eonditional, 59
pected response value, 284
Expected value, 39, 44
intuitive meaning of, 43
theorems on, 4669
conditional expected values, 61
conditional variance and covari-
ance, 63
linear combination, 4%
product of independent wvariables,
54
sum of random variables, 48
variances and covariances, 56, 57

o

N\

Feller, W., 38, 42, 89
Ficller, E, C., 109, 120
First-stage sampling units, 5
Fourth moment (g,), 9%
Frame, 1

Frankel, L. R., 141

Ghosh, M. N., 175
Goursat, E., 132
Gurney, Margaret, 109, 141
'\

Hansen, M. H., 204, 235, 244, 279,

280, 325 e\
Hedrick, E. R., 132 ’\’\
Horvitz, D. G,, 204,
Hurwitz, W. N., ~"04 235, 249, 279,

280, 323\\

Independentievents, 23

Indepcngk}u random variables, 41, 54
Ingiadh Statistical Institute, 295
Ijterviewer effect on  variance,
) 310

88,

N Interviewers, optimum number of, 294

Intraclass correlation, 164; sce also
Measure of homogeneity

Jebe, Emil H., 235
Jessen, R. 1., 175, 193, 279

Kendail, M. G., 33
Keyfitz, Nathan, 234, 235
Kurtosis, measure of {8), 99

Lagrange multipliers, 132

Large psu's, 205,

Latin-square design, 262

Limit, rapidity of approach to, 85

Linear combination of random vari-
ables, expected value of, 49

variance and covariance of, 56, 57
List, 1
Listing units, 143, 165

Madow, L. H,, 279

Madow, W. G., 76, 279

Mahalanobis, P, C., 176, 281, 2935, 296,
325

Markov inequality, 70

Marks, Eli 8., 176, 280, 281, 325
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Mathematical expectation, 39-
definition of, 44
theorems on, 46-69
Mathematical model for response er-
rors, 281
Mauldin, W. Parker, 280, 281, 325 -
McCreary, Garnet E., 176
Mean square error, 51
Measurable sampling plans, 33
Measure of homogeneity, 157, 161, 222
estimated from sample, 163
extreme values of, 169
for frequently occurring popula-
tions, 168
for ultimate clusters, 165
intraclass correlation, 164
relationships among measuies of, 170
Median, confidence limits for, 247
Midzuno, Hiroshi, 204
Moments, 81
fourth (p4), 99
divided by variance squared (8),
99
Mood, A. M., 248

pling A
Multi-stage sampling, 5, 203; see also
Cluster sampling ¢ \

Mutually exclusive evcnts\i{g\

Neyman, I., 141, 2795\,
Niclsen, A. C., Co303
Nisselson, H., 280,281, 325
Nonprobability sampling, 9 .
Nonresponse, 237, 282
Nonsampling errors, 280
Nornaal limiting distribution, 76
a‘;lon cluster sampling, 142, 205
simmation, 11
Null event, 27 _
Number of possible samples, 31

Qperation, 15, 16
conditional, 24
Operations, number of possible results
of, 36, 37
Optimum allocation, double samp]mg,
with regression estimates, 2534
with stratification, 257

Optimum allocation, for call-backs on

expensive units, 257

for time series, 274

for two occasions, 269-272

minimizing total survey errar, 298

of a subsample for estimating vari-
ance of a stratified sample, 239

sclf-weighting three-stage stratified

design, 223

simple two-stage cluster sampling,
172, 173

stratified one- and two-stage{ clqster
sampling, 192 AN

stratified simple r'mdurn* gampling,
132, 135 (’w,

gains over progomonate sampling,

134 ~

variance at opnmum 134
stratified twosYor more stage cluster
sapipling, 187, 188, 200, 223,
o
whenvaniform over-all sampling frac-
“tion {3 optimum, 234

&\ with complex cost function, 173, 188,

Mulii-phase samplmg, see Double SN ,‘ 3 223

with optimum weights, 265
with simple cost function, 135, 172,
187, 192, 197, 200, 232, 255,
259, 293, 301
with varying probabilities, 197
Optimum probabilities, 197, 200
compared with stratification by size
of psu, 200
Optimum weights for estimating a ra-
tio from a stratified sample, 265
Order of convergence, 85
Order statistics, confidence limits for,
247

Pairwise independent, 42

Palmer, Gladys L., 323

Patterson, H. D., 279

Permutations, 20, 36, 37

Physical properties of frequently oc-
curring populations, 163

Population, 1-6

Poprdation Sampling, A Chaprer in,
176, 204, 249

Possible result, 15, 16
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Precision, 7
Primary sampling units, 5
Pritzker, Leon, 281, 325
Probabilities, optimum, 197
Probability, 15
conditional, 24, 59
limits with Tchebycheff inequality,
69
of event, 16
of selection, 16
at ith drawing, 30, 91
variable probabilitics, 62, 194
proportionate to size, 62, 213
selection by, 18
theorems on, 15-38
Probability sampling, 4, 9
Probability selcction methods, 16
Product event, 22, 27
Product of random variables, 54
Proportion, rel-variance of estimated
standard deviation, 1035
sample size needed to estimate stand-
ard deviation of, 105
vartance of, 53

Proportionate stratified sampling, 124 %

biases of alternative ratio estimatesy
126 n
compared with optimum al,lcic’:ation,
134 ¢ N
gain due to stratification\J30
Randam event, 42, 6\]}65
possible states, 42:'
relation to ;z\rlzq%m variable, 43
Random gngp’estimate of variance,
2400\
rel-vagiance of, 241
Randf)ﬁk grouvping of clements into
\ ; strata, variance between stratum
means, 131
Random numbers, 33
Random sampling, with replacement,
20, 41
without replacement, 18, 41
Randorn variable, 39, 40
funciions of, 44
relation to random event, 43
Ratio estimate, based on weighted av-
erage of ratios of random vari-
ables, 125

INDEX

Ratio estimate, bias, approximation to,
112
bias of, relative to standard devia-
tion, 113
compared with simple unbiased esti-
mate, 116
comparison of biases of alternative
ratio estimates with stratified
sampling, 126
conditions when unbiased, 114
rel-variance of estimate of variange,
17
some special ratio estimatg§, 225
variance of, 107; see e “Cluster
sampling L
in terms of meakurg of homoge-
neity, 161, 222
when appro’:?ihation is good, 108
variance ab\\dltcrnative ratio  esti-
mates Avith stratified sampling,
14125, 128
Ratig¥of random variables, se¢ Ratio
\.) estimate
_Regression ceefficient, 253
SRegression estimates, 250, 254, 208
Rel-variance, 51; see also Variance
Replacement, sampling with, 20, 41
sampling without, 18, 41
Response errors, 280
choice of design to control, 289
compensating and uncorrelated, 305
effect of, reflected in variance esti-
mate, 293, 305
individual, 285
interviewer contribution to, 288, 294,
295
rathematical model for, 281
response bias, 285
role of, in determining survey design,
280
variance of estimated response bias,
324
Restricted  sampling  designs, Latin-
square, 262; see also Cluster
sampling; Stratified sampling;
Systematic sampling
Root mean square error, 51

Sample, 4, 6§

Sample design, 7
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Sampling error, see Variance
Sampling fraction, 92, 144, 207
Sampling plan, 4

Sampling unit, §

Schumacher, F. X., 176
Second-stage sampling units, §
Self-weighting sample, 197
Sequence of estimates, 72
Shrivastava, M. P., 294

Simple one- or more stage cluster
sampling, 142f.; see also Cluster
sampling

Simple random sampling, 1%, 21, 32,
90ff,

compared with stratified sampling,
31, 130

Simple unbiased estimate, 119, 144,

207

Size of sample needed to estimate
standard deviation, 105

Skalak, Blanche, 173

Smith, B. Babington, 33

Stage of sampling, 5, 142

Standard deviation, 51; see also Vari-
ance

coefficient of variation of estimated)

104
confidence limits for estimatedy, 104
rel-variance of estimate%lzpz
size of sample needed to estimate,

105 -

Standard error, segStandard deviation
Stephan, F. F., 139~
Stock, 1. 8., 04h
Stratiﬁcatio\m}ﬂhcr sampling, 138 .
by sizeof psu compared with opti-
onitim probabilities, 200, 202
{ffept of, with cluster sampling, 185,
227
when to equalize size of strata, 215
Stratified sampling, 30, 1211
bias with ratio estimate, 126
cluster sampling, see Cluster sam-
pling
correction for bias in estimation of

total variance, 138
optimum allocation to strata;, se€

Optimum allocation
proportionate  stratified

124

sampling,

®

331

Stratified sampling, stratified simple
random sampling, 30, 121
compared with simple random
sampling, 31, 130
estimate and variance, 57, 121
gain from optimum allocation, 134
gain from proportionate sampling,
130
precision of estimated variance
within strata, 239 N
proportionate selection, 31
variance with optimum allpgation,
134 _ AN
substratification  with clustet sam-
pling, 205, 206 £\
to control variation Ag® size of psu,
200 N
with double samipling, 257
Subsampling, S \32
Subset, 4,, 1678
of a pa}uiétion, 106
" variagee of an average or total for a
“subset, 114 ’

Suabstitution to accomplish weighting,
N 135

Successive occasions, sampling on, 268,
272
Sukhatme, P, V., 141
Sum event, 26-27
evaluation of probability of, 28
Sum of random variables, expected
value of, 48
variance of, 56
Sumimation netation, 11
Soms of powers, 77
Survey design, 8
Systematic sampling, 21

Tehebycheff, 62

Tepping, B. I, 173

Thompson, D, J., 204

Thompson, W. R., 248

Three- or more stage sampling, 182,
205ff.; see aiso Cluster sam-
pling

Time series, sampling for, 268, 272

Tota} variance, estimate of, 138, 151,
157, 180, 216, 218, 291

Totals, estimates of, 194; see afse Ag-
gregates
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Travel cost, 188, 191

Trend, estimate of, 269, 271, 274, 276

Frue value, 8, 282

Tschuprow, A. A,, 141

Two-stage sampling,
Cluster sampling

142: see also

Ultimate cluster, 156, 293
estitnate of variance, 156
measure of homogeneity for, 165
Unbiased estimate, 46
Uncorrelated but dependent variables,
55
Uniform sampling fraction, 144, 207

Variable probabilities, 194, 208, 213
adjustment for changes in, 234
optimum, 197

Variance (alse rel-variance and co-

variance), 50
comparison of P2 and V2, 202 .
components of, or contributions to,

144; see afso Cluster sampling | ™
conditionzl, 63 o

contribution to mean square crréf';
51 N

estimates of, see Variance"cstirﬁates

for cluster sampling, sée ™ Cluster
sampling ¢\

for double samplin‘g,\§i54, 257

for simple random Sampling, 92, 96

for stratificatipndafter sampling, 138

for stratiﬁqusahlpling, see Stratified
sampling; Cluster sampling

in te{x\{s"of measures of homoge-

wmeity, 161, 222

gf\"dit"ference estimate, 250

<‘9t’ estimated coefficient of variation,
236 ’

of estimated rcl-variance, 236

of estimated standard deviation, 102

of estimated variance, 99, 117

INDEX

Variance, of estimates for subsets, 114
of linear combinaticns of random
varinbles, 56
of ratio estimates by subclasses, 225
of ratios of random variables, 107,
see wlso Ratio estimate; Strati-
fied sampling; Cluster sainpling
of regression estimate, 251
of simple unbiased estimate com-
pared to ratio estimate, 119
with optimum allocation: {34, 137
with varying probabilities, . 194, 203
within and between stfé\ﬂ} 120
Yariance cstimatcs,'fqr\ cluster sam-
pling, see C(Itlsi.cr sampling
for simple ragdem Sampling, 98, 120
rcl-vxiriqncfs.\cf estimated standard
dewiation, 102
rel-vabiance of estimated variance,
<a
‘f('is stratified simple random sam-
pling, 137
from random groups, 240

precision of, 99, 102, 105, 236, 237,
240

with koown stratum means or totals,
246

Variation in size of cluster, conirol of,
194

Varying probabilities, 18, 62, 194, 213

Weighting, by random substitution, 139
optimum weights, 265
Welch, Emmett H., 325
Wilks, §. 5., 248
Within strata wvariance estimates, pre-
cision of, 237 )
Woodruff, Ralph §S., 247, 249

Yates, F., 176, 279

Zacopanay, 1., 176
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