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PREFACE

In constructing this book the author has endeavored to combine the {reedom,
scope and informality of modern methods with the substantial qualities char-
acteristic of those “old reliable” textbooks which have stood the testeof Sime
and evervday use, livery effort has been made to develop the text with elarity,
precision and a reasonable degree of rigor. \ )

Many of the theorem proofs have an algebraic form and flavor, and ocea-
sionally simple Lrigonometric relations are employed n ordel;.‘éé"i-‘rchieve resulls
graccfully. The text is accompanied by a genuine abundande of exercises of
all types and of varying degrecs of difficulty, includingrymerous exercises in-
volving geometric proofs as well as those requiring computations. These exer-
cises commence at once, the earlier ones serving to/iiduce the student to think
in three dimensions at the start without bemg‘@’c}rﬁcimls of tackling a task too
utterly new to him, W

The arrangement of the entirc book isguch as to provide ready veference.
There are cightecn chapters, cach one hg:i'r;é; the cxposition of one principal idea;
and each important item — whether @ 'not it constitutes a complete paragraph
or scction — bears o number (§3The author is aware of the importance of
flexibility in the use of the book;"&\ﬂd thercfore has sought fo provide a texthook
which is adaptable not onlyde a full course in the subject but also to a con-
densed survey. ‘‘Solid Gtometry Made Fasy” is distinetly not the motif.
Nevertheless, all matéxislis presented with the intention of bringing it within
sure reach of the stupll:ﬁt who is willing to read carefully and thoughtiully and
follow directions €1bll honest effort and perseverance.

The four egneluding chapters (15-18) conatitute an introductory course in
Spherical "Iiﬁig‘nnometry with applications. Basic theorems are developed
rigorousty'as a natural and logical extension of the spherical geometry studied
at the g&d’ of the Solid Geometry scetion of the book. Here again a maximum
of fAlexibility is provided. For those whe require merely a knowledge of spherical
right triangle solution by Napiar's Rule Chapter 15 is suflicient. For those who
demand & medium length survey with a few interesting applications Chapters
15, 16 and selected portions of Chapter 17 may be covered. Chapter 18 con-
taing supplementary formulas for solving spherical oblique triangles and may
be tuken or omitted at will. If it is thought desirable the formulas of Chapter 18
may be acquired before the applications of Chapter 17 are discussed, although
the latter chapter does not require a knowledge of Chapter 18, For the study

m



iv PREFACE

of Spherical Trigonometry a knowledge of Plane Trigonometry is of couise a
prerequisite.

This book is a revision and expansion of the author’s earlier text (privately
lithoprinted) which has been used for the past three years in the Phillips Exeter
Academy mathematics department. All changes, omissions and additions have
been made with the intention not only of correcting the faults of the preprint
edition but also of meeting more satisfactorily the present day demands in
secondary school mathematics. To his colleagues the author makes grateful
acknowledgment of their eriticisms and suggestions which have been of great
asgistance to him in the preparation of this texthook.

Hengy L. C. LglsnToN

Exeter, N. L. AN
{ )
June, 1943 o\
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Rererunce Lists
Terms Used in Plane Geometry

Acute Angle:  An angle which is less than 90°.

Adjacent Angles: Angles in the same plane which have a common vertex and a
commen side between them.

Aliitude of Puralldlogram: The perpendicular distance between either pair of
opposite gides. \

Altitude of Trapezoid: The perpendicular distance between the bases,,

Altitude of Triangle: The perpendicular distance from » vertex o, \t-he.\opposite

side. \,
Angles formed by a Transversal (Fig. 1): N
Alternate-interior angles: e and ¢, or fand d. +*0 L/g

Alternate-exterior angles: A and b, or g and a.
Corresponding angles | | gand ¢, b and &,
{ Exterior-interior angles [ = fand b, ¢ and q;j\\'
Clo-interior angles: fand ¢, or ¢ and d. x\
Co-exterior angles: ¢ and b, or & and a.

Apothem of Regular Polygon: The radiusdof the
inseribed circle, or the per‘p[)l’l(.li(‘.l.]:l’a.i‘::diSt&DCB
from the center to any side. N Fia. 1

Are of Cirele: A portion of the cipeum{erence.

Bases of Trapezoid: The parallehsides of the trapenoid.

Center of Growity of Triangl A Fhe intersection of the medians,

Center of Parallelogram: Fhe'interscetion of the diagonals.

Center of Regular Polygoh” The point which ig the center both of the inseribed
and circumseribsd gireles.

Central Angle of e~Gircle: An angle with vertex at the center of the circle and
with a radinsNor each side.

Central Angiéﬁf a Regular Polygon: An angle with vertex at the center of the
polygoi;‘{ With a radius of the pelygon for cach side, and subtending a side
of Sk polygon.

Centroid of Trinngle: The intersection of the medians. (See Center of Gravity
above.)

Chord of Circle: A straight line terminated by two points on the eircumference.,

Circumeenter of Triangle: The center of the circumseribed eircle.

Cireumscribed Polygon: A polygon having cach side tangent to a given circle.
(Here the circle is inscribed in the polygon.)

Complemenis: Angles whose sum is 90° (usvally two angles).

Concentrie Circles: Cireles having a common center.

v




viil SOLID GROMETRY AND SPHERICATL TRIGONOMETRUY

Concurrent Lines: Lines passing through a common point.

Concyclic Points: Points which lie on the circum.‘ference'of a circle.

Congruent Figures: Tigurcs which can be mado to coincide.

Conjugates: Angles whose sum is 360°.

Conwex Polygon: A polygon each angle of which is Jess than 180°. (A polygon
is conecave if it is not convex.) .
Cyelie Polygon: A polygon with all vertices lying on the circumference of u circle.

Degree: An angle which is g of a right angle.

Degree of Are: An arc of a circle which subtends a central angle of 1°. A degree
of arc is 555 of any circum(lcrence.

Ezterior Angle of Polygon: An angle formed by one side and the extep{sion of
an adjacent side,

Ezternol Division of Line-segment: If BP is an oxtension of g lirm;s\e};\ment AR,
P is said to divide A B externally into the segments P4 and PEN ™

Hypotenuse: "The side opposite the right angle in a right triggglé’.

Incenter of Triangle: The center of the inscribed civele. 8 3

Inscribed Angle in a Cércle: An angle with vertex on &he circumferenee and
having a chord for each of its sides. \%

Inscribed Polygon: A polygon with its vertices on, the ‘circumference of a circle.
(Here the circle is cireumseribed about the xl;"}gon.)

Tsosceles Trapezoid: A trapezoid whose legsafeequal.

Tsosceles Triangle: A triangle having two gcﬁuz’ml sides,

Legs of an Isosceles Triangle: The two @t’ljual sideg of the triangle, -

Legs of a Right Triangle: The sides ingfading the right angle.

Legs of a Trapezoid: The two nons=patallel sides of the trapezoid.

Lamai: 1If the value of a variablésquantity z approaches the value of a certain
constant k in such o Wajg“that the difference between & and x becomes s
remains less than any}@eéissigned quantity, however small, then z ig said to
approach k as a limity

Loeus: The path ﬁnsnéérl' by a point which moves in aceordance with specified
geometric comditions. A locus is the place where there are all possible
points whieh\$atisfy certain given geometric conditions.

Major Arc ghe Circle: An are which is greater than a semicircle.

Mean propartional: m is a mean proportional between a and b if m2 = a - b.

Medz’@ftzbf’Tmpezoid: The line connecting the mid-points of the two legs.

Medign of Triangle: A line connecting a vortex with the mid-point of the op-
posite side,

Minor Arc of a Circle: An are which is less than a semicirele,

Obiuse Angle: An angle which is greater than 90° and less than 180°,

Qrihocenter of a Triangle: The intersection of the altitudes.

Paralielogram: A quadrilateral with the opposite sides parallel.

Parallel Lines: Lines in the same
may be produced.

Perigon: The total angular

plane which can never meet however far they

space about a point in a plane, that is, 360°.
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Projection of a FLine-segment wpon @ Line: If from the extremities of an external
line-segment s perpendiculars are drawn to a given line m, meeting m at
A and B, respectively, the segment AR is the projection of s upon m.

Projection of @ Point upon a Line: If from an external point P a line is drawn
perpendicular to a given line m, mecting m at A, point 4 is the projection
of P upon the line m

Radius of @ Regular Polygon: The radius of the circumseribed cirele, or, the
distance from the center of the polygon to any vertex,

Rectangle: A parallelogram with each angle a right angle.

Reflex Angle: An angle which is greater than 180°.

Regular Polygon: A polygon having equal sides and equal angles.

Bhomboid: A parallelogram whose adjacent sides are unequal and whot:e angloq
are not right angles. \

Rhombus: A parallclogram whose four sides arc equal and W]’_l(}bb an\g]eb are not
right angles,

Right Angle: When one straight line mecets another straight lfne in such a way
that the adjacent angles thus formed are cqual, eithér ‘of these angles is
called & right angle. A right angle contains 90°. 3¥heh one line meets an-
other line at right angles, the two lines are ‘nud tQ bé perpendicular to each
other. \

Right and Left Sides of an Angle: Imagine a perscm to be standing at the vertex
of an angle and looking out between the sides of the angle. The side ap-
pearing at the right of the observer is i;he right A
side of the angle; the other sideis th(' left side, )

In the angle ABC, BC is the ‘I‘l}:,hiv slde; B4 is
tha left side.

Right Triongle: A triangle one\ 0fmhose angles is a

right angle. N B c
Secani of & Circle: A ling, futting the eircumference Fia. 2
in two points. N/

Sector of a Cirdle: ’T‘E\“ﬁgule hounded by two radii and either of the ares inter-
cepted by ¢ \uadu

Segment of a Giele: The figure bounded by & chord and either of the ares sub-
tended, ’t{if ‘that chord.

Semicigfle;One-half of a circle.

Simelar Poi.’ygom Polygzons whose corresponding angles are cqual and ar-
ranged in the same order, and whose corresponding sides are propor tional
and arranged in the same order,

Square: A parallelogram with four cqual gides and four right angles.

Straight Angle: An angle whose sides extend in opposite directions so as to form
a straight line. A straight angle contains 180°.

Supplements: Angles whose sum is 180° (usually two angles).

Tangeni Céreles: Circles in the same plane whieh are tangent to the same line
at the same point.
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Tangent fo a Cérele: A line lying in the same plane with a given circle and touch—
ing the circumference at one and only one point, no matter how ff-l,r‘ extended,
Transversal: 1f & line ¢ cuts several lines @, b, e
ete., ¢ is called a transversal of the lines a, b,
¢, cte.

&> d Trapezoid: A quadrilateral with two sides parallel

and the other two sides not parallel.
Trapezium: A quadrilateral none of whose sides
Fic. 3 are equal and none of whose angles are coual.
Vertical Angles: The pairs of opposite angles formed
when one straight line intersects another strajght line.  In the figure a\and b,

or ¢ and d arc vertical angles. .

(\H
7'\
Plane Geometry Theorems G\

{The following theorems are not listed in logical sequer{ée, but are arrangetl
in classified groups for ready reference. Any p()l}-'gorlé’;}lentioned are convex
polygons.) | N

L. Congruent Triangles R4
1/ Two triangles are congruent if two dides and the included angle of one
are respectively equal to two,'sides and the included angle of the
other, o ‘ N S48 = 848,
2/ Two triangles are congruent: if two angles and the included side of one
are respectively ecqual fodtwo angles and the ineluded side of the
other. \ ASA = AS8A.

. e\ . .
3. Two triangles are gongruent if the three sides of one are respectively
equal to the thrée'sides of the other. 888 = S88.

4. Two trianglesiare congruent if a gide and any two angles of one arc
respectivéiyequal to a side and two angles of the other, AAS = 445,
5. Two right"triangles are congruent if the hypotenuse and an acute
ang@hf one are respoctively equal to the hypotenuse and an acute
angle of the other. HA = 1ITA,
'G{fvao right triangles are congruent if the hypotenuse and a leg of one
\\3 «/ are respectively equal to the hypotenuse and leg of the other.
HIL = HL.
L. Isosceles Triangles
7. Ti two sides of a triangle are equal, the angles opposite these sides are
equal.
A, Tf a trisngle is equilateral it is also oruiangular.
B. The bisector of the vertex angle of an isosccles tri angle is the per-
pendicular bisector of the base,
C. The perpendicular bisector of the base of an isoac

eles triangle
passes through the vertex.
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D. In an isosceles triangle the median from the vertex is perpendicular
to the base,
8. If two angles of a triangle are equal, the sides opposite these angles
are equal.
A. Hf a triangle is cquiangular it is also equilateral.

Right triangles
9. The mid-point of the hypotenuse of a right triangle is equidigtant
from all three vertices.
10. 1f the acute angles of a right triangle are respectively 30° and 60°,
the hypotenuse is twice the shorter leg.
11. I the hypolenuse of a right triangle is twice the shorter leg, Mthe
acute angles are respectively 307 and 60°, O\
12. In a right trinngle if an altitude iz drawn to the hypottgn@fs\é;
i) the triangle is divided into two right triangles which'are similar
to the given triangle and similar to each othazu;‘m"
ii) the altitude is the mean propertional betwegrithe projections of
the legs upon the hypotenuse; \¥;
ii{) either leg is the mean proportional hetseen the hypotenuse and
the projection of that leg upon thehgpotenuse.
13. Tn any right triangle the square of the hypotenuse equals the sum of
the squares of the two legs. QO
14. Il the square of the longest side’ 'of a triangle equals the sum of the
squares of the other two Hide'sj,"the triangle is a right triangle.
Triangles in General 2
’ifzb inequalities

15, 1f two sides of 2 ﬁ}aﬁglc are unequal, the angles opposite these sides
are unequal, afidb the angle opposite the greater side is the greater.
A. In any pciéhgle the angle opposite the greatest side is the greatest

anglef.\'“

16. If twd_ingles of a triangle arc unequal, the sides opposite these
angles are unequal, and the side opposite the greater angle is the

_eweater.
AL In any triangle the side opposite the greatesi angle is the greatest
N side.

17. If two triangles have two sides of one equal to two gides of the other,
but with the included angle of the first greater than the included
angle of the gecond, then the third side of the first is greater than
the third gide of the second.

18. If two trisngles have two sides of one equal to two sides of 1he other,
but with the third side of the first greater than the third side of the
second, then the angle opposite the third side of the first is greater
than the angle opposite the third side of the second,
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19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

.29,
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{1} Coneurrent Lines. Centers of a Triangle
The perpendicular bisectors of the sides of any triangle ni”ueet.- in a
point which is equidistant from all three vertices. This point is the
etrewmeenter.
The bisectors of the angles of any triangle mect in a point which is
equidistant from all three sides. This point is the fneenter.
The altitudes of a triangle mect in a point. This point is the ortho-
cender,
The medians of a {riangle meet in a point which is two-thirds of the
way from any vertex to the mid-point of the opposite side: This
point is the center of gravity or centroid. N\

{c) Proportional Division O\

If & line euts two sides of a triangle and is paralle! to{the third side,
it divides the first two sides proportionally in t-hc(sa'.me sense,
If a line cuts two sides of a triangle so as to dififle those two sides
proportionally in the same sense, this line is pa}a:llel to the third side.
The biseetor of an interior angle of a triddele divides the opposite
side into segmonts which are proportienal to the adjacent sides of
the triangle, and conversely. ¥
The biscetor of an exterior angld ofva triangle divides the opposite
side externally into segments wyhi’ch are proportional to the adjacent
sides of the triangle, and coﬂy(il%ely.

(d), Mid-points
If a Iine bisects one side of a triangle and is parallel to a sccond side,
it bisects the thir(%ws;?'de.
If a line connéets™the mid-points of two sides of a triangle, it is
parallel to th@ Eird side and equals one-half the third side.
\" {e) Angle Sums
The sumdef the interior angles of any triangle is 180°,

A f.\‘?zéxtcrior angle of a triangle cquals the sum of the two remote
{Nnterior angles,

An exterior angle of 4 triangle is greater than either of the remote
interior angles.

C. A triangle cannot have more than on
onc ohtuse angle.

D. If two triangles have two angles of
two angles of the other, then the thipd

¢ right angle or more than

one respectively equal to
angles arc equal.

V. Angle Sums in Polygons

30.

If a polygon has » sides, the sum of the interior angles is (n — 2)180°.
A, TIf a regular polygon has sides, each angle equals

(n — 2)180°

—
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31. The sum of the exterior angles of a polygon made by extending each
of the sides onee in sucecssion is 360°,

Parallels and Perpendiculars

32. ¥rom an external point one and only one line ran be drawn perpen-
dieular to a given line,

33. The shortest distance from an external peint to a given line is the
perpendicular from that point to the line.

34, Two lines perpendicular to the same line are parallel, provided that
all three lines lie in a specified plane. A

25. If & line is perpendicular to one of twe parallel lines, it i9\perpen-
dicular to the other, also, provided that all three lines lie if &Qpemﬂed

plane. O
36. If two parallel lines arc eut by a transvoersal, ~\ 3
i) the alternate-interior angles are equal; e\

ii) the interior-exterior (corresponding) angle‘&ﬁre equal;
iii} the alternate-exterior angles are cqualy
iv) the co-inlerior angles are supplementaly ;
v) the co-exterior angles are %uppl('m@‘ ATy,
37. If two lines in the same planc dé\eut by a transversal, they are
parallel if g ™
i} ihe alternate-inferior anwles‘ are equal;
ii) the interior-vxterior (porrmpondmg) angles are cqual;
iii} the alternate-exterior angles are equal;
iv} the co-interior m&glm arc supplementary;
v) the co-cxterior{abgles are supplementary.
38. The perpendicular distance between two given parallel lines is
constant. 5
43-A. If two palrallel lines intersect two other parallel lines, (‘1ther pair
cuts off éqlml segments on the other pair,
39. Tf thied or more parallel lines in the same plane have equal inter-
capts on one transversal, they have equal intereepts on any other
) Lransversal.
Q Three or more parallel lines in the same planc have proportional

/

"2
N\ intercepts on any two transversals.

41. Two angles in the same plane are equal
i) if thelr sides are parallel, right-to-right, left-to-left;
ii) if thefr sides are respeetively perpendieular, right-to-right, left-
to-lofi, :
42, Two angles in the same plane are supplementary
i} if their sides are parallel, right-to-left, leli-to-right;
ii) if their sides are respectively perpendicular, righi-to-left, left-
to-right,
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Parallelograms
43. The opposite sides of a parallelogram are equal, . ‘
A. If two parallel lines intersect two other parallel lines, cither pair
outs off cqual segments on the other pair.
B. The adjacent angles of a parallelogram are supplementary; the
opposite angles are equal.
44. Tf the opposite sides of a plane quadrilateral are equal, the figure is
a parallelogram.
45. Tf two sides of a quadrilateral are cqual and parallel, the figure is u

parallelogram,

46. The diagonals of a parallclogram bisect each olher. ~

47. Tf the dingonals of a quadrilateral bisect each other the figwre is u
parallclogram. ¢\

48, The disgonals of a rhombus are perpendicular bi'sésq’:’toré of each
other, and they bisect the angles of the rhombus.

49. The diagonals of a rectangle are equal; the diagonals of a square
are squal. O
A. The diagonals of a square arc perpendimilar hisectors of each

other, and they bisect the angles of "the’ square.

Trapezoids ANV

50. The median of a trapezoid is parallel to both bases, and equals one-
haif the sum of the bases. &

51, The basc angles of an isg%l‘:;él’es trapezoid are equal.

52. If the bage angles of 2 trapezoid are equal, the trapezoid is isosceles.

o . AN
. Stmilar Triangles , (A0

53. Two triangles a}} similar if two angles of one respectively cqual two
angles of thevether,
A, Twal Iji@ht- triangles are similar if an acute angle of one equals an
aqﬁh‘ angle of the other.
54. Twoutriangles arc similar if two sides of one are proportional o two
+&ides of the other and the included angle of the first equals the in-
s~eluded angle of the second.
* Al Aline intersecting two sides of a triangle and parallel to the third
side cuts off a triangle which is similar to the given triangle.
55. Two triangles are similar if the three sides of one are respeelively
proportional to the three sides of the other.
56, Tn gimilar triangles, corresponding altitudes and corresponding
medians have the same ratio ag any two corresponding sides.
57. The perimeters of two similar triangles have the same ratio as any
two corresponding sides, )
58. The areas of two similar triangles have the same ratio as
i} the squares of any two corresponding sides;
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ii) the squares of corresponding altitudes or medians;
iii}) the squares of the perimeters.

X, Similar Polygons

59.

60.

61.

62.

T two polygons are similar they can be divided by corresponding

diagonals into paivs of similar triangles which are similarly placed.

A. If two polygons are similar, corvesponding diagonals have the
same ratio &% any two corresponding sidos and the same ratio s
the perimeters,

If two polygons of the same number of sides can be divided by

corresponding diagonals into pairs of triangles which are similar and

similarly placed, the polygons are similar. )

Two regular polygons of the same number of sides are similag,

A. In iwo regilar polygons of the same number of sides,, the perim-
clers, apothems, or radii have the same ratio as gy two cor-
responding sides. ~\ by

The arcas of two similar polygons have the same ~r.§LtiEi as

i) the squares of any two correzponding sidcs{\‘

ii) the squares of correspending diagonals; \%

ii) the squares of the perimeters. PN

A, If two regular polygons have thedsame number of sides, their
areas have the same ratio ag = AN/

i) the squares of any two (;q;'ﬁ“eéponding sides;
i) the squares of their apotheéms;
iii) the squares of theit :fa-éﬁi;
iv) the squares of thelperimeters.

XT, Regular Polygons e
63. A circle can be*circumseribed about or inseribed in any regular

polygon. {5

A, The ragi¥ of a regular polygon form equal angles at the center.

B. The .g&dﬁ of a regular polygon biscet the interior angles.

C. Adyinterior angle of a regular polygon is the supplement of any
~ona of the central angles.

‘p,”zﬁ\ny apothem of a regular polygon bisects the side to which it is

drawmn.

)
XTT.}-‘iﬁ'{:les. (Chords, tangents, secants)

64.

65.

66.

67.

A digmeter perpendicular to a ebord bisects that chord and both
ares subtended by that chord.

The perpendicular bisector of a chord passes through the center of
the circle.

Tf two chords of a ecircle arc equal, they are equidistant. from the
center of the cirele, and conversely.

It two chords of a circle are unegual, the greater chord is nearcr to
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XTI1E.

N

68.

69.

70,

7L

Angles and Circles

73

4.

75

76

79,

,\Stween the chord and tangent is measurcd by onc-half its intercepted

) |

the center of the circle. Conversely, if two chords arc unequally

distant from the center, the nearcr chord is the greafer.

A line which is perpendicular to a radius of a circle at the cuter end

of that radius is tangent to the circle.

If & radius of a circle meets & tangent to the circle at the point of

tangeney, the radius is perpendicular to the tangent.

A. If two circles are tangent to cach other, their line of centers
passes through the point of tangency.

Two tangents drawn to a cirele from a given external point are

equal, and they make equal angles with the line conneeting the

given point with the center of the cirele. ~

Tf two chords intersect each other, the product of the segnients of

one cquals the product of the scgments of the other. &\,

. I a tangent and a secant are drawn to a circle from a given’external

point, the tangent is the mean proportional bqt}*{eén the whole

secant and the external segment of that secante 3

A. Tf from a given external point any secant is deswn to a given circle,
the product of the wholesecant and its extereal segment is constant,

X'\\:
A central angle is measured by its ipt-‘}sr:c’cptcd arc.

An inseribed angle is measured by ovie-hall of its intercepted are.
A. An angle inscribed in & semigircle is a right angle.

The opposite angles of & cyclié’quadrilatcml are supplementary.

If the opposite angles ef'l’a quadrilateral are supplementary the
quadrilateral iz eyelie,. )

Ji two lines int-erg;guf each other within a circle, either angle thus
formed is meaS{;@d’by onc-half the sum of its two opposite inter-
cepted arcs. &,

If two linesyare drawn to & circle from 2 given external point, the
angle t}lui%)formed is measured by one-half the difference of the ares
in’oepc@ﬁtzzd by this angle. (These lines may be two sccants, two
tahgerts, or a sccant and a tangent.)

If\a chord meets a tangent at the point of tangency, either angle be-

arc,

XIV. Locz *

80.

In a given plane the perpendicular bisector of g linesegment is the

locus of points which are equidistant from the ends of the line-
segment.

* - : . .
) Recaﬂ_tbat if you are to prove that & certain line or curve ¢ iz a locus under certain
given conditions, then you must prove:

(1) Any point on ¢ satisfics the given conditions.

{2) Any point which satisfies the given conditions lies on €,— Or, W
Any poipt #of on ¢ does not satisly the given conditions,

hat is the same thing,



81.

82,

PLANE GEOMETRY THLOREMS xvii

A. Two points each equidistant from the ends of a given line-scg-
ment determine the perpendicular hisector of that line-segment,
provided that the two given points and the given line-segment
lie in one plane.

B. If two circles in the same plane intersect each other, their line of
centers is the perpendicular bisector of their common chord.

In a given planc the bisector of an angle is the locus of points which

are cquidistant from the sides of the angle.

A, In a given plane the locus of points which are equidistant from
two intersecting straight lincs is a pair of lines which biscet the
angles formaed by the two intersecting lincs. ~

If an angle with vertex P is constant in size, and if its sides pass

through two fixed points A and B - P heing and remairgtrsg on nne

gide of the sogmoent 4B — the locus of the point P invagiven plane

is an arc of a circle which passes through the poi_n’t.s.‘:{f “and B,

XV. Measurement Formulas. (Triangles, polygons, cire s;)

&3
84

85

36

a7

. The area of a rectangle is the product of itg Bagde and altitude.
. The area of a parallclogram is the produet wfite base and altitude.
A. The area of a rhombus iz one-half théproduct of its diagonals.
. The area of a triangle is one-half t-hg»’p%duct of its base and altitude.
A. The area of a right triangle is fe-half the product of its legs.
B. In a triangle ABC: ,7.’22 '
K =34(absin () = é—{dc.’%in B) = &(be sin 4).
(. Tf two triangles have amanglein common, their areas have the same
ratio as the pI'OdE(‘:\tS of the sides which include the common angle.
D. In a triangle f@(}! K =+vs{s — a)(s = B)(s — ¢}, where
\ s=13la+b+o)
. The area of 8 Trapczoid is the product of the altitude and one-half

the Slll}f}'{iﬁ.th{% hases.
A. Thabrea of a trapezoid is the product of its altitude and median.

. Thearen of any regular polygon is one-half the product of its apothem
dnd perimeter.

88 The circumference of a circle of radius r is 27v.
&9, The arca of a circle is one-half the product of its radius and cir-

cumference, or mri.

90. In a cirele of radius r, the arca of & scetor having a central angle of

8° iz given by the formula:

)
K = ().
360( )
A. In a circle of radius 7, the area of a sector whose arc is s, s being
measured in linear units, is given by the formula:

K = (rs).



xviii SOLID GEOMETRY AND SPRERICAL TRIGONOMTETRY

XVL. Limii Theovem from Tigher Mathematics
01. If two variable quantities are continually equal to each other as
they approach their respeetive limits, their limits must be equal.

XVIL. Power Serics from Higher Algebra
92. The sum of the first n terms of the power serics
P44 4824
is given hy the formula: § = 2(2?3 4 ¥n + 1).

A proof of this formula may be found by consulting any good
textbook of Advanced Algebra. The most common methoddf proot
is by means of Mathematical Induction. A\ ¢

The use of the formula iz simple and direct. Fo;;&h’t}mle if we
wish to find the sum of the first 12 terms of the serjes/substitute 12
for n in the formula: N

Thus: § = %[2(12) + 1I[(12) + 11 = b‘i".o\{\\

Q
¢ '\./

QO
p. N

A\

N\
'\Q.}
{ \O
‘§w
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6.

=l

AXIOMS

Quantilics which are equal to the same quantity or to equal quantities are
equal Lo cach other.

A quantity may he substituted for its equal in an cquation or in an incquatity.
The whole equals the sum of all its parts, and is therefore greater than any
of its parts,

Both memhers of an equation may be operated upon in the same manner
mathematically without destroying the equality.

If unequals are added to uncquals in the same order the results ar(, unequ‘ml
in the same order. O\

Il unequals are subtracted from equals the results are umqml in reverse
order.

Tf unequals arc operated upon mathematically by posit-ivefcqllals in the same
manner the results are unequal in the same order, ..,j\’\

.1 a>band b >e¢ then a > e

oV
POSTULATES £ ©

Ome and only one straight line can be dx AWy betiween two given points.

A, Two given straight lines can intersegf in not more than one point.

The shortest distance befween two gwen points is a straight line.

. Al straight angles arc equal. &

A. Al right angles are equal. .

D. At a point on a given ]mq one and only one line ean be erected perpen-
dicular to the g,lv(\n\L‘Qe— provided that both these lines are to lie in a
gpecificd plane.

(. Equal angles have vequal complements and equal supplements, and con-

versely.

. I two H’rraxa]}t lines intersect each other the vertical angles are equal in

pairs. A\
If two \ang_,lvc are uncqual the greater angle has the smaller complement
andiNthe smaller supplement, and conversely.

S

. ’Ih\;u&,h a given cxternal point one and only one line can be drawn parallel

to a given line.
A. Tines which are parallel to the same line are parallel to each other —
provided that all the lines lie in a specified plane.
If a regular polygon is inseribed in or cireumseribed about a given civ cle, and
if the number of sides of the polygon becomes infinite,
i) the perimeter approaches the circumference of the cirele as a limit;
ii) the area approaches the area of the eircle as a limit;
ili} the apothem of the inseribed polygon, or the 1ad1uq of the cireumseribed

polygon, approaches the radius of the circle as a limit.
xix



Chapter One

PLANES

Q"
1. Surface. A precise definition of surfeee is difficult to state, and for\present
pwrpozes 1s not nocessary.  In geometry we say that a point is thab:&*hlch has
position only, having no length, width or thickness. We speak of 3 line as that
which has length only, having no width or thickness. (‘011espond1ng13, we may
regard a surface as that which possesses area but no thlcknes& In Plane Geom-
etry we are acceustomed to say that a line may be traced Dl\gemmtvd by a mov-
ing point. Correspondingly, we say that o surfuce magbe generated by « linc or
linc-segment of some sort moving through space, z N
2. Plane. A plane is a surface such that g str?blght line connecting any two
points of that surface lies completely within ¢hat surface.
In what respect does the sur- R\
[ace illustrated in Fig. 4 fafl to * )
salisfy the definition of a plane? N\
3. Representation of Plancd
A plane iz of indclinite ex{'{*ﬁ{ =
However, when we draw a\;{kture TFra. 4
of a plane we usually ifdicate a
finite portion ef if, thié' portion being represented customarily by a rcetangle
or p‘nal]elogram Ihe usual way to designate a planc is by a single letter or
possibly by two letters, Thus, in Fig. 5

.(\ 3 we have a plane N or & plane BS.
,\f N 4. Points are collinear if they lie in one
\\J . straight line; otherwise they are non-col-
4 "5/ linear. Points or lines arc coplanar if they
/ lie in the same planec; otherwise they arc
£ non-coplanar.

TFic. 5 5. PosturaTE 6. One and only one plane
is determined by two glven intersecting
straight lines. {(That is, one and only one plane can be drawn to contain two
given intersecting straight lines.)
6. Corollaries to Postulate 6. One and only one planc is determined by

A. a given straight linc and a point not on that linc;
1
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3. three given non-collincar points;
C. two given parallel lines.

Coroliaries A and B follow at once from the postulate itself. Corollary C is
obvious from the definition of parallel lines and from Postulate 4.

r

N\

7. PosruLaTe 7. If two planes intersect each other, their infergeesion is a
straight line. o\

PN

TP, 7

) \“x\ EXERCISES
X ‘\ Group (ne
1. If a pieee of paper; ifolded why must the creasse be straight?
2. Why will a t-h'r&t‘}};ggé;ed stool always stand without rocking?
3. Which of t%;fd‘llowing are necessarily plane figures? a) parallelogram; b) triangle;

¢) circle; gi}fquadrilaterul; ¢) rectangle; f) trapezoid; g) a circle with o line drawn
tangent tof.

- ,n\ X "',
4. BQtE; a converse of Postulate 7. Is this converse true?

5. Under what conditions is the following statement true? “If two planes have three
points in commoty, the two planes must coineide.”

6. How many planes ean be drawn to contain g given straight line m?
7. 1f a straight linc m intersects a plane S, how many points do m and S have in common?

8 N and_ 8 are two inters_ec-ting planes, A third plane M intersects both ¥ and 8., How
many points are there which are common to M, N and 57 Discuss possible cases

9. In general, if three lines , b, ¢ are cone int
e e 12 . b, wrrent at a point P, how many planes are de-



PLANES 3

19. If two parallel lincs @ and b are cach intersected by two other parallel lines ¢ and 4,
show that «, &, e, 4 are coplanar,

1L Is it possible for & straight lHne-segment to move in space in such & way that it
cannot generate g surfuce?

12. Tell which of the following statements is valid if the geometric figures mentioned are

assumed to Lie in space.

a) At pointin a line s one and only one line ean be drawn parpendicular to #2.

L) From a given external point, one and only one line ean be drawn perpendicular to a
rriven line #e.

¢) Two lincs perpendicular to the saine line are parallel.

d) The sum of the angles of 4 triangle is two right angles.

¢) Tf two straight lines intersect the vertical angles are equal.

F) Two triangles are similar if their corresponding sides are proportional.

gy Two triangles are congruent if SAS = S48,

h) A line perpendicular to onc of two parallel Iines is perpendicular to the o‘th\e'r, 1ls0.

17 The locus of points equidistant from the ends of a linc-segrent s th\e\hne which bi-
gects this line-gegment perpendicularly.

i) The diagonals of a parallclogram tisect euch other,

13. Answer each of the following informally in your own wor ds»V\O proof of any sort is
expected. v A
( N

Q)

7 ’.
< %

oy € s the ml(l-pmnt of a fixed lincsegment AB, (‘bfs% e
line which ix perpendicular to AB. Let (JDrotaﬁc,,ﬁT“ays \ ¢

remaining perpendicular to A8, What burtv of surface T~ _ ) ___
will CD generate? "',' 3
) B
2\Y
¢\J
O

bj AR isa fived line, @PIWAR, andis2 in. from 4B, Let CD 4
move around 48/ a}smyq remaining parallel to A8 and 2 in,
from it. W h(\{aa«rt of surface will CD generate?

"™\

2 &

\ ) Tz, 9
¢} Fxplain how u spherical surface (i.e., the surface of o ball) can be generated by some
sort of moving linc-segment, \

) Heow can the curved surface of & cone be generated by a moving
line-segment?
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g) The figure illustrated here has the shape of an inverted tub.
Fxplain how the curved surface of the figure can be gen-
erated by a moving line-segment,

Fra. 11

14. How does a potter working at a potter’s wheel illustrate the geometric coneept of
surfaces being generated by moving line-segments?

In the front of the book there is a reference list of theorems whieh hayve been
established in Plane Geometry. JTn the text whenever allusion is made, to oue
or more of these, the abbreviation “Ref. 63" or *“ Ref. 85-B,” ete., §ill be used,
meaning that you are to consult Theorem 63, Theorem 85-B, ety i this list.

The following exerciscs require little or no t-echnicahliﬁéfwlcdge of Holid
Geomcetry. Their obvious purpose is to acqguaint you x\f\th’the task of visual-
jzing and working with space diagrams. In threasdimensional drawings we
have to employ “perspective” in our representations. It requires a cerfain
amount of imagination to interpret a space réwing correctly. In turn, it
often requires considerable care and ingenujtytt’o create a space drawing which
is clearly suggestive of the geometric jigura which you are endeavoring to
depict, N

ol

_ BXERCISES
s\ Group Twe

\\ \ . P

1. At 4, the mid-phind/of o linesegment PQ, any two line-

segments AB and ?{Q'are drawn perpendicular to PQ. Draw B A
PB, PO, QB, Q¢and BC. Tind three different pairs of congruent
triangles. Il}o H cuse prove the congruence. C
e) ) ' @
\'"\‘ - TiG. 12
H

2. ABliesinaplane M. Point A is above M.
HD is perpendicular to 4B at D, the mid-poing
of AB. In planc M, line DF is porpendicular A
to AB. Eisany poiut on DF. Draw AF and

BE. Prove that AIJAE is ¢
- s congruent to D E F

o, 13
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PLANES

3. AABC licsinaplane M. ZACB =90, B = 61n,

T4 = 8in.  Aline DC is drawn so as to be perpendicular

both to ¢4 and OB, DC = 15 in. Find the lengths of B
the sides of A4ABD,

4. AABC, richt-angled at €, ez in a plane M, At A
a line AD s drawn perpendicular to AB and AC.
Prove that ADCB is a right triangle by using Ref. 14,

. A planc M contains diagonal DB of a ]Jarallc o-
gmm ABCD. In plane M and through 0, the L
intersection of the diagonals of AB("D a line EOH B
g drawn, bisected by point (9\\1)1'3“ CH and
AE. Prove AE = CH.
b4

»\x\ Frc. 16

6. InEx 5 shoy&;"b}ﬁ”CH and AF are coplanar, Where is the interscetion of this plane
with the pla11e~0f W BCD?
NS
. Tn B B draw EC and AH and show that AHCE
18 & parallelograrm.

8. AABC lies in a plane M. ¥ is a point above the
planc. VA, VB, V(' are drawn. D, E, F arc rc-
spectively the mid-points of VA, VB, V(. Prove:

) AVDE ~ AVAB,;

b)Y AVEF ~ AVBL,

¢} AVFD ~ AVCA;

d) ADEF ~ pABC,
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o, In Ex. §if the area of AABC is 20 8q, in., find the area of ADEF.

8. Two Common Errors. In the preceding exercises you made use of cerlain
facts cstablished in Plane Geometry. In gencral that is the procedure through-
out Solid Geometry. Be warned, however, against two very common and very
natural logical errors.

Y

(2)

Refore using & statement already established in Plane Geometry be certain
that the truth of the statement does not break down when you work in
space. For example, in space any number of lines can be drawn perpen-
dicular to & given line at a given point on that line. Ilence, the wngualificd
statement: <At a point in a linc only one perpendicular can be erected to
that line” is invalid in three-dimensiona! geometry. O

Before using 4 statement already cstablished in Plane (reometry, even it
vou are certain that the statement is true when applied tO.S[éél\-(':'(} geomolry,
be surc that the preaf of that statement when applied to athrec-dimensional
figure would be essentially no different from the pwoi.&%éﬂ in Plane Geom-
etrv. If the proof of the three-dimensional casg@‘heceaaarﬂy different,
then to cmploy this statement without furthe\proof is a logical fallaey.
For example, the ungualified stafement: *Two, angles with their sides par-
allel right-to-vight, lelt-to-left are equa,l”oh% been proved only for the
ease when the two angles lie in the sam’é yplane. The statement is a frue
onc in space, but when the angles are,’n:ai’ in the same plane a different proof

>

in general must be used. AQY



Chapter Two

LINES PERPENDICULAR TO PLANES

9, Line Perpendicular to Plane. If a line & meets a plane M at a point
P in such a way ag to be perpendicular to all lines in M which pass through P,
line x is said to be perpendicular to the plane M.

Conversely, if & line is perpendicwar to a plane, it must be perpendicular to
all lines in that plane which pass through its foot. {The point of interseetion of
a line with a plane is often called the fooi of the line.) ™\

1f a line is perpendicular to a plane, the plane is said to be perpendictlar to
the linc. R )

if a line meets a plane and is not perpendicular to the planenthe line and
planc are said to be obligue to cach other. R

10, TEEOREM L. R 7

1f u line is perpendicular to each of two other lides at. their point of
interseetion, it is perpendicular to the plane inﬂiose lines.

Civen: ® Ly, ¢ L z; zmeets y at I*; 2 @nd.;} determine a plane M. (Hee

Fig. 18.) ' A
Prove: » L M. O8N

1) Let w be any other line through Bn M. (See Fig. 19.) On = take any
point A, Extend z through M t6“a point D) so that AP = PD. Tn M draw
any line cutting v at B, 2 at({, g at E. Draw AR, AC, AE, DB, DC, DE.

2) ('A = €D and BA = BI; o\iirhy?

3) Prove AABC ~ ADBC and obtain Z ABC = ZDBC.

4} Prove AABE ~ ADB#Eand obtain EA =ED,

5} Then EP | AD (Ref/80-A). Thatis, ¢ L w.

6} But w ig any hr,@\m M through P, other than x and y.

7) Therefore, zkeing perpendicular to any and
all Tines in 94 Wwhich pass through P, must be
perpendicular to M (§ 9).

O

Frz. 18
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11. Constructions in Solid Geometry. At this point it is desirable to men-
tion the general problem of making constructions in Solid Geometry.‘ .

The treatment of constructions in space is necessarily more artifieial than
that of Plane Geometry constructions. For example, with peneil and paper
we are unable to construct a plane or a spherical surface in the same scnse that
we actually construct a straight line or a circle by the use of straight-edge and
compass. Several illustrations may help to clarify this idea.

Example 1. Given a line z and an external . p
point P. Censtruet a plane containing x and P. \
From § 6 we know that z and P determine ®
one and only one plane. Frs, 20A

Trom the great number of possible planes
existing in space select that one which is de-
termind by x and P.

Indieate this plane (or a portion of it} in your
diagram,

“ (lonstrueting” o plane, therefore, amounts M

(O

to N/ TFic. 20B

(1} having at hand or producing the proper combimh:i{m of points or lines {§§ 5, 6)
whieh will determine the plane; .

{2) indicating this plane in the diagram. P ’ v/
RO A,
Exzample 2. Given two pnints..A‘é,nEI B in space. ‘B
Construct line-segment 4B, O

d i N\ Fre 210
Belect any third point ¢, Caristruct the plane M

which is determined by A\B,“C (§ 6-B).

In plane M draw AB, M A
& -C \
e \4 E

'® X o
) ’\\“ _ Tic. 21B
Example 3. Given & point P on a line z in space.

”%(\:{Fo}n‘atruct a linc y which shall be perpendieular to

at\P

I\ There are innumerable planes in space which eontain P

line . Construet one of these planes. Call it the
plane M,

Working now in plane M we have the Plane
Geometry problem of constructing a line which ghall be
perpendicular to x at P, =

It is not necessary to explain the details of making
this construction, for it has already been demonstrated £ i
and proved in Plane Geometry. We are at liberty to
use Plane Geometry material provided that we apply M
that muterial to ene plane surface at a time, Therefore, Fio. 22B

Fig, 224
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we merely say: “In plane M construct y perpendicular to z at P Yinally, indicate
the line ¥ in the diagram,
Example 4, CGiven an external point P and a line 2.
Iram P construct a line i which shall be perpendicular to z.
Study the diagram and work out the construction for
yourself,

The following fundamental constructions, each of
which has been considered in the preceding illustra- ®
tiong, are listed for your convenience, Te able fo per-
form these constructions, These constructions may be Fra. 23
quoted as authorities whenever you are required to make other (:onstru’(@ons
later on.

N
12. CowsTRUTOTION 1, N\
.’\

Construet a plane under any one of the eondilions mmponed in
§8 5 and 6. fn

A

P )

NN

13, Coxsrrreriox 2.

p §

) . , . E7) . .
Congtruet a straight line determined by tw ven poinls In space.
g ¥ WO 8 I

R

14. CoxsTRUCTION 3. o)

Al

At a point P in a given line x c;f)jnsiﬁ'uet a line perpendicular to =z

- <

13. ConxsrrucTioN 4, \

Trom an external pomt\)" construct a line perpendicular to a given
line x.

<

16

CONSTRUCTION B0

Through @Eivml external point £ eonstruet a line & which shall be
paralleldg a given line y.

Condauct the plane M determined by P and y. Now work in plane 3,
recalling the corresponding construction in Planc Geometry.

17. CoNsTRUOTION 6.

At a point P in a given line x construct a planc M which shall be per-
pendicular Lo .

At £ draw two lines ¥ and #z cach perpendicular to x (§ 14). Show that
the plane M determined by y and z is the required plane.
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18. CONSTRUCTION 7.

Through a given cxternal point P construct a plane M which shall be
perpendicular to a given line z.

From P draw line y perpendicular to @ (§ 15). Let y cut # at a point A,
AL A draw a line z perpendicular to z (§ 14). Show that the plane M de-
termined by ¥ and z is the required plane.

19. T'HEOREM 2.
N

<

Through a given point there is one and only onc plane which ig, povpen-

dicular te 4 given line, K, )
N

From §§ 17, 18 therc is at least one such plane. We ai'é’ %o show that there
is nof more than ene such plane. R 4,

Lot P be the given point; let  be the given lings et M be one plune L .
There are two cases to be considered:
{a) when P lics on x;

{b) when P is an external point. N

(a) Plicsonx (Fig. 24). .

1) Assume there is a second plane Swhich i
perpendicular to z at P. N\

2) Draw any plane 7" containifig and cutting
M in line w and 8 in lme.\f

3} o w and f must b()bl{\b( perpendicular to
z {§9).

4} But since w cmdg” are coplanar, thev cannot
both be perpqndlcular to « at P (Postulate 3-B).

5) . the q*?u;fnption of a second plane S perpendicular to x at P leads to a
contr& tion, and must therefore be false.

6) . M i% the only planc which is perpendicular to x at P.

N\
~\/ r
\ } ""‘?”f
/
_ /
{b) P is an external point (Fig. 25). ,’ /
/
Assume that there is a second plane § through P /
and perpendicular to x.  Apply the general method of ' /
proof used for case (a). / M
IS' £
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20, Corollary A (Th. 2).

Any line which iz perpendicular to a given line at a given point in that
line must lie in the planc which is perpendicular to the given line at the
given point.,

Given: y Lxat Pinz; M L zat P,

Frove: 3y must lie in M.

Draw plane 8 determined by y and z; let S
cut A in » hnc ¥

i and ¥’ arc each perpendicular to z at the
game point P; also, ¥ and %' are coplanar,

Why must ¥ coincide with ¥, and hence lic
in plane M7

N\

/
21. CoxsTRUCTION 8, \ !

Fia. 26

At a given point P in a plane M COIlStI';L%Ct: # line which shall be perpen-
dieular to M. N

a3
N

In M draw any line 2 through “P:rf .
Through P draw the planc §&hich is
perpendicular to z (§ 17). Lt,\l;“S cut M in

line .
In § draw line z perpendicular to y at z
point P. N\

Then z is the rea(j‘&il’éd line.
N\

O r Y
Proaof: § \

S x,’f}:;r 18 o ozl M
\1\ That is, z 1 =
N/ But z Ly, also.
2 LM (§10).

22, CoxgTrucTION 9.

Through a given external point P construet a line which shall be per-
pendicular to a given plane M.

Tn M draw any line 2. P and z determine a plane. From P and in this
plane draw w perpendicular to @, meeting = at a point €. In M draw ¢ 1 2
at C,
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From P and in the plane of w and ¢ draw A
perpendicular to £

Line A is the required line.
Progf:

On 2z choose any point 4 (other than C).
Draw y from D to 4, and z from P to A.

Triangles PCA, ACD, CDP are right
triangles by construction.

Show that AADP is a right triangle by
Ref. 14.

Then / 1 . Andsineeh Lt -~ k1L M (8 10). ' N\

23. TUEOREM 5. A
{

'\
Through a given point there is one and only one line which is/perpei-
dieular to a given plane. N

From §§ 21, 22 there is at least one such line. \'\"cfﬁg}t\to show that there
is not more than one such linc, \

Let P be the given point; let M be the given {Jﬁne.

There are two cages: {(a) P liesin M; (b) P\:ie’én external poinl.

(&) Pliesin M (Fig. 29). o3

1) Let zbe 1 M at P (§21).
2) Assume there is a sccond lingrf through P

which is also 1 M. im’\
3) Draw plane F dotermified by 2 and £ ) -
4) Obtain a eontradiction to Postulate 3-B. "
N Fi6. 29
£\ P
) :U@ \'P iz an external point (Fig, 30), A
L@t‘sﬁ be L M (§ 22). Assume a second line f /
from P to be I. M. Draw plane 8 determined by
h and f, and obiain a contradiction to Ref. 32, /
D
£ M/
24, Corollary A (Th. 3). Trc. 30

The shcu}‘test- distance from an external point to a given plane is the -
perpendicular from that point to the given planc.
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25. Distance from a Point to a Plane, The distance from an external point
to a plane is the perpendicular distance.
26. THEOREW 4,

If from a point in & perpendicular Lo a plane two equal obliques arc
drawn to the plane, they meet the plane at points which are equi-
distant from the foot of the perpendicular, — and conversely. If
from a point in a perpendicular to 2 plane two uncqual obliques are
drawn to a plane, the longer oblique meets the plane at a point farther
awnay from the fool of the perpendicular than does the shorter oblique,
— and converzely. A

There are obviously four parts to the theorem. In cach part tare given
a line & perpendicular to a plane M at & point D. Point A is the given point
on x, The four parts arc as follows: {

(iven Prove
(@) y=w f=t1
(h) f=¢ y=w
ey y >w f>i
(dy f>¢ y>uw

The proof is easily accomplished by study~
ing the right triangles.

27. THroueM 5. Ay v Pia. 31

If from the foot of a perpertlicular to a plane a line is drawn at right
angles to any line = in ,tJf@t planc and meeting w at P, then the line
connecting > with an¥ point of the given perpendicular must be per-
pendicular to w. )

Given: = 1 M t:f); w any line in M
and not containing/7); line y through D
and L w at P\A ‘any point on 2.

Prove: .4f 1w

(‘homo anv point B on .

2% BD and BA, as HhO“I’l

Let AB=h, DB=1{, PB=
AP =7

Show that ZAPR is a right
angle by showing that
R=r+2

Note: This theorem is
sometimes referred to as
“The Theorem of the Three
Perpendiculars. ” Fic. 32

4
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EXERCISES

Group Three

1. Prove Theorem 5 by the following method.
On w take PE = PF, Draw DE, DF, AE, AF.
Use congruent triangles and Ref. 80-A.

2. A circle with center O lies in a plane M. TinghY

\N k
15 perpendicular to M at O, Tine ¢ is tangent ta
circle O af A, Bisanypointon s, Prove: v}:’-.Aal L #] A
~ . B #

) Fic. 34

3. A circle with center Oﬁeé inaplane M. A line % is perpendicular to M at 0. AB is

& chord of the circle. fErém €, any point on k, a line is drawn to hisect AB ut o point E.
Prove: CE | AR/
oy &/

\
4. In the ﬁg?re of Ex. 2 show that 8, the plane of BO and BA, is perpendicular to f.
In Ex, :%&how that N, the plane of CO and CE, iz perpendicular to chord AB
~\J
}

v

5. In this figure: AC 1 MatC; DEis s line
inM; AB | DEatB. Prove: OB | DE.
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point ¢ on ¥, x is dropped porpendicular to w, A
meeting w at 4. Prove: = L M.

C
j\/
6. In the accompanying figure w and z lie in a
planc M. w 1L zat B; ¥y L 2 at B, From any ® w
y n
/ ‘ /
M .

7. AABC, right-angled at €, lies In a plane
M. At D, the mid-point of AB, DE is drawn
perpendicular to M. Prove: KA = KC =
EB,

T'1a. 37

NN

8. In the preceding figure if A€ = 6 in,, CB =8)in,, DE = 12 in., find the lengths of
kA, bC, EB, respectively. Find the arca of 3‘.\.’.&16’1&’.

AN B

Q
9. AACD, vight-angled at €, Jiedin a
planc M. BD 1 M at I ! =
§in,Ch = 8in.,, BD = 15ﬁp. Find A D
the areas of triangles BADand ACBH,
and the length of Al{j

=~
C

O i
:"\’.’;‘ Fic. 38
~J
P
h
10. AABC lieg in a plane M. At O, the clreumeenter
of AABC, line & is perpendicular to M. Prove that A o
any point P on % is equidistant from the pointe A, B, C : O ;
B

M
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oD

i

[
11. In the figure for Ex. 10, let D be any point which is B =
equidistant from A, B, €, and is not necessarily in plane M. !
Prove that D must fie on . (From D draw z perpendicular 4 —] Iy
to M, meeting M at £. Show that F coincides with O, and o (&

henee that x comeldes with A.)

B
Fic. 40 ~
28. Tarorum 6. .\o\..\

The locus of points which are equidistant from three gi(vén non-col-
linear points iz the straight line which is perpendicula®to the plane
of the given points at the circumcenter of the t-rianglé\aetermined by
these points. ’

g
(For proof sec Exs, 10 and 11 above.) )

"

Nole: It is well to bear in mind consfantly that in general if you are to

show that some line or figure ¢ is a certaity locus, then you must prove:

fa) any point on ¢ satisfies the conditions of the locus;

(b) any point which satisfies the cotditions of the locus must lie on €, — Or,
what is the same thing, show \that any point not on ¢ does not satisfy tho
conditiong of the locus.\'\‘.. )

N\

29. Coroliary A (Th, Q)"

Two point-s:@;%c}:n equidistant from three given non-collinear points
det-erminseiﬂm straight line which is perpendicular to the plane of
the glwn points at the circumecentor of the triangle determined by
th”(is.e'gioims.

’E';*:e-rm'se.' What is the locus of points which are equidistant from all the
points on the circumference of a given cirele? Prove.

30. Tozorem 7.

The locus of points which are equidistant. from two given points is

the plane which bisects perpendicularly the line-segment joining the
two points.
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In the two accompanying figures, planc M 4
biscels 4 B perpendicularly at the point €. You
are to prove that I contains all possible points h
which arc equidistant from 4 and B. yyd B
() ¢
Show that any point P in M is equidistant
from 4 and B, M

(b) ~a
Let @ be any point known to be cquidistant )/K((

from A and B. Drvaw @4, QC, GQB. Show that 4
QC must lie in M, and hence that @ itself must o \J

lic in 3. \s
. M )
N
w Fia. 42
&N
_EXERCISES

mg\ Group Four
N H

-

\..\‘:,
1 Equﬂaferal\s\;{lB(* lies in & plane M. IO L M at O,
the (Pntlok:l Nof A4BC. Point P is chosen so that P4 = 4
A8 {N\VPB and PC. Prove: PA = PB = PC' = AB. ° c

B
Fia. 43
2. In the preceding figure show that the plane 8 of points P, D, C is perpendicular to AR,

3. In the preceding figure if AB = 4 in,, find the lengths of DO, 0C, PO, Find the
areas of triangles PO and PAO,
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4. A AABC lies in & plane M. Planes 2, S, T are respectively the per[';_v_:-\,ndif_:ular bi-
sectors of the sides AB, BC, €4 of the triangle. Prove that the planes Iz, S, 7" all ntect
in one common line; show that this common line i the perpendicular to M erceted at
the cireumcenter of AABC,

D

5. Point D is above the plane M of AABC. P and 0
are respeetively the eentroids of triangles DARB and
ABC. Show that lines CP and DO are coplanar and
hence meet at some point H,

w'\'\? Fre. 4

6. In the preceding ficure draw PG and prove: Po i%DO’ Pl = 1PC, OH = 10D,
(Use similar triangles.) O

W

7

7. In 4 figure like that of Ex, 5 assume thattAfB =BC=(CA =D4 = BB = L.

Assume that P and O are the centroids of {riangles DAB and ABC, Trove: DO | M )
and DO = CP, &N

8. In Ex, 7 prove that plane § of polﬁ,té D, 0, ' bisects lme AB perpendicularly.,

9. In Exs. 7 and 8 prove tha,f.iﬁ'}\bhe intersection of CP and DO, is equidistant from the
points 4, B, ¢, D, \\"’ ’

Note: Thc1 sohilz(‘{rgn’ded by the cquilateral triangles ABC, DAB, DBC, DCA of
the figure of lL-xs.’ 9% called a regular tetrahedron. A more svstcma,t.ic stu;iy of the
regular tetrah‘edro,r{\wﬂl ecwe later in the book. When that point in the book is reached
it will be ad‘Ksﬁj}fe for you to return to this group of oxercises B

R '

a3
N

AN
N\ \ u’:
3

D

Fic. 45
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10. Lines », u, i are any three lines
lving in a plane M snd meeting one
another at a common point P, A fourth
line £ is drawn 2o that the angles whieh
it makes with &, g, w are equal, Prove:
h1l M

M \‘/\\
Fiz. 46 (}‘\
Q
o
W©
\/
4
S
QY
PN\
&

Fad w




Chapter Three

LINES PERPENDICULAR TO PLANES. LINES
AND PLANES PARALLEL

N\

31. Parallel Lines. Two straight lines are parallel if they lie in the'same plane
and do not meet however far they may be extended. ) \ \
32. Skew Lines. Two straight lines arc skew if they do not lie in the same
plane and if they do not meet however far they may be exfended.

33. Line and Plane Parallel. Parailel Planes, A ].m&l\s parallel to a plane,
or a plane is parallel to another plang, if the two dowetvineet, however far they
may be extended. )

34. THEOREM 8. R

Two linos perpendicular to the same pl'aijé are parallel.

Given: Lines z and y perpendicu]arzéb'plane
M st A and B, respectively. N\
Prove: z || y. v v
From § 31 we must show ¢ e\
{a) = and y are coplanar; 4™
{b) x and y cannot mechh, A B
After (a) is proved () will follow if we can

) M
prove that z and.\'y,, Aare perpendicular to the
same line (Ref. 34). . 4T
O (@

1) In Fig. 4% draw AB. Through B in M draw

w pe?p\endicular to AB. Let ¢ bhe any point ¢ \

ot\g/ Draw CB (Fig. 48). S ANy ¥
2) CB L w. N
3y L w AN
4) AB 1 1. N L/
5) = AB, CB, y lie in some plane At ?B

8. (See §20) w
8) - zand y are coplanar. M

{b) :
Proof of (b) left o student, e 48
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35. Corollary A (Th. 8).

If a plane is perpendicular to one of two parallel lines, it is perpen-
dicular to the other, also.

Given: =y, = 1 M. _ z gl [y

Prove: y | M,

At B draw y' perpendicular to M. Show that y' '
coincides with . (See § 34 and Post. 4. ) A O

A N .
'F.{&‘.\%g
36, Corollary B (Th. 8).  \J
‘Two lines parallel to the same line are paralle]l to ,ezic:h Sther.
&
'x:\\" Y
: " AN A

Given: z || h; ¥ b O

Prove: x| y. D T
1} Through any point 4 on A dlaw a phme M A “ D

perpendieular to h. o
2) ~el Mandy L M (§35). M
8) oaly (§34). £ !

.\’\“u
“ T1c, 50

37, Tueorem ©. ¢}

L )

€75
Two pla.n{s"pérpendjcular to the same line are parallel.

Fven; _lfand N perpendicular to
hat A Lm& B, respectively.

Phwe MIAN.
1) Suppose M meets N, and that their /
intersection is a linc w. Let ¢ he M
any point on .
2) Theun through €' there would be two
planes M and N perpendicular o A.
3) But this contradiets § 19.
4} .. the assumption of Step 1 is false,

and henece M cannet meet N,
3) W MIN (§33). Fic. 51
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38, Teronem 10.

If two parallel planes are cut by a third plane, the two lines of inter-

section are parallel lines.
Ry
o

o

In the figure show that x and ¥ are coplanar \

and that they can never meet.
A
Fig. 627
N\

39. Treorem 11, .\

N
S

Y p

~ S

If a line is perpendicular to one of two parallel pIa.lg(a;a, it is perpen-
dicular to the other, also. O

Given: M| N; h L M. M
Prove: B 1 N, o8 %

Through h draw any two plance B and S. /};
R cuts M in z and N in y; S cuts M in w and
N in & K

Show that A L N by kl\fk ; %

$
L1}

2N/

O\ F1a. 53
40. Corollary AZ(Th, 11).
."\$~

Two plﬁ%s parallel to the same plane are parallel to each other.

Usg 8839 and 37.
4n1.¥orollary B (Th. 11).

The perpendicular distance between two

given parallel planes is
everywhere the same. ?

Use §§ 38 and 39.

42. Distance between Two Parallel Planes,
parallel planes is the perpendieylar distance,
perpendicular (line) which is

The distance between two given

] that is, the length of the common
included botween the planes.
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43. TurEorEM 12.

Three or more parallel planes have proportional interce pts on any two
line transversals,

Given: M| N S; =z and g
are any two transversals.

2
5~

Prove: 8 _ DE.
rove) BC_EF

/ 4
1) Draw AF. N 2N
\\
N A\
/

——
—

2) rand AF determine a planc R;
AF and y detcrmine a second

plane T in general, since z and
¥ arc not necessarily coplanar, &\

3} Now apply Ref. 40 to the line- K7, X
segments in 2, and again to ,W,\\ \\

those in 7.

The scgments on A F will serve
s a conneeting link in obtaining
the desired proportion between
the segments on z and those on .

44. THrormyM 13. " \

I an external line is parallel to° 5'giv'en line in a given plane, then the
external line is paraliel tq"i@e given plane.

,\'\‘..

Given: y Hesin M ey /
Prove: z || M. N

1) If z were to_iget M at some point P,

then P wom@”}iave to be a point on line

¥, since ;ofd}d ¢ are coplanar,
2) But z qarihot meet y. %
3) gzmnot meet 3, and hence must be A
raflel to M,
T1G, 55

45. ConsrrrorioNn 10,

Through a given cxternal point P construct a line which shall be
parallel to a given planc M.

In M draw any linc w.
In 8, the plane of P and w, draw a line « through P and parallel to w.
Line = is the required line (§ 44).
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46. TaroREM 14.

If two intersecting lines are cach parallel to a given plane, then the
plane of those lines is parallel to the given plane.

Gaven: z and y intersecting at P,
S the plane of z and 3. =z | M;
y | 3.

Y
Prove: S| M.
1) From P draw b 1 M, eutting M
at 4.
2) Draw R, the plane of z and h,
cutting M in z; draw 7, tho plane
of ¥ and h, cutting M in .
3) Prove S || M by § 37.
M
41. Corollary A (Th. 14). \

3

Through a given extornal poinj;gt}iére fs one and only onc plane which
is parallel to a given plane. ~O%

/4

From § 46 there is at leagt dne such plane.

. Assume that through the given point, there is a second plane parallel to the
given plane. From th{' Eiven point draw a line perpendicular to the given
planc. Obtain a contradiction to § 19,

9 N
48. Corolla {B“(Th 143,

If a Ini{: is parallel to g blane, there is one and only one plane which
cortaihs this line and is paralle! to the given plane.
3

(Proof left ag an exercise. )

49. CoNsTRUCTION 11.

Through a given external point P construet g plane which shall be
parallel to a given plane 3,

Use cither § 46 or § 37,
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50 THroneMm 15,

If two angles not in the same plane have their sides parallel and ex-
tending in the same dirvection with reference to the line juining their
vertices, the angles arc equal and their planes are paraliel,

Fiven: £A inplaneS; ZBin
planc M; x|l y; 2 || w.
Prove; (a) £A = £B;
() 8 M.

(a)

1) Draw AB. On z and y, re-
spectively, take 40 = B
On z and 1, respectively, take
AE = BF. Draw (D, EF,
DF, CE.

2) Show that ABFE and ABDC
arc parallclograms. Thus ob-
tain: I | AB, €D || AB.
Alsoobtain: EF = AB, CD =
AB.

3) Now show that CDFE is a parallelogram,

1) Prove ACAE ~ ADBF, and obtéfin"éfl = /B.

¥ (b)
) M Wz; 5 2 (§44). O,r*,u\hwt is the same thing,  and 2 are each paraliel
to M. O
) .. &, the plane of 2@@bd 2, is parallel to M (§ 46).

\Y;

~4 EXERCISES
Group Frve

1. In thedgfowing tell which statements are true and which are false:

{1} Iwodines parallel to the same planc are parallel to each other.

(2} 51\\:1 planes parallel fo the same plane are parallel o each other,

(3) Two planes purallel to the same line are parallel to each other.

(4) If two plunes are parallel, a line perpendicular to one plane is perpendicular to the
otlier.

(6) Tf a line and a plane are parailel, a line perpendicular to the one is perpendicular to
the other.

(6} Tf u line is parallel to a plane, it is parallel to cvery line in that plane.

(7) Two lines perpendicular to the same line are parallel.

(8) 1f a line z and s plane M are parallel to a line ; , then z iz parallel to A,

i) Tf a line is perpendicular to a plane, it makes cqual angles with any two lines in that
plane which pass through its foot,
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(10) If & line intcrsects & plane so as to make equal angles with two lines in that plane
which pass throuph its foot, the line is perpendicular to the planc. _

{(11) Through a given external point there s onc and only one plane parallel to » given
plane. _ _

(12) Through a given external point there is one and only one line parallel to a given
plane.

(13) If one of two intersecting lines iy parallel to a given plane, the other line is also
parallel to the given plane.

(14} If a line inferscets one of two parallel plancs, it interseets the other, alzo.

{15) If a line intersects one of two parallel lines, it intersects the other, also.

{18) If a planc interseets one of two parallel lines, it intersects the other, also.

2. If g given line is parallel to a given plane, and if a second plane containing, this line
intersects the given plane, then the given line is parallel to the intersection®¢Rihe two
planes, Trove. A\
¢\

3. If three lines all meet in one point and are cut by & fourth Line, then;:fﬂl four lines wure
coplanar. Prove. PAY

4. If a plane contains one of two parallel lines but not the otl{ek: show that the plane
must be parallel to the other line, )

5. Prove that if three or more parallel planes have equalintercepts on one line trans-
versal, then they must have equal intercepts on any cQIer line transversal,

6. Pro*:fe that if 4 line and a plane are each pérpehidicular to the same line, then the
given line and the given plane are parallel, .\ o~

P (ai,nd not in M show how to construefi® line w which shall make aqual angles with z
and y. 9 )

P4\

7. Two lines z and y intersect each other at a'point P and determine a plane M. Through

o\
8. Three non-coplanar lines, x, )¢ are parallel to one another : lermine
blsne 1T, Drovet T o X r, z and y determine a

A%/

9, Alinegis pargn{{gho aplane 3, Planes §
and T, each eog@;ining z, cut M in y and ¢,
respectively \\Prove: y || 2.

N® M
\ ) T1c. 58

10. Two planes M and N intersect in a line ¢, A plane § uts M i i
yand N in w tne s rover g po p » parallel to #, cuts 3 in a line

11. Two lines x and y are parallel,

e A plane containin i , N
containing i but not x, M intersect 8 & but mot y intersects a plane N

8 ¥ in s lnew. Prove: u | = and w | 4.

12. Three parallel planes M, N, S are cut by two lines 2 and &. The intercepts on A are

5in. und 8 in,, respectively: tl ; ino drtame . A
tively_ Find :l:. P ¥i the COrrebpondmg nter prts on ¢ are 7 in, and » n,, respec-
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D
H

13. Four points 4, B, ¢, D are non-collinear and do not all

lie in onec plane. Points E, F, &, H are respectively the mid- G
points of AB, BC, CD, D4, Prove that E, F, @, H are

coplanar {Ref, 28),

ra
FiG, 59
14. In Fx, 13 show that BG and FH bisect each other,

15. A Ime AB is perpendicular to a plane M st B. AB = 5in. In M what iz the locns
ol pointa which are 7 in. from A? Make s definite statement. N\

16. Complete the following statement: ““The locus of points which are cqu}f\lstant from
two given parallel planes 1s . . " Prove. P

17. What iz the loeus of points which are eguidistant from two g,lven parallel hines?
Prove your answer. N

18. What is the locus of points which are 3 in. from a given phme"

19. 4 and B gre fwo points above a plane M, What is the IOCus of points which are at
the same time equidistant- from 4 and B and  In. {roppM? Answer without proof.
1z the locus always possible? Btate any exceptional gagos.

20.  and ¥ arc two parallel lines. 4 and B are; t.\’»'{).’pc_:ints uot on = or ¥ and not in the

plane of x and . What is the locus of points whisk'are at the same time equidistant from
2 and y and equidistant from A and B? :\Jl-mer without proof,

21. Points 4 and A arc 21 in, apart, Desnnbe definitely the loeus of points which are
at the sume time 10 in, from 4 and 174RMrom B. Answer without proof.

4 «D
22\
L)
L™
22, Point D is not in the plane of A, B, €. Show how to 4 B
locate a point which cshali be equldlatant from A, B, €, D, Tt s
Uaow many such poings Jfe there? N P
I N e
“\s \"/
© :
o\ Fra. 60
AN A
\ )
23, A0 | M atO. z 15 a line through B;
and B liein M, From 4 aline y is drawn L . Y
AD =8 in, y = 10 in. Given the plane W x 0

and point B and the line AQ, show how fo
reproduce the lines & and y.

M

Fia. 6l
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v
24. AABC lics in a plane M. Doint V is D F
above M. A plane 8, parallel fo M, cuts VA, S
VB, VO at points D, E, F, respectively. 4 E c
Prove: AVDE ~ AVAB, ADEF ~ AABC,
M
B
Fia, 62 £\

25, In the preceding figure let AB =7 in.,, BC = 24 in., AC = 25 in{ T\D 5 in.,
"DA = 10 in. Find the area of ADEF, N

N/

26. In Ex. 25 find the area of the ecirele which can be circumscril“)ed’;khout ADEF,

27. In Fig. 62 draw VO perpendicular to M, cutting M at Oﬁﬁ(fS at P. Prove:

Vo _F¥¢ _BC
TP T TF T EF
~1 \ N
28. In Fig, 62 let I be the circumcenter of &AB(", Draw VH, cutting § at a point J.
Frove thut J is the circumeenter of ADEF. A

29, In Flg:, 62 let K be the centroid of AAHC Draw VI, catting 8 at 2 point . Prove
that € is the centroid of ADEF. D

30. In Fig, 62 draw a plane T coz{nmmg V€ and cutting M in a line wand 8 in & Hoe f.
If w bisects £ ACB, prove that,i" bisects £ DFE.

N
31. In Ex, 30 let AR = |2 } BC = Win, AC = 8in,, VD = DA, Yind the lengths
of the segments into Wthh: 5 dn« ides DE, (bee Ref., 25, )
A

x'.\
."\$~

S [—

32. AjSa 2 ﬁxed peint above two parallel
planes s M and N. O s a fixed pointin M, P B
AQ cuts N at 2 point B, Qg a moving
point in M and traces a eircle about () as

a center. Draw AQ, cutting N at P, /
o

Prove that in N the point 2 traces a circle
about B as a center,

', 63
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al. CoxsTRUCTION 12.

Cunstruct a plane which shall contain one of two given skew lines and
be parallel to the other.

¥

2 iy skew to g,
On a choose any point P,
Through P draw line w parallel to ¢ (§ 18). -
. P QY
Now use § 44, e

P ,f’ P ¢ l\ t\’ €

',/ W ..\ >

:\,,I
FiIG, 64
N

52. Turorem 16. P\

Through one of two skew lines there is one and (')LIIy\OIlC planc which
ig parallel to the other line.

¥ AV

a\"
Giwgn: x skew to y.
Prove: Through z there is
(a) one plane parallel to y;
{h) not more than one plane parallel to 4.
(a)
1) From § 51 there is at least one plane M which containg @ and is parallel to y.
(b)
2) Assume that there is a sccond planc N, containing z and parallel to .
3) Draw any plane 7' containing y and cufting M in w and ¥ in f.
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4) nwl|yandf||y. Why?
5) Show that the assumption of N and M both parallel to y leads to a contra-
diction of Post. 4, and hence that M is the only planc containing x and

parallel to y.

53. ConsTrRUCTION 13.

Through a given external point construct a planc which shall be paral-
lel to two given skew lines.

x ig skew to .

P is an external peint. 72N

Through P construct! z and w paralle! to z N LV
L )

and ¥ respectively. s
Use § 4. Y
P .x\" - ~7p z
:5 “' //
« W g
Q‘f"& ¥, 66
54. THEOREM 17. N

Through a given external peint there is one and only one plane which
is parallel to two given @ lines.

X \\,.
The method of progi, is\similar to that used in § 52.

PR
N/
)



Chapter Four

DIHEDRAL ANGLES. PERPENDICULAR
PLANES. PROJECTIONS

4 '\
55. Dihedral Angle. A dikedral angle (dh £) i3 a figure fqmﬁga&by two planes
meeling in a common line. > ¢

The planes themselves are the faces.
The commeon line is the edge.

QN Fra. 67

6. Reference to a given dihedral fifﬁgle is made by indicating the faces and the
vdge; or, when there is no gmibiguity, a dihedral angle may be named by its
edge only, In Fig. 67 th st'ﬂﬂédl‘al angle may be named as follows:

dh ZM-4B-N; dh £M-2-N; dh£ARB; dhZz.

57. Fig. 68 repr®dents a
dh £ M——N. ;T,J{’;-"Pf"fira-w two
lines A B and BE.each perpen-
dicular to_the'edge z. In N
draw C'B3md FE each perpen-
diculd 4. By §50, ZABC =

ZDEM= any other angle sim- c
larly constructed. Hence, for N
a given dihedral angle all the

angles such as £ ABC are con- x

stant in size. Fie. 68

58. Plane Angle of a Dihedral Angle. The plane angle of a dihedral angle is
an angle whose vertex is on the edge of the dihedral angle and whose sides are
perpendicular to the edge and lic one in each face of the dihedral angle. (See
ZABC, for example, in Tig. 68.)

a1
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59. Equal Dihedral Angles. Two dihedral angles are egual if they can be
made to coincide with cach other. (If a plane eontaining the edge of a given
dihedral angle divides the dihedral angle into two equal dihedral angles, this
planc is said to bisect the given dihedral angle.)

60. Example: Prove that if two dihedral angles are equal, then their plane angles are
egual. Conversely, show that if the plane angles of two dihedral angles are equal, then
the dihedral angles are equal. (Both statements may be proved hy the methed of
superposition.)

61. Measure of a Dihedral Angle. The measurement of a dihedral angle is
the same as the measurement of its plane angle, ~

(Thus, “dh Zz = 32°” means that the plane angle of dh Zz {7 32°. Sim-
jlarly, & righi{ dihedral angle is one whose plane angle is a righfyangle; an
acute dihedral angle is one whose planc angle is acute; an obtu}s}e‘diﬁcdml angle
is one whose plane angle is obtuse.) ~~’.’;'

7
S

62. Perpendicular Planes. Two plancs arc pe-rpf:y%ﬁc}ula-r to cach other if

they meet so as to form a right dihedral angle. ’
2.\\:

63. Turorem 18. <!

If a line is perpendicular to a plane, then any plane containing that

line ig perpendicular to the givcn.gﬂ;&ne.

NS
W\
~ ) §

Given: 2z L Mat A; 8 ,g.@;r plane centaining S

z and cutting M in line,y{)

Prope: 8 1L M. M N %

1) In M draw w 1 gpat A.

2) Bhow that dh & 8%-M is & vt dh £ because > M,
its plane Zygart 2. 4 mm———===

Ny <

64. ConSrrucTion 14.

N\ ¢ . ’ . * .
Through a given peint which is either in a plane or outside the given
plane construct a plane which shall be perpendicular to the given plane.

65. THrorEM 19,

If two planes are perpendicular to each other, a line in onc of these

planes perpendicular to the line of intersection is perpendicular to the
other plane.
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Given: M 1 N, meeting & in line f; BCin M;
BC L fatC. M B

Prove: BC 1. N.
1) in N draw CD L f.

2) How is £ BCD related to dh £ M—f-N? c
3) Show that BC is perpendicular to f and CD. F e D
Then why will BC be perpendicular to N? e N
Fic. 70

66. Corollary A (Th. 19).

If twe plancs are perpendicular to each other, a line pelpandlcu]ar
to one of these planes at a point on their interseclion mus‘r Tie in the
other plane,

'\’;
Given: M 1 N, meeting N in w; A4 any, pomt on
w, ¥y L N at A, o\

~
N
3
«ay

Prove: y lieg in M.
At 4 and in M draw x L w. Show that y must

coincide with = (§ 63). L
N\ Fia. 71

67. Corollary B (Th‘l@)

If two planes)are perpendicular to cach other, and if a line is drawn
from anyfmmt in onc of these planes perpen&hculat to the other plane,
this 11{1’@’&1111313 lie in the first plane.

Q°

¥
Given: M L N, meeting N in w; P any point in 3/; |[M |
PA 1 Nat A, E h
Prove: PA liesin M. tf
Use the method of § 66 above. w A ;
N,
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68. TaroreM 20.

If two interseeting planes are each perpendicular to a third plane, their
line of interseetion is perpendicular to the third plane.

Given: M and N intersecting at z;
M18 N1S
Prove: z LS.
1} From Pdrawaline 1 S.
2} P must lic both in M and N, sinee z is
the intersection of M and N.
3) . kh must lie in M (§ 67).
4) Similarly, hliesin N.
5) Since k lies in M and N, h must be the —5
interscetion of M and N. Tag, 73
6} .. A coincides with z, and hence & must be pcrpendic\L@'&r to 8.

69, TarOREM 21.

Through a given external line not perpendicu]?;r t0 & given planc there
1z one and only one plane perpendieulap ,toz\he given plane,

Gaen: z outside M; z not perpendicutar
to M. N

Prove: There ig A\
(a) one plane S containing z and perpendicular
to M; o)

{b} not more than one sd’&gt:ﬁlane. 74
\ (a,) Fia. 74
From any poi&t:P Iz draw PA 1| M., Now apply § 63.
M (b)

Assum:e:ﬁl\at therc is a second plane T containing = and perpendicular to M.
:I‘hnn t!u{%re ’woqld be two intersecting planes S and T cach perpendicular to M.
fhf‘giﬁ?l’e, by §68, = would have to be perpendicular to 3. But z is given

not Perpendicular to M. Hence, T cannot be perpendicular to 3,
EP
70. Projection of a Poi I i ie i '
j : a Peint. If a point P does not lie in a !
p]anej M, and if from P a line ig drawn perpendicular to M i
meeting M at a point O, then point 3 is the projection of I;’ i
upon M, :
0
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P
71. Projection of a Line. The projection

of any line or curve upon a given plane is

the locus of the projections of the points

of the given line upon the given plane. 5

M
Fra. 76
72. TrronrEM 22, A

If a line & not perpendicular to a given plane i and not containe o i
is projected upon M, its projection upon M is a straight line ‘T This
line y is the intersection of M and the plane § which contams T and is
perpendicular to M. o\

(fiven: Tine x outside a plane M; S the
plane eontaining » and perpendicular to 34;
S meetz 3 in a line g. RE

Prove: y is the projection of  upon M. A\

(a) N\
Show that the projection of any point of
x upon M must lic on the line y.  ~8°
1} Let € be the projection of anxcpomt Pof 4]
line 2 upon plane M. M
2) Shov& that P} lies in 8 (W) Fre. 77
3) . @ mustlicony. “3
. \ (b)
Show that am@nt on y is the projection of some point of & upon M.
4) Let B he anjnpeint on y.
5) At B drayalinc h 1 M.
6) h mustHedn S (§ 66).
7} - KOt x in some point 4.
8) .. BYs the projection of A (a point of x) upon M.
From (a) and (b}, line ¥ must be the locus of the projections of all points
of @ upon M. Therefore, the line y is the projection of the line 2 upon the
plane M (§ 71).

h
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73. THEOREM 23.

The acute angle which a straight line makes with its projection upon
a given plane is smaller than the acute angle which the given Jine
makes with any other line in the given planc.

Given: Line x and plane M7 z, extended
if necessary, cuts M at A; p is the projection
of z upon M; w is any other line through
A in M.

Prove: The acute angle betwoeen x and p
is less than the acute anglo between z and w.
1} Choose any point B on .

2} From B draw BD | M, meeting M a5 D.

Why does D lie on p? Ay '
3) From B draw BC' 1 w, meeting w at C. X \ Fit. 78
4) = BD < BC (§ 24). AN

5) . osin ZBAD < gin Z BAC.
6) .., since £ RAD and BAC are each acute, AQ%TD < £ZBAC.
74. Inclination. The acute angle which gx@ifrizn line makes with its projecs
tion upon a given plane is called the anglg Which the given line makes with the
given plane. This angle is also calledythe inclination of the given line to the
given plane. N

_EXERCISES

Group Siz

1. Prove § 73 hy‘thh'\f(allowing method: On

z choose any yomt B, Draw BD | M,
On » take AE = AD,

meeting M e{ﬁt
Apply Ref{\I‘S‘ 0 triangles BAD and BAE,

SN
.

\}.. i

F1a. 79
B
2, AR is any Iinesegrent above o plane M. AR is not 4
perpendicular to M. ¥rom A and B draw AC and BD, re-
f.spcctlvely_, perpendicolar to M, Draw ¢D, Bhow that Ch
Is the projection of AB upon M. c
ry
M

Frc. 80
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3. A line and ite projection upon a given plane determine a plane which is perpendicular
to the given plane. Prove,

4. A line z is outside » plane M. If z and M are each perpendicular to a second plane
S, prove that » is parallel to M.

5. If parallel lines intersect a plane they are equally inclined to the plane, Prove.

6. Parallel lines which arc not perpendicular to a given plane and which are not in a plane
perpendicular to the given plane have parallel projections upon the given plane, Prove,

7. 1f two parallel line-segments which are not perpendicular to 4 given plane and which
du not lie in a plane perpendicular to the given plane are equal, then their prdjéetions
upon the given plane are equal.  Prove. N
¢\

8. Three limes x, y, # are concurrent at a point A, Fach line is pcrpcndi::’t}la.r o cach of
the other two, What can be said regarding cach line and the plane of the’other fwo?

9. In Ex, 8 if M is the planc of # and y, & the plane of # and zu‘g the plane of y and 2,
what can be sald regarding the planes M, ¥, 87

0. A point P and o line # each lie cutside a plane 3, .%t}w how to construct a plane
wlich ghall contain P, which shall be parallel to z, and (hich shall be perpendicular to M.

11. rove that the legs of an isosceles triangle ard equally inelined to & plane containing
the base of the trmmlc AN

12. If o line 2, not perpendicular to a plang M, meets M at A, prove that through A and
in M there is one and only one line perpe‘eﬁdicular to. 2.

13, If a linc z is paralle] to a plamﬂw prove that any plane S which iz perpendicular to
z is also perpendicular to M, \\ "/

4. If a plane S is perpt‘n(li(‘ﬁl‘ar to both faces of a dh £ M-=—N, prove 8§ 1 z,

15. A plane which is pqrpendu,ulal to the edge of a given dihadral angle is perpendicular
1o hoth faces. Pw‘c‘e‘

Show hows t};\r onstruat the plane which bhiseets a given dihedral angle. Trove that
your mmtruction 18 correet.

17, l’I%Qe ’planea M, N, Smeet in 4 common line s, Atany point # on 2 lines &, f, { are
drawn perpendicular to M, N, 8, regpectively. Prove that A, f, ¢ are coplanar.

18. P is any point not in either face of o dh £M » -N. Show how to ronstruct a plane
S which shall be perpendicular to M and N, and which shall contain P,

19. In Tix. 18 shos how to construet through P & line ¢ which ghall be parallel to M and
N. Prove your construction.

20, Aeute angle ABC lies in a l)]a.ne M. BA = BC. Planes S and T bisect perpen-
diculurly the lines BA and BC, respectively. Prove that S and T intersect each other
in u Yine k which is perpendicular to M at a point on the bisector of £ ABC In M.
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D

21. A parallelogram ABCD, not neces-
garily parallel to & plane M, lies above
M as shown. From the four vertices
and from E, the intersection of the
dingonals of ABCD, lines , y, 2, w, A
are drawn perpendicular to M. Trove:

=jlet+ytetw).

N
2\
£\ ~

Fic. 81

22. Any plane M is drawn to contuin
diagonal DB of a parallelogram ABCD.
M is not perpendicular to the plane of
ARCD. From 4 and ¢, AE and CF,
respectively, are drawn perpendicular to
M, meeting M at ¥ and F. Prove:
AE = CF.

23. Two planes M and ] \mter%ect
each other in a line BEF.Y In M,
BA 1 EF; in N, DC_LI&F AB—
DC. T and J are bhh ‘mid-points of
BDand AC, respccﬁvelv Prove that
HJ is perpe mi}lar t0 BD and AC,

O

) »\ 3 Fiz. 83

24. Piss pointoutsidedh £ M—2-N, P4 | M,
PC L N. 8 isthe plane of P4 and PC; 8 cuts
z at B, Draw P8 and prove: PR | 2.

I1c. 84
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75. CoxsTRUCTION 15,

Construct the plane which bisects a given dihedral angle.

(See Kx, 18, Group Six.)

76, Tuwonwyw 24,

The locus of points cquidistant from the faces of & given dihedral
angle iz the plane which bisects the given dihedral angle.

N

In Figs. 85 and 86, 8 bisects dh £ W-2-N.

;\
)
~
S A
{
W

(1) Let P be any point in 3.
Prove 2 equidistant from M and N.
(Draw PA | M, PB 1 N.)

8 J Fig, 85

&
A Q

Y
&

(b) Let @ bg}}a.ny point equi~
distant frem M and V.

Préyc)that @ must lie in S.

{Draw QC 1 M, @D 1 N. Ar
Let plane of QC and QD cut S
in line K¢, Show that FQ must
coincide with Eg)'.) ¢
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77. CONSTRUCTION 16.

Construct a common perpendicular to two given skew lines.

r B
5
k

z
A

¥

M
F1a. 87

x iz given skow to . v
1) Through y construct the planc M which is paxraiﬂél to x (§ 51).
2) Draw plane S containing x and perpendiculdr %o M (§ 64).
3) Let S cut M inz; let S cut y at A. Whyis ¢ parallel to 22
4) In plane S and at A draw h L 2.\ .7
5} Tine h is the required perpendiculaf

In order to prove the constmcﬁblﬁ' sec §§ 65, 9, and Ref. 35.

78. THEOREM 25. <
> "

If two lines are sk(z}xr\t\&ea{:ll other there is one and only one line which
is perpendicular. fo>both skew lines; and this perpendicular is the
shortest distag}é}t between the two given lines,

$75

7\
N\~ z ¢ B

‘.:’
...\" 3
mm\./

I
3 } h
N\ I} -

[oR

Fic. 88
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Given: 2 skew to z,
Prove: There is
fa) one common perpendicular to = and y;
(h) not more than one such line.
(¢) The common perpendicular is the shortest distance between x and .
(a)
1) From § 77 there is at least one line 2 which is perpendieular to x and .
(b)
2} Assume that there iz & second line €'D also perpendicular to 2 and 3.2\
3) Agin § 77, let M contain y and be parallel to z; let S contain g and be
perpendicular to M, cutling A in line 2. R\,
4y In A and through D draw w || z. i?

5} Hince (' L by assumption, then CD 1 w, also (Ref. 35<) N\
6} (J’) 1 % by assumption,

s,

7 . CD 1 M. O

8 In Sdraw CE 1 = \ )

9) . CF 1 M. N

11y Thus from (' we appear to have two lines, GD\&“ﬁd C'E, both perpendicular
to M, — which contradicts § 23. o\

11} .. the assumption made in step 2 II]l.li.-‘;t.b(;T&lSC.
12) . Jis the only common perpendiculdr to the skew lines = and y.
N9 |
Draw BD, for example, and sifos that A is less than BD. Tn gimilar fashion
h can be shown Lo be less tha-n\ @y other line drawn from z to ¥.

9. Angle between Two Skew 4
Lines. Tef 2 andy bet®tskew

lincs. Through y drm{the plane

M which is paralleo’'z. Let p /<
bt the pmgechc\n%f x upon M, P

cutting ¢ at qaine point A. The 4

angle \\hu 0y makes with y at

point ANjg soften called the thgle ¥

between the skew Hnes @ and y. M

Thus, if p intersects v at an Fic. 89
angle of 30° we say that the
angle between the skew lines x and y is 30°. ¥ the angle at 4 is 90°, we may
say that the skew lines # and y arc “ perpendicular” to cach other.
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EXERCISES

Group Seven

1. A and B are any two points outside a dh Z M-z-N. In general, what is the locus
of points which are at the same time equidistant from 3 and N and equidistant irom
A anit B? Ts the locus always possible?

2. Plane S hisects dh £ M—=z-N. AABC lies in S. Through points 4, B, € lines are
drawn perpendicular to . These lines cut M at D, E, F, respectively; they cut & at
X, Y, Z, respectively. Prove: ADEF = HXFZ,

N

~

K
\\5,'
3. Angle ABC lies in a pland M. Plane N is perpendicular to M, meeting M in BD. BD

E:grgucé ABC. l:x”rg\i%\ﬂlat N is the locus of points which are equidistant from B4

"\s.
\i“;
QO

ad
.

Fic. 90

4 ..\\ 3
a\"

\ 3

Fig, 91
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4, Point A les maplane M, BCO L MatC. S L ABatD. Scuts Min xand 40
at E. Prove: x L AC.

M

o 3
I'1e. 92 '\\

5 Aline 48 s perpend]cular to a plane MatB. Aline CD is per ppmhcuiar to M at D
AB = 32in., BD = 321in, €D = 8in. In M show that the locusdfipoints equidistant
from 4 and C is  line f which is perpendicular to BD at some pomt P. Find the exact

location of P on BD, .\ A

':.' N

AN c
6. AR 1 M at B, (DL M at D. Prove thaff the
locus of points which are at the same time equldﬁtant
from A und B and equidistant from AB smd 0D ig a
ling parallel to M, skew to BD} in general, and ?perpendlcu-
lar to BD. (See §79) X B N

N\ M
e\J
\\ ) Fis. 93

. Three lines x, ¥, z are, gonburrcnt at a point P. Show how to construet a line A which
passe*—. through P and wiakes equal acute angles with z, y, 2. (Assume that z, y, 2 are
not eoplanar.) '\~

8. Three planes M \ S intersect one snother in the lines z, ¥, 2. Prove that =, y, 2 are
parallel to onekother or else that x, ¥, 2 must be coneurrent.
A\ A

9. A and B are any two points
ahove a plane M. Show how to
locate in M a point P such that
the sum (AP + PB) shall be as
small as possible. M

Frs. 94
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16, Two planes M and N intersect
cach other in a line 3, AABC lies
in M; AB| x. ADEF is the pro-
jection of AABC upon plane ¥, Let
dh £ M- N = 8; letk hc the area
of AABC, let p bethe ares of ADEF,
Prove: p = keos f.

ﬁ‘
N
4 N 4 N
(N\H
'S\
11. Let M—z-N be a dihedral angle as in Fx. 10. Let s be the axde 1 any polygon
which lies in M; let p be the arca of the projection of the polygon‘upon plane ¥, Use
the result of Ex. 10 to prove: p = & cos 8, (Show that the polygon in M can be sepu-
rated into a number of triangles with onc side of each parallito line 2.)

Fus. 93

80. Let k be the area of any figure whatsoever “htﬁ‘( may lie in plane 3. I
intersects N in x, making dh £ M—a-N = 0. Lebun be the area of the projection
of the given figure upon N. It can be pm\-'cd:t-ﬁ’at
» = koos 0.
{The proof of this general case wjﬂ‘ not be discussed in this book. The
truth of § 80 will be assumed.) <33

Fic. 96



Chapter Five

PRISMS

N
¢ \\.

81. Solid. A solid is often ealled a finite portion of gpace, mearﬁﬁﬁ' that it is
a portion of space having definite boundarics. These 1‘)011nd§1§iés'are surfaces,
or perhaps a single surface, as in the case of a sphere, Whgl;‘fi'éaolid is bounded
by several surfaces these surfuces are called the faces of ¢hie"solid; the lines of
intersection of the fuces are the edges; the points of ntékseetion of the edges are
the vertices.  The area of a solid is the sum of the aredghof its faces. The volume
Is the amount of space enclosed by the l')mmclin%’s{@r aces.

Just as a surface may be generated by aNine moving through space (§1),
s0 a solid may be generated by the motion{ola surface through space.
82. Plune Section of a Solid. If a‘jﬂ}ine M intersecis a solid, the figure
determined upon M by the solid is fzafl,éti & plane section of the given solid.

Ny

83. Prismatic Surface. Let\p be any plane polygon. ®
Let x be a straight line touél{m‘g’jp but not coplanar with p.

Let  move so that it is égays in contact with p and so

that it remains pargllél™to its original position. ‘The

surface traced byxa‘\:is called & prismatic surface { Figs. 7
97, u8), A°

TI'1a, 97

Line z iz the generatriz of the surface; p is the
divectriz.  An element of the primastic surface is the
line ¢ in any one of its innumerable positions. Clearly,
4 prismatie surface consists of three or more plane sur-
faces which may be called the faces, The interscetions ¥
of these faces are the edges.

Te. 88
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84. Prism. If two parallel planes M
and N cut all the edges of a prismatic
surface, the solid bounded by M, ¥
and the prismatic surface is called a
Prigm.

85. Figure 100 shows a prism ABCDE-A'B'C'D'E".
The following facts regarding this prism are
easily proved.
A. The plane figures ABB'A’, BCC'B’, cte., are
parallelograms,
B. The lincsegments A’A, B'B, (’C, ete., are a;ll\ /
equal. \
(. The figures ABCDE and A’B’C’D’E’ are Jeon-
gruent. A°
A prism may, therefore, be de acmb@d 35 a solid
whose bounding surfaces are: A
(a) two congruent polygons in paraliel planes with
corresponding edges pamllul and
(b} three or more paralle g\a,mb
86. Parts of a Prism.NCI. TI'ig, 100.)
"The lateral edges, afe,the linc-segments 447, BE’, CC', ete.,
The lateral faced.are the parallelograms ABB'A’, BCC'R', CDD'C’, cte.
The bases are the polygons ABCDE and A’B'C'D'E'.
The basal%d?;ea are AB, BC,CD, . . . A'B, B'(", O'DV, ete.
5 'orrps;@@ndmg vertices are A and A’ B and B’ C and ", ete.
Qggrespondmg basal edges are 4 B ancl A'B’, BC
and‘B’E", CD and C'D'.
The alistude of a prism is the perpendicular
distance between the bascs.

87. Truncated Prism. If a plane not parallel to
the bases of a prism and not interseeting the basces
cuts all the lateral edges, it divides the given prism
into two solids, either of which is called a truncated
prism (ABC-RST or RST-DEF in Fig. 101).

Frc. 101
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88. Righi Section of u Prism. If & plane cuts all the
lateral cdges of a prism perpendieularly, the plane sec-
tion thus formed is called o right section of the prism
{(AGHK in I'ig, 102).

Tre 102
89. General Classification of Prisms. Q|
[ triangular 1 triangles 1 O\
o drangular guadrilaterals A\
& or s Jaqua A\
prism 18 pentagonal pentagons A\ \ph ete.

hexagonal hexagons,§

{ if its bases are
A right prism is one whose lateral edges are porpendmﬁlar to the planes of
the bases.
An obligue prism is one which is not a right prism.
A regulor prism is a right prism whose bases Q’fe regular polygons.

90. Purallelepiped. A parallelepiped is a’pmsm whose bases are parallelo-

grams. o\ o .
O E H
’:' : ’ \ ;‘\
Figure 103 shows a parallelgpiped ABCD- = + G

EFGH. lines AG, EC, HB, D}’ are the diago- '
nals. Planes ACGE, HEB&\btc are the diagonal gl ——f— e 4D
planes, A\ N

.\".:«.' \\

O g B c
'\“ Fi1c. 103

| u‘r'hng\ar parallvloplpedl is a right parallelepiped with rectangular

| rectangu]ar solid bases.

T“ gular parallelepiped |
&xcglﬂal rectangular solid

cube

is a reetangular solid all of whose edges are
cqual.

91. THkOREM 26.

Sections of a prism made by two parallel planes cutting all the lateral
edges of the prism are congruent; and these parallel sections them-
selves determine g prism.

{Proof left to student.)
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92, THEOREM 27,

The opposite faces of a parallelepiped are congruent and their planes
are parallel,

(For example show that ABFE ~DCGTI,
and that their planes are parallel.)

03. Turorsw 28. \ O

The diagonals of any parallelepiped are coneurrent Lukd\ bisect one an-
other.

1) Draw twe diagonals EC, AG.

2) ACUE is a parallelogram.

3} - EC, AG are coplanar and bisect
each other at a point P. In other®
words, AG cutg £C at P, the mid- puﬁl’ﬁ
of BC, N\

4) Draw a third diagonal HB. ¢

&

5) SBhow that ITB and EC ﬂg‘t\ oplanar

(planc HEBC), and hﬁ&@ce interseet A B
and also bisect each pther, Fie. 105

6) Thus far we haw (”\ ’AG and HB each passing through a common point P
on FKC. A

7} Complete thesproof by considering diagonal DF. We shall then have all
four diagenals passing through the same point P.

Note: \The point P above is called the center of the parallclepiped.

\‘;

EXERCISES
Group Bight
Note: If it is desirable, Exercises 1-8 may be treated as theorems.
1. Sections of a prism which are parallel to the bases arc congruent to the bases,
2. All right sections of a given prism are congruent.
3. In a right prism the altitude equals any lateral edge.

4. The lateral faces of a regular prism are congruent rectangles.
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5. In any prism a plane section determined by any two non-adjacent lateral edges is
parallelogram.

6. A seelion of o parallelepiped determined by any diagonal plane iz a paraliclogram.
7. The diagonals of & rectangular solid are equal.
g In 4 rectangular solid a diagonal plane is perpendicular to two opposite faces,

9. 1f any bwo opposite faces of 4 parallelepiped are designated as bases, will the solid still
conform to the definition of a parallelepiped in every respect?

o

10, If one edge of & cube iz z, show that the length of a diagonal
is a3,

r&-

3

N ‘.l‘
(W
Y

R

kY

R\
\J Fia. 106

11. A diagonal of a cube iz 24 in. TFind the length of mkeedge.

12, The sum of the areas of the faces of a cube is 36 %\1\ m, Find the length of a diagonal
of one face of the eube. Find the length of one r}mgbnal of the cube itzelf.

13. Find to the nearest tenth of a degree, QF i.(} the nearcst minute, the number of de-
grees in the acute angle at which any twao Jifgonals of a cube intersect each other, (This
1s best done by using the Law of Cosmcs from Plane Trigonormetry.)

"‘< qH a
)
¢, L\ I
R AN
B
ABCD-EFGH isa .re@f"a,ngular solid, AB = E
12 in., IF = 4 in,, BON2 3 in. Find the length IC’
of a 1mg0nal of thf: \oﬁd D "“__‘—“_""'"J\
hY
\\“ \\
‘.:’.’ A. B
;“\:f' Fia. 107

15. IN'\: 14, find the area of seetion ACGE.
16. 1f d is 4 diagonal of a rectangular solid and a, b, ¢ are three non-parallel edges, prove:
d=vVa it

17. Three non-parallel edges of a reetangular solid ave proportional to the numbers 3, 4,
3. One diagonal of the solid iz 152 in. Find the length of each cdge.

18. In uny prism, if & plane eontaining a lateral edge intersects a lateral face, the plane
section thus formed is a parallelogram. Prove.



19. ABO-DEF is a trisngular prism. A plune containing
edge AB intersects base DEF in line HK. Prove that
section ABIIK is a trapezoid.

D r'\:" by
$ W -
N AL
) ' A -
. . . . O — 7
20, ABC-DEF is a right prism whose bases are equilateral\ | -~ /)
triangles. A plane parallel to a basal edge but not parallel te the’ X /
planes of the bases cuts all the lateral edges. Prove thx{c vthe /
seetion thus formed i3 an isosceles triangle. AN ¥
. ’ \ A4 c
) B
::v Fie. 109
{\ Dy > I

¢ \J
&
21. ABC-DEF is any tri\'a‘ﬁgfilar prism. P and {} are
respectively the mid-pouits of 4B and BC. Prove
that DQ and FP irgt\r:r}(fct each other at some point O,
Also, show tha.t\*k;

DIEEDQ and FO = 2FP. A

X
O
o\
}

N B

Q

T1e. 110

22. In Ex. 21, let H be the mid-point of AC. Draw EH, and prove that EF passes
through the point 0. What is the ratio of £0 to EII?

23. In Ex. 21, draw through O & line parallel to the lateral edges, eutting the top base at
K and the lower base at JJ. Prove that K and J are the centroids of triangles DES and
ABC, respectively.
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24. In the eube ABCD-EFCH prove that the diagonsl
planes ACGE and BFHD are perpendicular to each other,

A B
Fic. 1110'\

25. In the preceding figure draw AF, AH, HF, EC. TProve that EC is pcqu?li'licuhlr to
the plane of AAFII af the eireumecnter of the triangle, O

26. In Fix. 25, prove that the disgonal plane ACGE is pcrpendé'eulai' to the plane of
AAFI . D\

27. Fach lateral edge of a prism i 12 in. and is inclineg Q%»:sm angle of 60" to the planes
of the buges. How long is the altitude? v

N\

28. In Fx. 27, find the number of degrees in tlie Feute dibedral angle formed by extend-
ing the plane of 4 right section to mect the, jilane of one base.

29. In L. 28, if the ares of one bage 0P the prism i 20, what is the area of the right
seetion?  (Hee § 80.) {‘g

30, In any parallelepiped, ik ‘&}I\IC passing through the center 0 of the solid is terminated
by two opposite faces of théselid, then this line is bisected by the point 0. Prove,
</

L >

I
3. In any I;}a.m.l@‘éﬁiped connect the mid-points ol /\

two opposite edpes. In like manner connect the
mid-points ofwlch of the remaining pairs of opposite \ \(‘
olges. Prowthat these lines just drawn all meet =

one andtherat the center of the parallelepiped and
are biswted by the center. How many of these
lines are there?

Fraz. 112

82. ABCD is a parallelogram in which DB and AC are diagonals. Using the Law of Co-
Bnes prove that

At 4 DB = ABI 4 BC* 4 CI2 + DA

33 In any parallelepiped prove that the sum of the squares of the fouwr diagonals equals
the sum of the aiquares of the twelve edges. (Cf. Ex. 32.)
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H o e

/AN
\W

34. ABCD-EFGH s a cube. X, Y, Z, W,
J, K are respectively the mid-points of LA,
AB, BC, CG, Gii, HE. Trove that XY,
Z, W, J, K are coplanar, and that
X¥ZWJK is a regular hexagon.

A

Y
1*‘1(3,.~,I\13S

35, In Ex. 34, show that diagonal FD is perpendicular to the, gﬁﬁi of XYZWJK at the
geometric center of that polygon. v

L3
2%

36. Given a righ"b prism ABC-DEF. Show how to paiﬁg\tf:uct a prism which shall be
congruent (1(19:1’91(::3.113’ the same as) to the given prism™ Prove the construction to be
correct by showing that one prism ean be made o eolncide with the other.

s W

&
O
\<&"
,’\;*"‘
\i"\.{’
O



Chapter Six

CYLINDERS

94, Cylindric Surface. Let ¢ be
any plane curve, closed or open.
Let ¢ be any straight line touching ¢
bui not coplanar with e.  Let z move
s0 that it is always in contact with ¢
and so that it remains parallel to its
original pusition. The surface traced
by x is called a eylindric surface,

Line z is the generafriz of the wrface. Curve ¢
Is the directriz.  An element of¢the eylindric surface
is the line « in any one of jt{iﬁfnnumemble positions.

{In all the followingﬁ;:ork it will be assumed that
the directrix ¢ ig a cloged curve.)

95. Cylinder. Iftwo parallel planes M/
and N cut all the elements of & cylindrie
surface, the solid bounded by M, N and
the cylindrie swface is calied a cylinder
(Fig. 116),

Fra. 116

63
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96. Parts of a Cylinder. (Cf. Fig. 1186.) o

An element of a eylinder is that portion of an clement of the eylindrie surface
which is included between M and N (EF in Fig. 116). )

The bases of a cylinder are the plane sections by and by formed on M and N,
respectively.

The busal edges are the circumfercnees of the bases. N

Corresponding points of the basal edges arc points which are the exiremities
of an element (points E and F in Fig. 116). o

The lateral surface or eylinder wall is that portion of the eylindric surfuce
which js included between the plancs of the bases.

The altitude of a cylinder is the perpendicular distance betwecn t-he\planes
of the bases.

A
4

97. Right Section of a Cylinder. If a plane cuts all the ¢
elements of a eylinder perpendicularly, the planc section
thus formed is called a right section of the cylinder Ysec-
tion s in Fig. 117}. e,

98. THROREM 29.

The bases of any (1.3rlind(3Ka1'e congruent.
Given: Cylinder with™hhwses b and b'; eir-

cumfcrences of bases ar¢¢ and ¢, '
Prove: b s . N
We are t-o'Rr;,)?vé the theorem by showing

that b can htmoved down and made to coin-

cide with b "To do this we must show that

all the~points of ¢ can be made to coincide

with the corresponding points of ¢'.

1) Choose any three points A, B, Cone. Draw
elements A4’, BR', OV,

2y o A B, " eorrespond to A, B, C.

3) Draw AR, BC, CA, A'B', B'(", ' A",

4) Prove AABC =~ AA'B'CY. Then A, B, €
can be made to coincide with A7, B, (.

5} At the same time and by the same method
we can prove that any and all other points
of ¢ will coincide with the corresponding points of ¢.
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() The planes of b and b and the curves ¢ and ¢ can be made to coincide.

Henee, b =~ b,
99. General Classification of Cylinders.

A cylinder is l circular | if its bases are [ eircles } i

. clliptic J | ellipses |

A right cylinder is one whose elements arc perpendicular to the plancs of the
hases.

An oblique cylinder 1s one which is not o right cylinder.

A right edreular cylinder or cylinder of revolution is a right eylinder whose
bases are eircles. ~
100. Parts of a Right Cirenlar Cylinder. The gass of a right circulareylinder
is the line joining the centers of the c¢ireles which form the bazes f‘lhn term
axes is similarly applied to any type of eireular eylinder.) O

An arial section of a right circular eylinder (or of any cncu}ar eylinder) is a
plane section which éontaing the axis.

The radius of a right cirecular cylinder is the radiug of}lthel base.

101. Similar Cylinders of Rev-
olution. If arectangle is rotated
through 360° about onc of its sides,
the rectangle will gencrate a
eylinder of revolution,  If similar | ¢
rectangles are rotated about ecor- sJy
responding sides, the t_:y!inders of
revolution thus generated ¢
called simelar cylinders of\@oiu—
tion.

\&" Fra. 119
102, Tangent\Pl'lﬁhe. Il a plane touches a eylindrie surface so that the two
have one and@uly one element in common, the plane and the eylindrie surface
are said tolelangent to each other.
AN

\ )
103. Cireumscribed Prism, If the bases of a prism.
arcrespectively in the planes of the bases of a cylinder,
and if the lateral faces of the prism are cach tangent
to the eylinder wall, the prism is said to be eircum-
feribed ubout the exlinder, - - or the eylinder is suid to
be inseribied in the prism (Fig. 120).

T'ig. 120
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104. Inscribed Prism. If the bases of a prism
are respectively in the planes of the bases of a
eylinder, and if the lateral edges of the prism arc
each elements of the evlinder, the prism is said to
be inscribed in the cylinder, — or the cylinder is
said to be efrcumseribed about the prism (Fig. 121).

EXERCISES

Group Nine

1. If a plane containing an element of any cylhﬁ}lﬁcr
intersects the eylinder, its second intersection witlh the
eylinder wall is an element. (Let plane S, edutaining
element AB, interscet the eylinder wall far\the second
time in a line z. Through € draw elemctD. Show
that both ' and = Jie in 8 and the eyfinder wall at the
same time, and hence that » and CB{Gbincide since there
can be but one intersection of t-hr—g'p}ane and the cylinder
wall in this region of the walk{\ N

\ \ P Fia. 122
2. A section of a cgilihder made by s plane containing an element is a parallelogra.
3. A section ?f.@ight eylinder made by a plane containing an element is a rectangle.
4, Ina rig.h@'i;ylinder the altitude equals any element.
5. Any'»éci;‘l section of a eylinder of revolution is o rectangle.

6. Seitmns of a cylinder made by two paraliel plines cutting all the elements are con-
grucnt.

7. Any two right scetions of a given cylinder are congruent,,
8. Any right section of a cylinder of revolution is a circle.

9. The axis of a cireular cylinder equals any element, is parallel to all the elements, and
Dbasses through the centers of all sections parallel to the bages.

10. If a cylinder is inscribed in a prism, the lateral edges of the prism are paralle] to the
elements of the eylinder,
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1L, If a prism is inseribed in a eylinder, the lateral faces of the prism are each parallel
to the elements of the evlinder.

12. A regular prism can be inseribed in or circumseribed about a given eylinder of revo-
lutivn, and the line joining the centers of the bases of the Pprism must eoincide with the
axis of the eylinder,

13. Find the radii of the eylinders which can be ingeribed in and eircamseribed about o

cube one cidge of which iz § in.

. The altitude of a right cirenlar cylinder is 10 in. and its radius is 3 in. A right prism
with equilateral trisngles #s bases is inseribed in tlio eylinder. Find the sum of the areas
of all the faces of the prism,

15. Do Lx, 14, assuming that the prism is circumscribed about the cylinder: N

16. What iz the locus of peints which sre 2 in. from a given line? O\

17. A und B are points which are respeetively 4 in. and 5 in. from a lme\,:c “What is the
locus of points which arc at the same Line 2 in. from 2 and equidisj;aj}l; trom A and B?
)

18, Aling x lies between the faces of a gh 2 M ~h=N;ris pau‘allei"t;ifvh. "What is the locus
of puints which are at the same time d in. from = and equidigta?}t from M and N?

19. A linc x is perpendicular to a plane 3. What is the lch{s of points which are 7 in.
Trom = and 4 in. from M? 9, \d

20. Do Ex, 19, assuming that x is parallel to M an’d?t in. away from M.

21. In a rectangle ABCD, AB = 6 in., BC = 4 ind A cylinder ol revolution is generated
by rotating ABCD about BC. What is thedléa of the axial scction? What ia the area
of the axial section if the eylinder is generfited by rotating ABCD sbout AB?

al
N\
N -



Chapter Seven

PRISMS AND CYLINDERS: AREAS AND VOLUMIES

105. Areas. The leferal area of & prism is the sum of the arcas of it:s}:-ltnral
faces. The lateral area of a cylinder iz the area of the eylinder w a}l‘\The folal
area, either of a prism or cylinder, ig the sum of the lateral 'nea‘aml the areas
of the bases. |\

106. Yolume, The volume of any solid is the amount okapace included by the

bounding surfaces.

107. TuroreEm 30. 7\ \/

&

The lateral arca of a prism iz the produc’t of the perimeter of a nght
seetion and a lateral edge. A S=¢-

Given: Any prism.
¢ = lateral edge;
¢ = perimcter of right section;
S = lateral arp&

.

Prove: S=1-¢. , o

1) Fach of the lateiél\félre\ 1, 2,3, ote,,
is a parallglaghfing; and t.hb hteral
area is the i of the arcas of these
parallenglamH Also, 1, @, 23, cte.,
are ea(h perpendiewlar to the late 1al
3%65 which they meet.

g, 123

2) . areas of parallelograms are: k=g, . ¢
!{52 =Tz~ &
ks = 1 - ¢, ote.
3) Adding:  (h+heth+-- ) =@ tmtat - e
4) Or: { 8 Y= £ e
108. Assvmerron. If a prism is inseribed in or cir cumacribed abont o cylinder.

and i the number of lateral faces of the prism is eaused to become infinite,
it
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i) the lateral area und total area of the prism approach, respectively, the
lateral ares and total area of the eylinder as limits;

ii) the volume of the prism approaches the volume of the cylinder as a limit.
109, Analogy between Prisms and Cylinders. § 108 states that if a prism
is inseribed in or cireamseribed about a cylinder and if the number of lateral
faces of the prism is greatly increased, the prism becomes more and more
like the cylinder. The greater the number of lateral faces becomes, the smaller
each face becomes, and the morce closely the prism approximates the eylinder
both in appearance and in measwement. The content of § 108 iy COMpPara-
ble with that of Pestulate 5 which bas to do with the behavior of a polygon
ingeribed in or eircumseribed about. a cirele when the number of sides of the poly-
gon is increased indefinitely,

It will gsoon be seen that the formulas for areas and volumes UI\cylinders
are out-growths of the corresponding formulas for prisms. The r(;;e‘tllté for ¢ylin-
ders will be achieved by the use of § 108. AN

1t is valuable to bear in mind constantly the analogy between prisms and
cvlinders. In general, if a theorem is valid for a prism atis Tikewise valid for a
evlinder, — provided that the theorem is not concéxhéd with the number of
faces or with the separate faces of the prism, A gylinder is the limiting form
of an inseribed or a circumsecribed prism as thednwmber of lateral faces of the

prism is increased indefinitely. AN
110. TaEOREM 31, o\
The lateral arca of a eylinder ‘ifs"i;.l:ie product of the perimeter of
right scetion and an element, ™87 S=te
AN

(iven: Any cylinder. [ 080
¢ = element; |
t = per. of xt\sect.;
S = lat. atelly

Prove: S = és(;\
1} Inseribe a }stm in the eylinder.
For this .ijism: e = lat. edge.
Let ¢N\* i' = per. rt. sect.;
ant(\: ) & =lat. arca.
2) w8 =+t-e¢ (§107).
3) Let the number of lateral faces of the prism be-
come infinite.  * Then ¢ — ¢ (Post. 5). Ilence,
Y -e-—>1 ¢ since ¢ romains constant.  Also, §"— § (§ 108).
4) The two variables & and ¢ - ¢ are always equal.
5) - their limits, & and { ¢ must be equal (Ref. 91),
6) Thatis, $=1 e

* The arrow signifies ““approaches as a limit,”
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111. Corollary A (Th. 31).

In a eylinder of revolution with radius r and altitude A:
Lateral Area: 8 = 2wrh.
Total Area: T =27rh+ 27

112. Corollary B (Th. 31}.

The lateral arcas or the total areas of two similar eylinders of revolu-
tion are to each other as the squares of their respective elements, alti-
tudes, radii, diameters,

N\
1} 81 = 2?1']"1}1-1
Sp = 2mrohe '\:\‘
2) . & _ 2?1"?‘1}!,]_ _ Tlh? _ E E{_ . . :\',?
v Sg 2?1'?"2}12 Tofi1 T }12 ("}«.
" hl X :. \ 3
== . ? v
3) But = Why? \
Complete the proof.
EXERCTSES \ -
Group, Te?’s‘

1. The lateral area of & right prism is thgavﬁrhduct of the altitude and the perimeter of 2
base. Prove, Y

Nyt

2. _A right section of a prism is & I&gulai" hexagon 3 in. on u side: the lateral edge of the
prism is 10 in. Find the latel'aiLa*ca. '
€ )

3. The radius of 5 right circilax eylinder is 8 in. and the altitude js 5 in. Find the latersl
area and the total area. A\

4. If the wall of a rightleireular eylinder is unrolled from the solid and spread out upon
a plane what shapeywill it then have?
2\V

\§ m
AN A C

5 A{tbs;m:ngle ABDC in which AB = 4in,and AC = 12 in. i rolled
50 as'\t0 hef:-ome the wall of a right circular eylinder, one element of
which is 4 in.  What is the radius and total urea of this cylinder?

(Assume thut edge AB just meets edge CD when the eylinder is
i

formed.)
Nz o/

Fra. 125

6. Tach edge of a regular hexagonal prism is 6 in. Find the total area,
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7. In Fx. 6 find the lateral areas of the cireular cylinders which are respectively inscribed
in and cireumscribed about the prism.

8. ABCD-EFGH isaparallelepiped. ABCD / \
is u rectangle. AR = 10v3in, DA = 6in., T
AE =8 in. Taces ABFE and DCGH are c
perpendicular to the planes of the bages.
£LEAB = 60°, Find the latera] ares and the
total area.

4 B
Tia, 126

9. In Ex, 8 what is the angle of inclination of # right section to the plane of hise?

1. A piece of drain pipe, oylmdmal in shape, is 3 ft. long. The wall of thc\gme iz 3 in.
thick; the inner rudius of the pipe is 8 in, Find the total area of the plece c:f pipe: inside,
vutside, edges.  (Assume pipe to be a right cylinder in shape.)

11. The radius and altitude of a right eireular eylinder are each 12 A Fmd the lateral

area and the total avea of the regular triangular prisms which .uﬂg?cspectwel‘y inseribed
in and circumseribed sbout the eylinder.

12, Two rectangles whose dimensions are respectively 3, 4 and 12 by 18 are revolved
about corresponding sides as axes. What is the laters] dréa of cach eylinder if the rec-
tangles are revolved about their smaller sides® W habane the lateral areas of the cylinders
formed if the rectangles are revolved about thcn" longcr sides?

13. C'and D are two similar rylmderb of revolut’ion In € the altitude is 8 in. and the
radiug 3 in. In D the altitude is 6 in. W L}ai; 15 the radius of D?

1. In Fx. 13 what iz the ratio of the“ 1ateral area of the smaller eylinder to that of the
larger?

15. € and D are two similar ¢ 1@1@3 of revaolution. The diameter of € is 10 in. and the
radiug of D iz 15 in. What, 3\She ratio of the lateral area of the larger to that of the
smaller? .

16. The altitude of ong o}’ two similar cylinders of revolution is four times that of the
other, What iz the m.t\) of tho lateral area of the first to that of the second? Compare
their total areag, Icgc\)

17. The lateral ‘;k)a of one of two similar eylinders of revolution is nine times that of the
other. W l}‘;t i8'the ratio of the radil, - - smaller to larger?

18. Tt "i:‘z;;térja-l area ol one of two similar eylinders of revolution iz & times that of the
secomnd. What is the ratio of the altitude of the first to the sltitude of the second?

19. The sum of the lateral areas of two similar eylinders of revolution Is 200 sq. in.
The radiug of the larger is three times that of the smaller. Find the lateral area of each.

20. The sum of the alfitudes of two similar ¢ylinders of revolution is 40 in. The lateral
urea of the smaller is {5 that of the larger. Ilind the altitude of each.

2. The dimensions of a rectangle are z in. by y in. The rectangle is rutated about its
z-ineh side to generate a right eircular ¢ylinder. It is then rotated about its y-inch side
ingtesnd. ‘onipare the lateral aress of the two different cylinders thus formed. Compare
the total areus.
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22. The radius of a right cireular cylinder is 10 in. A plane parallel to the axis of the
cylinder and 6 in. from the axis cuts the eylinder, If the altitude of the eylinder is 12in
find the area of the plane section thus formed.
23. The radius of a right cireular eylinder is 5 in. Through an external point 5 in, from
the eylinder wall two planes are drawn tangent to the eylinder. How large is the dihedral
angle formed by these planes?
1t
113. Units of Measurement. In order to measure a dis-
tance we use & unit of length, namely, an arbitrarily chosen
line-segment = (inch, foot, centimeter, ete.). The measure-
ment of this distance is the number of times the chosen unit N
u is contained in the given distance.
Similarly, in order to measure an area, we commonly usc (\)
a square one side of which is a standard length unit (squarc [
ineh, square foot, square centimeter, ete.). The meafsuremelgt'?g
of the given arca is the number of times this unit SQUELe
is contained in the given area, “‘\
Finally, in order to measure a volume, we ordmarﬂy use
a unit cube each cdge of which is a standzm] lengtb‘umt and
each face of which, correspondingly, is a btmd’sud area unit
(cubic inch, cubic foot, cubic centimeter, eta ¥ The measure-
ment of the volume is the number of uLutr citbes contained in 1
the given volume. \
The measurcment of a Iength a;r,ea, or volumo may be any
sort of positive, r

U

4. T - .“\ T 127
. RORE e\)
HEGREM \\

The volume of a rPctangu]'a,r solid is the product of the area of its base

by its altitude, &2 or what is the same thing, the produet, of its three
dimensions, '\5

A rlgmo&\\pl oof of this theorem |
will not be \2iven here., In fact we I
shall«a.f(‘ept the truth of it without !
an$\proof at all. E

)

In cage each dimensicn is a wholo
number the truth of the theovemn ig
apparent. In the figure, for exampls, © I
the number of unit cubes contained
in the solid iz 140 since there are 5
horizontal layers of cubes and since
each laycer contains 4 rows of eubes
with 7 cubes to a row.

In a rigorous proof, however, we

Fic. 128
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should have to consider the ease where one or more dimensions is a fraction or
mixed number, and also the case where one or more dimensions is an irrational
number such as V'3, 5V7, ete.

115. Corvellary A (Th. 32).

The volume of a right prism having right triangles as bases s the
product of a base and the altitude.

I
D
<
4
>
B
A Frc. 129
RS

Given: b piidn ABC-DEF. AABC, ADEF 1t A. Area AABC =1b;
altitude = h:‘,j't" = volume.
P?'ow.;“\]?’"; b b

1) Cofishiict a second prism 11: A'RC'-D'E'F’ which is identically like the
given prism I, Points A/, B, ¢V, I, E', F' correspond to A, B, €, D, E, F,
respectively, (Cf. Ex. 36, Group Eight.)

2) Place 11 against 1 so that face A’D'F’C’ coincides with its equal ADFC, bub
with 4'D’ coineiding with CF and ("F” coinciding with AD. Show that the
composite solid ITT thus formed is a rectangular solid with base 2b and
altitude h.

3) L Vm=2b-h (§114).

4 But ¥ = 1V, since I and IT are identically alike.

5 o V=2L2-h)y=0h
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116. Corollary B (Th, 32).

The volume of any right prism is the product of its base and altitude.

Show that if certain plancs arc drawn to contain the lateral edges the prism
can be resolved into several right prisms having right triangles as bases,
Apply § 115, Combine the results.

117. TEEOREM 33.

In any prism the produect of its base and altitude equals the product
of the area of & right section and a lateral cdge,

Given: Any prism. o
b = area of base N\
t = area of right scetion
k= altitude NS

e = lateral edgﬂa\\
Prove: b-h=u-e()
1) Let the plane Mof the right section interseet plane M of the base, forming
adh 20, AN
2) Thus the ig“%t: section is the projoetion of the lower base upon the plane .
3) - wu = &'cos f. (See § 80 and Exs. 10, 11 of Group Seven.)
4} Or b= see 6. '
5) Al.aq,ﬂ =¢cos §. Why?
6) b h=wusecfe¢cos 8
- e(sec 6 cos 6)
=u-efl)
=1u-e

118. Turorem 34.

T}.le volume of any given prism is the same as the volume of a right
prism whose base is u right section of the given prism and whose alti-
tude is equal to a lateral edge of the given prism.
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\‘\‘V’ Fic. 131

Given: Any obliqug yism P
Right prish P’
Base of ¥ = right section of P
Alti{&\iﬁ'of P = g lateral edge of P.

Prove; Yol' of P = vol. of P". _

1) Singg XVZWF is the same as a right section of %, P/ may be partially fitted
ove&)} a3 shown. The resulting composite solid is then composed of three
truncated prisms: '

I: A'BCODE-X'YZWF
II: XYZWF-A'BCD'E
111: ABCDE-XYZWPF,

2) 8how that vol. I = vol. III by showing that I and IIT can be made to
coincide,

8) But P=1I[I+1I, and P'=I+IL

4 - p=p
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119. TaHrOREM 33.

The volume of any prism is the product of its base and altitude.

V=>bh
(fiven: Any prism P.
b = area of base
h = altitude
u = area rt. sect.
e = lat. edge
¥ = val. N\
Prove: V==50-h.
1) Let P’ be a right prism having « as base and e as altltude N Let T* be its
wdlum(‘ A\
2 - V=V (§118). Oy
3 Alse, V'=u-¢ (§116). RA S
4y But uw-e=56-h (§117).
5 L V=V =u-e=b-h O
or O
V=bh O
120. THEOREM 36. R\ -

The volume of any cvlinder 18 ﬁiv product of its base and altitude.
"V =5k

24\

Given: Any cylinder.
b = arca base \\

h= altltude
V= \Olume
Prove: “~b h

1) Inscribe %pmm in the cylinder. For this prism let
b = apéa base, V' = volume. A = altitude. Why?

2) L Th=bh (§119)

3) ‘L\et the number of lateral faccs of the pmm become
infinite. Then ¥ — b (Post. 5). . ¥ -h—b- A, since
I remains constant. Alse V' —» T/’ (3 108).

4) The two variables V' and ¥ - & are always equal. .~ their limits V and
b - h must be equal (Ref. 91).

5) ~ V=5 h

121. Corollary A (Th, 36).

Tn a cylinder of revolution of radius r and altitude A V= ?r-rzf:]
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122, Corollary B (Th. 36).

The volumes of two similar cylinders of revolution are to each other ag
the cubces of their respective radii, diameters, altitudes, elements.

(For general method of proof see § 112.)

123. The Generalized Cylindrie Selid (1%g, 133). A eylindrie surface has
already been defined as the surface generated by a moving straight line having
a fixed dircetion and always in contact with some fixed plane curve, the line
itsell not being coplanar with the curve. The moving line and the fixed plane
curve, respectively, were called gencratrix and directrix, “\

This ides may be generalized as follows. Let f be any plane figure sieh as
the seetor of a cirele, ov a figure composed of any combination of 5t1:}1g‘ht line
segmenis and arcs of curves. Let e be any straight line not coplagiar with f;
let ¢ maintain a fixed dircetion, and let ¢ be in contact with f at'all times. As e
moves it generates a surface comparable to 4 eylindric burfa(,e, We may regard
this swrface ax u generalized cylindrie surface having ¢ as ujkﬁenelatrlx and f as
its directrix.

1f we form a solid by letting two parallel plancs, r't}t Zall the elements of one
of these generalized eylindrie surfaces, we obtaine hssohd which we may call a
generalized eylindric solid, (See the 1llu~,t1at10n;a below.)

eé s
¢
\y Fic, 133

Many of the J ’i};\jert.ics of these gencralized eylindric solids, and in particular
the m(‘aﬂurermmt ormulas for arca and volume, can be shown to be the zame
as those ah a-@;d} developed for ordinary prisms and eylinders.  For example,
the ]ate;\ area can be found by taking the product of the perimeter of & right
seetion and an clement. The volume is the product of area of base and altitude.
We shall assume these formulas to be valid without presceunting any proof.

EXERCISES
Group Kleven
1. Find the volume of a right circular eylinder if r = 4 in. and A = 6 in.

2. Tn two similar cvlinders of revolution the radius of one is 3 in. and that of the other
540, What is the ratio of the volume of the first to that of the second?
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3. In two similar eylinders of revolution the altitude of the first 1s & times the altitude
of the second  What is the ratio of the volume of the first to that of the second?

4. Tn two similar cylinders of revolution the volume of one is § the volume of the other.
Tn eomparing the first to the second what is the ratio of the radii? Lateral areas? Totul
arcas? :

5. Do Ix. 4 assuming that the first volume is % times the second.

6. The lateral aress of two emilar eylinders of revolution are in the ratio 3. What iz
the corresponding ratio of their volumes?

7. The tatal area of one of two similar eylinders of revolution 1= 6 times that of the other.
What is the ratio of the volume of the lurger to that of the smaller? Q"

8. The sum of the volumes of two similar eylinders of revolution is 11X gtu. in. Their
lateral surlaces sre in the ratic 4. Find the volunme of each. 7N\ ¢

9, In Exercise 1 of Group Ten find the number of cubic inches it ehe wall of lhe drain
pipe.

R4
O y
N Bl % ¢
10. A clock case is constructed In the form of @'}efzf.angtllal' E 1 £
solid ABCD-EFGL wurmounted by half of gNetght circular i
eylinder as shown, AB = 8in, BC = §in, BF'= 10in, Find 1
the number of eubic inches of space “ﬁtlljji ‘the rase, |
. &N N3 ’Qi————-—- e
AL B
,i'"x\ o, 131

9.\

1L A cubica\ir')gb&k of wood, 4 in. on an cdge, has a
round hole/3m. in diameter hored through it. The uxis
of this cylindrical hole passes through the center of the
Cl.le: and is paraltel to four lateral edges. IFind the amount
of {-‘G@d left after the hole is bored.

Fra 135

12._'1‘he volume of a right cireular eylinder is 1 the product of its lateral surface and
radins. I’rove. .

13. The number of cubic inches in the volume of a cortain right eireular cylinder is the
iime ?15 the number of square inches in its laferal aren. Vind the number of inches io
e radius.
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14. Find the volume of the right cireular eylinder which can be circurnseribed about a
eulie one diagonal of which is 3V'3 in.

15. ABCD-EFGH is an oblique parallelepiped each edge of which is 10 in. The bases
ABCD and EFGH arc squares. The vertex E is situated so that a perpendicular from B
to the planc of ABCD would cut that plane at the center of square ABCD. Find the vol-
ume of the solid,

16. The bages of a right eylindrie solid are cach 135° sectors of circles with 4 in. radius.
The ullitude of the solid is 12 in. Find the volume, lateral area, and total area.

17. I a right circular eylinder the altitude is 10 in, and the
radius is 6 in. A plane parallel to the axis and 3 in. from the axis I
eute the eylinder as shown,  Find the volumes of the two solids ¥
into which this plane separates the given cylinder. \/

¢ N
LV
WV Fic. 136

"
RS
N
L N

18. In a figure like that of the preceding e)ge:ﬁéié%, if @ s the area of the buse of one of the
pieces and & Uhic avea of the bagc of the other? and if # is the volume of the first piece and

N

. a
w the volume of the seeond, prove: =7 w

b

\&
19. In & right Bﬁ§5 ABC-DEF, 04 = 15 in,,
CB =20 in., Z(’B = 90°, CF = 30in. A plane
cnntaining\la”’t’eﬁd adge OF i3 drawn perpendicular
to lateral {38 A DEB cutting it in K. TFind the
volumes o¥prisms A HC-DKF and CHB-FKE.

e, 137

20. A blork of load has the sh ape of a rectangular solid whose dimensions are Lin. by 2in.

¥lin, This picee of lond is 1o be melted and recast into the form gf a regula-t: tria_ngular
Prsm cach busal edge of which is to be 4 in.  What must be the aititude of this prism?
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91. The altitude of a right circular cylinder equals it diameter, The volume is 1287
en. in. Find the altitude and diameter.

99. The altitude of & right eireular cylinder is 7 in, and the total area i¢ 88 aq. in. Find
the radius.

23, Tf b is the altitude of a right cireular cylinder and » the radius, find the ratio of & to
7 if the lutera! area is known to be 3 times the sum of the areas of the hazes.

24. Do Ex 23, finding the ratic /7, assuming that the totul area is 4 times the latoral
arca

E

A
25. Two planes arc perpendicular fo each other, meeting in line 4B.y \
A cireular eylindrie surface is tangent to thesc planes at EF and CO
respectively. Assume that the planes ACE and BDF arc perpeniiic-
ular to 4K, and that D and EF arc each parallel to 4B, (AB.= 8§

in., AC = 5in. Find the volume and lateral area of the solidy’ L~
K¢ N B
¢ x\ e
A\ D
™ Fue. 138

N

26. A tank built in the form of aright cireular
cylinder of radiug 18 ft. and altit;p(l’e 40 {t. rests on
an element. The tank is partially filled with fuel
oil, the greatest depth of thc\ﬁ}bcing 4 ft. I the
tank were to be raised upand made to rest upon
one of it cireular bass{s’,.how deep would the oil /
then be? Assume,’(jf‘ gourse, that the tank sets
upon level groundf 3 Fra. 189

27. A (_-.t)ntaigﬁ\ifxi)artially filled with water is constructed in the form of a rectangular
golid. Theglitaensions of the base are 6in. by 8in. A block of iron in the shape of a regular
hexagonal prism with a basal edge of 2 in. is dropped into the water. When the iron 3
com :’Iét}ely submerged it 1s found that the water level has risen exactly 1 in.  Assuming
that ¥t container is level find the altitude of the iron prism. Leave answer in simplest
radical form.



Chapter Eight

PYRAMIDS

N\
124, Pyramidal Surface. Let d be any polygon. lLet V be a fixed foint not

7

coplanar with ¢, Tet ¢ be a straight line through 7 and touching:d\:(Fig. 140).
Il § moves, always touching d, it will generate a pyramidal surfage.” Obviously
N

Fro. 140 '\,\\w' T1g. 141 Fic. 142
8 p}'rami(.ka]:}‘firf&(!e is composed of a series of plane surfaces having one point,
V,in edmpnon.  (See Fig. 141.)

V is the sertez of the surface.

¢ is the generatriz,

d is the directriz,

An element of a pyramidal surface is the generatrix in any one of its in-
mumerable positions.

If the gencratrix protrudes through V as it moves it generates two surfaces
simultaneously (g, 142). The two surfaces thus generated constitute what
is called g I)Yramid-al surface of two nappes, The surface above V' is the upper
nuppe; the lower surface is the lower nappe.

71
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125, Pyramid. If a planc M not Ctﬁlitaming the vertex V of a pyramidal
surface of one nappe is passed completely through the surface, the solid bounded
by M and the pyramidal surface is called a pyramid (Fig. 143).

v

A B

Fig. 143

126. Parts of a Pyramid. (Cf, Fig. 143) m'\".

Vertex: the point V. \

Base: the polygon or triangle detormined by t-}lf; jritersection of M with the
pyramidal surface (ABCDOE in the figure).

Altitude: the perpendicular distance from wg;tax to plane of basc ().

Basal Edges: AB, BC, /D, ete. « \

Lateral Edges: VA, VB, VC ete.  o3Y

Lateral Faces: the tnangles VAB, T/B‘(” VCD, ete.

Lateral Areo: the sun of the areas’™™f the lateral facos.

Tolal Area: the area of the buseplus the lateral area.

127. Classification of Py vamlds

trmng\mlar [ triangle 1
A pyramid is quadrangular - if its base is a | quadrilateral [ ete.
Ppértagonal i pentagon |

A trmngular\p\ramld is also called a tefrahedron. If all the edges of a totra-
hedron are e,@al the solid is a regular tetrahedron. '

‘.\:.

128.\Iiegu]ar Pyramid - (Fig. 144). A regular
pyramid or right pyramid is one whose bage is g
regular polygon or triangle, and whose vertex is
direetly over the geometrie center of the base,

Fic. 144
129. Slant Height. 1t follows at once that the latersl edges of a regular
pyramid are equal and hence that the latera] faces are congrucnt, isosceles tri-
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angles.  If in each lateral face of a regular pyramid a perpendicular is drawn
from the vertex to the basal edge, then all these perpendiculars must be equal.
Any onc of these perpendieulars is called the slant height of the pyramid (VH in
the figure). Only a regular pyramid can possess a slant height.

130. THeoREM 37.

If a planc purallel to the base of & pyramid cuts all the lateral edges,
this planc divides the altitude and lateral edges proportionally; and
the section formed is similar to the base of the pyramid.

{Proof left. to student.)

131, Corollary A (Th, 37). ,’:.' ) Fie. 145

1f % is the area of a planc section of a;ﬁ};ramid parallel to the base b;
if the distance of section % from the vertex is d, and if the altitude of the
N\ : PAY:
pyramid Is /; then: o~ k= (?_t) b.
")
132, Frustum of u P}-‘ramic‘i\'\ IT a plane S parallel to M, the plane of the base
of a pyramid, cuts all thedateral cdges, that portion of the pyramid included
between S and M is & Fodestum

ol the given pyramid (Bie’146). //;'! \\\
The sections oS and M / / \
are the Duses Qf’%‘ﬁ'e frustum YA A
(DEF and A BGIn figure). e / \
The lata&f\i@dﬁes, lateral foces, D ! N
and altibuge are rezpectively S 4
the portions of the lateral E
edges, lateral faces, and alti- A c

tude of the pyramid which are
included hetween 8 and M.
Ubviously cach lateral face of M
& frustum is a trapezoid.

It ean be shown readily
that the lateral edges of a frustum of a reguler pyramid are equal, and hence
that the Iatoral faces are congruent isosceles trapezoids. The slant height of a

B
Fig. 146
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frustum of a regular pyramid is that portion of the slant height of the pyramid
included between the two bases of the frustum. The slant height of a frustum
of a regular pyramid is the altitude of any one of the trapezoidal faces.

EXERCISES

Group Twelve

1. V=ARBC is a triangular pyramid. VD = VA, Section e is
parallel to the base b. If b = 75 sq. in., find the area of s.

2. The area of the base of a pyramid is 40 sq. in. A@ane ents all the latersl edges, i3
parallel to the base, and biscets the altitude. Fingi'ﬁhe area of the section parallel to the
hase. AV
3. The altitude of a pyramid is 24 in. Tl{eﬁa’a:sié is & square 6 in. on a side.  How far from
the base must a plane parallel to the hase®be drawn in order to cut the pyramid aud
make a section whose area is 4 sq. D08
4. The altitude of a pyramid isjﬁli“in. & is a scetion parallel to the base b, ¢ = 8 sq. in,
b = 18 sq. in. Tind the lengthisgf the segments into which this paralicl seciion divides
the altitude of the pyra.mi(lili

\<&"

7oy

5. AB(ID—EF@{}E& frustum of a regular square
pyramid. {lfB\= 14 in.,, EF = 8 in. The slant
height is 3um. Find the length of the altitude.
O

’"\\..
\ 3

6. In Ex. 5 find the length of each lateral edge.

7. In Ex. 5 ﬁn(‘l the number of degrees in the acute dihedral angle which latersl face
FBC(r makes with the plane of base ABCD.

8. ABC—DEF is a frustum of a tetrahedron. AB = 6 in., BO = § in., 04 = 10 in,
D_Ib = 3 in. ‘D and A, B and B, F and € are corresponding points of the two bases.
Find the perimeter and area of the plane section parallel to the bases and mid-way be-
tween them. (This section is called the mid-section.)
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9, V-ARC is a tetrahedron. D is the mid-point

of B, AR = AC =VEB =V =28in, VA =15 C
in. BC' = 20in. Find the ares of the planc section A

VAD (Fig. 149).

10. ¥-ABCD is a regular square pyramid each lateral face PR
of which is an equilateral triangle. Find the number of

degrees in the acute dihedral angle between any lateral fa,ci \
and the plane of the base, AN

RS Frc. 150

1. F-4BC is a regular tetrahedron, c;i,c‘li"e'dge of which is 6 in. A plane containing B¢
ot edge VA perpendicularly at a r\i‘ﬁut D, Find the perimeter and area of the scetion
BCD, O

O 7

12. ABC-DEF. i'g\\-l frustum of a regular pyramid.

Let = = zmgl(é‘{)et“-'een Lst, edge and lower base, ¥ =
angle hotwéen lat. edge and lower basal edge, 2 =
angle Metween lat, face and lower base (Fig. 151), A
Prove: % 2 and 2 < 2.

B
Frs. 151

13. Parallelogram ABCD is the basc of a pyramid V—ABCD. In lateral face VDA, EF
S parallel to DA, cutting V4 at Fand VD at £, A plane 8 containing £F but not parallel
to the base cuts VB at ¢/ and ¥V at H. Prove that the section EFGH iz a trapezoid.
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I3
14¢. ABC-DEF ia a frustum of a pyramid.
X, Y, Z are respectively the mid-points of AB,
B, CA. Draw DY, EZ, FX, and prove that c
DY, EZ, FX are concurrcnt (Fig. 152}, x -
B
Fic. 152
N

15. ABCD-EFGH is a {rustum of a regular square
pytamid. Show that the lateral edges EA and €¢
lie in one plane 8, and that FB and FD lic in one
plane T. Prove that 8 and T are perpendiculsr to
each other and that each is perpendicular to the
plancs of the bases (Fig. 153).

Fie. 153

Py : v

A</
17. V-4AB(C is s tct?ihe}imn. A plane 8 which is
parallel to the t@oyopposite skew edges V' and
AR euts the m}a‘fﬁjd $0 a3 to form the section
DEFH. PBreve that DEFH is a parallelogram
(Tig. 154
.

O~

Fic 154

18. In Ex 17 assume that the solid is a regulor tetrahedron. Draw a plane N containing
VC and bisecting edge AB. Prove that & is perpendicular to 8. Prove that section
DEFH is a rectangle,
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v
19, V-ABCD 18 any pyramid whose base iz a
rectangle ABCD (Fig. 155). Prove:

VA 4+ TCt = VB Ve, D

20. Prove the following with respeet to a regular

tetraliedron (Fig, 156},

{ay All four altitudes are equal,

{by All four altitudes are councurrent and meet one
ancther at a point which is three-fourths the
distarce [rom any vertex to the plane of the
opposite face. A\\

(¢) Thepoint where an altitude meets a face is at the { ©
same bime the centroid, cireumeenter, incenfer)
and orthocenter of that triangle. W

Al e

N e, 156

TN

133. Median of a Tetrahedron, “Tn a tetrahedron a line connecting a vertex
with the centroid of the oppositt\Dase Is called a median of the tetrahedron.

2L In a regular tetrahedron x{}tt&fe mediang are equal, and a median and an altitude
are one and the same, Proye.

22. Find the altitude of &'pegular tetrahedron esch edge of which is 6 in.; e in.

23. Find the cdge of fa;fc’gular tetrahedron if the altitude 15 12 in.; & in,
g+
:\\ -

24 2, y, 2, 6,4 *k are respectively the edges of a tetrahedron.

Draw the six planes which bisect perpendicularly these re-

speetive odges. Prove:

(a} those planes have one and only one point in common;

(b} this point is equidistant from all four vertices, ) .
How many of these planes are necessary to determine this

point?

Fre, 157

134, Circumicenter of a Tetrahedron. The point which is equidistant from
all four vertices of a tetrahedron is called the eircumeenter of the tetrahedron.
(It will be shown later that this point is the eenter of the sphere which can be
circumseribed about the tetrahedron.)
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25. %, ¥, 2, e, f, h arc still the six edges of a tetrahedron. (Cf. Fix. 24 and the figure.)
Draw the stx planes which are rospectively the bisectors of the dihedral angles «, v, 2,
e, f, h of the tetrahedron. Prove:
(1) these six planes have one and only onc point in commen;
{b) this commou point is equidistant from all four faces of the tetrahedron.

How many of these planes are necessary to determine this point?

135. Incenter of a Tetrahedron. The point which s equidistant from all
four faces of a tetrahedron is ealled the énecenter of the tetrahedron. {1t will be
shown later that this point is the eenter of the sphere which can be Inseribed in
the tetrahedron.)

26. Prove that in the case of a reguiar tetrahedron the cirecumeenter and the{hcenter
are one and the same. A .

N
2%
L ¥4
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Chapter Nine

CONES

136. Conic Surface. A conic surface
is generated in a manner similar to that
in which a pyramidal surface is gener-
aled, excopt that the direstriz is some
sort of plane curve.  Any conic surface
discugsed here is assumed fo posscss
some type of closed curve, ¢, for its
directrix, — as for example & circle or an
cllipse. (Sce Fig, 158.) \

The terms veriex, generatriz, direc- o "
triz, element are employed as in the cages”
of a pyramidal surface. N

N4

137. Conic Surfageof Two Nappes. The analogy
10 the pyramidal surface of two nappes is perfect.
(Cf. §124.) A\onic surface of two nappes is formed
if the geng%’[frix protrudes through the verlex as it
S\\-‘E(‘.pé‘"t\)j}tf the conic surface. The upper surface is
the upper nappe, the lower surface iz the lower nappe
(Fig. 159).

138, Cone. I a plane A, not containing the vertex
Vol a conie surface (of one nappe), is made to cut all
the elements of the surface, the solid bounded by M
and the conie surface is called a cone.

Fia. 159

79
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139. Purts of a Cone. (See Fig.

160.)

Vertex: point V.

Base: thesection determined upon
A by the conic surface (curved
figure 4 in Fig. 160),

Basal Edge: the eireumnference of b.

Allitude: the perpendicular  dis-
tance from vertex to plane of
basc (h).

Element: any line connecting ¥V with the basal edge. Q)

Lateral Surface or Wall: the portion of the conic surlace possessed'h)-\' the cone;
i.e., the eurved swiacc. A

Lateral Aveq: the area of the lateral swiface. & M

Total Area: the area of base plus the lateral area. R N

140. Classification of Cones. R4

. | eircular cirele 1 a0\
Aconeis « [, ) Fyete.
. elliptieal ellipse 4.

Fusz, 160

} if its basc is a
The azis of a circular cone is the straight lmQx sonnceting the vertex with the
center of the hase. DAY,

An axial section of a circular cone is a plirie seetion which contains the axis.

The radius of a circular cone i the ija’.dius of its bage,

(In clementary geometry we are ﬁ:jﬁipped to deal only wilh eireufar concs.
Hence all cones discussed herc will\be' of that type.)
i41. Right Circular Cone QKCone of Revolution (Fig.
161}. 11 ihe vertex of g girdular cone is dircetly over the
center of the base, the conéviy called a right cireular cone ot a
cone of revolution,

Obviously all the8léments of a right civeular cone are
cqual. In this eas®at clement is often called the siant height
of the cone. Alsg, 1t is essily shown that the axis and alti-
tude are one&nd the same.

Any axial section of a given right civeular conc is con-
grucntta.any other axial section; any one of these sections is
an isosetles triangle, The angle at the
vertex of one of these trisngles is ecalled
the angle of the cone. Thus, if the axial
section is an equilateral triangle the
angle of the cone is 60°, and so on.

Fra, 161

142. Similar Cones of Revolution.

If & right triangle is revolved through

360° about one of its legs it will gen-

erate a cone of revolution. If similar Fie. 162
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right triangles are revolved about corresponding legs the cones thus gencrated
arc called similar cones of revolution.

143, Turonoa 38.

In a eireular cone a section parallel to the base divides the altitude and
clements proportionally, and the section itself is & cirele,

(T'or method of proof recall § 130 and Ex. 32 of Group Five.)
144, Corollary A {Th. 38).

S
If % is the arca of a plane section of 4 cone parallel to the base b; and
if the distance of section & from the vertex is d; and if the altifudé of

. "\ A%
the cone is A; then: L G}) b.

{Recall method of proof for § 131)

145. Frustum of a Cone (Fig. 163).

Il & planc 8 parallel to M, the plane of

the basc of a cone, is made to cut all the

elements, the solid ineluded between 8

and A is ealled a frustum of the eone. A\
The terms bases and allétude are usedsy

8% in frustums of pyramids. An element

of a frustum is that portion of the cle-

ment of the cone ncluded between S 4

and 3. DBy § 143 all the ements of a

frustum of a right cirgwlar cone arc

cqual; any one of thoge ;may be called

the slont hetght of\the frustum. The M

radit of a frugtmmi/of a eircular cone

are the radii (}%fb buscs. The axis of

4 frustum of 2t circular cone is the line connecting the centers of its bases.
£ \

O

Fra. 163

EXERCISES
Group Thirteen

1. Vind the elant hmght of a cone of revolution if its altitude iz 8 in. and the eireum-
ference of its base is 127 in.

2. The short leg of a 30-60- 80 triangle is 4 in. The trisngie iz revolved about its shorter
leg to generate a right circular cone. Find the altitude, element, and angle of the cone,

3. Vind the srea of an axial section of a cone of revolution if the angle of the cone is 90°
And the slant height is 10v2 in.

5
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4. The element of a right circular cone is 20 in. and the area of its base is 144w sq. in,
Tind the arca of the axial section.

v
5. The altifude of a cone of revolution is 15 in. and the radius of the
basge is 10 in. A plane seetion containing the vertex V euts the base
in a line AR which is 8 in. from the eenter O of the bass. Iind the
area of the plane section VAB (Fig. 164).
A
I-“anj;L

6. Each element of a frugtum of a right cirealar cone makes an
angle of 60° with the plane of the lower base. The radius of
the upper basc is 10 in. and the altitude is 8 in,  Tlind the radius
of the lower base (Fig. 165},

s> i, 185

7. In a frustum of a right eircular cone the altitude is 4 in, gad.the radii of the bases are
respectively 2 in. and 5 in. Find the length of an element of\the Irustum, and the lengths
of the element and altitude respectively of the entire con®ofwhich this frustum is a part.

8. Describe the solid generated by a right triangle 1£ 11;\}; revolved about ite hypotenuse,

9. Show how a frustum of a cone of revolution c'mu e generated by revolving a certain
type of quadrilateral about one of its sides. ',"3..

10. A plane seetion of & cone parallel to the bage bisects the altitude, If the area of the
base 18 8 8q. in., what is the area of thig plarlc section?

11. The altitude ol & cone of revolution is 24 in. and the rading of the base iz 6 in. How
far from the buse must a plane p@m}lcl to the bage be drawn in order to cut the cone and
form u section whose ares is 16 b in.? H

12. The sltitude of a cone ig¥ and the ares of the base is b,
How far from the vertex/miust a plane parallel to the base C
be dl‘&\‘;"})l mborder to egtite solid and form a section whose

area iz 64? 9‘? — &
13. Aline HB ;s\pcrpcndicular to side AB of a AABC and
is coplanar with the triangle, Describe the colid genersted

by &A'BC it is revolved about HB (Tig. 166). A 3
T, 166

14. €D is perpendieular to side AB extended of a AABC. De-
scribe the solid generated by AABC if it is revolved shout OO
(Fig. 167).

e, 167



CONES

83

15. H# is perpendicular to side 4B of a parallelo-
gram A £CE and is coplanar with ABCD. Describe
the solidd which is penerated by ABCD if it is re-
volved sbout B (Fig. 168).

146. The Conic Sections. Choose any
right circular cone and extend the ele-
ments through the vertex so as to form
a plece of the upper nappe of the eonic
surface,

Draw a planc & parallel to M, the
plane of the base, s0 s to cut the conic
surface. Then hy § 143, the section thus
formed will be a cirele (Fig. 169).

a"\\\
¢. N\
N
o *
7" N/
A\
N
\W
AV
W\

Dl‘a‘:y a“ijf'a.ne T paralle! to an element and cutting
the coffe Sirface. The curve which is the intersec-
tion of]‘%'wi‘sh the conie surface is called a parabola
{Fig. 170,

Fre. 168

Fia. 169

e, 170
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Draw a plane U cutting the
conic surface, and choose {7 in
such a way that the inelination
of U to M is an angle less than
the inclination of any clement to
M. The curve of intersection of
with the conic surface is ealled an
ellipse (Fig. 171).

Finally, draw a plane W cuttiﬁ}gf the
conic surface, and choose W inguch a way
that the inclination of W to, 42\ s an angle
greafer than the inclinatio \qf any eloment
to M. DPlane W will thep cut both nappes
of the conic surface.(PThe two curves of
intersection of pla, er with the surfaces are
the two branches\of an hyperbola (Fig. 172).

s’\

Ina, 172

In Figs. 169-172 if the cutting plane happens to contain V the resulting
intersections will not be the eurves just described, but instead will be a single
point, a single straight line, or two intersceting straight lines.  Diseuss each of
these abnormal or “degencrate’™ cages.

A mathematical treatment of these four conie seefions: the cirele, the parab-
ola, the ellipse and the hyperbola is beyond the scope of elomentary geometry.
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A syslematic study of them together with their properties and measurement
belongs to a higher branch of mathematics known as Analytical Geometry.
147, The Generalized Conic Solid (Fig. 173). The conecept of a generalized
conic surface is similar to that of the generalized eylindric surface discussed in
§123.

Let [ be any plane figure: polygon, curve, or a figure bounded by any com-
bination of straight linc segments and arcs; let ¥ be a fixed point not coplunar
with f; let ¢ be a straight line containing V and touching the boundary of . As
¢ iz allowed to move in aceordanee with this restriction it will generate a surface
similar 1o the conie surface already mentioned, N\

A ¢
V’\..\

I¥ & zolid is formed by passing a plqﬂé“through all the elements of this surface,
the solid bounded by this plane and one nappe of the surface may be thought
of as u generalized conde solid. L:a}er we shall assume that the volume formulas
o be derived for [_)3.-71'amicka'and cohes are valid for these generalized conic
solids. N\

L >
N/

»
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Chapter Ten

PYRAMIDS AND CONES: AREAS AND VOLUMIES

N
148. TuzoreEMm 39. ) \>
The lateral arca of a regular pyramid is one-half the Qr@{ﬂifzt of the
perimeter of the base by the slant height. N T S =13
.Q>}
\\

{Area of each lateral face = fx. Add the areas of
the lateral faces.)

¢\ Tie. 174
149, Trionay 40. o N

D>

The lateral arwx)f a frustum of a regular pyramid is the produet of
one-half thexSum of the pcrun( sters of the bases by the slant height.

AW = 3(p+ polf.

|7
QO

{Add together the areas of the congruent trap-
ezoids which make up the lateral surface.)

) %1
£y
F1g. 175

150. Tangent Plane. A plane is {angent to a conic surface if the two surfaces

have one and only one element of the conie surface in common. (Compare
with § 102.)

86
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151. Circumscribed and Inscribed Pyramids. If the
bage of a pyramid is coplanar with the base of a cone,
and il the lateral faces of the pyramid are each tangent
to the wall of the cone, the pyramid is said to be eir-
cumseribed about the cone, — or the cone is fnseribed in
the pyramid (Iig. 176).

Fra. 176"\

If the basc of a pyramid is coplanar with the base ,
of a cone, and if the lateral edges of the pyramid are o\
clements of the conc, the pyramid is said to be fnscribed &
in the cone, — or the cone is circumscribed about thel\/
pyramid (Fig. 177).

MY Fia. 177

152, Circumscribed and Inscribed Ffﬁstums of Pyramids. Study the
figures and deduce the obvious definifions. TFig. 178 shows a frustum of a

3“\ Tz, 178 Fra. 170

prramid g:-is@i:rl%zscrébed about a frustum of a cone. Fig. 179 shows a frustum

of a p}iﬁ-m"id inseribed in a frustum of a cone.

153. The following facts which relate to the foregoing are casily established:

A If a pyramid is cireumseribed about or inseribed in a cone, the vertices of
the two solids coincide.

B. A regular pyramid may be civeumseribed about or a regular pyramid may
be inscribed in a given right circular cone. Conversely, a right eircular cone
may be cireunscribed about or a right eireular cone may be inscribed in a
given regular pyramid. _

C. I a regular pyramid is circumscribed about a right circular cone, th‘e lines
of tangency of the two lateral surfaces are slant heights of the pyramid.
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D. A frustum of a regular pyramid may be circumscribed about or inseribed
in a frustum of a right cireular cone. Conversely, a frustum of a right
circular cone may be cireumseribed about or inseribed in a frustum of o regu-
lar pyramid.

Y. If a frustum of a regular pyramid is circumseribed about a frustum of a
right cireular cone, the lincs of tangency of the two lateral surlaces arc
slant heights of the frustum of the pyramid.

154, AsSSUMPTION.
A. 1f a pyramid is circumseribed about or inseribed in a cone, and if the number
of lateral faces of the pyramid ig caused to become intinite, &
(i) the lateral area and the total area of the pyramid approach as limits,
respectively, the lateral arca and total arca of the cone; K -
(ii} the volume of the pyramid approaches as a limit the Volume of the cone.
B. If a frustum of a pyramid is eirecumseribed about or mw.ﬁbed in a [rustum
of 3 conc, and if the number of lateral faces of the flu'-,tum ol the pyramid
is caused to become infinite, N
(i) the lateral area and total area of the frustum of the prramid approach
as limits, respectively, the lateral area and’ ’&&tal area of the frustum of
the eone; ~~\
(ii) the volume of the frustum of the pvramld approaches as a limit the
volume of the frustum of the cones)
Compare the above with § 108, Jus.t» as a eylinder may be regarded as the
limiting form of a prism, so a cone m;lv be regavded as the limiting [oym of a
pyramid. ~

155. TaporEM 41. ) mt\
L AN
The lateral area of & vone of revolution is one-half the product of the
cireumference afs the base by the slant, height {element). 8 = Zee.

.\
(Circumnserific)d regular pyramid about the cone. Use § 154 and Ref. 91,
and proveedi general ag in § 110.)

156. Corlﬂl‘ar\« A (Th, 41)

I} a cone of revolution of radius r and element e
lateral area, S = wre;
total area, T = w2+ wre.

157. Corollary B (Th. 41).

The lateral arcas or the total areas of two similar cones of revolution
are to each other as the squarcs of their respective cloments, radii, alti-
tudoes.
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{Compare with § 112,)

Frac. 180
"\
158. Turonky 42

N

78N
The lateral area of a frustum of a cone of revolution is the produtt of
one-halfl the sum of the circumferences of the bases by the slafit height
(element), S=%(e1 + e)e.

2

o\,
{(Cireumnseribe a frustum of a regular pyramid abotit$hic given frustum, Uss
§ 104 and Ref. 91, and proceed as in § 155.) N

159. Mid-Seclion of a Frustum, If a plane p!}r'a’]lel to the bases of a frustum
(either of & pyramid or of a cone) is drawn togtall the elements of the frustum,
the seetion thus formed is called a mid-seglion of the frustum.
EXERCISES
W<Grou-p Fourteen

e _
L Prove that the luteral areatof a frustum of & pyramid or cone is the product of the
Perimeter of its mid-section’hy the slant height of the frustum.

2. Lind the lateral aredof a’L"conc of revolution with radius 3 in. and altitude 4 in.

3 P and @ ure qn\ﬁa pyramids having equal altitudes and bases of equal ares. In
each tike o planddection parallel to the bage; in both eases let this section be taken at the
same distanco {rom the respective bages. What iv true of the areas of these plune sec-
tiong? N

4 ~\' ¢ i , .
4 Fi]{i;tk;e {nteral arca of a regular hexagonal pyramid cach basal edge of which is 10 in.,
and cathAateral edge of which is 13 in.

3. In Fx. 4 find the latorsl arcas of the inseribed and circumseribed cones.

6. The sitles of a trisngle are 5 in,, 12 in., 13 in. Find the lateral area _of the' cone of
fevolution genersted by revolving this triangle throngh 360° about (8) its 12-in. side;
{b) its 5-in. side.

7. The slant height of a regular square pyramid is 24 in. and the lateral area is 960 sq. in,
Find the urey of the base.

8. The hases of  frustum of a regular square pyramid arc 6 in. and 8 in. on a side, re-
fpectively. The slant height iz 5in, ¥ind the lateral arca.
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o. The altitude of a regular square pyramid is 3¢ in. and the area of the base is
1024 sq. in. A plane is drawn purallel to the base and bisects the altitude. Find the lat-
ersl arca of the frustum thus formed.

10. The slant height of a frustum of 2 regularptriangular pyramid is 10 in, and the aress
of the bases arc respectively 4v'3 in. and 943 in. Find the lateral area of the {rustum.

11. The radii of the bases of a frustum of a eone of revolution arc respeetively 2 in.
and 3 in., and the slant height is 4in. Find the luteral area of the frustum.

12. The diameters of the bases of a frustum of a cone of revolution are respectively 10 in,
and 18 in., and the altitude is 41 . Find the Jateral area. What is the arca of any axial
gection?

1. The slant height of a frustum of a regular triangular pyramid is 6 in., and % lateral
aren i 126 s5q. in. Find the area of the mid-section of the frustum. O\

14. The lateral sreas of iwo similar cones of revolution are respectiv&]:}? 9 5q. in. and
16 sq. in.  If the radius of the smaller js 3 in., what is the radius of dhielarger?

15. The altitude of one of two similar cones of revolution is & tiriies the altitude of the
second. What s the ratio of the lateral area of the larger,egngMo that of the smaller?

16. The sum of the lateral areas of two similar cones of revbltion is 52 sq. in.  The ratio
of their respective elements is 2. Tind the lateral arcag,x(gf\\!mch cone,

t7. A regular pyramid (or right eircular cone} hag éjl: altitude A und a base b, A planc
parallel to the base bisects the altitude. Prove $hist the lateral area of the solid is the
product of the slant height by the perimeter efjthe parallel section. (This section s 8

mid-section of the pyramid or cone.) =\

18. The area of the base of a cone of l'evbiution is 367 sq.in. The altitude is 8 in. Find
the lateral arveas of the insceribed andrgireumseribed regular trisngular pyramids.

19. Th_e gides of a !;rianglc ure ].(}.,ﬁas.\, 17 in., 21in. The triangle is revolved through 360°
about its longest side. Find 'ts@& total area of the solid genorated hy this triangle.

20. Find the radius of a ,QOI:LG of revolution of slant height 6 in. in which the total ares
is 13 times the lateral areg

160. Let T—ABC{b}ﬁny pyramid. Let h = altitude, b = ares of base. Divide
h into any IluQ\ber of cqual segments. Through each point of division draw a

*

Fre. 181 Tig, 182
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plane parallel to the base. Tsing & and cuch of the parallel sections as bases
congtruct prisme as shown in Fig. 181 and Fig. 182,

In Fig. 181, starting with the first, name the prisms ¢, p1, P2, s

Show that the prisms of Fig, 182 are respectively equal to the prisms py, p2, ps
(§§ 131, 119).

Represent volumes as follows:
et p+mt+ptp=W
Let T-ABC =1V,
Let mtptp=U
Then W > T and V > U (Ax 3).
Also W —IL=pn

-— —_ T

h

AN Fro, 183
\

Now inerease the num Y: ol divisions of h indefinitely. W now rcpresents
the sumn of p (which hasbecome smaller) and the remaining prisms of Fig. 181,
U represents the sum @F all prisms except p. (Sec Fig. 183.) p approaches 0
in value. \ "

ButeN W — V) <p and (V—U) <p atall times.

Therefore{aitice p approaches 0, W must approach ¥V in value, and U also
must alz)prg&tﬂl V in value.

Thatis) the swm of the volumes of the prisms either of Fig. 181 or of Fig. 182
‘-'I-PP?'O}RFE.ES as a limit the volume of the pyramid T-ABC.

161, Lot T-ABC and O-XYZ be any two pyramids having equal altitudes (&),
and bases of cqual aren (). Tet V = volume of T-ABC; let W = volume of
0-XYZ (Yig. 184). We shall prove: V =W.

Divide the altitude of each pyramid into any number of equal parts. Through
each point of division draw a plane parallel to the base, and construct prisms
as in Fig. 181.

Let the sum of the volumes of the prisms of T-4BC be V'; let the sum of
the volumes of the prisms of 0-XYZ be W',
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: —m O
R

Vi I
AV ANV

Flre. 184 N
Now show that V' = W’ (§§ 131, 119), N
Let the number of divisions of each altitude increase, fhal 15, let the mwnbet
of prisms of the two pyramids increase indefinitely a.mi\ut- the same rate,
By § 160: I_’ » T RN
and Wi-—Ww. 2
But the two variables V* and W’ are alﬁ:&}f’g\equal.
Therefore, their limits V and W must, He kqual (Ref. 91),
Therefore we have: N
Two pyramids must have equal voldimes if their altitudes are eqpual and If their
bases are equal in areq. .f;"o
162, THEOREM 43.

o

o
s \J
The volume of any pg@ahiid ig one-third the product of the area of its
basc by its altitudes Vowe £Dh.

A/
Given: Any pyfamid.
b = hbase, i = altitude
VaWolume.
Prove: XV = $bh.

A\
I’@;:’"Let E-ABC be a triangular pyra-
mid (Fig. 185).

Using ABC as base and BE as lateral
edge construct a prism ABC-DEF. Pags
plancs through the sels of points: E A Cand
&, A, F, thus dividing the prism into the three .1 ¢
pyramids: #-ABC, E-ADF, E-ACF.

TUse §161 to show:

1) B-ADF = E-ACF
2) E-ABC = K-ADF
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D P

Fig, 186

(Study ligures 185, 186 and note that E-ADF is actually\thc same pyramid
as A—DEF.)

" the three pyramids are equal, and hence cach ehe mu&:t he one-third of
the entire prism. Y

* E-ABC = JABC-DEF = L(bh) = 1bh (§ 1?9)

PamT II

Il the given pyramid iz not trlang'lﬂm divide
it into trisngular pyramids by pl.nu‘ﬁothlough the
vertex and diagonals of the base Mg, 1873.

Oblain the volumes of thcs@*iﬁ*langular pyramids
and add the results. N\

Note: An alternativeproof of Theorem 43 fol-
lows. "This sccond predlis more algebraic in natuve,
being an interesting\élpp]ication of infinitc series to
geomaetry. "\ v

.\ Fic. 187

162, lH]:OIw"u, 43,

A
T ;:.\X}éfll]mie of a pyramid is one-third the product of the area of its base
by its altitude, V = gbh.

Given: Any pyramid.
b = arca of base
i = altitude
V' = volume
Proge: V = 1bh.
1) Divide & into n equal scgments, each equal to . Through each point of
division pass a plane parallel to the base of the pyr amid, thus forming a
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sericg of parallel sections. Starting with the section nearcst to the base call

the aress of these scctions bs, bg by, . . . Then the area of the lopmost
section will he b,.
2) Upon b, bs, bs, by, . . . 8% bages construct prisms of the type discussed in

§ 160. Let P be the sum of the volumes of these prisms.

Tie. 188 N

3) . P = bzt bbby bzt - - o b

- bx+(n; l)sz+(”“2)sz +{?f§7—g)25x+ . +(;1%)2m: (5§ 131, 119)
-G+ (57 ﬁ(ﬂaz) e ()]

b[n+n—1)°\et(% N4 (n =B+ - - -+ 17].

In the bra.(,kets ea.c’h' fc-grm which is squarcd 1s seen to be 1 less than the torm
hefore it which ipafdared. The largest of these is », and the smallest is 1.
Ienee the seriésin the brackets is actually the series: 124 224 324 47+

« 4 nl, ) ]ﬂ\om Ref. 92 the formula for the sum of the n terms of this
geries is (N

. ~\ gen+ D@+ 1),
9 N po [ @+ 1)(n + 1)] b [(2ﬂ_+ Dot 1)]
_ "‘J(;x) [@.?’LE +2if»+ 1)] bgh P L3 s ]

5} Now let n become infinite. As this occurs, the fractions 23- and 2l., each
7t JL
approach 0 in value. At the same time P approaches V as a limit.
bh

6) . V= 3 by Ref. 91,
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163. Corollary A (Th. 43).

The volume of a cone is cne-third the product of the area of its base
by its altitude. V = 4bh.

{Cireumseribe a pyramid about the given eone, or else inscribe a pyramid
in the cone. Apply § 154 A{ii) and Ref. 91.)

164, TuroreEm 44.

If ihe aress of the bases of u frustum of a pyramid are by and bs, and if
the altitude is b, the volume is given by the formula: 2N\
= g(bl + b+ \/blbz)- .\:\’
NS ©

Géven: Frustum of any pyramid,
by and by, areas of bazes
h = altitude
" = volume

— x
Prove: V = g {(bi+ b+ N/glbg).
1) Extend the lateral cdges of the .
frustum so a8 to form the pyramid ‘,’:'
of which the given frustum is a part.3 A

Let (x4 A) be the altitude of thlE‘r
pyramid {Fig. 189), - ¥
2) Then V = Vol entire pylam‘rd,\ Vol

small py mmld\\

Kz + 2oy £ gba (§162) ¥ia. 189
= %[hbl *21“' be)z .
bg 2! '\" z by
3) Bt = . == 131).
) Bu (az\+?;)’ o o vp B
Vb, + b

4) In step~3 Aol\(, for z. Show that == a bll 2;; 2),
3) Subc\mut(, this value of 7 in the last line of step 2, and

obtain: = g(hbl —+ h[ v blbz + bg:l)

or: V= ;—%(bl—i—bg—l-\/ag)-

165, Corollary A (Th, 44}

1f the arcas of the bases of & frustum of a cone are by and by, and if the

h —
altitude is &, the volume is: V=gt by + Vbibs).
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(Circumscribe a frustum of a pyramid about the frustum of the cone, or
else inscribe a frustum of a pyramid in the given frustum of a cone. Apply
§ 154 B(ii) and Ref. 91.)

EXERCISES

Group Fifieen
1. Find the volume of & square pyramid if the altitede 15 20 in, and cach basal edge
is 12 in.
2, Find the volume of a cone il the altitude is 14 in. and the base 1z a circle of 1‘:1(&115 6§ in,

3. If two pyramids {or cones) have equal bases, their volumes are fo cach other as their
altitudes. If two pyramids (or conses) huve cqual altitudes, their wlumtv \za,u, 10 each
other as the areas of their bages. Prove. e

4. A cone not fixed in shape but having a constant volume has a bme‘ B whicl is fixed in
posltwn and area. What is the locus of the vertex of the conc?

. A cone and a cylmder have equal bases and equal wolumea> How do their allitudes
Lo:{n[:;su'e'P

p §

6. The basc of a cone is two-thirds the base of a nlmr.léﬂr and their volumex are equal.
Compare their altitudes. AN

s

7. Find the volume of a legula,r hexagonal pvra,rmd eaeh basal edge of which is 6 in. and
the altifude of which is 10 in. ',' \

8. Find the volume of a cone of rm«olutmn. i the altitude iz 12 in. and the slant height
{element) is 13 in. _ N\

9. The altitude of a regular tnzmgkl al pyramid is 5 in. and the volwme is 15v3 cu. in.
Find the length of each bazal exig,m

10. Find the volume of a fru\mm of a square pyramid if the allitude is 9 em., and if the
bases arc squares w ho%e edgu-} arc respectively 8 em. and 6§ em.

11. If the radii of the Das8s of a f rustum of a circular cone arc 7; and ., and if the altitude
is k, show that the ‘\\)lumc is
FRR(r? 4 2 + ?'1?')

12. The radii’ ;} the bases of a frustum of a cone of revolution are regpectively 7 in. and
10 in. and ‘bhé element of the frustum is 5 in. Find the volume.

13. &ABC 11ght-an1r:le(l ut €, is revolved through 360° about the ley B¢ ag an axis,
B =%Win, C4A =6in. I'nd thc lateral ares, total arca, and volume of the solid thus
generated.

1. In Ex. 13 find the volumes of the regular triangular pyramids which can be respec-
tively inscribed in and cireumseribed about the cone.

15. ABCD-EFGH is a frustum of a regular squsre pyramid. AB = 26, EF = 10, the
alfitude = 15. Find the lateral ares and the velume.

lﬁ. The I?ases of a ffr'ustmn of a right civeular cone urc circles whose diameters sre respec
tively 18 in. and 4 in. Find the lateral area and volume if the slant height is 25 in.

17. Find the volume of the olid mentioned in Ex. 19, Group 14.
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18. Find the volume of a regular octagonal pyramid each basal edge of which is 4 ff.
gnd the allitude ol which is 8 ft. i

19, The volwme of a regular triangular pyramid is 300v3 and the ares of ite base is
75vE. Find tho lateral ares.

20. The volume of one of two similar cones of revolution 1z 84 times that of the other.
Find the ratio of the radit (larger to smaller), and the ratio of their lateral areas (larger
to smaller).

21. The latcral area of one of two similar cones of revolution is 4 that of the other.
Find the ratio of the volume of the Brat to thal of the sceond.

22, The radiug of one of two similar cones of revolution is § that of the other. The sum
of thelr volurmes 15 140 eu. em.  Find the volume of caeh. N\

23. The altitude of a pyramid is 12 em,  How far from the vertex must a plnne parallel
1o the base be drawn in order to separats the pyramid into two solids of eqa,}holume?

24. The wltitude of a cone is  and 1ts volume is 162 cu. em. A plane S pamllel 1o the base
euks the altitude at a distance A/3 above the base. Find the mlume af the frustum in-
cluded betwecn 8 aml the base.

25. The aliitude of a pyramid P is 3z. The pyramid is "JdeTﬂ@ int three solids 4, B,

and by two p,anec= which are parallel to the base and whisi\¥isect the altitude. ]:‘ln(l
the ratio of the voluine of A to that of P; Bto ; € to R

26, The cdge of a regular tetrahedron is e ‘Ehow tha\t\lts altitude 15 3\/6 that its total

area is V'3, and that its volume is I 2\/ 2 W 3

27. Find the volume of a regular tct.‘r‘:i.hedl’aﬁ whose edge is 6 in.

28. The totul arca of one regular tetralédron is 2893 and the volume of a second is
144v'2, 1ind the sdee and .J,ltitur'ie{of cach.

29, A conteiner iz built in theddrm/of a right cireular cone,  Any axial seetion is an equi-
lateral trisngle, (buch wnea\gre often called equiluteral cones) Find to the nearest
hundredth of an ineh the lengtha of the radius and altitude, respectively, if the cone is to
contain 1 gallon (231 du \m}

A cirewlar sector 'heﬁ, a radiug of 20 in. and an angla of 120°, If this sector is cut out
of paper and rolled 807z to form the lateral surface of a right cireular cone, find the total
area and mhm\ W the cone.  Give your snswer correct to the nearest tenth.

3L Tna tmpezmd ABCOD AR = 9ft., 28 = 907,
BC =4 fty €D =6 [t. ABCD is revolved
thmuf;h 360° about BC as an uxis. Find the C
lateral drea and volume of the solid thus gen-

crated.
f h
32. Tn AABC, AR =11, BC = 20, CA = 13,
his afixed line ])elpenduular to ABat B, AARC
i always coplanar witb A, and is revolved
through 360° about b as an axis. Find the e——f———= B
volume of the wsolid genersted by AABC A
{Fig. 190).

TFic. 190



98 SOLID GEOMETRY AND SPHERICAL TRIGONOMETRY

33. In Ex. 32 find the volume of the solid generated by AABC if it is revolved about a
fixed line f which is coplanar with AA4BC, which containg point €, and which is per-
pendicular to BA extended.

34. In a parallelogram ABCD, AB = 20 in, AD = 12in, LA = 60°. A fixed line &
iz perpendicular to AR at 4. ABCD remains coplanar with A, and is revolved through
360" ahout * as an axis. Find the total exposed ares of the solid generated by 4ABCD
(Fig. 191).

g, 191 Fia. 183

Fig, 192 ..\\.’
15 A block of wood is in the form of a right circalancone. The altitude is § . and
the radius of the base 15 6in. A cylindrical hole B, in diameter is bored completely
through the solid, the axis of the hole coinciding With the axis of the cone. Find the
amount of wood left after the hole iz boved (T irh 192},

36. From any point P within a regyhﬂ'f “tetrahedron lines x, y, 2, w are drawn
perpendicular to the four faces, respectiyely. If h is the altitude of the tetrahedron,
prove that T4y +e2+w=~h (Em P draw lines to the four vertices thus forming
four pyramids. What is the voluine®of each pyramid? To what is the sum of these
volumes equivalent?) (\J

3“';3 PSE;"HEI}%MT‘ ABCD iaghe base of a pyramid V-ABCD. AE bhisects BC and
cuts at . What is ghe-ratio of the volume of mid V- o that of pyrami
V-ABCD (Vig. 194)? W& e of pyramid V-FBE to that of pyremid

Ak

T1a, 194 Yc. 195

38. Points F, 4, B, €', D, E are respectively the conters of the faces of a eube whose edge
is 10v2. Tind the volume of the solid whose vertices arc F, 4, B, C, D, E (Fig. 195).
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H
39, A chimney pot is built in the Torm of
a frustum of s regular square pyramid on z

the oulside, and the flue i3 4 hole in the o
form of a frustum of a right circular cone.

AB = 3ft., FF = 2 ft., the upper diam- D
eter of the hole e 1+, the lower diameter

i 2 1t The altitude of the figure is 4 ft.

Find the amount of material used in
constructing the chimney pot (Fig, 198).

Fi6. 196 4

40. V-ABCD is a vegular square pyramid.
AB =12 in. The altitude is 8v3 in.
VX =11 Through X a plane 8, parallel ¢
to AL dl’ld perpendicular to the pla,ne of NS
VADis drawn, forming the section X VZRLS
Vind the volume of the pyramid V-X¥gW
and the volume of the solid ABCD X YZW
(Fig. 197). m\

“)
’\n
4L In Ex, 40 ﬁmkt}ﬁ lateral ares of the pyramid V-XYZW.

Fra. 197

." D ¢ E

a
12. Tn AABC, CA = (B, P is the mid- z

voint of AB. AR = 40in. DCEis parallel
to AB. DC = CE =5 in. The entire
figure is revolved through 180° about CF
45 an axiz.  Find the arca of the surface
generated by the line FH (Fig, 198).

Fia. 19%



Chapter Ileven

POLYHEDRAL ANGLES. POLYIEDRONS

N\

166. Polyhedral Angles. When three or more plancs meet in 8 corpmoen point ¥V
the figure thus formed is called a polyhedral angle.  (Sce Fig. IQQJ \

The wverter Is the ecommon peint V. The L M
eflges are the intersections of the planes already
mentioned, and are scen 10 be lines which
emanate from ¥ (VA, VB, ¥V, ete.}. The faces
are the portions of the given planes which are
included between consceutive edges.  (Note that,".\ ’
the vertex, faces, and edges are respectivel )
the vertex, lateral faces, and lateral edges vof 2
pyramidal surface of one nappe) T he ‘face
angles are the angles having V az a commnn ver-
tex and consecutive cdges as sid&® (ZAVBE, ¢
ZBVC, £0VD, ete., are face an@les.)  Inherent B _
in the coneept of poly hedrga],\anglo st pre- Fra, 199
sented is the fact that m&Q{acc angle is necessarily less than 180°.

A polyhedral angleds, conver if it is formed by a pyramidal surface whose
direetrix is any ordidgey convex polygon; otherwise it is coneave. Only the
conver type will be\:cdnsidcred here.

\\ tribedral | three
A polvh’éd}al angle i | totrabedval oo Hour | s ete
N pentahedral five aces, et
\J hexahedral | | six

%t( that if a polyhedral angle possesses n faces, it must also possess n edges
and hence n dihedral angles. The cdges and f&(.es of these dihedral angles
are edges and faces of the given polyhedral angle. (See dh £ A-VB-C,
dh Z B-V(-D, etec., in Fig. 199.)

167. THEOREM 45.

The sum of any two face angles of a trihedral angle is grester than the
third face angle.

100
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V-XY7 is the given trihedral angle. XVY, YVZ, ZVX are the [ace angles.

(a) In case all the face angles are equal the theorem is obvious.

(b) In case Lwo of the face angles ave equal and cach is greater than the third,
the theorem is again obvious.

fe) Buppose that the face angles are all ¥V
uncgual.  Suppose that XTVZ iy the
Inrgost. It iz then obvious Lhat
XVZ +-¥YVZ > XVY  and that
XVZ - XVY > ¥YVZ. Ttlence we
need to prove: XVY+VYVZ > XVZ.

1} In face XVZ draw line VW making
LXVIV = £XNVY,

2) On VY and VI, respeclively, tuke
VB = FD. Draw anv plane § con-

taining points B and O and ecutting - )
VX at 4 and VZ at C. X RCANRA
3) Obtain AAVEB o= AAVD. \/
4 . AD=A4B. V)
5) AB-+BC > AC (Post, 2). K7, ¥
6) . RO = B (;"&‘{ 7) “.:\“ Fia. 200

7)o ZBVC > ZDVC (Ref. 18). Y

8) . LAVBH ZBVC > LAVD + ZDT’C’ N

B N LXVY S LYVE > /XVZ (Ax33).

(d) In case any two face angles are efual and cach is less than the third, the
proof is similar to that for (o)

168. THioREM 16, O
&
The sum of the face dngles of any polyhedral angle is loss than 360°.
N4

v
Gruen: Ph 2V, {1 mg n faces, f
F= al‘{xp of fuce angles.

Prove: F_€\360°.

1) Dray, ll}lane M eutting all the edges of V,
thu\fe)rmmg a pyramid V-ABCD .

2) In plane M and within the base of the
pyramid choose any point O and draw
04, OB, OC, ete. The basc is now di-
vided into » triangles.

3) The sum of the angles around O is 360°.

4) f{t present angle sums (degrecs) as fol- Fi. 201
0ws:

= sum of all the angles VAB, VBA, VBC, VCB, VUD, ete.;
8 = sura of all the angles 0AB, OB4, OBC, OCB, 0OCD, etc.
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5) Then in polygon ABCD . . .1 S+360° = n(180°) (Ref. 29 and Ax. 4).
Tn the lateral faces: F+ T = n(180°%)
L F4T=S4360° (Ax. 1).
6) or: ¥ =2360"— (T -A8).
7) But at vertex B, for example, L VBA 4- £ VBC > £L0OBA 4 £0BC (§167);
similarly, for vertices €, D, I, ete.
8) Adding: T > 8 (Ax. 5).
9) .. T — S must be greater than zero.
10) Retwrn to step 6. F is now seen to equal 360° diminished by a positive

amount (T — S). A~

That is, | F < 360° O\

169. THrorEM 47. \

In any tribedral angle:

{a) each dihedral angle is loss than 180°;
(b} the sum of the dihedral angles is less th&n 540°;

(¢) the sum of the dihedral angles is grPQ‘t@\r ‘than 180°.

0"\"
,\

S

#
2 8

ay
NS

. o Fre. 202
Given: trh £V-PQR
dh ZVP =2
dh £VQ=1y°
dh ZVR=2°

Prove: {(a) » < 180°, y < 180°, =z < 180°;
(h) =45+ 2 < 540°;
{e) 24+ y+ 2z > 180°,
1) On VP, VQ, VR respectively, choose 4, B, (' so that V4 =VE = Ve
Through A, B, C draw a planc M. Then plane M must be oblique to al
three lines VA, VB, VT (Fig. 202).
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2} Through any point D on VA draw a plane N perpendicular to VA, cutting
face VAR in DF, face VAC in DE, and M in EF, Then £EDA = Z/FDA
= 90° Ilence ZKDF iy the plane angle of dh £ VP, . ZEDF = z°

(a)
3) D-EAF is a trihedral angle. Since ZEDA = ZFDA = 90°, then by §168,
£EDF < 180° That is: z < 180°. Similarly, ¥ < 180°% z < 180°,

(b}
4) Adding the above results: z+y+2 < 540°

(c)
5) In plane & draw DH | EF. Draw AIIl. Then AH 1 EF (§27): 80>
6} . A AHF and DHF are vight triangles. . £ HAF and H Dﬁ'\‘a{e each
acule. a\
nmr . HF v N

7) sin HAF =- {ﬁ'; sin HDF—W N

8) But DF < AF (Ref. 33). .. sin HDF > sin HAF., And ginee each of
these angles is acute: ZHDF > LHAF, BimilarlyN L\}IDF > ZITAR,

%Y .. ZLEDF > £EAF. Thatis, z > £CAB. Inlilte‘manncr we can prove
that y > LABC,z > ZBCA. N

1) BDut £CAB+ ZABC + £BCA = 180°, bmceﬂlev are the angles of AABC,

) & zdy+z > 180°

170. FEqual Polyhedral Angles. Two po’lvhedlal angles are sald to be egual
{or congruend) # one can be made to comude with the other.

171. Symmetrie Polyhedral Angles " If the planes of the faces of any poly-
hedral angle are extended thraugh the vertex a sccond polyhedral angle is
formed which is said to b \gymmemc with B’

respect fo the given polyhedral angle. The
two polyhedral angles cate’ also said to be
symmetric with res éc}- to cach other, or
Simply symumetrice ~&

For (k‘lmpiakm Fig. 203, the planes of the
faces of the teihedral angle V-4 BC have been
produced through V 1o form & second trihedral
angle U-4"B'C". By definition, these two
trihedral “angles, then, are symmetric. The
edges VA’, VB, V(' correspond to the edges
VA, VB, V(. Tt is obvious enough that the
face angles of trh £ V-A'B/(Y arc equal re-
fpectively to the face angles of trh £ V-ABC;
tlso, the dihedral angles of the one are equal
respectively to the dihedral angles of the other.
All the parts of V-A'B'¢” are cqual to the
torresponding parts of V-ABC. And yet one Fie. 203
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trihedral angle cannot be made to coincide with the other, for the parts of one
are arranged in an order which is opposite to that in which the parts of the
other are arranged. In order to pereeive this fact more easily, Imagine that
trh Z V-A'B’C’ has been separated from trh 2 V-4 BC and placed with its vertex
pointing upward. (Sce Fig. 204.) It is now seen that the edges VA, VB,
V¢! follow one another around in a eounterclockwise directlion, while the corre-
sponding edges V.4’, VB', V(' are arranged in clockwise order.

v

Fi1a, 204,
&N

Familiar instances of symmet-;"rc: Dodies are a pair of gloves or a pair of
shoes. The two gloves (or shoes) are alike, part for part, but the corresponding
parts are arranged in OppOSi‘{a orders. Henee the right-hand glove (or right
shoe) could not possibly be &ubstituted for the left.

172. 1f by the term “garts'of o polyhedral angle” we imply its face angles and
its dihedral angles, then’from the preceding diseussion we may draw the con-
elusions; P\

(a) corrcspondjg’g\iarts of equal polyhedral ungles are equal;

(b) correspo)&ling parts of symmetric polyhedral angles are equal.

ay
¢

O EXERCISES

N/ Group Sirteen
1. Can a trihedral angle be congtructed in which the face angles are respectively 60°
40°, 100°? 160°, 1307, 170°7 120°, 120°, 120°?
2. Can a trihedral angle be constructed in which the dihedral angles are respectively 90%,
90°, B0°7 60°, 50°, 50°7 807, 75°, 70°7 20°, 107, 145°°
3. Two dihedral angles of a certain trihedral angle are 40° and 60°, DBetween what two
limits (in value) does the third dihedral angle lie?

4. Prove that if the face angles of a trihedral angle are ench 90° then each lihedral sngle
ig also 90°.
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5. State and prove u converse of Ex. 4.
6. Inatth ZV-ABC, ZAVB = Z/CVB = 90°, Provethatdh ZVA = dh 2 VC = 90°,
T Inatrth ZV-ABC, dh £ VA = dh £VC = 90°. Provethat ZAVE = ZOVB = 90°,

8 Prove that two symmetric trihedral angles which have two face angles of one re-
spectively cqual to two faee angles of the other can be made to coineide and are there-
fore equal.

9. Prove that two trikiedral angles are equal if two face angles and the ineluded dihedral
angle of the one are respectively equal to two face angles and the included dihedral angle
of the other, — eorresponding parts of the two trihedral angles being arranged in like
orders.  {Use the method of superposition.) 2\

10. Prove that two trihedral angles are equal if $wo dibedral angles and the ingpluded face
angle of the one are respectively equal to two dihedral angles and the .ihclu}led face
angle of the other, — corresponding parts of the two trihedral angles being drranged in

like orders. A\

11, Bhow that in any pelyhedral angle cach dihedrsl sngle must b{ﬂile% than 180°.

173. TaEoREM 48.

AN/
Two trihedral angles are equal if the three faie angles of the onc are
respeclively equal to the three face angld€ol  the other, — correspond-
ing parts of the two trihedral angles being arranged in like orders.

~
<N

Given: h £V-XYZ, W-KPO 8%
LXVY = LKWP, LYVZ= LPWO, LZIVX = LOWK,
FProve: trth £V = trh /W, <
w

Fiaz. 205

If wo can prove dh £ VX = dh ZWK, we can prove V = W by superposi-
tion. (Cf, Ex. 9, Group 16.)
1) On VX and WK respectively take VA = WD. Through A and D respee-
tively draw plancs 8 and T perpendiewlar Lo VX and WK.
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2) . ZBAC is the plane angle of dh £VX, and ZEDF is the plane angle of
dh ZWK.
3) rt AVAB ~rt AWDE; 1t AVAC 221t AWDF (Rel. 2).
4y & AB=DE and AC=DF. Also VB=WE and VC= WF.
5) Show that ABVC = AEWF.
6) . BC=FF.
7T) Now show AABC =~ ADEF (888).
8) .~ LBAC = ZEDF.
9 L dh £LTX =dh LWK.
10) Use the method of Ex. 9, Group 16 (supcrposition) to show that trh £V

={rh £ W. Q)

(In casc the corresponding parts of the two trihedral angles aredarranged
in opposite orders, of course the two trihedral angles are then syn\iﬁre}ﬁe instead
of equal.) O\

174. Polyhedron. A polyhedron is a solid bounded hyt portions of planes.
{Prisms and pyramids already studied are types of polyliedrons. )

The edges of a polyhedren are the lines of interséehion of the faces.

The vertices are the vertices of the polygons W&Qich form the fuces.

The area of a polyhedron is the sum of the #5hs of its faces.

At cach vertex, obviously, there is a polyl@&lral angle of some sort.

A polyhedron is convex or concave secording ag any plane section of it is a
convex or & eoncave polygon. Only thst:’jéﬂnvex type is considered here.

A polyhedron iy regulor if all itgJelyhedral angles are equal, and if all its
faces are congruent regular polygefis.

175. THEOREM 49. &

) -
There cannot be mor{\than Jive different types of regular polvhedrons.

The face angles obeach polyhedral angle of the polvhedron are the vertex
angles of the regwl:}? polvgons which form the faces of the polyhedron. The
number of differént types of regular polyhedrons possible, therefore, depends
upon (a) thermber of regular polygons which can be grouped about a common
vertex to, f}érm cach polyhedral angle, and (b) the fypes of polygons used for
Lhis l;grﬁése.

¥)¥ 168, the sum of the face angles of each polyhedra} angle must be less
than 360°. Therefore, we may draw the following coneclusions:

1) M eguilateral triangles are used as faces, a polyhedral angle can be formed by
using three or four or five of these triangles but no more, since the sun of the
face angles must be kept less than 360°. Hence there are no more than
three types of regular polyhedrons having equilateral triangles ag [aces.

2) If squares are used as faees, a polyhedral angle can be formed by using
three squares and no more than three. Therefore, there can be no more than
one type ol regular polyhedron having squares as faces.

3) Ii regular penlagons are used as faces, a polyhedral angle can be formed by
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using three of these and no more. IIence there can be no more than one type
of regular polyhedron having regular pentagons as faces.

4} Regular hexagons or regular polygons of any greater number of sides cannot
be nged, since the grouping of three or more about a common vertex would
eause the sum of the face angles of each polyhedral angle cither to equal or
to excced 360°,

5) Therclore, theve are no more than five diffevent types of regular polyhedrons.
Note carefully that we have not attempted to prove that there are precisely

five types of regular polvhedrons. 1 is true that there are exactly five types;

but we have shown merely that there cannol be more than five types. The

proof of the existence of the five types is beyond the scope of this book. . O\

. o . . ; X s\.
Types Number of Poly Sum of Face Total Lxame
gong Used to . N\
of Form Fach Polv Angles of Each Number [NJ of
Faces : A TOLT ) Polyhedral Angle of Facas g\ Polyhedron
hedral Angle i A\ |3
TFguilat, & 3 180° .dsj\.\' Tetrahedron
Equilat, A 4 240° 8/ Octahedron
Iguilat. A 5 200° )20 Tcosahedron
Suuare 3 270° LI 6 Hexahedron
Reg. Perndugon 3 324° ‘..\ R " Dodecabedron
Regular < Regular Regular
Tetruhedron ,\1“; Octabedrun Ieosahedron
\’ —
O
) )
4\ Y4
)
TRegular Regular
Hexa%mdmn Dodecahedron
{Cube)

Fiiz. 206

 Tn order to study the five different types of regular polybedrons more easily
H may be helplul to construct models of them from hem{y puper or card bo.a-rd.
e diagrams which follow are patterns for these solids, Fold along dotted lines.
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T'1g, 207
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176. Similar Polyhedrons. Similar polyhedrons are those whose correspond-
ing polyhedral ungles are equal and whose corresponding faces are gimilar
polvgons which arc similarly placed.
177. Exercise. Provethatif two tetrahedrons have a trihedral angle in common
their volumes are to each other as the preducts of the edges including the
common trihedral angle.

Let the two tetrahedrons be T-4A BC and T-DEF, having trh 2 7 in common.

Tet A =b,TB=0,TC=x, TD=¢, TE=4d, TF = y.

Let ZBTA =8,

Q"
O\
NS ©
Prove: U = 202 NP
o edy &
From F' and €, respectivelysdraw i and & perpendicular to the plane BTA.
Show that £ = 2. O
oy

Arca ABTA = $ba &in'l; arca AETD = jed sin 9
Using 4 and & a.-z\imltitudcs express the volumes of the two tetrahedrons.
Divide cne regnl¥by the other.
178. Exerciseéo rove that the volumes of two similar tetrahedrons are to each
other as the~etbes of any two corresponding edges.

N N
179. Tedonen 50.

The volumes of two similar polyhedrons are to cach other as the cubes
of any two corresponding edges or as the cubes of any two corre-
sponding lines.

The following is not designed to be a complete and rigorous proof of Pl.le (;.he(z—
rem. The intention is to make the truth of the theoren.l acceptable by in ica i
g certain ideas upon which a proof could be based if the neeessary logica
background were at hand.
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Let the similar polyhedrons he
D-ABPC-E and W-XYQZ-T. Assume
that the solids are similarly placed.

b

First, choosc a point P which might}
be either on or within solid I. In ahis
case P iz a vertex. By joining R with
the other vertices show that theqaohhcu b4
dron can be resolved into n\b\l*mhedrom
having a common verfek P Secondly,
assume that in solid IE& point § corre: spnndmg to 7? can be found. Here @ s a
vertex concapondmg 5 P. Assume that solid IT ean be resolved into n tetrs-
hedrons having théommon vertex € and similar to the tetrabedrons of solid L.

Consider a@mr of these similar tetrahedrons: P-ADC and Q-XWZ.

FIOIII § I78 P-ADC = (AE) - (LD)

Fic. 200

T R-XWZO\XZ XW

Séllr_ll'ly P-ABRD ( 1D) )

Show that

QXYW \XW (
. P-ADC _ P-ABD 3
" QXWZ QXYW ( )
P-ADC 4 P-ABD 3
Q-XWZ + Q-XYW ( )
Continue this process until you have:
sum of tetrahedrons of 1 AB\S ABY?
Sum of tetrahedrons of 11 ()g Y) IT (X_Y)




POLYHEDRAL ANGLES. POLYHEDRONS

i1l

180. Conrornary A (Th. 50).

The arcas of two similar polvhedrons are to each other as the squaves
of any two corresponding cdges or as the squares of any two correspond-
ing lines.




Chapter Twelve

SPHERES. (GENERAL PROPERTIES)

QY
O\

181. Spherc. A sphere is a solid all points of whose surface ar¢'gt a constant
distance from a fixed point within the solid. A\

Thus, a spherical surface is the locus of points which fil‘"e? at’a constant dis-
tance from a fixed point. AN\

The center of a sphere is the fixed point mentioned ubove.

The radius is the eonstunt distance, \J

A diameter is a line-segment passing throug}(ﬁﬁe cchter of the sphere and
terminated by the surface. A diameter is equivalent to the sum of two radii.

The area of a sphere is the area of t-he’slllrei'ica.] surface.

A point is said o be within, on, or qvﬂssit’lc a sphere aceording as its distance
from the center is less than, equal to,on greater than the lenglh of a radius.

The distasice from & given poipt‘tb' the surface of a given sphere is always
measured along the straight ]jn{‘c-onﬂectmg the given point with the center of
the sphere, O

A sphere may be generfited by revolving a semicirele through 360° about
its diameter, or by revol€ing a complete circle through 180° about any dismeter.

As in the cage of :@i'pcfes, when there is no ambiguity a sphere may be desig-
nated by naming ifgpenter.

182. THEOREMIL)
N

Any p\]}@fxﬂ seclion of a sphere iz a circle,

B

Givew: Plane M cutting sphere 0. M cuts the spherical surface in some
curve ¢.

Prove! ¢ is a circle,
1) Draw OF 1| M, cutting 3 at P,

2) Choose any number of points 4,B,C, .. .onc. Draw AP, BP, .. ., A0,
BO, . ..
3) Show that AP=BP = . . . by eongruent triangles,

4) Show that ¢ satisfies the definition of circle,
) If M passes through 0, why is ¢ obviously a circle? What is its radius?
112
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Fic, 210 ¢\, \

183, Circles of a Sphere. A circle formed by the intersectiony of a planc with

g sphere is called u etrele of the sphere. If the intersecting plane passes through

the center of the sphere the eirele thus formed has its center @t the center of the

sphere and has the radius of the spherc as its own radige\Such a circle is called

a greal circle.  All circles of & sphere other than gre@t circles are often called

smedl circles. R4
The following faets relating to cireles of ¢ bph(‘re are easily deduced and

may be done as exercises. .

A. Three peoints on the surface of a spheu, détermine one and only one cirele of
the sphere. ~

B, Two poinis (not the extremities. OF a diameter) on the surface of a sphere
determine one and only one grdat circle.

C. A diameter of a sphere w lal&h is perpendicular to the plane of any eircle of
the sphere passes throushMbe center of that circle.

D. A diameter of a sphér®which passes through the center of a small virele is
perpendicular to biré blane of that cirele,

E Il two gmall fkc]ek of a given sphere arc

equal they 4;}, equidistant from the center

of the '-spht:\‘ and converscly.

If two \«nmll circles of a given sphere arc un-

m}l the larger circle is nearer to the center of

th phere than is the smaller, and converscly.

(. A great cirele of a given sphere is the largest
circle of that sphere.

184. Axis and Pole. 'The awis of a circle of a
spheve is that diameter of the sphere which passes
through the center of that circle. By §183, the
axis mugt be perpendicular to the plane of the
circle. Tn Fig. 211, NS is the axis of the circle ¢.

The poles of a circle of a sphere are the ex- Fre. 211

=

8
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iremitics of its axiz, In Fig. 211, N and § are the poles of circle ¢; N is the
nearer pole, S the farther pole.

185. Spherical Distance. If A and B are any two
points on the surface of a given gphere the distance
between 4 and B measured slong the spherical surface
is an arc of the great cirele determined by 4 and B;
and the arc chosen is one which is never greater than
half a great civele, This distance is called the spherical
distance between A and B,

186. Quadrant. A quadrant is onefourth the eir-
cumference of a great circle.

187. THEOREM 52.

. . . . . ALY . R
The spherical distance from any point on a given cisgle of a given
sphere to a specified pole of that circle is constant .\ "

Given: ¢, a cirele of sphere O.
A, any point on .
N and §, the poles of c.

o

Frove: Spherical distance AN is comtant

1) Choose a second point B on ¢.  Dragh the two
great cireles determined by 4 andy \ and by B
and N, respectively. Draw OA, AP OB, BP.

2) A()AP =~ AOBP. . ZA()R ZBOP,

3 AN = BN. ™

4) 1m11a,r1y choo<~e othex pomt-, (,, n, ete on ¢
and show that lf\" BN = (N = DN =

5) In like manner, a\o wean show that spherieal dlb“

tance AR u\co\l@tant

Fic. 213

188. Polan letance. The spherieal distance from any point on a given circle
of & ‘-s};[l](:,‘lt‘ Lo the nearer pole is called the polar distance of that circle.

189. }‘HEOREI\I 53.

If a point P on a given sphere is ut a quadrant’s distanee from cach
of two other points 4 and B (not the extremities of a diameter) also
on the spbere, then P is a pole of the great cirele determined bv A and B.

Given: PA — PB = 90°, - )
A and B are nol the ends of a diameter,
¢ i the great cirele determined by A and B.
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P
Prove: P is a pole of circle e.
1) Draw 0, 04, 05,
9) Show that ZP0A = ZPOB =90° (Ref, 73).
3) Show that PO iz the axis of ¢, and hence that
P is a pole of c.
N\
¥ie. 2140,
EXERCISES 7\ ©
Group Seventeen “

1. Why do §183-8 and § 189 break down in case the “two pgi@ﬁé” mentioned are the
extremitics of & diameter of the sphere? 9

2. Whut is the polar distance of any great circle? ) \\;
3. On g given sphere equal cireles have equal polar..ﬁﬁsfances, and conversely. Prove.

4. Tf the planes of two cireles of a given sphere aré yparallel, these circles have the same
axis and the same poles. Prove. N

5. How many points ure necessary to deteline s sphere? Deseribe possible arrange.

v

mments of thege points. N\

6. 4 and B are the extremities of gldiameter of & sphere, and P iz any third point on
the surface. Show that £ APE {§%e'right angle.

7. A and B are any two pOi]}t}{\m g sphere.  Draw the chord A8 and the planc 8 which
biseets AL perpendiculariyd JProve that S must pass through the center of the sphere.
8. I the axis of one gfew circle is taken as the diameter of x second great circle on the
game sphere, the plgrigfuf the two grest circles are perpendicular to each other. Prove.
9. I the planesftwo great circles of a sphere are perpendicular to each otber, either
cirele must coij,’cain the poles of the other. Prove.

10, The Addwmeter of a sphere is 20°. The radius of a small circle is 8". How iar from
the cefibel of the sphere iz the plane of this cirele?

11, The planc of a small circie of a sphere is 15" from the center. If the radius of the
sphere it 17%, what is the radius of the given circle?

12. The diameter of a spbere is 30 cm. A plane bisects a radius perpendicularly. What
1 the area of the seetion etermined by this plane?

13. The radius of a sphere is 24 ¢m.  How far from the center of the sphere must 2 plane
be drawn in order to determine a small cirele the area of which will be one-fourth the
ares of a great cirele? One-half the arca of 4 great circle?

L4. On g sphere of radius 12 the polar distanec of a small circle is an arc of 60°. Find
the polar digtance in inches.
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15. In Ex. 14 find the radius of the small cirele.

16. What is the locus of points which are at the same time d inches from a fived point A
and equidistant from two other points B and 7 s the locus always possible?

17. What is the locus of points which are 2” from the surface of a sphere the radiug
of which is 8"7

18. The radiug of a sphere is 6", Two points 4 and B are cach 117 from the center
of the sphere. What is the locus of points which are at the same time 2" [tom the sur-
face of the sphere and equidistant from A and 5?

19. A and B are two points equidistant from the surface of a given sphere, ancd the
two points lie outside the sphere. Prove that the plane which biscets perpendicularly
the Tine-segment AR passcs through the center of the sphere.  Is there anwJuitterial

difference resulting in case A and B both lie within the sphere? O\
¢\

20. The radius of a sphere is 47, O iy the center. Point 4 s 127 frmn;(}} Whit is the
locus of points which are at the same time 6" from the spherical surfage.dnd equidistant
from O and A? \ 3

190. THROREM 5d. “\\

If two spheres intersect cach other the interseetion of their surfuces
is a cirele. (The planc of this circle is perpéddicular to the line of
centers, and the center of the cirele lies binthe line of eenters.}

Gliven: Spheres 4 and B intersecting{éziéh other,
a and b are the respective }‘adii.

Fia. 215

Prove: Intersection of the surfaces of A and B is a circle.
(a} Let I” be any point on the intersection of the surfaces.
1) Draw PA, PR, AB; draw PC 1 AB. Then PA —a, PR =b. Let 4B = d,
PC =y, AC =x; then OB =d — &
2) ~oy=at—atalso; Y= —(d— )= —d+ 2z —a? (Ref 13)
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3) Henee, o —a* =0 —d?+ 2dz — 22 (Ax. 1).

Pl it o _\/e @ — B+ Y

5) In step (4) the right members are each constant sinee a, b, 4 are each con-
gtant. .. & and y must cach be constant, regardless of the selection of P
(on the infersection) in the beginning.

) .. P must lie on a circle £ which has a constant radius PC and a fixed conter €
on A5,

(b)Y Let € be any point on the circle ¢ found in part (a).

7) Draw QA and @B, Show that @4 = g and that QB = b, and henee that ¢
lies both on sphere 4 and sphere B, . ¢ must lic on the intersgetioh of the
surfaces of A and B3 N,

§) I'rom (a): any point common to the surfaces of 4 and B lig s*on tho circle £.
From (I+}: any point on ¢ is common to 4 and B. . £« the locus of points
which are common Lo the two spherical surfaces. ‘O

9 .. the cirele with radius PC and center ¢ must Hé _the intersection of the
surfaces of the two spheres 4 and B. \

2.\\'

191, Trrowku 55, A

S 3

The spherical distance between two gn«cn points on a sphere iy the
shortest distance between the two pomts, — distances being measured
along the spherical surface. -

Given: A snd B, any two p;{mta on sphere 0. AB is the gpherical distance,

Prove: AD is the whort(xe&path from A to B along the spherical surlace.

1) Lel P be any point on Lot curve z be some path from A to B other
than AB along thet fsurfate (Fig. 216-4).

2} z cunnot be the. ab,ortca,t path from A to B, for we can find a shorter path as
Tollows (Figs "916 -8, 216-C):

(a) With amd B ag poles and AP and BP as polar distances draw two small
(uclt Y cuttmg zat Cand D Tet AC = U DB = z, (D = w.

(b)”boi\ rotate circles 4 and B about their centers so that points € and D

\come together at P. Curves  and z will have changed their positions

but not their lengths. Simultancously, the picee w will have vanished;
henee the original path ACDB is now lessenced by the amount w.

(¢} .. path (y - 2) is shortcr than path (5 -+ w + 2); henee x is not the short-
est path from A to B.

3) Wo now have the conclusion; Any path which docs not go through £ cannot
be the shortest path. We are assuming that there is a shortest path. There-
fore, the shortest path fmm A to B, — whatever it is — does go through P,

1 But P i any point on AB. 1t any other points @, K, 8, 7, etc., are chosen
and treated in the same way, we find that the shortest path must pass
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) @ D
4 \
NN
“ Fic. 216
¢
through P, @, &> -8, T, . Henee by continuing this process indefinitely
we find ths &he shoxtmt path from 4 to B must pass through elf the points

of AB. O
b) But all. ihe points of AB constilute the arc AB itself.

'{»h( Ahorfeat path from A to B along the surface of the sphere is the
spherical distance AB

192. Tangents to a Sphere. A plane and a sphere are fangend to each other if
the two have one and only one point in common, A line and a sphere are tangent
to each other if the two have one and only one point in common.

193, Tangent Spheres. Two spheres ure tangeni to cach other if the two are
tangent to the same plane at the same point. The terms ““tangent internally ”
and “tangent externally” are used as in the eases of tangent circles in Plane
Geometry. It can be deduced that the surfaces of two tangent spheres bave
one und only one point in common.
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194, TNmOREM 56.

If a plane is perpendicular to a radius of a sphere at the outer end of
that radius, the plane is tangent, to the sphere. Conversely, if a planc
is tangent to a sphere, it is perpendicular to the radius which is drawn
to the point of conlact.

Part 1

1) Lel O be the center of the sphere,
OT the given radius, plane
M L OTat T (Fig. 217).

2) In M choose any point 4 (other
than 47, and draw GA.

3) Show that 04 > OT and hence
that point 4 must lie outside the
sphere,

4) Hence, show that 7 is the only
point. which 34 and the sphere

have in common, \ ¢
SO Fra., 217

Parred
(Left as.dmcxercise)

195. Inscribed and Circumseribed Polyhedrons. A polyhedron is inseribed
in u sphere (or the sphere s c:ir({fmscribed about the polyhedron) if the vertices
of the polyhedron lie on the stface of the sphere.

A polyhedron is eircymSebed about a sphere (or the sphere is inseribed in
the polyhedron) if the fdees of the polybedron are each tangent Lo the sphere,

- - AS
196, Turorkm 57. €N

Asphere dahubic inseribed in or eircumseribed about
(a) any tgét}ahedron;
(b) aftw regular polyhedron.

-

11}51 prool of (n) sec Hxs. 24, 25 of Group Twelve; §§ 134, 135. Assume
(b) without proof.

EXERCISES
Froup Bighteen

L If & planc is tangent to a sphere, a line perpendicular to the plane at the point of
tontact must pags through the center of the sphere. Prove.

2. 1f a plane is tangent to a spbere, a line from the center of the sphere perpendicular
b0 this plane must pass through the point of contact. Prove.
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3. At a given point on 2 given sphere there is one and only one planc which is tangent
to the sphere. Prove.

4. A plane M is tangent to a sphere O ut a point A, Prove that any linc in M con-
taining A Is tangent to the sphere.

5. Two lincs z and 4 are tangent to a sphere O at point A. Prove that the plane of 2
and y s tangent to the sphere.

6. Two plancs M and & intersecting cach other in a line » are tangent to a spherc 0
st points A and B, respectively. Prove that the p]a,ne of A, 0, B is perpendicular to x.

7. The radii of two spheres arc respeetively 5" and V347, and the centers ave 9” apart,
Find the circumferenee of the circle of intersection,

8. A sphere () is tangent to two parallel planes M and N at points 4 and B,\i s;.pet Hvely.
Prove that A, 0, B are collinear. 2N\

9, Points 4 and B are 9" aparf. What is the locus of polnts whic hAle at the sane time
5" from A and 2v13" from B?

z? { 2

10, The radii of two concentric spheres are respectively 10%and 137, A plane § hisects
perpendicularly a radius of the smaller sphere.  Find the gvéu’of that portion of S which
ig within the larger sphere but outside the smaller sphefs,™

11. The radius of a right circular cone is 4" and yH{e}a.ltitudc is 4V/3°. A sphere is in-
seribed in the cone. (A spherc is inseribed in a dope if it is tangent to the elsments and
to the plane of the base.) Find the radius of $he’sphere.

12. In Ex. 11 what is the locus of points swhich are common to the spherical surface
and the lateral surface of the cone? Fiugd*the actual length of this loeus.

13. Find the radii of the spheres, \\blch are respeclively inseribed in and eircumseribed
about a regular tetrahedron onp\ edize of which is 6°.

14. The radius of a %phereﬂb 2", Find the volume of the regular totraliedron which
can be inseribed in the sghﬂe

15. Three equal sph&geq of radius 1¢ em. are tangent to one another; amd a fourth
sphere equal to eachof the first three is tangent to them. Tind the altitude of the regular
tetrahetdron “11 “has the centers of these gphercs as its vertices.

16. In E;(,\‘i#.?"ﬁnd the radius of the sphere which can be inseribed in the tetrahedromn,

17. Poink A is outside a sphere . Prove that all the lines which can he drawn fvom 4
tangentto the sphere are equal. What is the locus of the points of tangeney?

18. What is the locus of the centers of all the spheres which are tangent to 4 plsme M-
at o common point 4?7 Prove it.

1_9. ¢is 4 (_,-ircle. Apy number of spheres is drawn so that their surfaces alf contain
circle . What is the locus of the centers of these spheres?

20. If two spheres are tungent to each other their line of centers passes through their
point of contact. Prove.

21. Prove that a sphere may be ingeribed in or circumseribed about any given cube.
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22. Tind the radii of the spheres which are respectively inseribed in and circumseribed
about & cube the cdge of which is ¢,

23. The radius of a sphere is r. I'ind the cdge of the inseribed cube; the edge of the
eirenmseribed cube.

24. The radins ol a sphere iz 107, A right cireular cone has its vertex on the surface
of the gphere and its base is tangent to the sphere. The radius of the cone is 10°, Show
that the intersection of the spherical surface with the lateral surface of the cone is &
cirele. Fiud the radins of this eircle.

23. A regular square pyramid whoge altitude is 47 is inscribed in a sphere of radius 3.
Iind the basual arca of the pyramid.

26, A sphere is circumseibed about an equilateral cone, If the radius of the c}me iz
127, what is the radius of the sphere? (The angle of an equilateral eone is GB"\.)
€ N\

27. Do Ex. 26 assuming that the cone is cireumseribed ahout the sphcrq.’\
28. I'ind the rudiug of the sphere inscribed in a regular tetmhequl"é’vhose cdge is 24'.

29. AABC iz right-angled at ¢, and AR is fixed In length ﬂ.l’id\PQ‘slt]OII What is the
locus of point (7

30. Two plance M and N meet in a line . What i= the IUGQB of the centers of the spheres

which are tangent to M and N? '\ 4

197, PPoints on the Surface of the Earth.y ’in Plane Analytical Geometry we
customarily locale a point in a plane by giving its codrdinates, that is, its dis-
tances {rom twe fixed perpendieular linogl ™
valled codirdinate axes. Any poirts ot
the surface of the Earth, wln{h Tor
practical purposes is aaqumed\to be &
perfect sphere of radius p\remmatelv
2000 muiles - is located b\ roferring 1t to

NS
One of these (vat circles is the

some [xed po@t" Let & and S be the
poles of e, ‘Dtr:-nv the great circle m de-
termined(by the points N, 4, S. Any
great‘\u}le through & and 8 ig called a
meridign cirele; and the half of one of
these cireles included between N and 8
is usually called & meridign. On the Earth circle m is chosen so that it passes
through Greenwich; and the meridian containing Greenwich is the Meridian of
Greenwich or the prime meridion. The equator and the Meridian of Greenwich
are the Lwo lines Lo which any point on the Earth’s surface is referred for loca~
tion. N8 is known as the axss of the Earth; ¥ and S are respectively the north
pole and south pole. As you view the diagram (Fig. 218) a dircetion to your
vight from A along ¢ iz easi; the opposite direction along e is west.

Fias. 218
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Longitude. Commencing at A and N
in each direction along e, divide the >
gemicircles AF into one-degree ares.
Through the points of division draw
meridian cireles (g, 219). .

T AB = 20°, any point P on NBS
is said to have u longitude of 20° east.
‘imuiarlv. if AC = 42° any point € on
NCS hesa fongitude of 42° wesl. FLongi-
iude is abways given with reference to
the are NAS which passes through
Greenwich.

What is the greatest number of de-
grecs of longitude which a point can g, ~2]9
have?

Latitude. Select any meridian circle, one-half of whlgl\mtel zects the equator,
say, at a point D (Fig. 220). Divide the two quadvigtd DV and DS into one-
degree BICs commgzn}c%ng at 1. ’Al‘hrough AN N (09
these pointg of division draw circles of RS
the sphere whose plancs arc parallel to U
the plane of the equator. Each of these \

circles is a circle of lotifude or a paméid \ L F \
of latunde / }
1t DE = 15°, any point on th(“sﬁiaﬂ e ?\. D.([ﬁl)
cirele u th;ough E iz said to ha@c n lafi- O !"
fude of 15° north. If DF&“:E}" 8/, any v /
point on the circle v throvgh H has a v
{atditude of T6° 8’ southyyhatitude is always z H
given with reference NG the equator. \
What is the %,}ateat number of de-

grees of latifnde’ which a point on the S (997
Earth’s surjﬁlc-e can have? Fic. 220

Obvif{rmly if both the latitude and longitude of & point are known, the
I)O‘*l&OI} "ol the point on the Tarth’s surface is definitely determined.

Ndutical Mile and Knol. A noawtical mele is defined ag the length of one mnin-
ute of arc along the egnator, that is, the length of one minute of are of a great
circle of the Earth. A nautical mile is approximately 6080 feet or 1.15 ordinary
land miles. Lo 6?0‘?.7

A fenot is o unit indieating vate of speed and means one nawizeal mile vey howr.
;[;}]1]1:2 15;1 T::Er%alls at the rate of 15 knots, it is moving at the rate of 15 nautical
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EXERCISES
(roup Nineteen

1, Draw a diagram in which the equator and the Meridian of Greenwich are indicated.
Om your difm am indicate points having the following positions: lat, 307 3, long, 62° E;
faf. 90° N, long, 20° W lat. 45° 8, long. 0°; lat. 76° 8, long. 180°; lat. 0°, long. 30° W;
lat, 43° N_ long, 70° W,

2. Find the number of naytieal miles between the north pole and any point on the
eqiator,

4. Find the number of nautical miles between the north pole and a point P (lat. 19° 15° 8,

long. 84° W} ~
4 (Hven: A (lat. 47°10° N, long. 72° W), B (lat. 20° 30° N, long. 72° W'),.« Iind the
spherical distance 442 in pautical miles. \ )

5 Given: A {iat. 0°, long. 8° F), B (lat. 0°, long. 46° 32" W), Find the%p‘hﬁnc&l distance
AB in naatical mlle:, "

6 A ship steaming due nerth at 20 knots is at a position lat\ 19§1‘2’ N, long. 50° W) at
6:00 s.:. on June 20. Find the ship’s position at 12:00 nognlex June 22.

7. Twoshipa A and B are ut points P (lat. 48° 10" N, longg 82° W) and @ (lat. 22° 8, long.
?9 W, respectively, A ean average 20 knots and B (*uiﬂveragc 28 knots. If A a,nd B
lcave their given positions at 8:00 am. on *aeptmnber 0 and travel toward each other,
when and where will they meet? Answer to the negi,rest niinute.



Chapter Thirteen

SPHERICAIL ANGLES. SPHERICAL TRIANGLES

Q"

198. Spherical Angle. A spherical angle is a figure on the surfage of 2 sphare
composed of two ares of great cireles emanating from the sa-nﬁé‘"}}oint. The
terms “vertex” and “sides™ are used as in the case of (‘)r'dirla}'j«. plane angles,
199, Measure of a Spherical Angle. Lot A j‘?(\f be, B:nj spherieal angle
{Tig. 221). At I draw BD and BE langent to BA J‘md
B?“ respoetively. The measure of sph £ ABC is dplived
as the measure of £ZDBE, — the angle hetw een. ‘&he two
tangents. \.

Thus, if £DBE = 35° then sph £ ABO=\35°

A right sphericol angle 18 a spheriea) ang}e of 00"

An acute spherical angle is less than 90%; an obtuse
spherieal angle is greater than 90° and Joss than 1807,

Two great circle arcs are peg’pmdzcular if they meel to
form a right spherical angle. RA

)

N |
A spherical angle is'measured by the are which it ifitereepts on that
great circle “hlc}l has the vertex of the given angld 1s 4 pole.

Fr, 221

200. THECREM 58.

kol

_Given: bp\ll /_“APB P i3 4 pole of the greal cire
ABonec. .‘
If?:of.-ex bph LAPEB = AB.
1) Braw 04, 0B, OP.
2) At P draw PX and PY tangent to PA and 16}3,
respectively.
3) Show that sph ZAPR = ZXPY = /AOB = AB.

RBph £ P inlercepls

201, Spherical Polygons. If a polyhedral angle

(§ 166) has its vertex at the ceuter of a spherc 0,

its edges must pierce the spherical surface at some

points A, B, €', D, . The faces of G-ABCH . . :

eut the spherical surface in the great cirele ares Fre. 222
124
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A, BC, D, . .. The figure ABCD . . . thus formed on the surface of
the spherc is called a spherical polygon (Fig. 223).

The wertices_of the spherical polygon are the points A, B, C, D, . .
sides axe AB, BC, (D, . . .

(-ABCL . . . is the polyhedral angle corresponding to spherical polygon
ABCD . ..

A spherieal polvgon is convex or concave according as its corresponding poly-
hedral angle is convex or concave (§ 166). Only the conwvexr type will be con-
sidercd hoere.

: the

vy

Fia. 223 s\ Fia. 224

A spherical polyeon is named n accordance with the number of ity sides.
A spherical triongle (Vig. 224,}'15.\a spherieal polygon with three sides; and of
course its corresporiding pol fhedral angle s a trikedral angle of the type presented
i Chapter Eleven, A sphoyical quadrilateral has four sides, a gpherical pentagon
has five sides, and sood.)

202, Fwo f undamqfﬁe{l relations between a spherical polygon and its correspond-

ing polyhedraldigle are readily perceived:

A. lach sidé\ol the polygon equals (in degrees} some face angle of the poly-
hedralanle.

B, Eﬂi@‘:a"nglc of the polygon equals some dihedral angle of the polyhedral
angle. = -
(B is casily proved. Tor cxample, in Fig, 223 draw tangents to AB and AD

from point A. The angle formed by these tangents is the measure of sph ZDAB

Py §199; this angle is also the planc angle of dh £ D-0A-B.)

203, In consequence of § 202 together with the material of Chapter Eleven we

have the following important facts relating to spherical polygons and spherical

thangles. Prove them ag exvreises. .

A. In any spherieal polygon each side and cach angle is less thamo 180 .

B. In any spherical polygon the sum of the cides is less than 360° (§ 168).



126 SOLID GEOMETRY AND SPHTRI CAL TRIGONOMETRY

C. In any spherical triangle the sum of two sides is greater than the third
side {(§ 167).

D. In any spherical triangle the sum of the angles is greater than 180 and less
than 540° (§ 169).

204, Types of Spherical Triangles.

A spherical triangle is 7sosceles if two of its sides are cqual.
A spherical triangle is right Iif it has at least onc right angle.
A gpherical triangle is obligue if it is not a right triangle.

205. Right Spherical Triangles. From § 203-D it is clear that a spherical

triangle may have one, two, or cven three right angles,  If a friangle bas two

right angles it is called bi-rectongular; if it has three, if is tﬁ—rect_cﬁs{aﬂx.ﬁgh
The following useful facts relating 1o right spherical triangles mgy be proved

as exercises: o\ N

A. 1f two angles of a spherical triangle are right angles, the sides’opposile these
angles are quadrants; and the third angle cquals the t-}']j'i‘d"@idﬂ. (Lise §§ 68,
9, Ref. 73, §§ 189, 200.) "

B. If two sides of a spherical triangle are quadrantssthe angles opposite these
sides are right angles; and the angle included Yoy the two given sides is
equal to the third side.  {Use Rof. 73, §§ lfl’{@' , 181, 200))

C. The sides of a tri-rectangular spherical tifangle are quadrants.

D. If the sides of a spherical triangle are ‘each quadrants, the triangle is tri-
rectangular. Ny

K. In a spherical triangle, if a sidc‘&nvd “an adjacent angle arc cach cqual to 90°,
then the angle opposite the gjveh’side and the side opposite the given angle
are each equal to 90°. A

¢\ EXHERCISES

Y

1. Find‘ the spherical d“;s;t-'ance in nautical miles hetween two points on the Meridisn of
ireenwich whose latibudes are reepectively 18°30° N and 26° 30/ 8.

Group Twenty

. \Y . . . .
2, Find t-hc #plerical digtance in nautical miles befween fwo peints on the cquator
whose longitudes'arc respectively 10° W and 110° B, Vind the same distance in ordinary
land miles, 9

N
3. Firith'$he distance in nautical miles between A (lat. 72° N, loug. 23° 1)’ W) and B
(Lat. Y875, long. 23° 10" W). '

4. 1'1‘ind the distance both in nantical miles and in land miles between A (Juk. 30° N,
long. 40° B} and 8 (lat. 30° N long. 20° W),

5. The sides of a spher_i(f.a,l friangle are ares of 90°, 90°, 40°. Find the number of degrees
J_r_lleach angle of the triangle.  If the radius of the sphere is 127, find the lsngth of each
gide.

6. The radius of a sphere is 12°. The sides of a triangle on this sphere are 67", 677, 12
Find the number of degrees in each side and in each angle of the triangle.

7. Can a spherical triangle have as angles: 80°, 60°, 40°? 90°, 90°, S0°° 1207, 70°, 30°?
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g. (an a spherieal triangle have as sides: 40°, 70°, 90°7 121°, 118°, 1247 25°, 70°,
100°7

0. Two mides of & apherical triangle are 115° and 126°. What is the greatest number of
degrees possible for the third side?

10. Can a spherical pentagon have as sides: 66°, 105, 112°, 51°, 88°?

11. Two angles of a spherical triangle are 40° and 130°. Between what two limits is
the number of degrses in the third angle?

12. Find the lengths of the sides of a tri-rcctangular spherical triangle on a sphere of
radius §°.

13. On a gplere of radius 6 em. two sides of a triangle are cach 37 em. and the ingluded
angle is 20°. How long is the third side?

14. Tn 4 spherieal AABC, A = B = 80° and AB = 4z in, Ii the radiug of ‘the) sphere
is 14 in., find the number of degrees in AC, BC, C; find the lengths of sigic‘s'}l(f and BC.

15. From the center of a sphere of radius 207 three radii are drawn, %’iﬁking an angle
of 60° one with another. Find the perimeter (in feet) of the sp&e(n‘,al triangle whose
vertices are the outer extremities of these radii.

206, Congruence and Symmetry. Two spherical\pelygons are congruent if
they can be made to coincide. It is evident that stospherical polygons on the
same sphere must be eongruent if their eorrésponding polyhedral angles are
vepual. « \J

Two spherical polygons on the samecdphere are symmelric if their corre-
sponding polyhedral angles are symmeliie. (See §171.) As in the case of

3

Fia. 225

symmetrie polvhedral angles, two symmetric gpherical polygons are alike pal't.

for part, but they cannot be made to coincide because their respective sets of

parts are arranged in opposite orders. (Seo Fig. 225.)
Show that each of the following is true:

A Corresponding parts of congruent spherical po
spherical polygons are equal.

lygons or of symmetrie
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B. Two spherical triangles are con-
gruentif they are mutually equilat-
eral, — corresponding parts being
similarly ordered, (See $§ 202,
173.)

C. If two isosceles spherical triangles
arc symmetrie they are also con-
gruent. {See Iix. 8, Group Six-
teen.)

D. Two symmetrie spherical triangles
have equal areas.

(In cach friangle choose the point
which ig the nearer pole of the small
circle determined by the vertices, See
Fig. 226. Conncet this point with
each vertex by a great circle are.
TEach triangle iz now resolved into
three isosecles triangles. Show that
the three isosccles triangles in the one
group are respectively symmetrie to
the isosceles triangles in the other

group. Apply C.) &

XY

In 2 compact course in Sohd
Geometry §§ 207209 may befwmitted
without any scrious loss. Tbgsésections
together with the exercﬁs\m"of (Group
Twenty-one, howcverN\are of funda-
mental importanec{n” the work of
Chapters FiItuep{S‘ixteen, Seventeen,
Eighteen (S}%@I«i‘t.’al Trigonometry).

207. Pola’y:: %riangle. Let AARBC be
any spherical triangle. Draw a second
sphérigal AA'B'(" the sides of which
havepoints 4, B, C, respectively, as
poles (Fig. 227). Letter AA'B'CY w0
that 4 is the pole of o, B is the pole of
¥, C iz the pole of ¢’. The spherical
AA'B'C s0 constructed is called the
polar triangle of AARC.

Note that the polar triangle does
not nceessarily envelop the given fii-
angle, but may lie within it (Fig, 228),

c

--l-"-.-

o f

g, 227
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or it may intersect the given triangle
(Fig. 228}, The size and position of the
polar triangle depend upon the size and A
shape of the given tifangle.

208. TrREOREM 59. Fiz. 229 N

It o spherical triangle X ¥Z is polar to a spherical triangle AB(_?,‘\tlhzh

reciprocally the triangle ABC is polar to triangle XY Z. . O
(viven: sph AXYZ polar to sph AABC (Tig. 230). '
L
Frove: sph AABC is polar to sph AXYZ. r}

We must show that X i is a pole of BC’ ¥ is a pole af\CA, 7 is a pole of AB.
1} Draw greal eire cle ares XB and XC. { \\ ~
2) CI& a pole of XV XC=90°. Bisa poh,})f ZX. .~ XB =9
3}~ X must be a pole o’t BC (8 189). O
4) Smnl arly, ¥ and Z arc poles of CA and’&B respectively.
5) .~ sph &.1}3'(“f is polar to sph AXY,Z: \(§ 207).

Z

\ =
Fra. 230 Fa. 231

209, Trniwonkm 60.

If two spherical triangles are polar to cach other any angle of one

triangle is supplementary to the opposite side of the other triangle.

Given: sph AABC and sph AA’B'CY polar to cach other (Fig. 231).
Prove: A+ =180°, B+ 0 =180°, C+¢ =180 A’ +a=180%
B 4= 180°, ¢' + ¢ = 180°.
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1) Extend b and e to cut @’ at H and 7, respectively.
2) A=HT (§200).
3) C'T =90° {C"is a pole of ¢)

JIB' = 90° (B'igapole of B)
4) o "7+ HB = 180°
8) or HT + ("B = 180°
8) or A+a =180

Complete the proof. .

EXERCISES )
N\
(froup Twenly-one N
2 )

1. The sides of a gpherical triangle arc 30°, 80°, 100°. Tind the z;ngl?_‘.@ of the polar
triangle. s
2. The angles of a spherical triangle are 40°, 70°, 120°. Find.ft-}{é"rlulrll}el’ of degrecs
in each side of the polur friangle. S
3. On a sphere of radiug 107 the angles of a triangle are 602’, 90°, 135°, Find the perim-
eter (in inches) of the polar triangle. , \\;
4. Desecribe the size, shape and position of the trfm:gle which is polar to a given hi-
rectangular spherieal triangle. PN\

3. State the condition or conditions undery.-hir-.ﬁ: (a} a given spherical triangle and its
polar triangle coineide; (b) the polar twangle corpletely cnvelops the given trisngle;
lies within the given triangle. R

6. Making use of § 209 deduce the fact that the sum of the angles of any splerjcal tri-
angle s greater than 180° and legs than 540°,

7. Using §§ 209 and 203-C }i\&e that in any spherical trisngle ABC: 180° + ¢ > A + B;
+

180°+ B > A + C; 180R+'A > B+ (. A
7.3
8. Inasph &A@?‘,b = ¢ Prove: B = (. (SeeTig. 232. Draw b
median AM; 1.e., draw A,;Fi} 10 bisect EEJ. TUse §§ 206-4, B)
O 5 ¢
QO :
T, 232

9. On any sphere two spherical triangles are congruent if two sides and the ineluded
angle of one respeetively cqual two sides and the included angle of the other, — all cor-
responding parts being similarly ordered. Prove. {Draw corre:%ponding trilusdral angles.)

10. On any sphcre_ two spherical triangles arc congruent i two angles and the included
gide of one respe::t.wcly faqua.l two angles and the included side of the other, -— all cor-
responding parts being similarly ordered. Prove,

11. In a sph AABC, B = . Prove: b =¢. (Draw the polar triangle. Use § 209
and Ex. 8) "
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12. On any sphere two spherical triangles are congruent if they are mutually equiangular,
— all eorresponding parts being similarly ordered. Prove. (Draw the polar triangle
{or each of the given triangles. Use §§ 209, 206-B.)

C
13, In a sph AABC, A > B, Prove: a>8 (In b
the friangle draw AD to @ so that ZDAB = £B) N
4. Inasph A4ABC a0 > b Prove: 4 > B, (Draw
the polar trisngle.) A*
i B
¢
Fra. 233 O\

15. Prove thut the arcs which biseet the angles of a spherical triangle are ¢dmourrent,
(Use the corresponding triliedral angle.) \ N
16. In lix. 15 show that if from the point of interseetion of the angle j;isé’t’:"cors ares are
drawn perpendicular to the sides of the triangle, these arcs are equal® ™)

I7. Prove that H ares are drawn to hisect perpendicularly t}lcj\r%'.iapcctive sides of a
sphericul trizngle, these ares are conciurent at o point whose gpherical distances to the
three vertices are equal, WO

18. Prove that the wedians of u spherieal friangle are pQ;lburrent.

.
"

L ¥
W

OTHER FIGURES ON 'I‘I[E:'SU.RFACE OF A SPHERE

210, Lune (Tig. 234). A lune is a ’,:u:yiflerical figure bounded by the semi-cir-
enmferences of two great circles. (I I'ig. 234, ACBDA is u lune. The angle A
ot the angle B is the angle of ’B\h&}hu}c.

P, 234 ) Friz. 235

211. Spherieal Degree (Fig. 235). A spherical degree or unil triangle is a
tpherical triangle the angles of which arc, respectively, 90°, 90°, 1°.

It follows at once (§ _205—A) that 1wo of the sides of & spherical degree are
fusdrants. Hence, a spherical degree is actually one-half of a 1°-lune. There-
fore, on any sphore there are exactly 720 spherical degrees.
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212. Dome or Zone of One Base (Fig. QSQ If an are AB of a great cirele on
a sphere is rotated about a diameter AC, AB gencrales a dome or zone of one
base.

The point B generates a circle of the spherc; and this circle together with
the plane surface bounded by itz circumference is the base of the zone. The
alttiude is the perpendicular distance (AD) between A and the plane of the buse,
The are AB is the generating are, and the chord AE is the gencraling chord.
Obviously, any cirele of a sphere divides the entire surface into two domes,

C

Tie. 226 o Tro. 237

213. Zone of Two Bases (Fig. 2‘5’7) If an arc AB of a great cirele rotates
about some fixed diameter whieh docs not meel AB, the arc A B gonerates a zone
of two bases. ,\

The bases arc the cf (’{6 wenerated by points A and B (together with the
plane surfaces boundethby the circumferenees of these circles), The altitude I
the perpendicular dlstam,e between the bascs. The terms generaling are and
generating chord 1e~used as in the case of a dome. ]

A zone of 4We bases it that portion of the surface of a sphere which is in-
cluded betv%en two parallel cireles of the sphere.

The @pdn of o zone, either of one hase or of two bases is the area of that
pmj;;\on?pf the spherical surface belonging to that zone,

\‘;



Chapter Fourteen

MEASUREMENT OF THE SPHERE

O\
214, TimoneM 61.

¢~ v
A\

Y
The arca™ of a sphere of radius 7, — area being taken jm ordinary
. . . 2%
square units, — is 4 SN = 4R
L '\.“

In order to avoid some confusion, separate the préf}f}intu two parts, the
first part being a preliminary development necessary {oythe second.
(a) Fig. 238 {0
(Fiven: A linc-segment m above a line X¥. M8 a line bisecting m perpendic-
ularly and meeting X¥ at D, .\ .7
p is the projection of m upon.}%"??
A N

Y
\\// \53

ih \\,\
E ______‘ii__a_____y
AN\ P
AN
a\Y Iz 238
Prm;\e: If m is rotated about XV the area of the surface generated by m Is

2rup.
) From ¢! drop 2 L XV, meeling XY at E.
Iixtend m to meet XV at F, Let ZDFA = 6.
Then ZDCE = 6 (Ref. 41-ii).
2) As m rotates it aencratos the lateral surface of a frustum of a right eircular
cone. h ig the radiug of the mid-section, Therefore the area, &, generated
by m is 2rhim.  (See Iix. 1, Group Fourteen.)

# 4 Aren,” of course, means “surface area.” See § I81.
133
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3) But m = psce 8, and h = » cos 0.
4) o k= 2m(u cos 0)(p sec 8) = 2wup(cos O)(sce 8) = 2wup(t) = | 2mwup |,

(h) Fig. 239

Tf & quarter-circle of radius r is rotated about a fixed radius 04, BA will
generate the surface of a hemisphere.

Divide B4 into any number of equal ares. Draw the chords of these ares.
Y¥rom O draw perpendiculars to these chords. These perpendiculars (u) are
equal and bisect the chords. OE, EF, . .. p
are the projeetions of these chords upon 04.

Now rotate BA about 0A. Irom (a)
the arcas gencrated by the chords are:

b=27u-OF, by =2mu- BF, by =2mwu-FA.

. k, the area of the entire surface O
gencrated by broken line BCDA, is " « LV
2w OF + 2mu - EF + 2wu- FA = N\
2ou(OF + EF 4- FA) = 2wur. AN

Increase the number of divisions on ~\ ’

BA inde finitely. % will approach H, thé)
area of the hemisphere.  Simultaneously, 01
u will approach » as a limit. Sinee the
variables k und 27ur are always je’qtial we
have: II = 27rr = 2772 (Seg"Rel. 01.)

*. 8, the area of the W\]ZIBQ spherc, is | 472

215. THEOREM 62,

s\

The area of\ zone (either of one base ov of two bases) is the product
of the kgmmfezen(‘e of a great cirele and the altitude of the zone.
8 =27k

TN,

The proof for the area of a zone of one base is
similar to that for § 214,

For a zone of two buses, cxpress the ares of the
required zonc us the difference of the areas of two
domes, one having an altitude x+4 %, the other
having an altitude = (Fig. 240).

T, 240
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216, THEOREM 63.

The area of a lune the angle of which is #° is found by taking '_"':'_
the area of the sphere. 360

For example, if the angle of & lune is 30° it is obvious that 12 of these lunes
would comprise the cnlire spherical surface since 12 X 30 = 360. That is, the
ares of the lune must be §% or 5 the area of the sphere.  This theorem will be
assumed without proof.

217, Spherical Excess (). The gpherical excess of a spharieal iriangle js the
number which represents the amount by which the sum of its angleg e\ceed%
180°. Thus, if the sum of the angles of a given spherical Luanglc in342°,
spherieal exeess is the number 162

The spherical excess of a spherical polygon of n sides is thes number which
representz the amount by which the sum of its angles u{cucdq {n — 2)180°.
Thus, if the zum ol the angles of a spherical hexagon is SOUQ\the spherical excess
is 850} — 4{180) or 130.

Spherical excess is to be regarded as a numbe:r,@)d is usually represented
by the lettor &, : o\
218, Turorey 64. O

)

The arca of a spherical triangle in gpherical degrees is £, If 7 is the
radiug of the sphere the area in sedinary square units is ﬁmﬂz.

P&

Y
Given. Sph AABC on sphieeé of ra-
dius r. Eﬁ{l{

Nos. of degrees+in the angles
are A, B, € respectively.
— A BT - 150
K .ng in spherical degrees.
S & area in squarc units.

Propes \ (‘q) K=E;, b)) 8= %w?.

(a) Area in spherical degrecs.

1) Extend each side of AABC so as to
form three complete great cireles.
Let the three additional intersections Fra. 241
be points A7, B', €7 (Fig. 241).

2) Li=Twe AB4'C4 = AABC + AA’BC = K+ AA'BC

3) But the symmetric triangles A’BC and AB'C" are equal (§ 206-D).

0 L= K4 AABC

5 L. = lune BCB'AB = AABC 4+ AAB'C = K+ AAB'C.
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6) Ly = lune CAC'BC = AABC 4+ AABC = K+ AADBCY.

7) Adding: Ly + Ls+ Ly = 3K + AABC + AAB'C" + AABCY
=2K 4+ (K + AABC + AABC + AABCY
= 2K -+ the top hemisphere
= 2K + 360 (See § 211)

8) Bul L= 3b0(720), L2=360(720), L;=

9) Or Ll = 2/1, Lg = 28, Lg = 2,
10) Substituting in (7): 24 + 2B + 2C = 2K + 360
or A+ B+ C=K-+ 180,

S8
360(720) (3§ 216, 211),

N
11) ~ [K=A4A+ B4+ C—-180= 4. A
S \J
(b} Area in square units. A
. 1 N ”1" 1,

12} One spherical degree = o0 of the spherical f-,urf.:wr) SN e dart = TR ™
13) From {a), AABC contains £ spherical degrees.

 S—E £ Ko \d
- (077) = | 7507 | ®)
219. Corollary A (Th, 64). o

L

The area of & spherical polyg'(j.h in spherical degrees is . The area in

. . L . Pe\
square units is — v
4 180" o

¢.€ W
N\

Draw diagona.ls“fm'm one vertex and thus resolve the given polygon inte
(n — 2} sphericalttigngles. Roemember that for # spherical polygon £ = sum
of angles — (n :\29~180. Now apply § 218 and add the results,

\: \Q«
A
.\
1. \ere that the areas of two spheres ure to each other ag the squarcs of their r radil
or the squares ol their diameters.

EXERCISES

Group Tweniy-two

2. Prove that the arca of a dome is equal to the area of a circle the radius of which i
the generating chord of the dome.

3. On a given sphere any two zones are equal if they have equal altitudes. Prove.

4. On a sphere of radius 20" find the area of u dome of altitude 87. What fractional
part of the entire surface of the sphere does this dome comprisc?

5. What is the altitude of a dome which comprises one-third of the area of a spheré
the radius of which iz 87
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6. The radius of a spherical globe is 12”. A souree of light outside the globe is 127 from
the surface. ITind the area of the surface which ix illuminated.

7. In & problent similar to Ex. 6 what [ractional part of the spherieal surfuce is illumi-
nated if the source of lighl ig at a radiug’ distance from the surface?

8. Theoretically how many miles above the Earth’s swrface must an observer be in
order tu see axactly onetwentieth of the Farth’s surlice?

9. The radivs of a sphere s+, A source of light outside the sphere is %" from the sur-
face. Show that the number of square inches of spherical surface illiminated is given
2rrin

r4+n

. . . . N\
19. Cn u sphere of radius n cm. the generating arc of a dome is 120°. Find tha area
of the dome. K "\

11. On a sphere of rading 8 the radius of one base of a zone of two b:Lj!és is 8, and
the generating are is 45°. TFind the area of the zone. \

by the formula A =

12. On a sphere of radius 25° the radii of the hases of a zone of two hases are respoctively

7 and 24", Find the arca of the zone, Iz there more than ongatswer possible?

13. On & aphere of radius 67 the plane of the greater base s zone of two bases is 3
from the center of the sphere. The generating arc is 30%,Mind the arca of the zone.
Is there more than one answer? N

X 3

14. On u sphere of radius 267 the radii of the bases D:f'si gone are each 107, TFind the area
of the zonce. o\

~

15. On the Earth the North Temperate ZQ'né- is hounded by the parallels of latitude
50° X and 60° N. Find the number ol $quarc (land) miles in the North Temperate
Zong, ~N

16. On a gphere of radiug r inchga"f.l}; area of a zone of two hases is 348 square inches,
The altitude of the zone iz & ini{i&q‘.’ Find r.

17. Two planes cut a sphere.éf radius 127, and are each perpendicular to a diameter AB.
Find the lenuths of the)sagiments intercepted on AB if these plancs divide the surface
of the sphere into three eqtal parts.

18. On a spherc o"\rﬁtilua 6" find the arca of a 20° lune.

19. On the }kﬁr)f’h\s surface find the number of square (land) miles contained in one
spherieal dogiee,

/

NG L v . . '
20. How_thany square miles of the Farth’s surface are bounded by the Meridian of
Greenwicl und the meridian 70° W?
1. Find the number of degrees in the angle of a lune the area of which is 21 square
mches if the arca of the sphere is 189 square inches.
22 Ona sphere of radius » em. the arca of one spherical degree is 0.5 sg. em. Find ».
23. On a sphere of radius 4” find the area (in square inches) of a tri-rectangular spherical
ttiangle.  What is the area in spherical degrees?
2. What fractionsl part of the surface of a sphere i3 contah}cd i‘n a spher_ical triangle
hose angles arc 60°, 80°, 150°? What part of the area is contained in & spherical hexagon
“hose angles are 100°, 120°, 98°, 127°, 175°, 168°7
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. On a sphere of radius 8 find the area both in square feet and in spherical degrees
oi a spherical triangle whose angles are 70°, 70°, 60°.

26. On u sphere of radius 24" find the area {(sq. in.) of a spherical triangle whose angles
arc 110°, 120°, 135°.

27. Find each angle of an equiangular spheriesl triangle which comprises one-twenty-
fourth of the ares of its spherc.

28. The angles of a spherical triangle are proportional fo the numbers 3, 4, 5. The arca
of the triungle is 277 =q. in. The radius of the sphere is 9. Find each angle of the
triangle.

220, AssuMpPTION, If & polyhedron is inseribed in or civ cunw'nbod about a
sphere, and if the number of faces of the pelyhedron is aliowed £ heeome
infinite, the arca of the polyhedron approaches the area of the hl}h!{(‘ a4 a limit,
and the volume of lhe polyhedron approaches the volume uf\rhv sphere as 4
limit.

221. TaEorEM 65.

The volume of a sphere of radius r is $wrs.

Given: Sphere of radius r, center 0. 8 = ar&ﬁ V' = volune.

Prove: V =%nr,

1) Circumseribe a  polyvhedron about “the A
sphere. For the polyhedron l(‘f‘ K= the
area, W = volume.

2} From cuch vertex of the pol\hc&ton draw
a line to 0. The polyhedrdn is now seen
to be composed of a niun\b(r of pyramids
whosc bascs are the f\éa of the polyhedron,
and whose altituded ave each equal to the
radius of the gplfere (§ 194),

3) The v 0111me'\01" any one of thesc pyra-
mids soch)as 0-ABC in Tig. 242 ig
%r{are;ap ESABC). Ilence the sum of the
voiumé’s of all these pyramids s Lr(sum of
a?re&-, of faces). That is, W = L{rK.

4)\Let the number of faces of the polyhedron become infinite. Then K — 8
and W — V (§ 220). The quantity }r remains constant.

5) .. the limits V and {r8 must be equal (Ref. 91).

6) T =414r8

7) But S =4 (§ 214D,

8 o | V==%7r,

Fra. 242

Note: Tt is sometimes advantageous to recall that the volume of a sphete
is one-third the produet of its radius and area. (See step 6 in the proof.)
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222, Spherical Pyramid (I'ig. 243). Let ABCD . . . be any spherical poly-
gon on a sphere O. Draw 04, OB, OC, 0D, . . . The solid O-ABCD . .
is a spherical pyramid. The base i3 the spherical polygon ABCD . . .: the
vertex is O, the center of the sphere, '

Fra., 243 \ "F}G' 24

223. Spherical Wedge (Fig. 244). The solid betwted by a lune and the
planes of the sides of the lune is a spherical wedgé? (It is assumed that these
planes are not extended beyond the diameterwhich conncets the vertices of the
line.) The base of the wedge is the lune itgelf”

224, Spherical Sector (Fig. 245). Let BOC be a sector of a great circle of a
sphere 0. Revolve sector BOC aboubg fized diameter AD. Sector BOC' gener-
ates a solid which is called a spherical sector. The base is the zone traced by
the are BC’, The verlex is O, tlie eenter of the sphere. The angle of the sector
is tho angle BOC, \'\‘~~’

Frc. 245 Fie. 246

225. Spherical Cone (Tig. 246). Let ¢ be a circle of a sphere 0. The solid
composed of the cone having O as its vertex and circle ¢ as its base together
with the solid bounded by the plane of ¢ and the smaller dome having ¢ as
base is a spherical cone. The base is the dome. The verfex is 0.
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226. Spherical Segment (Fig. 247). A spher-
feal segment of one base iz the solid bounded by
a dome and the base of the dome. The terms
“hase” and “altitude” are employed as in the
casc of domes. The radius of the segment is the
radius of its base.

A spherical segment of two bases i3 the =olid
bounded by a zone of two bases and the planes
of the two bases.

TG, 247

227, TaEorEM 66, \ )
pyramid ¢ «
The volume of & spherical | V9% | g one-thivd(the product of th
| gector 8 ! AN product ol the
!conc o \ ¥
arca of its base and the radius of the sphere’,\\“ ¥V = L.

() Volume of Spherical Bykamid (Iig. 248).
Given: Sph pyramid O-ABCDE. ~:~’:"
= radius of sphere, _oN°
V = volume. N
b = arca base. <
G DESC P 3

Fig. 248

Prove: V = 1hy,

lmagine a polyhedron circumseribed about the sphere. Now sclect merely
that portion of this polyhedron which is intercepted by the polyhedral angle
O0-ABCDE. Concentrate only upon this portion of tHe polvhedron; discard
the rest of it. )
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We now have a more or less irregular solid (call it ) whose surface is:
(i) the faces of polyhedral angle O-ABCDE, and (i) that portion of the surface
of the original polyhedron which has been intercepted by the polyhedral angle.
et K = the area of the surface mentioned in (il); let W = the volume of P.

Asin § 221, draw lines to 0, dividing P into a number of pyramids having O
as 4 cominon vertex. 1 i3 the altitude of each pyramid,

Asin § 221, show that W = LrK.

Let the number of these pyramids become infinite. Then W — 7 and K — b,

By Ref. 91 obtain: | ¥V = i,

() Wedge, Sector and Cone \
To oblain the volume formulas for each of the other three sohds drhu great
circle aves on the base, pass the necessary plancs through thesé, dres and the
center of the sphere, and thus resolve the solid into a number of spherieal

pyramids,  Apply part (a), and add the results. Obtain; 4 % = Lbr.
228. TuroneM 67. '

9 N )
In a sphere of radius » the volume of a segmént’of one base having an
altitude & and a radius ¢ is given by eitliebof the two formulas:

V2@ -k o QY = Thizat+ ).

NS

Civen: Scgment of one bage,
I = altilude. m\
a = radius.
# = radius of f-p}\ar{
V' = volume, .\

FProve: Formulg :F;t}\itcd above.
1} Draw the sphevical cone of which this seg-
ment Is g part,
2) Vol. spliebne = §(hase) 7.
3) But drea base = 2arrh.
4) A Vol. sph. cone = 2mrh. _ Fro. 249
5) Altitude of right circular cone in figure is

r—h. TRadius of this cone = VA(2r — k) (Ref. 12-ii.)
6) = Vol cono = mh(2r — R)(r = ) = Gh2 = 3rh+ 1)

2 e e T
—311'1“2!:. :rrfh+3h-

7). V= vol. sph, conc — vol. cone = ?,;—h.E(Sr —h) |
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8) From the figure, a® = h(2r — A) (Ref. 12-ii).
@+ h*
2h

10) SBubstitute result in formula obtained in step 7:

9) Solving forr: r=

V= 'gh(&f + h2).

Note: Tt Is quite possible to derive volume formulas for a spherical scgment
of two bases. One such formula is ¥ = gh@az—i— 362+ hY), where wGhd b are

the radii of the bases. In practice, howevcr, it is advisable to obtéindhe volume
of a given scgment of two bases by treating it as the difference ohthe volumes of
two segments of one bagse. (Compare with the method forzdé;ji\-'ing formula for

arca of & zone of two buses in § 215.) K7,
"\

EXERCISES /5™
R
Group Twenlythree

1. The volumes of two spheres are to each qighé[”as the cubes of their rudii or the cubes
of their diameters. Prove. SN

2. Find the area and volume of a sphoré:of radius 6,

3. Assuming that the Earth is a peffect .sphere of radius 4000 miles, compute the mumber
of squarc miles in the Farth's s{uri:aee. What i the volume?

4. The volume of & spherc 1@% el in.  Find the area. Tt = 22,
5. The arca of a sphercis2464 sq. in.  Find the volume. Let » = 22,

\¥
6. Find the radiug of @ sphere for which the number of cubic units of velume iy the
same as the numbe 8l corresponding square units of area.

7. The areagp}tﬁ-‘o spheres are respectively 9 and 4. What iz the mtio of their radii?
their volumes?

8. Thesj'o}t.lmes of two spheres are respeetively 27 and 125. What is the ratio of their
arcash_AWhat is the ratio of their areas if their volumes are respeetively » and w?

9. The radius of one sphere is 3 times that of & second, and the sam of their volumes
ig 10087 cu. ft. T'ind the radius and the area of cach sphere.

10. The arca of one sphere is & times that of a second. What is the rutio of the volume
ol the first to that of the second?

11. The radii of three sphercs are proportional to the numbers 1, 2, 3, The sum of
their areas is 3584 sq. in.  Find the radius and volume of each sphere.

12. The angles of a spherical triangle are respectively 75°, 05°, 100°, and the area is
1627 sq. ft. Find the volume of the sphere,
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13. Find the volume of a spherical wedge the base of which is a 30° lune. The radius
of the sphere is 107,

14. The radius of 4 sphere is 50", The radius of the base of a dome whieh forms the base
of a spherical cone is 14", TFind the volume of the spherical cone.

15. Tind the volume of a spherieal segment of one base if the altitude iz 67 and the
radius of the sphere i 187,

16. The radius of & spherical segment of one base is V'21* and the altitude is 3”. Find
the volume of the segment and the volume of the sphere,

17. The rading of a sphere is 34", The radius of the greater base of a segment of two
hases is 30%, The altitude is 14", Find the volume of the segment. £\

18. The radii of the bases of a segment of two bases are respectively 40" apd 48” nd
the altitude is 16", TI'ind the volume of the segment. Iind the volume of ‘the) qphere

19. The base of a spherical sector is a zone of $wo bases. The altitude i g 4"".' The radius
of the gphere iz 207, Find the volume of the spherical sector. N

2. The rafhua of a 0110[9 01 s 16", AB = 00°, On arc AB pqlm‘ﬁ ¢ and D are taken

50 that "1( T = CD DB CD is revolved about the rading OB. Find the volume of
the spherieal sector which has O as its vertex and which has\is 4 base the zone generated

by OO0,



Frustum Cone
Irrust. Rt. Cire. Cone

3o + P2)C

g(bl o+ by 4 \'/m)

Hph. Cone

Sph. Segment (1 bage)

gk"-(Sr — ) or

7R3 4 A
g h3a® + 22)

144 SOLID GEOMETRY AN SPIIERICAL 'I'B.IGONO_ME'I”B_I
COLLECTED FORMULAS. SOLID GEOMETRY
Kt 10 SvMEOLS
b = area of base h = altitude
p = perimeter of base f = slunt height
{ = perimeter of right scetion r = radius
¢ = clement or lateral edge & = radiug of segment of one hasc
Lat. Area Total Area Volume
Prism e 2b+t-e B
Right Prism PR 264 p -k b WO\
Cylinder tre h4+t-6 .
Rt. Cire. Cylinder Irrh 2t 4 2k ,h
Cylindrie Solid % )
Pyrumid (‘f.‘;. I )
Reg. Pyramid -f b+ip-f ' 00
- _ K¢ i
Frostu Pyrasmid Nl % + by + Vi)
Frust. Reg. Pyramid Lip + pa)f { \\.. :
Come \ 4 m .
Rt. Cire. Cone Y- e (7' + e 1rrth,
Conie Solid o\ ¢ L

Sphere i i:\\ drt ) Sorpd
Zone \ 2rrh
AF A Q5" 7 -
Lune (of #°) P \% Al
e 30 B B
Spherieal De&:&:é‘ hodnr?
Spherical & of sph. degrces or o
Sph. Eo{yg‘,én E )
\w\' 7 146 wr Eg. Ut
JR— )
Sph.Pyramid
Sph. Wedge )
Sph. Beetor or




MEASUREMENT OF '[HE SPHERE 145

MISCELLANEOLS SUPPLEMENTARY EXERCISES
Group Twenty-four

1. The volume of a certain solid ig 72 cu. in., and s total arca iz 160 g, In. Find the
total area of a similar =0lid the volume of w hl{,h 1% 9 cu, In.

2. On o sphere of radiug 37 the arcs of an equiangular spherical triangle iz 67 sq. in.
Find the number of degrees in each angle of the triangle.

3. Do T'x. 2 sssuming that the spherical triangle instead of being equiangular has angles
which are proportional to the numbers 5, 7, 9.

4. The radil of two interseeting spheres are respectively 107 and 7.5%, and their eenters
are 12.5% apart.  Find the ares of the cirele of intersection of the spheres. O\

5. Vind the volume of the cube which ean be inseribed in a sphere the mm\of which
is 4327 801, . N\ N

6. Find the volume of the solid gcncmtcd by revolving about one of lt\ stdes an equi-
lateral trisngle one side of which is 8% N

. The edees of o rectangular solid are respectively 4v3%, 4” \'if Tind the length of
a dmg:m 11 of the solid.

8. Deserilbe the locus of points which are at the same tim equldls‘tant from two inter-
seoting planes M and N and at a fixed digtanee fIOII;U a,\ %ed point P which is not in
either planc, F

‘.

9. The latera) edges of a triangular trunca:tetf prism
(§87) arc each perpendicular to the Pplane of the
buse. DA = 157, EB = &, FC =18, AB =§",
BC = 15", 11( = 17". Find thgmﬂ‘amc of the solid E
(Fig. 250). ’\\“' 4 o

(N B
\\’ / Frc., 250
O\ H

P

fai

&«
S

A

14, i\\'oﬁtrunm iz in the form of a hollowed out
frustum of a regular square pyramid, EF = 407,
AB = 20", altitude = 24". The walls and base Uf
the container are uniformly 6" thick. Find the
amount of material used in making the comtainer.
Find the capacity of the eontainer (Fig. 251).

A B
Fic. 251
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Group Twenty-five

1. An edge of a regular tetrahedron is 20”7, Find the area of a mid-section (purallel to
one of the faces).

2. Two line-segments s and { are ench 12" long and are everywhere 6” apart. Teacribe
uccurately the locus of points which are at the same time equichistant from s and £ and
5" or less than 5 from s,

3. On a sphere of radius 7% find the area of a zone of two bases if the altitude of the
zone is 2",

4. Find the number of unit trisngles (spherieal degrees) in a lune of 40°. A
5. Find the number of square inches of ares in a spherical degree on a sphere o radius 3%,

RO
6. Find the altifude of a triangular pyramid in which each basal edag 52 and each
Iatoral edge is v1297. & N

al
S 3

7. Find the volume of the pyramid of Iix. 6. e,

N
8. The basal edges of a right prism are respectively 23.4’2"4?2.7”, f3.57. The prism is
triangular.  The altitude is such that a sphere may bejusdribed in the prisem. Using
logarithms find to four significant figures the vohm}e{of the inscribed sphiere and the
volume of the prism. &

9. Bach edge of a regular octuhedron is e, Prove that the volume is 3 V2.

10. Three line-segments, not necessarily .ca:fml, are mutually perpendicular. If 04,
OB, OC are the scgments, and il OP is petpendicular to the plane of A, B, ¢, prove that
F ig the orthocenter of the trisngle ABG ™

R \’ Group Twenly-siz

1. Two sides of a spherical%ﬁf&mtglc are each 90° and the included angle iz 40°, Find
the area of the triangle (sg. ih) if the volume of the sphere is 2887 cu. in.

2. In a sphere of radide’J2” find the volume of a sphorieal wedge the base of whieh s
8 15° lune. O

#

3. Find the Vql;ftﬁé'of a {rustum of a right eircular cons if the altitude of the [rustum
ig 12" and thowtadii of the bases arc respectively 107 and 197,

4. Find tl\lb':lﬂteml ares of the frustum of Tx. 3.

» E{fd; the total arcs of the cireular cone which can be inscribed in a regular tetra-
hedrowone cdge of which is 67,

6. The basc of a certain cone is two-thirds the hase of 8 cartain eyvlinder: and the volume
of the cone is four-fifths the volume of the eylinder. ompare the altitudes of the two
solids.

T. AABC has a = 7", b= 5", ¢ = 4", Side ¢ ie parallel to & plane M, and the plane
of AABC makes an angle of 60° with M. Find the ares of the projection of AABC
upon M.

8. Between what limits must the sum of the dihedral angles of u trihedrsl angle always
lie? Prove your answer,
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9. A cone is completely filled with lve eream and encugh more iee cream is added to
the top so that the whole assumces the shape of a spherical cone. The spherical radins
ig 5 and the altitude of the dome which forms the base {3 0.2°, Find the total amount
of ice creant.  {Neglect the thickness of the wall of the ice eream cone itself.)

10. Find the number of cubic inches of metal in the wall of a spherical meta} shell #
the wall is uniformly 17 thick and if the Inner radius is 15,

Group Tweniy-seven

1. In & sphere of radiug 67 the base of a spherical pyramid iz 4 spherical pentagon the
angles ol which are 80°, 100°, 1047, 136%, 150°. Find the volume of the spherical pyramid.

2. The siant height of a right circular cone ¢ ia 10 times the radius of its basc..\The
total arca iz the ssme a9 thal of 4 certain sphere T, Ifind the ratio of the X{oh{me of ¢
¢\

to thal of T )
£\
3. The total aren of a cube 18 72 #q. in.  Find the volumes of the insqxibéd and circum-
N

7

seribed splieras. <

1. In a pyramid V-ABC, VA =8, VB = 6", VO = §. A plads M cuts VA at D,
VB at K, VC at /. VD =4, VE = 5", VF = 2", Tf thegulume of V-4BC is 48 cu.
in,, find the volume of ¥V-DEF. O

3. The radius of a sphere i3 10*. A planc M cuts th 'éphere and bisects a radius per-
pendicularly.  Wind the polar distance (in inches) 0f~’th cirele of the sphere determined
by planc 3. W

6. Two lines s and ¢ interscet a4 4. Describesgceurately the loeus of points which are
at the sume tine equidistant from s and ¢ aud®s” from 4.

7. All the edges of & rogulor hexagonal Prism are equal.  The volume is 12v3 cu. in.

Find the altitude. \

8. Diameter AB of a cortain %fet@ is 6%, Two plancs each perpendicular to A8 eut
the sphere so ag to divide the Yelume into three equal parts. Find the lengths of the
segmentls infercepted on AB\b¥ these plancs.

9. The lLage of a. cone 4 Ea;\(‘_.irf:le of radiug 8. A and B, two points on the (:i?cumft_arcnyce
of this circls, dctern@g an arc of B0°. ¥ is the vertex of the cone; the {“]-]t!t}l(le is l_a”.
A plane eontaini \J, A, B is drawn. TFind the volumes of the two solids into which
this plane divideé\t 16 glven cone.

18. By deflinition, the threc conditions for a regular polyhedron are: (a) faces are regular
polygond by faces are congruent polygons, {¢) polyhedral angles are equal.

By givini an appropriate ilustration in each case, show that if any fwo of the above
conditions hold true'in o given polyhedron, then the third eondition does not neccssarily
hold true, and hence the given polyhedron is not necessatily regular,

Group Twendy-eight

L. Two angles of a spherical trisngle are respectively 80°, 62°. The arca of the t-r:iangle
I8 47 sq. in., and the radius of the sphere is 6'. Find the third angle of the triangle.

2. Each element of a circular cone is 157, and the lateral arca is 105w sq. m. Find the
ates of an axial section.
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3. Find the complsate length of the locus of points which are 8% [rom cach of two fived
points which arc 8 apart.

4, Find the number of degrees in each dihedral angle of a repular tetrahedron.

5. The basal edges of a regular trisngular pyramid are each 7. The altitude makes an
angle of 30° with cach lateral edge. Find the length of each lateral edge.

6. A sphere of radius x is inseribed in a right eircular cone ol slant height f and radius r.

If— 7
Bhow that x=r %—f— "
7. Find the radius of the aphere which cun be eircumseribed about a regular octahedren
each cdge of which is 8", Find, also, the radius of the inseribed sphere, N

8. In a sphere of radius 10" find the volume of & spherical sector the hage.3f which is
a zone of two bases having an ahtitude of 3. )

'N\S “

9. The volume of & cireular cone is 81 cu. in. A plane parallel to the base cuts the
cone and determines a frustum of altitude 7" and volume 57 cydiny Find the sbtitude
of the original cone. ¢* O
10. O is the geometric center of a regular icosahedron and B is onc fuce. Find the
number of degrees in cach of the equal dihedral angles QANNIB, OC of the tribedral angle
O-ABC. (Circumseribe » sphere about the icosshedfor” Points A, B, € determine a
spherical triangle ABC upon this aphere, Whap id\tle relation hotween dh 204 and
£ A of the sph AABC? What fractional part ghthe surface of the spherc is contained
in sph AABC?) S

"
(roup Fiventy-nine

1. A golid metal pyramid is cut into t;“;({ parts by a planc parallel to the base and mid-
way hetweon vertex and base. Find the ratio of the weights of the two resulting parts
of the solid. \

. . L) . . .
2. Point P s 1" from a pl 1€ . Describe accurately the locus of points which are
at the same time 10V from P hnd 7 from M.

3. Find the area of a spliere circumscribed shout 4 reetangular solid the edges of which
are tespectively 8, 'gi "

4. How far fl'{g:;‘tﬁe surface of a sphere of radivs 4" must a source of light be placed
go that ex;mcpb\ le-sixth of the surface of the sphere will be illuminated?

5. The si’niés"'of & spherieal friangle are 70°, 60°, 94°, 1'inel the area (in squere inctes)
of thogblm' triangle if the radius of the sphere is 20" {(§§ 207-209).

3 .
6. T}e zuriace of one sphere iz twice that of a second, and the sun of the volumes 18
14 eu. in. Find the volume of each.

7. Describe the locus of points which are equidistant from three planes M, N, S if M
is parallel to N, and if S interseets M and ¥,

8. Prove that th(? volume of any triangular truncated prism (§ 87) whose lateral edges
arc cach perpendicular to the plane of the base is the product of one-third the sum of
the lateral edges and the arcs of the bage.

9. A right circular cone with open base is to be made from » single piece of heavy paper
The altitude of the cone is to he 20* and the diameter ol the open base is to be 307
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Deseribe the shape and give accurately the dimensions of the paper pattern from which
the cone can be made. (Disregard any over-lap for the scam.)

10. ABRC is a tri-rectangilar spherical triangle on a sphere of radius 3v'2%. Thres urcs
meeting at o point £ within the triangle are known to biseet the three angles. Find
the Jengths (inches) of cach of the ares DA, DB, DC.

Group Thirty

1. Each side of an equilateral AXYZ iz 12", Describe accurately the locus of points
which are at the same tine equidistant from X and ¥ and 107 or less than 10° from Z,

2. Tour points A, B, ¢, D do not lig all in one plane and no three are collinear. Explain
how te eonstruel the sphere the surface of whieh shall contain the four given points.

3. One angle of 4 spherical triangle is 115° and the sides including thiz angleard equal.
Find cach of the other two angles if the triangle containg 99 spherical ﬂégﬁ}es‘ (Hee
Ex. 8§ Group Twenty-one.) . O

4. The number of square feet in the total area of a certain oylindlam of revolution is
known to be 8§ times the number of cubie fect in its volume, TheMwdlius is 3 times the
altitude.  Find the volyme. AN

5. Deseribe the locus of points which lic on 2 given sphate and which are: (a) equi-
distant from two fixed points on the sphere; (b) equidisfint from the center of the
sphere and a {ixed point on the sphere; (c) cquidistafpkﬁmm two fixed radii.

6. The radins of a sphere iz 10%, and I is a fixeg\pomt which Is 20" from the center.
From P a Jine is drawn tangent to the sphere gt a point 4. IF FPA rotates about PO
as an axis find: (a) the length of the eurve .’qnaj(:ecl by point A; (b) the area of the sur-

*

face generated by the line-scgment 4. (89

7. The altitude of a cone of revolutionys 6” and the diameter is VE" 1_'& Sphere_is
inseribed in the cone and is tangent(ta the conie surface along o circle k. Find the cir-
cumference of k. N\

8. ABCD-EFGH is u right lism. AF and each of the other lateral cdges is 12,
AB = 16", RC = 20, DA% 12, LDAB = £ABC = 90°. (2) Find to the nearest
tenth of a sguare inch thtobetal arca of the prism. (b) Draw A_F and A{}\‘ and find the
mumber of degrees in £667. (¢) Find the volume of the pyramid A-BCGF.

9. A spherc is cireuustribed about a regular hexagonal prism. The radius of the sphers
i twiee tle ;1]t.i,Q(de' of the prisgm. Find the ratio of the volume of the sphere to thar
of the prism, &

10. M-z N8 an acute dihedral angle which is greater than 30°. M is taken horizontal,
and N/Afeets 3 from above in a line x. Poiut I is above N and is 47 both from z and
N Showf how to construct through P & straight line ¢ which shall be parallel to M
and whieh shall intersect ¥ at an angle of 30°.

Group Thirty-one

L. Two cqual right circular eylinders are placed so that the axis of one exactly clt)inCideE
with an eloment of the other. If the altitude and radius of each are respectively f
and 3%, find the volumne which is common to the two cylinders.

2. The ares of the base of an oblique prism s 40 sq. in. Each latera! cilge is"?" and
makes an angle of 43° with the plane of the base. Find the area of a right section and
the velume,
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3. In a sphere of radius 30" the altitude of a segment of one base is 6. Find the volume
of the segment.

4. The radius of an equilateral cone is 18”. Iind the volume and area of the inseribed
splere.

5. In Ex. 4 find the total area of the inscribed regular triangular pyrumid.

6. ABC-DEF iz a frustum of a triangular pyra-
mid. z = arca of AABC, y = area of ADEF,
h = altitude. Draw a planc through E, A, ¢
and & plane throngh £, 4, F, Drove that the

h o=
volume of pyramid E-4(F is g'\/:z:y (lig 252},

L VT 252

7. The altitude of a right eireular cone is 12* and the l'adiﬁs:is 9", A sphere of radius
10" has its eenter at the vertex of the cone. Tind the ¥olume ol thatf portion of the
cone which is outaide the sphere. K2s

W

8. g, b, c are three skew lines, Explain how td\BoRstruct a ling ¢ which will interseet
the three given lines, « \J

9. x and y arc two lines in space, and P,j:é;’a"point- not on either line. x is parallel to
the plane of P and ¥; 7 is purallel to the'pline of P and & Prove that 2 i parallel to y.

10. ABCD is » souare plece of tinad2™on a side. X and Y are respectively the mid-
points of BC and CD. Draw AXNXY, Y4, Fold the tin along these thres lines and
thus form a triangular pyramigd(the base of which is AAXY. Points B, €, D will coin-
cide with one wnother at sonfepoint V. Find the volume of the pyramid V-AXY.

\ < Group Thirty-tuwo

1. Spherical trianglgs™d BC' and A"B'C" arc polar to each other. O—ABC and O-A'BC”
are the corresgéi}}iﬁg trihedral angles. Interpret in terms of face angles and dihedral
angles of O-4B8 and 0-A'B'C” the relutions which exist betwecn the angles of AABC
and the sidegof A4 BC (§§ 207-209).

2. Can, h-}q‘iheri(;&l triangle have 130°, 70°, 55° a5 sides? 150°, 78°, 100°% 180°, 120°%
115N Qan a spherical triangle have 90°, 80°, 40° as angles? 50°, 40°, 48°%  Justify your
answer in each case, )

3. P is the common pole o two small eircles ¢ and d. The polar distance of ¢ is 30°
and that of d is 60°. Tf the radius of the sphere ig 10" find the area of the zoue of two
bases determined by ¢ and d.

4. V-ABC is a regular tetrahedron each cdge of which is e.  Fine the length of the fne
segment which Is perpendicular to A8 and V.

5. A right creular cone is inseribed in a sphere, 1f the altitude of the cone is three-
fourths the diametor of the sphere, what is the ratio of the volume of the cone to the
velume of the sphere?
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6. A iz a fixed point on a fixed line x. Line-segment AR iz 6% and AB 1 z. CDisa
line-segment bisected by point B and is coplanar with AB and z. CD = é”. It C'D
makes o constant angle with A8, and if AB is rotated through 360° about z, find the
srcas of the surfaces yenerated by AB and €, respectively. ,

7. Prove ﬂ“”;. the volume of a right prism with triangular hages is one-half the produet
of the arca ol one lateral face and the length of the perpendicular drawn to the plane
of that face from the opposite lateral edge.

8. A right eireulsar cylinder of radius 127 is partially filed with water. A spherical
mets]l ball of radins 127 iz dropped into the water. After the ball rests on the bottom
of the evlinder the level of the water is [ound to be 24” above the base. How many cubic
inghes of water arc there in the cylinder, and what was the depth of the water before
the ball was dropped in? Q

9, M-AB-¥ i a dihedral angle. D lies on AB {between A4 and B). 4@’9@' ig the
plane angle of the dihedral, with € lying in M and Elyingin N. In M lipe B X4s drawn
between £2¢' and DB; in N line DY is drawn between DE and DB. Prove that £ XDY
is less than £ CDE. N

10, Prove that the ares which bisect the sides of a sphcricaljﬁ:isiﬁgle perpendicularly
are coneurrent., \J

Group Thirty-three , \\'

1. If corners wre eut from  eube by planes which ‘_;_E):ass through the mid-points of the
edges, what fractional part of the original volume'semains?

9. b and b, ave the areas of the lower and _aibper bases, respectively, of a frustum of &
pyramid, A is the altitude. Lxtend the Iaferal edges of the frustum to form the com-
plete pyramid of which the given frustuig'is a part. Let x be the altitude of the com-
plete pyramid. Prove: - C

Sho Vi),
\\x o b —
3. The altitude of a spheric:u‘l segment of two bases is A The radii of the two hases
are respectively o ;mfw; N Prove that the volume of the segment is %MB"’; + 3% + &)

NV ;

4. A hemispher, 2Ngtangent to s horizontal plane M, and the plane of its dircular base
1 above M andhparailel to M. A right cireulsr cone and a right circular eylinder, each
with 1 radisefind altitude equal to the radius of the hemispherc, rest upon the game
plane. A plane S parallel to M cuts these three solids thus forming three circular sec-
tmn.s'\tjl‘ove that the cireular scetion of the eylinder equals the sum of the circular
seetions of the cone and heruisphere.
5. ABCD-XYZW ig any parallelepiped, and P Is any point in space.
plancs PAX, PBY, PCZ, PDW have onc line in common.
6. Tour equal spheres each of radius 2' are placed so that each sphere is fangent to
each of the other three. How long is the edge of the smallest regular tetrahedron which
will exaetly eneloge these spheres?

Prove that the

is a diameter of a circle with center 0. Achord f_lB
Af. With D as a center and DA as a radius
together with the are ACBE thus form a cres-

7. A line-segment €D is 12" long and
blsct:t._ss radius OC perpendicularly at a point
the minor are AB is drawn. Minor arc AR
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cent. Rotate the figure about C'0 and compute the volume and total area of the selid
generated by the crescent.

8. The diagonals of a rhombus & are respectively ) and do. B Is [irst revolved about 4,
a% an axis, generating a solid of volume Vi A Is then revelved about &y 25 an axis
generating 4 solid of volume V5. Prove;
Vi d
L *
9. The edges of a rectangular solid which meet at 4 common vertex I are P4, I'B, re,
having as respective lengths @, b, ¢, Draw AB, BC, €A, Prove that the aren of AAB( s
% @™ + nf 4 Bl A
10. Three non-intersecting cireles with centers 4, B, € lic in a plane M. ¥The cireles
are unequal and their centers arc non-collinear, A pair of common extehpal tangents
is drawn to each of the three pairs of circles. The pair of common e€tebnil tungents to
cireles A and B meet at a point Z; the external tangents to B aned I meet at X ; the
tangents to A and €' meet at ¥. Prove that the points X, ¥, Z'ﬁr‘é'ﬁcollinem'.

(Hint: Three points will be collinear if they ean he shown 6 it on the intersection of
two planes. At 4 draw a line-segment 4D | . D% DY and DZ. Show that
lines perpendicular to M at B and € must cut DZ ltf{i.;DY at some pointz & and F,
respectively. Show that points B, F, X are collingfi,Vand hence that DZ, DY, EX
lie in one plane 3.} ™

X
A

L D
N/



Chapter Fifteen

SPHERICATL. TRIGONOMETRY: THE SPHERICAL
RIGHT TRIANGLE

Q"

Tn Chapters Twelve through Fourteen relating Lo the geometry Qf"nh% sphere
a portion of the work was devoted to an elementary study of spherical angles
and spherieal triangles. In the work to follow swe shall utilize rdiich of this earlicr
material to develop a study of spherical triangles [rom agidgonometric stand-
point. This particular phase of the study of spherigak triangles is known as
Spherical Trigonometry. It will be seen presently that Spherical Trigonometry
bears the same relation to the carly study of gpherical triangles that Planc
Trigonometry does to the treatment of ordina,ry:\t-riangles in Plane Geomotry.

Spherical Trigonometry is concerned w}th:s()lving for certain parts (angles
or sides) of a spherieal triangle when certgin®other parts are known. For this
purpese & scrics of formulas will be {,hj'vélbpud. In these formulas it is to be
understood that sides as well as onjles arc measured in degrees instead of in
linear units.  Only the ordinargdype of spherical triangle will be considered,
namely, one in which cach sidesighan are of a great circle, and one in whieh each
side and each angle is less fhan 180°.

This type of study netgssarily presupposes not only familiarity with Chap-
ters Twelve, Thirteen,@ourteen, but also a knowledge of Plane Trigonometry
and fucility in the 'wgs{* of standard trigonometric and logarithmic tables. At
the end of Chapfar”Fighteen are listed the gtandard formulas cncountered in
Plane Trigondmmetry. Refercnce to any of thesc will be made by prefixing a
“T” to thefimber of the formula cited. Thus, “ 57 will mean “formula 37
of thig otxlfc}(ﬁrl(:(z lisl.

) 3

SECTION ONE. PRELIMINARY

" The following facts already presented in the carlier work are fundamental
to the devclopment of Spherical Trigonometry. They are repeated here for
convenient reference.

229,

In any spherical triangle ABC, if e = b, then A = B, and conversely.
In any spherical triangle ABC, if ¢ > b, then 4 > B, and conversely.
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230.

Il two spherieal triangles A BC and A’B’C’ are polar to each other, any
gide of cither triangle is supplemcutary Lo the opposite angle of the
other triangle.

231.

In a spherical triangle ABC, if a = b = 90° then A = 7 = 90° and
c=C. Conversely,if 4 = B =90°% then a = b = 90° and € = ¢

232, N\

In a spherical triangle ABC, if a = b = ¢ = 90°, then 4 = B (0% 90°,

and conversely. O

233. e\

{&
S

In a spherical triangle ABC, if @ = B = 90°, thead = = 90°.

234. Species. Any two parts of a spherical ‘rQa.‘nii( are said to be of the same
species if the two parts are each acute (les{than 90°), or if the two parts are
each obtusc {greater than 90° and less than’ 180°). Two parts are said Lo be
of different species if one is scute and th%jbther is obtuse.

ay
A N

235, N

In a spherical triangle 4 B0 which € = 60° (and neitler of the olther
angles is 907, 4 and a,a:i’g\af the same species, B and b are of the same
species. N\

Frc. 253 Fic. 254

Pare T (Fig, 253).
Given: ¢=90°, A < 90°, Prove: < 90°.
Conversely, given: a < 90°, Prover 4 < 90°.



SPHERICAT, TRIGONOMETRY: THE SPHERICAL RIGHT, TRIANGLE 155

1) Lixtend € (B. Draw AD making sph Z0AD = 90°,
2) Then DO =90° (§231).
3) Since . 4B falls between AD and AC BC must be less than 80°.
43 g < 0%
3] Conversely, if a < 90°, extend (B toa point I fo make (BD = 90°. Then
LCAD = 90" {8 233). Proceed as belore.

Part II (Fig. 254}
Given: €= 90° 4 > 90°. Prove: a > 90°
Conversely, g’éuen a > 90°, Prove: A > G0°,
8) As belore, draw AD making sph £CAD = 90°.
7) Show that DC = 90°, and hence that a > 90°. X
8) Conversely, if a > 90° choose D on BC so that DC = 9{}"\ iShow that
£(AD = 90° and hence that Z0AEB > 90°.
Thevelore, from Parts T and TT: 4 and o must be of the»a?ame species,
Simitarly, B and b must be of the same species. m\\'

236,

N

O
7 i

[n a spherical triangle ABC in which € = 99 {4nd neither of the other

sngles is 90°), if @ and b are of the same spwicb, then ¢ is acute; if ¢ and

boare of dilferent species, then ¢ is obtu«,(‘

C XY
TS

.
A
b
7 C
AN/
xt\"
N\
\”\ Y Fia. 253
Parr I (Fig. 253).
Given: C =00° g < 90°% b < 90°. Prove: ¢ < 90°.

1 EXt(‘nd A Lo [ making (4D = 90°. Draw DB.
2) o~ DB = 90° (§ 233).

3) & ZBDC =a (§231). Hence, £BDC <90°
1) I\-IOI'(.‘.('}vel‘, ZBAC < 90° (§235).

8) o £BAD > 90°

6) - in ADAB: ZBDA < £BAD
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7) -~ AB < DB (§229).
8) o< 0%,
Parr IT (Fig. 256).

Given: C =90° a > 90° b > 90° Prove: ¢ < 90°.
9) Un (4 tuke _CB _ 90°, Draw DB. Procced as in Part T.

Fii. 256 /AN Fa, 257
RS
Parr III (Figh257).
Given: C=190°%a > 90° b <90°% o\« Prove: ¢ > 90°,
10) On CF take €D =90°. Draw D,/AT N Proceed as before.
Thus, Parts 1, LI, [11 (:stablish‘t}.ie theorem.

P4\

AN\
SECTION TW(_\'\THE SPHERICAL BRIGHT TRIANGLE
HHAVING ONLY ONE RIGHT ANGLE

If a spherical triaf:glr; has three right angles, the sides opposite these angles
are quadrants (§ 2&2) If a spherical triangle has two right angles, the sides
opposite these @ngles are quadrants, and the third side and third angle have
the same me’aﬁ’urement (§ 231). Therefore, the solution of the tri-rectangular
triangle'offthe solution of the bi-rectangular triangle presents uo great problem.
TTengengwe’ need to concentrate upon the right triangle having only one right
angle. .

In the following section (§ 237) we shall develop ten formulas for a spherical
right triangle 4BC in which only one angle, C, equals 90°. For simplicity’s
sake we shall first develop these formulas with respect to a triangle in whieh 0
part is obtuse. But in § 238 which follows, we shall establish the validity of
these formulas for any spherical triangle A BC in which ore angle, €, 15 0(°,

237. The Ten Formulas (Fig. 258). Let O be the center of the sphere, Draw
OA, OB, O0C. Then 4 BOC, COA, BOA arc cqual respectively to a, b, ¢ of sph
ANABC.
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Draw BD L OC. In the plane of B
A0C draw DE 1 OA. Draw BE,
Then £ BED = A of sph AABC.

Denote £, BD, BE by z, 4, 2,
respectively.

Denote OF, O, OB by m, A, r,
respectively,

1) In AOED: m=h cos b

B In AOEBR. m=vreose; In
AODB: h =7 cos a.

3) Subsiituting in 1); reose =
reos acog b

or
(@D | cose=cosacosh \\
4y In AEDB: cos 4 = E \\
5 In AOED: z=mtanb; in AOEB: z= mt}:ngc
6) Bubstituting in 4): eos A = 2 Ii i;:f 3
or @ | cos Wk tan b cot ¢

7) From = figure similar to Eig"t?258 with A and B interchanged we may obtain:
: N/

A\

8) In AODB: siwm= 2.
:"\:\¢
9) In AE.D&‘.%{’": zsin A; in AOEB: r=zesec.

cog B=tanacotc

TS\ : in A
10} Substititting in 8): sina = ZEn 2
<\ > 2 8C ¢

or @ | sing=sinAsine

11} Similarly: @& | sinb=snBsine

12) In AEDB: 2=y cot A.
13) In AOED: z=rhsin b; in AODB: y=htana
14) Substituting in 12): A sin b= A tan a cot 4

or ® |sinb=cotdtana
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15) Similarly: (7 | sina=cot Btanb

BIfL ¢ . gin g
3 tun g = —- - ogin b =cot A .
16) In ©® set t COs @ COS &

17y o cos @ = cot A gin a esc b,
18) From (7): cos b = cot B sin b csc g, by similar steps.
19) Substitute 17) and 18) in @:
. cos ¢ =cot A sina ese b eot Bsinbesca
20 = cot A cot B.

Heneo: (3 |ecose=cot 4 cotD

21) From (2): cos A =tan b cot ¢
in b cos ¢

22) T cosb s ¢ O\
0% - m\\.
23) _ 5t b{cos a cos b) O
cos b sin ¢
94) _sinboosa 7 \d
gin ¢ x\ Nt
25) From &) sin ¢ = :im b, O

nhk
26) Substitute 25) in 24): cos 4 =

™
sipyp) cos 4 sin B
) sin b

or (& {034 =unBeosa
- »* 1 \". .
27} Bimilarly: N cos B =sin A cos b

(cf. .}

. .
238. Validity of 1hé Ten Formulas. In order to establish the validity of the
Ten Formulas f@f{i&ﬂy spherical triangle A BC' in which one angle, (', is a right
angle 1t is s@cfent- to consider two euscs: first, when both legs are abtuse;

2 \ . :
sceond, wherh one leg is obtuse and the other
is acuter™\"

AN,

Case B/ € = 90°, 4 > 90°, b > 00° (Fig. 259).
Extend CA and (B to meet again ut (7,

———, Pt
Then CAC = CBCY = 180°; £¢" = 90°,
Algo, b < 90°, @’ < 90°.
Moreover, ¢ < 90° (§ 236).

- AACYE s a spherieal triangle of the
type already discussed in § 237. Therefore
each of the Ten Tormulas is wvalid for
HABC

Fra, 259
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1) Apply @ to AA'BC": cos e’ = cos g cos ¥,

2) But cos ¢ =cosc¢, since eis common to the two triangles.

3) Alzo, cosa’=—cosa and cosb = — cosbh. (T 5-¢)
4} . 1) hecomes: €0s ¢ = €03 ¢ cos b,

51 o (10 is valid for A4 BC,

6] Apply & to AAB'CY: cos A’ = tan b cot c.

7) But cos A'=—cos A and tand = —tan b (T 5-¢, 5-f)
8) . 6) becomes: cos A = tan b cot c.

07 (2 is valid for AABC.
10} The validity of each of the remaining [ormulas is established in like mz}ener.

Case I'T. =90 a > 90° b < 00°
{Fig. 260).

Extend 84 and BC to meet again at B’

Then  BAR = BCOR' =180°;, B =DB;
=0 = 90°

Since o > 90° then af < 90°

By §236, ¢ > 00° . ¢ <90~

o AANCT B is a trinngle of the type dis-
cussed in § 237, Therefore, the Ten Formulas \

are egely valid [or AA'BCY. - D
1) Apply @ to AA'B'C': cosc’ = cos a’ calb. Fic. 260
2) But cose = —cose and cos ahS cos a. (T 5-¢)

3) Bubstiluling in 1); cos ¢ = cos aeos b.

4) o @is valid for AABC. A

5) In similar fashion the va]i@it\_f for each of the remaining formulas can be
established. \\ '
Therefore, the Ten Fobmulas are valid for any spherical triangle in which

ong angle is a right a,,nglé‘.

Ko

We group 4 &Men Formulas together for ready veference. For reasons to

be made appfa,}ent. presently, these formulas need not be memorized.

N\

& 1) cos ¢ =eos ¢ Cosbh
A% @ cozsd =tan beotc
cos I3 =tan a cot ¢
gin 2 =sgin 4 sine¢
gin b=sin Bsinec
gin bh=cot Atana
gin @ = cot Btan b
cos ¢ = cot A cot B
cosd =sn Beosa
cos B=wsin A cos b

©

i

SICIOIIIOINIO)]
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The following theorem 13 useful in determining whether or not a triangle is
possible under certain given eonditions,

239.

In a spherieal triangle A BC' with one right angle, ": sin A must be
greater than sin a, sin B must be greater than sin b.

. . B G
1) From (4 sine= " .
) ~ sin 4

2) 1f sin A were equal to sin a, then sin ¢ would equal 1, and hence ¢ would
caual 90°. In this case, @ and b would have to be quadrants andfhs given
triangle would have to-be tri-rectangular. Therefore, if (' is th\s‘\on v right
angle of the triangle, sin 4 cannot equal zin a. £\

3} If sin A were less than sin @, sin ¢ would be greater than 1, whirh iz impossible,

4) Therefore, siu A must be greafer than sin a4, and alnuhrTv gin 3 must be
greater than sin b. RS

The following cxoreises are extremely importdalb. " Each one should be
carefully donc, and the correct answers should b(\‘képt on file. Each exercise,
of course, concerns a right spherical triangle ha\mg one and oaly one angle, C,
a right angle. PN\

EXERCISES
Gmugi?i“ﬁi-rty—fwr
I. Discounting angle €, which is 908, there are Jfive remaining parts to a iriangle. If

a formnula is to be prepared Whgd\mvolves in turn each possible combination of these
parts taken three at a time, of wtany such formulas are necessary?

2. Among the Ten Formulag whieh ones, if any, involve the same three parts?

3. Ts u part of a spheridl triangle uniquely determined if its cosine is known? its tan-
gent? its (:otangent-?%g sine?

4. Select the forgtufe’ which you would use in cach of the following instances:
N

O\Fiven Find Given Find
W8 4,B c B e @
A~ D a, b ¢ A B .
\J b, ¢ & a, b A
A, b B

5. If 4 and ¢ are given, is ¢ uniquely determined? (See (3) and § 235.) If B und care
given, is b uniquely determined?

6. In each of the following instances state whether or not the part to be found is unicquely
determined. Justily your answer.

Given Find Given Find
b e B E b A
@, c A 4, a b
A e B B b i
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7. The following are given parts, supposedly of a right spherical triangle A B¢ in which
' = §0°. Biate in which instances a triangle eannot exist. (Cf. §§ 208, 235, 236, 239.)

{a) & =70% 8B = 124° (g) b =102, ¢ = 135°

(b} B = 60°, b = 72° (h) A = 108, a = 120°

fe) A = 1107, b = 120° (i) &= 140" b = 130°, ¢ = 125°
{d) 4 =200 B =50° (j) a=40%% = 108° ¢ = 60°
{e) ¢ = B0°, 4 = &4° (k) e =84 5 = 100°

4 A =70°0a=95

8. Tf we resolve right Erisngle solution into cases and clussify according to the types of
parts given, there are siz different cases: (1) 2 legs*; (2) 2 angles; (3) leg and adjacent
angle; (4) leg and hypotenuse®; (5) hypotenuse snd adjacent angle; (6) leg and op{{osite
angle,

Examine cach of the above six cases and show that: R \)
{a) In cach of the first five cases any part sought will be uniquely dcte.rnliﬁcd;
(b} in the last case the part sought may have cither of fwo vulues. N

Tn other words, show that in each of the first five cases there js:omz triangle possible,
if any; that in the sixth case there may be fwo triangles possiblpx«}

Tig. 261 illustrates the sixth case. O

U A8 and AC are exiended
to meet again at A’, a second
rt LAACHE 1w formed, having
C=90° A=A, and side @
the same as {for AABC. Tither &
AA'CB or AACR satisfies thess
given conditions, viz., the}rtx\a"
leg und the angle opposite®have
certain given values, § &

(N Fia. 261

(Given: 4, «)

A

®)
9. Heleet the pr’cﬁ}ai‘ formula and solve for the indicated parts, giving results to the
nearest mingtes

m: \ Tiven, Find

\/ (2) =78, b= 62° e
(b) A4 = 100°, B = 76° ¢
(¢) B =67° a=110° A

() 4 = 115°, b = 80°
(e) B =42°, ¢ = b4°
) A="10°a=>58
(g) B = 105° b = 120°

Roon R

* In dealing with spherical triangles we use the terms ’_" leg,” “h}'potenuse," Haltitude,
“medisn” as in the case of plane triangles. An “altitude’” is & great cirele are ‘dll'awn from a
vertex perpendicular to the opposite side. A “‘median’” i a great circle are joiming a vertex
with the mid-point of the opposite side
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240. *Napier’s Rule of Circular Parts. It Is quite unncecssary t0 memorize
the Ten Formulas. Each one can be obtained as nceded directly from the
diagram of Fig. 262 by using a simple and
ingenious device known as Napier's Rule
of Circular Parts.

In the diagram the symbels “co-47)
“eo-B”, “co-¢”’ mean respectively ‘com-
plement of A, “ecomplement of B”
“complement of ¢ The quantities b, o,
co-B, co-c, co-A are the “circular party”
mentioned above.

In using the diagram we shall employ
the terms ‘“‘middle part’(mp), “adjacent
parts’’(adf), and “opposite parts” (opp).
If any one of the five quantities is desig-
nated as a “middle part,” the quantities
immoediately adjoining this are the two
“adjacent parts,” and the remaining parts alje'\the two “opposite parts.”
Thus, if co-c ie selected as the mp then co-A ani\n;)—B are the adf, and & and a
are the opp. O

7 '\ 4
NN Tre. 262

A

Napier's Rule. The sine of any mifldle part equals the product of the
tangents of the two adjacent pa}‘f&j}’ The sine of any middle part equals
the product of the cosines of shi*opposite parts.
That is, (1) sin (kp) = tan (adi) tan (ad7),
(2) sjn“”z}n.p) = cos (opp) cos {opp).
¢\

Each of the Ten Fopmulas can be written by choosing in turn each of the
five quantitics of thé/diagram ag 2 mp and then applying part (1} and then
part (2} of Napitr¥ Rule.

Tor exam‘\pﬂe,’lct co = mp; then co-A and co-B arc the adf, b and ¢ are the
opp. R\
By part (1): sin (co-¢) = tan {co-4) tan {co-B) or cos ¢ = cot A cot B, which
is a{ﬁ?xgﬁly formula (&)

* John Napier (Lord of Merchiston), Seottish mathematician, was born in 1550 at AMer-
chiston, niow 4 part of Edinburgh. The eontribution to mathematies for which he is generall
hest known was his invention of a system of logarithmas, TTe was the inventor, also, of saveral
ingenious cormputing machines. His Rule of Cireular Parts for the solution of the rght
spherical triangle appeared in 1614. At one time or another Napicr devoted considerable
thought to the possible ereation of various engines of destruction to be uscd in warfare, 0De
such device being a sort of war chariot armed with bigh-powered cannon —- an idea whial
eventually materislized in the form of the modern tunk. In addition to his activities 11
mathematical and scientific researeh he put forth several works of a theological nature. For
the seientific flavor of {he ideas advanced in these treatises he was enthasinsticslly acelaimed
a visionary and genius by sotne, but by others he was damned as a meddler in the Black Artl
Napier died in 1617 at the age of 67.
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By part (2): sin (co-¢) = cos b cos @ or cos ¢ = cos a cos b, which is actually
formuls (.

Erample 1. Given: A =40° B = 52°
Find & to the nearest minute.

A, B, b are the three parts involved, Aand
B ate known; & is to be found.

On the Napier diagram (Fig, 263) select the
three sectors containing A, B, b, respectively.

Apply Napicr’s Rule, using co-B as the mp:

¢in (eo-B) = cos {eo-4) cos b
or

0% B (‘
gin A -

gos B =sin A cos b,  Hence, cosb =

’F\m: 263

Substitute the given values for B and A, and use logaritinis to compute the answer,

log’f}&’&" = 07893 - 10

gy cos 52°
o8 b= -2 e AAdg in 40° = 9.8081 — 10
Nlog cos b = 9.9812 — 10
b= 16° 45 A\

Eromple 2. Given: ¢ = 1205\ B = 72°.
Find g to the nearest minute. < "/

¢, B, @ are the parts involvﬁi. Mark these
on the diagram (Fig. 264}, )

Apply Napier's Rulg, Wsing co-B as the mp:

sin (co-B) £ Apn ¢ tan (co-c)
or \§

eqs'B = tan a cot ¢.

4 s B
sl 3 Cos
AWhan a =
) cot ¢

Fre. 264

_ Note ahead of time that tan a must be negative since B is acutc and ¢ is obtuse. Hence
g izelf will have to be obtuse.

cos 72° log cos 72° = 9.4900 — 10
fan @ =~ o500 log cot 120° = 9.7614 — 10
log tana = 9.7286 — 10

" =.180° — 28° 10" = 151° B0
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Ezample 3. Given: A = 112°, ¢ = 50°
Find g to the ncarest minute.
Mark A4, ¢, o on the diagram (Fig. 265),

sin ¢ = cos (co-A) cos (co-c)
or
gin @ = sin A sin ¢,

Here « must be found from its sire. But
sherc can be no ambiguity because 4 is known
to be obtuse and hence @, also, must be obtuse
(§ 235),

-
TaenN265

log gind2° = 9.0672 — 10
logsih50° = 9.8%43 — 10

gt ¢ = 9.8515 — 10

sin ¢ = sin 112° zin 50°

noa = 180° — 45° 16" = 134° 44,

>
EXERCISES
Group.jf’}'ﬁ-rty-ﬁve
1. Derive cach of the Ten Formulas b:ij"apier’s Rule,

2. Set up a Napier diagram forh .&:RST in which S = 00°; for o AXYM in which
X =90°; fora ADABRIin whiielzrsB = 40°,

3. Make a Napier dia.grqﬂwbr a AXYZ in which Z = 90°.  From the diagram obtain
a formula which will inolye each of the following sets of parts in turn:
@ ey Xy XY @aey; X x5 V¢ )7, X, 2 @y X2
9\

4 In o APERR@/= 90°, ¢ = 60°, P = 70", By Napier's Rule find r o the nearest
minute. AN

O\
5. In ]L):. 43 find p and R each to the nesrest minute.

n}ﬂigercises 6-15 assume that C' = 90°. Find the required part to the nearest minute.
Use Kapier’s Rule throughout.

Ghven Find Given Find
6. @ = 65° 10/, ¢ = 85° 30, A 1. o = 56° 18/, ¢ = 39°. b
7. a = 58, B = 121°, e 12, 4 = 58°, ¢ = 110°. b
8. A =63°12, B = 40° 15", b 13. 4 = 60°30/, B = 138° 21, ¢
9, 2 =80°5, b = 40° 45", B 14. b =22"29" 4 = 36° 12" ¢
10, 4 = 101° 407, ¢ = 129°, B 15. b = 18° 12, B = 41° 24", ¢
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Euomple 4, Given: A =75°, b= 58,
Solve the trlangle.

Mark the two given parts on the diagram.

The first part to he found is then a matter
ol mndividual choiee,

Tia. 266 .
‘&

(1Y Find E: sin {co-B) = cos (co-A) cos b

7 '\ ?
or coz B =sin 4 coz b "’\
or cos B = sin 75° cos 58° log sitF5° = 9.9849 — 10
logegs 58° = 9.7242 — 10
s =590 18 Aogeos B = 9.7081 — 10

(2) Find ar In solving for each of the two repﬁizi"ning parts it is usually advisable to ob-
tain a formuls which involves the two givgn parts. W hy?

™

sin & = tan (co-A) tan a N\

A sin b .

i = cot 4 ta oncés tan ¢ = —— = gin & tan A.

or gin b = cot 4 tan a. chc{ ban a ot A 8

) 3

tan ¢ = sin H8° tan 75°\< 4

Holving by logarithms; {| » = 72° 28
A/

(3] Find ¢: From thc'\;h“a.gram obtain the formula:
N\

N cog 4 = cot e tan b.
O cos A
" cot ¢ = ——— = cos A cot b = eos 75° cot 58°
s tan b
Vo o= BO°4Y

{4) Check: From the diagram obtain a formuls involving B, a, ¢ Substitute the caleu-
lated parts in the formula;
cos B = tun a cot ¢
Further checks can be obtained, of course, by substituting in formulas involving only
one or two of the caleulated parts at u fime.

Example 5. Given: B = 60°, b = 47°. Solve the triangle. b
There are fwo solutions (cf. Ex. 8, Group 34). Care must be taken to keep these
two different solutions separate.



166 SOLID GEOMETRY AND SPHERICAL TRIGONOMETRY

(1) Find a: Formula: sine = cot B tan b
sin ¢ = cot 60° tan 47° log cot 6O° = 9.7614 — 10
i log sin & = 9.7917 — 10

a = 38° 14 o = 141° 46/

(2) Find A: Formula: cos B = sin A cos b

. cos 60° log cos 60° = 9.68090 — 10
sin 4 = os 47° log cos 47° = 0.8338 — 10
log sin A = 90,8652 — IO

A =47 1F or 132° 507
The value 47° 14/ must beleng o Solution I, since 4 and @ must alwws be of the
same speeies, 1lence, we have K& \

Sol. 1 Sol. II O
A = 47° 1 4 = 132° 50"

W
{3) Find ¢: Formula: sin b = sin B gine ’\
sin 47° L loghsin 47° = 0.8641 — 10

Z

Y /s

sin ¢ =

@ 60° olog sin 60° = 9.9375 — 10
= 57° 37 or 122° 23/,

y . L]

In Solution I, @ and b are of the same spewids. Therefore, ¢ must be acute (§ 236).
Henee the value 57° 37 must belong to Sol. B Also, by § 236, ¢ must be obtuse in Sol. IL
Thus, we have: ™

Mlog sin ¢ = 9.9266 — 10

N\

Sol. T 0% Sol. 1T
¢ = 575 37’ o= 122723
i t

The two complete solutlon-:\@\e
L¢ a~— 38° 147, A =47° 10, o= 57°37.
JI ja = 141° 46", 4 = 132° 50/, ¢ — 122° 23".
(4} Check: Chcek\c:ich solution scparately by the method or methods suggested it
Example ﬁ\‘ '
\

R\ EXERCISES
"\ ’ Group Thirty-stx

\Solvc and check cach of the following right triangles from the parts given., Assume
that ¢! = 90°. Obtain results to the nearest minute.

1. a = 31°24’, b = 50° 30/ 8. B =115, ¢ = 80° 40/

2. ¢ =121°32, ¢ = 64° 17 9. A = 103°, 0 = 117°

3. b = 53°45, A = 35° 20 10. b = 20° 45, ¢ = 150°

1. ¢ = 98° 30, B = 106° 10’ 11. A = 140°, B = 99° 10/

5. A = 62047, B = 134° 26 12. ¢ = 73° 50', ¢ = 82° 25’

6. o = 54° 30, B = 34° 50’ 13. b = 161° 14, ¢ = 135° 16
7. a = 50° 30", 4 = 62° 24’ 4. B =70°7, ¢ = 117° 30
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15. ¢ = 24° 50', 6 = 72° 10’ 18. b=40° B = 75°

16. 4 = 29° 40/, b = 100° 20/ 19. 4 = 108° 32", B = 72° 48’
17. ¢ = 125% 28, o = 54" 50/ 20. ¢ = 145° 15, a = 155° 30°
241, The Isosceles Triangle. Tet AABC c

he an isosceles triangle with ¢ = b (Fig. 267).
Then A = B (§229).
Moreover, if a median €D is drawn, it is
readily shown that £ ACD = £ BCD and that B e
LADC = £ BDC = 90°.
Thus, the solution of an isosceles triangle
ean he accomplished by working with cither

of the symmetrie right triangles into which 4 B
the given triangle can be separated. e\
Fics 267

EXERCISES RS

Group Thirly-scven
1. In A4BC, @ = b. Show exactly how you would solve\hf;e triangle, given the parts:
(@) 4,C; () ¢, B; () ¢, 4; SdNB o () e

2. In which of the cuses listed in Ex, 1 is there Ipdrgg'ﬁhan one solution possible?

In Exercises 3-8 solve completely the isoasqe’l?s AABC in which & = b, giving results
to the nearest minute. o8
3. 0=84° B = 76° %6, o = 128°, 4 = 79712
4. 4 =100°47, C = 88° 19 ‘ i" 7. C = 140° 15, B = 82° 10/
5. B =85° 40, b = 45° ke 8. c=06° ¢ =112
9. In an isosceles AABC with a\> b, if ¢ is obtuse must €' be obtuse? Explain carcfully.

242. The Quadrantaliriangle. A quadranial spherical triangle i3 a spherical
triangle in which ongside is & quadrant (90°). _ )

The solution 6B% quadrantal triangle is accomplished by solving the polar
triangle, applving § 230. . i .

For exandple, let the given quadrantal AABC havec = 90°, 4 =76 , B = 52°
Then ip-the polar AA'B'CY, €' = 90°, o’ = 104°, b = 128°. AA'B'CY, being of
the type,discussed in this chapter, can now be solved in the usqal way. AYIJPIF
§ 230 to the solution of AA’B’C’ to obtain the solution of the given AABC.

EXERCISES
Group Thirty-eight

8olve each of the following quadrantal triangles, given:
Loe=090° 4 = 122°, b = 59° 4 ¢ =90° C = 67° 29, B = 5842
2. ¢=90°, 4 = 85°, B = 110° 5. ¢ = 90° a = 120° 50/, A = 114° 37’
$.0=00° C = 131°10, ¢ = 118°10' 6. ¢ = 90°, 4 = 98° 6, B = 132° 40



Chapler Sixteen

SPHERICAL TRIGONOMETRY: THE SPIIERICAL
OBLIQUE TRIANGLE

.\\

In Chapter Fifteen we evolved means of solving any sphehcal right triangle,
tsusceles triangle, or guadrantal triangle, The present, (‘hapter introduces the
study of the spherical obligue triangle, that is, a triangl i ix which no angle is 90°,
In a sense, the preceding chapter is sufficient for miedt practical needs, since any
oblique triangle can always be resolved into t\@ right triangles.  Howoever,
the solution of an oblique triangle by such 408 is awkward and cumbersome,
Therefore, we shall derive two laws whieh( e specifically adapted to solving
oblique triangles: the Law of Cosines andthe Law of Sines.

In the work of this chapter the fﬁﬂmﬂng relations of parts are helpful asa
means of checking the validity of regiilts obtained.

243. In any spherieal tnangle“ABC :
L. If a>b, then A > By and converscly (§ 229).
. a+b+c < 360° .(&2703—5).
[I.a+b>e (§ 203~
IV. 540° > A -+ BA\C > 180° (§ 203-D).
V. 180°+ C > A¥B (Ex. 7, Group 21).
VI. One-half ta%um of any two sides must be of the same species as one-half
the suB\u\f the two angles opposite these sides. (T'o be proved in § 2535.)

244, The Law of Cosines. Lot A4BC be any oblique spherical triangle.
Draw t‘he altitude CD (h),

O ¢

Fic. 268 Tic. 269
168
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Parr 1. A {alls within ACAB (Tig. 268.)

1) In ACDB: coz e = cos {¢c — x) cos k. ( @ )
2) = {cos ¢ co8 ¥ + sin ¢ sin x) cos £ (T 6-b)
] = cos ¢ (cos x cos h) -+ s8in ¢ (8in « cos k)
4) =coa ¢ (cos x cos B} + sin ¢ tan & {(cos x cos k). (T 3—a)
5) But in AADC: cos 2 cosh =cos b ( @)

and tan z = cos A tan b. ( @& )
61 Substituting in 4):

cos g = ¢0% ¢ cog b+ sin ¢ (cos A tan b)Y cos b QO
i " \‘\'

7) or iy |eosa=cosbcosct+sinbsinecos A AN AT 3-a)

Parr L1 b falls outside ACAB (Fig. 26050

8) P_’roceecl ag in Purt I, noting that cos CAD = — cog CAB. (T 5-e)

Corresponding formulas for cos b and cos ¢ are, Qimilarly derived.

Psuwr 1II (Either ﬁgli’r}).v

9 Let AA'BCY be polar to AABC. KY LV

Then o' = 180°— A, b =180° — Bp\e' = 180° - €, 4’ =180°—a.
10) Apply 3 to the polar triangle 4 ’B’C’

cos a' = cos b’ goSt + sin b’ sin ¢ cos A7,

11) or —cos A = (—ic(;;‘-; B){(— cos () + sin B sin € (— cos a)
¢ \J
ol ‘\\\‘..
12} or f | cos A= * ¢cos B cos ' +sin Bsin Ceosa

C\ }
Corresponding ﬂ@gmulas for cos B and cos C are similarly derived.
S
Thus, we t \(% hhe following six formulas which comprise the Law of Co-
sines of ‘\phou('al Trigonometry., The first three are often known as the Law
of (*osz,rw? fﬂ? \Sides; the last three are the Law of Cosines for Angles.

\ )

N cos a=coshcos e+ ain bsinecos A
cos b= cos @ cos ¢+ sin ¢ sin ¢ eos B
008 ¢ = cos ¢ cos b+ sin g sin b cos

BRAR® S

cas A = — cos B cos C—+xin Bsin C cos a4
¢og B= —cos 4 cos ¢ +sin 4 sin (cos b
cog ¥ = — oo A cos B+sin A sin B eosec

Use of the Formulas
Example {. Tn AABC: ¢ = 40°, b = 60°,C = 70°. Find cto the nearest minute.
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% eosc=cosaeosh + sinasinbeosC
—_— R
2 2
low cos 40° = 0.8848 — 10 | log sin 40° = 9.8081 — 10
log cos 60° = 9.6990 - 10 log sin 60° = 99375 — 10

log ¢ = 9.5832 — 10 log cos 70° = 9.5341 — 10
log ¥ = 92797 — 10
z = (13831 sy = 01904

cose=x+y=0573b

¢=521

N

Example 2. In AAB(C: 4 =50°,b=162%c¢=T71°. Find 4 to theifehi‘est minuts,
@ cosa=cosheosc4sinbsinccos 4 L)

eos a4 — oS b eos e cos o <M

cos 4 = = \
gin b gin ¢ 17>
{m) (I } {cos 4)
log cos 62° = 9.6716 — 10 log sin 62° = 9.8459 10 cos 50° = (.6428
log cos 71° = $.5126 — 10 log sin 71° = 9.9757 ‘.—'\1'0 m o= 0.1528
log m = 9.1842 — 10 log D = 99216"— 10 | Numerator = 0.4900
: 3 log ¥ = 0.6602 — 10
m = (0.1528 A log D =90.9216 — 10
N\ & logens 4 = 9.7686 — 10

MY A = sy

~ 4

Note: In cage one or 1110re"‘q& the parts given is obtuse, remember that the cosines of
such gquantities are fwga-t-'i-ve,\@aa Thence take carc to allow for this in doing the computation.

For example, suppase, that in solvinga AABC for a you usc the formula: cos & =
cos b cos ¢ + sin b sipetos A. Suppose that b < 90° and that ¢ > 90° and 4 > 907
Then cos b, sin b, sith¢arc cach positive, bub cos ¢ and cos A arc each negative. Hence,
cos ¢ will be nc&aiﬁvé, and g itself will be obtuse.

'§ cos @ = cos b cos ¢ + sin b sin ¢ cos A
‘ = (-} + (+X+)
:"\:"' i E_) + (_)

N\

EXERCISES
Group Thirty-nine
In the numerical problems solve for the required parts to the nearest minute.
1. Given: b = 62°48, ¢ = 81° 20", 4 = 50°. Tind a.
2. Given: a¢ = 120°54', ¢ = 88°, B = 46° 36", Find b.
3. Given: 4 = 130°22, ¢ = 105° 30, & = 125° 15". Find B.
4. Given: A = 25° 42, B = 40°42', ¢ = 152° 3%, Find C.
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5, (iven: & = 23°, b = 62% ¢ = 71°. Find 4 and B,

6. Given: 4 = 65°, B = 78%, ' = 58, Find band e,

7. Given: a = 100° & = 110°, ¢ = 115°. Find B,

8. Given: A4 = 121°, B = 117° 30, € = 135° 15'. Find c.

9, Given: o = 67°32, b = 110° 40/, ¢ = 52° 18’. Find ¢ and 4.

10. Given: A = 125°12°, B = 105° 30/, ¢ = 120° 34". Find C and &.
11. In ~AABC, @ is a mcdiam;_\a = 50°, B = 62° ¢ = 80°. Find:

(#) the number of ft_iggrees i OD;

{b} the length of C'D if the radius of the sphere is 10 inches;

{c) the number of dcgrees in 2ZCDB. A\ ¢
¢\

12. Tn &;U%’C’, CD bisects € and meets side ¢ at D, ' = 100°, CD §’8° b = B7°,

Flnd AD and 4. ,,‘.

'(

13. Tn 44BC, (D bisects € and meets side ¢ at D. b = 70° A.D = 5%, (D = 62°.
Find ¢, .

N\

14. Tn Fig. 270, CD biseets C. Let ZCDA
&.

1 cos B — cos A N
Prove: cos;C = ———— LY
2 2cos ON

m" F1a, 270

15. Prove that in any spherical QABC
cofhe cos b — gin @ sin b cos A cos B

cos ¢ = 5
"/ 1 — sin o sin b sin A gin B

{(Solve for eoy € in f@kmﬁlas @ and (8. Equate the two expressions for cos C, and
solve for cos e.) &

\Y4

<\ ) . . .
245, The Law of Sines. Let AABC be any oblique spherical triangle.
Drayy :t'l:}é' altitude k.
< \™
Parr 1. k lies within AABC (Fig. 271).

1) In ACDA: sin A sinb=sinh (@ )
In ACDB: sin Bsina=snh

2) . sin A sin b= sin B sin a.

) ginh  sing )
sin B gin 4
. . ginh sine
4) By drawing another altitude prove: Sn B sl
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C

D P
e 271 Fui. 272

N
Part 1L & lics outside AABC (Fig. 272), A\

A\
N (T 5-d)

5) Proceed as in Part I, noting that sin Z CAD = sin £UAB,

X
W

sine _sinbh _ sne | L7
sin 4 sin B sin ¢ \\

The Law of 8incs does not possvss the preciiiqn of the Law of Cosines in
that the part to be found by this formula is chadvattcrized by its sene, and may,
thercfore, have fwe possible values. In p’r%e%iml application, especially in
problems having to do with the Earth’s urface, it is generally lnown before-
hand whether the part sought s acute, pi‘..obtuse; and henee the use of the Law
of Sines leads to no ambiguity. If, bewever, some test és needed to determine
whether the part sought is acute .élf’ﬂbtllse, one or more of the relations of § 243
masy be applied. L

Esxamples 3 and 4 illu.ﬂatirs)e the use of the Law of Sines in conjunction with
the Law of Cosines. \\

"Therefore, we have: an

Example 3. Gi\’epii @= 142°, b = 68°, €' = 147°. BSolve the Lriangle.
1) Find e. S\

By Law of Q{a@ié's: cos ¢ =cosaeosh -k sin g rin b cos ¢

“/ = (—=M+) + (HHHH)(=)
O = =+ =)
RO = (=}
\ Y Solving: | ¢ = 140° 43’
2) Find A. Use Law of Sines:

g 4 o fnasin € sin 142° sin 1470 fog sin 142° = 9.7893 — 10
T TTsine | sin 140°4% log sin 147° = 9_736_1_';1_{1
. 0.5254 — 10
s A =231°58 or 148°2 log sin 140° 43 = 9.8015 — 10
log sin 4 = 0.7239 — 10

By §243-1: ¢ > ¢; ~ A > (. .. discard the value 31° 58’

A = 148° 2",
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3) Find B. Use Law of Sines:

¢in B — sin b sin ¢ _ sin 68° sin 147° log ¢in 68° = 9.9672 — 10
sin ¢ gin 140° 43" log sin 147° = 9.7361 — 10

4.7033 — 10

B =52°54" or 127°¢ log sin 140° 43’ = 9.8015 — 10

log sin B = 9.9018 — 10
By §243-V: 180° + B > A 4 €. .. diseard the value 52° 54’

B =127"§".

4) Check. Use any of the formulas AD~17 which involve the parts obtained.
Example 4. Given: A = 150°, B = 123°, ¢ = 137°. Solve the triangle, \

1) Find . A
By the Law of Cosines: cog ¢ = —cos Acos B+sindsinBeosc \' N

- (-;:}()—) + (=) W\

PN
< %

[ !

Holving: | € = 141° 7. 'W"\'\'

2) Find @. TUse the Law of Sines:

sin A gine¢ _ sin 150° sim187°
sin ¢ sin 1407

Solving by logarithms: & = 32° 55" or 147° 52 \%

By §243-1: A > (C; & a>e. .. discard the'value 32° 55

gna =

a = 18% 5.

.

8) Find b. TUse the Law of Sines:
n b — si;}g sin e _ sin 1_'23" Sif ];3_7"
¢\gin € sin 141°7
Bolving by logarithms: & =\ﬁ\é° 427 or 114° 18,
By § 243-11: @ 4 b .4 360°. .. discard the value 114° 18,
A/
4) Check. See Bxample 3.
Note: In pro'%lems like the preceding, when the last two parts are be'ing found it may
he expedientd® postpone the testing of values by means of § 243_ until both parts arc
caloulated{_JThus, in Example 4, if we had solved for b before solving for e, there would
have B@ﬁ no direct way of making the correct choiee of values. ‘ .
In Examples 3 and 4 we could have used the Law of Cos_mcs for ﬁnd.mg each part if
we had wished. But quite obviously the Law of Sines is simpler to manipulate when
§ 243 is at our dispogal for testing results.

246. The Six Cases of Oblique Triangle Solution. Chapter Thirteen gave
us the following facts: ) i
On any given sphere two spherical triangles with corresponding parts sim-
ilarly ordered are congruent if:
(1) two sides and the included angle of one respectively equal
two sides and the included angle of the other (Ex. 9, Group 21);

b = 65° 42",
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(2) two angles and the included side of one respectively equal

two angles and the included side of the other (Ex. 10, Group 21};
(3) three sides of one cqual three sides of the other, respectively (§ 206-B);
(4) three angles of one equal three angles of the other, respectively (Ex. 12,

Group 21).

In conscquence, we may state:

One and only one spherical triangle (i any at all) is determined il any onc
of the following combinations of parts is given:

Case 1. Two sides and the included angle. (SAS)

Case 2. 'Vwo angles and the included side. (ASA)

Case 3. Three sides. (B58)

Case 4. Three angles. {(AAA) O\

A study of Examples 1-4 just presented reveals that t}lQ:‘La.{v of Cosines
and the Law of Sines together with § 243 are sufficient fox“eut needds in solving
an oblique spherical triangle falling under any one of tli;eﬁ(: four cases.

The two remaining eases are: \

Case 5. Two sides and the angle opposite one ‘9f these,  (S3A)

Case 6. Two angles and the side opposite o of these. (AAR)

Q"

Tn each of the cases, 5 and 6, there maj, he one or there may be fuo triangles
(if any at all) which will satisfy the given gofditions. Tt is quite possible to deal
with these cases immediately if it is desited. For example, in Casc 3, suppost
that we are given a, b, B of a A4BE. Using §§ 245 and 243 we can delermine
the value or values of A. Next, Wwe can use the formula of Ex. 15, Group Thirty-
nine to determine the corrcs;{ﬁnding value or values of ¢. Finally, we can usc

§ 244 to determine . TheJast two parts, ¢ and C, can also be found in the

following way: drop g,N

ititude from vertex (, thus creating two right fri-
angles; work with these right triangles, and combine results to obtain ¢ and €.
But it is perhapsafvisable to pestpone a discussion of the completa triangle
solution in C@s{{s}ﬁ and 6 until the supplementary formulas of Chapter Itightcen
are acquireé;
R N EXERCISES
QO
In Exs. 1-16 solve the triangle completely from the parts given. Obtain results to
the nearest minute.
a =73 b =46 C = 32°
a = 40°, b = 50°, ¢ = 43°
.A=059°17, B =76°11", C = 80° 32,
. A = 76°22, B == 42°, ¢ = 106° 12/,
.4 =8 B="T4,C=9"

a = 64° 18, b = 57° 12, ¢ = 100°,

Group Forly

CE T S
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7. q = 126° b = 151°, C = 140°,

8. B = 30°30, C = 121° 2%, a = 41°.

9. b= 100°, c = 58°, 4 = 108°,

10. A = 34°35', B = 39° 6", C = 136° 45"
1. @ = 105° LY, b = 50° 20/, ¢ = 62° 28",
12 A = 132°4", B =53°17, ¢ = T2°5'.
13 0= 1187 17, ¢ = 71° 14', B = 51° 40",
14 A = 118° 5, B = 128° 10, € = 78° 40"
15, g = 62°8', b = 41° 30", ¢ = 98°42".

16, € = 110° 15, A = 146° 10/, b = 125°

N\

A ¢
(\)

In Faxs. 17-23 use the Law of Sines to find the part required. Reicr“l? § 243 to de-

termine the number of solutions in each instance.

Given
17. b = 100°, ¢ = 65°, B = 97° C
18. A = 133° 9/, € = 141° 36", ¢ = 126° 41 s
19. ¢ = 42°, b = 119°, 4 = 30° ,%
20. B = 21°3¢/, C = 145° 12/, ¢ = 135°45° \ .7 b
2. ¢ = 125°50, b = 68°4%, A = 57° 108N B
22. A = 72°50/, B = 82°,a = 123°_ N b
23 € = 62°, B = 142°, b = 1522 ¢
P '\,
QO
7\
O
NGO
9,
P\
'S M

\\

l

.’\



Chapter Seventeen

SPHERICAL TRIGONOMETRY: APPLICATIONS

'\

In the present chaptier® we shall apply Spherical T rigonompf?;g to the solu-
tions of such problems as finding the spherical distance hotavecrt two known
points on the Earth’s surface, determining the positions and’ courses of ships
which arc assumed to be sailing along the ares of greatysirdles, and o on. At
the end of the chapter a bricf discussion of the cclegtiab sphere and its relation
to the Earth reveals further applications of spheriedabtriangle solution. Before
commencing the study of Chapter Seventeen revagw § 197 in which such terms
as lalttude, longitude, noutical male, knot are ¢ efitled.

247. Ship’s Course. True Bearing. Jhét’ NAS be the meridiun through a

point A ; lot the ship’s path from A be'the great cirele are AB (Figs. 273-275).

The ship’s course from A is denot-edi’b& the spherical angle NAB. Thus, in

Fig. 273 the ship’s course from A1 60°; in Fig. 274 the course iz 130°; in
“ v N

S
Fiz. 273

Fig. 275 the course is 250°. The angle defining the ship’s course from A has for
its initial side the meridian arc AN; the anglc is generated in a clockwise Sensé;
having for its terminal side the arc AB,

* If it is thought desirable for the student to acquire more extensive technique in trianglo
solution, the formulas of §§ 251-255 of Chapter Eighteen may be studied before taking up the

ftppli(‘.a,ti_uns of Chapter Seventeen. These supplementary formulas shorten the computation
in some instances; and in all eases they are ideally adapted to logarithmic computation.

176
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N | N

<]

5 S .\:\
Fig. 274 Fre. 275 ~\’\

If B is a point on the ship’s path, the angle NAB is :1.1-40 Yalled the true
bearing of B from A. LV

In the preeeding illustrations the ship’s course frofh A or the true bearing
of B from A, can be expressed as follows: in Fig. 2@ N 60° E; in Fig. 274:
S 50° 1%; in Tig. 275: 8 70° W, Buf this method of defining course or bearing is
not go common in medern practice as the m(‘thod\ﬁrbt presented.

Erample 1. A and B, two points on the Eargh's surfa( ¢, have the following positions:
A (tat. 30° N, long. 80° W ), 8 (lat. 40° N, long: Wb0° W,
{(a) Find the chstance AB in nautical rmlps N\
(b} If a ship sails the great cirele route from'A to B find the ship’s course from A, i.e., the

ghip’z starting course. L
o\ N
In Tig. 278, ¥ and S are_redpactively the

north and \outh poles; g is %\\Jendmn of

Greenwich (prinie meridian) ;) NAS and NBS g
are the meridians through A and B, respec-
tively; e is the cquu,t

EA~30° f\m—s{)"
FB—4U° O B’\ 50°.

BT — $0%nd FT = 50°, - BF = 30°.
That, 1@,{%})}1 LANE = 30°,

Note, Ares AN and BN arve called the
eo-latitudes of A and B, respectively.

Sph £ ANE is called the difference in long- )
ttude for A and B. 3

Our problem seeimns to he concerned with Fie. 276

sph AANB in which & = 60°, a = 50°%
N = 30°, We are to find the length of nin nautical miles and the number of degrees in
angle NAR,

By § 244, 208 1 = co8 & cos b - sin @ sin b cos N,

Solving: n = 26° 22,
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But one nautical mile is the length of one minute of are of a great cirele (§ 197).
AB = 28(60) 4+ 22 = 1582 nautical miles.

sin @ ¢in N

Here A must be seute.

By § 245, sin 4 = -
Solving: A = 59° 38",
. the ship’s starting course is 50° 387,

In practice it is usually apparent whether 4 is acute or chtuse. Hence, for
the most part no ambiguity results from finding 4 by the Law of S8ines. When
A turns out to be nearly 90°, however, it may be uncertain whether A is actually
acute or obtuse. In this case the following test may be made. Sct{hp a right
triangle having as legs the given value of N4 and the computediyilue of AB.
Solve for the hypotenuse h by Napier’s Rule (cos A = cos N4 oan AB)y. Ith
turns out to be greafer than the given value of NB, then A mwst be acute; if &
ig less than the given value of l\/@, then A must be obtusé ™~

If in Example 1 the are AB is interpreted as a shig'd-route, then, as has al-
ready been stated, the angle NAR is the ship’s eblizde out of A or the ship’s
stgrting course if the ship iz moving from 4 to yLThe ship’s course ut B, ie,
the ship’s finishing course is the angle formed by’ and the prolongation of A B,
In Example 1 the ship’s finishing course, gHerefore, is the supplement of angle
NEBA. 1If the ship sails from B to A its st-ﬁ}t-{ng course is the reflex angle NBA,
and its finishing course is the reflex angle formed by N4 and the prolongation
of BA. o0
In the example just discussed.peints 4 and B were chosen in the northern
hemisphere. Had A and B hoth been in the southern hemisphere (south of
the equator) the usual procegure would be to work with AASB instead of AANB.

In each of the fol]owhaﬁ‘ ﬁroblemﬁ assume that all distances and ship routes
are great cirele arcs.ﬂ'pisregard any change of timc as the ghips travel from
one locality to andthier. Obtain distances in nautical miles, giving results to
four significant figires. Find angles or ares to the nearest minute.

\v
O EXERCISES

N Group Forty-one

1. Gigen: 4 (at. 10°30' N, long. 20°15' W), B (lat. 70° 25' N, long. 65° W). Find:
(a} distance AB; (b) ship’s course from A if it sails from A to B,

2. Do the same agin Ex, 1, ussuming A and B as follows: {(lat. 16° 20’ N, long. 130° L},
B (lat. 41° 23’ N, long. 124° W).

3. Find the distunce from San Franciseo (lut. 37° 32¢ N, long. 122° 13’ W) to a point
near Pearl Harbor (lat. 217 20’ N, long, 158° W),

4. Find the distance from Los Angeles (lat. 33°43' N, [ong. 118° 15 W) to Danila
(lat. 14° 34’ N, long. 120° 57" ).

5. Find the distance from D:i,k_ar (lat. 14° 407 N, long. 17° 25’ W) to Halifax, N.5. (lat.
44° 35’ N, long. 63° 28’ W), Find the true bearing of Hulifax from Daksr.
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6. Find the distance from Banta Barbara, Cal. (lat. 34°24° N, long. 119°43' W) to
Sydney Bay, Australia (lat. 20° 4° 5, long, 167° 58° 1),

7. Vind the digiance AB if A {Jlat. 32° N, long, 120° W) and B (lat. 45° 8, long, 75° W) are
the given points.

8, Civen: A (lat. 60° 3, long. 65° W), B (laf. 30° 8, long. 60° E). Find AB,

9, A cruiser at Porlsmouth, N.H. (lat. 43% 4’ N, long. 70° 44" W) has a rendezvous with
gther warships at a point 4 (lat. 30° 20' N, long. 30° 30° W) at 10:00 r.u, on May 6. If
the erujzer can average 30 knots, at what time should it leave Portsmouth in order to
reach it destination cxactly on time? What course should the cruiser set out of Ports-
mouth?

10, A ship’s course [rom A (lat. 45° N, long, 60° 10" W) iz 120°. The ship averagé§ 25

koois. Find the ship’s position 60 hours later when it has reached s point B,
¢\

11. In Lix. 10 find the ship’s course at B. PN

12, A ship averaging 20 knots lesves Boston (lat, 42° 23° N, long. 71° &“’b}\) at 6:00 p.u.
onJunc 1, Tts starting course is 110°. Find the ship’s position and pohirse48 hours later,
13. A ship sails from A (lat. 0°, long. 50" W) to a point B {lat:i;&"lﬂ’ N, long. 10° W).
Vind the istance AB. (Lxtend NB to cut the equator at apdunt €. Note that AACE
is a right triangle.) AN

14. In Fx, 13, if the ship returns from B o A what is ifs ourse from B?

15. In Ex. 14 find the ghip's latitude when its Jongitude is 20° W.

16, Tn 1x. 14 find the ship’s longitude when it-‘pe.él“cl{és latitude 15° N.

17. In Fx, 14 find the position of the point .w}-‘h}lc}] is mid-wny on the route from B to A.
18. Given: A (lat. 36° 50' N, long. 76° BAW), B (lat. 48° 20' N, long. 5° 10" W). Find:
(a) distance A8 (b} starting course8fa ship sailing from A to B; {¢) finishing course
of the satne ghip, O

19. In Fix. 18 druw NV perpem{ﬁlilar to AB meeting AB at V. Calculate the position
of T (Mg, 277). N\,

i, 278

Fra. 277

Note. The point V of Fx. 19 is called the vertex of the great circle route. from 4 to B .
The altitude AV of course scparates AANB into f¥o right triangles, and is tl'rl'us an aid
in caleulating the position of any ehosen point on 4B. Tt often happens that ¥ does nc.;t
lie between A and B but on AR extended (either through A or through B). BIUt~ﬂ[-|]S
Situntion offers no difficulty to the student who is familiar with spherical triangle solu-
tion.  See Tig. 278.
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920. In Ex. 18 find the latitude of the ship when its longitude is 50° W, (Muke use of
b ANV A or it ANVE of Vig, 277.}

21. In Fx. 1 find the position (lat. and long.} of V.

22, In Yx. 4 find the position of ¥,

23. In Fx, & find the positon of V.

24, Two ships, 4 and B, leave a point P (lat. 0°, long. 50° W)Y at the sune moment, B
sailing two-thirds as fast as A, A leuves P on a course of 30°; B ‘s course from P iz 338°,
After » certain length of time the longitude of 4 is found to be 20° W, Find the latitude
of 4. ~

95, In Ex. 24 find the distance between the two ships at the time requized

AN
26. A ship's course from A4 (lat. 5° 8, long. 135° W} is 3287, Find pha lofigitude of the
point where the ship crosses the equator. L >

N
27. In Ex. 26 find the ship’s course at the point where it crosSpgithic equator,
. %

28. In Ix. 26, when the ship reaches a point B on its roufe the ship's course is fonnd to
be 200°, What is the latitude of B?

A\
29, A destroyer sailing at an average rate ol 30 kg?l& leaves New Yok (lot, 40° 28 N,
long. 74° W) on a course of 102°. It continueg'aiithis route for 24 hours untit it reaches
a point 4. At A the ship takes a course of 20%5nd continues on this second route for
30 hours. Ab the end of the 30 hours howyfar 1s the destroyer fromt New York?

30. Find the position of a point in thg.;";ﬁiailtic Ocean which is 1920 nautical miles from
Nuntucket (lat. 41° 28° N, long. 700M) and the same distance from Vera Cruz {lat.
16° 11' N, long. 96° 4' W}, ~ :

248. The Cosinc-Have “}r}a Formula. In finding the great circle distance
between two points op\t?he Farth’s surface when the positions of those points
arc known we used the’Law of Cosines. (See § 217.) The computation of this
distance can be materially lessened by using
a formula \\-’}l{czh\"involves haversings, and
which 1s de%]:lc-éd from the Law of Cosines
formula, \\&'he derivation and wuse of this
now fp{niiﬂa will now be diseussed.

\T\h(: haversine of an angle @, hav 8, iz

1—cos @
— .

Derivation of Formula (Fig. 270.) let
A (lat. d,° N, long. L,®* W) and B (lat. d.° N,
long. I:° W) be two points on the Earth's
surface,

Then /_\Eq\ =d, and FB=d,

N=EKEF=1§—L,

We are seeking a formula for n. Fic. 279
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By the Law of Cosines:

1} cosn=cosbeosadsnbsinagcos N

2 = =+ sin d; sin d; + cos dy cos d; cos N, (T 5-a, 5-b)
the sign before the term (sin dy sin ;) being + or — accordingly as points A
and B are both on the some side of the equator or on opposite sides of the
equator.

1-¢cosn 1 7F sind; sin dz — cos d; cos N
3) ~ havn==- - 1 , — cos di cos dy cos N

2 2
4) or havn = 1—cos ¢ly cos dy F sin dy sin d; -; cosdycosd; — cosd, cos dycog N
N\
5) _ 1 — cos (dy F dy) + cos dy cos de(1 — cos N} :
2 - 2 AN

1 - cos — cos O
6) - _...&ghlfz) 4 cos dy c0s d ﬂ&ﬁ A
7) or hav n = hav (dy  di) + cos dy cos dy hav N \\

or hav n = hav (d» & di) + cos d cos d» hav N (T 5-h)

Here we have trealed d; and d» as purely mlmri(:al quantities. If, how-
ever, we agree to eall the latitude of a point po #de 1f the point is north of the
equator, and negative when the point is soutlNOTy the equator, then step 7 may
he wrilten: Y .
8) hav # = hav (di - dg)j-fér)s dy cos de hav N,

where (d; — da) now represcnts ‘th‘e. 'zalgebmic difference of di and ds. In

navigalion, the symbol ~ is oftéhbused for this purpose instead of the sym-

bol —.  The formula may nefsbe written:

9) bav n = Ba’\r"(dl ~ dy) + cos dy cos dy hav N

This is known as &he Cosine-Haversine Formula. When tables of natural
and logarithmic hayersines are available, ealeulation of the quantity » is simpler
than it is by theBaw of Cosines.

Liamnple 2.."\Givcn: A (40° N, 80° W), B (30° N, 5O° W),

*

% Pind; distance AB, i.c.,, », In nautical miles.

By I‘fﬁul\t : hav #n = hav (d ~ dx) + cos di cos ds hav N
Hg@ 4 4 = 40° and dp = 30°% o (di~da} = 10°
Also, : N = 80° — 50° = 30°.
hav 1 = hav 10° -+ cos 40 cos 30° hav 30°
— T
hav 10° = 0.00760 log cos 40° = 9.88425
x = 0.04444 log cos 30° = 9.93753
hav . = 0.05204 log hav 30° = 882599
log x = 8.64777
z = 0.04444

- p o= 20°22" = 1582 nautical miles,
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In the exercises of Group Porty-two use this formula to compute the sphevieal
distance between the two points given in each instance. Compute arcs to the
ncarest minute and final distances in nautical miles to four significant figures,
A partial table of haversines, both logarithmie and natural, accompanies these
excreises. I your own logarithmic and trigonometric tables ave [our-place
tables, round off the values given in the haversine table to fowr figures in doing
your computation. Since these tables are computed here for the given angle
read to the nearcst minute only, the corvesponding values of the log hav and
nat hav can vary some from the values which arc tabulated.

3 . Q
EXERCISES
Group Forty-two \’ \“.\
N . Haversime T:
1. A (47° K, 60° W) avgasgre Tuble

B(65° N, 15°W) Angle }ug haw Nat lav
10° NN\ 7.88059 — 10 0.00760

2, A (60° N, 165° W) }}25256' ’ i%g;é; ggégig

= N 21T L ? [ 1% . .

B s N, 07w BI0s 851014 0.03468

. e oo o 230220 861286 0.04101

3. 4 (35° N, 78" W) PN O N 15 0.05204
B (30° 8, 50° W) D 25° 576735 0.05553
A\ 20° 40 B.81637 0.06552

4. 4 (150, 60 ) NN B0 S 0ooow
L3} o T ol S25 . t

B (30° 5, 30° E) N 45°, 9.16568 0.14645

N 48° 9.21851 0.16539

5. *4 (85° N, 118° W) P\ 49° 500 9.25081 0.17816
B {(10° 8, 150° &) \‘ / 6° 0.16043 ().28869

‘ a\ 66° 4/ 9.47300 0.20716

6. New York (40° 287,.74° W) 697347 9.51246 032543
Liverpoot (33° 2844/ 3° 4/ W) 60735 951205 082550
ROt 2 SO 69° 52 D.51368 0.32785

K7 N 707 o 0.71878 0.33021

7. Boston (42% 2}5”}1, 71° 4" W) TO° 66 9.52720 0.33067
CapetowsiN33° 56’ B, 18° 29" ) 73739 9.35339 0.35925
N 75° 9. 56580 0.37059

- @ 19 5 3817

8. ChiGiko (41° 50’ N, &7° 35" W) el ossrs 00T
iy GRS §2° 207 9.63308 0.4345¢

%ﬁ Juarl (18 28 N, 6677 “) 20° 39 0.69535 0,1_96(}7
92° 9.71387 0.51745
9. Scattle (47° 36’ N, 122° 20’ W) 94° 9.72825 0.53;82_
Montevideo {34° 33’ 5, 56° 16" W 975119 (.5638% E

( ’ W) 97721 H9 75128 0.56400

° 95 7 059306

10. Nome (64° 30’ N, 165° 24’ W) e T 0.68574
Manila {14° 34’ N, 120° 57 E) D (054394 0.60813}
115721 g9.34398 0.69820%

{An cxcellent table of haversines for angles from 0° to 180° may be found in Bowditeh:
American Practical Navigator, or in any standard manual of navigation).

* Take ecare in compuling angle N of the formula.
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249, Sailing the Great Circle Route in Actual Practice. The great cirele
youte, being the shortest route between two given points (§ 191}, would seem
to be the ideal one, especially if the voyage to be made is a long one. Howevcr,
any great cirele (except a meridian or the equator) erosses successive meridians
at a constantly changing angle. Thus, if 4 ship were to sail exectly along a
great circle, its course would have to be in a state of continuous change. Since
the problem of navigating a ship in this manner is w0 involved as to be prac-
tically out of the question, an approximalion to a great circle route is
adopted when a more or less direct route is demanded.

This approximation to a true great virele route is achieved by means of a
cuecession of short curves or ares known as rhumb lines. A rhumb ling afNoxo-
drome ie a eurve on the Farth's surface which cuts all meridians at g, constant
angle. (If a rhumb line is extended sufficiently it forms a spiral }\i’higﬁl draws
ever neaver to a pole.) Thus, a ship sailing along a rhumb line\ls enabled to
maintain a fixed course. In approximating the true great cil“‘dé’:imute by means

AV

Fic. 280 \
o

of these suceessive rhumb Hnes the ship ma.y,‘.tl}ei'i:fore, be kept on one fixed
course aftor another, - —the length of each wivthe rhumb lines sailed being
desired degrec of approximation to the true
1 guii}’t'circle route from A to B is analogous
AY0 & point B along a series of ares whose

small or great depending upeon the
great circle. Approximating the tre
to moving in a plane from a point
extremities lie on the straight o
line-zegment AB (Fig. 280), {u—~\
the shorter the separate inst,
the closer being the apprexima-
tion to the direct path’{fom A
to B. Obviously, asbip’s route
may be laid alowgydmeridian or
along the egnator or along a
parallel of Jatitude which is very
near gheleguator; and the prob-
lem 8 Aavigaling such a route
is not difficult since the ship's
course in effcet may be kept
constant. But in gencral the
term “sailing the . great cirele
route” as it is employed in
practice implies sailing along
a sueeession of rhumb lines
which approximate the true
great cirele path.

Fic. 281



184 SOLTD GEOMEUTRY AND SPIERICAL TRIGONOMETRY

In laying out the great circle route
just discussed the navigator resorts to
two types of maps or charts: the great
eircle chart and the Mercalor’'s chart.

A great circle chart (Fig. 281) de-
picts a portion of the Earth's surface
distorted in such a way that all great
circle ares appear as straight lines.
Thus, in Tig, 281, the straight lne-
scgment A B represents the great cir-
cle arc connceting the corresponding
points 4 and B on the glche,

On the Mercator’s chart (Fig. 282)
the Farth's surface is again picturced
in distortion but this timc of such
kind that all rhumb lines appear as
straight lincs. In Fig. 282, which i3
a Mereator’s chart suppesedly of the
same region as that pietured in Fig, 281,

?_%
D
/ 3
// N
[ O\
1 2\
NS ¢
i " N
I < X
N
(& —
Y, '
) T, 282

W

straight line-segment AR represents the rb.llﬁﬂ) line connecting the correspond-
ing points A and B on the globe. Equa}ly'sfiamzd meridians of the Earth appear
as equally spaced straight lines Which are parallel. Parallels of latitude appear
as parallel straight lines which areperpendicular to the meridian lines. Note

that on the chart the distances™\"
between equally spaeed para&éls
of latitude become greatef and
greater as the parallel:&\eccde
from the equator, If s impor-
tant to note that #heMercator’s
chart reproduccéall angles of the
Earth’s sulig‘zg\"i“aithfully. For
example, in ¥ig. 282, the angle
DCRB formed by the linc 4B and
the¢heridian m is exactly equal
to f}}c angle between the two cor-
responding curves on the glohe,

Example 3. Lay out a great
circle route from 4 (15° N, 60° W)
to B (60° N, 15° W), ({lse Figs. 283,
284.)

1) On the great circle chart (Fig. 283)
lay a straight edge across points
A and B. If this linc is seen to
pass clear of any islands or shoals

Fic. 283
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indicated on the chart then a great circle route may be used. Draw the struighi
line AR, remembering that this line represents the great circle arc on the Earth,
Note the codrdinates (lat. and long.)
of several conveniently situated points
on AEB such as X and Y. Mark c D E B
these peints. On a genuine chart 60
each “sguars” bounded by two par-
allels and two meridians is subdivided
into smaller “squares” by dotted Y
lines o spaced that any peint may
he plotted accurately, and the eobrdi-
nates of any point aircady plotted on
the chart can be read acenrately.
Now plot the points 4, X, ¥, B on / A
the AMereator’s chart (Mg, 284) which < \)
in practice is also ruled for accurate 4
plotting and reading,. |
In THe, 284 draw the chords AX, “~
XY, ¥B. Each of these chords must "S -
represent s thumb line.  These three ) 80
chords taken in suecession rvepresend IN
the required route. Here, for sake NV
of llugtration, only three chords were SV
used,  Obviously any greater number A/ AN
of chords might have been used to \
approximate more clogely the true B3

greab circle if in step 2 a greatcr.,:"ﬁﬂo 45° 30° 15
number of points X, ¥, ete. had beeny ™ Tic. 284

tabulated. ~n T

The angles CAX, DXY, EYB{ive correctly the cowrses to be taken at A, X, ¥,
respectively.  Moreover, the{positions (lat. and long.) of 4, X, ¥, B being known,
the route is completely determined. On a genuine large-scale Mereator's chart these
angles and the lengths 06 the chords (nautical miles) tay be read fairly accurately.
There are, of ecourse,Zinithematical means of calculating the angles and the lengths
of the chords. Thése fmethods will be diseussed after 1ix. 6 in the following group of
exercises, D

15

Q

~\
\’\\‘.

ol
¢

) Group Forty-three

EXERCISES

1. Pr}cu;c a great eircle chart of the North Atlantic and the eorresponding Mercator’s
chart, and practice laying out great eircle routes, as for example:

(a) New York to Plymouth, England,

{(h) Norfolk, Virginia to Brest, France,

{e} Halifax, Nova Seotia to Tisbon, Portugal,

{} San Juan, Puerto Rico to the Agores.

2. Tn Example 3 just discussed find by Spherical Trigonometry the true great eircle
distance from A to 5.

3. In Fxample 3 find by Spherical Trigonometry the latitudes of points X and ¥, re-
spectively.
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4. A preat circle chart is made as follows: the globe (Harth) is placed tangent to a plane
M at a point T (Fig. 283). DPoints of the globe’s surface are then projected upon M by
means of rays from the center of the sphere,  Prove by Holid Geometry that the projec-
tion upon M of any great eircle arc of the sphere must be o gtraight linc-segment.

M (’:.\
7%
Frc. 285

5. In Fx. 4 describe the appearance of the mbibct-ions upon M of the Farth’s meridians
when 1"is taken: {a) on the equator; (h) atieither pole; (¢) neither at a pole nov on the
equator. s\

6. How much of the Larth’s sur{ggs can be depicted on 8 great cirele chart st once:
half, more than half, or less thar%nh}sdf ?

3

On the Mercator's chaft the actual number of degrees in angle NARB i3 the
course of a ship sailing fom A along the rhumb line A8 (Fig. 286). Therefore,
the course (£ NAB gnZA B('} can be found by solving the right triangle 4CB by
Plane Frlgonometﬁg < provided that the lengths AC and OB can be expressed
in the same unifs)

The umt.gbncrdlly chosen for this purpose is 4,
& segment. gtual to the length of one minute of :
arc 1'”‘the equator as the equator appears on
the Mefeator’s chart. Since, on this chart, a ono-
minute segment of the equator equals in length |
a ohe-minute scgment of any parallel of latitude,
the number of ihese unils in AC of Fig. 286 |

must be the same as the number of minutes in - — e
the difference in longitude of 4 and Cor A and B.

Expressed in these units the length of AC is _ P ye
therelore {75 — 30160 = 2700, These units are .

called meridional parts. In order to esprossthe  76°  60° 45 30°

length of B in the same units refer to a table of Fie. 286
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meridional parts in which the latitude of any chosen point is tabulated in
terms ol meridional parts. From the table the number of meridional parts,
M.D, for DB (45%) is 3013; M.P. for DC (15°) is 904. Therefore, M.D. for

AC 2700 S
{8 =23013—904=2109. Hence, tan ABC = TB " 2100° and ZABC = 52° 1",

To find the length of A8 in nautieal miles it is necessary first to express the
length of C'8 in nautical miles. The number of nautical miles in €8 is the same
as the number of minutes in the dilference in latitude, or (45 — 15)60 or 30(60)
or 1800.

Therefore, AB = %?,1, = 2925 nautical miles, O
The ship's course is 52° 1', and the length of the rhumb line routé >1B s 2025
nautical miles, \ s.

In Exs. 7-15 calculate the starting course {at 4) of a shi}f ééfiling the rthumb
line AR, TFind the length of the rhumb line in nautlcal xm}es Use the partial
lable of meridional parts given at the right.

7. A (50° N, 45° W) N
B (40° N, 28° W) A\
8. A (33° 8, 56° W) S
B (55 8, 07) Latituds »~ Meridional Ports
0. A (21° N, 155° W) KU 599
B {(38° N, 124° W) w15 904
s 1091
10. A (2578, 128° W) N o 128]
B (45° 8, 75° W) o) 25° 1540
1L A (34° N, 116° W) o N 33° 2087
B(15 8 135°W) 34 218
2 2 \ 38° 2454
12. 4 (10° 8, 150° Y 40° 2608
B{1%° N, 167° E}s 45° 3013
W 48 3274
13. 4 (50° N, A50E) 50° 2457
B (15° §,90° W) 5g0 3745
4. 4 (GIEN, 180%) 55° 3949

NBBd'N, 124° W)

15. 4 (33° N, 81° W)

B (48° N, 4° W)
16. Tn Ex. 7 find by Spherical Trigonometry the great cirele distance from A to B.
Compare with the thumb line distance.

17, Do the same in Ex. 15.
230. The Celestial Sphere. Fundamental to the study of Nautical Astronomy

is the concept celestial sphere. The celestial sphere is an imaginary ]mllc)\:-' sphere
of gigantic size which cuvelops the Earth and 1s concentric with it. So great
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iz the radius of this imagined sphere that by comparison the length of the
Farth’s radius is negligible. Nautical Astronomy 1s nol concerncd with the
actual siz¢ of the celestial sphere but rather with points lying on its surface
and the solutions {(in angular measure) of certain spherieal triangles determined
by these points. All the heavenly bodies: sun, moon, stars and plancts visible
from the Earth, are imagined to lie on the surface of the celestinl sphere and to
move aeross its surface, One of these heavenly bodics, conveniently selected,
18 always taken as one vertex of any one of the gpherical triangles just mentioned.
Figure 287 depiets the celestial sphere with the liarth inside it.  Refer to this
diagram while studying the following discussion.

Deseription of the Celestial Sphere. Three points on the celestial gphel ¢ which
are of especial inferest are: (a) the poles {either P or &), (b} some ¢hprveniently
chosen eelestral body M such as the sun, (¢} a point Z called the zenith. The
celestial poles P and @ are deter mmed by extending the I',atth & axis north
and south, respectively, to meet the surface of the celeatqfil sphere. 17 is the
celestial north pole, Q the eelestial south pole; PQisthe celosfml axis. The body M
may be the sun, moon, or some one of the stars or pl avete [amiliar to navigators.
The point ¢ which is directly under M on the Earth's surface iz called the
geographic position (GP) of M. Gcnmet.rica.ll}{g\i)omts M, G, ) (center of the
Earth) are collincar. Tf A iy some given tersesihal point, the zenith of A4 is the
celestial point Z which appears dircetly oversd. Points Z, 4, O are collinear.

The positions of eclestial bodies aqd‘iio’ints may be expressed by a celestial
codrdinate system virlually corresponding to the latitude-longitude system on
the Earth’s surface. The hasie li"nes: of reference in one such codrdinate system
are the celestial equator and thegdelestiol prime meridian, cach of which in turn
is determined by extending, the plane of the terrestrial cquator and the plane
of the terrestrial prime me\m\than to cut the surface of the cclostial sphere,  In

T i
Iig. 287, D'JC'1" is ghe’ eclestial equalor, and PT'LQ is the cclestial prime
mpndmn The gvm,m?l term celestial meridian is used in the same senge as the
term meridian pn Jhe Iarth’s surface. In particular, the celestinl meridian

T

which passesghl t\rouwh the body M is called the hour eircle (P FD'Q in Fig. 287}
The sph L8formed by the hour cirele and the celestial meridian through Z is
called, tho\loml hour amgle (LHA) of M. Sph Zé formed by the hour circle and
the celestial prime meridian is the Greemwich hour angle (GHA) of M. Simitarly,
sph £ & may be regarded as the GHA of Z. CHA {or any celestial body or point
is measured positively westward up to 360° starting at the celestial prime
meridian.  In this respect GHA differs from terrestrial longitude which 18
meagured 180° west and 180° cast from ihe prime meridian. The declinalion
(Del.) of a celestial point is its angular distanee north or south of the celestial
equator. Thus, Del. of M is D' ; Deloof Zis €72, Note that Del, of M = lat.
of @, Del. of Z = lut. of A,

Del. and GHA are the two codrdinates of a celestial point in the cotrdinate
system just outlined. Del. and GIIA of those celestial bodies which are im-
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73
celestial north 1)01}\\ )
celestial zouth pole
celestial axis (7,

celestintbody
GP o M~

) ~g{v\en terrestrial point

Zenith of 4

“terrestrial equator

cclestial equator
terrestrial prime meridian
celestial prime meridian

hour circle of body

zenith meridian
LITA of M
GHA of M
GHA of Z
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portant to navigalors are listed in the Nautical Almanac periodically through
each day of the year, the time of day corresponding to each tabulation being
given in Greenwich Civil Time, In the Nautical Almanac a Del. north is given
with a + sign, a Del. gonth with a — =ign.

Anything approaching a complete treatment of “time” or “time of day”
is far too involved to be given here. We shall mention only one method of
reckoning time known as true sun fime or epparent time.  When the hour circle
of the sun coincides with the zenith meridian of a given terrestrial point 4
the appareni time at A is said to be 12:00 noon. In reality the Earth rotates
about its own axis in an easterly direction. Therefore, from the vieppoint of
the navigator the Tarth appears to remain stationary w lnl( the sun moves across
the surface of the celestial sphere in a westerly dirvection about thnEarth, I
we assume that the sun makes such a circuit once in exactly “2% hours, then
an inercase of 15 in the sun’s GHA must correspond to 31;1‘6’]‘1[)‘:‘:‘ of 1 hour of
time sinee 360 + 24 = 15, Thus, in Fig, 287, calling M the sun, if ¢ is 15° with
M west of Z, the appuarent time at A is 1 hour alter noon or 1:00p.m. Tfé=30°
with M east of Z the apparcat time at A is 2 hourd\béfore noon or 10:00 a.m,
The apparent timeat 4, thercfore, is known if the mimber of degrees in is known,
{/15 being the number of hours bofm(, or after l\Qén aceordingly as Jf js cast or
west of Z.

in Fig. 287 sph APMZ having as 51des 1h(‘ meridian arves P24 and PM and
the great circle are ZM is called the @fonomical triangle. By solving this tri-
angle when three of its parts are a\.mlible & navigator may determine his ship’s
Jatitude and longitude. /53 is calltd the polar dislance of the body M, a term
which must not be confused with the definition of polar distance given in § 188.
ZM s the zendth distance o%f ' 8ph £ PZM is the azimuth of 3f. Lt iz important
to note that APMZ ispexdetly the same as the ANGA on the liarth, angular
measure being implied™ One triangle is really the projection of tlw other.
Either of these tnangTes may be thought of as the astronomical triangle. Recall
that, in cffcet, i Was ANGA which was used in §§ 247, 248 to solve problems
mVOh ing Lcr.\;g,trml great circle distances, positions, beanngﬂ ete.

The great circle HEFJKL which has Z for a pole is known as the celestiol
horizon mth reference to A, Celestial horizon must nof be confused with the

Vl%’llﬁe hovizon” which is the apparent line of scparation of Earth from sky as
geen from aboard ship. The planc of the celestial horizon passes through 0,
while that of the visible horizon is parallel to the celestial horizon being the
plane of a small circle of the Earth. In Fig. 288 V is the eve of an observer at
A, Z is the zenith, M is a cclestial body. ¢ and D are points of contact of
tangtnts to the I3 arth from V, and C'D represents the plane of the visible horizon.
EF is the plane of the celestial horizon. The altitude of the body M is its angular
distance above £F, viz. £6 or EM. Altitude of M is its spherical distance from
the celestial horizon. The altitude of M can be obtained by direct Ubservatiop
with a sextant. The angle ¢, the angle of elevation (virtually) of 3 [rom v,
noted. A suitable corrcetion from tables is then applied to the reading t0
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K24
Fra, 288 W

obtain the number of degrees in the recll';.ifed 28 or EM. Returning now to
Fig. 287 we note that ZE must be a qadrant since Z is a pole of A EFJKL.
EAT is the altitude of M. Thm-efoye;’;f&: any visible body M : altitude + zenith
distance = 90° always. ~

)
\\..u EXERCISES

O Group Forty-four

1. In Fig. 287 show t-hal‘r}tfxle ungle # equals the longitude of A if 8 does not exeecd 180°, and
that 360° — 8 cqudliithe longitude of A if 8 does exceed 180°.
7\

2. I'ind the 10;%{1-*&'&10 of a point A if the GHA of its zenith s 70°; 130°; 180°; 260°; 320°
3. Tind th&'GHA of the zenith of A if Jong. A = 30°W; 40°E; 180%

AN
4. TH&Nmgitude of 4 is 75° W. Find the apparent time at A st the instant \'.-'}_mrl the
upparat time at Greenwich is 8:00 Az 12:00 noon; 6:00 rac; 12:00 miduight.
5. Do Fix. 4 assuming that long. 4 = 133" E.
6. When it is 8:00 Aat. at New York (long. 74° W) what is the time at Greenwich?
7. In the afterncon the LIA of the sun relative to a given point A is 22° 30°. Find the
apparent time at A.
8. In the forenoon the LHA of the sun is found to be 55°. What is the apparent time at
the given point?

9. At the same instant the apparent time at A is 10:00 a.r. and that at Greenwich is
1:00 p.M. Find the GHA of A’s zenith and hence find the longitude of A.



192 SOLID GEOMETRY AND SPHERICAT TRIGONOMETRY '

10. Find the longitude of & point B if af the sume instant the apparent time ab B is
3:00 paa. and that at Greenwich 1s 6:00 s,

11, When the apparent time at Greenwich is 12 : 00 midnight what iz the longituds of u
point A at which the apparent time is 12 : 00 noon? :

12, If A is in the western hemisphere, and if T represents the number of hours before
or after apparent noon at A, show that:

(a) long. A = (157 + GHA of sun) if sun is cast of 4;

(b) long. 4 = (GHA of sun — 1577 if sun is west of 4.

13. If 4 is in the eastern hemisphere, show that
(a) long. A = (360 — 15T — GHA sun) if sun is east of 4;

(b) long, A = (360 — GHA sun + 157) il sun is west of 4. "\
14, Find the zenith distance of M if the altiturde of 3 is 35°. K¢ :\

15. Find the polar distance of M if Del. M 15 20° N. OO

16. Find PZ of the astronomical triangle if lat. 4 = 40° N, PN )

If the latitude of A i§ known together with the decling ‘!:GEE}: and altitude of the
sun, then all three sides of the astronomical {riangle BAEM are readily found.
Angle { may then be found by Spherical Trigonom%ry, and hence the apparent

time at A, either forenoon or afternoon, can be [c{i

W

17. Find the apparent time at 4 from the datay}at’. A4 = 40° N, Del. M = 20° N, alt
M = 35° observation being made in the afterngon-

In Txs. 18-21 find the apparent time af :tlié “places inclicated.

Lat. of place Dl M‘f""f'llt. M AM, oF P.M,
18. Santizgo {19° 57" N) 229N 30° .M.
19, Dublin (53° 23’ N) AN 40° A3
20. Chieago (41° 51" N} 4 MN20°N 50° P.M.
21. Melbourne (37° 50*5\)“.5 18° N 20° AN,

22, Referring to Fig{ﬁ%f derive the formula:
7\

N\~ hav { = cac p goe d 8in 5 eos (s — A)

2 8

where 1, = LHA of M, p = polar distance of M, d = latitude of 4, & = altitude of M,
s = p ¥4 + h). Usc Law of Cosines, definition of haversine (§ 248), T 5--b, 64, 9-h.
This forfaula can be used to advantage in problems such as Exs. 17-21 preceding.

23. Do Lix. 18 by this {ormula.

214. Do Ex. 20 by this formula.

The apparenl lime of sunrise or sunset at & given point A can be found casily
if the latitude of A and the declinalion of the sun are known. Al sunrisc or sunset
the altitude of the sun is assumed Lo be 0°. Therefore, the zenith distance ZM
will be 90°. Sph APZM is then seen Lo be a quadrantal {triangle which can bhe
solved for angle ¢ by the methods of § 242, or by the Law of Cosines, or by the
formula of Ex. 22.
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In Lixs. 25-28 find the apparent time of sunrise or sunset as indicated.
a5, Sunrisc ab Portland, Me. {(43° 39° N}, Del. sun = 18° 11’ 8.
26, Sunset ab New Orleans (20° 58 N), Del. sun = 23° 23,
97, Sunrise at 1o de Janciro (22° 547 5), Del. sun = 20° 4 N.
98 Qunset at Sun Luis Obispo, Cal, (85° 10' N}, Del. sun = 23°9' N.

The Jatitude of a point A is readily determined by a noon observation of
the sun, the san’s declination being known. At 12:00 noon, apparent time, the
sun M appears on the zenith meridian of A. Tence, by direct observation the
senith distance 27 can be determined.

20. 1n Fig. 287 visualize M moved over to the genith meridian. Representing the zenith

distance ZA by z, show that: A

{8} Tat. 4 = Del. M 4 2, if Jat. A4 > Del. M and if lat. 4 and Del. M .ar\é ?Jf}.he same
name. (Latitudes or declinations are said to be of the same name il bothare measured
north or both wre meagured south, If one is measured north agr(i"j;he other south,
they are said to be of differend name.) N

(b) Lut. 4 = Del. M — 2, il lat. 4 < el M and if lat. A ar}d?DT*.l. M are of the same
THLIILE, 4

(¢) Lat. 4 = 2 — Del. M, if lab. A and Del. M arc of diﬁe{(ﬂint name.

44h. Find the latitude of 4 point A by noon ubserva!;'}cqi;o sun from the following data:

() z = 20° 10, Del. = 18° 5" N, lat. > Del. ang $atne name;

6545, Del = 23712 N, lat. < Del. and,Same name;

{¢) 2 = 63° 10/, Del, = 22°8, lat. and Daiwef different name;

= 18°30¢, Del. = 1378, lat. > Bél. apd same name;

() z=12°, Del =22°4583, lat.ﬂ.’D{;L and same NAME.

When the obscrved body MASwot on the celestial meridian of the observer,
i.e., not on the zenith mcridiaﬁj}he latitude of A canbe 1 ound from the astronom-
ieal friangle PZM provijdédithat the aliitude, deckination, and LHA of M are
known. Tf the three laffor quantities are known then ZM, PM, tof APZM are
at once determined”\Byj Sphericalf\Trigonome‘gg PZ can then be found. If 4
is north of the eq@ator, lat, 4 = ("7 = 90°— P7; if A is south of the equator,

—
o
=
o
Il

—_—

=

R
w
|

[

lat. A = £7 S80°, In either case the latitude of A is P
known if P/}: ls Arst found. A method of caleulating @
F7 is.ilistrated by the following example. 30

G}\'c%: A porth of the equator; for & certain star M:
Del. — 60° N, alt. = 40°, LHA = 45°. o
Find the latitude of 4. __ )
" Qinee Del, M = 60° N, PM = 30° (cf. Fig, 287). Siuce
alt, — 40°, ZAT = 50°. LHA = ¢ = 45° 50°
From M draw altitude MW in sph APZM (Fig, 289).
Applying Napier’s Rule to rt APWM:
Pl — 29019, Also, MW = 20°43". 3

Again, in b AZWM: WEZ = 46°35". Fie, 289
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PZ = PW + W= 22°12 + 46° 35 = 68° 47",

lat. 4 = 90° — PZ = 00° — 68° 47" = 21° 13’ N,
In Exs. 31-34 find the latitude of 4 from the accompanying data.
Hemisphere  Del M Alt. M LHA of M

31. north 60° N 20° 56°
32. north 15° N 22° 722
33, south 23° N 30° 42° %..
34. south 16° & 25° 60°

35. A ship B is in the South Pacific. The appalent fime at B is known to 1:(,\8 00 4.m.,
w hlle that at Greenwich is 6:00 p.m. The sun’s declination is 22° N ;Q}slmm B the
sun’s altitude iz found to be 15°. Tind the latitude and longitude of & 'Q\

A
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N\
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'SP 4
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O
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N\
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Chapter Elighteen

SPHERICAL TRIGONOMETRY: SUPPLEMENTARY
FORMULAS FOR OBLIQUE TRIANGLES . (N

~~~
ANAD

—& N\
P\
£ Y
/
5

\
277%G
4

Each of the formulas offcred in this chapter is with refefence to an oblique
spherical triangle ABC with sides @, b, ¢ lettered in the dlsfomary fashion. The
nge of these formulas in solving an oblique trlauie Affords a refinement of
procedure in comparison with the methods alreadPpresented, — especially if a
complete solution of the triangle is required. lt\ull be noted that without ex-
ception cach of these new formulas ig be tter .a;dapted to logarithmie computation

*

than is the Law of Cosines. “

L

251. The Half-angle ¥ormulas (FOr"the case “SS8" of § 246).

)’1 \f

@ tang 2\ blfh (g — — a)
S

® tan 2 sin (s — b)

oD C_ S
@ t(m sin (s — €}

where s=a+b+eh

S -

NS = \/ in (s — @) sin (s~ ) sin (s — ¢)

o\ 4 and —
gin s

Derivation of Formula

A 1—cos 4 (T 8-¢)
i o) = F
1) tan (2) 1+ cos A

1_(0911-3%?)(05(:
9) _ g4in b sin ¢ ( @ )

cos @ — cog hcog e
1+
gin b sin ¢

195
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3 _ (sin b sin ¢+ eos b cos ¢) — cos @
) ~ (sin b sin ¢ — cos b cos ¢) + cos @
4 _ cos{b—c)—cosa eos a — cos (b — ¢)
) T —cos(btc)Feosa  cos (b+¢)— cos a
5) _singlat+b—e¢) sin ${a — b4 ¢)
Csind@a+ b+ ey sindbtc—a)
6) Let s=%a+b+ ¢
Then 3a+b—¢)=(s—¢); Fa—b+e¢)=(s—1):
gbh+e—ua) = (s—a) N\
7) Subst. in 5): tan? (—1 = M (q — C) sin (s — b) ) W)
2 Sin § 8in {8 — @) N
8) . \/%m (s — ¢) sin sin (s — b) o *'\}‘.
sin ¢ sin (s — a) . m:\'\"
\/9111 {5 —a) sin (s — ) sin (s — g\N"
9) - sin s N
) sin (5 — a) XN,
- In step 9, denote the radical in the r}u%:imiﬁtor by f.
10} tan 4 - I ‘iiﬁl;r] s for 8 and @9
2 sin(s—a) | W35 y -
R
Note: Compare formul;@‘@, (19, @ with those of T 16.
\5,'
252, The Ha]f-sidq Formulas (For the ease “AAA” of §248).
N\
@ tan g = F cos (S~ 4)
N2 tan %): F cos (S~ B)
A ’
\”\;”' @ tan g Feos (S— )
where S =%(4+ B4 (),
and  F={/—_ " €% o : - :
e08 {8 — A} cos (8§ — B) cos (8 ~ ()
The derivation is similar to ths et tan2{ 2y = L= 08¢
( rva 15 simular to that of @, Set tan (2 1T cos ¢

Place of cos @ substitute ——

cos A + cos B cos { ('
sin Bsin ¢ from @3.)

(T 6-b)

(T 9~d)

, and in
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253. Napier’s Analogies 1 (For cascs “SAS, AAS, SSA™ of § 246).

A — b
A+B_ ("5

tan 3 =( a-%—b cotg
T2

cos
A—p [sn %” C
@ tan - = 0t -
2 an ©10) "2
2
N\
Deriwation of Formule @) A o
A B N
44 B ang +tan g O
1) tan g = T 5 ) ‘,‘.P,\' (T 6-c)
1 - tangtang SD
e\
_'_(f + ‘}r W
_ sin{s—a) sin{s—H A\
2) - B fz B < ’:.\ (.- )
sin (s — a) s1in (& — b) AN
3) _ JTsin (s — @) + sin (s =B}
sin {s — a) sin (s — &R+ f*
A+B, € 7208 (s — a) + sin (s — b
4 -t Y : -
) ATy tan 2 sm.,({\ ¢)[sin (s — e} sin {8 — ) — f%]
5) _ \(‘{f«;n (s — a)+ sin (s — b)]
sin (3. &) sin (s — b) sin {s — ¢) — f*sin (s — ¢)
A\
6) f\Ehi‘Il (s —a)+sin (s — )] (See derivation of (3, steps 9 and
O Oftsins — f2sin (s — ¢ 10, for the equivalent of f.)
) ~{\ sin (¢ — at + sin (s — b)
AN gin s — sin (s — ¢}
~\J
\/ L 2s—a—"b a—b
sin — — cos —5—
) = ' g
) - g,o‘?s—c (T 9-a-b)
sin 5 ¢08 ~—5
2s—a—b ¢ 20—e¢ a+b
) L. = . t— v .5 =
) Let 2s=a+b+e 5 3 and = 3
"sln c {08 a= b xS 4= b
A+p, ¢ MM e Mg
1) .. tan =22 i =
) tan 9 tan 3 - _—l—_b - e
5111 b [He ) ) ta 2
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cos L7 b
A+ B C2 C .. S
1)~ ftan 57~ = S 5 cot 3| Similarly for @,
T2

254. Napier’s Analogies IT (For cases “ASA, AAS, SSA” of § 248),

4-B
cog -
tan ; b = T _?_ 7 tan é QY
2 O\
— N\ ¢
sin — \/
o — 2 2 PN
@) ta.n—2— = - py tan §~
8 2 .»\\\

(The derivations of @ and @ correspond to,those for § 253.)

255. Law of Species for an Oblique Sphewical Triangle.

Cme-half the sum of any two sidegfliﬁlst be of the same species a5 one-
half the sum of the two anglesopposite these sidos.

) i'\\ Proof
, | . A-B
1) In @ the quantities c&gz—B and tang must each be positive, sinee —5
and £ must each B¢ acute.
2 A

&
2) - the (1\14@1113"[-37 tun %E) will be positive or negative according as the quan-

<

Lo B :
titypeos ; - 18 positive or negative.
4\ ¥4

A+ B
2

3
.oa+b. .
3} That is, g;— 18 greater or less than 90° according as is greater or

loss than 90°,

atb and A

+ B
4} - 5= & 5~ must always be of the same species.

Use of the Formulas

Exampie 1. Solve the AABC in which g = 41%, b = 52° ¢ = 45°,
Use § 251, Ifere: s = 69°, s — g = R85 —b =175 — ¢ = 94°,
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A f 1 \/ sin 28° sin 17° sin 24°

tan — = - = -
2  sin (s —a) sin 28° sin 69°

K|
Use logs to find < and hence find A. Find B and ' similarly.

Ezample 2. Solve the AABC in which 4 = 63°, B 75°, O = 80°,
Cse §252, Here: §S=109°,8 — 4 = 46°, 8 — 34°, 8 — € = 29°,

T s 109
tan = = F cos (S — \f cos s 46°
.m cos ( Ay = ( cos 46° cos 34° cos 29° cos 46

Use logs to find ;, and hence find @, Find & and ¢ similarly O\
' Oy
Ezample 8. Solve the AABC in which ¢ = 142°, 5 = 687, C' = 147"2"\,
.}. a — ' ‘.‘
CUs -
} A-+B 4+ B 2 ¢ cos 37
i = — frc . = ot - = —*—“t73° ’
13 I'ined 5 from tan 5 oy cot, 3 = cam 11‘}5 30
GO ,)— \ ¥
L= b \l
A—B A-p "3 &‘ sin 37°
. LA E_ 2 cot 73° 30°.
2} Find 5 from tan 2 + 78 t‘ 5 = Gin 105° 3
sin .,
. A+B
Solving: =1 = = 137734 NV
hall) VI a i \“:,; Addmg: 44- — ]480 2!’
4 — B . v Subtracting: | B = 127°6
\A;E
3) Find ¢ from tan ¢ —J_ X F__ﬂ:—_ tan , by solving for tan 5 ¢ and cvaluating the
{ ,\ cos ———

result by log%"\:}'
\ o o o
F’.mmple»k.\ Solve the A4ARC in which € = 122°, 4 = 30° b = 40°.

. \“\ . -4
N/ CcOs
L Q) e+ a 2 b cos 46°
1 Fnh‘ ¢ —f; ¢ from tan ——)— = C+ A ta.né cos 76° bun 207
2 - cos
2
L O A
gin ——— in 46°
] f— a c—a _ 2 §=§m46 tan 20°.
2) Find 5 from tan 5 T o C+ A tan 2~ sin 76°

As in Example 3, find ¢ and a separately by adding and then subtractng the values

ctae a4 =2
g g

found for
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Lo
$) Find B from tan CF A4 o 2 B
ro . 2 c4a 2
o8 — 2—

Example 5. Bolve the AABC in which g = 56° & = 138°, B = 1320°. This is the
case “S8A", Henee look for two solutions,
sin B gin g _ .'_sirt 1307 =in 56f'

gin & B gin 138°
A =T71°40" or 108° 2.

1) Find A from sin 4 =

N
By § 242 either of these values is acceptable.  Hence there are two soldhions to the
trizngle. D)
Sol I Sol. II O

X
e

A4 =71°40 A =108 2004 ™

7

. >
2) Find € from § 253, using first one value of A and then t}feé\other. The value of C' for
which 4 = 71° 40" must beloeng to Sol. I; the other value of ¢ helongs to Sol, 11,

3) Find ¢ from § 254, using first one value of 4 and ,tlr@n the ather. The value of ¢ for
which 4 = 71° 40’ must belong to Sol, I, and thé/other value of ¢ must belong to

Sol. 1I. 9

EXERCISES
G’rgup \ ??’orzy-ﬁve

Use § 251 in Exs. 1-4 to find theJdocal hour angle of the sun at 4 given point 4 on the
Earth (from Exs. 18-21 of (}rou“p(rﬂ).

1 Lat. A = 1¢° 57' N, Dcl:{?{“ﬁ} 22°N, alb, M = 30°

2. Tat. 4 = 53°24' N, D:ﬂ. M = 15N, alt. M = 4°

3. Lat. A = 41° 51 Ny Plel, M = 20° N, alt. M = 50°

4. Lab. 4 = 37,6008, Del. M = 18° X, alt, 3 — 20°

5. Using § 2'11%{(1 the azimuth of M in each of the preceding exercises.

6. Giver}:\';f"(30° N, 80° W), B (40° N, 50° W), spherical distance AB is 1582 nautical

nilesesKind by §251: (a) the true bearing of B from 4; (b) the true bearing of 4
from“B/

I

In Exs. 7-11 {from Exs. 1, 3, 4, 6, @ of Group 41) use § 253 to find the stariling course
and finishing course of a ship sailing the trye great cirele route from A to B, given:

7. 4 (10° 30" N, 20° 15' W), B (70° 25 N, 65° W).

8. A (37°32'N, 122° 13' W), B (21° 20’ X, 158° W),

9. A (38°43' N, 118° 15’ W), B (14° 34’ N, 120° 57" ).
10. A (20° 478, 167° 58' ), B (34° 24' N, 110° 43 W),
1. A (43° 4" N, 70° 44’ W), B (30° 20’ N, 30° 30’ W),
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12. Tor & given point A onthe Karth: Del. M = 24° N, lat. 4 = 35° 8, LHA of M = 40°,
Tac § 253 to find the azimuth of M.

’ In Exs. 13-19 use the formulas of this ehapter to solve the triangles from the parts
given,
13. B = 30° 30, C = 121° 25, a = 41°,
14. @ = 105° 107, b = 50° 20/, ¢ = 62° 2%,
15. 4 = 118 5, B = 128° 10", ' = 78° 40",
16. b = 100°, ¢ = 58°, 4 = 108°.
17. 4 = 21° 36", B = 145° 12/, b = 135° 45"

18 a = 100°, b = 65°, A = 08°, QO
19. @ = 42°, b = 119°, A = 30°. O\
A—B a—b g+ b A+ R o\
20. Prove: fan 5 = tan 5 cot 5 tan 5 K \J/
. a—b A — B A+ B a+b ~‘ :
21. 'rove: tan 2 = tan 9 cot — tcm—2 . ‘M'\\.
22, Derive lormula @3. v
23. Derive Formula 6. ’x:\\“
24, Derive Formula &), ,\

25, Derive Formula & by applying @ to the Qcﬂaf triangle of AABC.

256. Spherieal Radius of the Inscribed Circle. Geometric Significance
of ““f**in § 251. If a cirele of thefg}aﬁcre is tangent to the sides of a spherical
triangle A BC, the circle is said t\be tnserebed in the triangle. {By “tangent”
woe meat here “touching eaqlg'ﬁtklc in one point only”.) In Fig. 290, the pole, 0,
of that circle is the spﬁ\m'éal

incentor; the polar distance, r,

of the cirele is thé&’spherical

mrodius, ,\

C
1) Tet O bqi}h’e pole (sph. .
111(3(311tté;\)\0f the inseribed 3
circleiTet the points of
eontact be H, V, W, respec- .
}}Vély.
2) Draw OA, OB, OC. Tt ean
be shown that these arcs
A B

hisect the angles, 4, B, €' of
AABC. _

3) Draw OH, OV, OW. Ttean
be shown that OH = OV = =
OW = r, the inradius. Moreover, OFI}, ov , OW are each perpendicular to
a side of the triangle.

c
Fiag. 200
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4) In the rt AAHO: sin x = cot 4 tan r.  {(&))

2
i A tanvr
5) . tan2 e

6) If s represents fla+b4¢), then z={s—a)
A tan v

P Ay )
A f -
8) Buf tan *9- = Hm (§ 201)
9y o | F=tanr Q)
n — T ,'\:\’
10) That is, tan » — \/sm (s — a) sin (s — 5} sin (8 — ) ~
€in 3 \ ™
(Compare this formula with that of T 12-a.) “.‘ ™

# ~\"
257. Spherical Radins of the Circumscribed Cij‘}le. Geometric Sig-
nificance of “F* in § 252. If the vertices of a gphérical triangle ABC lic on
the cireumference of a circle of the sphere, this,eil%i’e is said to be circumseribed
about the triangle. The pole, O, of this cireless the spherical circumcenter; the
polar distance, R, is the spherical circummd@u&‘f

g, 261

1) Let O be the pole (sph. circumcenter) of the cireumseribed eircle {Fig. 201).

2) Draw O/R (ja, oM perpendicular to A/E, Bfa CE} respectively. It can be
shown that (ﬁ’, (f@,'(ﬁf hisect fﬁi, Ié_@, (*7‘ respectively.

3) Draw OA, 6B, 6C. Tt can be shown that 04 = OB = OC = R.
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4Y In the et AOQB: cos x =tan % cot £ (@)
3) oo tlan ; =1tan R cos z
%) I S represents (4 + B4 C), then z = (8§ — 4)

7)o tan ; = tan B cos (S — 4}

8) But tan % = Feos(S—A4) (§252)

9 o | F=tan R \<\
<y
ot fe ben fr —cos 8§ N\
10) that is, tan K = \/c-os S D sB-BanG-0
@
20
¥
0
&P
N
E'S \&
N\
a0
>
Q
2O
PO
\O
)
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2.
3.
4,

¢

8.

PILANE TRIGONOMETRY: STANDARD FORMULAS

0° - 90° 180°

sin ;0 1 0

CO8 1 ( — !

tanﬁ 0 e | 0 O
_(ot_ =% 0 % O\
sec 1 = —1 | O )

ese | % 1 % ,“)'N}‘.

m'\&'

For any angle A or B:
{a) sin A ese A =1; () cos A see 4 = 1;,@} tan 4 ot A =1

o b2 oy
{a) sin®> A +cos? d =1 e

(b) tan?d 4+ 1=secz 4 O

(¢) cot? A+ 1=rcsc’ 4 O8N

(a} sin (90° =+ A) = cos\A " ese 90° + 4) =  see A
(b} cos (80° = A== r-m‘ts A; sec(00° £ A) = Foese 4
{c) tan (90° =+ A) =& 06t A; et (90° £ A) = Flan 4
(d) sin (180° £ 4) AF sin A; cse (180°% £ A) = F ese A

(e} cos (180° + AP —cos A; see (180° £ A) = — gee A
(f} tan (180° —1_-\4) +tan 4; cot (180° + A)y==cot A
(g} sin (— 43\= —sin A; ese (— A) = —ege 4

th) cos (—'\\gl‘)’ =cos A; sec {— A) =gec A

Q) tm(\ A) = — tan A: oot (— A) = — cot A

(aNm(l £+ B) =gin A cos B £ cosAsin B

(B)\ cos (A = B)=cos Acos BFsin AdsinB
tan A + tan B

(©) tan (4 = B) = 1 tan 4 tan B

(a) sin 24 =2sin 4 vos A

(b} cos 24 =cos? A —sin® A =2¢cos? A —1=1—2gn2 4

_ 4 _ 2tand
(C) tan 24 = m
{(a) ain A_ 4+ 1 T—(—“S 0s A

2 2
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11.

12.

13.

14,

le.
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4 /1 +cos A
{b) cos y =% 5

. /1—0054‘1 sind  l—cosd
\/1—]—0054‘1 l+cosd  sind
A+B _A-B

(e] mn 4

(a) sin A +sin B =2sin 5~ 008 5
() sin A — sin B=2cos‘4;Bsin 3458

Lo pn_s. A+B A-R
¢} cos A+ ecos B=2cos 5 8 £\
(d) cos A —cos B=—24din A ;BsinA ;B ',’\:\"

:.¢\\ %
: 0 o _ W
(a) sin A cos B = sin (4 + B) _‘2_ sin (4 — B) N
(b} cos 4 win B = sin (4 + B) ; sin (4 — 5) \‘\ '
() cos A cos B = cos (4 + B) —g cos (4 — B):\\'
() sin A gsin B= cos (A = B) — eos {4 DB
- 2 A

For any AABC: :“:'“

{(a) K =Zabsin O = Jac sin B =y 3(‘,’ sin A (K = area)
(hy K =+vs{s—a)(s—hjs c), where s=3i(at+b+¢)

O
(g@e— D) G0 sarbto)

{a} Inradius: r = s ;
b_ _ ¢
(b) Circurnradius; \% o :1 B snC
,\“.
Va h ¢

w3 e b ¢
Law of bu}&w Sn A SnB snC
Law Q‘J'\‘:‘(jbsines: ab =B + ¢ — 2bc cos A
\:w' BR=atte:—2aceosB -
\/ =g+ 0 - 2ebcos

A—B a-b + B
Law of Tangents: tan 5 T a5 tan 5

I
|
|

Hali-angle Formulas: tan

‘ el
-
I e

e
&
=

o

|
o

H
£
=

b O rol b

r A N
s where 7 = inradiug.
—-¢
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Altitude pyramid R\ 72
celestial hbody . 189, 190 | Base O\
eone . 80 cone . p '\.\": . 80
eylinder ) 54 evlinder \J. 5d
frustum of cone . 81 frustum of cond ™. 81
frustum of pyramid 73 frustum of p¥ramid 73
prism 46 prism NN 46
pyramid . .72 pyramid\y .72
spherical segment . 140 |  sphepical cone . 139
zone . . 132 splierical pyramid . . 139
Angle Jupherical sector . 139
between line and planc 36 ! | ‘spherical segment | . 140
hetween skew lines 1165 zone . ; Co. 132
of a eone . . 80“ Bealmg, true . . 176, 177
of a lunc . 131
Apparent time o v,“. 1906 | Celestial
Area i“,\ axis . . 188, 189
polyhedron . . \\ . 106 equator . 188, 189
sphere . RN horizon . 189, 190
ZOne . N L 182 meridian . . 188, 189
Astronomical ’m.mgle g . 189, 190 poles . 188, 189
Axial section G prime meridian . 188, 189
cone . \J 80 i Celestial sphere . ... 187
cylinder | \ 55 . description of . . 188-191
Axioms \ xix diagram of . : . 139
AXigssNy Circle (ag a conic sectmn) . 83
01Ne of a r-‘pherc . 113 | Circle of latitude . 122
cone . . 80 | Circles of a sphere (gledt and
eylinder . 58 gmall} . -1
Earth . 121 | Circumeenter of a totrahedron 77
frustum of conc .. . 81| Circumradius of a spherical ftri-
Agimuth | . 189, 190 angle | . 202, 203
Co-latitude . 177
Baszal edge Collinear . 1
conec . 80 | Cong C. 1
evlinder b4 mrvumscmb(d czlmuf 8 Py mmld 87
prism 46 equilateral {sce Ex. 29) o7

206
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PAGK | PAGE
inscribed in a pyramid . 87 pyramidal surface . 71
right eircular, or cone of revo- Distance
lution ) 80 between parallel planes 22
similar right (,1rcular . 80 point to a plane . .. 13
Congruent point to a spherical sulfa,(e .. 112
dihedral angles . 32 spherical . 114
polyhedral angles . 103 | Dodecahedron. . 107
spherical polygons | . 127
Conie gections Edge
circle 23 polyhedral angle 7\ 100
ellipse . 84 polyhedron | . N, 106
hyperbola 84 solid (in general) oA 45
parabola . &3 | Element O
Conie solid - 111 come . . . .. A+ .. 80
Conie surface (of one or two conie surface . £
nappes) L. .70 eylinder . . AN A
Coplanay . . . . 1 evlindrie gurfakce 53
Corresponding polyhedral anglo 125 prismatic'strface . 45
Cosine-haversine Formula . 180, 181 pyramddal’surface . 71
Course {(ship's) ) 1?6, 177 | Ellipges ™ 84
gtarting and finishing .. 178 | Equater
Cube {or hexahedron) 47, 107 | Jcelestial . 188, 189
Cylinder . 53 O terrestrial 121
cireumseribed about a pmm 56"
inseribed in a prism . . "85 | Face
oblique Fa L5 of a polyhedral angle . 100
of revolution . L N 55 of a prismatic surfacc 45
right ) . \\ N 35 of a golid in gencral .. 45
r]ght cirenlar . o U K5 Face anglea of a polvhedral ang,le 100
right section of .« &)™ 54 | Footof aline meeting a plane . . 7
similar right (,IT'LJ.k%}J‘ 55 | Frustum o
Cylindric solid 67 cireumseribed and inseribed 87
Cylindrie ﬁul'f.ﬁ\ye 53 of a cone . 81
R\ of a pyramid . 73
Declln.itmﬁ ’ . 188, 189
Disgafial™ Generatrix
lmz\of a parallelepiped . . . . 47 comic surface 79
plane of a paralleleplped . 47 cylindrie surface 53
Dihedral angle 31 prismatic surface 45
acute, obtuse, right 32 pyramidal surface . 71
equal (or congruent) . 32 | Geographie position (GP) 188 189
measurc of . 32 | Great circle {(of a sphere) . . . . 113
p]_a_ne ang}e of a3 Greut circle chart . . . . . 183, 184
Directrix Greenwich hour angle (GITA) 188, 189
conie surface 79 .
eylindrie surface 53 | Half-angle formulas (Spherical
prismatic surface 45 Trig.) R 195
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208 INDEX
TAGE PAGE
Half-gide formulas (Spherical pyramid ag limit of sum of
Trig.) . 196 prisms . . . g1
ITaversine . 180 sphere as hmltmg form of poly
Hexahedron (or ('uhe) . 107 hedron . . .. 138
Horizon Local hour ang]e (LH {) . 188, 184
celestial . 189, 190 | Locus (§28, note} . . . . . . . 14
visible . . . . 180 | Longitude ) . . 122
Hour circle . . 188, 189 | Loxodrome {or rhumb 1111(,) . 183
Hywperbola 84 | Tane C e e o131
angleof . . . . . . . .. . 131
Icosahedron . . 107
Incenter of a tetrahedron .~ . 78| Median of a tetrahedro)*. . . 77
Inclination of a line to a plane . 36 | Aorcator’s chart . 20 RET7]
Inradiug of & spherical triangle Meridian . 1t
. 201, 202 of Greenwich, gk phmo meridian 128
Tsosceles spherical triangle, sohs- Meridional pELQJS 186
tion of . - 167 | Mid-section¥
. o of frugtum . . 89
Knot 122 of py&!md or eone (-\(,0 L\ 17) a0
Lateral area K Qe
cone . 80 | Napier
cylinder 58 “&nalogmsl II (Spherieal Trig.)
frustum of cone 8K 197, 198
frustum of pyramid 86" Thistorical note . 162
prism . . . . . . . . . . N8 Rule of Circular Parts {"apheu—
pyramid . . . . . . . AN 72 cal Trig.) . . 162
Lateral edge \ Nappes
frustum of pyrarmd \\ . 73 conic surface . 79
prism . 46 pyramidal surface . . . . . . 7l
pyramid . . . @ > ... 72| Nautical mile . 122
Lateral face \ North pole
frustum of pyrdmid . . . . . 73 celestial . 188, 189
prism 46 terrestrial . 121
pyramidi\ 72
Lateraldnrfuce Oblique
cofity . 80 evlinder ., . . . . . . . .. 5:?
vlidder B £ | linetoaplane . . . . ... f
prism . . . . . ... ... 45 prism . . R /)
pyramid . . . . . . . ... 72 spherical trm,ng,le . 126, 168
Latitude . -« v« . . ..o 122 | Octahedron . 107
Law of Cosines (Spheriecal
Trig) . . . . 168,169 | Parabola . . . . . . ... . 53
Law of SBines (%prhcncal Trlg) 171,172 | Parallel
Limit lines, line to plane, plancs 29
cone as limiling form of pyramid &8 | Parullelepiped . . . . . . . - 47
evlinder as limiting form of - centerof ... .48
prism . B8, 59 ! Parallel of latitude . 122
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 INDEX
PAGT PAGE

Perpendicular frustum of . 73
line to plane. . . . . . . .. 7 ingeribed in cone 87
plane to plane 32 regular {or right} 72

Planes slant height of 72
definition, how determined . . 1, 2 | Pyramidal surface . 71
intersection of . . .2 nappes of 7]

Plane angle of a dlhedml mgle .81

Plane Geometry Quadrant . . 114
definitions of terms vii | Quadrantal bphf‘rlbcﬂ trlangl(l 80~
theorem ligt . . . . P < lution of . 167

Plane Trigonometry h)rmulaa .. 204 '

Polar distance Radius o
eclestial body . . 188, 190 CONE . . . . . . . e 80
gircle of a sphere . 114 cylinder . . . . M. 55

Polar triangles . 128 frustum of a cona™\,. 81

1'ole sphere . . . Jf0 112
celestial . 188, 189 | Rectangular o
of circle of a sphere . 113 parallelepiped”. . 47
terrestrial . . 121 solid .:~\\J . 47

Polvhedral angle . 100 | Referentetlists
CONVex, concave . 100 Dane Geometry terms . . vii
ccal {or congruent) . . 103 Plahe Geometry theorems .2
syromelric . . 103 -».’ji’l:—me Trigonometry formulas . 204
vertex, face angles, cdges . 1003% Solid Geometry formulas . . . 134

Polyhe dmn . . 106» Regular polyhedrons . 106
circumseribed about & aphere AN19 . diagrams and names of . 107
convex, coneave . 106 paper patterns for . . 108
inseribed in a sphere . \\ w119 | Rhumb line (or loxodrome) . . . 183
paper patterns for . . ¥ . . 108 Right section
regular (five ty pea of) . . 106, 107 cylinder GES
gimilar . . . 109 prism 47

Postulates (1 5) xix

Prismm \ . 46 | Ship’s course . 176
cncumbcrlb'}i "lb()ut a mhnd{ r 53 starting and ﬁn1=5111ng . 178
mkcrlbed in a cylinder . 56 | Similar _
obhqug 47 cones of revolution 80
regiilat 47 cylinders of revolution . . &b
right . 47 polyhedrons . 109
right scetion of . 47 | Skew lines 20
truncated 46 angle between 41

Prigmatic surface 45 COmMmMen perpendlcular hetween

Projection +40, 41
ling upon a plane 35 | Slant height
plane figure upon a plane 44 cone . : 80
point upon a plane 34 frustum of cone . 81

Pyramid . ) 72 frugtum of pyramid . 73
cireumseribed about a cone 87 pyramid . 72
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PAGE PAGE
Small cireles of a sphere . 113 spherical . C 112
Qoid . . . . . . . . . . .. 45| Symmetric
eonlc . . . . . . . . . .. B polvhedral angles . . 103
eylindrie . . . . . . . . .. 67 spherical polygons . . 127
plane section of . . . . . . . 45 .
rectangular . . . . . . . . . 47 Iangcnt line to a sphere . 118
Solid Geometry formulas . 144 | Tangent plane to &
South pole cone or conic s.urfgu;(g ... . 88
celogtial 188, 189 cylinder or evlindric surface . 55
* torrestrizl o121 sphere B ) B
Spocies _ 154 Tangent spheres . . . 118
law for bphoncal obllque trisngle 198 Ten I'o rlmulas (spherical Ihﬁ\ht tri-
laws for spherical right triangle angle) AN _
154, 155 C(}lle(f( o list .. :\ s L. 1589
Sphore . " 112 development of ), . 136 159
circumseribed abou‘r or mscnbcd Ie”:};‘;imn \ “». IR 1.8 . éS 1(’;
in a polyhedron . C119 | LG Y 72, 107
Sphericalp ¥ o Three Perpendlullars Them em ol 13
circumradius . 202, 203 Total 2\
cone . . R 1 00111%1 e e %(}
degree (or unit tllang,l(\) ... 131 cylmtder ... 53
distance T Cqa | G BRsmooLo :?8
eXCeas 1354y pyramid . . . . .. .. .. T2
inradius _ " 901, 202} Trihedral angle ... 100
pyramid . . .. .. L. 129 True bearing . . 176, 177
sector . . . AN 139 | Unittriangle {or spherical degree] 131
segment (Of one or two baSE\ 140 | Units of measurement . . . . . 62
surlace . \\ . 112 .
Spherical angle . . . A\, . . . 124 Vertex
measure of . . A (7. . . . 124 cone . . . B %0
Spherical polygons( 5 124, 125 conic csulface C 79
convex, concgvd” . . . . . . 125 (orroqpondmg; vertices of a
('onespond,ixgpohm wdral angle 1253 prism . 46
8y mmetri{, o . 197 ereat circle mut{ on th( T arth s
Spheﬂml\fnanglcs . 125 surface : . 179
g’r‘angula,r 126 polvhedral cmﬂ‘lo . 1(](:!
15}170105 .. . 126, 167 polyhedron . . 19:3
oblique . 126, 168 pyramid . o 1'2
quadrantal . ) 187 pyramidal c,uu[ace e r}
right . 126, 156 solid . P A 45
tri-reetangular 196 spherical cone . . . 1’5?
Sun time {or apparent time) . 190 Spher{c.al pyramid . - 139
Surface S 1] gpherical sector . 139
conic . . . . . . . . . .. 79| Volume of & solid . 1]
cﬂindrif} . . . . . . ... B3, Zenith o L8R, 189
l.)m.;ma_‘ue . E5 Zenith distance . 189, 106
pyramidal . . . . . . . . . 71| Zone (of one or two b dgeh) o132
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