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: CHAPTRRI ~
: STATISTICS AS A SCIENCE : AXIOMS OF O\
PROBABILITY o

L W

1. Introductory. The word © statistics” is defindd In
 the Coneise Oxford Dictionary us follows: iywt\l}%}ﬁ&rfﬂrary.org.in
¢ *numerieal facts systematically collectod, asstaisties of
© population, grinte 7 ; In the qingjulal t acicno&qf collocting,
elassifying and usging statistics.” This defipifieh adcquata]v
b conveys the present meaning of the Wor&\ but the terin
-~ was onoce restricted, as its derivation %h(}“ 3, to svstematic
_collections of data descriptive of pfjhtlca,l communitics, a
© domain partly taken over now .bg ‘the more special word
i ¢ demo craphy.”’

“The word statistios {in fhe Plural) is used nowadays
tﬂ characterize numcn({tl facts systematically collected ¥
in any ficld whatey€r) of observatiop or exponment
The technique  of \\nﬂechno data and the principles
toy I heeded in Otder to avoid bias in the interpretation
are described q,k]ength and exemplified in chapters of more

- extonsive tr@{mtlsefs which the reader may consalt.  ITe may
also formrabgeneral idea of practical details by studyving
the pr efq Gty deseription of method in gome actual published
1nvastugat10n for example into housing and economic
condltlons in & particular town or area. In any case the

\prinetple& to be observed in arranging a statistical investi-
gation can be thoroughly grasped only when the analysis
used to interpret the data is well understood ; and this
involves a knowledge of the scisnee of statisties {in the
singular).

The intermediate stage of tabulation, by which collected *

A

r.“_ . _ .

¢




2 STATISTICS AS A SCIENCE

data are set out in the most perspicuoustform for analysia
or mspection with a particalar aim, is also usually $he
subject of a chapter, with illustrative examples and
criticisms, in larger treatises than the present one. Here
again the reader may learn much from the aftentive
pernsal of statistical year-books and similar publications,
and from the resalts tabulated in other published investiga-
tions. The prineciples are those of logical elassification of,
different categories ; and the art of tabulstion rests.h‘»..’\
making the relation of the categories and the numbcrs
in various categories as clear as possible to the £¥€ ‘yob
compact on the printed page. Thus one map have
statistics of employed persons according  po\age, sex,

JAistrisrsdita-andorggs ; how can the respective numbers
best be sot out in one or more tables with rews and columns,
row-totals, column-totals, sub-totals qin?d grand totals?
This is a typical problem of tabuldtion; and the chief aids
towards resolving it rest on experiénée and common sense,

Statistics involves classificabion’by number in categories,

Let us note for further refepance the possible relations of
individuals in two categoyigs 4 and E. It may be that an
individual of the collectioh cannot be both 4 and B at the
same time ; for exaniple if a eoin falls *“ heads,” it certainly -
has not fallen [$4ils.” Tho eatcgorics 4 and B are then
mutually exchl}i}e; their relation is that of “cithew ...
or,”  On thé ether hand, the categories A and B may be
of such 83nd that an individual may belong to hoth at
the same.time ; the relation of such categories is that of
* both™ . . and.” '

R \ 2. Statistics as a Science. The oconcern of the |
“\ “present book will for the most part be with statistics (in
the singular) as & science. The typical order of develop-
ment of the “exact ™ sclences {as they arc somewhat
loosely called) has been along the follosging lines. Tirst
of all, the examination of data collected in a partioular
field of inquiry is found to disclose elements of regularity,
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auggesting a law or laws. This is the stage of tnductive
sythests. These laws are expressed, if possible, in the
form of logical or numerical axioms, resembling those
of Fuclidean geometry. The methods of logic and
mathematics are then brought into play to develop the
consequences of the axioms, producing an assembldge of O
theorems or propositions. This department of the science, A
namely the posing of axioms and the deduction of theorems, ™
is usually ealled the pure branch of the scicnce. Evenuf
future observations should invalidate the axioms extrizisi-
cally, the discrepancies between theory and faGh ‘being
too groat to be explained away, these axigmévand the
deductions based on them would still hapdeafbrBsitiary ovsn
validity, as’ a logical struvture of Pro; Bgitions exempt
from  self- confradiction ; but for the 1Se@.-snp\t]on and
explanation of the phenomena, & nep get of axioms would
have to be found. On the other sille, the corroborative
part of the scicnee consists inYinferpreting the abstract
functions, formule, equation$;\ constants, invariants and
the like, which occur in thespure formulation, as measures
and reasurable relations of actual phenomena, or numbers
congtructed from thoge ‘measures in a definite way. This
mt{‘rpreta,tlvc d_mcqt.lhno constitutes the applied branch of
the seienece.

«© & N

Such a:df}iéion or dichotomy into pure and applied can
be recogfiizetl in almost eny science. A gouod example is
Newtofilai dynamics, according to which the motions of all
hodies ni the univorse were presumed to obey certain axioms
and postulates, namely Newton’s laws of foree and motion
.nnd the law of gravitation. Later experiments, more

"\Murnerous, more delicate, more comprehensive, suggested

e

that this formulation, thongh describing almost all observed
dynamical phenomena with a precision unprecedented in
history, did noét sufficiently aceount for certain exceptional
facts, such as the precession f the perihelion of Mercury.
The discrepancies between prediction and actuality were
extraordinarily smell, but they were pemsistent. There thus -
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mrose a theoty, or rather a succossivn of supplementary theories,
of rolativity, formulated on a new axiomatic basis by whigh
the discrepancies of the earlier ono might be reconciled, or
removed. This reformulation of hypotheses still procecds, is
still incomplete, and undergoss modification from tirne to fime.

What is the axiomatio basis of the science of statistics,
and what are the facts upon which the inductive synthesis
is based ¥ The facts are eertain regulurities which h;].‘\'«'&
been ohserved in the proporfionate frequency with Fhich
certain simple cvents happen or do not happen, whenthe
circumatances under which they may oceur are regous structed
again and again in repeated trivls; snd thegakioms, and
the structure of thecrems founded npon thEm', constitute
the subject called ematical probability. As for the.
FRHEN; dil}%egnlgj RIS Jﬁﬁt&cmsted can eﬁl@ct ya. fow for him-
gelf. Spin an ordinary coin a ]a.r‘gﬁ number of times, .
and one can hardly fail to nobide’that the proportions
of heads and of tails are very“nearly equal; or shake
a well-made die repeatsdiy(from a dice-box and one will
find that after many trialsi¢ach face of the die has turned
up in about one-sixth of t’he fotal number of trials,

Ezample. Rhe roader is recommended to experiment
with simple repea,bed trials of this kind, and for future
reference ta réc@)rd the rosults in sequence, in the order in
which theysagcur. For exzample, the record of spins :Jf a
coin might he

: (0101 01110 #1101 00001 10211 .,
or:t’}ip Iike,‘ whero “ 17 denotes * heads,” and “ 0* * tails.”

ANV is instinctive to look for some cause for this

\~f ‘approximate equality of frequency in heads aad tails,

and natoral to locate this cavse as somehow resident in
the two-sided nature and appreciable symmetry of the
coin ; or to ascribe the approximate equality of frequency
of the faces of the dio to ity six-sided angd nearly uniform
configuration. Simple ideas such as these suggest by
generalization and shstraction the axioms of probability ;
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but the choice of axioms may be made in various ways,
wkich lead to different formulations of the theory of
probability.

3. Burvey of Various Definitions of Probability.
No single particular definition of probability has so far A
met with predominating acceptance. The requisites of a
" satisfactory basis would be these : breadth of application, ()
sufficient closeness to the intnitions in which the concept
originates, and freedom from excessive complexity or
abstrusoness. No theory as yet proposed hes hsen, able
to make these requisites compatible, "V% s éléMﬂB}tary.org-lll
some contrasting atandpoints, U
Probability as the Logic of Uncertain Inference.
One view iz that probability may be rggﬁded as o kind
of extension of classical logic, an exfehsion conveniently
deseribed as the “logic of uncenbalw inferenve.”” This
- view has been expounded by J. M. Keynes in 4 Treatize
on Probability (London, 19218 especially in Part If,
. Chapters X-XVII, whero references to earlier expositions
are given. Probability ignheére regarded as ** the degree
of our rational helief "/ the truth of & given proposition,
such belief being cqgﬂ:ﬁgent on a body of relevant know-
ledge. A logical’algebra is developed, but the theorems
* are &ated in sytubolic, not in numerical or raetrical terms,
and can be.aPplied to the objective probloms of statistios
only by ar)\iaj:rrupt and dubious transition from the symbolic
to the metrical. _
Probability & Priori, and Probability as Relative
Freguency. As ovr siraple illustrations of the coin and
. the die have suggested, the crude intuition of probability
“\'rests on the observation that when a given sct of circum.
N\ "stances 8, such as a symmetrical coin spun rapidly, has
been present on numercus oceasions in the past, it has
been associated ir a nearly constant proportion of those
- pecasions with sorne event &, such as the fall of * heads.”
The apriorist theory directs attention to the set of
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circumstances 8, or rather to the invariaht part of 8. In g
many spins of a coin or die something remains unchanged,
namely thosé properties which describe the coin or -die
as a rigid constant configuration. The apriorist will
regard the probabilities of falls 1, 2, 3, 4, 5,6 of a die
as some part of the description of the die, as measuring
indeed some quality resident in the structure of the die,
before any spinning is performed. Now the classical
@ priori definition took account only of & very limited ™
class of “ systems ™ 8, namecly those possessing symmelry,
in the sense that the different aspects (such as facgd™,'2,
3, 4, 5, 6 of the die) were presumed physically fndistin-
guishable, Such an assumption is an idealjzgtion of the
Justsdferomeracgmrpener hope to test cothpletely the
symmetry of any actual com or die; .hok only would
tho tests be infinitely many and impc;@if) v delicate, but
the concept of the rigidity and pegmrahence in fime of »
material body is not sustained by mddern physics, How.
ever, gymmetry being presum.ed;"the gix faces 1, 2, 3, 4,
8, i were characterized as Jequally likely ”” to be found
uppermost after any thrgwy and the probability of 1/6
was attributed.tio each of these ** events.”  More generally,
if n equally likely agpects of a proposed system 8 were
digeriminated, meof these being favonrable to the event B,
the probability of Z with respect to S was defined as
plE ; 8) = mip)

CriticigmGs easy. The logician will not fail to pounce
upon théwards *“ equally likely,” pointing out that they are
synenymons with «“ equally probable,” and that therefore
prébability is being defined by what is probable, a circulus

'in defintiendo being thus committed. Postponing the
L _defence, we may pass on to inquire wiht could be the
) definition of probahility, should the tests have disclosed

agymmetry in 8. The inquiry iz moest pertinent, for the
heterogeneous and the asymmetrical axe the prevalont
order of pature, the homogeneous and the symmetrical
being the exception. One has no difficulty for example in

3
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concclvmg a die “which might be an irregulur hexahedron,
“heterogeneous in density and with non- parallel and uneqnal
opposite edges and faces,  Such dice, and more complicated
- asymmietrical systems, have been subjected to repeated
triasls, which have shown a tendency of relative {requency
of falls towards a constancy resembling that obscrved in O
symmetrical systema, \
Stability of Relauve Frequency Another new
from the angle of “common scnse,” in sorse respects
antithetical to the view just mentioned, is the freqienéy
view. -Hore the invariability of the conﬁgumtlre part
of 8, whether syrametrical or un%ymmetrg\p@,l;;knmﬂiﬂﬂ’ary org.in
assimced, and attention is concentrated upoible sequence
of trials, and the incidence of K in thesc \Jor example,
the die is thrown again and again. hen E ocours, let
ug write 1; When £ does not ocoud) ]et us write 0. A
sur-r'essmn of n trials then givea a sequence

A= alagasca‘n Zm o+« (1)

.’, A

each a; being 1 or 0,

Lot m be the numbex: of 1’ in this sequence’. A very

limited experience, such'ad spinning & coin or die 10 times

on several occasigns, will show that in,a finite number »n

of trials made up the same systom 8§ on two or more
ocedaions, diffefent values of m are not only poseible but

usual. I'hus,\ i B is the throw of an .ace with a single

die, 100 ‘alkrows may on ons occasion give m = 13 and

on a oth\er occasion give m = 20. Tt follows that in order

to define’ s probability p(# ; §) which shall ke unique and

not) dlscorda,nt with experience, we must idealize once

o ,aga;m, postulating a limiting process a3 n tends to infinity.
\\;{ind writing -

Im min = p(E5S). P

This is in fact ardefinition, supported by a certain school
of statisticians, based upon the limit of frequency ratio
or relative frequency min. Though at first sight attractive,
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it fades a little on serutiny. Granted t-he"postula.te of this
limit p for one sequence of trials upon S, can we accept
the more stringent postulate that the same limiting value
p is obtained for any other infinite sequence of trials on
81! Not without further assumptions, for one might
imagine a mechanism sufliciently delicate to throw heads Q.
with a eoin, or an ace with a die, on almost all oecasions.
There is therefore some restriction on the manner af\J)
throwing, or on the injtial state of &, This restricéion
is usnally stated in the form of a condition that sugeeksive
throws must be * random,” but this merely t-m:u‘sfers‘the
burden of explanation to a new and undefinad, €oncept,
wihendomnegs. §? ‘%kscuss various attempte’ to define
rindomness wodld take us too far afield, HIt is easy to
gay that randomness ia absence of a.n&’];a}v 3 but what is
“law ” in this connexion ? O
Another difficulty is that thé Mendency of relative
frequency m/n towards a limitp’ is different in nature
from the corresponding tendenicy to a limit which mathe-
maticians have discerned prid: used in the infinite sequences
of mathematical analysis.® To take a classical example,
in the sequence definibp & certain simple geometric series,

L3 14+ 1-3+1~4 ... . . (3
: B
the deviations'ef the successive terms from § are respectively

3~ 2 ..., each being numerically half its pre-

decessoi:}s’c’) that, given a small number ¢, such aa 11000000,

we&\"ap always find some term sufficiently far along the

sgsq\cnce, after and including which el terms deviate from

’ \,fgtby less than ¢. Thus % is the limit of this sequence.

. But what can be asserted concerning the sign and magnitude
\ / of the deviation ¢, considered as a funetion of 7, in

€ =m/n-—plE: 5
. »
It would seem that the only kind of assertion about e,
which would carry conviction would itself involve some-

N
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where the notidn of probability ; and here the risk of
eommitting a circle in definition again raises ita head,

It should be added that the chief defects of the approach
to probability by limit of frequency ratic have lately been

- removed by the work of von Mises, Copeland, Dérge, Wald

and others. These writers admit only certain scquences
A of suitable postulated properties, including that of (),
limiting ratio; but some logical difficulties remain, a,nd
the modified formulatlons loso the primitive smlphclty‘m
which they originated. \

It would seem, however, that a more nat 'cou_rste,
and onc mere in line with the general method of scicnce,
would be to try to explain the effect, namefyw ehdhpalulifgary org.in
frequency of B, by an analysis of the (:c@se, na.mely the
system 8. This suggests a return fo. $h¢ @ priori stand-
point ; and it may be noted that seweral authors at the
present time, Fréchet, Kolmogoroif Cramér and others,
have heen independently eng&ged in rehabilitating the
a priori definition by furmshmg it with a better axiomatic
basgia, N\

&. Proba.blhty '§\Measure ol a Sub-Aggregate.
Let us examine ET{&IE closely the systern S, keeping some
simple systerosuth as & coin or die in mind. The
approximately, “constant clement in our sequences A,
namely e “Almost stable frequency ratio of E, must
I‘OﬂPCt‘—’ab least w0 our intuition suggests—the constant
c]ctht of 8, such as the rigid confignration of a coin
o+ "(he the irregularity which we name randomness

..donbtless reflects the variable part of 9, such as the
(initial poswlon, velocity and angular velocity of projection,

What is § when an unsymmetrical and heterogencous
die is spun and falls? Tf consists of (i) the die, specified
as a particular constant rigid body, (ii) the floor or table
on which it may knninge or finally rest, (iil) the swrrounding
sir, and s¢ on; together with (iv} the circumstances of
projection, described by coordinates of initial position,
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momenturz snd angular momenturn. The coordinates
specifying the rigidity of the die end the configuration
of the table or fioor are constani components of S, the
other initial coordinates of 8 are variable. The sct of
coordinates of 8 at the instant of projection may be
called the initial phase. Each variable coordinate, such
as the initial position, or the initlal momentum, has a
certain field of variation. Hence we must assume a sef )
of possible phases which, if they can be enumerated-in
some order, may be designated by 8, Sa ..., 8 05
and this ensemble of rossible initial phases §; coustifutes
an aggregate S of the kind specially studied{in pure
methematics.* If dynamics! determinismy Nod " assumed,
but not otherwise, the initial phase will \letide whether
winnotl biraud et F.OFEId ur. Conseqdéﬁt]y the possible
initial phases may ba classified as &-phased or not -E-phases
(let us say E-phases), so that the whole phase aggregate ia
divided info twe sub-aggregates..”Now the question of
assigning a measure to such Bggregates bhas been deeply
studied in modern pure mathematics, the guiding idea
being that of extending~ys widely as possible the acope
of & concept familiazdnisimple cases, namely the cardinal
number of a ﬁnitp&e.} of vbjects, the length of a line, the
area of a surfz’xké;h'the volume of a solid. If M is the
measure of tie whole aggregate § of possible phases, find
pM the mgagtre of the aggregate of E-phases contained
in it, thanp is the probability p(# ; S). _
quaébhing hag been glossed over here; there is the

tadibassumption that the initial phases are * egually
Ul}l&]y.” But let us insieb that the question of equal
~slikeliness is not one for the shstract formulation at all ;
* for to specify the aggregate is in effect t0 say that its
elements, the initial phases, are equally likely, For
e.xamp]e, if the aggregate were of points on a continuous
line segment, and the measure were ordimary length, then

% We uge’ the same letter § as before, regarding the system
now as the totalily of its possible phases. )
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we have implied’ in this deseription that all points in the
segment are equally likely. On the other hand, the question
of equal likeliness is crucial in the application to experiment
or observation, that is, in applied statisbies, where a
wrong choice of the aggregate may alter all the pro-
babilities. This has long been known in problems of Q)
so-called geometrical probability. For example, given a
circlo, let a chord be drawn across it at random : what \/)
is the probability that the length of the chord excedds
half the diameter ¥ It depends cntirely on the ng&ﬁper
in which the chord is drawn. If it is done by #hking a
point on the circumference and then drawing.bhé chord
at any angle, all angles being thus supposedgyhgliy Bkalprary.orgin
then the probability is 2/8; but if it is dode by taking
any diameter and drawing the chord afﬁ,\ight angles to

- é-, any point taken in the diameter, the\diameters and points

= being equally likely, then the probability is 4/3/2,

The inclusion of the words “ efually likely " in a definition
iz in fact & concession; it puts the reader more gently at
terms with the abstract formttlation by anticipsting its chief
future application. Tho*wsage iz not uncommon. When a
pointis defined as ** thafwhich has position but ne magnituds
the samo appeal dst made to an application, but the same

 suspicion of a c¢ircle’ in definition is incurred, for how can
postiion be d-:‘.fméd without the notion of & point? And if a
straight line ik defined as ** lying evenly * botween ite extrome
points, W}s\é.t'else does “ evenly " mean but *in & straight
© line 7 LeJBvory definition which is not pure abstriction must
appeil somewhers to intwition or experience by using some
sugh, verbal counter as ¢ point,” * straight Iine ¥ or © equally
1My, under the stigma of seeming to commit & cirele in
\definition. :

This" prologue, though it has omitted many subtler
points which could be amplified at very great length,
.miust now be evt shorth. To swnmarize : (i) events E
are conceived as associated with, or caused by, phases
¥ of circumstances ; (i) cach S, gives rise unambiguously

L3
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either to B or to E; (ili) the phases #; form in their
totality a set or aggncra,tc 8, of which the phases favourable
to ¥, and those favourable to B, form complementary
subscts ; (iv) & measure M can be given to the whole set
8, and if pM i3 the measure of the subset favourable to E,
then p is the probability p(E ; 8) of £ with respect to 85
(v) the guestion of equal likeliness of phases is the SaIe, ¢
as the question of specifying the aggregate and its meawré,
and in practical applications this must be dctermmed by
the circumstances of the particular problemd “het us
finally add that the word phase can be extended\to include
coordinates other than dynamical ones; ﬁl.}o that the
name ** fundamental probability set ™ BSed by some
writers for the set 8 of phases S, N
. - ary.org.an “

g %jéﬁ;altllgny ofg Probahm\ty \In *an elemcntary _
treatment a rigorous formulation in terms of general
aggregates is not possible. IRWill be necessary to restrict
eonsideration to aggrega‘r&s'mth a finite nomber of elernents
only ; in this case the Ydeasure of an aggregate or suhy
aggrogate is simply ke number of elements it contains.

The reader may mk& it thht the theorema can be extended.' -

to more geners\ ggreuates
Definition. MIf an event £ can result from the phases

of a syste 8] there being n different phases and no mare,

all equaﬂy Yikely & priori ; and if m of these phases entail

the adeltrrence of B (so that n—m do not), then m/n is the
h\blhty PIE ; 8) of E with respect to 3.

O\ Gontmuous Case. If the event X is described by

Abhe valne of a continuous varisble @, we may denote the -
prohalnhty that x is found between z--3142 and 2 —3dz by ..

@+ide, +—1dz; 8y = Ap(z: 8), . . (1)
let us say. By supposing » to tend to infinity and 4z

t(; tend to zero we reach the conception, of & differential
element of probability, or probability differential,

Platide, s—3de i 8) = dpe: ), . . (2).
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~ which, when no .misundersta,nding about 8 is likely to
arize, we shall often denote briefly by dp.
GComplementary Event. The failure of £ is denoted
by B, and is called the complemeniary event. The pro-
bahility of & is (n—m)/n, namely 1—p in the finite case,
and likewige in the continuous case. This is often termed . O\
.~ the complementary probatniily and denoted by g, so that
Cptg= 1L )
If n is fnite and if £ must inev itably lmppc,n in ol
of the n ways, then p=1 and I is * certain,’ Whlle
" g=0 and & is " impossible.” If, however, the ﬁystcm
- 8 depends on a non-finite set or results in events eXpressible
;-{'*' by a coutinuous variable, we must not suppogaitstbpasliprary.org.
v'+  implies certainty, or p = 0 impossitlity. Foc‘example, if
' apoint s taken op a line segment, the chalesof a particular
4. point P being taken is 0; but some inltb 1s taken, and so
the point P cannot be regarded as infpgSsible.

6. Addition and Multipliea’.{ion of Probabilities.

.. Dependent and Independent Events. An event F will

7 be s2id 0 be dependent on afi‘event £ when the happening

« 9f cither B or & altcrs the probability of £ and in the

(,nntrd.r_y case ¥ will hedsid to be mdapendem of E. An

extreme case of d dcnce 18 that in which the happening

of edher # or F‘I?lgkes the probability of the other eqgual

to zere. Theewvents are then said to be mutually exclusive,

- (In the contitiivus case we must take cogniza.nce of * almost

o mu’cu‘tl]y &xelnsive " and “ almost mdependmt events, just

“pgihs we Ave of “almost impossible™” events for which » = ¢.)

. The addition theorem of probability is applicable to
» even«ts which are mutually or almost mutually exclusive.

o \" ) Theoremn. When an event B may happen in the
N form of any one of r mutually exclusive events #,,
J=12,3, ... r,in a system & which has # equally likely
phases, the probabili ty of B; being p;, then the probability

of Bis -

PE ) =ptpettpe=2p;, . . ) ¢
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Proof. If n, of the » phases entail B, then p; = nyfn,
Since the phases do not overlap (otherwise the events E,
would not be mutually exclusive} the fotal number of
phases entailing one or other of the E; is Sn, ; and so

p(B ; 8) = Znyn = Ep;
i i

The theoreim, which is sometimes called the theorem,4f)
Total Probability, continnes to hold for systems exprosbed'
by a non-finite # or by a continucus variable. PAY

The multiplication theorom, or theorem of G?)mpou,nd "

Probability, refers in the first instance to mﬂependent'

eventq, but can easily be made applicahle, Vith a suitable
ignofgepiitigned probability for erondont evenfs,

0 the latter case.

Theorem. If B, 5=1,2, 3,z ,\r are # independent

events, each with respect to it3 6wn: system 8, the

probablhty that they all happon ‘when all the &; arc in

operation is

where E denates the, compound event consisting in tho =
happening of all $he'k,, S denotes the compound system =
consisting in theoperation of all the S, and p; = p(E,;; 8,). -
Proof, Jliet n; denote the number.of phases of &,
and of the§é;let m, entail ;. Now each of the n,; phases
of §; mAy) N paired in turn with each of the ny phages of
Sy gi¥ihg tise to nm, compound phases of the doubls
sy‘st\om {S;,8;). By similar reasoning the m, phases
}a,:hng B, may be paired in turn with the m, phases

.entallmg By, giving tise to mpm; compound phases of

{54 S;) entailing the double event (F, B}

By similar reasoning, or step by step, thore are
altogether nm,...n, phases of the compound system
{81, 8y oy 8) = 8, and of these My ... 1, entail the
compound evont (&, E,, ..., r) = K. Hence the pro-
bability of B with respect to & is

PE: S e B .. @
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plE “ 8) = mypng ..o mm, . R,
= PPy Pr

Once again we must content ourselves with the state-
ment that the theorem remains troe for independent or
*almost independent”” systeras involving infinite aggregates
or continuous variables.

By modifying the definition of py, P4, ..., Py We
may prove an analogous theorem for a chain of eventg.l ~
E, E, ..., E., each of which mﬂuenocs the probablll.ty

- ol its sucecessors. N
Let p, = p(By; By, S,) denote the probabilis, f E,
after E; has happened, pg == p(f5; By, EyrSy)diog ﬁ'HE}/ orgin
*proh&blhty of B, after B, and E, have happéngd, and so
on. Slight consxdemtlon will show that\this sinply
involves putting”the events in an order Q’hme and that
then, with the new interpretation of’gs 7g ..., P, the
. above proof proseeds cxactly as befm‘e Hc,nce we have
-+ “the theoredy of compound proba.blhty for a chain of
* eonditioned events :

.

.:‘ 3
™

p(r b)w \ '0 .
"‘P{ ) {‘&‘S’El BS!&BE} (Er;El:Eés--- r“l) { )

'lhe‘ie theorem\\of addition and wvwltipliention of
pmbah}htxes aresthe fundamentals upon which the mathe-
matical theorx of statistics is raised. Sinece addition and
multiplicatiéndare operations of ordinary algebra, we may
anticipabe fdlat there is an algebra of probability depend.
ing on\Miese operations, according te which expressions
repl'e%enmng independont systems 8, can be compounded
s pmdu(,t and the resulting prohab;htles found by
qnspecmon of tferms, This anebra. is the algebra of

\ generating functions of probability, which we shall consider
from an elementary standpoint in the next section.

Tx. 1. The pr.oba,bl'lit-y of throwing two consecutive aces
" with a vrue disis § - § = . :

£
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mutually exclusive events, The operations of mulis ﬁg&zion_,ﬁ ;
on the other hand, are carried out on expressions symbo-
lizing independent events. Tor example, the mu'ltip]_icati'_i‘; -
of the two factors on the left interprets the compounding
of the two independent systems §; and 8, of which they
are the generating functions; and the results of multi-
plication visible in single terms on the right, such as\M
P1Pohis, Tepresent at the same time the compounded”

probabilities, p,p, and the compounded eventsnNfy -

characterizing (B, £y). In fact the algebraic operdtions
are faithfully carrying out the consequences of the two
basic theorems of probability. Mere Ingpéction will
convince us that this is true not onl¥ Yor binomial
expresaiotis compounded in product asNabove, but for
multinomisl expressions, as i the foljxg’:?iflg cxample.

\\

Ex. I. Let the reader considen wvents y, Fy E, of pro-

- babilities Pys Py Pg With respect, £ 8. events L’l E"z, Es E;
with probahiliiri‘asdflrm'él ij);‘,gpfy witdh espect to an independent
system &', and examine ther product :

Pty +ly R eyt o, LR PN

in relation to ,tﬁa\ 12 events of the compound sysbem . |

T=1(8, 87 %\

Rega{tﬁng a componnd system (8, 8 as a ‘sipgle .
gystens and introducing further independent systews éne
at g time, we may prove step by step that to find $he .-
'l‘ilipective probabilities of all tho mutually exclusive events

\arising from the compounding of r independent systoms,
o8 we miust construct the product of » expressions of the”

O
%
\:

kind exemplified above, and examine the individual terms,
of the expansion. Vol

Ex. 2. In an expansion of three factors such a termi as
PP Pty byfe would be interpreted as meaning that the com-
popnd event (K, B, K.} has probahility p N2

..
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" The variablest; and so on are introduced for the scle
purpose of preventing the terms from being merged
.together ;. for when the p, are explicit fractions such &8
#2.}..8 and the.like some such dovice is needed.
Now suppose the event £ involves the addition of x;
" points to a scoTe, or the assumption by an additive variate
~ gof an increment z;, In such a case we Tepresent & by %
. rather than by ¢;, taking advantage of the fact that when o
‘expressions like p,® and pi*% are multiplied together wed ™
have by the law of indices pp,t%**k, the. probabilities
being maultiplied as they onght to be, and the increaciits
©; and x, being added as they ought to be. ¥ {th" this
understanding, the system under which may assume
values @, with probabilities p;, § =1, 2, (AT, iz char-
" acterized by the expression _ Nt
Zpids. ‘\ . . (3
§

A

#%7

.7 But this is merely the enepdting function G(¢) of the
' gystem, and ‘so wo "IN bl ifngyat g intheorem,  for
- digcrete variates in [inite «8bs :,

i The g.f- of a compolind of -independent systems is the
sroduct of the g.f.'s ofthe separate systems.

By a ]_.imitin%pg'()cess, with due precautions on the
fuifetions conecepned, this multiplicative law can be extended
£.’s inyolying continuous variables. Thus, if Gy(t) 19
£ of $Ho variable %, and Gy(f) of a statistically
en@%ﬁf variable y, then G4{f)3,(t) is the g.f. of z+¥;
Q\&;fo’r more than two variables.

“Ex. 3. The probabilities of 3 heads, 2 heads, 1 head and
‘4o’ Leads in & throw of three symmetrical eoins {or three
P 'parate throws of one coin) are the cocficients of 8,2, fand
in‘the expansion of (}t--})°, namoly %, §, %, & respectively.
% Verily this also by enumeration of cages, (Write A for head,
for tail ; then the cases are HHH; HHY, HTH, THH ;
‘[T, THT, TTH ; TTT')

" Ex. 4. The corresponding probabilitics when the coin ia
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unsymmstrical, with prebability p for hesds and g for tails,
are the coeflicients in the expansion of (pi-g)°.

¥x. 5. The probabilities when the three coins are different
and unsymmeirical are the coefficients in the expansion of
(Pt +a,){pet +aa) (st Hgs).

Ex. 6. The probabilities of n, n—1, ..., 2, 1, 0 heads in
n throws of an unsymmotrical coin are the coefficients of
powers of ¢ in the expansion of {pt+q)®. £ M\

Ex. 7. Write down the corresponding g.f. for.ths.
simultancons throw of n different unsymmetrical coigs\,

Ex. 8. 4 tetrahedral, s cubical and sn octahedzébhdie, all
symmetries], are thrown together, their faces bein@uumberad
in each case from 1 upwards. Show that the prebabilities of
totals 3, 4, ..., 18 are arrayed by coefficients ionthe expansion
of

ed-HI-M0 -mu—ze\»gqi\is)a.

Ex. 8. A coin is thrown n fimes. Each time s head
occurs, 2 is added to the score ;, each time a tail occurs, 1 ia
subtracted. The g.f. is W ’

LRI OV ),

Ex. 10. Four ticketsnarked 00, 01, 10, 11 respectively
are placed in & bag,/and drawn one at a yime, being replaced
each time, Provpﬁl}at the chance of drawing five times and
obtaining tickeét wumbers summing to 23 is the coefficient of
t*? in the cppansion of 475(1 +1-|-u 4 tw)b = 4~3(1 4151 +u)s,

Find thigweoeflicient, and verify the result by enumeration.

\X :

9, tMoments and Moment Generating Functions.
It @8y'vonvenient to deseribe a probability function Plix)
\b&\“cert-ain coeflicients or parameters connected with it,

_wysuch as moments, cumulants and others later to be defined,
" The moments commonly emplo

yed are based on powers of =,
and are defined by ' '

;.;.,. = Zz'd(x} or Jx"q!w(x)dx, . . {.1)

according as the variate is discrete or continuous. The
summation or integration is over the whole rango of
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possible values of . If the values which z can take are
discrete and spaced at unit intervals (for example if x
records the number of heads in » throws of a coin) it s
mathematically preferable to use factorial monents, defined
by -

py = 22 $(),

whore a2t = glx—1)}{z—2) ... (z—r+1) . {28) .\:\’

Note. 'The privilege often aceorded to ordinary ¥ power ss"}

moments is one of custom only ; no special sanctity attgmﬁps
to them. e O ¢
Mathematical Expettation. If f(z) is a fuhétion of
z, and $(x) is the probability function, og h(xylr the
probability differential; then the sum or integ el

. y x\
. Zfimdix) or f f(a:)q?(xl@fc' . . . (@)

is called the matkemai-ica‘l,\g@m:};iﬁé&paﬁ_ J(.g} It is often

denoted by Ef(x). The nfy moment is therefore the

" mathematbiesl expectation of «f. .

Moment Generatiny Functions. If we put {=e®
in the g.f. of probability G(f), we obtain
N |

N\

Zp(x)e™® or | $(z)edx . . .4

°

E

N = 14100 |- gt 2! bpre®i3i 4
prov\id}&"ﬁ:hab the swm or integral converges over a range
of wdand that expansion of ¢ and integration term by
gortn is pormissible. This function, which we shall denote
VBy M(a), may be regarded as generating the moments T3
in the scnse that g is the cocfficient of arfrl in M{a).
OFf coursc a, like #, is a variable introduced to facilitate
manipulation, in fact to carry the moments. We shall
call M{a) the moment gemeraling function (m.g.f) of = or
of ¢{x), or of the system under gonsideration.

N



22 STATISTICS AS A SCIENCE
L

L]
Factorial Moment Generating Functions. When
factorial moments are in question, we can construct a
factorial moment generating function {f.m.gf) very siply

from the probability g.f. by the substitution { = 1-4e.
For then we have

G(l4a) = Zd(x)(1 ) . . . . i)
= 1+Ju;1)a+,u;2)a2;2!+#;3,a3/3!+ v N

by expanding {1 4-a)* by the binomial theorem andswhming
the resulting terms, K7,
N\
Example. The f.m.gf. of the distribution eharacterized by
(pt+g)m is (1 +pa)n,

Note. The reader who is acquaintgd‘}i'th more advanced

mathematics may observe thas for, Toment generating

functions the substitution ¢ = vty 1m§.tead of t=¢% has a
eortain advantage.

It gives th’e'rhodiﬁed m.g.f.

v bl o+ - O

& Fourier transform of él:?}. The intoprand and integral are

bounded, and the reeiprqcal theorems of Fourier transforms
are available.

10, Gumul%nté and Cumulant Generating Func-

tions. If  tHe logarithm of the moment generating

function M(#) can be expanded as a convergent sefies in
powersiofld in the form

(@1 Tog,M(0) = rya-treya/2 dgad/Bl .oy . (7)

K
%}}‘K(a) is defined to be the ecumulant g.f., and the
(eaeflicients «, are called the cumulants ¥ of the function
L3 #x). Since m.gf’s are compounded in product, c.g.f.’s
A must be compounded i sum, whenee the theorem :

\ ) When independent systems are compounded the i cumu-

lants x, of the separate systems are added to form the r'b

cumulant of the compound system.

This additive property of cumulants is indced the

* The word cumulant,” suggested by R. A. Fisher, iz to be
preferred to the older term * seruinvarisnt, sinee ** geminvariunt
is alrendy appropriated in the theory of algebraic invariants,
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»
reason for introducing them. In the same way, by taking
the logarithm of the fmgf. we can define a factorial
c.g.f. and factorial cumulants.

Example. The factorial cumulants corresponding  to
{pt-Lg)* are np, —nrp?, 2p®, —3inpt and so on,

11. Change of Origin and Scale in Gemnerating
Functions. Change of Origin. If the origin from whighl\ ™

the variate z is measured is transferred from @ == O, te
# =a, any value 2 will be changed to x—a. _Hence
every factor £ in a term of the probability g.f. will‘becomo
t7—¢: but tho accompanying probability $&)"though
changed in notation, will not be changed in Talee. Hence

_the effect is to multiply the whole g.f. by ,t\k

N

Thig very simple rule leads to coirésponding ones for
the m.g.f., fm.gf and c.g.f, namelpv

A change of origin from x =0 0'X = a has the effect
of multiplying the m.g.f. by e7% & of multiplying the f.m.g.f.
by (L+a)™ ; and of addirgiottiaulgfathe sogin—ac.

Thus only the first cummndalt #; is changed ; it becomnes
xy—@, Whilo Ky, Kg, ... @@ unaltered.

Change of chl‘é,\ If the scale of measarement is
altered so that what was previously roccorded as  mow
reads kz, thendeyery factor ¢* in the previcus gt now
becomes 7% €t is, (i*)#. Hence in the m.g.f. the previous
2% now teads €. Hence the rulea:

Chapgb/of scale, so that x becomes kx, has the effect of
e‘epla;s\{ng 't by t* in the probability g.f., o by ka in the m.g.f.
+The immediate conscyuence is that the previous r*

oment i, and 5t cumulunt «, become & p, and K.

The reason for the older name seminvoriant js now seen ;
for under a change of origin and scale in x all cumulants aftor
x; are altercd at mosk by a seale factor.

Change of scale in the f.m.gf. will be effected by
replacing 1--a by (1+a)®.

Example. The first moment or mean of the distribution
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which has g.f. (pt4¢)" is up, and the m.g.f. with respoct to
the mean as origin is e "% (pe®4q)". The corresponding
fan.gf.is (1 4-a)="? (1 4+-pa)™.

12. Population, Universal, Universe or Stock,
Sample. To conclude these questions of nomenclature
and general notions we explain what is meant by populaa\:\
tion, universe or stock, and sample. As an examplosics -
us consider the ropetition of an experiment in which the
probability of success is p = m/n, & rational fractigh, 3 We
may construct a model by taking (or imemgining\ﬁ'simj]ar
objects, such as equal spherical marbles, of ghich m are
distinguishable from the rest, and drayang an object
repeatedly, with replacement after ea,‘c‘h\\lra,wing. Such
an assemblage, asotual or hypothetmai_l, constitutes a
population, universe or stock. It inhavPact merely a model
of the system 8. To cope with Bpecial cases we have
often to conceive a fictitioug~infinite population. For
example, If wewish dbsibsatt distving with replacement
by & model in which the ‘dewing is without replaccment,
the population of the{“wodel will certainly have to be
infinite, since the Rm}abihties of suecessive drawings are
constant, a thj.n,%'\which cannot happen with a finite
population, _

Sample» Mny element of a population is a sample
of that popwlation. For exampic, if five drawings are
made, W‘iﬁl"repl&ccmenﬁ each time, from six cards numbered
1, 2\13;\4, 5, 8, the population of possible sets of five cards
cofiteins 6% or 7776 elements, of which (3, 5, 5,4, 1) and
‘(4, 4, 2, 8, 3) are two samples. If the drawing ig without
replacement, the population of sets of five contains
6.5.4.3.2 or 720 clements, of which (2, 3, 5, 6, 4) and
(5, 2, 4,3, 1) are two samples. Or again, if a coin is spun
100 times, the sequence of heads and tails arising is to be
regarded as one sample out of the possthle 2100 gequences
constituting the population of Bequences.

The word * sample " is also used as a verh, ““ to sample

:'/’
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a population meaning te¢ draw a sample, or samples, from
that population,

Notation. It is important to distinguish the pro-
bability (x), which may not be definitely known, from
the relative frcquencv of # as found in s sample, let us
say flx}); and in the same way all parameters, such as

means and moments, connected with é{x) should bel’\ \

distinguished from the corresponding parameters in the
case of flx). As far as possible we shall make this d_lstmc-
tion by using Greek letters for probability flln(}tlm‘lb and
parameters, italic letters for the comcspondmg»ﬁequeucy
functions and pa,mmcters Thus if ¢, standdfor the 7t
moment of ¢{z), then m, will be the »** ;@ment of f(z) ;
and so on. \

For detailod déscription of many ‘a‘spxects of theorstical
and practical s{atisties, and for bibliugraphical references to
mermoirs and texts on the sub]cct the reader may consult
An Introduction to the 1&,@9;{@&{1 Rliedeg obg ifr. U, Yule
and M. G. Kendall, London,\ 3937, the 1Ith edition of the
original book by tho first-pumed author,

For an account Qf\morrwuts, factorial moments and
oumutants, Chapterg3,of M. G, Kondall's The Adsanced
Theory of Statistic q\Is}indon, 1943, may be consulted,

T this bgo],;~ to cover the topicy within a Iimited
space, we haga¥hade a systernatic use of moment generating
tunetions. R strictness a mathematical preamble would be
reguoir "\,ttmg out the eonditions undor which such integral
transf%ub exist, and the conditions under which they may
be .umque]y reciprocated to the probability functious. The
sb\ldent intending io read advanced stalistics will be well
sariwsed to gain as much preliminary knowledge as possible
concerning Laplace and Fourict transforms and their inversion.
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PROBABILITY AND FREQUENCY DISTRIBUTIONS ™D
GRAPHICAL REPRESENTATION : CALCULATION
OF MOMENTS O

13. Distributions, Probhability Curve,y ﬂ“istogram
The assemblage of valucs of probabilities Y&, for all the
possible values @, of  that may ocoupdu’any system S,
is called the probability distribulion off Xin 8. In pracmce
a set of # observations in a sample does not nsually give
all the possible values @, and gertidinly cannot give them
all if they cover a continucusfange. Further, the sample
of n values is melfdbﬁbjul@hmmcmaeﬂ of the population,
often prodigiously large o even infinite, of possible samples
of n values that might~haye been drawn.
The relative fr equency of z; in a sample of # valucs is
denoted by f{ ~The assemblage of relative frequencies
fley } for the s;’;ﬁo is then called the fregquency distribution
of z in that, aample The name is also often given td the
assemblagdof absolute or actual frequencies, but these are
glcr%ly\uhtamed by muliiplying all relative frequencics
.
&
«\" Ex. L. Tn repeated throws of a symmetrical coin the

»\ 3 reapectlve probabfhtles of runs of 1 head, 2 heads, 3 heads,

0\ A are. ‘é, ¢ =% ... . Honee in 400 throws the ideal
\ probability distribution may be tabulated (to the nearest
integer) us:
r 1 2 3 4 6 7 8 Total
nd BO 25 13 & 21 0 100

5

3

In an actual experiment of 400 throws {performed by the .
26
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-
author) there were lus bows, andd the frequency distribution

distributions of runs of w s wuas
5 .
1 23 1 5 67 8 Totul
nf 51 24 BL 15 1w 1 1o
Comparing the weinal with the theoretival distribution, O\
the reader will nute o fhicly close nerernent, and also w slight
irregularity in the frogueneies, (N
) .\ .

If iz a conlimuous variate, the curve y = (ﬁ(wt; s
called thc probability carce of x. {The term fru]lu ey
carve 7 will often be found, but it is not strictlylabcurate.
OF. 12) The curve vy be symactrical ab@ubats central
ordinate ; or it may have the “long tail " Bedthe postlive
or right side, in which cuse it is said to W positively shew ;
or to the negative or l:fi side, in whieh® ;;L:v it is negatively
skew. In some cases, as in the proha,bzhtwq of runs of
heads just con%idvuc{ the mnvo fray not descend at all
on one eide or the other, tuw B9 cxtrenw]y skew is
called positively J- s}‘mpr\l? el ﬂ??ﬁ:mf?y j-ﬁ;r:p(rf as the
cago may be, In a rag t\"pc of distribution called the
U-shaped curve the II_:J\HL]'[I!H]. ordinate is in the middle
region. The aree,uider a probability curve measures the
total prohablhtv 0]\\ 1 possible valuca of x, and is therelore

equgl to 1. ”‘.

New. skoew, Svmmetrical.
Foa. skew. Tas, J-liaguat. 1-shaped.

If x is & discontinuous variate the plotted points (x, ),
whcfre ¥ = d(x), do not form a curve. The sum of the
ordinates is equal to !. Tt is customary, though there
is 1o very cogent reason for doing so, to join these pointe *
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-
each to its neighbour by straight lines, thus obtaining the
probability polypon for the distribution in question. The
terms “symmelry ” and “‘skewnecss” then have corre.
sponding meanings.

Frequency Polygon, Histogram. In an actual
sample of observations we have relative frequencics instead
of probabilities. If the variate x is discontinuous, as fopa
example the number of flowers on atalks, the number, 8™
beans in hean-pods, we obtain separate plotted poluts
(x, f(z)) which, joined to their neighbours, form a _;“‘reqﬁsency

polygon, (¢
[( e\
Frequoeney Pol¥pon, \ ﬁist.ogram.
¢ 3

On the other hand, 2 may be aedntinnous variate, the
range of which in the process 8 messurement is broken
for conveniencé"‘fﬂ‘f-diblﬁﬂdﬁ;ﬁﬁ%yﬁ’f 8fiRite breadth. Tor
example, height of men, mesured in inches, is a continucus
variate ; all heights within & certain range are conceivable.
Bat in practice heighits may be recorded to the nearest
inch, in which casgeNall individuals of the sample having
heighgs in thesrange 66-5000... to 67-4999... inches form
a frequency,.group or frequency class correspondj_ng’ to
x =67, theleentral point of the class. In such a case
it is cugtomary to represent the class graphically not by
a si%;eli('%\‘ordinate at the central point but by a rectangle
onghe class-interval {as G6-5 to 67'5) as base and of area
Rrgportional to the class frequency or rclative frequeney

m;'y‘(‘m). The figure of juxtaposed rectangles 1s then called

\ y tl_le frequency histogram or simply the histegram (that is,
diagram made up of cells), and it furnishes a rough
approximation to the idcal probability curve,

) PEx. 2. Plot the probability polygon for the runs of hoads
mEx, 1;

= 13 also the frequency polygon of the experiment,
Ex. 3. Note that often great care moust be taken fo
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L]
aseertain the exact class-boundaries and centres of classes.
For exumple, tho British Anthropometric Committee (Report,
1583, p. 256) measured the height of 8583 adult males in the
British Izles, made up of samples of 6194 from Tngland,
1304 from Secotland, 741 from Wales and 346 from Ireland.
The distribution of the Irish sample reads as follows :

x 69 60 61 62 63 64 65 66 67 68 69 70 91 72 73 =
nf 1 0 2 2 7 153358 73 62 40 25 15 10 3 346(

When we are told, however, that the class & = 59 incl;%%
means ** 59 and over,” but at the sume time that measurgnii::nt’-s
were to the nearest eighth of an inch, it appears that class
# = 59 moeans from z = 581§ to 581§, so that tlle'\d(}ilt-rc of
the class is at & = 59 ; and so for every other Blags.

The reader should draw the histogra;g\ﬁjr the above
distribution, chooging not too sma]1<a. scale for the
frequency. \S

Yor ease and rapidity in compatdtion we can always
by a change of origin take any terivenient value of % as
new origin, and by a ck&-’ﬁ@@f:@ﬁ%?ﬁﬁk@"ﬁé?& intervals
of unit breadih. At the eneh of any calculations we can
translate the results bagk to the sproper origin and scale.
It is often convenient o choose a provisional origin either
near the middle waliles of  or at one or other end of the
range. N : .

Ex. 4. IngAhwdistribution of Ex. 3, if 67 is taken as now
origin for x{ bhE classes range from # = —8 to # = -{6. If
these clashds are presumed to be centred, the origin is not
67 but {7¥5-

" ‘1~4 Descriptive Parameters of Distribution. Pro-
Mubility and frequency distributions may be described,
Vot completely, but in their main features, by the values
of their rmoments, factorial moments or other parameters,
Some of these parameters have a gcometrical significance.

Typical Parameters or Averages. There are three
of these in common use, the mode, the median and the

arithimetic mean.
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Mode. The mode is the value of x for which the
probability é(z), or in a frequency distribution the relative
frequency flx), is a maximum, that is, greater than the
probability (or frequency) on either side. In & probability
curve it is the abscissa of & maximal ordinate,

Many eurves have a single maximum near the middie ;
others may show two maxima or more. These are cai}e\ \
dimodal or multimodal, as the case may be. "\

Maode. Dimodal Corvs, ‘9 3 Median,

Median. The median is that valug0f% which divides
the sum or integral of the probabilities over the whole
range into two equal parts. Thig\shm or integral must
be equal to 1; and so if the range of values of # is from
¥ = ato & = b, the median valte of x is defined by

www.dbl‘aléli'l):i':é’ry,org,jn
%) =B =@ =1 . . ()
a A a

x O\ 18 E
or f P j $la)der = 1 f Sz =1 . (2
~ \\ x a

For coriibuous probability curve the median ord®inate,
by (2}, bigetts the area under the curve,
Arithmetic Mean. The most widely used typical
megsute i3 the arithmetic mean, which is simply the
moment or mathematical expectation of x, namely

= Zad{x) or J.:nj)(:c}dx. . . (3

These formule are the same as those occurring in
dynamics for the centroid of a sories of particles of musses
${z;) placed at points #; along a straight line, and the
controid of a straight rod of density ¢(z)

at the point
It follows that the arithmetic mean is the

abscissa of the
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ordinate through.t-he cenitroid of the area under the curve
y == d(x).

The mithmetic mean of the wvalucs a, in a sample is
correspondingly m = Zuf(x)

Remark., In many probability curves of slight or modorata
akewness the median lics between the mode and the arithmaotic

. + - N ¢
mean, nearly twice as far from the mode as from the mean{ N\

Moments about the Mean. Tlie arithmetic mea.}j is

so fundamental in thcory and in practice that it is

cnstomary, once it has been determined, to tdke it as a

new origin and to refer all higher moments ‘trQ\‘b\h_l‘s origin.

Moments about the mean as origin arse usually denoted
by undashed u1.. We {ind easily, by b%n{xmal expansion,

e = Zlw— ) dla) ot f&—pi)wm
“P*r "’!*1#«- 1“’+ "tz}(P«l) g
ﬁ.(;;qs}; Sibriey)Stet. . . (4)
where 7y, denote% thelMumiliar binomial coefficiont

r{r~1}...(r—s41}/s L{\The lust &wo terms can be merged
into one as (—)" '{?XI](M) . For examplo:

Pq%\ﬂ

o #2 = ,uz (;U*;[} 2’ .
‘P«a = m Speypty+2{pg)%,
W B = pra— g prpH60u) By~ 3(u)%, )

fur%ﬂfﬁ of regular application in pI‘ELCth'Ll work, since
~thev hold equally well for moments of a frequency dis-
¢\tribution, ¢(x) being then replaced by f(z), and g by m.
\”\‘3 * Other means, such as tho geometric and the harmonie
mean, arc very occastonally used with respect to rather
spoeial distributions,

Cumulants in Terms of Moments about the

Mean, By expanding the logarithm of

Ma) = a1 -+ pat{2 -+ pgadi3l-L..)

N
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L J
as a series in powers of e, and comparing the cocfielonts
of these with the coefficients in 10 (7), we find the rcla-
tions between cumulants and moments about the mean.
The first four relations are

Ki =y Ky = Mg, Ky = g, Ky = [y —3u3

15. Measures of Dispersion or Spread. Diatrihn.’y
tions differ according as the valucs of x are spread deI}:s‘ely
or widely on either side of the mean. To descpille * this
feature numerically we need parameters mfeastring
dispersion. S,

The arithmetic mean of the deviations\gy~p) from the
mean is of course of no use for the purposty‘being cqual to
zero, A measure occasionally used, bub now falling into
disuse, is the mean absolule devia-tion'(ghe former name was
“ mean error V) defined by the afithmetic mean of devia-
tions from the mcan all taken :L?“ftﬁ positive sign, namely

w dbrautibrary org.in
Zle—pdlepor | e—ié@dz, . . 1)

where le—pu;| denotés“the positive numerical, or absolute,
valne of x—p . o (D

Though usp.}i}y computed with respect to py, it is
actually in clofer association with the median, in virtue
of a certglminimal property, namely : '

Themedion value of x is such that the sum of the absolute
devidlitts from it, Z|x—x,, i a minimum.

;&‘hc median of & discrete set of valucs z; needs more
Preciso definition. If an odd number of values is ranged

(yin monotonic order z,, Ty ooy Xap 80 that each z;,, >,

we shall define the median as the middle value, x,. If
an even number of valucs is so arranged as g Ty veey
Zyp-y; W shall say that the median is any value of 2 in
the middle interval, that is, is such that Ty ST,
The minimal property may then be proved as follows :

(@) Lot there be 2n41 values Tgy Xy, <vvy Ty, and let
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us call the interval between z,;, and z, inclusive the j®
interval. The median is at x == #,. Let us denote by
8{=) the sum Z|x—z,} of absolute deviations from any z.

Tirst consider 8(x) as compared with 8(z,), where 2z
is in the (n-+1)* interval, on the right of the median,
and z—x, = k. Then the absolute deviations of the n+1-
values %, %, ..., %, on the one side have each been ¥ )
increased by k, while those of the n values ..y, Z,, 45"
oy ¥y, On the other have each been decreased bylh: .

~ Hence in this interval N\

Sx)—8)=h. . \‘ @)

Now suppose x moves into the mexpiinferval, the
(n+2). Comparing S(z) with S(z.,,,),c%8" note that if
#—a,;, = k the ebsolute doviations ‘@’f}he n+2 values
Zg, Tyy +oey Tppy each receive an incrément &, while those

" of the remaining n—1 values receive a decrement 3.
Hence in this interval “,wwjdbr.‘au library org.in

8(x)—Sra) =3 . . . @)
In this way S(z) in’qu}ses as x moves through successive
intervals to the right, the increments which it receives
within the interyals being h, 3%, 5k, ..., (2n—1)4 ; .and
by symmeiry, ©f; by a similar proof, S(z) receives corre-
- sponding in;{qments as x moves through successive intervals
to the leftaabx,,.
HeneeS(z) is a minimum for z = z,,.
{#}\Lot there be 2n values 2y, 2, ..., Zqpy.
~The reader will see at once that if z lies in the central
/“foterval, the n* interval, and if within that interval is
displaced by an amount &, then n absolute deviations on
the one side each receive an increment A, while » on the
other each receive a decrement k. Hence S(2) is constant
" within the central interval.
Also, as # moves cut of the central interval either to
right or to left through successive intervals, S(x) receives
C
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the respective increments 2h, 4k, . (20 200 Henes
8(z) is & minimum within the centra] interval,

(¢) The result for a continuous varinte « can be proved
88 & limiting casc of {2} and (B), or clse directly thna .

. o N\
Let (—a, b) be the range of values of &, the median BeTieg

taken as the origin 2 — 0, 50 that O\
=] 28N

0 b N
d(x)dz = jé(x}d-x =i WL )
—-a { :N.“

The integral S(h) of absolute deviat-iom(iﬁ'on; T o= Ay
k>0, is then "

] & \
st = [t -aye [e—nigan

oA ¢
1 )
=U.O+J ](ﬁ_x)(ﬁ(x}d’{"i‘.l;f _J’fJ (x—h)d(xile, {5)
— 4] ’.’:‘}’ 4 0

whereas \ _
] ww wighBraulibrary org.in

S(0) =J. —(x}¢(x)d§+:i;]‘?g6(x)dx. .. . .y

<

Sthi—8(0) = ol ng)(x)dw—J‘bgb{x)dx} —f—2fk{k—-rc}rlf>(.?:]dxr
@ —u 0 3} O

N

Qo
e 2.[ (b~z)(ayde, . . (7)
¢

N C . .
m(d./thla 18 essentially positive, singe H{x) is a positive
Mimetion, The same result may be proved to hold for
Vh<0, and 8o S(0) is & mainimum,

Note. The indeterminacy of the median of an ep
of diserete values #, matters oxcoedingly little i
the two middle values bsing for the most, part indist
close,

en number
N practico,
inguisha,bly

The Quartiles. The median ordinate halves the
distribution. Halving again the two halves, we may find
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values of = thh are called the quariile measures, For
discrete distributions, they lie one.quarter and three-
quarters along the line of values z;, supposed arranged
in sscending order. For continuous distributions of range
¢ = a to = b they are values ¢, ¢; (it is hardly worth
while here to preas further Greek letters into service)
such that
& b £
[bote=[4mas=z . . @

a i e {

The median might be regarded as a middle_quartile g,,
the othor two are called the wpper and loperguartiles.
The value of 1(g3 —ay) furnishes a measure of dispersion
(alled the semi- mterguar.{ale range. Any )m]ue of x has an _

this reason, in the theory of error&, ‘this partwu]a.r measure

of ‘dispersion has long been calléd the probable error of

the distribution. The namé'is %ﬁéﬁ;fﬁﬂfﬁ} Eillbe there
is nothing speeially probablebabout this pa.rtlculacr devia-
tion ; and of late there”hss been a salutary tendency to
suporsede the so-calléd) probable error by the standard
doviation, which wéow define.

Standard Deviation. The arithmetic mean of the
squared deviaglgns (v—p;)? from the mean, that is, the
ascond m(}ni&rit g, I8 obvicusly a suitable measure of
dispersiofty™ The square root of this, 4/p,, formerly called
the ?"Qf()%ﬁwn-squa:re dewiation, i3 now called the standard
depdafzon and is denoted by o. The sample value is
dencted by 3. Thus 02 = p,, 8% = m,.

)} Variance. Modern usage is tending more and more to
treat py or o? itself, rather than ¢, as a suitable measure of
dispersion, under the name of variaence.  We have therofore

0% = D) () or f (@—p) b, . (9)
while  s2e=Z@—m)¥lx) . . . . . {l0)
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The standard deviation has also a minimal property,
with respect to the arithmetic mean, namely :
The sum or mean of squared deviations is o minimum
when taken with respeet to the arithmetic mean.
This fact is obvious at once from the formula of 14 (59
Mo = g ()" A\
which shows that y, can never exceed o A\
Mean and Variance of Linear Function. M we
distinguish the respcctive means and variances{ 0f, three
independent variates z, g, 2 by ftriple suffiXes, thus,
100 Prazes ooy A0 ag, Hoz0: Hoge> then framthie properties
of cumulants (11) the linear function ax Kbtz has
. . A \J
mean a#mo‘f‘bﬁuw‘}'oc!“fg%v
variance %y, -+ oo §
and similarly for a general lineanfinction in any nnumber

of independent variates. ™

" lowest value, a. &

e
~

O

Range, Extrer@%‘d%ﬂgm@%ﬁ@m of the disper.
sion of a distribution afeigiven by the size of the range
of z itself, b—a, as well as by the highest value, &, or

P4

¢ \J
18. Measuiss 0f Asymmetry or Skewness, When
the :mean isdtaken as origin & = 0, it may happen.that
dix) = (i)(i’x}', 80 that the distribution is symmetrical.
Ex L >The distribution of number of heads in a throw of

n syx@fg}fsrical coins, described by the g.f. {3#+23)", is sym-
mbt{ipa.l about x = }n.

AN Ez. 2. The continuous distribution described by

\ 1
dp = -—_2: e—i(x-—a)’dx
ki
is symmetrical about x = q.
Ex. 3. The distribution given by
1

is symmetrical about x = 0,



COEFFICIENTS OF SKEWMNESS 7
L

Lack of symmetry, skewness, is revealed functionally
or numerically in various ways.

Various Measures of Skewness. In a symmetrical
distribution tho distances of the quartiles ¢, and ¢, from
the median g, will be equal. In a skew distribution the
difference between these distances gives a coefficiont of
skewness, namely

the division by o being for the purpose of romcmng
arbitrary units of scale and obtaining an absolufe coefficicent.

A natural measure of skowness is howeveny 'b‘I‘k third
moment about the mean, pg. If the distribution is sym-
metrical @y = 0. If the long tail of the,distribution is
on the side of the positive values of z, theleabos of positive
values of x outweigh the cubes of negative valucs, so that
py 18 positive, and we have posﬂm«a ‘skewness, In the
same way if the long tail of the.Eirve is on the side of
the negative values of a, théh’ yﬂd}%"ﬂéggﬁf‘%'éf ARl e have
negative skewneas. \

To remove arbitrary u:nlts of measure, since p, i3 of
the dimensions of 23, OUOf o°, we construct an absolute
measure of skewmex'\by dlvldmg ps by o3 that is by p32,
The, agmare of tlus, fg! ,u,, ia often denoted by B, ‘

Another mepdure of skewness (due to K. Pearson)
depends on tho\fa.ct that in & skew curve the mean, median
and modsg. N “not the same. The measure in question is
deﬁ_ned\hy

O {Mean —Mode)/{Standard Deviation).

mbim tJa it is positive for positive skewness, zero for
symmetry, negative for negative skewness.
Skewness of Linear Function. [f the 3rd moments
of independent variates x, ¥, z about their means arc 3000
tasr Moo Tespectively, the 3rd moment of axz4-by ¢z about
its mean is
@igop t-0¥%1g50 T Cto0n ;

N .
oA

{@s—22) — (s —}/o = (g3 —2¢.+a))/o, O
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and similarly for linear functions of any number of in-
dependent variates. This follows (1%) because py == ky.

17. Measure of Flattening or Excess, Kurtosis.
Two distributions' may have the same mean, tle samo
standard deviation, the same skewncss, and yet may

differ in that the curve of the one may be more flattened O

at the centre (platykurtic) than that of the other. O

The degree of flattening ig{8witably measured by the
4th moment ebout “tie" SRR YRER R ing arbitrary
units of measure, just as indthe case of 8,, wo obtain the
coofficient pt,/ul, often detoted by 8,. Tt has been obsorved
in an extensive clasg GF)probability curves, with scale chosen
80 that the variamoe is umity, that the ordinate at the
mean or mede(ly greater or loss according as B, itself is
greater or Jegs; ~Thus the valus of §, serves to indicate
whether the gurve is tall and slim at the contre (leptokurtic)
or squabi{platykuriic). In the very important normal
probability curve, which we shall meet in 32, tho value of
Bad8.3. Honce B,—3 is sometimes callod the excess, curves

:«{OI.:"Whi(}h Bx<<3 being platykurtic, those for which 8,3
heing  leptokurtic, the normal eurve being taken as

standard.

Higher Moments. No simple geometrical infer-
pretation aftaches to parameters expressed by moments
tty or m, higher than the 4th, except of course that the
moments of even order might be regarded as further
measures of dispersion, and those of odd order as further
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measures of gskewness. These higher moments are in any
case very seldom used in practice for frequency distributions,
because being computed from values of 2 liable to random
irregularity, *orror ” as it is usnally called, they may be
subject to very great ecrror owing to the raising of some
abnormally frequent large deviation x to a high power.
This will be apparent when we come to consider the

sampling error of coefficients, in Chapter VII.

i8. Practical Computation of Moments. /The
initial stages of the analysis of frequency dlSﬁI‘lb]lt;lOIlE
almost always involve the computation of Ordﬁw,ry or
factorial moments, En the case of a continhpu¥ variate
artificially grouped (13) into classes, a c@am error is
introduced into the moments by the cenbfing of class-
{requencies about the centre of the clis)” The calculated
moments then require adjustment b’y Mormule of rathcr
wide application called Sheppurd’s Gerrections,

The example on page 40@hwtibthalihmqmtmidn of the
first four moments and the, co,efﬁments of dispersion and
exeess, for a frequency dJstnbutlon The column headings
explain themselves, ItSgHl be observed that transference
is made to the more¢dedvenient provisional mean z = 67,
this_being judged, 1}%{ inspection of the distribution fo be
somewhere near.§hb trie mean.

Sheppard’s, eérrections have not been used ; wo shall
allude to this”example when we come to dm(u:,s them.

Asg for t\ I Yrean height of the group, the provisional origin’

is really,"as we saw earlier, 677%, or 67-44 inchea. Ilence
the‘m;:an height is 67-4410-34 = 67-78 inches.

(\The distribution shows a slight negative skewness.
Whether this is a gennine effect or due to the irregularities
of sampling cannot be decided until we know more about

the probability distributions of coefficients caleulated from

samples.

The reader should verify that the sample estimates of §,
and §; are -0014 and 3-56.
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Example. 'Lhe distribution of heights of adult Irishmen.

X nf x nf nfz nfz? nfat
59 1 —8 -8 64 —512 4096
60 0 —7 0 0 0 0
81 2 -6 —12 T2 4y 2592
62 2 —5 —10 30 —250 1250
€3 7 —4 28 112 —448 17920
64 15 —3  —43 135 —405 LN
65 33 —2 66 132 —264 \ 528
66 58 —1 - 58 a8 —58 {58
567 73 0 (—227) 0 0 (—2389L 8 Y o
68 62 1 82 62 3 62
69 40 2 80 150 320 640
0 25 3 75225 N 675 2025
113 4 60 240 &% 90 3340
7210 5 50 2388\ 1250 6250
73 3 6 18 108/ 648 3u88
—— - - ’_)?_’R_ —_— _
346 ww vl el THESy org iA3915)  }28236
e ity
I8 2821 11546 81-61
L0341 4468
. LY T -
m = 0341467, ¢ ()

g = 4?821—-{0:'3;”)2 = 4-705.

g = 4468 80-341)(4-821) - 2(0-341® — —0-385,

md = s,y'g}“—'4(0-341){4-4as)+6(0'341)
£ Y

\‘,,

2(4-8_21) -—3{0-341) = 78-84,

g;,i\:lQ. Computation of Moments by Repeated Sum-—
pySmation.  If the origin of a distribution be taken at either
”'\; » end, preforably at the lower cnd, factorial moments can
be computed by a process of repeated summation. We

sum frequencies in columns from the remote value of
towards the origin, in the manncr exemplified below.

The leading sum in cach column is one step lower than the
leading surn in the preceding column.
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L3

Fx.}. The same distribution, with origin at @ == 59
z nf z It zs z P
50 « 0 T 346
1 0 345 28886
2 2 845 92541 11407
3 2 343 2196 8866 28343
4 7 341 1833 6670 19477 49757
& 15 331 1al12 4817 12807 30280
6 33 810 1178 3305 7990 17473 ¢
7 B8 286 858 2127 4685 948%
8 73 228 573 1268 2558 4“98‘
9 62 155 345 695 1200 290
10 40 93 100 350 595NC)" 950
11 25 63 97 160 2d5\Y" 355
12 15 28 44 63 x,in,s 110
13 10, 13 16 19 ”<\:.22 a5
14 3 3 3 20 3 3
Tl 1 1 ﬁ'zf 8 24

™

The succcssive sums at thwhrwdﬂa}ﬁa&lhmny wag-dme proved
(Appendix 2} to be equal to nmx N 7', We have Lhorefore
n = 346, nm,,, = 2888, *nm = 223814, nm, = 170058,

{1 {2) [£1]
nm\ = 1194168,

lramf'm'mmg to\{\lmary moments m by the volations

{Appendix 3) :; *
'mt F}mm ;
\“‘32 M "y : ’ . ’ « D

ANO ™, =, — ooy b

Y EAFI 17 I R :
.‘\\ e, " Gin {3)—1— m( m(l),

we\cﬂ)tam m’1 = 2856346 = 8-34104,
”\,“ iy = 25700/346 =T4-2775,
m, = 241386346 = 697647,
m == 2377100346 =6870-23,

from which, by adjusting (24 (3)) to moments about the
mean, wo derive

my = 4-705, m, = —0-386, my = T887.
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been retained throughout, the final re
discrepant with those computed by ¢
obviate these disadvantages (which are not

PROBABILITY AND FREQUENCY DISTRIBUTIONS
L
L)

Now it may be noted that some advantage has been
lost through the large numbers that arise in summations
from end to end. Even though six significant digits have

sults are very slightly
he other method. Mo

sarious when o

4

caleulating machine is available) one may uso either fi) f@.({—t\'

torial moments obtained by summation from both @hds”
towards an origin near the centre, or
central factorial moments obtained by
of this summation,

"V
Ex. 2. Ordinary factorial moments, Otighn¥at z = 67.
nf x It i) E{\.} b
1 1 1 1 L85 1
0 1 2 3 1 5
2 3 5 KA Y 17
3 “Tgw_d bréxgl i'kl’l‘:jjlégm'g-i“?g ] ‘l‘; "
15 27 493" 89 150 276
33 60 109 198 357 (33
58 118 A2er 425 782 1415
{«}
73 gg‘,l
62 PR 345 "
40 8293 190 350
20 53 97 160 245
15 28 44 63 85 110
0 13 16 19 22 25
3 3 3 3 3 3
rt 1 i 2 & 94

From the flalicized entries we obtain

7= 2284118 = 344,
mn = 345227 = 118,
nmEQ) = {3504-426)2 < 1550,
nmg = (2457828

--3229,

Xl N’
(i1} central a;ui;gncan
a slight madification

2

nmzﬂ = (1104-1415)24 = 36600,

.
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*
These maay be Lransfonacd fo orlinary moments m; by
the samu relations as before, yielding
ml' = 113310 = (-341, m:z = 108/348 = 4-821,

m;; = 1516346 = 4-468, m; = 252367346 = 8161,

These aro bho sne values as werse fonnd by the first method, I\

Ex. 3. Gentral and mean eentral factorial momehts, with
the same origin x = 67. p

Here we again sum towards the centro from the enda, b}ort;
each alternate sum {shown bracketed and italicized) involves
the adding of only Aolf the last summand in the pr:eééﬁing
column, whila the last sums in the other COluL{iL\];B‘ stap

\>

successively awny from the centre, as shown. N\

nf Py Xt za zt 28

i 1 1 1 TN

¢ i, 2 3 Vs

2 3 B 8 a2 17

2 3 10 18 - 47

7 2 gsgww_Q@I'ayllﬁyal'y_qrig_m
15 . 27 49 S\ 159 278

33 60 109 JBR 357 (£4545)
B8 118 287 N3115)

(154-8)
l. 73 :.,,’\”\
(191454
. 62 155{\ 345 (5225 .
40 .63 190 350 595 183285
230053 97 160 245 335
o\ 28 44 63 85 110
NY 13 15 19 22 25
N\ 3 3 3 3 3 3
RN I 2 6 24

. ;"\?ﬁ‘om the italicized entrics we obtain the centra' factorial

\\p‘ofmanta
n = 191-54154-5 = 346,

nm{'l} = 345 —227 = 118,

nmig} = {522-54311-5)2 = 1663,

nm;s} = (595 —357)6 = 1428,

nmiﬂ = (852-5+454-5)24 = 26568,
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L
The formule for the 'm.; in terms of tha m;r} are rai:
sirnple (Appendix 3}, We have

:

fy = 1187346 = 0-341,

m, = mEQ; = 1668/346 = 4-821,

m, = mig’}—i—m;l} = (1428 .2118}/346 = 4-468,
m, = m{i} -l—m{2} = {265584—]058},."'345 = 81-61,

m;- 1z M
B

-

E ¢ \ :
. {7\
as before. The moments shout tho mean can now be foudd, ™
Alternatively, wo could easily derive formule tranzsformipathae
maoments and transferring them to the mean in ono STEP,

20. Sheppard's Gorrsctions for Groupedmments.
As mentioned earlier, when a continuous distgibution has
been grouped into centred classes for ¢onvenience, the
moments require adjustment or correctign because of this
artificial grouping, The necessary formule of correction
were found by W. P. Sheppard. )

Naturally thesprdblemdifoerpéefily genersl functions
${x) is too broad, and is is ne.x:{%éas&ry to impose conditions,
Sheppard considercd the ga#e where ${x) was such that -
the derivatives ¢'(z), ¢"(#} ... vanished in succession at
the boundaries & = ¢ Qnd Z == b to such an order that

. ﬁééﬁ“:’(x)dx=w-§x;¢m(x,> S, W

to a sufficient; degree of aeeuracy, where w is the class-
breadth afdz, the centre of a typical class; that is to
Bay, th{%rror committed should be negligibie compared
wiﬂ&s;&mip]_ing eTTOrs.

afemark., The relation between an infegral and a sum of

¢equidistant ordinates of the kind here considered enters inte

3

\ “Pure mathematics in tho Buler - Maclawrin summalion formula,

by which a sumn of ordinates is expressed as an integral over
the range plus corrective terms involving the derivutives of
odd order tuken at the boundaries, In Tmany cascs, whera
the derivatives ¢'(z), 4" (2], ... are not abgolutely zero but
eonverge to zero ag a limit, the represcntation of the integral
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the left of {1) by the sura on the right needs very carcfil
investigation. 1t i3 found, however, that for tho statistical
functions to which Sheppard’s corrections ars usnally applied
the difleronce between the integral and the sum can be made
negligibly small by taking values of the class-interval w of a
size quite enstomuary in practice. Usually it iz cnough for w \
to be less than the standard deviation. The following
derivation of the formule must be regarded as a-ppr'oxirnate{t\'
only. AN

Ex. L. The following two comparisons of Integrali with
sum over an infinite runge are intercsling in this respgﬁtr’:ﬂ

gy (€
J. e = 3:14150 nearlghd\S

— I +x2 v
whercas )
v 1 N
._Aml—-f-l; = = eoth n‘-;.;\x{3*14)3343...

"

x taking Lhe values 0, i\l%ﬂb?dbtﬁuh'm';é%ylorg_in

0 LN
—_ at Y
f e~ ¥dy = V27 & B-506628275 nearly,
—3 R o

whereas ~
w Q
z e—a{ﬁ\; 2506628288 nearly,
—we, &N\J
N\
x taking the samhe values as before. The first sum in®these
examplos ia .or';:lry meoderately close to the corresponding
integral ; the steond is very close, and still closer results are
obtained 4f\a@"summation with a finer subdivision of » is used.
A\
S\\@pése the range b—a divided into % class-intervals
(:r\.—}.}w, 2-f4w), so that b—a — nw. If the probability in
ol 7 olass is
© 5o |
\/ Py = f dlx)de, ., . .2
25— jw
then the 7 moment calculated from the grouped classes iy

" .
Hr = 23‘.‘;})}, . . . . (3) .
§=1
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; : ..

whereas the trué moment is

i .
py = f alayde. . . L @)

Now
.’6,’+W
ri= [ ptayie i
#—he 2OV
= AN\
=f o, +a)dz O
o

b N 3
= j {blo) g () " (21 +.. }d{ &

w
— wg l:cj JFwrd (@) 24+ 19D, L (5)
provided that this series in powers of w b}nvergps
Hence \ .
— ij ’ x s;

braulib a
—_—.fqu{, dx—|— JI % I' 1920J‘k PV (x)dr+..., (6)

in view of (1). Integratmg by parts and using the fact
that derivatives vanka‘h at the boundaries, we have
wd

.”‘r_}_ ?’(‘}' 1% 2+1920 (T l)(‘?‘ 2)(7' 3.“'!' 4+ (7)

If momen‘bﬁ i, about the mean are taken, we have
thereford tho relations (where p, means the ' moment of
the grgu ed classes about the ean)

‘\ #0 b= o
N 1“'1 = =0,
1, 1 .
=P'2+1—2w Ho =F'2+1_2w . - (8

. 1
by = iy +;1w21“1 = Has

.1 1
Y, = P4T§wzﬁb2+%ﬂ", s
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L]

which, on being solved for the g,, yield

,u.1=|.u.;=0,
1
pz—y—l—‘jw2, . . . - (9)
b= b ‘
VI S B RAY.
Po = Py Wy = 55t O

AN

and these are tho required a.djustments,.."ﬁS}Ieppa,rd’s
corrections. The correction to the secandvwmoment is
espocially simple and noteworthy. If the" class-interval
is taken as the ynit of scale, the ri'@}tion amounts to
subtracting 3 from the grouped seccc;% moment.

It is customary, t%?&%hdﬁ?ﬁj@?ﬁéﬁ&-ﬁ%“hes more
justification than it has ever received, £o apply the same
corrections for grouping insthe case of frequency distri-
butions, the presumptionbéing that the moments thus
corrocted are o hetteg representation of the momenta of
the underlying probability distribution,

L)

Ex. 2. Corfigting the moments about the mesn for
gmlfping in t-heQexample of 18 and 19, we obtain for the
correoted metnbnts

\Y;

M, = £705-0-083 = 4-622.
MY g = —0-385.
AN iy = T84 H(4-T05) 4 0-020 = 7652,

AN \'Fx. 3. The reader should seek out for himsolf numerous
\Wwexamples of frequency distributions, and should acquire as
/' much prastice as possibles in compiiting moments in the various
ways oxamplificd above, and in correeting thom. Sheppard’s
correction will bo applied in those cases in’ which the relative
frequency F(z) in sample corresponds to probability ¢(z) of a
condinuous variate,



CHAPTER I1%

SPECIAL PROBABILITY DISTRIBUTIONS

.\\

21, Distributions of Equal Probability. If n valueswy
of , where § =1, 2, ..., n, have each eqnal proba’mhﬁv
1/n, the graph of probabilltv consists of n ordiflatcs of
equal height 1/n. The case of & symmetrical £oin is the
case # = 2, the case of an ordinary unbiasséd die is the
case = 6, \

The Rectangular Distribution. {ﬁiﬁ limiting case
of the preceding, when n tends to. \nﬁmty, yields an
important dlstl\"%bl{gl%lgr d the e angular distribution,
namely that in'w hag an equ‘§1 probability of being
at any point in the range al='g¢ to = =15, a<b. The
probability differential is then given by

dp—~——-dx, . ..

80 that d(x) a) and the probability curve comsists
of a rcctacng]e on the range as base and of height 1/(6—«).
It is alwavs pm&lble to choose the central point of the
range for Ongin, and the unit of scale such that the range
becom&@'\ﬁhe new range = —4 to ¥ = 3. The rectangle
1s then’a square. The moments of odd order vanish;
thise of even order are

..":' -F ,..__1'__
S pom [ vty @

In particular p, =< 80 that o = 1/4/12 = 0-2886...

ﬁ}

Example 1. Show the m.g.f. of the standard rectangular
distribution is (sinh }a)/{a.

43
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.
Example 2. The following samples from a rectangnler
populalion have been arranged as frequency distributions.
The times on 1000 watches displayed in watchmulkers'
windows were noted by the author. The distributions aro
of the first and second 500 of these. Class # = I means
the class of all watch times from 1 h. to 1 h, 59 m. to the
. nearest mianute, and classes x = 2, 3, ... 12 have a similar
meaning. . N
# 1 2 3 4 5 6 7T 8 9 10 1 12 =a ¢\JA
(it nf 54 54 39 49 45 41 33 37 41 47 3% 41 50(1'\
(ii) nf 47 41 47 49 45 32 37 40 41 57 48 36 ”5"{20'
The mathematical expectation of the nurmber in afids tlass
is 500/12, or 42 to the nearest integor. One of th&}xl@sses in
the above samples contains 54, and another contaihe 32, We
shall see later that the deviations here are not.extreme.
The mathematicsl expectation, or méan“of z in the
population, is 6:5. The means of  in~the sbove samples
are 6-426 and 6-322. 4 A\ .
www.dbraulibrgry org.in
22. The Binomial Distribufion. This fundamental
distribution arises when n tm&ls are made of a constant
system S with probability ¢ j)f an event K, the number 2
of successes in the n tgials being tho V&ri&tP The gf.
is {pt+¢}", and so by-birlomial expansion the probabillty
fanetion, naraely t\{e\cocﬁ’lcmnt of £ in the gf., is .

) ‘?S(x} = Nz PEgRT. . . (1)

Momments Thp f.m.g f., obtained by putting ! = 1+q,
ia scen a\t'\nce to be (l—rpa) , 80 that the mean, the
meﬁi(‘ie{lt of @ in this, is np. Hence the fin.gf. about
the m&m is (11)

S +a)=m2(1 +payn
, 9§ :—[1+pa —patp{p+1)atB—plp+1)(p+2)at{3 4. )
= [1+pd—pl?2=2p1—p)lp+1e’Bl+..]17, . (2)
whence pu(qy = npg, piey = —2apg{p-+1), so that

g = Heg) = MDY, pa = g T3y = moglg—p). (3)
D
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It is readily proved in the same way, by finding y,,, snd
hence 1,4, that

pa = npg[p?+(Bn—4lpg+g¢®}. . . (4)
The formula ¢ = +/(npg) is of fundamental importance.

Example. The following is a sample from a binomial A\
population. The Bwedish astronomer and statistician, C. V. L, °
Charlier, performed 1000 times the experiment of drawing 10 \
cards, one at & time with replacement after each drawr.;lg,'
from. an ordinary peck, the number » of black cards in ‘each
set of 10 cards being the variate. Thuz n = 10, p £%% He
cbtained the distribution , \

x 0 1 2 3 4 5 6 7 8."’@‘ 10 N
Nf 3 10 43 116 221 247 202 115 S 9 0 1000

The corrcaponding probability dm&‘}mtlon has  g.f.
(3 +4)% DMultiplying this by 1000\.3.11(1 recording  the
coefficients of powers of ¢ to the ncarcst integer, wo obtain
z 0 I 2 3wuwd dbrﬁuh}n‘ﬁr"y oFfg.in& % 10 N
Ng1 10 44 117 205 246‘ 205 117 44 10 1 1000

Fromn Charlier’s data we- find my = 4033, m, = 2:415.
The theoretical fxpccfa,tlom are g, == ap = 500 and
pa=npg =25, LN

We shall copsider 'in a later scotion (55) whether these
deviations of aﬁt&al experimental results from theogetieal
expectation 4ré reasonable under the hypothesis of random
Sampling’.‘\

2.3.\’3."1"19 Binomial Distribution of Poisson. The
ordivary binomial distribution is often called the
Bernoullian distribution, after James Bernoulli, who first
soin Ars Conjectands, a work published in 1713, eight years
"\ after his death) investigated it in detail. "S. D. Poisson
\/ in 1837 considered tho problem of « trials, but with the
system S varied each time so as to produce possibly
different probabilitics of suscess p;, where j =1, 2, ..., n.

The g.f. is therefore

(Pt @) (st +ga) .o (pot+a,), . . B
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ot

and so the fm.gf is
(1-} pya){l-4-pea) ... {1+pua). . . . {2}

The coeflicient of & in this fm.g.f. gives us the mean, or
mathematical expectation of the number of successes, as

PPt 4o, Let us write
np :P1+P2+--'+?m . ' (3) '\:\

in order that we may later compare the moments “-'itli,\
those of a Bernoullian distribution with the same prea
probahility p, and so characterized by the gf. (plMy)™
The Poisson f.m.g.f. about the mesn is (compare ph@«}emila
of 22 (2)) ’

{1 +a) 75l +ps) (ﬂj,%product)
I
= [I[1 +i0595'5°z.-"'21—2.?3195(}3';-%'1?1?.%\1"1'---]
= 14+Zpqai2 =220 q.(p,+ N2 8+ . (4)
. www.cibl:au‘librar .Org.in
Hence juy = prp = 2p,q; and vy = —22p,q,(p4+1),
B0 that  pg3 = ey -Oucn =SPWE—Ps)- - . (5)

24. Comparison of \Bernoullian and Poissonian
Variance. It will né® be proved that the Poissonian
. variance, let us sa?\}%, is less than the Bernoullian, ori,.
At first sight tHi$ may sesm surprising, for one ‘might
imagine thath\thé variation of probability of sucecess in
trials withinMhe cxperiment would inerease the variance
of x, the™ntmber of successes, If we consider, however,
the cgseMof extreme variation of probability, namely the
casenint which some of the trials are certain of success,
afid the rest are certain of failure, we shall sco that the
‘azﬁa-iler variance is natural enough; for in this extrome
Mnstance the valuo of # is constant and so its varianee is
Eero.

The fact that the Poissonian varianco is less than the
Bernoullian is valuablo, for it suggests a test for the

constancy or -otherwise of the systera S from one trial
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to the next, in other words, for statistical homogeneity
within the experiment.

As in 23, let p be the mean probability, p = Zp,/n.
We have at once, by the usual transference to the mean,

af = Z(py—piin = Zptin—p?, . . D

where 0'3 is the wariance of probabililty in the = trmls

Hence ,\
Zpgs = Zp,(1—p)) A
= np—np?—Z(p,—p)?
=npg—2ip;—p}* . LY. @
that is, of = 0'%_?20'2. . RN\ . (3

This result shows nct only that the Pg;»lﬁ}mnan variance
ia less than the Bernoullian, but by how\much it is less.

25. The Lexian D1str1hut1on »The extension made
by Poisson to the Bam@u&ﬂhﬁlﬂqhﬁmg evpainted in varying
the probability of succoss amteng the = trials, but weihin
the experiment. A different kind of extension was con-
sidered by the Gormam_economist, W. Lexis, in 1877.
The probability wa&t@ken by Lexis as constant in the
n trials of one B@‘rnﬁzenb but as varying among % such
experiments.

Let % Borfohllian sets of repeated trials be made,
each with e0hstant probability of success within the sct.
Let Py Woothe probability for the i set, where ¢ = 1,

\k\ ‘and lct »;, be the number of successes recorded
lIl its® It is required to find the mean and variance of
tha distribution of the x;.

The scts arc here mutually exclusive, and the probability

} "of each, if we imagine one of the p; to be chosen and

trials to be then made, is 1/k. Also the f.ngf. of x, is
{14+p,)®. Thus the fm.g. f' of the Lexian distribution is

kLI pa), )

The coefficient of e shows that the mean is nXp,/k. For

\

Q!
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comparison with a repeated Bernoullian scheme Iet us put
np = a2p, k. The fm.gf. sbout the mean is then

EYI+4ay o Z(l4pal™ . . . . . - {2
= [l —npa+npinp+1a?204...]
X [l +npa—- n(n,r,,—]) Zpfa2d4.]

whence, by picking out the coefficient of «?/21, U

Mz = Him
= np(np+1)—2n%p-tnn—1}k- 1[*’»‘292-1-27(}):—5@)23
= npg+n(n—1)Z(p;,—p)*k,
that is, x~\\«’
ok = npq—i—ﬂ(n—l)gi_‘”}"l. X . (3)

Thua, whereas the Poissonian va,m}s.n‘ée was less than
the Bcrnoulha,n we fee th&;ta“bhedﬁﬁmﬁm Fialangarexcesds
the Bernoullian by an amountswhich increases strongly
with », because of the coefﬁmen{: n(n—1)in (3},

26. Coolidgs’'s Ext.énsmn of the Lexian Schemae.
It is a natural extenslon to consider, as J. L. Coolidge
did ip 1921, thoydistribution which arises not from &
Bernoullisn but from k Poissonian sets, each with a different
sot of probabilitfes in its constituent n trials.

Let p;; beythe probablhtv of success in the j* trial of
the 1t sts‘\ \Then just asin 25, the fm.gf. is

'.j\ fc“lZH{I—f—}J,ja)‘ . . . (])
”\'. :' L)
“Tet'us write Zpy; = np, Zpiy = kp. Then the mean of
i i
the distribution is ovidently np. Transferring the fm.gf.
to the mean, and picking out the cocflicient of a2/2l,
we find, after three or four lines of algobra,

= iz = NPy +n(-n—1)2_(pm—p)2;'36—%3(%—?;0} k.
[ +
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It is appropriate to regard the three terms of this
expression a8 of Bernoullian, Lexian and Poissonian type
respectively. Certain special cases are easily perceived ;
for example, when p,, = p, that is to say, when the mocan
probability in each set of trials is the samo for all sets,
a variance emerges which slightly generalises the Poissonian
variance o%, and, like it, is less than the Bernoullian.

An alternative form is <\
o= npﬁﬂ%’(ﬂr?)’;’k—{f(pu-—p) s O
which we may write as 3
05 = u§+nﬁa§i—m§,. . \‘ . 2)

This result shows that non-homogeneitgyor fluctuation
of probability, within the trials of an emperiment is of far
less effect, when n is large, than flubtuation in mecan
probability from one set to another! In fact in many
cases oy differs only, glightly, foome-thegomesponding of,

Analysis of Variance, {Th8 results which we have
obtained for the Lexian and\Coolidge schemes oxhibit the
variance as resolved info-geparale components of variance.
The Bernoullian comfibnent may be called the random
ecomponent, since i:tr?arisos even when probability is con-
stant, while the‘Dexian component may be called the
systematic comporlent, sinco it arises from the systématic
alteration g ¥yariation of probability from one experiment
te ano@he‘r.\ This resolution of variance into separate
comppfhents of variance has been called analysis of variance.
It has.Been greatly cxtended by Professor R, A, Fisher, who
has devised regular schemes of experimental arrangement

olfvolving many variates, by meaus of which not one but
#\\~ several gystematic components of variance can be isolated
' (75) from each other and from the random component,

27. Charlier’s Criteria of Homogeneity Based on
Dispersion. The test of homogeneity or stability con-
sidered in this scction would now be superseded or
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amplified by modern methods of analysis of variance,
but it i3 interesting in itself.

We have approximately, in the Lexian and Coolidge
schemes,

g% = O'B—I—n2 2, . . . (I
Hence (ol = (o5 —0%)i(p))? - . (2
whete py= np, the mean of tho distribution. o\
Hence oplp = /(0% —o%)fu]. . . (3}\ '

Charlier denoted this by p, naming it the * coefficidntof
perturbation ” of a Lexian distribution. Ho tw;ncd it
into a percentage by taking 100p. Trom { we\.zee that
p moagures the relaiive fuctuation of pro bablhf:y

Example. (Classing 288,000 Swedish bithh¥ in 576 scts
of 500 each, according to different moﬁths and different
distrietz, Charlier found for z, the nmnb(‘r‘ of maloe births

in & bet
= 257-12, 5, _‘IM@GU% Wiy ox 8,

Hence p --m.U% = 9-514, ¢ = 0~486 not ¢ priori, but as
estimated from the large sa.{npla of 288,000 ; and so
5 = «/(nj}@ =2 4/124-9 = F1-18.

Hence 100p = 100(156+0 —124.9)/257 = 2-17 per cent.

The conclusion de is that & mals birth in Sweden is an
event of 51-4 penc Seut, probability, with a standard dev iation
of 51-4x Q- 0217\, 6r about 1:1 per vent. probability.

28. Typ \as of Multinomial Distribution. The bino-
mial c{qubutlon of Bernoullian or Polssonian type, is a
speofal ‘case of the multinomial distribution, the forms of
}vnch are 80 many and so various as almost to defeat
a olass1ﬁca,t1011. We have seen a simple exa,mp]e in the
\/probability distribution of totals of points in » throws of a
die, or a single throw of n similar dice. Here the g.f., for
biassed dice, 1s

(Pt +pot 218t o+ 08", . (D
and it is best to leave the distribution in this syrmbelized
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form, aud not to expand by the multinomial theorem,
Tho generalization to the case of n different dice, possibly
with different numbers of faces, is easily seen.

Ex. 1. Prove that the mean value of the total in » throws
of & biaszed die is n{pm +2p,+3psF4ps -+ 5ps - |- Gpg)-

Ex. 2. TFind, by constructing the f.m.g.f., the variance
and standard deviation of the total of points in a throw of
n symmetrical six-sided dice.

The f.n.g.f. reduces to
[(1+{1}_”2(1+§a+2§0a2;’2!+ )]ﬂ "("}'«.
[(1—§a+3—”a* 21 4 .. )(1+ga-y2§(}a2,f2z+'~§.)1“
(1+— a2 4 ) 7\
Hence = 357/12, and so ¢ = \/(35n)f2>‘3

29. Samplmgwmtﬂbmﬂlﬂ§fi1ﬁdéﬁlﬁht Hypergeo-
metric Distribution. Whenin s&:mphncr a population the
individual drawn is not repla.c'ed; \the result of one dram.ng
influences the probability of thenext, so that the successive
drawings are not independent, Hence it is no longer
possible to combine into avproduct the g.f.’s of the separate
drawings. Tt is tr@é that the difficulty can be circum-
vented by the imroduction of symbolic products, with
due precautmns i’ expansion, but we shall here proceed
from firat prmmples

Let us\cgﬁmder a population of ¥ individuals, of whom
M= Ngare of character 4, so that the probability of
dra,wm'g an A at the firgt dra,wmg i p. Let n drawings
be\made, no individual drawn being replaced after the

~drawing. Tt is required to find tho probability distribution
of 2, the number of individuals 4 drawn,

The probability of z successes A, n—a failures A,
neeurring in some particular order, ia
MM-1) ... (M—2x+ 1) N—-MN—M—1) ...

(N—M—ntz+ L)) NN -1 ... (N—n3+1}, . (1)

N
#

'\
N
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a3 is readily scen by considering how tho numbers in
population, and in categories 4 or A, arc deplotod by |
at each drawing. But there are ny; possible placings in
which » suecesses may eventuate among = drawings.
Hence the desired probability is

qﬁ(»’ﬂ] _ ﬂ_mﬂﬁr(m]{N_if)r.,r—mJ/Nm), .2

where M@ = M(MW —1)(M—2) ... (M —=z-+1), and so on. ¢\ \
Just as the binomial prob'lblllty function of 22 was a )
typical term in the binomial exp%nsmn of (pt “ g)*, so th‘ls
function that we have just found is a typical termyin 4
certain series, a. hypergecmetric series,  Hence ¢ () m‘often
called the Aypergeometric probability function:
The g.f. is the hypergeometric series. \J

Z.’ gy M (N — M pin-=igsf ’\7“3\ - . @
xr=q 4 }
(N —HM)™

- ;(m — \M\IW %T‘ai\‘}lbl_j}&()l_&in

in the notation of Gauss, a,nd ~&0 the fm.gf is

Z’ n{x,lf‘”’{l\?\Lﬂf}‘“ 211 4-a)= N, . (4)
R
which may be cvah&g}ted {by gathering terms together in
Vandermondian expammns} as

Mn b AL N AL AL
1L N ai‘k e - a?214 e a3 34, . (B

N

=¥ \1{ —n; —N: —a),

4 tel‘mmatlno hypergeometric series. The mecan is thus

m}f%’ N, and the r** factorial moment is M "ipin) (N,

\ ) Tho examples which have now been given Of probability
distributions have shown how numecrous and varied are
the types of distribution, In fact, any proposed probability
function may be simulated by a suitably constructed model
or population, and special samplings of this population
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give rise to further probability functions. Fortunately,
when the number # of trials is large, many of these pro-
bability distributions tend with good approximation
towsards one or other of & few dominant types, which we
shall now consider.

30. Important Approximate Distributions : Types
A and B. When the coefficients of t* in the Bernoullian

N
#

binomial” g f. (pt-+g)" are taken as probability ordinates{")

¥ = $(z}, we may join the tops of the ordinates to fortn
& probability polygon. If this {3 done for increu%iné
values of n, the mean np being taken as origin and’the
standard deviation +/{npg} as unit of scale, Jbis found
that the successive probability polygons t-end\to lose any
initiel asymmetry due to inequality of p andlg.”

In fact the cocfiicient 8, of skewnogsds\™

B = i3t m sl g
=(g—p)¥wpy, . . . D)

which evidently tends to zeerala; n increases, unless either
of p or ¢ is of the order of magnitude of 1/n, let us say
O(1/n), in which case the‘skewness remains appreciable.
Not only so but, ap t\:‘frf‘)m the exception just mentioned,
these hinomial curves are found to cluster towards a
limiting symmefpioal shape, the same for all. The curve
to which they Bfis approach asymptotically is of paramonunt
importance pstatistics, and is called the normal probability
curve. Jf & tho asymptotic shape not merely of the
Bemquﬁhﬁ binomial but of the Poissonian, as well as of
the multinomial and of many other distributions, and it is
.cliaracterized by the probability differential
V 1
dp = dizidr — __ e—%(x-'.“»}’.:'c’d);, . . 2
p = ¢() Y {2)

where i is the mean, o the standard deviation.
When small corrective terms involving # are retained,

-
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s

a closer representation is given by the probability function
of Type A, namely

P(x) = p(x) —a,d"” (%){3 +a, 7 () /4] —.. E)

where ¢z} denotes the normal probability funwtion, and
the coefficients @, of the derivatives ¢{Nz}fr! are of
irregularly decreasing orders of magnitude with respect to
n. The coefficient a, when frced of arbitrary units, g\, \
measures skowness, ¢, INeasurcs excess, 0

Az noted above, tho case when p is very smq.l[ is
exceptional. If p is O(1/n), the mean np is nef, O (n}
but O(1). In this case the normal function 1§\1mt the
most snitable basis of approximation, and the appropriate
asymptotic probability function is Pmssor\s. function of
statistical rareness, namely

\‘.
$iz) = e Purfah) . L@

where p is the mean. He}?’a‘éd’ 1o o al‘ogr%g % smaller
order involving » are retainedya closcr representation is
given by the probability fum;tmn of Type B, namely

pla) = () +bgv2,‘{, )2 —b () 3+, -+ (5)

where i(z) is Poi ()Q 's funetlon (4) above, and V7 denotes
the opera.tlon of. forming the receding difference, sd” that
VJJ = (z)=sth(z—1). It proves fo be the casc that
b, is O(n~2) 65 and by are O(n=%), b5 and by are O(n-3),
and a0 o]

Wt\now consider tho derivation of these functions.

3’1 The Normal Function as Limit of the Binomial.

7\ :The rigorous derivation of the normal function as generated

by compounding = independent distributions, and the

discussion of necessary and sufficient conditions, require
advanced mathematics beyond our scope. We content
ourselves here with elementary and incomplete treatments.

Consider first the binomial g.f. (pt4-¢), where p is
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not of order 1/n, but is O(1). Putting £ = €® we have
the m.g.f.

{pe® +q)t = (1 +pa+pa?2l-4pa¥f3l4-15... . (1)
The mean is np. Let us transfer to the mean, and to
discover the limiting shape of the curve of probability

let us alter tho scale, so as to find the distribution, not of
actual number of successes z, but of the deviation

(x—np)/n of the relative froquency of successes from the s

mean p of relative frequency.

As a first step we construct the m.g.f. of a/n. y

11itis ’\
[1-1-pafn-t- /22 +- 09"
= [(1+pafn+3patn)(1+ip—p* aﬁ/n=+0@—3) @)
where O(n~%) indicates in both cases remai‘nﬁcr terms of
order n—%. Asn increases thism.g.f, tends asbmptotlca.ﬂy to

weha bt ary, 01*g in . - {3

The first factor shows that the mba.n of the transformed

variate is p; but this we already know. The second

factor indicates, by a furtheriobvious transformation of

scale, that the m.gf. eof\the standardized deviation
2= (@—np)/v/(apg) s (NN

KN et . . . a{d)

Now the posmble number x of successes may range from

0 to n. Thug™the values of z may range from — +/(nply)
to +4/( ij\a range which tends in both direetions to
infinity. whri}her consecutive values of z differ by l

and s&%naecutwe values of z differ by 1/+4/(npg),
inter%: «al which tends to zcro as # increases. We therefore
,aee]} a representation of the probability function ¢(z) as

\a positive function confinuous over the mnée —o to 0}
and the question is, what function ¢(z) is such that 1ts
m.g.f.

f Plaerde =, , . (&)
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The answer is contained in a theorem, to the effeet that
the only positive continucus function satisfying this
relation for some continuous range of values of a is

1
7= ——
& V%
and this is the normal probability function, ir standard
form.

e~ ¥,

.. ()

N

The reader should become thoroughly familiar both v;viﬁjh o

this form and with the unstandardized form of 30 {2).

Incidentally, taking the logarithm of the mN {4},
we see that apart from the mean or first crumifldat there
is only one other cumulunt, namely «, or o2 N

32. Properties'of the Normal Probablllty Function.
The curve of the normal funection isf a s»mmetrlc&l bell-

shaped curve, extending tmm{i@ﬁ%@{:}ng}gl&g gap,ie and
flattening rapidly upon the axis oi" A

s\

<r

a 1 F3 5

&
The \maximum ordinate is g, = 1/4/(27). The area
under$he curve is
\\ 1 ®
:”\: ’ —— 3_%Z=dz = l, - - . i
TN \/211'.]. M

) | —te

by the well-known integral. {Qillespie, Integration, p. 88.)
The points of inflexion, given by d2?%/d2®> =0, will be
found to be at z = 41, or, in unstandardized units, at
deviations 4-a from the centre.

The probability, as taken from the normal curve, that

N ¢
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L]

a deviation from the mean is numerically less than z is
the area under the curve between the crdinates for —z

and 4z, namely
1 @
—_— e—iddz, . . . (2)
v 2 .[ —r (

This function, called the error funclion or probabilitys
integral, is denoted by erf(z) and has been extensively tal -
lated. (It is ealled the error function because the tvaal
distribution of errors committed hy instruments of @hserva-
tion has been found to be sensibly normal.) The f@llowmg
short table shows how the probakbility of de\nat:}ms outside
the range {—=z, z} diminishes a3 z increasesy
z 0 03 10 1.5 20 25 &9 85 40

erfizy O 0-383 (-683 0-8366 0-954 0-5}8‘8'?0"997 0-5995 -50094

We may note 30'3,13 the probability of a deviation
greater than A ' (B3 &Oﬁ%r‘g ncarly 7/22; that
of one greater than 2o is abmrt 1/20 or more ncar]y 1/22;
that of one greater than8e is &hout 1/370 ; and that of
one greater than 4o is whout 1/17000.

The quartile deﬁatmn or so-called ** probable error ”

is glven by \\

z
—V 5 [ etz = 1. A )]
TS -2

A\
By/interpolation it is found to be z = 0-6745 nearly,
B\)ﬁondmo to a deviation from the mean of about 23
qrhu re nearly 27/40 of the standard deviation.
% "The mean absolute deviation is given by

2 o
—— | ze~¥dz = 4/(2/7) = 0:T970 nearly, . (4
Voo J.O v/ (2/m) 7 y (4)
correspending to about 4/5 of the standard deviation.

The higher moments of the normal function are found
by expanding the m.g.f. exp(ia?), or the unstandardized
exp({fo?a?), and obscrving the coefficients of a’frl. For
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odd orders they vanizh, for even orders 2r they are given by

Por = (BPo¥ (2l . . . {5
In particular 1y = 304,
8o that (17) the coefficient of excess }5’2 = ,u‘i.-’!u.g = 3. N

33. Poissonian Function of Rare Stanstxcal‘
Frequency. Wo return to the binomial g.f. (pH—gJ,
examining the previously excepted case in which, ghalgh
n becomes large, p iz go small that the mean @p A Oy,
in fauct p = O(n~1). YVrltmg the mecan np ag 1@ we have
p = u/n. The fm.gf ia therefore (22) v

(1+-pa/n)®, which tends togh® . . (1)
a8 % inereases. This is the f.mad) \of the Poissonian
function. The probability g.f. is thv,t‘efore

wwg#%pguhbrary prg.in . @

and the coefficient of = in thus ‘gwes the desired probability
function as .

ﬁa@;:e—mz{x!. ),

+ )

34. Propertik?sgf the Poissonian Function. The.
normal functmn containg two parameters, the meam I
and the staq@md deviation o. The Poissonian function
has cne &xrameter only, the mean g. The range of the

1y \i\ Below are shown the probability polygons for
N po= 01, 03, 1-0, 3-0,

~\~,




b4 SPECIAL PROBABILITY DISTRIBUTIONS
» &

function is from « =0 to & = c0. For p<Cl the pro-
bability pelygon is J-shaped, for pz21 it becomes double-
sided and for large valucs of g fends o acquire symmetry.
Indeed, for large values of p the shape is approximately
normal ; for the ordinary m.g.f. is

oxplp(e?—1)] = explua-tuat2l bua¥3l£.) (BN

and if we change the scale so as to make 4/ the u_mj:\we
obtain the g.f. AN

exp(ufa +o2/214-ad3lut+.), \\ (2)

which, to a first approximation (that idNMcluding the
firat two terms of the series in the bragket) is the m.g.f.
of & normal function with mean 4/, 5( and unit standard
deviation, \¢ )

The logarithm of (1) gives the’ cumulant g.f. of the
Poissonian functioen: athysfefibrbhywiriphnshows that all the
seminvariants «, are equal tevthe mean p; in particular
the variance x, or g, is cgual to .

There is only one factorial cumulant, xq) = p.

2\

35. More Gggez?al Derivations ; Types A and B.
Ag hgfore, the,cxtensions of the domain of applicatign of
the fundamemtal distributions given below are not
establishet\inder the widest conditions.

Let 8" consider the compounding of n systems 9,
wh ’e} =1, 2, ..., %, whero each system has finite cumu-
lqﬁ.fs, all 0(1). The cumulant g.f. of S; is then & convergent

Eeries
~O Eye) = efatrfa?ial-talad3 40w . (1)
3

\

Y

For example, the binomial distribution of n throws of a
coin, provided that p is O(1) and not O(n—1), may be proved
0 have a e.g.f. of this kind.

Now imagine all the » systems 8; to operate independ-
ently, the results being added to make & variate x. By
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the additive property of enmulants the cumulant g.t.
of wis :
Z'(x(fa—[—fcéfa2;r2!—f— YaBf3l4+...), . . @

I

and the c.gf. about the mean of z is the same with the

term in « removed. The second cumulant of z is clearly « N
Ofn), and so the standard deviation is O{ni). Let uga .
therefore alter the scale so that z/+4/n hecomes the varmté \J)
The e.g.f. of this variate is then s,,.

X

kpa—rpai2lbraa?3l4-.L ., . '..'( M.": {3}

where &, iz O(n?), x, is O{1), x, s O(n~F) an'dfin\’genera]
x, is O(nl=#). Again, the c.zf. about the\can is the
sarme with the term in o removed. A/

Thus as n increases the dominan x’G.?rm in the c.gf.
about the mean is“x,a?/2!, which 15 t}le o.g.f. of a normal
function
WWY. db’t!féui pr at y org.in

#e) = VD

If, however, we retain, the terms of smaller order, while
choozing the scale sr\that #y =1, the m.g.f. about the
mean is )

Mad = expl 1(}.\}{1} (rareg a3 Lape, 2ot 4) o e
= ezgf‘a- 1-Fazadi8l aatidl 00y, . (5)

(4)

whera th\g»sccond factor in brackets on the right arises
from_tlie“expansion of the second exponential in the firat
ling™\ Now if a probability function P(x), which vanishes

with all its derivatives at the boundaries, has m.g.f,
.4 “\' -
~0

} b
QO M(a):J.P(x)ede N )}

it may he proved by r integrations by parts that
by dNr
atMa) = (—)'j (d_x] P(x)e®tdy, . (7)

& /
E
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Thus here, reverting the m.gf. of (5). term by term, ve
derive the corresponding probability funetion as

) = G ~aef @Sl rag e |

provided that the serics for m.g.f. and probability funetion
are convergent. This is the probabilit v funetion of Type 4,

A close examination of the magnitude of terma in {he)
expansion of O

N
eXP{rgrg~ a8/3! gy 2atidl ) ON )

shows that the order of magnitude of coeﬁig@ﬁf-s in the
series of Type A is as follows : \Y;

a3=0(n"4), ¢, and a, = O(n 1), a, Gt g = O(n 1),

aud later coefficients show a aimilar.’i’r}egularit}z
Here let us pause to point cut & pradtical dizadvaniage
of the representation by Typedd.* If we are representing
a given ﬂeq@Wdﬁ#@ﬁim&éﬁij‘ﬂuﬁ-@pe A, we mugh use
the observed moments to gtimate the coefficients g, g oo
m Type A, Let us Suppose that the co avergence demands
the retention of term, Wpto Ofn-1),  We must then include
not only a, but aise % Now ag depends on the Gih
moment, and thé\ﬁtﬁ moment of the ohservations is subject
to very h_igh'sa,mpling error (88). Hence the effopt to
increase mathematical accuracy by retention of higher
terms is {argely frustrated by the statistical TRUCOIFECY
of the Angments used to estimate those ferms,
éries of Type B. The procedure for deriving the
funiction of Type B is rather similar. The f.m.g f. proves

explpa)(l4-ba?/214 503814 ), . - {10}
which on reversion term by term gives
P(E) = i) +52v2¢(x),#21_bs\ys;p(x},.fsw-..._. {11}

the series of Type B, where () denotes Poisson’s fimcrion
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L

of 33 (3. Here the order of magnitude of coefficients is
found to be :

by = O(n1), b and by = O(n2), b; and by = O(n9),

and 8o on. Thus in using the funection of Type B for the
representation of a frequency distribution it is best to

trunecate the series after a differenco of even order., AN

S
36. Other Systems of Probability Functions 3\ the
System of Pearson. We have seen how the fu;l(;iioi‘)’& of
Types A and B arise by the addition of cumilant (or
factorial cumulant) generating functions, forresponding
to the compounding of values of an additive variate.
But a variate of this kind is a ver';);:'g;ﬁe’cia] one. For
example, if x iz built up of added dncfements, then 22,
which wo might<have occasion to\wse instead of z, is
certainly not the sum of the squarss of those increments.
Indeed, as we may wollwirdtofaaibrahe aiitibution of 22
is different from that of x. &3
For this and for othek“reasons the scope of typical
probability functions.{hes been widened, and aystems
other than Type z}‘m:nd Type B have found acceptance.
One such systeta€i8”the system introduced in 1895 by
Karl Pearson. )\
Lot us condider the difference or differential efquations
satisfied hy\some of the standard probability funetions.
We shall’nse the receding difference operation defined by

RS ) —$(z—1).

;’:f(i) The binomial probability function of 22 (I) satisfies
_ _z—typ
veH = — Rk )

{ii} The Poissonian function i{x) of 30 (4) satisfies

Vi) = —x:‘ @, . . @

N
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(iii} The hypergeometrie probabilit),: function of 29 (2}
satisfics
2N +2)— (3 (n+1)
(M —z-L1)fn - w+1)

V() = — $lx). . (3)

(iv) The normal probability funetion in standard form
31 (0) satisfies

i (\J

= d@ = —wp0. . . .
A number of other probability functions, . ériding
naturally in problems of repeated trials, mighy"b&’&dded
to this list. The Peuarsonian system congists of the
functions ¢{x} which satisfy the differential aguation
7\
d_y _ {x—a)y L&
da otz POGEE
The functiOHW\medlfcmidlbrmim;glmﬂjatc integration ;
thus ™

Ve —ad
log y z“_\JA'_.._.(_x._. _{E) *

(5)

co—i—cl_x—;;chz’ (6)
whenece y can be féﬁx\Ld by the methods of elementary
integral caloulus. "\Fhe quadratic in the denominator of
the integrand may have real, variously positive or ncgative,
or equal, ox {namerically equal but of opposite sign, or
complex ggets ; or again, with ¢, = 0, may degenerate
into g lingar function, or with ¢, and ¢, = 0 into a conatant.
The\sgkv“arious cascs yield the Pearsonian curves, usually
clagsified into twelve types; while the discriminant of

_ (th8 quadratic, expressed in terms of moments of the

“\turves, yields a “ criterion ” for judging in advance what

\ type is appropriate to a proposed frequency distribution.

A full account of the curves, their shape and the process
of representing frequency data by them is given in
Elderton’s Frequency Curves and Correlation {3rd edition,
London, 1938), to which we refer the reader for details.

N
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L . - .
Here we have space to mention from time to time only
a few of the curves, as they ocenr in special problems,

37. Probability Functions Generated by Change
of Variate. If z iy distributed about the mean z = 0
in & normal distribution

dp = (2m)—te—1x'dy, . . . (}‘;‘\

N\
it is certainly not the case that 2 is normally diatributed ;
for putting z = }a?, we have da = (22)~Idz, and sd

dp = mlg-te—tzd, - L&Y @)

The range of z is from 0 to oo, and thd\deWstant 7! is
such that the integral of the probabj@gy funetion of 2
over this range is 1. The distributign{bf z is skew, and
i actually a case of Pearson’s TypedIr,

Ex. 1. Provc that the m.g.f, of s (I —a) ¥,

www.dbhFaulibrary org.in

Again, if z is distributed) between —{ and 1 in the
rectangular distribution ¢p ™= dz, the cube root z — a
is distributed, as the rgader should verify, in the U-shaped
distribution dp = 3#de. Or again, to take an example
from physies, if fhe distribution of the velocities of a
great number Of ‘particles about a zero mean velocity
were normal,(the distribution of their enorgies wordd he
of Type IIT

The.o\t’lei'ivat-iou of probability functions from the
normgh $unction by non-linear change of variate was
em&m‘sized by J. C. Kapteyn in 1903 (Skew Curves in
Bidiogy and Statistics, Groningen), but was by no means

:'\’51'1:161\' conception even at that time.

a \
\ ) Bx. 2. If x iz 8 normal variate in standard measure, we
have seen in Tx. 1 that tho m.gf, of z = % is (1—2a}-F.
Hence the m.g.f. of m%—}—x%-vj-”.—;—aﬁ whore the x, are in-
dependent normal variatos with the same mean @ = 0 and
in standard measure, is (I —2q)-4", The probability function
which has this m.g.f. is uniquo, and of the form czt(-2e-inz,
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F)

The reader shonld verify that this funcfion actually hus the

above m.g.f., and should find by integration the value of ¢,
Ex. 3. If & is distributed normally about 2 = 0 as mean,

find the distributions of : {i)z = e%, (ii) 2 = &2, (ifi) 2 = z}.

38. Cauchy's Probability Function. The pro-
bability function which we shall next consider arises by

change of variate in a rectangular distribution. Let us,
take a poini ¢ on the axis of y at unit distance from the

origin 0. Let a straight line be taken at angle 8 to Q&
all values of 8 from —17 to 3r being equally likely) to
cut the # axis in the point X = (z, 0). What)is the
probability distribution of = % O

The distribution of # is rectangular,\Wp = »~176.
Also ¢ =tan#8, so that @ = arctan z, A= dzf(l+2?).
Hence the distribution of x is given by £ ©

1 dx 6 ‘ v
=-—=——, Tahgt —x to o0,
) ww?{’;_&ﬁigu!ifglj‘arzy_org_in
The probability fanetion af)ﬁearing here is Canchy's
probability function. It hds*the property (very awkward
for any theory of estimation from sample based on
moments) that its meents of even order wg, py, ... are
all infinite. The¢ e'qfde’r should vorify this by integration.
It follows at onc-@%:m,t linear compounding of independent
variates obeyigglaws of Cauchy type cannot be carried
out by thesaddition of cumulants ; in fact the cumulant
gi's do et converge, This exeeption to the common
rule gived us a salutary reminder that linear compounding
of in%cndent variates does not necessarily generate a
distatbution of normal type.
) The Cauchy curve has been found to possess a specially
\ Jremarkable property. If n independent variates obeying
the same Cauchy law are added, and the mean is taken,
this mean obeys exactly the same law. Not only so, but
the distribution of any linear combination

Z2= clxl +G2x2 _[_ rra +cﬂxﬂ

A
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of variates z, obeylng the same Csuchy law, where the
¢; are positive and sum to 1, is again exactly the same
Cauchy distribution.

ot

00‘.3
S
The figure shows the normal eurve in standardvmensure
and the flatter Cauchy curve drawn to the same'scale,
9.\l

23 -2 -1 [+ 1 2

39. The Pearson Curve of Typ‘é:\I. As a final
example of a probability function ariing from a particular
problem, let us consider the flgkbjgglibrary.org.in

Suppose that « is distributed in the rectangnlar
distribution over the range ‘O}"to 1. Let n+1 points z,
be taken independently in“this range. What is the
probability that the (A4} point of these, as counted
from the lefs of the sange, is in the elementary interval
x—idr to zt+ide ?\\

The probability is compound; it is the proba,%ility
that one, any @ile, of the n+1 points is in the interval,
and that kef\the remaining n are in the range 0 to o —}3dx
while n—zﬁﬁi'are in the range z-+ider to 1. Hence the
compqﬁxd probability is

NN dp = e = ngy(nt Dkl —zprrdy, . 3
\for the first probability mentioned is (n+1)dz and the
second 18 ngx*(l—x)"*.  The probability function ¢(x)
obtained here is of Pearson’s Type 1. Tt is in fact the
integrand of the Beta function (Gillespie, Integration, p. 84},
apart from the factor ng,(n+1) which ensures that the
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area under the curve is 1. Had the range been a to b
we should have obtained

+

B) = oy s BB E ()
{b _a}n+ ~
The probahility integral of the simpler form (1) over,
the partial range (0, @) is called the Incomplete Beth )\
function. In the same way the integral over (0, v of ©
the function \ .

el

1 N\
= —lp—a& £ 3
¢(x) P(n) xd'l € ’ ‘M'\\. ( !
which is a case of Pearson’s Type III,‘is“ca.Hed the
Incomplete Gumma function, N

Variety of Probability Curvesi,  The preceding
survey of types of probability fugetien, though far from
exhaustive, will have served ’t»p“dispel the idea, once
rather prevalent, thetvntiaslityispdmyinmetry were the
rule and that skewness waseas “accident of sampling, The
réle of the normal distribiition in statistics is not uniike
that of the straight lihe in geometry; and we do not
force curves into thesmould of the straight line. Skew
distributions arelil fact the predominant type, for skew-
Desg arises from Lexian variability or non-hemogeneity,
from Poissonian’ statistical rarity, from limitation in tho
nuraber ¢f\¢auses of variation, and from mnon.linear
transfqg'@a’ﬁions of the scale,

Q{aﬁers of fairly advanced mathematical attainments, and

inferested in the rigorous derivation of the normal distribution

.Jend its corrective terms, will find greab profit in studying the

...\: ambridge Tract No. 36, Kandom Variables and Probability
N/ Distributions (1937), by Harald Cramér.



CHAFTER IV

PRACTICAL CURVE-AITTING WITH
STANDARD CURVES

40. Representation of Frequency Data by Norma;'\~.\
Curve. The present chapter will be devoted to tHe)
numerical details of representing frequency distribubidn’s

by normal curves, curves of Tvpe A, Poissonian/erves
and curves of Type B. A\

In fitting the normal curve, that is, infinding the
equation of the normal function of best ‘approximation
to the given frequency distribution, the idéats to represent
the relative class frequencies by the cafésponding segments
of area under the normal curve Wgbween neighbouring
ordinates corresponding tq,qu&m%ﬁﬂvm—aﬂ@sm-égunda,ries.
The mean m) or m of the frequency distribution is taken
as the estimate of the mean g or ¢, of the normal function ;
the second moment m, er s2, corrccted for grouping if
necessary by Sheppard’s correction, is faken as the
estimate of the corresponding u, or ¢2. In order to use
the standardized, j;z\i.ﬁbs of the normal probability integral
it i best, oncé iy and m, have been computed, to
standardize thalelass boundaries, taking them as deviations
from the megv, in units of s. The values of the probability
integral ©orfesponding to these class boundarics are then
read from tables (Appendix 4) ; thoe first differences of these
valugs'are the estimates of the class probabilitics; and

L [ifelly we may multiply by =, the total number in sample,
\Jo make comparison with the absolute class frequencios,

Example. In the data of heights of Irishmen {18, Ex.}
the mean is 67-34, and m, with Sheppard’s corrcetion is
4-705—0-083 = 4-622, Hence & — 2-15, 1/s = 0-465, The
standardized deviations of elass boundaries are shown in the
column z = {x—m43)/s bolow. Since their common differ-

8
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ence iz 1ljs or (-465, ihev are readily fmmd, when once any
one of them has been computed, by repealed addition or
and the resulis ean he checked at Lthe
The next colurmin shows the values of

subtraction of (-463,

ends of the range,

forf (z), the next the first differences of these, the next the
same multiplied by 348, and the final eolumn the original

class frequencics themselves for comparison,

N |

x z={r—m=l}s terfz FAerfz InAerfz obs. ,f\ N\
— — 0-5000 e \
59 (¢-0001 0 \!
—3-646 —0-4099 O
60 0-0006 o 0
—3-181 —0-4593 RV
i1 0:0026 N\ 2
—2+718 —0-4967 W
62 0-00880> 3 9
—2.251 —0-4878 NN
63 Q9210 9 7
— 1T Blrsar dbr&ﬂl‘ﬂﬁ%y or'g g.in
64 N 0-05{)1 19 15
—1-321 - 04068
GRS N\ 0-1028 38 33
—0-856 L 0-3040
66 A0 01518 53 58
- —0:381 ¢\J —0-1521
61 B\ 0-1816 63, 73
00 0-0293
63 ,f\'; ) 01756 61 62
500539 0-2051
69 L 0:1372 47 40
W 1004 0-3423
7 0-0868 30 25
AN 1-469 0-4291
Skl 0-0443 15 15
1-934 0-4734
72 0-0184 6 10
2-369 0-4918
73 0-0082 3 3
w0 0-5000 — —
346 346
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41. Representdfion by Type A. The coefficients
@3, @y, ... In the serics 36 (8) of Type A can be expressed
in terma of the moments about the mean. For by 35 (5)
the m.g.f. (in unstandardized scale) is given by

Udpe 0220 g pa® 8l 4pe et/ 4l
= expl{ic’a’}{ltay0fa® Bl faotadidt+.). . (1)
Multiply each of these expressions by exp(—}ala?} \J)

and expand the product in the former case. Equatidg)
coefficients of a™/r |, we have the desired relations )

ag = p3/0%, 4 \
\
&y = (i _3#5};;04’ \/
@y = (ps—10upp,) /0%, WV
a5 = (g~ 1510010y +30-“§}Qq’.\ . . (2)
and so on. . -

The routine for fitting Type A(da slight extension
of that used in fitting the normalbpuiibrailongits about
the mean are computed and of hecessary corrected by
Sheppard’s corrections. The) Coefficients a,, a,, ... are
estimated from thess momertts by the formuize just given,
with m, substituted fof'\u,. The integral of the corre-
sponding Type A serids Js then taken instead of the normal
probability integral\\ This involves the necessity, if terms
in a, and a, are(ihcluded, of having supplementary tables
of the integgals) of the functions which appear in these
terms, t-ha..t\ia,'tables of

M\ 1 d 2 z
9 — ] g
P\ Fulz) 31V 2y [(Q’Z) ’ L

e 1 @\® z
NY and  Fuz) = o [(—) c"iz’] .
=z |z 0

Y N
) 3

Buch tables have been computed aud are available,
{British Associstion Tables, 1931; Bowley, Elements of
Statistics, p. 303, Fyiz) only.)

Example. (Bowley, Elements of Statistics, p. 300} To
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fit two torms of a sories of Type Ato data giving age
distribution of 8t Louis sehool children in tho sixth grade.
{Age » means = to o413}

I 1 B | 12 13 I4 15 16 17 18 )

nf 26 201 673 1001 739 310 80 i3 1 3044 7\

By the usual routine we compute M) = 13-665, m, — 1-498, A
mg = 0-356.  Henee, using Sheppard’s corrcetions, t-hg' N
corrected « \J

8 = 1498 —0-083 = 1415, s =1-190, 1/s — -840

cstimated o, = myfs% = 0-211. LV
The rest of the working can be arranged JuSeolumns as
below, \
x\\
1 (2} {3) (2) {5) () {1E) {8) (9 (141
T 2={z—m)fs lerfz Falz)  aFolzy (3 w50 X nd  obs. mormad
10 —m —0-3000 —0-0685 —00140 --0-Fig"Y
o 00078 24 o 88
11 =224 —0-4875 —0-0882 —(-0188 <i(h3A0T
wyww.dbraulibraiY.orgdnes 208 sor 202
12 —1-48 —0-4102 —0-0904 —0-0108.\— 04353

Q2208 670 478 ikl

13 —{0-56 —0-2128 —0-0273 -~ 0968 —0-2181
(3208 995 1001 pEn

14 0-28 G-1108  —0-0078 400016 01087
A 02440 T43 T3 T

15 118 0-3636 —0-0788 00138  (-3527
N\ 0-1024 812 310 8%

18 1-56 0-4750 —(@942 —0-0189  0-455¢
x G-0264 B0 B0 it

17 250 0-4078, —0MOTS5 —0-0130  0-4815
S ooz 13 1’ F

1 564 0489000672 —0-0142 04357
\NJ 0-0003 1 1 "
19 - {08000 —0-0505 —0-0140  0-4860 —
AN 04t 8040 04t

Tht\blg‘seness to the observations is remarkable. [ndeed
tho séate of “goodaess of fit,” to be developed in 54, show
thajtithe diserepancics are o small as to he improbable, and

~ i:‘hjj: ‘represontation is unsatisfactory. We havo hers a case
\ [ over-fitting, ™

For comparison we havo ineluded in a final column the

results given by the normal curve of best agreemaont.

42. Representation by Poissonian Function or
Type B. The coefficients ,, by, ... in she series 35 {11)
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of Type B can be e.xpl‘essed in terms of the factorial
moments w, po. fa, ... For by 35 (10) the fom.g.f.
i3 given by
Lbpaprma /2l a3l 4.
= exp(ual(l-+ba®2l+bya?3l-L..) . . (1)

Multiply each of these expressions by exp{-—pa) and

expand the product in the former case. Equating,.

coeflicients of afrl we have the desired relations « N
by = pn—p?, ( h
by = oy —Bueap+-2u8, S

by = o —dppp Bt —3us o0V . (D)
and so on. Note that the numerical coefficienits are the
same as ocour in 44 (5). M

The procedure of fitting by TypboB is therefore to
compute factorial raoments of ; Q};%g@éﬁﬁi};y{ﬂt?%g mation
method (Appendix 2) and by substitution *in the above
formule to estimate the coefifglents b,, by ... of the
Type B series. Tor the restft;;f the work we require the
values of e~™m>/z! and itg\difforences of as many orders
as may be neccssary. .\

The value of e~ d\afn be taken from a table {p. 147) of
the exponential fun}biou. Then ne~™ is computed, after
which cach valueof ne—™nZjxl can be obtained from
the preceding ¥ellde, corresponding to z—1, by multiplying
by m/z, mogheasily done by a caleulating machine. The
subsequed? differencings and multiplication by coefficienta
by and(’s¢ on can best be followed from the illustrative
example.

AN
'"\; ‘Examplo. E. Rutherford and I, Geiger, in 2608 experi-
Nents (Phil. Mung., Ser, 6, 20, 1910, p, 89%) on the number =
of a-particles radiated from a dise in 7-5 seconds, obtained
the distribution :
z 0 1 2 3 4 5 6 T 8 9 10 11 12-14 &
nf 57 203 383 525 532 408 273 139 45 27 10 4 2 2608
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L
The summation method for factorial moments gives
m = 3-870, myg) = 14-784, whence the estimate of #,/2! is

}{14-784—3-87%) = —0-0965.
The working is set out in columns as below.

(1) (2} 1) ) (6) (7 (8)
E I ) w7 3 Yab, TR (2)4(5) ohs, Poigsmg
G 5410 54-40 5440 --5-23 49 57 o
b o210-52  158-12 10072 —0-82 201 ans e

2 40737 196-83 4073 —3-93 403 3334 407

3 525-40 11512 —78.73 7-60 533 AN 55
4 50843 —17-086 —1I33-18  13-05 532 /B3 ° nogr
b
6
7
8
)

493-52 —114-31 —087-83 9-44 403""\{408 394
23381 13070 —24.80 2-30 256 N 273 254
140-34 — 11347 26-24  —2.33 238 130 14

67-80 —72.15 4102 —3.98 G2 45 68
20-18  —38.71 83-74  —326 {26 27 g
10 1123 —17.89 20082 —2.0pd & g 10 11
11 39 —7-33 10-56  —1%2) 3 4 4
12 128 248 4:65 —0MS 1 2 1
13 038  —0-8% 179 07 0 ] 0

www,dbraq}ijji‘éry.01‘g.in2608 2608 2608
N.B.—(i} In the differedcinge in colurnns {3) and {4} ¢(—1),
¥{—2)... are tacitly ial&eﬁ’aa zero.  (Ii) The asterisked estiica in
eoluman (8) have been, diged from these in column {2) to make ths
totals of columune (7).80d (5) both come to 2608,

It will ap ":15 N hen we comnr to eonsider goodaegs of fit
(54) that tha represziitatinn by the Poisson funetion slone,
withput the termn in by, is sntisfactary. )

A\

43&Limitations on the Tise of Moments in Fitting

(‘Q:ﬁté’s. The discussion of the Cauchy distribution in

88 has shown that moments are by no meaus always, or
“necessarily, the best parameters to nse in representing an

observed frequency distribution by a probability distribu-
tion of assigned functional form, It depends entirely on
the nature of the probability function what parameters
may be used with adequacy. For example, since the
mean of any number of observations x, each of which
obeys the same Cauchy distribution, has cxactly the same
Cauchy distribution as z, it follows that the mean of sample
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in this case is no moréaceurate, for the purpose of estimating
the centroid of the curve, than any single observation ;
indeed it may be shown that the medien is much superior
for this purpose, while still better parameters can be
found. Again, for the purpose of estimating the contre
of an unknown rectangular probebifity distribution the
mean of the n sample observations z, is quite a good (™,
estimate ; but surprisingly emough, us R. A. Fisher has, -
shown, the mean of the two eatreme observations alope™s
remarkably better. As a general precept it nday\ be
stated that for probability curves of shape and Broperties
approximating to the normal eurve the use ¢f\bhe mean
and moments of the frequency distributidn\gives good
estimates for those parameters in the protiability distribu-
tion ; bub for other probability curves Better parameters
ean be found. N 2/

Example. Tnstructive materialbearing on the reetangidur
distribufaién may ho pro‘gl\lﬂly"eqdfi%}!(?r%ﬁkga?r fvo’lsé']?“]a:}bles. The
lest two digits of the deeim@alyparts of the cube roots of
integers n, as given in Baxlow, provide a distribution econ-
forming very closely tofh, rectangular distvibution, of runge
00 to 99, and centre.at 495, We may take the 50 or 49
entries on each p e{{m’nittjng the caszes where n is a perfect
cube, and we maag\record tho mesn of the last two digits
over this whold ’smnple, as well as the mean of the highost
and lowest\¥glues only, The results, for each pags from
n = 100 tolpt= 999, will illustraie the acouracy of two
differentaethods of estimating from sample the mean of a
rectahgwulur distribution.

*



OHAPTER YV
N
PROBABILITY AND FREQUENCY IN A
TWO VARIATES )
."\
44, Bivariate  Distributions: Correlation ¢ d’su:\ld,
Regression.  Hitherto we have been conccmcd
exclusively with probab}.h‘oy and frequency dwtrl‘butlorli
in one variate, that is, with univariate distrifubions, But
most of tho important and interesting applications of
statistics involve bivariate, ter&rl&tK & multivariate
distributions. (e
et us consider how a typlcal yoivariate frequency
distribution may/\amsibraﬂhppm Qtll‘fa,tnIOOO goldiers in a
recgiment are measured in height, », and in weight, ¥.
The measurements prowde“l@OO paired numbers (w;, ¥;),
which may be plotted agpomts in a planc. The resulting
assemblage of points m@} be called the * dot diagram.”

Now there may be, and in fact in the case of height

end weight there is, a tendency for the value of y; to
80
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conform in some way to that of the corresponding ;3
greater height as a rule is associated with greater weight.
Any such tendency towards a functional relationship,
obscured by random deviatioms, will manifest itself in

the dot diagram by the greater density of the dots along

a certain locus. This locus is not sharply outlined, but "\
itz estimation is important, for it iz a smudged image
of & curve which may be fine and clear-cut in the parentg \JY
population of which the observations are 2 sample, THS"
latent curve or functional relation y = F(z} is called *a
regression, the regression of y on . It will be & lgazg,ﬁter’of
judgement what functional bosis is chosen foryifs thatho-

" matical representation. Usually the repregentation is a
lincar one based on a st of prescribed, fubdtions py(z),
Py}, ..., the regression therefore z{f}p aring in the
form . N

¥y= %”1’@1191(3’)‘1‘%?5&);5‘---, . .

to as many tcrms as are“j:f(‘l\égdgra? el,lcﬁ}zﬁ’zey OV statistical
problem is then to determine, the best estimatos of ag, @,
a4, ... from the = pgbiréd observations ({x;, #;). The
functions p.{x) arc ghmmonly polynomial or harmonic
functions, but thQ'\’haﬁy be of any preassignod functional
type. \

The diagegma® of dots suggests a socond point of
view. The proportion of dots in an elementary region
T— %Ag-{hs.{xil---g-/_\.x,y-—%&y{y<y--%—%£\y givesan elenent
of bivariate relative frequency which corresponds to a
bivéridte differential element of probabilivy, let us say
dip= (x, yidedy, in the parent population.

d ) We muy imagine that on each class-rectangle of the
N\ network of rectangles delimited hy class boundaries of
z and 4 a right prism is erocted, of volume proportional
to the corresponding elass frequency, The tops of these
prisms make a surface of flab terraces which we may call
the prismogram, the analoguo in three dimensiong of the
histogram. This prismogram, then, is the rough sampling
F
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approin i o nn Ideal probabili? l\ 1 t— gls, ),
whivh I olien culled the carrelation srface.,

The tunetional dependence of y on & may be il‘lvcst-jgat-e(l
either by 1l mcthod of corrclation, which consists in
estinuitine the paramcters of the bivariale probabilitid
fundion ¢c, ), or by the method of re =siom, Wh,l(ﬂ{~

eonsisty i extintating the coefficionis a; in the efrreasmn
function (1). “\atumllv the methods ov crhm to a dertain
extert, [n the ease of seversl important em'rvla,tlon
{bivarinte probability) functions the cor rcbpu.nglmg regres-
sion eurves are straight lines. O

45. Binomial and Hypergeomsthic Correlation.
The natural extension of the twofold? d}s Flsion, siccess and
fuilure of an event EF, which gwbs nke to the hizomisl or
hyperecornetrie distribution in one “variate, is a1l arrango-
ment giving & twofold d_lt'mon in each of iwo cvenls
£ and F. Such an arraggement is expresscd by the

fourfold 1abIEYRS RN bray org.in

Let the probabilities of the double events (B, Fy, (B, F),

(E. #) and (E, F) B pr, D150 Par Py These arc seb
out as shown inghe fourfold table, the columns referring

SN e ¥
- p. \ - F P Pay P' *
xt\"’
:"\.‘.
:\\w’ m
\\ F i 20 Pos [ g"
» g b

E & and B, the rows to F and F. The gum PP
to enting the total probability of B £ whether F ocenrs
repr s is entered marginally aa ?; and in the samo way
or no :her total probabilitics ¢, p’, ¢ ape entered margin-
the ‘;_) gums of a row or of a coluran,
ally & o
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L3

Contingency Table. The fourfoll table i a simple
example of o contingency table.  The more gencral Divariate
contingeney table has A rows and & cobunns, corresponding
to the divigion of one system into A categories and the
other into & Tf the probabilities p,; are all rational
fractions, it 74 possible to represent the bivariate population
by a physical model, such as one of marked or colourced a
Lalls tn due proportions, )

If £ and F are independent events, then py = pp’,{ \ ’
Pro = P7s P = g2 and pyg == qq’, 80 thab pyupgy :Pw\f"u};
The determinant pppgy—oPa of the fourfold tajlc iy
thus zero. N

’

Fix. 1. Provo that this determinant is equal {0 '3511 —pp
and to pog—gg’. PN

Generating Functions. Just as igr'tl\ we introduced
a varinble ¢ to carry x as exponent in dnivariate generating

tions, so it is natural to. i ice 4TTY . :
fmu.t]r_;rp_u, 50 it is natural 1o in %"%{'}ﬁ% ‘alpg?o%‘g_ri% i. The
probubility gf. of a fourfold fablgywill thu be

Gty u) == pytu—p ot‘i‘}’oﬁf;’l‘?oo . . - (I
= 14+ pE—1}4% (-1 +pult—D{—1). . (2)

Cx. 2. Show thal;.iﬁ:,t 16 case of independence this splits

into the two factors w-g, pulg
[ N r

Now il we dmw 7 times, with replacement each time,
from the populebion characterized by the fourfold table,
the g.f. “fji[fhé’e’

O atutpdteaetre™ o - 0 )

Thelehofficient of *x¥ in the expansion of this g.f. will
btxlth& probahility ¢z, y) of having @ cases Eand y cases F

“Nii'the # drawings.  The function d(x, ) is the correlaiion
function of binomial type.

' Tx. 3. Ifihe variates 2z and y are independent, show that
Bir. y) is the simple produet of the binomial probability
finctions

Ty p7g" = and gyl g Y
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Again, if we have a fourfold population of & individuals
with Npy;, Np1g NPy and Npg, individuals in the respective
categorics, and if we sanple n times without replacement,
the corresponding probability of x cases K and y cases ¥
is the correlation function of hypergeomelric type. Even
when 9,500 —P10Pm = 0 an cifect of correlation is indueed
by sampling without replacement.

N

AN
46. Bivariate Moments and HMoment Genera’tj\ng".

Functions. The hivariate produet moment of order r

in x and ¢ in ¥ i3 defined by R N
== 4‘:'),5!; x, y)xry® or JJ.:;’) x, y)xty -’xfx;rh_;, . (D

or the corresponding mean values mth\\}ijdy or fde‘

sccording to the diserete or contm\rﬁous nature of the
variables.

There amartvhy.edknmmm&sbqﬁrﬁlm second ordu: If wo
take them with respect to thedmeans p, and pg, of the
varlates they arc p,, the :i'm"ia,nce of 2, sy, the variance
of y, and p,, the productmoment of z and y, often called
the covariance. &

Generating Fﬁgctmns The bivariate gernerating
functwn of prub\\}nhb‘} is defined by

(L, u),#ffq&(x, yiEuY or J‘J\q_‘)(x, witrurdady, . (2)
N

or *éé\éﬁmo with 2 J dy or jd:ﬂE .
O

\’ * Moment generating functions are defined by puiting
/1 = g%, u = ef, the general product moment g, being the

coefficient of arfgfr! s! in the resulting m.g.f.

Factorial moments can be defined by putting factorials
) and ¢, as defined in 29 (2), instead of powers af
and ¢°; and a bivariate f.m.gf. may be construsted by
puttingé = 14a, v = 1+,

Q"
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T
Example. Prove that the f.m.g.f. of the fourfold table is

{14pall+p'8)+(PuPoe —PrePar)af

47. Normal Correlation as the Limit of Binomial
Correlation. The gf. of a sample of # drawings, with

replacement each time, from the fourfold population is @
oA\
(Putt-+Prof HPa%+Poo)" O
= [L+pt—1) +p'{u—1) +pnt—D{a—1]" ;‘U)
by 45 (2). (O

Just as at the corresponding stage in 31, let ﬁ:é}\consider
the deviation of relative frequency of number of successes
from means, rather than absolute frequedfy.” We do this
by putting ¢ = e%, u = ¢f in (1) and\phen writing a/n for
a, Bjn for B. We have then the bivariste m.g.f.

[L4-pajn +pa?j2n2+p’ fio it PR e digha- O(n=")1"

(L Lpalntpodi) (14 p/ @M o8 (L4 p—pa’fn?

4 i —p PRt + (P ;gg;’}ci,@l,f'ng FORM]Y . . (2

2\
which tends asym‘gst@tiéaﬂy as » increases (the assumption
throughout being Hat none of the probabilities in the
fourfold tableis.0(rn"1) to !

AN/
cxplph-+p'B) exp Hote +2peoef ol ()
thI:s\\b;%}; rein, C'% = p'q'[n, p70y = (_?11_2323’).-'{”'

Next, just as in the case of one variate treated iu 31,
,.\I"y}nd for analogous reasons, tho guestion is to find a
A/ continuous function $(z, y) satisfying

J J‘?‘I’(Is y)e @t Bidady — exp %(o%a“%—Zpalozaﬁ—i—o‘j,B?). (4)

The answer provided by purs mathematics is that the
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"

bl
only function ¢(x, %) for which this is the case over a finite
domain in o and § together is

dlx, y) =

—  cxp [—30(x, 1],
veenie i UL
where  Q(x, y) = (@%b — 2payioa,1ytioii{l—p% « B} N
This function, the analogy of which with the normal
probability function in one variable is evident, is she?
bivariate normal probability function or normal correltion
function. The parameter p is coalled the coeflicient of
correlation. The reader will verify at once  fifat when
p = 0 the correlation function breaks up, gsone might
have expected, into the product of two gxflifiary normal
functions, in « and y respectively. PN

48. Properties of the Normal Cb}rwlation Function.
Let us suppose that units of scals in f;cé,nd # are standardized
by putting o, [, daulifrangyeraing £ of the normal
eorrelation funetion abeut ’tl‘:e';means then becomes

exp da2*2paf8+6%, . . - (1)
and the coefficient of af/1! 1! in the expansion of this
shows that p is the hean value of the product ay. This
suggests that 1B, eomputing the parameters of bivariate
frequéncy distributions we should add to the usual iour
parametens(bf first and second order, namely the means
Mg m;)fénc’l variances 82 and s} of x and y, a fifth parameter,
th@éﬂ value of the product of corresponding deviations
¢mndy from the sample means.

+\ " The standardized. value of this mean product, namely,
4 0\’ $

N
Y
\

1 . .
r=% Dz —mig)y—me}edy, - (2)

corresponds in the sample to p in the population or
probability function. We gholl call r the Perrsoniun
coefficient, or product-moment coefficient, of correlation of
x and g in the frequency distribution.
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Limits of # and p. The extreme values that # and
p can take are 1 and —1. They cannot lie outside those
limits. For, taking  and y as unstandardized deviations
frorn their means, let us congider the mean value of
(ha-+ky) 2, or F2x2 4 Ohkay+-ky?, both in population and
in sampie, where k and & are arbitrary real numbers. In
population the mcan value is k-%%—}—?hkpolcz—i—k?a; in
sample it is B8+ 2hkrs s,k . . . {3)

Now these quadratic expressions in h and k, being the,
mean values of squared functions, are of necessity nobs
negative. DBut the necessary condition for this is that the
discriminants 5 \

(po,0p)®—0joy and {rsy85)P—sT53 D@
should not be positive. Hence p*<l, ;{\Ql, so that
both p and r mustelie in the range —1 toflé

The result, it may be noted, dependgion a property of
quadratic exprossions, qudﬁiq}a%qeaﬁgﬁ%:lgﬂ;l&%qtn merely for
normal but for any distribution of@rand y. '

FExample. Prove that if ﬁrld' y are uncorrelated and of
anit variance, ¥ cos 8y sin §alid © sin ¢ —y cos § are also un.
correlated and of unit vapanes,

In the case of jndejpe\rldcnt variates, under any laws of
digtribution, the ﬁrQ\duct moment g, about the means is
zero. Yor if thie'separate m.g f.’s of x and y about their
means are M

‘"\~]':}{~"p20a2;"2!+... and 1-4peeB224.., . (5)
then @ ‘compound probability the m.gf. of the two
tog@fsher ig
(Lbpage 2 Fo Y1 Hpeaf2i2i4e)s  « (6)

\ ) and since this has no term in aff we have py = 0.

Tt is most important to notice that the converse
theorem is not true. The vanishing of py, does not imply
independence. Consider for example the case when x is
distributed in any symmetrical distribution about the
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mean z = 0, with variance ¢3, Theh 2 == 22 —¢? ig also
distributed about a zero mean. The variates 2 and 2
have complete functional dependence. Their product xz
however i3 28 —o?z, and the mean value of this is clearly
zero. This is an extreme case, but it gives a sharp
warning against inferring the existence of independence
from a zero value of p, and still more from a zero value
of r, which is merely an estimate of p. (N

The normal correlation surface, when p =& \d,rl(l
variances are standardized to umity, is a symrjqetrtr'n.l
bell-shaped surface which may be generated by thd rotation
of its central vertical section, & normal cum’ﬁ‘ abhout the
vertical axis. When p 0 the surface.asquires a hog-
back ridge which lies in the first and third quadrants r)f
(x, ) if p is positive, in the secondenﬁ fourth quadrants
if p is negative.

The loci of equal probabzht ) densaty (7) are found
by equating $(¥, "’_i;j”%'cﬁ‘él E‘Sﬁ%ﬁhﬁ‘f{% “¥lelding curves of the
form

a?fo? — 2pa:a_;,o~lag+_;2“ 2=c2% . )

These are homothctic cllipses. Among them tho ellipse
which includes a region in x and y of total probability { is
somotimes callod “the * probable ellipse,” a namo, like
“ prubable error ”’ in 18, apt to mislead. This region is
the bivarigbeanalogue of the interquartile range (15).

ﬁg;,\ﬁegression Lines in Bivariate Normal Cor-
ation. If we cut the normal correlation surface by a

weries of planes all perpendicular to the axis of @, the sactions
syare all normal eurves. For each such seclion corresponds

to a constant value of z, of z, and so the z-ordinate of such
8 section is, in standard seale,

2= (xy, y) = cexp [—Hal—Lpry+y2 /(1 —p%], . (1)
= ¢ exp [—{y—pr)t/(1—p%], . . {2)

where ¢ and ¢; are constants; and this is tho ordinate
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L4

of & normal curve with mean at ¥ — g, and of variance
1—p?, or in unstandardized scale o2(1—p?}; this variance
ia the same for all such sections. Tho locus of the means
of such scctions is therefore the straight line y = px, or
in unstandardized units yfo, = px/o;. This straight line
is the regression line of y on . Therc is correspondingly
a regression line z = py, or afoy = py/oy, of zony.

‘The regression lines do not coincide unless p = £ 18,
in which case (with standard units) they are the bisectgTs
of the angles between the x and y axes. If p= 0\ tlie
regrossion lines are tho axes themselves; but the,.gdoncept
o1 rogreszion is of little importance in this easg, (¥

Note. The name “ regression ** was introducad Hy/Sir Francis
Galton (J. Anthrop. Inst., 15 (1886), p. 24@, In bivariate
data concerning heights of fathers, wy, aridiheights of eldest
sons, %, he found that the regression li‘ne}s,’hs estimated from
thosampls, were approximately ¢ = %"= 1y. This implics,
for example, that if therﬁd\s“a{mp)&mj@{.{gﬁ,hgpéﬁhoso heights
all deviate from mean height byyd inches, then the average
deviation of the height of t-hei;f gons from mean height is only
3d. There is thus a tendgney, in the next goneration, to
return ot regress towsards the mean. DBut there is no deep
and remarkable signi;[;ie}énce in this it i3 a more consequence
of the fact {hat neithor p nor ¥ can nurnerically excead 1,
and in practice :c-}}&w alues r == —1 or —1 are never founed.

50. qui«alétion Table : Computation of Product-
Moment. A contingency table of & rows and k columns
in whitlboth wvariables & and y are metrical is called
corpeladion fuble. If z and y are continuous variates it
will® be convenicnt to take a class-unit of suitable size

L. (f0r each and thus to have class-frequencies corresponding

N\

“$o class-rectangles. For practical purposcs it is advisable

to choose these units so that each variate has ten or a
dozen classes, not mora,

The following example illustrates the usual appearance
of o correlation table. (The distribution s of Binet
Intelligence Quotient, z, and Verbal Score, ¥, of 500 Secottish
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schoolgirls born in 1921, tested in the first week of June
1932. The Intelligence of Scottish Children, Univ. of
London Press, 1933, p. 96.) The score named 60 means
60 and over, that is, the class 60 to 869, so that the class
marked 60 in the report should be centred at 64-5; and
5o for other classes, The sums of rows and columns are
entered in the marging ; they give the frequency distribu )
tion of x when variation in y is neglected, and of y wh\gn *

variation in a is neglected. A\
N
z {Binet L.0.) \\
60 70 S0 90 100 1|0 I"’O 130 40" 150 | fy
70 2% 2
&0 32 Ny 4 1| I2
] 80 . 10 15 A8 V14 2 g8
(Verbal 40 2 7 3% 43 26 A ] i 1 117
Heore) 30 2 28 50 31 Woo1 129
oy 10 32 38 8\ ye 87
10 i wewidbeaulibi- AR Org.in 43
[V 3 7 7 RS 17
fa 3 82 102 131 o8 &7 34 22 6 2 | 500

From: the ma.rgm\al distributions we can proceed to
compute the nksa,ns and mean-gquare-doviation from
means of x Emd . 'This will always be the first step in
computing ¢, ' The product-moment can bc computed
about rovqswqa,l means, and then transferred by a
corre(:ti to the true means, thus :

1 1
Q B‘mce ¥ Zx = mi, ¥ Ly =my,

:the product-moment ahout these means is

j Eb{x—?}'il{))(y"_m’o-l) = (Z’Z:{ oy — Dy —mey Zw) Lm g,

=y Z‘Z’,c_;—m,wmm . Y

Hence, jnst as mean-squarc-deviations can be com-



« COMPUTATION OF CORRELATION CGEFFICIENT b4

puted about a provistonal mean and transierred (14} to
the true mean by subiracting a sguare, £0 mean-product-
deviations can be so transferred by subtracting the
corresponding product of deviations of provisional means.
It is to be obscrved that this product may be negative,
in which case the correction involves an addition.

Several different methods of computation are in use
for finding ». We shall exemplify two, of which the rest¢ \J)
are mostly variants. O

(i) The first method consists in computing Xy
piecemenl according to the contributions made ‘b&u this
sum by the frequencies in the xows, or alterndtively in
the columns. Tor example, in the % rowy Sor ¥y =y,
constant, we compute X fa,, that is, mulj{p}y each clags-

i %4
frequency f; by the value of «, % o gand add along the
row. Tor the different rows we mayventer these values
X fx; in a suitable column t-(i; tho right. The sums of

i www . dbraulibriry org.in

such valucs for all rows givessZw, and so may be used
to check the moan m),; while if wo multiply each entry
in that added column byits appropriate ¥, and sum down
the column wo have BZXsy.

The same prcnggufe may be carried out by columns
instead of rowa, & then have a check on both means
and on DSy The whole scheme can be neatly arranged
in rows andolumns annexed to the table as below. The
special valG of the arrangement is perecived when it is
found figbessary to compute correlation ratios (52) as well
as (Gorrelation coefficients. It simplifies the arithmetic,
09} to choose units such that the class-breadths of z

£\ .
~\and y arc both unity.

Ex. }. By way of cxplanation of the entries, note
that the sscond entry, 63, in the Zw column comes from
Ix1F2x246x3+3x4-+4X54+1 X6, while the second
entry, —51, in the Zy row comes from

2x14+2x04+310x(—1)4+11 x{—2)+7Tx(—3}
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z

—5 =2 -1 0 1 & 3 4 & 6 fy ¥ o ¥
1 2 P2 4 8 5m
3 b2 6 % 4 1 1 & 57 171 3 1a0 |
2 1W1s %E 18 11 8 B6 2 172 344 | 1) 3s0
¥ 1 ToBZ 4% o247 2 0 1 li7 b 11T au7 | 103 s
0 5w A0l 15 2 1 1200 w0 TEe Ty
-1 M 82 58 6 1 o7 - 1 ~¥7 &7 [—d1 g
-2 1 28 4 .43 —2 —RE 172 i —30 1w |
8 3 7 7 17 +3 —B1 153 - 30,00
. &
fe b8 &2 102 184 A BF 34 22 6 2| 500 130 1076 ;‘289 PEES [
| —% —2 —1 Db 1 2 4% 4 5 b
af | =8 —61 —102 0 9R 131 102 B8 20 1% | 280
@ | 27 128 102 0 Ys 263 306 35% 150 T2 | 1503 mw ﬁ%o,aoo R

. . 1307500 = 0-260.
E¥ | —f —F1 —L0Z 6 76 RO 63 47 16 4 m\ ' !
aTy | 27 102 J02 0 76 100 189 185 80 24 | 9130 \eF - 1509500

. {0575 =28

3 A\lt}rb iS00~ (0-260)° = 2084,
et —\Qm A00—(0-578)(0-260) = 1-746
Hence

5, = 1-635, \{?ﬁlﬁ.{i&%‘%%ﬂlbl - y,drl;éi ] 6353 1444 = +(-T4.

Error of Sampling.* I’ls i desirablo here to anticipate
Chapter VII a little. Th&'walue of r is the estimate of p
obtained from one samplé of » bivariate measures, Now
each possible sampleg'will yield its own value of r, and the
ensemble of such Walues constitutes the sampling dis-
tribution of r, 'Rbls, when the parent population is normal,
is a skew digbgibution, first studied (78) by R. A. Fisher.
As n mm;&gses it tends slowly to the normal type, with
mean pand variance {1 —p2)?/(n— 1) Thus the standard
erTor” l& of r is approximately (1—r%)/+/n; but only
vsl%n n is large, say n>>100, and lp| 1s nob oo great,

B8y 1p|<<0+3, can we use normal theory. In most cases
£\t is better not to use standard error, but to proceed as

“\* in 78.
Y (ii) The second method of computing r depends on
the simple observation that while by summing the
frequencies in columns we obtain the distribution in =
alone, and by rows that in y alone, if we sum along
diagonals inclined at 45° to the horizontal we obtain a

* This puragraph may bo postponed until Chapter VIT has
been studied.
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*

.
distribution of £—3!; for all elass-rectangles in any such
diagonal correspond to the samec value of z—y. Thus
from diagonal frequencies we may compute the mean of
#——y, namely mi,—my, thereby checking the individual
means as computed from row and column matginal
frequencies ; and we may also compute the mean-square-
deviation of z—y from its mean. Now the value of this is

1 . ’ A
¥ {e—y)2—(my—mg )P = 57 — 2185, 82 N

But s2 and s are already known from the ro% and

column marginal distributions ; hence 7 is casily @uﬁd.

Ex. 2. Taking the same example as hefore Y summing
along the diagonals, we find the frequeng adistribution of

x—y to be &
z—y —3 % -1 0 1 N2 3% ¢ 5 N
Nf g 22 87 173 14987 8 1 1 800

Ths mesn Is foundw%w}gle'irfﬁil}gi%E'agﬁe%ﬁﬂé‘ the valucs
my, = 0-378, mry, = 0-260. The, mean-square-deviation from

the mean ia

1

S%TQ\N;ISE_FS% = 1-2685,
whence ,x‘”’;
r = 328242084 1-265)/1-635 x 1-444

< = 3O08-491;2-361 = 074, *
as before. &)

Notice.bhat we have here no cheek on #. That could be
providg(\’i}r summing along the other set of diagonals at
right?ségl’es to those which have been taken. They correspond
to gdndtant values of x4y, and so their mean-square- deviation

R g 2
',,f\rgm the mean iz s 2rs, 8, +45.

o\ ¥

Y

gty —6 —5 —4& —3 —2 ~1 0
Nf 3 7 18 38 38 6% 63 64 63 40 37 23 20 6 6 1 500 -

Ex. 3. The distribution of x4y, obtained by summing
along the other set of diagonals in the correlation table, is :

Compute r from this distribution. Notice how much more
widely spread it is than that of ¥ —y in Ex. 2.

A ¢
AN

1 2 3 4 5 6788 N

N
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Sheppard’s Corrections. Sheppard's correction for
variance in grouped data is applicable to the mean-square-
deviations of # and y, but not to the meun-product-
deviation. On the whole, however, it iz better fo work
without the corrections, because the tables of Tisher's
sampling distribution of r do not take account of grouping,

N ¢

B1. Correlation of Variates with Poissonian Dlé—v s,
tribution. Tt is not nceessarily true that sampling feom
a fourfold population always produces as a hqumg Gase
% hivariate normal correlation function. Hup‘pme, for
example, that p and p’ are of order ljn. 'lhx»-n pyy mMay
bo of order 1/n2, but may also be of order 3wt

The fan.g.f. of a sample of n mdwukhaﬂs with replace-
ment is seen from 47 (1) to be \ @

(1+pa-tp ﬁ“ﬂu"*ﬁ . . (1

s db b ‘
When p = }L‘:a\ and a%;"“_‘ii ménlg pyy 18 O(1/n?), this

gf. tends to exp {pa-u 8% which shows that with in-
creasing 2 the probability funection reduces to the product
of independent P015\anum funetions, and is in fact

'is.: & At
521\}, men P Yy

o x! #!
On t! 10 bﬂw r hand, when py; i3 O{1/n), we have

IQ’Q‘“}’B P f3)
— [(1 —pa)(} =9’ Bi{1+py—pp e f-+O(n B,

N which tends to

o~

\‘;

oxp (watw'B FEaf), - . - @)

where
i = n(py—pp’) = ®{PnPeo—PrePor)- - . {4}

Evidently g is the ordinary product-moment about the
means.
Now putting e = t—1, § = 4—1 in (3), we derive the
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correlation function ${, ¥) as the coefficient of i*u¥ in the
probability g.f.

o— (b ' — Bl plp— Bl g —plut e Y

Tt is found without difficulty to be (in one of its forma}

i, y) = e Wi —R) Lo B
rl oyl

B2y prute —Lyly —1) ¢
x 1+ oage=a e - -] SR
where the polynomial in the bracket terminates after xy-1

or y+1 terms, whichever is the lesser. This fungtion s

the bivariate Poissonian function. It may be pl:ngd that

the loci of means of sections corresponding: e constant

x or y are straight lines, so that here again we\lave lincar
regression. The same property may be/proved to hold

for binomial and eypergeometric correlatien functions.

Both the normal fanction and the/Poissonian corrclation
function can be derivedsulikel HhagarEesp ing functions
for one variate, on more generalgrounds than sampling
from a fourfold table, by a‘eempounding of elementary
increments achieved by addition of hivariate cumulant
g.f’s; but this derivat{on lies beyond our present acope.

52. Non-Line 1’\{G§Jrre1ation and Regression. A
linedr regressiof, %etween correlated variates is ruther
exceptional. ZEhe’loci of moans of arrays usually deviate
from straigktaess by more than can be ascribed to random
sampling, gt Goesting that the underlying Jaw of probability
canng’t\:,he cither normal or Poissonian. Non - lincar
regrdetion curves are perhaps bost estimated by fitting
to.the dats suitable regression functions by the method

‘"\:0} Loast Squares, described in Chapter VI In the
‘non-linear case, too, the coefficient # or p has marked
disadvantages (it was seen for example in 48 that p could
be zero cven when regression was perfect) and the cor-
rclation ratio u, devised by K. Pearson, is much to be
preferred.
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L]
1t was proved in 49 that in formal regression all
y-sections or arrays corresponding to constant @ had the
same variance, let ua say

crg,1 = o3(1—p%), . . . (L
g0 that
1—p? = o} /03 . . . (2} QO

Now 1—p? may be regarded as measuring somethmg*
complementary or antithetic to correlation. The{ %ord
alienafion ia sometimes uscd to deseribe this qwll{ﬂ' but
alienation suggests repulsion and is too 5tr01’1g a’ term,
Residual dispersion expresses the meaning\ Vetter. In
non-linear regression the variance of the #scetions, namely

_J.y 7,)? xydylkg,y)dy,. - {8)

g, <2 yderyhiby aaéwdy,. L@

the mean of the y- seaﬁtm correspondlng to constant =,
is not usually constant, We may, however, take the mean
of these varianceslof #-sections over all sections, that is,
over all value\oif @, chtaining

o= J.J.(y—gs}‘*tﬁ(x, yMzdy, . . (5)

thcQ‘}li'a‘uv be regarded as the mean-square-deviation of
gfrom its regression value %, taken over the whole
t!_l\qtmbutwn Sta.ndar(hmnrr this by dividing by the total
S¥ariance of ¥, namely o, and writing

where

»\.:
@ \¥Y;

\V l—n=oiyop, - . . B
we define a coefficient 7, analogous to p in (2). This
coefficient 1, is the correlation-ratio of y on x. The closer
it approaches 1, the smaller is the residual dispersion and

the closer the values y lie to their regressional means.
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In the same way, by interchanging the réles of  and y
in the above derivation, we define =,,, the correlation-
ratio of # on y. As to the signs of +,, and 7, there are
cases where these can be attributed by graphical or other
considerations, but there arc also cases, for example when
the curve of regression is a periodic curve with several
oscillations, when sign has no meaning. A
The estimates of 7, and n,,, as derived from an actual & \)
frequency distribution presented as a correlation table, QO
will be dencted by e, and e, We define them
analogously ; thus >

1—e2 =208, . e (D)

where 35,1 is the mean, over all y-arrays (clemns of the
correlation table), of the mean-square-deviagion of y from
the mean #, of theccolumn. In compu‘tihg “thia mean of
mean-square-deviations the column freffudncics, marginally
entered, serve as clasa ﬁqquigﬁﬁbg;b?_@ﬁ‘g@ﬁve arith-
metical arrangement of the computation will be given later.

That the correlation-ratio Jg“actually a ratio, namely
the ratio of the standard deviation of the means of arrays
to the total standard de¥iation of the variate, will now
be proved by conside:{ﬁ;gtew.

Lenma. If Ewscts of ny, 0y .., 71y observations,
with respeetivoymeans M, and mean -square - deviations
825’ F=1, 2N%., k are pooled in an aggregate of
# = ny 47, 0 4n, observations with mean M and mean-
square-deviation 2, then

O nst = En,(s?—l—c%), . . - (8)

S )

_wihere o, = MM,

\¥
"\ This follows at once from the fact that the mean-

squarc-deviation of the j* set about M is s%4-c%.

Applying this lemma to the column-arrays of a
correlation table, we have

nsg = En;(s?—l—Mj?), . . . {9
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where M, and s}z are the mean and fnean-square-deviation
of the j% column. (The origin is the mean of both z
and y.) This is the same as

g=datsd, . . . (10

the second term denoting the mean-square-deviation of
colaumn means, when these are associated with column
frequencies. A\

The above result holde for the sample. A simitr)
result can be obtained for the popnlation, inteigr\al-,
réplacing sums, and variance replacing meanssquiare-
deviation from means. The result may be put An words
thus total variance of y 18 equal to mean~¥ BAriances
o} ; of y-arrays plus variance 0%, of mead of arrays. It

is another example of analysis of va.rlat;m%s (28, 75).

Hence, by (6) and (7}, ,,\
- n2, = ox oy and eﬁx e 52 ;’32, . . (11
so that nzwww dh‘f a,i'%m %é‘d as ra,tlos of variances

or of mean-squarc- dewathns

53. Computation chorrelatmn-Ratios. The result
B2 (11} permits us to, tompute ¢,, and e, by a simpie
oxtension of the first' method of 50 for computing r, for
the means of rb@ﬂ and columns are given by the entries
in the columiitheaded 2% and the row headed Xy, divided
respectwaly by the frequencles f, and fy. Also, the means
of the%e\entrleq are m, and mm Hence, computing mean-
Bq a;r&davmtwns from means in the usual way, we have

4 s\ #
AN &= | Ersuitr-migis

&\ 1 . ol

O - [Er E(Ey)‘z;fm—mﬁ],.-sg, AT
and eimilarly for €2, We thus annex fwo rows (23,
(Zy)2if -, and two columns (Z) 2, (Zx) ¥y, to the computation
scheme for ».
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Example. The aHditional rows and columns for the
example of 50 (Binet 1.Q. and Verbal Test Scorc} are as
follows :

(Z4) 51 2601 10404 36 5778 06400 5960 2209 256 18 (Za)t 2y
(Zyfz 27 81 102 0 B9 96 117 100 43 8| aa3 6+ 32
3940 20
€2, = 1653/500—(0-26071/(1 444" ?glgg ! ‘J‘Ei £\
= 1-198/2-034 = 0:375 i iz A
€2 = [915/500 — (-5 TEX](1- 636 2500 582\
Ty il BN,
= 1-406/2.672 = 0-580. =2

L o1y

' 4 e ~"
Henee ey, and e,, ars equal to 0-76 and -75, whergag\the
value of » was found to be 0-74. LV

B4. Correlation of Won-Metrical Chargeters. When
the characters in a double classification ;}ré%hrely quali-
tative, capable of being graded by a recophizable difference
in category, but not susceptible of meaghpement by metrical
scale, we must fall hack‘,%,%.gg,ﬁy{%%pgg iable of A k
rectangular cells, with eorreaﬁbndi_ng cell-frequencies.
Since variances and product-mdments are now out of the
guestion, the presence or absence of correlation must be
inferred. from the cell-freguencies themselves, according
to the manner in which“they deviate from presumptive
cell-frequencies in tﬁ\éxfsfal_'resIJondmg case of indepentence.

Consider, for @xample, the following contingency table
due to Galton, (Proc. Roy. Soc., 40 (18586), p. 42), illustrating
the inoidcqc{ of cyc-colour in a group of fathers and eldest
sons, G

SN p | 019e 0-083 0025 0056 | 0-358
A\ Fy | 0070 0124 0:03¢ 0035 | 0-264
\/ F, | 0041 0041 0055 0.043 | 0-180

F, | 0030 0036 0023 0-109 'Il 0-198

p | 0335 0-284 0137 0244 | 1.000
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B, E, By ¥ Eq 1 pf

Fy | 0120 0102 0-049 0087 | 0.358
(i) Py | 0-089 0-075 0-036 0-064 | 0-264
Fo| 0:060 0051 0-025 0-044 | 0-180
Fy| 0066 0056 0-027 0-040 | 0-198

P 0-3356 0-284 0-137 0-244 | 1-000 A

"\
The eclour eategorizz are 1, blue; 2, blie-groan grigrey ;
3, dark grey or hazel; 4, brown., = = [000. N

Summing down columns we obtain frequengylestimates of
the probabilities p of respective eye-colours for fathers
rrespective of sons, and summing a,lorgg ywows, frequeney
estimates of probabilities p’ for sons ald@s. These marginal
frequencies or relative &equenciqs}m;;y be recombined
again to form a multiplicetion able, which is to serve
for comparison with the original table. The marginal
frequenciea iﬁ%ﬂ@?&'@b&‘l@‘ﬁ%ﬁﬂé %fe'he samo as in the firat,
but the cell-frequencies, dérived as they are by applying
the law of compound prebability, represent what would
have been the state\df affairs with the same marginal
frequencies had there been independence. Of course it
must be observed that if we uge, as here, not the a priort
marginal probabilities but only the sample estimates given
by the mapsifial frequencies, this procedure is bound to
affect tj\éé;&mpling probability of the coefficient or criterion
of eomipdrison, 2,

The coefficient y* i g quadratic funetion of the
Jdeviations of cell-frequencies in the actual from those

i the presumptive independent easo; it is a kind of
~ composite weighted variance, with application not merely

to contingency tables but also to any comparison of actual
frequency classifications, single or multiple, with pre-
sumptive ones. It was first employed by Lexis, but the
nature of its probability distribution was first obtained by
K. Pearson in 1900,
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. COMPOSITE YARIANCE OF CLASSES io1

Distribution of* % The derivation of the y2.
distribution involves the general multivariate normal
correlation function, which is outside the scope of this
short book; but the outlines may be sketched. If the

a priort probabilities in the k classes are py, pa, ..., Pps
then the frequencies in the classes are characterized by N
the multivariate multinomial g.f. A

(APt tpte)® o 0 (WO

If the number of individuals found in a class if\nj,
the expected number being np;, we may denote the. clags
deviation from mean value or expectation n,<rg; by e;.
Then, since Zn; = » and also Znp, = n, we Qllﬂt have

Ze; =0, . '\‘ . . (2
a relation in virtuerof which only fan-,l’(;f the deviations e,
let us say the first £—1, are independent. We therefore
put & =1 in the g.f. and-, d(}mtaldebraﬂydérgmppem as n
increases. Putting £; — %, we find that, provided no p;
is O(n~1), the multivariate M.g.f. of the class deviationa
tends to

k1 \

exp [%?\g D459 — 200 2ay) S )

'f‘hl‘; is an ¢ mgf of normal corrclated probablhty in

the b—1 dpyq?t‘lons which on reversion gives the probability
differential ©f the ¢; as

"(\\ cexp[— %n“lz’ez“p,]deldeﬁ cdep_y. . (4)

A
~“Fhns the probability, or probability density, of a set ¢,
of deviations is a function of the quadratic expression

& =Zdp, . . . 6)
which is Pearson’s y2. Having decided to use the com-

posite x? rather than the individual deviations e; as a
criterion of the nearness to expectation, we transform the
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differential {4) into a differential im ;(2 itself, when - it
assumes the shape
dp = eyl ¥dye, . . . (6)

the probability function being of Pearson’s Type III or

Gammas type.
The probability of cbtaining a value of y2 not exceeding

a given x2 is therefore (\A

Xg w0 ;:\
PXEZJ. X"—Sehixndxsz X"_ac_‘lxzdxg.(“}«,. (%)
o 0

£ &

Tables of this function P have been c-omputé’d\ for various
values of %, the number of classes, and A

Degrees of Freedom in y2 \i\’i)l%‘[ the class pro-

babilities py; are given & priori tho.distribution of x& for
k classes is expressed, as we have’scen, by

L 3 "] .

www_dbq'%uﬁbc f}ﬂ%-;ig}(lﬁx EI ' - 1)

But the presumptive clag¥probabilities are not always
given g priori ; in a goﬁtiﬁgency table, for exaniple, they
may be estimated by recombining in multiplication the
marginal relative freqnencies of the table which is being
tested. Now sgh a proceduro forces the marginal totals
of $he presumhptive table of independence to agree with
those of $lie;contingency table. This forcing reduces the
numbeg, eindependent class deviations from expectation.
For ezample, in a 4-by-6 table there are 24 classes, of
whieh’23 have independent frequencies, since the total of
Jelative frequencies must be 1. This is in the absence

o\of foreing.  On the other hand, if the 10 marginal totals
\™ are preassigned, then there arc only 3%5 or 15 inde-

\ H

pendent elass frequencics, as may be seen by putting these
15 in the top left part of the table, so as to fll 3 rows
and 5 columns, and observing that all the others can then
be filled In by refersnce to the marginal frequencies.

In general, in an hkxj table with forced marginal

Q
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agrcement, there arevonly (A—1)(j—1) independent class
frequencies.

Now, in preparing for comparison by the yx®-test in such
a case, we should not integrate ¢ exp (—%y¥dede,y ... depy
over all the previously independent e;, for by so doing we
would be unfairly including combinations of the «; which
have been precluded by the procedure of forced agreement.
We ought to transform y? so that it is expressed in terms .\:\
of the restricted set of independpnb e;. It was shown by
R. A. Fisher that when this is done the modified eleménf,
of probability is simply

dp = cxk—m—ae—ix dx?, \\ (2)

where m is the number of restrictive relatiohd, reducing
the number of independent ; from &—1, ts}k—m 1. It
is usual to call k—m—1 the number of dégrees of freedom.

The table of P( %) is therefore best’ constructed, and
congnlted, with reference not to ks thé number of classes,
but to k—m—1, the noREH BEAEIARY G &lbdom ; and
this applies not only to condiftigency tables but to all
sitnations in which a presumptive probability distribution
is obtained from a frequency distribution by a partial
forcing of agreement, ib}gé equating of moments for example,
involving reStI‘lCtlQQ ‘6n the doviations e;, These restrie-
tions must bo lingar, that is to say, they must invelve the
¢; in the 1st degree only.

Since in{ the deduction of P(y?) we excluded the case
of very.l éﬁaﬂ class prohabilities, we must cxclude in
pr ‘mtl‘&g Smal] class frequencies. It is customary, there-
fore\in applying the test, to pool the small frequencics
at the ends of & distribution so as to make the classes

~\eantain at least 10 individuals.

Example. The fitting of Poissonian and Type B functions
to the Ruthorford-Geigor dats in 42. We pool the classes
corresponding to ® = 14 and over. Thus & = 11.

For the Poissonian fitting there are 9 degroes of freedom,
since the total frequency and the mesan have beer made to
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fgree n fitted curve ard data. W2 find ¥ = 12:8. and
reference to tables shows that P — 0-20, a satisfactory valua,

For the Type B thers arc 8 dogrees of freedom, total
frequency, mean and second factorial momont having been
mado te agree in fitted curve and data. We find »* = 1¢-2,
£ = 0-25. The slight improvement is of little CONSBqULnCe § /
in both cases the principal contribution to x* eomes froo
the large deviation in class & — 8. O\

e\
Empirical Formula. The value of x? for ‘which
P =005 is often regarded as boundary befWween the
reasonable and the dubious, This value of \x? iz given
with adequate approximation, for ' degrees"o}‘ freodom, by
I-85(k'+-2), ¥'<10, and 1-25(k" 5, &' >10.
For &’ = 35 the second formula abdye bives the value 50,
.the actual value of 2 being 49-80. ~Por higher values of ¥/,

Vex—var—1 may be treated ag &tstﬁndard normal varigte.

BS. Goem@feﬂi‘éa‘blftﬁaﬁ?g ency. The possibility of
dependence between variates in g contingency table can
be tested by P(x?). ForGalton’s data of eye-colours in 54
the value of x* is 266 % valus 5o large that the probability
of independence’gf}ya-colour between fathers and eldest
sons is negligill# Sl

Attemptgihave been made to measure the strength of a
dependerceyby means of coefficients of contingency. Thus
x* measubey, as it were, the dispersion of g grouped sample
from €xpectation, taken over all 7 individuals ; and so
the\izr;;\can dispersion per individual is Xx%fn, a coefficient
déncted by ¢* and called by K. Pearson the mean square

Jeentingency. Since
AN

%= xin = e fn) Ypy, . Y

it appears that ¢2 is the sum of squared deviations of class

relative frequencies €;/n from the presumptive class

probabilities g,, each divided by that probability p,,
Pearson, considering the value of ¢2 for a bivariate
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normal correlated ddstribution divided into grades of
indefinite fineness in @ and g, found the rclation

$P=p*1—p%, pP=¢%(14+4% . (2)
and, proceeding by analogy, defined a general coefficient of
mean square conlingency ¢ by O
02 = (‘.62ll.f(1 -+'(’{)2). . - - {3} '\:\'

Evidently C? is zero when ¢? is zero and tends to 1 as €
increases ; but its interpretation for intermediate va.]ugs}is
not very definite. A ¢

&Y
Example. The computation of ¢* and C! for Galton’s
data in 54. \
The table of values | p,,—p‘p;)“;"p‘p; Is: 7 \\w
A

Eye E, By AN

Fl[ 0468 0-004 dgj-Ol A0 0-073
£, 0004 06 55@%%!?!86%43
Fy| 0006 0002 0038 0-000 [ 0-044
F,[ 0-020  0-007 «BWOL  0-073 | 0-101

0-076 0,043 0-049 0-096 | 0-266
£ )

Thus ¢* = 0-208,C% = 0-266/1-266 = 0-210, ¢ = 0-46.
Table of\B{¥%. A table of P(yx?), arranged in a
compact sndpractical form, is given in Table I of
R. A, Fisker's Statistical Methods for Rescarch Workers,
8th ed{ﬁoﬁ, pp. 110-111; also in the Statistical Tables for
Biolpgical, Agricultural and Medical Research of Fisher and
. Yates (Oliver and Boyd, 1943), p. 27.

\\‘ For practice in the y®-tost, the reader may examino
whethur the experimental datw of the examples on pp. 49
and 50 are in good accord with the theorstical distributions,
rectangular and binomisl, there given.
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CHAPTER V1

THE METHOD oOF LEAST SQUARES : MULTIVARIATE)
CORRELATION ; POLYNOMIAL AND HARMGHNIC
REGRESSION )

66. Multivariate Regression. When distrfbﬁtions in
more than two correlated variates are encenntered, an
important question ig the dcter]‘f]_inatiol\ of the optimal
value (sometimes in the sense of mean/yalue, soractimes
in the sense of most probable value)of particular variate
in terms of the values of all or ang given set of the other
veriates. We have seen that.in. normal bivariate dis.
tributions the Yodpragl Iéa}{bféﬁir mal values aro straight
regression lines. Tn normal™eorrelation of many varistes
the corresponding loci “ape still linear, expressed by
equations of the firstddegree.  For three variates there
are three planes of{r%gression, for n variates therc is a
shea.f)of # hyperplaries, cach given by a linear equagion
exprassing g, partictlar variate in terms of the other n—1
variates. 4\

It was Proved by Yule that thege varions linear log
could bePpbtained withoyt, the assuraption of normal
d.isﬁrgﬁéh by using the method of Teast Squares, which
describe,

®

¢\"57. The Method of Least Squares. The method of
) Least  Squares originated in the practical necessity of

combining discrepant observations of g single unknown
constant, or discrepant observationa] equations in several
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N

Discrepant measuges are inevitable in repoated obser-
vations, cven when every effort has been made to keep
conditions constant. The conditions can never he identi-
cally realized a second time. However delicate the
instrument of measurement, there are innumerable fine
and uncontrollable variations inherent in its parts and
their adjustment and the readings, to say nothing of the N
inaccuracies of the observer. Hence, just as in the ¢\J)
throwings (4} of a coin, we have varying phases of a{) '
system S. Thus repeated measures of a supposedly
unique physical constant are found to be discqrc.kint,’
the truth being that they arc s sample from a eertain
probability distribution depending on §. Inl\the same
wey, when linear combinations or other {iwvtions of
several unknowns are measured, the number ﬁi}observatiana
exceeding the number of unknowns, ‘t‘h} equations so
derived are nearly slways found to be {fiebnsistent.

In 1805 Legendro mee%a-ﬁ%r&-aﬁ%%?giﬁ?t method
for reducing certain astronomical ‘ohservations, that the
*“ best value ** should bo taken'as that for which the sum
of squared deviations of the 6bservations was least., This
ig the principle of Least Sgugres. It can be justified under
the assumptions (i), €Rat the measures are normally
distributed and (i) “that the beat value has mazimum
probability density. ) This derivation is mathematically’ the
simplest and swiegt rapid, but it unduly limits the types
of error digifibiition. A more comprehensive derivation
postu]a.tegﬂi&t the best value is (1) a consistent or unbiassed
linear bination of the observations and (ii) has minimum
r:a.rirx-fg{::e. It is remarkable that the two quite diffcrent
sgtsof postulates lead to exactly the same equations for

<Elg16 unknown or unknowns.

68. Precision, Weight, Errorg and Residuals.
Measuring instruments of differing precision may be
characterized by their standard crror, or variance of error,
in the reading given by them of some assigned measure.
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The variance may be estimated by tepeated trials, Tt is
traditional here to use the term weight, defined as propor-
tional to the reciprocal of variance of error. For example,
if in determining a distance of 5000 vards the standard
error of a range-finder 4 is estimated to be half that of
& range-finder B, the weights w, and wy assigned to
readings made by 4 and B would be as 4 to 1, in favour of 44

Finally, it must always be kept in mind that © true
valucs (if indeed the word * true  admits at all of definite
meaning) are unknown and must remain wkno¥m: so
that the errors, being deviations from an unknéwmn value,
are likewise unknown. True values must bewq\anmated by
appropriate substitutes, namely, hest or gptimal values,
and errors by the deviations of the pbserved from the
optimal values. These deviations ar “distinguished from
the errors which they represent bybeitig called residuals.
Errors are e; = a,—a, residualy are ey == gq,—d, where ¢
is the true yaluedipenbobsprrelivalue of 2, and & the
optimal value of a. If there are n observations, the n
residnals are estimates ofethe n errors; and the » errors
are themselves only g finite selection ander the law of
probability which €haracterizes the circumstances of
measurement, | \"

Q.

59. Repgaged Measurements of a Single Unknown.
The cstimaté’ by Least Squares is found- by minimizing
the sumofweighted squares of residuals, The minimum of

O~ S'=Zufe-8r . . L
H

. \’§ »
..\.i‘sj;given by 832/62 — 0, so that

\ &= Zwe,/Zw, . . . (@
The optimal value of » thus appears as a weighted mean
of the observations. If the observations are all of
equal weight the optimal value is thus the arithmetic
mean.
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Variance of Optimal Valus. The variance of £ in
(2) i (15)

Zw- HIPAT (211‘20'2 e 2w = 2wy, . (3)
where o-f in t-he variance of x; and o? is the varlance of
an ohservation of unit weight. Thus the weight of £ is
2wy, the sum of the weights of the z; In particular O\
hP weight of the arithmetic mean of » values 2; all of equa,l
weight, is # times the weight of any ;.

Varlanca of Residuals in Case of Equal Wé1g“ht
If the observations are all of unit weight the y”‘ residual
ey 18
2,8 = (=N (ty -ty b Ho, SR . (@)
Thus the variance of ¢, is (15) 20 2
(n—1)202n?4(n—1)o?/n? —‘(n Ne¥n. . (5)

I% follows that an estimate of o 2is given by dividing
the sum of squared rcmdﬁm‘lﬁﬂil@ﬁ%?h% aNtobg-—1.

Ex. 1, The author madey 30 ‘bisections by eye of lines of
constant length. The dlstrlbutlon of z, the length in cm. of
the segment to the left of e point of bisection, was :

z 76 765 775 T-S.i'i':-SS 79 80 81 815 8-2 8-25 845 n
wf 2 3 1 _%Nd4 2 4 2 3 2 2 1 30
Estimate th,(;]jgngth of the half line and the standard 8rror.

Ex. 2. D;;» tho same for the results given by a second

PETEON ; '\"
Y\T 75 7. 8 7-85 79 7-95 80 805 81 815 8.2 83 n
nfq\l 4 3 5 4 5 3% 1 1 1 8%
.T' %. 3. Comp'u-e the procision of the two persons by
N ms;gnmg weights. By a weighted combination estimato the
\ lpngﬁth of half tho line from all 60 bisections, and assign &
standard ervor. (The length of the line was actually 16 em.)

80. Indirect Determinations from Linear Equa-
tions. In this case we have measurements of » linear
functions of m unlmowns, where n excceds m. Because
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of obscrvational error the equations sre inconsistent. For
example, we might have

Observations. Weighta,
i = [-75 2
ety = 310 1 )
sty+z = 383 4 O
ytezdu = 430 2 A o
z—i—u = 305 3 ) "\..\
- 2:10 1 . OW
In such a cuse the method of Least Squa,rr(s eons1sts
again in taking as optimal values those fOI‘\WhICh th
sum of Welghtpd squares of residuals is a mifimum, so ‘rham
for examplo to solve the equations (1) we'duld minimize
81 = 2z —1-T5) (ot y —3-10) H4RF y +=—3-85) (2)
+2(y+z+u—4-30)2+3(z+u—3'§575+(u—2-10)2
with respeet to %, ¥, 2, u. More écﬁcraﬂy, if the equations
are (to take the &%sg A %11&)(‘3‘19‘%1%5
2 1= by +epz tHu = Ay, weight w,,
ayx + by +—132z Fdg = g, ... wy, 3
ama'—l—zbmy—l—c w2 T = km, s Wony
we minimize, _
PN\ S Z‘u (s Hbytozt+du—h,)R, . G
and %i\]arlv for any number of unknowns.
\Tho partla,l derivatives 85% x, 85t 8y, 683/07, 698/ cu
_\must be zero ; and so wo derive the equations
N \2% 00w b 0y (D050 - (Dhe o ue=Tho b,
\ "]Lu ) b Db By 4+ (Zw b ez + (Dwbdyu= Ew,b,hj, 5)
5

{
e 4 {Zwbe J—l—(,;_u c?}z + 2ol u=2w kg,
Loy @ o (Zw b d hy - [PXTIGE RPN 7 a’z} =Zwdh;,

for @, ¥, 2, #. These are called the normal equations, and
their general form is similar to the above. Inspection will
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show that the c:)cfﬁoicnt-s in the normal equations are
symmetrical, in the respect that the coefficient of the §t
unknown in the k% equation is identical with that of the
&* ynknown in the j* equation. The scheme of coefficients
8 in fact symmetrical about its northwest-to-southcast
diagonal, This symmetry is of great service in shortening
the solution of the equations. O\
Thus in our numoricsl example the normal equationsgsall
be found to be gy >
Tx+5y+4z = 22-000, !
Ba+ Ty 462420 = 27:100, 2o {
41+ 6y + 92+ 5u = 33150, N\
2y +5z+6u = 14-850,
which can now be solved by methods QfQ)r’actica,l algebra.
The solutions are » = 1-750, y = 1-274, £ =0-846, u = 2-178.
P

Various schemes of systemafi® “solution of normal
equations have beenwc\l.\ga\gi%c}ﬁh%@, iﬁy‘mtgggp the reader
must be referred to more ~cgri1pre&1enaive troatises and
original memoirs dealing with Least Squares or with the
numerical solution of algebraic cquations,

Preparation of Nermal Equations. It is evident
from the construelion of the sum §2 of weighted and
squared residual$that exactly tho same sum would arise
if wc multiplied each observation throughout LY the
square roptof its weight, v/w,, and then regarded the
obscrvapional equations as of equal unit weight. (Let the
l‘Bib%\(;eI‘ifY this from the example.) Such a reduction
of a3et of equations with unequal weights to a set with

egual weights is called preparing the cquations.

:.\’ 3

N
%
\ )

61. Application of Least Squarea to Trivariate
Correlation. Suppose that we havo n trivariate obser-
vations (z;, ¥;, 2;), a8 for example the height, weight and
chest measurement of each of 1000 soldiers, and that we
wish to express each variate as the best possible linear
estimate of the other two. We may suppose the variates
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meagured as deviations from their thspective means, and
standardized. Thus for = we have n equations
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»

¥y = bigty b, (§=1,2,3, ...,m). . (1)

These may be regarded as n observational equations in
the two unknowns b,, and 4,;. If we solve them by least™y,
squares we shall have the desired optimal relation .\

£ = bgy+bg2, . . (n'},. (2)

which may be regarded geometrically as thé_wegression
plane of = on y and z. The cocfficients 8% And b3 are
celled regression coefficients ; they are the\sa,mple estimates
of ideal regression coefficients B4, B,4iu"the underlying
population. The normal equationg-for' b, and b, are
obtained by minimizing the sum of'syuared residuals

W\\rw_gélﬁ%’ﬂ%éFMﬁblazf) 2, . )
The minimum condit-'iq.ns. 8826k, = 0, 882/6b, — 0
give, on division by n,2

g\
QY +729by 3 = 7y,

A . . .4
\\ Faghia+bis = 715, @

whera r, ='Eé}y§fn’ s = Zxzyln, 1oy = Lygzyin.
Solving, Wé find the desired regression coefficients as
O ;
'S M bro = (ria—r1grss) /(1 —1s),

\.§~ by = (?‘13——?'12?'23)/(1___?-2-23), . . (8)

énd similar results hold for the regression of % om 2 and z,
~Loand of z on 2 and y.

\ ) The standardized mean-product-deviations 19, T and

¥y are usually called fotal correlation coefficients of 2 and

y, x and z and y» and 2 respectively. They are really

estimates from sample of the corresponding mean-producs-

deviations, or product-moments Pre pa and Pag in the
trivariate population or probability function,



""x, TRIYARIATE NORMAL FUNCTION i3
L]
It may be proved that the trivariate normal m.g.f.,

i standard scale and with means as origin, is

expHat+ B+ +2paf+2p3ay+2p0By) . (6)
and by reversion that the corresponding trivariate normal A\
funetion is .
bla, ¥, 2) '\..'\'
= (2) ~3A"bexp [~ 3ATH(1 ~ p et +(1— pRiy? -+ (1 —p S
—2{pra— Pr3pesiFY—2(p1a— Prapaa)Ti— 2(P23_Plzpls)yz};ii )

where A is the determinant LV
1 piz pis v
A=|pp 1 po :.\\..’
s Pas 1 ) '\ &
of total correlations. )

The equations &¢/dx = 0, &by £)0, dbioz = O givo
the loei of maximum Rrobabilitm of & for fixed ¥ and z,
of y for fized z and z, ‘R‘I’l‘"dotf%k!%ébﬁ'ai}&e%' '‘ind y. By
actual differentiation we ﬁndﬂ-l},éée {oei 1o be

z = oy + gt . - - (8)
and two others, where(™
BIS‘A}PH_,OIBPES)!{(]_10223}’ 9
. .ﬁj.s,,?-‘- (p1a—pPrapash (1l —pdy)- .

Thus we ség\ that the estimates of regression by Least
Syuares dl‘é\ﬁl agreement with those based on normal
trivaridgté,dorrclation. A corresponding result is true for

lineavdégression in any number of variates,

M\;"j{iz. Partial Correlation. Tho unstandardized equa-
tions, with mcans as origin, of the regression lines in
bivariate regression (49) are

@ = By, where B; = poyfo,,
¥ = Buw, where By = pagfoy. . - D)
The correlation cocfficient p appears here as the
geometric mean (B;,84). On the analogy of this, partial
H
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. correlation coofficients in mullivariate problems have been

defined as the geometric means of the corresponding
regrossion coefficients.  For example, the partial coeflicient
of two variables a, and x, would be defined by { B Pent.
Notation. It is customary to denote, for example in
o four-variate problem, the partial corrclation coefficient
of « and y by ppg 30 to distingnish it from the togal )
correlation cocflicient py. The sample estimate would\be *
written 7,4, 54 .
Fxample. Given the following estimates of v%ri:sfglcr_‘sé and
total coreclations of three variables =, ¥, 2, find “he three
regression equations and the three estinjafes of partial
corralation coeflicients: WO
ot =50, o3 ="10, of =30 7y =80, r, = 0-40,
T

3 0'69‘8. )

2
2

L ) 3

63. Non-Linear Regression.! Polynomial Regres-
sion. Fropyvihelmatkieragiorgah of observations of a
variate y dependent on @3t may be apparent that the
regression cannot be lintmr. Comon types of non-linear
regression are thosg'id which the underiying functional
rolation of ¥ and &8 of polynomial, or of harmonic¢ type.

The polynorhidl regression

MY = Cot-eyt et ek . . (D

A
will beyednsidered first in its simplest case, the fitting
of_thelpolynomial by Least Squares to = independent
ghgrvations s of equal weight, corresponding to %
aguispaced values of z, namely # = 0, 1, ..., n—1l.

The polynomial of best fit i given by the minimum
of the sum of squarcd residials

82 = D{u—cq— 0@ —0pt i —... —;7%) 2, . {2)
o

that is, by the conditions 68%/¢c; = 0. These give E41
normal equations for the ¢,, easily seen to be expressililo as

Swtue—ra) =0, (1=0,1,2 .,k . 3
[ 4
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displaying the fact that the fitting of a polynomial of degree -
I by Least Squares is equivalent to equating the moments
of orders 0, 1, 2, ..., k of the polynomial and the data.

The values of the coefficients ¢; can be found by solving
the normal equations, but since sums of powers of natural
numbers up to the 2k are required, the method becomes
laborious if % is large and if the polynomial y is of the
grd or higher degree. For this reason it is better to
express y not in powers of x, but in polynomla,laf

1, t,(x), fy(x), ..., f{x} having the property of being
uncorreluted, being in fact such that the product su\n@
St () =0 if i 54 . oo - @

These polynomials £;(x) are familiar i h}v}:hematics a8
the orthogonal poly nomla,la of T(,heb}('hef and their
properties are knodmn. For exampledit s known that

ii"(‘{) (Zitntin— 2-}_" ‘)fw(%blja.)u.l‘ifﬁ?%lyorg in
(&2 pin-Jd Heu-0lS VA=Y=, o (5)

50 that (Appendix, 1) the ) Ehffc-lence

At fx) = (29} inTiy-a *‘(29' -Dinin—)¥-p)
:’-T( Polframin—e—=1) .y (6)

It is-also known(that .
PAACHEE o Nfﬂz 2 —4)...(r?—3/IZ+ DM ()
=cIf, th&;’x}r;re, we expresa ¥ in the form
Oy — qptan(@) Fad@) o Fahi@, . (8)

H\mosum 8% of squared reqldua,lb, because of the vanishing
scxf' the product terms, takes tho form

8% = Dlup—a,—mhla) —.. —ayl(x)]2
= D (0,2 2u, (@0 ity (m) 4. bauti(2))
X
a2t .. (ad(z)?] . (9)
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- and the normal equations &528a; = 0 thevefore take the

..\:.

form,
4= D@ Z N (=01, .., 8. . (i)

Thus each cocfficient @, in the regression is found indepond-
ently of the others, without the labour of solving
simullaneous equations. (The choice of uncorrelated sy
orthogonal functions for the representation of w, alWavs
confers this very great advantage.) Sinee the polynduials
{;{x) are expressed in factorials x,,, the numeragi\of the
cxpression for @; can easily be found in téilwy of tho
Juctorial moments of the data w,, these mfhn\ents heing
ohtained as uanal (Appendix, 2) by sumniabidn.

The minimum sum of squared resifiubls can itsell be
evaluated beforshand, for by (9) a-l"{(}'\(lb) it takes the form

Slu—af— a5 a2t ()]
=2uZ—a.lu,—n Z'%;a;t’:(_x)_—... —a 2t lz), (1)

w b dbratilibFaryh rg.in

involving the sum of thegtuares of the u,, diminished
by the product of eachiSuccessive @, by the numerator
m (10). It is known(that the variance of a single residual
is best estima,ted{mﬁy dividing the sum of the » squared
residuals by the dégrecs of freedom, n—k—1 ;3 hence we
can judge beforehand, if we know the precision of the data,
what valueef I gives the best polynomial y. It is of
course possthle, by taking too many terms in the polynomial
() ﬁp"the dats too well, In the sense that the sam of
suazred residuals is mach smaller than that warranted by
theprecision of the data.

64. Practical Routine of Fitting a Polynomial.
All of the above points, which can be treated only briefly
here, have been discussed at length in special memairs.
We shall mercly illustrate a method depending on the
theory of 83 and making use of a table containing the
terminal values and differences 50), A0, A0, L,
for j=0, 1, 2, 3, ..., & and the particular value of n.
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The rule for construbting such a table follows from (5)
and {8) and is simple. We shall illustrate it for n = 6.
We write down the fixed table of binomial coefficients,
table (i) below, to k41 columns ; in thie illustration, & = 3.
Beside table (i) we place table (ii), consisting of binomial
coefficients of n—1, n—2, ... written below cach other as
shown, slso to k41 columns. The products of corre-
sponding entries in the two tables now give us the desired("
table (iii) of terminal values and differences of -polynomials, ’
and ab the feet of the respoctive columns we enten, the
values of Zi2, as computed from the formula 63 (T){

@ 1 —I 1 -1 iy 1 s\Ne 10
2 -3 4 AN 4 8

6 —10 &KLY 1 3

o 20 1
(i) (el - N
1 g _%g \é% ,db‘rta:qllbr r]‘y.orgjin'_g 1; !
6 —30| W 3 —15

20 " 10

| A _
6 70 336 720 8 70 84 180

N\

A possibility msfhng table (iii} still simpler for practical
use is that whéR s common integer factor is obscrved in
any columr%“ we may cancel through by that factor,
provided,thgt the square of that factor is cancelled throngh
from ZI8\/Thus the cancelling of factors 2, 2 from colimns
3, 4\n table (iii) above gives table (iv). Such tables,
extended to six or seven columns, are easily construoted

\"“i"or'a proposed value of 7.

The use of the table in finding the regression cocfiicients
a; and the fitted values g, is best illustrated by an actual
worked cxzample. The process is no more difficult for a
long scries of data than for a short, but to economize in
spaco we shall illustrate it by fitting & cubic polynomial to
BiX values uy.
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Example. )

® G 1 2 3 4 &
% 5 13 25 80 105 200

By summation the reduced factorial moments of u are
found to be 408, 1463, 2835 and 2480, while Tu? == 55144, N
Using four columns only of the table of polynomials (since, )

we are fitting a cubic) we set out the rest of the work dh )

compact shape this : \\' -
408 1286 567 191 N

By 68 18371 675 1-0811  y, Ay, %ﬁg’; Aly,

s | XN

Bums 1 —5 i) —5 v/

408 2 -6 12 ' £500 N\

1663 3 13 875

2835 10 i A\ N \’ 4-334

2480 AV, 10-611

6 70 84 180\ “Check y, = 193-91.
www.dbraulibrary.rg.in

Explanation. oY

S 2

g = (408 X 1)/6 = 68"
ay = (1663 X 2403 5)/70 = 1286/70 = 18-37,
2y = (2535 > A 31663 X 61408 X 5)/84 = 567/84 = 6-75,

and 30 on ; the elemonts in eolumns of the table are used as
mult’phiers of ths factorial moments, the entries at the fdot of
the eolumhg@s divisors. Then

Yo 88 X 1 —18:371%5+6:T5 X 5—~1-0611 x 5 = 4-

590.
&S?GF 18-371X2—6-75 X 6+-1-0611 > 12 == 8-075.
&y = 8:75 X 8—1-0611 x 15 = 4-334,

™
~

N o I
pand 50 on g the elements in rows are now used as multiplisrs
#\W of the a;, and give the terminal value y, and its differences.
There is also a good check on the other terminal value,

¥s = 68 X1418-371 X 546-T5X54+1-0611 x5 — 198-91,

the same terms a3 gave g, but with positive multipliera.
Building up a difference table of the y, from the constant
3rd differences in the way familiar in interpolation, we have—



® #  peESIDUAL VARIANCE OF POLYNOMIAL [1%

" .
L Y Ay Ny L%y ow u—y
0 4-500 ] (410
8975
1 13565 4-334 13 —0-565
13:309 10-611
2 26-874 14945 25 —1-874
28-254 14-611 ;
3 55-128 25-356 40 4-872 (W
53-810 16-811 O
¢ 108-938 36-167 105 —3-938.0 ¢
89-077 A\ )
5 198-815 200 K085

The comparizon of the fisted valnes with the Wita cau be
seen in the columns headed y and %, Thesstm of squared
rosiduals (o —y)? will be found fo be 444 ’ ;.\

[3ut we can also set out a table thus,'éétimat-ﬁ'lg by 63(11)
the variance of a residual after a cohgtant, a siraight line,
a parabola and our eubic are fitted in.succession :

kE n—k—1 a, nual &b&.‘ﬁmﬁ%‘a‘.’y-m}gai N (n—k—1)

35444
0 5 68 208 27744 27700 5540
1 4 13371 L9286 23626 4074 1019
2 3 675 (N 86T 8827 241 82
3 2 ! {w\N 191 204 44 22

The cohunn I}Ec}aded 52 shows the sum of squared resiguals,
obtained i, docordance with 63 (11} by subtracting the
entries iL th® provicus eolumn in turn from Zw® = 55444,
The laph eolumn gives estimates of the variance of a single
resirll\{re;lwht the different stages. To test whieh polynomial
besty, fepresents  the data, we must have a preliminary

Hwledge or estimate of the variance of the observations,
M\: Fhis varlance is ecompared with tho residual varianeo in
\ ) the light of the ssmpling distributions of 71 and 74.
The alicraative computation of the sum of squared residuals
as 44 checks the werk, for the same sum was given by the
fitted values as 44-4.

For & given valuc of » the same table of terminal values
and dilfercnces of t-polynomials serves for fitting a poly-
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nomial of any degree. Thus, using ounly the first three
columns of the table in the above worked example, we
may fit & parabols instead of a cubie. Tt will be found
mstructive to do this, following the details of the worked
example. Notice that the coefficients g, ay, ay are the
same ag before, \
(\)
Fxample. Fit a cubic polynomial to the seven E!q‘l.t\ﬁ'}fstﬂ:nf
and equally weighted data PAN .

P 0 1 2 3 4 RN 06

w =1l 5 18 25 60 __ 0¥ 200

85. Periodic Regressions : Observations of Equal
Weight. Observations which exhibit \periodicity more or
less masked by accidental error arglofcommon occurrence.
The height of tide-water at a seaport, measured at equal
intervals of time, shows suchva periodicity ; monthly
averages of te ?%a@%gaiﬁ}j%}? & seasonal periodicity ;
telephone calls on an xchange §how & weekly periodicity.

The procedure for @J;Eal yaing periodicity is to assume a
periodic function

Yo = -jy'a:\cosﬂ Fa,00828 ;... +a,conkf

? Q‘Kifxbl 8in @ -+b,sin 20 ... 45, sin k8

and ‘o _findAho coefficients a, and b; of the econstitucnt
periodic™tofms by the method of Least Squares.

}’Vs\ consider therefore n equally spaced observations
:Q}" equal weight, where § = 0, 22/, dnjn, ..., 2(n—1}mw/n,

(1)

. ‘t’ﬁc observations thus corresponding to the phase-angles
sy'of one complete oscillation of a periodic phenomenon,

The initial obscrvation of & second oscillation is not
included. In view of the trigonometrical relations
n-1 2rhar < Zrjm = 0,if b # 3,

2 cos — ¢o

b
re0 n 7= in, i h = §£0, #in, )

and the similar ones with one or hoth cosines replaced by
sines (these are really orthogonal relations exactly

QY
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w
resenbling those of the Tchebychel polynomials in 63 (4) =
and (7)), the sum §2 of squared residuals is {¢f. 63 (9))

Dy —yg)® = Zlug—2ugla,+a, cos f+...-+by sin k)]
# &

+in(2ak LaZ ... 5D, . (3) ~
Differentiating with rcspect to the o; and b; and A
equating to zers, we have the normal equatlons tor thet
regression coefficients. Hach is given 111dependn=ntly wf
the others, N

1 2 2
Gy = zf-u&, = —Zugcos hf, b, = ﬂ.ﬁZ‘uH 5111.{&\ ES!

H #
If » iz even, \\
g = TTZu, cos 1nl, b&:z & 0, . . (5}

and cos jnf is 41 and l —~1 alberyately as _8 takes its »n
br aulibrary.org.in
values.
The theoretical solution i thus immediaste, Simplicity
of practical application willdeépend on the valuc of 7, and
the consequent valucs gf cos k8 and sin Af.

66. Practica]\ézlﬁtion of the Normal Edquations.
The process of numerical solution becomes specially simple
when @, that.is,”2n/n, is such that cos 8 and sin#¥ aro
easy to handle! This oceurs when » =4, 6, 8, 12 or 24,
the last ﬁi:(‘_) cases being specially important, as corre-
BPOTY nO‘ yto the hourly or two-hourly subdivigion of the
dfw{\a. d special routines for these values of # have heen
df'vlﬁcd
) The proceduro depends on the fact that in the four

\ qmdramtq from # = 0 to § = 2=, cos ! and sin # take the
game absolute values four times, though with differing
alternations of sign. To take the case n = 12 for illus-
tration, the data uy (and there will be ho misunderstanding

if theso arc written meanwhile as w,, @y, ..., ) can be
assembled in tetrads, for example v, -+us—u;—uy, before
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. being multiplied by the suitable yalues of coshf and
sin A, where Af can always be taken as coterminous with
some angle in the first guadrant.

We shall indicate how this is done by an actual example.

Example. To fib terms us far as a,cos 44, bysin 40 to the )
12 data (Whittaker and Iiohinson, Culeufus of Observations,e N
p. 272} : A o
By U Uy g Myt e o U g 1y :51 “\
2T 504 203 127 079 0-50 0-37 0-34 0019 —0-35 —(-44 Y7

Firal: write the data in & selicme 7 of colerens, c%o»ﬁ;n, up,
down, up, with blanks as indicated by the dots, asfeliovns

!
— —_— -_ N/ —
271 37 . . i +;§3~ +

_ ¢ 304 30 54 5T M= _|_~ g : T

Next. add along the rows of thONEMEsw T, after miving
sign to the columns of U in four Q;ﬁ ont ways, according
to the rows vimy Wb sighibeb E@RAIN Wo thus oblain fonr
separate sets of totals, and the® are combined with cosines
and sines of 0°, 309, 60°, 90230 four scparate schemes, us
below. {Wo have included the cocffcients necessary for
eomputing @, by and a‘@s well)

"™

l 2813 79 i - 44

| 127 . —385

7

ty @y ’{"E!'} ity oty ta [
308 | 05 1 &N™M 0-5 234 1 1 R
485 [70-5  Be5 —05 —0-3 277 |0-866 0  —0-886
267 | 05 B85 05 05 71 |05 —1 05
92 | 057N 1 =04 162 ¢ o 0 0
61,510 825 24 1 6| B0%-5 163 266
SO0 0-542 04040 — 04002 0-840 0-372 (01t
QO
AN by by by fig frg
O34 0 0 308 - 0 0 0
\\“ 230 | 0-866  0-860 223 | (5 i 05
197 | 0866 —0-%66 317 1 0866 0 —.0-860
2] o 0 162 1 -1 1
6| 3706 29.4 @ ‘ B8 Gl -—0-5

0-818 0049 ¢-913 0102 —0-001
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. .
Ezplanation. w .
ay = (2-34 X 1+2-77 X 0-806+0-7L X 0-5-+1-62 X 0) /6
= (-849, etc,
" Henee, as far as termas in cos 46, sin 48, the regression is

+0-848 cos 840542 cos 28 40-272 cos B8

vy = 0-950 +0-040 cos 46, \
4+0:913 sin #++0-618 sin 26 +0-102 sin 38 .\'".

4 (-049 &»m 49

and the regressions to fowoer or inore terms mvol'm the
samy eooflicients a; b, as are given by the abox@\sLheme
of solution.

The sum of squarcd residuals may also be calculated
beforehand from the regression coefﬁcmnh\{ & schemo set

out as follows : . \ o

7T amd
k n—2k—1 }n{uzw wbéjaragl‘ﬁarary B ek~
24983
0 i1 11059 393924 1-266
1 0 93J§ Vo 4.808 0511
2 7 4,054" 0-544 0-078
3 8 006 0:038 0-008
4

3 A 0-024 9014 0-005
N\

Juist a3 in poh\miu.l regression, tho eontributions %o the
sum of squaregdhresiduals produced by suceessive terms are
gublracted Mburn from u?, which hercis 24-383.  The cstimate
aof vamanﬁb\of a single residual is then made by dividing the
residuad"sitm of squares by #—2k—1I, the numbor of degrees
of fr;:%iom The results are shown in Lho last eolumn,

f\':':.G'?. General Regrossions, After what has preceded,
\'“\: the routine to be adopted in other regressions, such as
¥ = ay+a tan f4-a, tan 204 Fa, tankd (1)

will be readily understood. Such regressions are not
commion in statistieal work, but they are not outside the
bounds of possibility, The desirable thing in any problem
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. of regression will be to express y, if possible, in terms of
functions which, like the Tchebyehef polynomials or the
sine and cosine of multiples of 2x/n, have the orthogonal
property that the product-sums of different functions of
the set over the range vanish. The effective meaning of
this is that the contributions of the successive terms to
the regression are uncorrelated with each other., \“\

N\

Harmonic Analysis. For fuller details conrernui\bwthe
practical routine of estimating periedic re'{regj.@m; the
reader may consult the chapters on harmoenig‘abalysis in
Whittaker and Robinson’s Caleulus of . B%Maom, or
Brunt’s Combination of Observations, 2nd {dl’mon 1931.

'\ v
\"
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ORAPTER VII

A\
PROBABILITY DISTRIBUTIONS OF STATISTICAL N\ -~
COEFFICIENTS

8. Sampling Distributions. A statistical (ééétficient
computed from a sample of n values, univachdte or multi-
variate, is only an estimate of the correspondiig parameter
in the population or underlying probabllﬁv function. It
is therefore to be presumed erroneous\though the degree
of error cannot be affirmed exactlypgince the truo value of
the parameter is not kaewadbr’ gshebdﬁ:@;,wﬁ gferror can be
stated only in terms of probdbihty ; and the probability
distributions involved are (i Jhe hypothetical population,
or distribution of the varate or variates, {ii}) the derived
distribution of the coéfficient of estimate from sample,
The sccond of thcm;“—J} called the sampling distribution of
the coefficient. %N\ ©

et us consider a case in which the first of %hose
distributions) e pro oabillty distribution of the variate,
i not b otﬁmtlml but given. In Charlier’s experiment
(22) of\c)lr&.wmg 10 cards from a pack, with replacement
of e\ll card, and continuing this until a sample of 1000
set\Of 10 carda had been collected, the variate was the

.gumber x of black cards in a set of 10, and its probability

\ wdistribution was the binomial distribution, with mean 5

\ 3

and variance 2-5; the corresponding valucs of mean and

mean square deviation in Charlier’s sample were 4-433

and 2-415. Are the respective deviations 4-933—5, or

—0-067, and 2-415—2-3, or —(-085, reasonable or

abnormal ¥ Such gquestions can be answered only when
126
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Ed

the sampling disteibutions of the estimates of mean and
variance arc known,

The nature and gencsis of these sampling distributions
gan be illustrated from this same example. The samplo
group of 1000 sets of 10 card drawings was merely one
out of an enormous number of equally possible groups.
From the pack of 52 cards the 10 cards, drawn one &t
s time with replacoment, could eventuate, if ordp( 5%
drawing were taken into account, in 521 ways. (This is
an unimaginably large number, but the number Fgroups
of 1000 sets which miay be chosen from thetg»h2l% scts
is incomparably greater still, Itach grn”)‘u:\p may be
supposed to have its mean m and mean sguare devistion
5%, computable in the usual way. Theyagiregates of these
values of m and s® constitute prohability distributions,
and these arc the sampling distmbutichs of m and s* for
the kind of spippladf GHEEIPRerg in

Example. If the pt‘chIvt':j)bpu‘lat-ion iz normal and the
mumber in sample is g\ the sampling variances of the
estimates my, mg, my of the PIOMENtS pig, pas jeg 40 respectively
2641, Gc¥in, 960’8:-{?'1-.{]3‘01' tge fgs ... Uhay inerease rapidly.

Tho functiemalform of a sampling distribution depends
(i) on the pg]%lat-ion (probability function of the variate
or variatesgampled), (i) on the function used for estimating
the paudwieter, and (ili) on n, the number of obscrvations
in th@vsample. Since 1800, and especially since 1914,
{I&l}fﬁh"research has heen oxpended on the problem of

iving the probability distributions of the commoner

H:’,coe_{'ﬁcients. Most of this rescarch has been devoted to
samplos of & normally distributed variate or variates, and

the sampling distributions are now well known and already
classic. It appears that as the number » in sample
increngses the sampling distributions of many cosfficients,
though by no means of all, tend themselves towards the
normal type. In such cases 1t is customary to supply an
estimate of the precizion of a coefficient by appending to
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L 1
ix computed vilus itg standard deviation of sampling, or

~tandard error; and this is sometimes said to imply a
probability of 19/20 that thoe true value lics jn the range
delimited by twiee (more precisely, 1-96 times) the standurd
error on either side of the computed value,

The form of statement iz somewhat misleading, and
canceals a problem of fundamental difficulty and still contro-

versial, namely (§ 79) the estimation of a statistical parameteriJy

from sample. Suppose, for cxample, we have computed ghoe
mean m of the sarmple. We then proceed to ask: 3\ﬁ,t-1‘1’i11
what intorval can we assert, with a stated probabilify & of
being correct, that tho mean p of the parsnt pop f16n may
b presumed to lie ? It is to be noted that u, thowgh unknowa,
iz conatant ; it is m that varics from sample fosample. For
an illnminating discussion of the problemy Jmay refer the
reader in the first place to a paper by C. Jopper and E. 8,
Pearson, Biometrikh, 26, p. 404; bl the seeond place to
Chaptors 18 and 20 of M. G. Kepdnll's Advanced Theory
of Statistice, val. it v@’ﬁ‘é’r\g‘@{g’qmmr&i}n“ confidenco
intervals ®, (i) “ fiducial inferefce ™, are compared and
contrastod. oW

When the number jn sample # is small the sampling
distribution of the c-gefﬁ?l(:i.ent ig often of non-normal, skew
or platykurtic tyﬁaﬂid the standard error is an insufficient
incieation of the interval within which the true value of
the parameterimay lie. It is necessary in such a case to
kuow the satdpling distribution and probability integral
of the spodidl coefficient.

o &/

A&és"The Sampling Distribution of Means. In a
few “cascs the sampling probability function of the mean

;’“i;ff 7 observations is of the same type as the probability
tunection of the population. For example, the normal

probability function with mean g and varianco o2,
~He—ufa®

1
$la) = = e ..

has m.g.f. exp (ua+3c%?). Hence the m.g.f. of the sum
of n sample values »- in exp (nua+inc?e®, To change

N
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from sum Lo mean is to write x/r for %, or e/n for a. Tlence
the m.gf. of the mean of sample is exp (pa-tic®a?in).
The mean of sample is thus distributed normally about
the same mean as before, but with wvariunce on, or
standard error o/ v a.

Ex. 1. Prove that if «, x w5 ... are the Clmlulij-l;lf&
of any population, the curmaulants of the mean of a gathple
of 1 4re ry, e/ 1310 e &

Ex. 2. The number » of black cards in a s;;i of 10 in
Charlier's experiment is binomially distributed¢wifh mean 35
and varianee 2:5. The mean of & in 1000 gefs\t distributod
with approximate normality, abeut mean 5, ahd with variance
2:5/1000, or 0-0025. The standard errorNis’ thus 0-65. The
deviation of the mean 4-933 of Charlisg’ sample from 5 is
~—0-087, about 4/3 of the standard\sfrar,

The deviation is not excessiv,) Frotn the table of the
norraal probabi]it&'b integral a g 144 it is seen that the

s N sl =4 .
probability of & diviation elx%::.e(ﬁ‘n f-34¢ is abous 0-18.

Again, if the prob:a,bﬂit? function of x ia of Gamma or
so-called x2 type, namely

@) = Ty, . (@)
the m.g.f. is X\

,~~iif(f£J)—1 rxk—le—xewdx = (1 —a)t, . (3)

2K 0

w

The 15T, of the sum of = sample values z; 18 (1—a)—"%,
and\so the m.g.f. of m, tho sample mean, is (I —a/n)—"%.

Réverting to the probability funetion, which by a theorem
~8of Lereh is unique, we obtain the probability funection

of m as
d(m) = n{l(nk)) 2 nm) b-le—nm_ .4
This is again of Pcarson’s Type III.
Fx. 3. Prove that the distribution of the sum {not the

mean) of n values x; each obeying the Poissonian law S{x) of
33 is Poissonian. (Use the fum.g.f, of &.)
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i
70. Distribution of Mean Square in Norma}
Sample. If the probability differential of x is
1
dp — ——= e ¥dz, . . (1
P \/211' @
that of 2 = }x?, as in 37 (2), is

1 ;
dp = —= z7 % "%z, . . . A2
i} { "\ “
and so the m.g.f. of z s (1—a)~%, by 69 (3). HQ;lcE:"’t-hc
m.g.f. of half the sum of the squares of # samplsSalhes x;
is (1—a)~¥, and so if 52 is the mean of tho{s§uarcs the
m.g.f. of Le%is (1 —e/m) ¥, It follows thatghe probability
differential of %, where u = $s2, is \
dp = [P ) 2%, . . (3)
again of ¥? typh. By changinghfrom }s? to 52 we have
the probability function of 2, 1 vely
\n\iWW- I'au__' l"ii?.}' 20‘{{5_19) — e .
gls%) = 2 FGARRI G we )
In unstandardized uui{ié‘." we must write 8%z for 5% on
the right of (4), and insert the factor 1/
The seminvariaut gif, of s2 18
—in log (M2 20/n) = In(2ain+4ati2at4..)
. O‘i =a+2a} 2+ ... . . (5)
Thus the.’ﬁiéé;n of 52 i3 1 and the variance is 2/n; in
unst-an,@a@ized units these arc o? and 2¢%/n, where o2
is t;hé;}ariﬂ.nce of . The sg.f. also shows that as =
inéreases the m.g.f. of ¢? tends to asyptotic equivalence
_with exp (a+a?«); and so the distribution of &* tends
3o normality.
)

) Example. The distribution of st in Charlicr’s 1000 sets is

almost normal; ¢ = 2-5, and % computed from the sample
{using deviations not from Charlier’s mean m = 4-833, bhut
from p = 5) is 2-419. The standard error of ¢2 i o%4/(2/n)
= 2-5/v'500 = 0-112. The actual deviation, —0-081, is
numerically about three guarters of this.

X
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L4
71, Distribution of Estimate of Variance. The
yariance or second moment of the population is commonly
eatimated from the sample by taking the ™ part of the
sum of squared deviations of the sample values x; from
the sample mean .

Of the n deviations from m only #—1 are independent,
and this estimate of o?, which we shall call s2 though)y
pointing out that it is not the same s* as in 70, capbe
expressed as a quadratic expression in n—1 irldeggnaent
values, Thus we have, by 14 (5), W\

82 = (B24adp.. Fad)in—(zy +x2—{—...+a:n}2/n"';\§
= (n—1)(E ... 2] )i O
__2(zlz2+z1z3+...—i—zﬂ_zzﬂ*l)/n\z',“\ S

whore 2, == & — %, 23 = Tg—Lgy Sy @hg = Tp—y—7g 3 80d
this is but one of many ways inwhich s may be expressed
in terms of oty y-diireulibhiégiorfho z, here arc linearly
independent, though corrglated by possessing the term
—z, in common. (SeeAppendix, 5.)

This loss of a degt@e of freedom, for that is what it ia,
complicates the ppoblem of finding the distribution of &%
but its m.g.f. ca{{\‘be evaluated as a multiple integral over
the » samplé\ values, and proves to be (1 —2am) " Ho-1),
which differs from that of the s? in 70 cnly in the exponeut,
n—1 e Ih,?:mg n. It follows that the distribution of s?is
agai;l\oi&"‘ type, its probability function being in fact

e :’d}:) = 2“1(?‘»*1)[1"(;1:;)] —1ﬂi(n—1)(82}}(n_3)6_m: , @

" which should be compared with that of 70 (4).

This distribution is called Helmert’s distribution, after
the German astronomer and geodetist F. R. Helmert, who
published it in 1876.

By expanding the m.g.f. and noting the coefficient of
o we find that the mean value of 2 over all samples of
n i {(n—1)o%n, where a? is the variance of z. This
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A
is really the theorem of mean square residual of 59 (5), «
and it is true not merely for normal but for general popula-
tions. Because of the factor (z--1)/n the precept is often
given to estimate variance by dividing the sum of squared
deviations from m not by # but by »—1. On the other
hand, tho discrepancy in s2 caused by not doing this is

- of order 1/n, whereas the standard error of samplmg of 5324
is of order +/(2/n). Thus the error of method is to thé D

error of sampling in approximate ratio 1:4/(2n), Whlch
even for n as small as 25 is less than 1/7. To igsisé on
the divisor n—1 rather than # in large sapiplés ‘may
therefore seem a little pedantic ; but in gmail” samples
an appreciable difference is made. One ad¥vantage of the
division by n»—1 is this, that with tthUdlﬁLd 32 the
probability funetion (2) assumes the fqm

. 2—;(«:—:;[1*(?1_1.)] (n—1)itn~ 1)£3 R L LY
2 W W dbrﬂ.ullbrary org.in

which is now of exactly theysathe form as in 70 (4), with
n—-1 for = throughout. ~,Thus the Ioss of a degree of
freedom is made apparent. In unstandardized units we
must erte s¥fgt for\!;2 and insert on tho right of (3) the
factor 1fe "

The mgf c\)ﬁ\z in is [1—2a/(n—1)]~¥*~D, from
which it folldws, as in 70 ( ), that the sampling variance
of this modlﬁed 8% iz 20%/(n—1), the standard error thus

being q”\\/z,f\/n 1.

xSmpIe By considering the coefficients of 23/3t and
a&{A\in the s.g.f. investigate the skewness and excess of the

X }ﬁst-ri bution of &2,

72. “Student’s Ratio ” ¢ and its Distribution, We
have seen in 69 that the mean m of a sample of n values
2,; drawn from a normal population of mean p and variance
a? is distributed normally with mean p and varlance o%/n.
It follows that the standardized deviation (m—u)y/nfo 18
distributed normalty with mean zero and variance 1,

N\



132 STATISTICAL COEFFICIENTS ' '

”
Now in practice we do not know o2 and 50 we cannot
stendardize the scale. All that we know is the estimate
(taking m—1 for divisor) 82 = Dlz;—m)?{(n—1). The
deviation of the mean of gample from true mean, gtandard-
ized by this estimate 2, is thus (m—p)y/ns =t This
i  Student’s Ratio,” and it is not normally distributed.

« Student ” was the penmame under which W. 8. Gosset:\
(1876-1937) wrote his statistical papers. He discovered/the
¢ W

Jistribution in 1908,

To simplify the distribution we may plsce f{h:e origin
of # at = p, thus patting p == 0. Then‘“-.}tva’s =f.
Since my/njs = (mA/njo)/(s/e), and since_ the distributions
of mv/nja and s%jo? are independent/Pf“a, we may usé
standard scale with o = L. N\

For constant s? we have din= sdti/n; alo the
probability of whitaisiagithexabig i4s the probability that
m takes the value siiy/n, an?gthe probability differential
for this is N

ce—im' = en~Yee—¥IdL, . .

This is for constants®’; and so the probability differential
of £ is the inthoeal of (1) over-all values of s2. Hence,
multiplying ) by the probability differential of 52, which
we a.li?ea,dy\'know from 71 (3), and integrating from 0 to o,
we have( )

SO »

(NY dplt) = el [ ge— HHign—8g —Hn— 112
A .

\ Y 1 L P

where c,,:P(g) .'{ [(n_mr(%)r(“:i)] . {3)

the constant ¢, being fixed, as always, by the condition
that the total probability is 1.

Nate. The above derivation is the one usually given,
but an itportant remark must bhe made. ‘The essential step,
the compounding of the probability differcntials of m and &%,

N\
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presumes the statistical independence of m end s This
independence ({Appendix, &) is not evident, nor is it
capable of quite elementary proof. The reader may assume,
however, both here and in the case of the difference of means
of two samples, that the numerator and denominator of ¢
are independent.

The remarkable and important fact ahout thed

tdistribution is that it does not involve the unknown &%
s partial reason being that ¢ is a ratio, of zero dimefisioh
in o2 The discovery of the distribution in 19087hdd &
¥

profound influence on “ gmall sample” theory ; for
whereas it had long been conventional to take s as the
presumptive o and to estimate the probable.region of the
unknown g by regarding tm—p)V' n/slas”a standardized
normel variate, this was nOW seemvio be an inexact
procedure, and the {-distribution was” used instead.

Sinco [14+8¥/{(n—< A3 denda., with increasing n to
exp (—3%), it fis a“é)\%%:rgﬁg?t%%g‘ a%gfoﬁ‘gf]g]é samples the
t.distribution tends to thenatandard normal one; but the
tendency js not rapidgand for small values of n, as one
might suspeet from (fgting that » —= 2 gives the Cauchy
distribution, the ‘&g‘péﬁrture from normality is marked, the
curves being platykurtic. Tor example, whereas in the
nbrmal curye’ 0795 of the area is contained in the range
2 — —1-98.50 = 1-96, in the f-curve for » = 10 the same
aren, liesBetween ¢ = —2-26 and ¢ = 2:26; and for area
O-Q?Qtire’ranges arc given by x=-2-58 and t = +3-25.
+)\A table of the probability integral of the -distribution,

/i & form useful for practical application, is given in R. A.
“Fisher’s Stutistionl Metheds for fteseurch WWorkers, 8th edition.

p. 167. His » is our n—1, the number of degrees of freedorn.

Example. A coin, thrown 20 times on each of 10 occasions,
ghows 7, 9, 6. 10, 13. 6. 9, T. 10, 7 hsads respectively.
Assuming the binomial distribution of 20 ¢hrows to be
approximately normal, consider whether the coin is biassed.

The mean of the heads thrown is m = 8 4 and s* = 4-93,
g — 2-22, Thus, presuming an unbiassed p = 10, we have

N

\Y;
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¥l

3= (10—8-4)\/1*—0/2-22 = 228, Yrom Wsher's tables, in the
row n =% (our n—1) we find { = 2:262 at £ =0-05. (£ is
the probability of a ¢ numericelly greater than 2-262.) Thus
.the coin-throws leave it rather doubtful whether the coin is
biassed or not. '

A reading of tables of the normal probability integral for
# = 2:28 would have given P = {023, with an unjustifiabl: A\
stronger suggestion of bias in the coin. ) \' N

73. Difference of Means of Two Normal Sam.p;le\s.
A valuable use of the ¢-distribution is in testifg the
hypothesis that two samples, with different ntmabers
and N in sample, are from the same normal¥population,
of mean p = 0 and variance ¢®. \

Let =, 3, ..., z, be the first sampl,e,’,&i, Xy ooy Xy
be the second, with respective means\m and M, and
eatimates of variance AY

& = Zla;—m)ndbyulibigh WO K, — M) /(N —1). (1)
The basis of the test is. the difference m—M, the
variance of which {15) iz «

o'gfn-[:{““/N = (n4+-N)a2mN. . . (2
The estimates 52 andS? of o2 are (71) of weights n—1
and N —1, and ap}sield & combined estimate of o2, namely
" 82 ol —1)s2 4 (N —1)S2)/(n+N —2) "
(Fle@—m) + (X, — M) (n+N=2). . (3)
It cansbe proved that m—M and s? are statistically
indespéndent. We therefore define, from (2) and (3},
R m—DM nN
NN t —
A Vi) - -

...‘\' 7 ) ?’!.+
N/ and it now follows, by the argument of 72, that this £
has the i-distribution, but with n4+-N—2, the number of
degrees of freedom used in estimating o% in place of the
former n—1. Thus the i-tables may be consulted for the
probability P(f) that ¢ numecrically excecds any assigned
value. (The examples of p, 109 are amenable to ¢-tests.)
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o :

The important point is the way in which o? is estimated, «
One might have pooled both samples and estimated ¢ from
the squared n4N deviations about the pooled mean
{(nm+NM)/(n+N), smnmed and divided by n4+ N —1. This
slightly more accurate estimate of o' is, however, not
independent of m—M.

74. The Ratio of Two Variates of the Same x2(%),
Type. The two samples in 73 give in general different, ™
estimates 5% and §2 of the variance o2 If the question
is whether both samples are from the same normal fopula-
tion, we shall wish o test this by means of ¢¥ghd §¢7,
without reference fo the unknown o2 The(aralogy of
¢ suggests the ratio 4 = §2/§%.  Since « is unbltered when
we write s3/o? for 5%, and S2/a? for S2%we may work in
standard scale, using the s distributiot’ of 71. Let us
write v = §2/o?, V= 8%g%. Thenn's o/V, or v = uV.

By 71 the PTOb&bﬁﬁbFﬁgﬁgﬁﬂgﬁﬁ. yq% Fg%d V are

e pin =Rt -Dugy and QRN —We—iW-1YGY, . (1)

For fized V we have dv = ¥du; so, integrating for all V,
we have the probability. differential of =,

ch-'ldqu V{u,],zj}f\n-a}e—ém—nu VRN —Bg—HY ~DFJ T
R\

a N ® - L3
— 01(:-'1%%(“7‘3%?& Tin+N - —HN —1+a-10TFJ}
A</ 0
— A I f(N—1fn—1 we+¥=2 | (2)

whe, s fixed by meking the integral of 4 unity.
z‘%& distribution of « iz thus given by (2). It is
.iﬁt'.éresting to verify that as ¥—o0 the dist-ribution‘tends
\ “to the ¥? type, while if n = 2 we have a £ distribution. ]
N/ The z-Distribution of Fisher. R. A. Fisher, in
testing the difference of two estimates s* ani 8% ures
not this ratio % but balf its natura! logarithm. « If we put

% = % 1036“: U= 822: di = QEEZdZ’
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. the probability differentiai (2} hecomes

dp — 6-26(”_1:""(53;"[3"—1—}- (ﬂ_] je‘:z] Hat ¥ - E), . (3)

where ¢, is such that the total integral of z is unity. 'The
distribution thus obtained is Fisher’s z-distribution,

Tablez of P{z), the probability of a 2z greater than an
assigned wvalue, are given in Fisher's Statistical Methods for
Research Workers. In theso tables tho numorator of g i$
the greater of &% and &% =0 that z iz positive; a:nd. the
functions tabled are the vulues of z for assigned smeazd W,
such that P = 0-05, 0-01 and 0-001 respectively /2Bhe tuble
for I* = 0+-{01 is due to C, G. Uoleord and L. S.,&:‘ming.

75. Analysis of Variance and of Sum of Squares.
The basic idea of the experimental dpf;@ns introduced by
R. A. Fisher, and of the accompapyiig technique called
analysis of variance, is that of divding up & total sum of
squared dsviatioréﬂaof %_\'gri&tg'frém its sample mean into
several dist-i\ﬁ\é'twsurﬁnguoﬁbéal{tﬁre}f'gﬁch corresponding to a
source, real or suspected, of wariation, These partial sums
yield estimates of the vamiance from each source, and the
z-test iz applied to afdertain whether these cstimates are
cormpatible with e;kéh\other and with the estimate of residual
variance. If they are not so compatible, it is presumed
that fhe sourees have distinet effects, which are further
analysed, foF;6xample by difference (73) of meana.

The, redelution into sums of squares is founded on the
Lemma{ noted in 52 in connexion with the correlation
ragiey~that if % sets of my, n,, ..., n, observations, with
Jospective means 3 ; and mean square deviations 87, are

¢ '\’:}iboled in an aggregate of # = n, +n,-+... 4, observations,

/2N

QO

7 with mean M and mean square deviations &2, then

n8% = ZnyfSFteft, . . . (B)

where ¢; = M —D,,
For illustration we shall consider an experiment based
on repeated trisls and designed to sscertain (1) whether 2
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“
varieties of a cereal are different in crop yicld, {ii) whether,
k kinds of fertilizing treatment are different in their effect
on the crop yield of the & varieties,

Consider first the case (i), the experiment on varieties
alcne. Eauppose each of them planted in k similar plots, = A
‘assigned in random positions in a fleld, and sub]ectcd to
uniform cultivation. The &k yields y;,, where i refers $6 )
varxety, j to plot-number, may be arranged for analysw
in a rectangular scheme of £ rows and % columns, & 16w
to each varlety For convenience in the algebra Tét us
choose the origin of y; so that the sum or mes'\n\of all g,
is zero.

Now consider the sum 22 y% over {l D deviations.

3
Let the means of rows (vailetles)' Q& o0 Yoo -1 Ynoe
Then by {1}, remgmbering that t.hg‘ general mean ig zero,

we have
Zz % u,awgzﬂ@ fxdgb&)&_yifﬂfgf%ﬂ . . (2
L

The'sums here are sumsg of sguared residuals, and under
the assumption that, &l plot-yields have zero mean and
variance of the m,eaha values or expectations of the terms

give, by 59 \K]\e relation
" (h—1)0? = R{k—1)a?+(h—1}0%. .. (3)

where the\térms correspond to those in (2). The first
term gwythe right follows from the fact that the mcan
va,th T expectatlun of sum of the k squared deviations
le‘}"ly row is {(k—1)o?; and the second term then follows
by subiraction.
) " The coefficients in (3) are really degress of freedom ;
and we thus distinguish Ak—1 degrees of freedom for all
bk plots, of which A—1 arc for variation between means
of Tows, that is, befween varicties, and A(k—1) are for
variation about the particular variety means‘y;,, that is,
within varieties.

If the hypothesis to be tested is that varieties are not
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essentially different in yield, this is the same as to su;mpose
that variation between varietics is aubject to the same
cause as variastion within varieties, that is, to ordinary
randomness arising from soil heterogeneity and other
causes common to all plots. The test is therefare to com-
pute an s? from the sum of squares hetween varicties
and an §*% from the sum of squares within varieties, these

being independent estimates of o2, and to sce from Hhek

z-table whether they are compatible. In the caleulftion”
of s? and 82 the respective degrees of freedor sllo},.}l{l he
used as divisors; and S? is most easily calpulated by
means of S
hk—1)8% = Z2% — k2 . N . (4)
ij i \

76. Analysis into Two Sources",{}f ‘Variation and
BResidual. Next, still with the sa,me,\hsby-k arrangement
(which in the random placing ofy plots in the field is
called tho “ randestiredliblesitr miangement), let the
rectangle of A rows and % glitmns of yields be set out
for analysis in the case whati‘there are not only & different
varieties, but each is gubfected to k different treatments,
so that y,, is the ¥i6ld of the ¢ varicty under the j%

treatment. Let 6hé means of columns {treatments) be

Yo Yopr <5 Yo .
Consider the term 22—l in 75 (2), and imagine
'y

) P
all the déwations from mean of varicty, y;—u4e to be
set ouf/in a rectangle just as the ¥;; were.  Since
%’y}}{\z ’?Eyw’k = 0, the weans of the y,;—u,, in columns
| a2 .

e mercly those of the %y themselves, namely y,, y,.,
A
9 2TH Yor-

Hence, by analysing this term exactly as 22y was,
if
but with respect to column means instead of row means,

we have
22(9';:3' —yio)% = -Z_'Y‘_Z(?}.fj h?s"io_yi)j)g +h‘§y§j' - B
i

i

Q
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Hence again, from 75 42), ‘
%“fy% = Ef {933_3’{0“‘%;')2 +k§3’520 "1";312"3‘3}: » (2

i
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which exhibits a threefold dissection, the lagt two termns

on the right corresponding to variation between varistics
and between treatments respectively, and the first term ;O
to residual variation. As for degrees of freedom, by taking«\ -
expectations as before of these sums of squared residuals)

we have N

(bk—1jo2 = (h—1)(k—Ljo*+(h—L)o*+ (iifa®, (3)

the coefficients giving the desired divisors of defrosponding
terms on the right of {2), for estimates of matiance. The
comparison of estinjates by the z-table<is then available.

dbr li.b"ral' .org.in
77. The Latin Squgr\-‘é?q n?ﬁqe arrangcinent shown

on the l&fs, each of 4, B, C, D, K

4 B'C D E appeafsiexactly five times in rows
# 0 A B D and\ columns of a square, but
B D E € A _ aegMetter occurs twice in the same
D E B 4 g\’\‘ 20w or same column. Such an
¢ & D E arrangement of % letters gach

) repeated A times is called a Latin
square of orded/h,
Imagingthe Latin square to be a scheme of plot-yields

set up {dor” analysis, the letters representing viclds of
diﬂ"qr&"varieties, the rows corresponding to varied
treatments of one kind, the coluruns to varied treatments
.. 6D another kind; for example, two Linds of fertilizer
\ applied at once, at A differont levels of strength in each,
There are thus thres dimensions of variation, two for
treatments and one for wvariety ; and so the yiglds may
be written y;;, where 4 refers to row, j to column, I to
varicty. Leb the respective means for rows, columns and
varioties be y4q, Y00 80 gogr-  Bach suffix runs from 1 to A.
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A firgt analysis as in 76 {2) gives us
Z'Ey?ﬂ = 22| (yﬁi_yio()_yuj()} 2 +k2y.;'200 +k2?f§jo- (1)
i %] i §

But now arrangs the ¥, —¥;00—Yojo I Tows, say, according

to 1=1, 2, ..., k, and analyse once again. Since the Q4
means of ;00 a0d Yoy aTe zero, the means of gy — %
—4gs0 a0 simply gg, where I =1, 2, ..., h. Wo there{ors
have &\

EZyh = ig (Bt Y100 —Yog0 — Yoo 2+l "’hz?r’gjaq:?’gy%oa {2)
if i R

X &
where the three last terms on the right are éﬁ}xs of squares
for varistion between rows, columns and\varieties respec-
tivoly, and the firat term is for rqsicﬁlal variation. By
taking the expectations of these suig 0f squared residuals
we have ANV

(2 —1)o? = (s li&prRgiidohe it (h— Do +(—1)e% ()
which shows the respectivé degrees of freedom to be used
as divisors in the estimates of variance. i

Txample. The ghitries in the square below ars the numbers
of successes in 25 g6ts'of 10 drawings with probability p = 0-52,
written down thsiécutively in 5 rows. The mean squares of
the analyses’nay be compared with the theoretical *, which
is 10X 0-62200:48 = 2-5(n

Tl)e;WBrking details, based on the formule of 75, 76, 77,
are shown (i} in ordinary row and eolumn analysis, applicable
QQ';.E;.)IB} to k rows and k colurmns, {ii) in Latin square analysis,
fsing the particular Latin square (g.v.) given above.

N Bums. Meazna,

~O0 W 5 3 2 4 @6 20 40
\/ 8 % 5 4 B 27 5-4
3 6 3 & 5 23 18

8 3 7 6 4 28 56

. 6 2 & 4 b 23 46

Bums 28 21 23 24
Means 56 42 45 4-8

e
&

121

b
<

4-84
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A Latin sq. Sums. Means.
(ii} A LN .23 4-§
B N .22 4.4
C . . . 25 5-0
D . . .29 58
E . . . 22 44
Taotal . . 121 484

A o
¢\

N\

. ¢
The various sums of squares used aro: (1} the sumyof

squares of all 25 entries, namely 647 ; (2) the sumn of the “five
products, row-sum by row-mean, 594-2; (3) the gdma" for
eolumns, 591-0; (4) the same for letters in Laj:iq\s?tiuare,
592.6. Each one of these must be corrected fon $ransference
to the general mean 4-84, and the correction in every case is
to subtract the product of total sum by otg) mean, 121 by
4-84, or 585-B4. o\

Thus the correeted sums of squaresare’(1) 61-36, (2) 8-56,
(3) 5-36, {4) 6-96. Tho residual sum of squares is found by
subtraction from the tofa), sras ﬁ%ﬂlﬁl tails jof estimate of

mean square are seb out in tabglarform t :
(i) Row and column analysis: N
B < fom aq. Degr.  Meansq,

Rows » s\ 4 856 4 214

Cols. . . A . 538 4 1-34

] Res. . . 47-44 16 2-97

O JR—— J— J— o
"¢/
JTotal .. 6136 24 2.56
(i) La{ifﬁé‘guare anulysis.

v ~ Sam #q. Legr. Mean 6g.

«\" Rows . . 856 4 214

N\® Cols. . . . 5-36 4 1-34

Lotters . . 698 4 1-74

Bea. . . . 40-48 12 3:37

Total . . 61:36 24 2-56

We neecd not continue, but in practice the mean squares
for rows, columns and Iettors would be compared with each
other and with the residual meen square by taking half the

Q)
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»
difference of logarithms and applying the z-test. (The
logarithms are Napiorian, and we may note the relation
% log,u = 1-151 logyyu.)

The principle of isolation, by appropriate experimental
design, of the separate variations due to several simul.
taneous causes, has been developed and widely applied
in recent years. Complex patterns, such as randomized\)y
blocks in which each element is itself a block, or LaJ:ﬂ‘n '
squares in which each “lefter ” is a Latin square, have
been designed and used. The idea is to save time) space
and expense by being able to conduct seversl Kinds of
experiment at the same time and within €hevone frame.
For further details the reader may consult" Fisher’s The
Design of Experiments, 2nd edition, or Yates's The Design
and Analysis of Factorial Experiment:s‘}(‘Harpenden, 1937).

78. Conclusion,. ’]%hﬁ consideration of other sampling
distributions “WwotilG a3 ¢eé aé}fﬁ:"‘aﬁsfé’e and scope, but one
of special interest may be :il‘oféd. The distribution of r,
the standardized produeh- moment estimate (without
Sheppard’s correcbiorq of p in normal ecorrelation, was
found by R. A. Fighér'in 1915. The probability function
has the rather ccﬁs@pﬁc&ted form

- ) _ dr—?  fare eos (—rp))
— 21T e 2yin—4)

i = o0 —p=ba—rmiees i (2
and the\’:&rve, if p is at all large and the sample small,
iz skegv/and in cases even U-shaped. (The function and
itaintegral have been computed, for # = 3, 4, ..., 25, 50,

360, 200, 400 and p = O-1, 0-2, 0-3, ..., 0-9, by F. N.

/\“WDavid in Tables of the Correlation Cocfficienf, London,
N/ 1938,

Tt was proved by Fisher (Mefron, 1921) that the

hyperbolic tangent: transformation

2 = }log (g) {=14log (;ﬁ) - @2
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u ey ,
produces a d.lStI‘Ibut](}n. which even for n as small as 20
is nearly normal, with mean ¢ and variance 1/(n—3).
A second transformation of r, namely

t= oiSs VasL - . . B

leads to a I-distribution with ﬁ——2 degrees of freedom.

These trarsformations are necesgary, becanse of the ¢
cXtreme nou-normality of the sampling distribution ofry,

which makes the crude use of the standard erTor of:% a
fallacious procedure. ~\

79. Esiimation of Parareters from Samiple. In
40 and 42 we have estimated the mean Qf'ﬁhformai and
a Poisson distribution by the mecan m of \the sample, in
43 we have pointed out the demerits of bhe’mean of samplo
In estimating the true mean of a \Cdfichy distribution.
The general problem of estimaRsAMIRE: EdR sample
values #;, Ty, ..., &, of & variate @Wwith probability function
$(x ;) involving a parameterd, what function Tf(z,, T,
-~y #,) of the sample valuéi\shall be used to cstimate & ?
The problem must be peged in mathematical terms, and
must, in order to We@pme intolligible, assume a certain
degree of arbitrgziness. One fruitful principle, Weell
justified by its pesults, consists in choosing T' by making
the compound grobability densily of Xy, Tge oo, Ty BIMATIMUM
with requpt;\té 8. Thiz is R. A, Fisher's principle of
mazimum, Gkelihood. Another principle postulates {i) that
T shallbe unbiassed, in the sense that the mean value of
T over'sll samples of n data shall bo equal to 6, (ii) that of
all gitch functions 7' shall be the one with minimaum sampling

SNugriance. In many cases these two different approaches
(the second of which has not yet been deeply cxplored)
lead to the same function 7' of estimate. The situation is
parallel to that which occurs in the theory of Least 8quares,
where, a8 mentioned at the end of 57, different sets of
postuiates lead to the same normal equations.

2\
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4974
4081

40545
49931
49066
49984
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A deci’rh’:ﬂ‘point is understood before each entry ®(x);

and sgcc?n\d difference interpolation is advisable in the last

colurday

ifk“\ﬁseful inverse tablo of the normal probability integral
. ié\\tje table of Probits in Fisher and Yates's Statisfical Tables
or Biological, Agricultural and Medicul Reseurch (Oliver and

Boyd, 1938}, pp. 38-40. The * probit ”’ is the value of @ which

euts off ab its ordinate a given percentage of area measurcd

from the left of

the normal curve.



APPENDIX £\

1. Finite Differences and Factorial Polynomials, Most \:\'
tabies offunctions provide us with sequences of values which\ ©
by a suitable choice of origin and scale may he denotece by

Mgy Upa Uy, o . To these we may apply differencing and E{\{)‘éé{;@(‘l
differeneing, analogous in the Caleulus of Finite Lifferences

to differentiation in the Infinitesinal Caleulus {sgeWhittaker

and Robinson, Caleulus of Observations (BlackigivChapters T

to L¥). The operations mnost commonly useed art ;

the advaneing difference,  Au, - vzﬂ'—f e,

the receding Lliffgrence, ity = 1{z~lgf3_l,

the central difference, Sy = :'?{5’_;5 — gy {1)
the averaging operation. dbpmeliicdiy.oqg in ).

the mean central difference pdi™= J{uzyy —wg ),

&
operatichs which may all betsepeated.  The classical formula
of interpolution, which jagsed advancing differences derived
from wuy. u), vy ..., 08 t'hls{’(_z'r(‘g(:r‘_\_'-NEWfon formiala !

Uy =3 Uyt j{{zwi—}:z:""’.d“-uu,-“_?‘-! R TP T 61

& fermula whichMerminates at n4-1 terms if v, is a polynomial

of degree pand which in practical eases converges well,
with negligfb:[é' remainder, aficr a fow terms. The formula

1 tho y rmjt\.?g'ilm of the Taylor scries in the Infinitesimal Caleidus,
Tlé‘i polynormials 1, @, =/, @, .. which appear in {2)

ared 28} ocdinary foactorial poelynomials 1, =z, z{z--1),
1) —2), ... If thoy are divided respectively by O,
;'“i'!,' 2t 3!, ... we obtain the reduced factorials or binomial

«<\, “Coeffiedents 1, @, eay. @igys «o- -
Central factorials may be defined by

1, st} = a, 28 = (pLie—3), 208 = (4 Dafe—=1), ..., (3)
the faclors being in arithmetical progression “of common
difference vty and centred at 2, The reader may verify that

a1 p, et = 2, palt) = w(r?—3), el = 23et—1), (4)

145 X



» »
146 APPENDIX
L4

+  Given an odd number of values of g, with central value

/N

\ 3

SN

\

#y, the Newton-Stirling formula of interpolation is useful,
Uy == Uyt uduy, —|—FI{2}.32'1¢0|."I21 +xlE), ;¢83?i0_,-"31 NN (51

Given an even number of values with two central valies
g and «4, the Nowton-Bessel lformula iz the appropriate one,

g = ity @ Bty -+l 8% /21 L pel3h, 830 131 —e - (.&):

N\
These formule use central and mean central fa.ct-or'iaL;:,"a.ild
mean central and central differences, alternately. @™

Tho origin of interpolation = @ can almosi/@Ways be
chosen 8o that #, in the interpoland g, need no.tmekgéed 3.

The following relalions are fundamental ;
At = ralr=1), equivalent to dxq, = x'(,;_\})',’ Saird = pplr—13,

&
{CE. Dam = rer-1 in the Differential C&l’d{}[‘u‘g.}

2. Finite mﬁﬂjratﬁ‘f}ﬁ'alfg}m“ﬁ?ﬂg table of repoatod
summation upon g, #, ..., W, cxomplified for » = 5,
follows the scheme proposeddn 19 for computing factorial
moments, \\ ’

Ny Y

z § za 29 &3
g ity Fug g Ful )
g F g by gy AN g 2uy - Bug+du,
tetugtuy N wp+2uy+3u, wy + By + By ?
IR @7 ugt2y 2ty 3oty g - diry
Uy O Uy Uy iy
iIH

Ko}g\;tihy will show that the entries at the tops of the

siftessive columns of summation are the reduced factorial
mpments ;

Sz, Bruy, Diygts, Tz,  Z(qytay -

This may be proved by an induction based on A ey = Egr_1ye

With a little more difficulty, using central factorials, it
may be proved that the scheme of repeated summation
toward the contre with alternate averaging, used in Ex. 3

of 18, produces reduced central and rnean central factorial
moments Dl fr! and Zuxthu, (1,

) ¢



{8\'6:0003355
A58 00001234
10 0-0000454 10 0-36788 0-10 0:80484 0-010 0-99005
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3.*Rolations between Powers and Factorials. We have

b L

i}y » == (i) & ==z
a? == x4, ®t = p..l‘{m,
2% = g™ 1 31 o, a8 = a3} Ly,
7t = o' Gt Tl o, ot = pertdl [ pct?y

as may bo verified by actual expansion. Multiplying any of
these rclations by w, and siumming over equally spaced values

of x, {i) ewith x = 0 as least valus, (i1} with & == 0 as mid(ljo{‘\
valus, wo derive tho relations quoted and used in 19, Exs N~

and 8, for converting factorial moments, or central andymean
ecntral factorial moments, into ordinary moments. £ “~

4. Tables of Normal Probability Integral nd‘Poisson
Functien. A very convenient table of the normgdl probability
integral in standard scale, to four places of degithals, is given
in Bowley's Elementa of Statistics, p.x.@l}. The table is
pcourate enough for most practical pUrpoOses, and may be
intorpolated by proportional parts, {hat is, only using first
differcnces. We give a compact télgle' in 80, p. 144.

In the Poisson fuilchidn’t éléh S RNERnt is the value
of e-m., If a machine is available, the following short table
enalles e-m to be computed with sufficient accuracy for

m = 0 to 10,
i o™ m w< g=m m P " g—™
1 0-36788 0.4 )0-90484 0-01 0-99005 0-001  0-89800
9, 0-13534 _ Q2 0-81873 0-02 0-98020 000 0-99800
3 0-040787\ 0-3 0-74082 0-03 0-07045 0-003 199700
4 0-0183\1'5" 04 067032 0-04 0-96073 0-004 099601
5 0-0067379 05 0-60653 0-05 0-95123 0-005 0-99501
6 '0\:(9?}“274788 0.6 0-34%81 006 0-84i76 0-006 0-59402
00009119 0-7 0-49659 0-07T 093239 0-007 0-94302
0.8 0-14933 0-08 ©-92312 0:008 0-99203
0.9 0-40657 ©-09 0-81393 0-009 0-99104

For smaller values of m than those given above the approxi-

mation 1—m for e ig correct to at least five decimals,

Ex. In the exampleof 42 wo have m == 3-870. Entering
the above table at m = 3, 0-8, 007, woe form the product,
this : 0-049787 x 0-44933 X (-93239 = 0-20838.

K2

Q.
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*
5. Linear Dependences, Functional Dependenoe, Cor-

" relation, Statistical Dependence. * Thess aro coneepts

which need carcful diserimination. The functions wu,(z},
where j = 1, 2, ..., n, are Linearly dependent if a relation

ety ot 1. Feuu, = 0, . - Al

exists identically in x, where one at least of the ¢, is not
sero, They are functionally dependent if a funectional relag-ig‘r\

Pl ug cyt) =0 ., ' Ny

exigts ider;tically in ». Linear dependence. for exmaile. is
the case where F is a non-zero linear function/pNWhiry aro
uncorrelated if the product momont 11 Vanishe,s(fd‘r gach pair
1y and u; of the set, \¥;

Correlation and functional dependerted.” are  (48) not
necessarily the same, The simplest ,e}:étmple is perhaps
U=aceos r+bsinm v--asinar—b Qoixz Here « and » are
uncorrelated, yet are dependent jn\view of the quadrabic
refation 4®Fo?—gt—p? — [, « \J

To dosoribe, widbissisibrieyepienin, we may say that
statistical independence is rea, Iy obedience to the multipliea-
tion thecrem of probabilitys “Suppose we have two finciions
of n variates, u(x, ¥, z) and v(x, ¥, 2), where we illustrata by
% = 3. They have eaéha probability, or probability density,
lot us say yfy(u) an,&}g;g{v), depending on the distribution of
¥, y and z. e;f"ha,ve also a compound probability, or
probability density, let us say &{u, v). If for all the possible
values of z,.4, % we have P, v) = dulu)dy(v), then we say
that u anfl,udre statistically independent,

An gquivalent formulation is by generating functions. If

N Gt b = [ty ety . g

&

'f@here $@, ¥, #) is the compound probability density of », y, 2,
.~ and if Gle, £) = Gla, 0)G(0, B), . . - (4}

all integrals exizting in some common domain of g, B, then
% and » are statistically independent. By this eriterion it
may be proved that tho estimatcs m of ;¢ and s? of ¢ in a
normal sample (72) of » valueg Zyare statistically independent,
so that the derivation of the ¢-distribution {{og. ¢it.) is valid.
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Covariance, 84
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Distribution—

hypergpometric, 56, §7

J.shaped, 27, 64

leptokurtic, 38

Jexian, b3, 54, 55, 72

multinomial, 55, 101

multivariato, 80, 101

normasal, 58-62, 72, 73, 74

normal correlated, 86-80, 101, .
113 {

of Fisher's z, 135, 1386, 133,\' N

of r, 92, 142, 143 &

of Btudent’s £ 131-134) 143,
148 RO

of sumn of squares, 693129

of ¥, 101, 102 & &

of variance gstimate, 130-131

Pearsonian system, 67-T1

platykurticy 38, 71, 127, 133

Poisson,‘:’)h, 50, 63, G4, 606,
77, 8, 103

Poizgon’cbrrelated, 94, 95

probgbility, 26

generating fentetiondhi2)libéary argtsngular, 48, 70

63, 67, T0

Degroes of freedom, 102, 103\
123, 130, 131, 133, 134

137-140, 143 4
Dengity, probability, 16,5843
Dependence, linear, 101, 102,

103, 130, 148 \\

functional, 88, 148
statistical, 13,14, 15, 87, 88,

102, 130, 148
Dependent &vents, 15, 16, 56
Daviation, Mmean abzolute, 32
standand; 35, 37
DH&&,@ of means, 134
Differénces, finite, 58, 67, 115,
OIS, 119, 145, 148

¢“Dispersion, 32, 34, 35

oo \

rogidual, 96

\/ Distribution—

binomial, 49, 58, 125, 133
binomial of Poisson, 50, 51, &8
bivariate, 89, 86, 94, 43
Coolidgo, 53-55

frequency, 26

Gamma type, 69, 72, 102, 128
Helmert's 130

M
¢

<N
")

gampling, 82, 125-127, 133

S skew, 27, 31, 36, 3?1 A8, 69,

72, 127, 131 i
symmeotrical, 27, 61
trivariate, 50, 112, 113
Type A, 58, 38, 64, 05, 66,

&7, 78, 75, 78
Type B, 68, 58, 66, 67, 73,

%6, 77, 74 .
Type I, 71, 72
Typo 111, 89, 72, 102,128, 129,

130, 131
U.shaped, 27, 68, 142

Dot diagrarn, 80

LEllipse, probable, 88
Empirical formula for P{x?),

104

Equal likeliness, 10, 11

Eguations, normal, 110,

114,
115, 116, 121

Error function, 62, 73, 74, 786,

144, 147

Error of mean, 128

of moments, 39, 126
of r, 82, 143
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Error o? sampling, 39, 92, 126-
129, 131, 143 @
of variance estimate, [29-131
probable, 35
standard, 39, 92, 126-129, 131,
143
Errors and residuals, 107, 108
Estimation from sample, 78, 79,
143
Euwler-Maclaurin formula, 44
Fvomts, &,
dependent, 13, 15
independent, 13, 14, 15, 18
muntually exelusive, 13, 18
Fxcoss, 38, 63, 132
Expectation, mathematical, 21

Factorial moments, 21, 22, 41,
49, 63, 84, 85, 146, 147
_moment generating {unetion,

22, 49, 63, 84, 85
polynomials, 21, 14%, 146
curnulants, 23, 64

151

Generating function, change of

origin ..nd seals in, 23

factorial moment, 22, 48, 63
84, 83

factorial cumulant, 64

moment, 20-24, 60, 63, 69,
75, 84, B3, 86, 101, 113

multiplication theorem, 19, 22

u

curnulant, 22, 64, 63, 67, 70 N
Goodness of At, 76, 78, 100-103, £ \J)
104 N,

Gregory-Newton formpla, 145 ™

S\ e
Harmonic regression, §1/120-123
Helmort's distributiop{\lﬂ(}
1listogram, 28 )
Homogeneity, eritend of, 54, 55
Hypergeometrig épfrelation, 84
disnribut-ipxi.\éu', 57

Indepznden‘ca, functional, B8,
148 )
inear, 101, 148

cumnlant generating fusebiand bra; By e enehd oo AL VRS

64
Factorialgand powers, 147

*

Fnctorialg, cengral, 145, 146 (59

Finite differences, 58, 67, Al5,
118, 119, 144, 146 &
gums, 40-43, 146 &
Fitting of harmoni '\ﬁmction,
120-123
whpolynomial, $M4-120
of probabilitg' eurves, 73-78,
143 N
Formulse of \eterpolation, 143,
148m €,
FourfNQ ,;able, 82, 85,
Fougder, transform, 22
Freguency, marginal,
NS 102
O relative, 4, 5, 7, 26, 60
} Froquency polygon, 28
Funection, probability, see Dis-
tribution
Functional dependence, §8, 143

04, 95

82, 100,

o

Camma Type, see Distribution
Geonerating function, 15, 18, 17,
19, 148
hivariate, 83, 84

~Jdndependent events, 13, 14, 15,

15
frequencies, 102, 103
Fnduective synthesis, 3
Integral, probability, 62, 72, 73,
133, 144, 147
Interpolation formnte, 145, 146

J.shaped curve, 27, 64 v
Kurtosis, 38, 63, 131, 135

Latin square, 139-142

Least squares, 875, 106-108, 110,
111

Leptokurtic, 38

Lexian ratio, 55

Lexian variance, 53, 54, 72

Likelihood, maximum, 143

Likeliness, equal, 10, 11

Limit of relative frequency, 7, 8

Limits of » and p, §7

Linear dependence, 10,
103, 130, 148

Linear function, of moments,
a8, 37

102,
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Linear regremsion, 88, §9, 108,
12
Logic, algebra of, 3

Maximum lkelihood, 145

Mean absolute deviation, 32

Mean central factorial, 143

Mean, median and mode, 34, 31,
3

Mean square contingency, 104-
105
Mean square, digtribution of, 129
Measure of ﬁ.ggregata 10
Median, 30, 32-34
Moments, 20, 31, 37, 38
computation of, 33-43
see Factorial moments, Gener-
ating functions
Minimum wvariance, prineipla of,
143
Multinomial distribution, 55, 101
Multiplication theocrem, 14, 15,
19

INDEX .

Polynomial, factorial, 2¥ 145,
146,
FPolynomial regression, 81,
118-120
Fopulation, 24, 25
Powers and factorials, 147
Frocizion, 147, 108
FPreparution of normal equations,
PO
Prismogram, 81
Probabiliby, 4-12 B '\
& priori, 6, O 5
asg lirnit of rclative fretgmn;m,
&8 measure of subea.ggrcgato,
10, 12
complementary, 13
rontinnons, 12
marve, 27 4
duefinitio, 5. 9 12
denmty,%ﬁ
distribnbion, see Distribution
function, 16

114,

Mutually exclusive\gwt‘&ﬁlaadﬁbrap‘y q%grﬂqntal theorema, 13, {4,

Non-linear regreasion, 93, 114

Non-metrical correlation, 99-105: \

Normal eurve, #ee Distribution
Normal equations, 110, llkl 16,
121 (

Optxmal veluea, 108, 1 \39
Origin, change of, 23 20
Orthegohal fu.ngt.mns, 116, 129,
124
polynonmf}h, 115, 118,
124 /W

120,

Para.m\tem estimate of, 78, 79,
43

Partlal correlation, 113, 114

\Pearson curves, 67-T1

carsonian coefficient », 86, 87,

90-33

Periedic rogression, 81, 120-123

Perturbation, coefficient of, 55

Phase aggregate, 10, 12, 14

Platylkurtie, 38, 71, 127, 133

Poisson binomial, sce Distribu-
tion

‘integral 62, 72, 73, 133 144,
147

marginal, 82, 163, 102

of dependent events, 15

parameters, 29, 30

polygon, 28

total, 13, 82
Probable errer, 35 .
Product-moment, 84, 86, 87, Lo
Frovisional mean, 3%

Quartiles, 34, 35, 37

Randomized blocks,
142
Randomness, 9
Range, 35, 36
Ratio, correlation, 95- 99
Lexian, 55
of »* variates, 135
tudent's, 131, 134, 143, 148
Recmugula.r dl-strlbutmn 48,
Regression, §0.82, 88, 89 97
106G, 112.124
coefficionts, 112
lincsand planes, 88-89, 108,112

138, 140,
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Relative frequency, 4, 5, 7, 26,
60 @

Replacement, sampling without,
a6
Residual, 108
dispersion, 46
variance, 109, 119, 123

Sample, 24, 25, 86, 107, 125-135
estimation from, 78, 7%, 143
Sumpling dmtrlbutlon, 92, 125-
135, 143, 148
error, 39, 92, 125-135, 143
of r, 82, 143
Sampling without replacerment,
[51]
Science, pure and applied, 2,3
Seminvarianta, 22,
Sﬂmmnterquartlla range, 34
Series of Type A, Ty see Dis.
tribution
Sheppurd’s corrections, 39,
47, 73, 76, 94, 142
Skewness, 27, 31, 36, 37, &8,
49, 73 127,-181

Squure, Latin, 439142 S

Standerd deviation, 35, 37
crror, st¢ Brror of samph{g
Statistical dependence, 1{4
Btatistics, deﬁnmon,\ 5, 7,
iz
Student’s £, see Diftribirtion

Sum of squares,/@nilysis of, 54,

136-140 ANS

distributien'ef, 69, 129

Summatip;s\mut-hod formoments,

14{:

4043,
Symnde .
Bynghesis, mduct.lve, 3
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Tables, British Association, 75
contingency, 83, 83, 99, 100,
102, 104, 105
correlat.mn 80-03
fourfold, 82, 85, 94, 95
of Fisher's z, 136
of Poisson function, 147
of P(y?), 103, 105
of probability integral, 73
144, 147
of Student's £, 133, 134
of terns in Type AT 75
Tabulation, 1, 2 ™
Tchoebychef polynomlgis, 115,
117, 119, 121, IE%
Transform, Founer 2‘>
Trivariate problora, N80, 113, 114

Universal, um‘?&r\ae 24
Ushaped {;u{‘?e 27 49, 142

Varmnca, 35
anglysis of 54, 136-140
5{ ‘]l:%lkgomm arnd

\ Laxmn, 51-55, 72

" ’f’ 'distribution of estimate of,
. 130-131

minimurm, prineiple of, 143

of linear function, 36

of optimal valus, 109

of residuals, 109, 11%, 123
Variate, 16

additive, 19, 64

change of, 69, 135, 136

Weight, 107, 108
of arithmetic mean, 109
Weighted mean, 109

g-digtribution, 135, 13é
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