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PREFACE

This book has been written with a view to serving two . .
nceds: that of biclogists, economists, educators and psycholo-
gists, who know little of highcr mathematics, posstbly care le&sy
and who use statistical methods merely as a device to portrav
the facls of their group investigations; and that of Lhosg in the
game fields who resort to mathernatics to aid in the Jiscovery
of new truths, m\\

The elementary statistical nceds in the £our ficlds men-
tioned seem to me to be the same and itaduhy aim to meet
thosc nceds and provide a foundation whkch will serve for ad-
vanced work in any one of them. PN\

The approach to the cssential prknclples developed is through
concrete problems, only varying {rem this where simplicity of
problems or the necessity [01 ccm;,ewmg space warrants.

In order to provide a r1gororu°, (?llljl'l] TS Purther statis-
tical research — which wétid immediately take the economist,
educator, or psychalogist as well as the biologist into the fer-
tile field developed By Karl Pearson and his co-workers —the
notation follows.that of the English school, making such sim-~
plifications ascAre possible for the immediate problems, but en-
deavoring Q‘E\o time to Introduce a symbol, an approximation,
or a la \qroof which would have to be unlearned in undertak-
ing meve advanced work. The statistician canmot fail to note
that the sheer visual weight of symbol, so appalling to the tyro,
“hag been genuinely reduced by the introduction of a few new
symbols in connection with multiple correlation,

The fields represented by various correlation and other
measures whose probable errors are unknown has been treated
very succinctly, I can see no value except at times a slightly
greater ease of manipulation, in using a measure whose prob-

able error cannot be caleulated if one with a known probable
¥
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error and serving the same purposec exists. I have, thercfore,
simply included and defined such measures for those desirous
of using them, without deriving or attempling to justify them,

I particularly request the critical anaiysis by {cllow statisti-
cians of my determinations of probable crrors, and such char-
ity in reporting shortcomings as may be duc oue who has
acted upon the policy that ax shrewd an estimate as possibileg
of the probable error of a statistical constani is hetter thap
estimate at all. The derivation of probable error formulﬂs hm
been one of the most difficult undertakings of this te\t dnd 1
cannot expect that the results are faultless. N

My statistical training has been rather (lesult(’}%’y and it has
oceasionally been impossible for me to give i credit to the
discoverers of well known formulas. \ '

I would, however, say that my grcatpé,t:iﬁslairation has been
the product of that master analvsty Kcﬁ"l Pearson, and that
the English school entire has heen) fost contributive. My
greatest indebtedness to men m‘“Ameﬂca is Lo my leachers,

. Henry Lewis Rietz and Charle“a C. Grove, for enlightenment

upon theoretical points and 1o Edward L. Thorndike for sug-
g&a&*ﬁm’rﬁm‘glﬂ@bﬁwhl@tﬂi@ nced of statistical analysis.

e T, L. .
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STATISTICAL METHOD

CHAPTER 1

THE TABULATION AND PLOTTING OF SERIES ()
Section 1. InTRODUCTION 1.\
Two occasions for resort to statistical procedurg® the one
dominated by a desire to prove a hypothesis, and ‘@@ ‘other by
a desire to invent one, have led to two schools of Satisticians.
The first school is that represented by mathématicians who
start with certain elementary principles afd)deduce therefrom
facts of distribution, frequency and relagighship. In so far as
observed situationsparallel these concluamns thesameelementary
principles are supported as applying4o the data in hand. One
weakness of this approaciv»}msdhwmhmﬁgtﬁhi@gma number of
causes — different sets of elemcntary principles — may result in
substantially the same net™sresult. A still greater weakness is
that it is essentially a QQdﬁctive procedure and relatively sterile
in suggesting new calfes — in inspiring creative inferences. It
1s fundamentally aghethod of proof and not ene of Invention; and
just because itysldmethod of proof, it has a permanent place in
statistical me{wd It must, however, if in the service of the
social Bidlogic sciences, be but a handmaid to the creative
genius%athematxcal analysis and induction.
Thesccond school ig best represented by those biometricians
and\econommts whao start with observed data and endcavor so
\{o group them and trcat them that the constant features of the
data are made apparent. This is a process of statistical
analysis. Itmay at times be expected to be an involved process,
for social phenomena arc complex.  Data are frequently warped
to fit statistical convenience, but if statistics is to realize its
high destiny, procedure must be flexible, for only when the

method is mobile can it fit immobile data. The accurate
1



2 STATISTICAL METHOD

measurement of those features of phenomena which are eseep-
tional is the unigue province of statistical analysis.

The method of approach i this text is induetive, starting
with data and deriving consiants, and will not give the -
menal satisfaction that comes from tossing coins, throwing
dice, and sorting cards, thus obtaining distributions wiieh
approach an ideal standard.

Mathematical statistics form very much of a unit, and iy
is 1mpoqq1ble to treat fully of topics in an order which dyes
not cafl in earlicr chapters for concepts developed later, € Fhe
genuine unity of statistics is made apparent by Lhc%cs e
relationships, and I have not attempted to avoid thedt™ Terins
used in an earlier part of the text than that in witich dom od
are usually unambigucus on account of the conte\t but should
there be any difficulty in understanding. t;S‘reader is direcied
to the bold face refercnces given in thefndex aud to the list
of mathematical terms and symbo]s Uﬁ*e}i in the Appendix,

Section 2. STANISTICAL SERIES

’l‘iﬁ‘e’“tfé'ﬂ?ﬁf&'i‘faaff'%“}m‘d ‘the succeeding section largelv
follows that of Day {(191% and 1620).

A statistical serigs\is a succession of facts having some
‘common characte®stic. A series may be thought of ag either
giving (1) a loghtion in time, (2} a location in space, (3) an
indication 'Qfg'qﬁalitative difference, or {4) of quantitative
differences,\/

(1), Trends in prices, rates of growth, fatigue, learning and
forge ing curves, diurnal changes, ete., arc illustmtiohs of
thieynagnitude of a variable with reference to time. Temporal

\ {gerics have certain characteristics which necessitate a tec hnicque
\ 7 in their interpretation which is peculiar to them. Any time

serles of appreciable duration (in studying ctheric vibratliouns
o1 of a second would be a very appreciable duration) may be
expected to show periodic fluctuations. As a conscquencefcme
f)f two procedures is necessary, dependent upon whether ()
it 1s desired to study the changes within a certain cydicaﬁ

pericd, or (8} to study trends independent of such pcnodlc
changes. Ifustrations will make the problem clear:
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(a} Let it be required to asceriain the nature of the load of
an clectric power gencrating plant during a twenly-four-hour
period. The current consumed per hour for some one day
could be tabulated or plotted. The result would have only
such accuracy as would result [rom a single day's sampling.
To obtain a more reliable picture, a number of days could he
combined and the tabulation made showing the average load ,
for cach hour of the twenty-four. Obviously error might
creep in here, for the load on a Monday would be quite differént
from that on a Saturday or Sunday and perhaps cthL,rcn{, frorm
that on the other days of the week, With due allowa‘nce for
holidays, probably a very satisfactory idea of s¢he *hourly
fluctuations of the Monday load could be obtr—unéd‘hv pooling
results for several Mondays. Differences in day llU’ht tempera-
ture, ete., would make it unsound to combingrall the Mondays
in the year. The problem cited is typ'@étl of temporal series
problems and the principle that should guide one in pooling
results should be to group as wide a tatige of data as are typical
with respect to the mara(‘tenstm iinder investigation, but not
affected by other seasonal orisy sSlematic tendendcies,

{(h) Let it be required to wacerdtireutibmneesdnthe seasonal
fluctuations of the Joade\ In this casc a tabulation by weekly
units would be the e§t)ds this would completely suppress both
Saturday and bun}k}\ and hourly idiosynerasics. With this
in mind it is seen that a tabulation by six or eight day or
monthly perigdd would not be as satisfactory as weckly or
b-week!y ¢ f}enods The principle to follow is to use such a
tempotk L finit as equals or is an integral multiple of the period
\x7ithin\xn’hich occur the tendencies which it is desired to
SLLPI)I‘C%

}A second characteristic of a temporal scrics ariscs from the
\ ceneral lack of significance of the absolute value of a function
al a given time. Interpretation depends upon the relation
of the function at one time to its magnitude at a sccond time.
This fact has led to the use of index numbers, or ratios of
magnitudes, The magnitude at a stipulated time is considered
basic and used as the denominator of atl the ratios. The index
number is not limited to temporal series, but it is more char-
acteristic and more generally serviceable with them than with
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other series. Many considerations enter into the choice of
the hase, but if there 18 one time, such as a cortain year, which
more than any other shows a constant condition of the funection,
or an ideal or desirable condition, it will have special valuc as
the base.

(2) Just as index and periodic concepts are fruitfnl in in-
terpreting temporal series, so is the map essential in portrayi
spatial series. Many spatial series show both qualitative and
guantitative diflcrences, in which case considerable indeniity
is needed to devise a map with cross sectioning, or col¢tigchieme,
to portray the essential facts. Spatial serics args. mtrmsm'ﬂly
more amenable to graphic treatment, and ]ess to’ numerical
treatment, than tecmporal or quantitative sqriés, The maps of
the U, 8, Coast and Geodetic Survey, of dhe"Weather Bureau,
and of the Census Bureau show the comdpleteness, variety and
detail of portraval possible. The gkdupings of territories in
spatial series and the subdivisiop*e¥areas may follow conven-
tional procedure or the peculiar.feeds of the problem. The
order adopted by the Cem?;}is Bureau in giving population

stapitiars BRI g s

& TABLE I
New En L\ﬁ West North Central (continsed)
Mamcg\ Missouri
Newt }Ia.mps;mre North Dakrita
Wefmont South Dakota
\hlassachusetts Nebraska
&/ Rhode Island Kanszas
\\ v Connecticut South Atlantic
N Middle Atlantic Drelaware
A\ New York Maryland
New Jersey District of Columbia
Pennsylvania Virginia
Fast North Central West Virginia
Ohio North Carolina
Indiana South Carolina
Tilinecis Georgia
Michigan Florida
Wisconsin Eagt Bouth Central
‘West North Central Kentucky
Minnesota Tennessee

Towa Alabama
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TABLE T (continued)

East South Central (comtinued) Mountain (continued)
Mississippi Colorardo
West South Central New Mexico
Arlzansag Arizona
Louisiana Utah
Oklahoma Nevada
Texas Pacific
Monntain Washington
Liontana Cregon
Tdaho California 9 '\\\
Wyorning o\

\

(3) Qualitative series are those in which the clas8ification
is based upon the presence or absence of cestiid qualities.
They lead to categorical distributions and arélgpeated statisti-
cally by means of the probabilities of freguencies, and by
measures of relationship dependent ypon” the same — con-
tingency coefficients, etc. The vagighility of a frequency is
the basic concept in the statistics ol ylalitative series.

(4) Quantitative series are thogewh which the classification is
based upon the degree to whichvsome measured trait is present.
They arc the most amenablfql‘qg\,pwu_tg%lgﬁatl treatment and their
consideration comprisesgthe bulk of this tad2 Y'PRg Wuriability
of a distribution is the\rmiost basic concept in the statistics of
quantitative seried ™

Life's problegts, do not confine themselves to single series,
and certain méthods have been developed for handling problems
which argu{mhplexes of two or more of the four types men-
tioned, butit is well to recognize that in general the problem
and ghévmethod are functions of a single series,

d \ Sectronn 3. CoNSTRUCTION 0¥ STATISTICAL TABLES
N The chapter which follows this deals with graphic methods
and is concerned with charts, diagrams, graphs, ete, con-
stituting pictorial representations of statistical series. The
statistical table is quite different. Its purpose is not directly
to give a picture of a sequence, but to provide the basic data
from which such a picture, or at least the outstanding features
of such a picture, may be determined and visualized if desired.
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The statistical table is simply a shorthand statement of facts.
f a thousand or so facts of the sort, *“ The population of Aaber
County is go00;” “The population of Anthony County i
3200:" “The population of Avery County is 4800;” cte.,
etc., are to he presented, they can not only be more coucisely
shown by tabulation, but scveral thousand additional facts,
such as “ The population of Anthony County is 8oo larger than
that of Aaher County’’ arc presented at the same time and g
an agrecably compact manner. The desire to accomplisii
double, triple, or manifald presentation by a single tabﬁ‘lar
arrangement is the desideratum which imposes conthtwna and
determines appropriateness of procedure, , N

The same facts in regard to population are’ghown in the
following five tables, and while not e\:haustirré’%le possibilitics
of presentation these will suffice to show f{a wide option which
exists in presenting very simple data. \’ {

X
AN

TABLE II TABLE IIT
Populat ions nmd Aveas of Coam‘zes Areas and Populaf z‘om of C mmties
WWW dbrawlphhaﬂ'é! Pl &kEA AnEa | PoruLa-
CoUNTIES I Tow | 7 SIS, Cotrsriks v So. TION
o200 | \I\'II],B&; MILES 1920
— __,_,__,._;_ R S
Aaber . . 4,0%(}\ 480 Aagber . . 480 4,000
Anthony . | Zigoo 400 Anthony . 400 . 3,200
Avery . _ #ymBoc | Hoo Avery . . 800 | 4,800
Bascomhb ANE 000 700 Bascomb . 700 16,000
Brown N 3,000 ‘ 600 Brown . . 600 3,000
&
AN TABLE 1V TARLE V TABLE VI
: \ Counlies arranged ac-  Counties arranged ac- Counlies arranged ge-

cording to Population  cording o Poptdatwn cording to Fopulation

COFTIL A [+ ;.
Coursings ® TI.(JT.:-I‘ COUNTIRS P?'I[:’?l:" - P(;‘};é;]{fb COUuNTIES
1920 020 IR0
Brown . . 3000 Bascomb . 16000 16,000 Bascomb
Snthony . . 3,200 Avery . . | 4,800 4,800 Avery
Aaber . . . 4000 Aaber . . | j000 4,000 Aaber
Avery . . . 4,800 Anthony . . 3,200 3,200 Anthony
Bascemb . . 16,000 Brown . . 3,000 3,000 Brown
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As judged by a single purpose no two of the tables given
are equally meritorious.  If the table is to be used more
frequently in abstracting information about various counties
than as a means of comparing counties, i.e., i it is a reference
table and hot onc pointing some conclasion, the items in the
stub {the first column} should be arranged alphabetically as
in Tables IT and TII in order to facilitate the finding of itemgs £
desired. If populations arc more likely to be studied than
arcag, Table IT iz preferable to Table I1I, ag the Popula‘t)@n
column holds 2 deminant position in Table II. QO

Should it be intended that the table be not prima.rl"l}f g’ refer-
ence lable arranged to simplify the extraction of zlcms; of in-
formation, ut, lct us say, to point conclusions \ﬁth reference to
populations, Tables IV, V, or VI are preferabie to Tables 1T
er III. If counties of targe populationy, are the chicf con-
sideration, Table V ig preferable to Tab]e\TV as the first row of
a table ranks higher in dominance i successive rows. Next
in importance 1s the last row. Tat“czls or averages are, hecause
of their importance, frequently’x')laccd in the first row, but if
other items demand this pm;tmn or if captions (headings of
columns) are less rcadily ~1r§%erpre%let§1 uliprar gepeﬁa?ed from the
body of the table bv a\row of totals or averages, then the
hottom row may b gbed

As a means ofgointing conclusions dependent upon popula-
tions Table VI4&'to be preferred to Tables IV or V, as the popu-
lation data ol the dominant position in Table VI.

In gepeial onc should so draw up the table that the items in
the sf #nd the captions constitute the argument or informa-
t101’1 Wwith which the table is entered, and so that the column
'm‘d row next to the stub and captions contain the most impor-

\ fant items to be obtained from the table. Rows and columns
more removed from these dominant positions should contain
less important data, except that the last row and last column
may be given to data of first or second importance.

Such Tables as II and III are primary or general purpose
tables, since they contain the raw data without abridgment,
and may be used for various purposes. Such Tables as IV, V,
and VI arc derived from primary tables, such as II and III,
and by cmphasizing certain facts serve a special purposc.
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These two types of tables should be recognized. The special
purpose table is always published because it conveys the point
of the study., The general purpose table should always be
published also, as it provides the only means of checking the
author and of discovering if other or further conclusions can
be drawn. Secveral tables and many calculations may be in-
volved between the primary and the final derived table. | I\
full description of these intermediate steps be given it is not
essential that these intervening tables and calculatic&fswu e
published. . @)
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CHAPTER II

GRAPHIC METHODS

N\

N

¢\

.. '\
Section 4. Tne FlisToGRaM AND FREQUENCY POLVGONJ

The picturing of facts, when the nature of the data~ PeFmits,

conveys a readier comprchension than is posmb (ffom any

array of figures.

therefore the problem of this chapter.
Since there are but two dimensions to the\surface of a sheet
of paper, ordinarily but two scrics of factsﬁre shown in a single

graph.

temperatures recorded by the
i July and August, 1017, ﬁﬁ’l}“’N’

Maxzmﬁag }"empemtwe for Each Day

The accurate graphic portrayai of data is

Consider the accompany 1ng dai‘a giving the maximum

/cather Bureau for each day

Tpalibresyyers in

’J{ABLE VI

uly 1-Aug. 30, 1017

7 N. Y. City
A\ S o
uly 1 € uly 17 8 Aug. 1 o8B Aug. 17 83
! ‘gg’ July 15 s 2 96 18 80
BN\ 19 77 3 83 19 81
»ég 78 20 83 4 8o a0 84
085 81 21 81 5 82 21 83
N\ 6 Bo 22 86 6 82 22 8o
j i 79 23 86 7 88 23 76
8 7o 24 86 8 78 25 83
Q@ 75 25 84 g 83 25 8z
10 65 26 85 o 3o 26 74
11 66 27 90 11 82 27 82
1z 7I 28 8o 1z 83 28 3o
13 81 29 81 13 83 29 83
I4 81 30 95 14 78 30 81
I5 75 31 g8 15 &1 31 73
16 83 16 8o

[V
[V
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TABLE VI1II
Tally Sheef

Tem- | No. or Davs || TEM- No. oF Davs

PEEHA- wriit (JIVEN FLERA- WITH GIvEN
TURES TEMFERATURIE || TTIRES TEMPHRATURES

63 t 82 [=i =1

66 f 83 |- | - ~
67 84 |1 \
68 85 I| | A\
60 %b || AN
70 i 7 | "\

71 ] 88 oL\

72 89 P }"

73 | 90 I\ 3

74 l 91 ¢

75 |1 92 )

i) g3 »

77 I 91 N\

78 I [ 9g P\ |

79 a6 L &

80 - a7

81 (el AR R g [ [

. ol ==

If 1“@@33;;9&11%1.%@51.@4&1‘0&1 changes in maximum tempera-
tures a graph could be miatle in which the ahscissa {the hori-
zontal dimension) rekresent‘s the days in order, July 1, July 2,
ete., and the ordifaye (Lhe vcmcal dimension} represents the
Lcmpcratur% m\ﬁder, 0% 1% 2° cte. Por July 1 the ordinate
would be So'fm" Juiy 2, 88 ctc A line connecling the sue-
cessive orélmates would give a picture of the changes in maxi-
mum te'mperature throughout the two months.  Or, it may be
desifed To disregard the sequence of the days and obtain a
gpiﬁral idea of what constitutes the maximum temperatures

»\’i‘d’r days in New York during July and August. In this case

«/ the abscissa will represent tcmperatures and the ordinate the
number of days. To do this, Table VIII is first made out

from the data in Table VII and then plotted as shown in
Charts T or II.

Chart T is a histogram or a pictorial representation by means
of rectangles, telling precisely the same story as a table of
frequencies, such as Table VIIL

Chart IT is a frequency
nolygon.

It is not a series of discrete elerments as are the raw,
gross, or original, measures, but a closed figure, each part of
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which is connected with the next, giving the idea of continuity
in the measures. Each of these graphic forms has its ad-
vantages; the histogram in case heights of rectangles are to
he accurately compared; and the frequency polygon il the
idea of continuity is desirable. Note that in drawing the
frequency polygon points ¢ and ¢ are connected and not
points b and ¢

CaAsrT T . 2 AN

|a4u8ra.m showinb ma.Ximum +emper“a.+ur‘es « N\

g’ For daxys from uly 1 Al{gl tarT Hew\ﬁerC,ﬂy
un T
+ 1o ! 3 1] X
T g 1 7
o —r
s x5 » s
g' EEd "s:\\
T TR
i 4 B
4 3 T _
- H5 oa’ =l
9] ig &4656&6’!@5&370‘”‘Tz.‘i‘.';'rﬂsvz,'rwmamalaaasamsasb'ree65303}333334553@5‘:3593
Témper@‘}'unss
www ‘dbraulibrar y.org.in
CHmT II
-3 "
-E F'r-sqrue.ncy Pcﬂ'lyEQh for same docte
o] AL R Hpn T
§ 5] oL S EEEEE RN
m |- . ! : - ll
< § [ D
z 0 N f A 1
g\S i f }‘L ! | I_‘t_l |
il ) ) N
S 2 - I N
0 'k i | -
£ Qf \L.— f |./ [
Qcﬁmﬂmsﬂwﬂzﬁﬂﬁ‘mﬂ?amsusrezaam&sasmaaassast323554—3556913335
a9 Te:mpera.+ure=.

\ )

Great carc should be faken to insure that the graph agrees
with the labels of the codrdinates. Note that the class index
“65" designates the mid-point of the interval, the lower limit
of which is 64.5 and the upper limit 63.5; that in the potygon,
point ¢ is directly above the class index 6g, and that in the
histogram the class index 63 designates the mid-point of the
horizontal dimension of the rectangle.
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Tt is allowable to label the beginning and end of the interval,
In such case the histogram or polygon wounld be drawn exactly
as given and point b would be labeled “64.5" and under no
circumstances * 65."

Tt has become somewhat customary in educational fields
to speak of a child as solving 1o problems in a speed test,
meaning thereby that 1o problems were solved and the 33th{
started but not finished when time was called. In plotting
the distribution of scores the designating number, 10, hgs\'l}e(:\ll
placed at the heginuing of the interval. No objection whould
be made to this werc the numerical computations i Barmony
with this procedure, but very generally such sqg{es’have becn
treated as exactly 1c.o in calculating aritiigietical averages
with the result that the curve and the eondtants computed
from the data do not agrce. Not unebfimonly such scores
have been treated as 10.0 scorcs inyeélenlating means and as
10.5 scores in caleulating medians, with the result that a com-
parison of mean and median scou$gives an entircly erroneous
impression as to the skewnegd 'of the data. This fanlty pro-
ccdur\% \3’1‘%5 dg{g&)ﬁbgl,?%q%ﬁpﬂowed unwittingly, but unfortu-
nately with the sanction(df teachers. The {ollowing is quoted
from page 5o of the S&ond Year Book — Division of Educa-
tional Research, Les\Angeles, July 1919:

“LESSOi\‘ SIX — THE ARITHMETIC MEAN

PN\ Method of Finding the Mean

T ET\HR'SBI.EW dIE::._F;UPILs -
\ﬁ‘ 12 3 3 X 12 = 36
L\ 1 5 5 X 11 = 53
o~ 10 7 7 XI0 =170
AN 9 4 4 X 9 =36
\ & 8 2 2X B=16
o 21 2E3

213 divided by 21 cquals 10.74 the mean. The median in the
same distribution would be 10.64.”" In this lesson problem
the mean {s in error if 12 implies the interval 12.0 to 13.0 and
the median (sec Section 12) is in error if it implies the interval
1.5 to 12.5. The error here cited probably grew out of an
error in labeling a distribution. Uniformity is needed, and
it would be in harmony with well-nigh universal procedure in



GRAPHIC METHODS 13

the physical and biclogical fields to consider a score of 10 as
being also a class index, or mid-point of an interval. Should
this lower the grade of a few million school children by one half
a point no harm would be done and the great advantage of
having the recorded tost score measurcs cxactly those to he
used in calculating means, standard deviations, correlations,
cte., and of having the recorded measures also the class indexes
in graphs is attained. Throughout this text a score no matter
how derived originally is uniformly to be interpreted as covers
ing an interval extending from half a unit below to half &'¥nit
above. The accompanying data prowde a nice preblem in
plotting where the distribution is decidedly asymmetncal
where a part of the distribution is lacking; wheré the class
intervals (i.e., range covered by successive groups) are unequal,
and where the existence of a few excesswel\}\\cxtrcme measures
makes it impossible to select coordinates (abscissas and ordi-
nates) which satisfactorily reveal théemtire distribution.

TABLE IX TABLE X

British Income-lox Pavers — 191

Awmerican Consular Report, May,_ Y‘ 5‘” dbrauhbl ary.org.in

N ; NES~ . OF ASSESS-
TSCOME _\0, OF AGSHeS Trrots Ko A

nm\\(&. * MESNTS
£ 160 to 200, 257499 £ oto 40 150,000
200 300 \\537 434 40 o 750,000
300 400, 85,557 8o 120 1,680,000
400 506, 46,003 120 160 1,400,000
oo A\ g0 23,411 160 200 400,000
6oo .\ Jyoo 13,383 200 300 390,000
F00 \ Boo 10,250 300 400 g7,000
09"\ oou 3779 400 500 49,000
1,000 7.445 500 600 24,000
LI 2,000 16,363 600 700 14,000
W 2000 3,000 3,381 700 £a0 70,000
WY 3000 4,000 1,231 So0 900 6,000
\ 37 4,000 5,000 678 Guo 3,000 7,000
5,000 10,000 882 1,000 2,000 17,000
160,000 and over 300 2,000 3,000 3,000
—_— 3,000 4,000 1,000
709,746 Kelols) 5,000 700
70914 3 000 10,000 goo,

1¢,000 and over 400

Notice that the first class interval covers a range of £40
while the next to the last extends over £5000 and that the last
interval extends over an amount not recorded but probably
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as large as £100,000. No scale which will satisfactorily picture
the L40 class interval will be satislactory for a £r100,000
interval. The curve below (not the insert curve) pictures as
much of the distribution as possible. Even with an interval
of £100c to a distance of one-half inch, space does not permit
of showing the last interval. Having omitted this class it is
necessary to make note of the fact as has been done in the >

lower right hand corner of the chart. O\
L™
Crsrr III g N
- Distribution of Incomes in Grea’f‘Brrh:un
£ Large Curve-frorm Am. Consu!qrgb riMay 1915
3 G0 Insert-Curve-Hypothetical, cwaﬂnq cll Incomes
T o
< )
o [
£ 000 §50
§ 2
+
@
£ 2o
g W ,dl?ﬁ'a
g 500 0
2 g"’
n o
g zooof 5
g D f’“g
= ¥
E woo| | I 4 Income in Pounds 8
% £ %y
o ‘\\
Z WX = - I
AL Yo oco Zooo  dpoo 4Gooo Scoo  &000 Toodh

Inceme in Pounds

)

Since the first interval is £40, the sccond £100, the tenth
£1000 and the fourteenth £5000 it is impossible to plot ordinates
proportionate to the frequencies: 257,400; 237.434; 16,363;
and 882; and truly picture the situation. Some account must
be taken of the diffcrence in size of intervals, for the ordinate
should represent the number of cases per unit interval. Ac-
cordmgly 257,499 has been divided by the interval represented,
40, giving 6437, the number of persons per range of £1; 237,434
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divided by 100, giving 2374, etc, which gquetients arc the
heights of the ordinaics represcnting the respective classes.

The ordinates have been joined by a smooth line to empha-
gize, even more than dees the frequency polvgon, the idea of
continuity. A polygon or histogram is generally to be pre-
ferred, as it is less likely to be misleading.

Having the data of Table IX for incomes above £i16o it i
possible to make a sufficiently close estimate of the e atd
distribution of wealth in Great DBritain as to suggest whqt The
major features of the actual distribution would bey Jet us
therefore assume the total distribution of wealth b be as
recorded in Table X and investigate its salient féatures,

The plot of the data of Table X is given in'the’insert. Since
the abscissa scale is much larger than beforsg il has been impos-
sible ta plot the entire dislribution v ithout breaks. These
breaks are indicated, as should alwavg bc&he cage, by prominent
pairs of zig-zag lines. Note thag e ordinates, which were
obtained as before, are plotted atfle mid-points of the intervals,
e.g., there are 390,000 ind}\fij&uals rceeiving incomes from
£200-£300, or 3900 per ~fl phipihelbraggordiais ordinate,
3000, is erected at L230) the class index and alsc the mid-
peint of the interve;l.”,\

The shape of the eurve indicates that there were more than
3900 per £1 fordncomes between £200 and £250 and less than
this number pér’zﬁ for amounts between £250 and L300.

It mayzalso be noted that since a curved line comnects the
points, {H€ arca lying under the curve and between Lzoo and
£300(w Al not total exactly 390,000 as it should. In curves
qmoothed by visual inspcction such inaccuracy is practically

mu.navcudable For these particular data a frequency polygon
would be still fess satisfactory as it would indicate a mode at
£100 whereas, assuming the hypothetical data to be correct,
the mode is somewhat above that amount. A histogram would
give the most accurate presentation, but would be less satis-
factory in other respects. ‘The total area in a given histogram
interval is accurate, but the rectangular distribution within
the interval indicated by the histogram may be quite inaccurate
if the interval is large,
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Section 5. Tup TiMeE CuarT; RELATIVE TiME CHART;
CHArT or RaTios

AND

Charts have heen presented in which the ordinates were
frequencies and the abscissas amounts in a gross seore,  Such
graphs are ordinarily characterized by small frequencies at
either end of the distribution and a single mode somewhere in
between. If, howcver, frequencies are plotted as ordinates,\
and periods of time as abscissas, a different type of Curve
is found, for generally with the passage of time the fumction

continues to grow or af least persist. The followmg data and
chart are characteristic: N\

R
Cuart IV \J
Grrowth in Popui&+iom\\’

PSR- Y
—  Urited 5"@3‘6‘:: - 3z
o Ca.h‘forn\a: 30
- —_ Or‘egon N\ ::' - %——— za
www . dprasdib rém(pfm@hm f 26
& 24
) . :\ Z 2z
Q we \\\ - f e P
0 PN N N / .
i Bo o~ /// e

Yo

=1
8
A

2 & D =0 - ; [1=3
Y 4 P 7
o) - ] /‘{ e
"‘\\ w4 5 30, ! &5
\ - Sl
\ "_3 - . / P e 4
<"
2 W0 e z
C'E = ._.--f-—-L T
o= Tam—smaprm T (=]
1BE0  1BHo 18TO 1820 1B90 {800 1510 1920

L.

Foputation of States in Hundred Thouvsands

_Not.e that the right hand axis is labeled from the bottom up.
Slmplhcity and clearness can frequently be obtained by labeling
the lines in a chart and omitting the legend.
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TABLE XI
Population in Thousands

I ! 1
| 850 I I860 | 1870 l 1§80 | rr?go | IgIo | 1920

|
el m e — _.|_.__ _— .

1000

CaLte. . %; 380 | 560 | 865 Lm34g@5|2y8|34w

One. I3, 52, o 175 | 318 | 414 | 073 783

%?{;H. ? 12 24 | 75 | 357 | 518 |114z | 1,357

U s | |

Herien 2 3,192| 31,443 36,558| 30, 156' 62,948| ,fs,ggsll 91,9,25 ID‘),‘,{II\
I

ST _—_—_—_—,_— - == - — = - _'—\—_

The graph shown illustrates the use of a single sct of *&]qscissas
and iwo sets of ordinates for the plotting of P%%a” kinds
of curves upon the same chart; (1) population"t?f\the United
States in millions and (2) population of SHaSs in hundred
thonsands.  This method is usually very ﬁufssleading and the
present illustration is no cxecption. DQuble ordinate charts
can be used with lcss error if, gomg with changes in time
there are changes in the genera], Wirection of the curve, ie.,
if it rises and falls, for then if a :1econd curve also showing such
fluctuations in direction of trend &Péﬁk%dal%lofr%ﬁmt chart
1t i3 possible to compare; a:he omie with the other as to direction
of Quctuwation, but it 15.\;[10t possible at all accurately to com-
pare them as tom rtude of fluctuation. The method should
be used with vefy g eat parsimony and precaution.

Tor the chatt shown the comparisons which can validly be
made are those of absolute growth between state and state.
The curye dor the entire Uniled States confuses rather than
helps Q\ “the comparison. Absolute growth in the United
Statdscannot be compared with absclute growth in the states
) YHe scale is 1/50 that used for the states. Relative growth

\ﬁl the United States and in the states cannot be determined
by comparing the slopes of the curves —c.g., the slope of
the curve for the United States between rgoo and 1gIo is
steeper than that for Oregon for the same years, but the per-
centage growth for that period for thc United States is

21 (9—197; — 75995 X 100) which is less than the percentage
3995

growth for Oregon, 63 (9737:4‘:‘.1& X 100). Likewisc it is ap-
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parent that relative growth of state and state is not shown by
these graphs.

The Relative Time Chart

Relative growth could be shown by plotting the populations
for the several years in terms of some one year as a base, or
“relative.” For the data in hand this would be unsatisiactory .
for no matter what year is taken as the relative (e.g., 1830, \
1910, 1920) the resulting graph would be difficult of accurats’
and significant interpretation. If change over a short poriod
only is under considcration, relalive curves rcveal mgmﬁcam‘r
tendencies, especially if the meagurcs, in pctrtmula:r the base
measure, are large with respect to fluctuationsy N
The following data permit of portrayal in gra.phs cither in
terms of original scores or as ratios. /)
x\ t
TABLE X1{ )"
Chicitge .p’a!a *

P 3
R

wwwl dBriHTERE Y or, by Unron Wack pER Houn

ETAIL
YEAR Dumn's AMPRILE | o !
Troma WO Painrs | BSR4 Carpentors

& | _

AN |
907 . . 107.864 T4.3¢ 506 ! go¢ 56 3¢
1908 . . I3 282 14.9 50 50 56.3
1909 . . ¢ 11\1:3648 i5.9 55 R0 56.3
I9I0 \1:33.434 16.2 60 50 60
15I1 115.102 15.9 | fo 50 60
1912 \., P 123.438 19.1 60 50 65
1913 ¢ 120.832 20.2 65 : 50 a5
1914 . 124.528 22.3 70 50 &5
1915 $ o 124,168 2[.2 70 50 63

,\519. 0 . . 137,606 22.6 70 50 70

# 1. 5. Dept. of Labor, Bur. of Labor Stutistics.

Unilonl Seale of Wages and Hours of
Lahbor, 1916,

Chart V is a graph of the data of Table XII and Chart VI
of ’l?able Xlla. In Chart V there are various breaks in the
vertical scales permitting the use of three different sets of

values. The location of the word “Date’” in Chart VI is
preferable to that in Chart V,
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1907
hEslel]
1500
1510
19rE
19iz
1013
014
1915
igrG

- * Tke decimal point is
increase.

3
. e\ ¢ .
amitted, &8 usual, so helmdeativ of
a»y
X N

C‘Q&@?ﬂbraulibrary,org,jn

Increase in

J Retai} F-"r‘icge?s, and Wages

| N

N\

Whelesals

Date

olesale Prices,

Linotype Operators ~~

1907 o8 "8 16 it 2 3 s

L

15
TABLE XITa
(Prices and wages expressed as ratios,™ 1007 as base)
Chicago Dabn
- | — — — — ____7_;:__ -
: . i HEram
AYERAGE TUxioy Wacke pER Hour - BELATIVE
VEARLY | i Pice
Retain
Price | | I
ixpEx Rousn A ‘32 Commen
STEAR ! Paiulers (T)'l”‘J,t"' PE o Carpenters | Articles
! pErstors | of Fond £
I "N\
| ——— |- _— | —— o= | - 3
TG 100 100 100 ‘ 00 1w0o™
1005 144 100 L0My Lo (’?&5
[ 5E} 1E1 ‘ 110 100 100 IS IEG
L TI3 120 100 07 '\\. 13
107 ITT i 120 100 ’Qf} 113
IS 134 120 100 R 121
I3 141 f 30 1040 \slls 120
116 156 | 1460 TOO NYIIS 124
116 148 i 110 0 1004 Y 15 1 14
728 | 158 O] WD) | 124 | 138
! AN

105" means a six per cent

N\

2

N
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Caart VI

[rcrease in Wholesale Prices,Retail
Prices & Wabes — Relative +o 1907

L.e.ge.nd.
9 1607 —Wholesale
0 —-Retail-Stear M r
(6 1E0) ——wReatan |-z2 Ar‘+-1=:kz'5 ] 7 / "\ /.
£ s es-Linotvpe Cp. .

ok ype WP K
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n -----Na.ge.smpain'lre.rs. e el A &9
‘ﬁ /’ :"' d N ’

120  — 7 N\
o I R S /‘
D 2o — O L s
L [A wa
6 = /’/"7 T
prds .
§ oo Wtan —>=\
e Lo
4 \9,
=1a] 5
2 S R
\T/ R\

www dBPRIBrar9Borifn b 12 B 4 15 196
aTe

Necither of the accpfapanying graphic presentations is with-
out serious draw a{iﬁsf TFrom Chart V it ig possible to infer
that the retail jprice of round stcak and wholesale prices of
food productyyeth dropped from 1910 to 1T but it is not
possible tg 1{}1ng which suffered the greatest relative decline.
Chart Sllz}i.oes show that relative to 1goy wholesale prices
suffef:i&’*lﬁost.

Chart VI gives the impression that paintcrs arc better off
m;t‘liim carpenters, — relative to condition in 1907 thev are,
Jhut in no other sense as Table XII shows. A rclative table
or chart shows facts relative to condition at date of hase and
nothing else, which is a point that must be stressed or it will
be overloocked by the untrained reader. A gross measure-
ment table, or chart, reveals gross changes and dircetions of
relative changes but not the magnitude of relative changes.

Another inaccuracy which is commonly present in ratio
measures and accordingly in charts based upon them, is due
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to the fact that variations in ratios are frequently large with
respeet to the base used.  Prices may incrcase or cities grow
IoI, 200...I000 per ccent, but it is impossible for them to
decrease by such amounts. A change in ratio from 5o to 100
means more than a change from 100 to 150 though they show
up the same when plotted. Similarly in terms of genuine sig-
nificance; to pass from a ratio of 20 to one of 30 is greater than
i0 pass from one of 30 1o one of 4o.

To illustrate certain of the tricky features to be guarded\
against in the use of ratios the following data and graphs @ne’
given: O
Crart VII Caart VIIa W)

Percentage of Number»  of
Male Tedchers in Tﬁa IEHTgh?e}ztg
the High Schools ‘zoo,ooo:'\\e} igh S¢!
1.75;9@&"'
185800
,fffzqaco
&\_0 ij.é'.d_bl'eiuli hrat;
vy 100000
L\ 7B000

< » 0,000
N\ 2580
4 W\

] 1 L
i TS

1SCo \J 210 1200

Raﬁk{é\ Chart Gross Frequency

N Chart.
TABLE XII
V' Number of Teachers in the Public High Schools of the U. S.
\M\ } Report of the Conmmissioner of Educaﬁiof, Ior, 3 ' 2, £p. Q—m
1900 1910
MEN . .| 10,172 = 50 per centof total | 18,890 = 45 Ptegt:iem of

49.931 more exactly
WoMEN . | 10,200 = 50 per cent of total 45 -3‘3‘3}?}3 fcréi);e

22, = 55 per cent of
777 total

8 488 8 ¥

9]

o]

ToraLs . | 20,372

41,667
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From a casual glance at these charts it would be hard to
réalize that they are both accurate representations of the
same data. A few pertinent questions might be asked:

(1) If the tendency shown by the ratio chart (tendency
based upon the actual data for 1goo and 1910) continues,
what will be the proportion of male teachers in the year 20007
Answer .03081. N\

(2) If the tendency shown by the gross frequency chatt
(tendency based upon the same actual data) continuqs\'_. \how
many male high school teachers will therc be in the yf:ér 20007
Answer 07,352, N

(3) With the proportion as shown in vour anSgper to ques-
tion (1) and the number of male teacherg aé’k'iven in vour
answer to question (2}, how many women tedc¢hers would there
be in the high schools in the year 2000/ nswer 2,348.004.

If the reader sees through this situa}i(}h he appreciates one
of the fallacies likely to arise throfigh the use of proportions,
Another oceurs in combining ra@ié’s

www.dbmulibrary,ox’}g?ﬁe Ratios

To average a numberiof ratios to obtain a single index, in
general leads to an esror, This will be considered later, but
to illustrate the f@&t that ratios do not group themselves in
a symmetrical ghanner around their own mean, the following
data from <Mijchell are given as quoted by Secrist. (rg17,
p. 312.) "{‘I‘h’ey also provided the material for an important
problemin® plotting.

Tywill be noticed that the class intervals extend over ranges
ofttwo units, e.g., therc are five class intervals in covering a rise

(i prices from 10 per cent to (but not including) 20 per cent.
) With no dircction to the contrary it is to be presumed that the
clags designated in the fable by 54 — 55.9"" includes all
measures with values between the limits 53.95 and 35.0%;
that the next class includes measures between 51.03 and 53.93;

cte. This is to say that presumably the data have been recorded

to but one decimal place so that such measurcs as 53.86 and
53.9z are called 53.9 and a measure such as 53.96 is recorded

as 54.0. If the recorder encountered a measure 33.03 he had

to arbitrarily decide whether it would be cailed 53.9 or s54.0.
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TABLE XIV

Distribution of 5578 Cases of Change in the Wholesale Prices of Commodities
From One Year to the Next

Par {OENT 0;{ CHANGE | Per Cenr oi ClA%GE
FKU?\{‘ THF \"ERf‘\GE NUMEER OF FRO:‘I 'I\HE ‘. \’E‘R.I.-\GE NUMEER OF
Precrbra Toae Casps Parerbing Yoan Cases
{IFALLING DPRICES) (Ristyi; Prices)
|
54-55. 1 . 14-15.9 06 7N ¢
»—55 ? — 16-17.0 1024 ‘\
50-51.9 I 18-19.9 13}
48-49.9 I 20219 G 553
46-47.9 I 22-23.9 R
44~45.9 2 24-25.9 AN 47
42-43.9 4 26—27.0 S 20
40-41.9 5 28-20.0 \J 30
38-309.9 5 30-31.0 22
36-37.9 7 32-33, 17
34359 ] 34-35; 18
32-33.9 7 36—37‘9 1
30-31.9 16  N38239.9 17
28-20.9 27 \4p41.9 11
26-27.9 17 ol © 427439 6
24~25.9 32 SN 459 1o
22-23.9 39 88 46—47.9 1T
20-21.9 45wl 48-49.9 5
18-19.9 71 N ew, dbré@ﬁfﬂﬂry org.n L
16-17.9 P (i 52-53.9 g
I4~15.9 P (o 547359
12-13.9 =4 ;go 56-57.9 I
10-11.9 \\\ 173 58-59.9 6
8- 9.0 \ 200 60-61.9 4
6~ 79 L) 238 - -
4- g-g:\} 329 66-67.0 1
2- 3.4 3 i 375 ! 68-69.9 3
Unde; 403 : 70-7L.G 1
NEsiange 697 727739 ‘I‘
(RI'\\\E ]PR}LE:-.») o hi _7_5'9 —
LA \Under 2 41
S -39 355 So-dre .
£\ 2—33.9
. J 4- 59 356 [ —-85 o I
\™ 6- 7.9 261 83—87‘9 L
\ 8- 9.9 22? o _—
I0-11.9 167 L00—101.9 I
12-13.9 115 102-103.9 I
| 5,578

For the data in hand it is not known how such a case would
have been decided, but a very good rule to follow is to always
assign such a critical measure to the even instead of the odd
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value, i.e., the measurcs 53.05, 54.05, 54.15, 54-25, 54.33 and
54.45 would be assigned as 34.0, 54.0, 54-2, 54.2, 54.4 and 544
respectively. It will be noticed that in the long run this
introduces no systematic error for the § is thrown away as
often as it is added. It does result in a slight piling up of the
even measures, but that is generally inconsequential, whereas
the adding of a hali cvery few measures would resull in a,
- cumulative error which might be scrious.

If the class intervals run in order from 53.95 to 35.05, 5£.9¢
to 53.95, ... 1.95 to 3.035 1t 18 found that the next frequbnn,
in order to extend over the same range, would be {rom .03 to
1.93, i.e., from an increase in price of .05 per cent O, 2 decrcase
of 1.95 per cent. This, however, cannot be the«@a.\‘;e, as a very
large frequency, 697, is recorded for “no chapge.” The way
the data are recorded would suggest a clasganterval correspond-
ing to “no change,” but this cannot heso? as the intervals on
either side preémpt the space. In pldting the data, thereforc,
the “no change” interval must b squeczed out and its fre-
quency, 6oy, distributed betweeﬁ:'the neighboring classes, We
will asgign, mﬁ-é@1f®1@ﬁ&1};}c§§*f{”@"— Falling prices”’ interval, and
the remainder, 349, to the " tUnder 2 — Rising prices” interval.
There still is a slight dmcrepancy (.03) in the ranges of thesc
two middle intervals \'but as it cannot be positively accounted
for without recotirse to the original data 1t is passed over.

For oomremencc in tabulation and plotting we will consider
the first class interval to extend from 54.00 to 56.00 and to
have its aud* pomt or class symbol 55.00, the second a mid-
point at\y3.00, ete., and the frequencies as before.

T‘heﬁrcquency polygon seems better suited to the data in
hand as it gives the impression of a more pronounced mode
than would a histogram and in this case this feature should
be emphagized.

Threc ways of connecting the points of a distribution have
been presented: (a) by drawing a histogram — Chart 1:
(b) by drawing a frequency polygon — Chart II; () by draw-
ing a smooth curve through or near all the points which fits
the data as nearly as can be determined visually — Chart
III. A fourth way (d} is to plot from smoothed data; and a
fiith (¢) is by mathematically determining the equation of
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the curve which best fits the data and plotting the s,
This last method is discussed in Chapter VII. Methods (a)
(&), and {¢) preserve areas, i.e,, the total area under the Curvc;
15 equal to the population, or number of cases, Method ()
also prescrves other important features, In using method
{¢) there should be a definite attempt to preserve areas: that is,

TABLE XV ~
o= : :! = e ;
Prn CenT | | CLASS INTERVAL |PNR CENI‘| CLass InTEpging. o
OF C1ANGE ar 4 Prap Cext 0F CHAYGE 0F 4 Prg C‘,Lu;’;i
FROM THE | Nysugs FEOM TNE | Nimpgr |—- Q?
EX " o : AVERAGE | op ___\I'V""—"—

Prr Casgs | PEr CENT| NUMBER | PRICE OF | (Cagps | PER CENTWNUMpg
Tur PRE- OF i OF THE PRu- [ URY G R
CEDING | Crance | Caseg CEDING CrincE, | Casgs
Yian | . YEAR 9.\ ’I'
: - —— _—
' — 56 ‘ T- s || 329."|a\ !
— 53 I ! ! V= 2 ‘ 70
- — . — 3 | S +
— 52 I |— 1 }’ |
-- 51 1 KA o 1512
—43 . 1 o “ X \T 759
i — 48 2 | Y1 353
—47 I A 4 711
~ 43 2 ai’;‘a 5| 6
— 44 6."‘;. » 7 2061
=43 4 W dbraulibrary lorg.fh 498
— 4l 5 N\ 9 237 yire .
— 40 - I ‘ 11 167
~ 39 3 {\ Iz 282
— 37 7 O 13 115
Sé"' Ly 15 106
- 35 0« \ 16 208
— 33 7 { N\ 17 o2
(oM 3z 23 19 73
=31 g : 20 138
— 29 O 2T 05
i\ &/ — 28 44 23 43
—27N\W 17 24 2
— 25\ 32 25 47 0
..;‘.‘\ —24 7I 27 29
N3 39 28
»\':\f— 21 45 29 30 5
\ ) — 20 L[I0 3r ., 2z
-1 71 32
- 17 76 33 7 38
: — 16 183 35 I8
- 15 107 36 2
-~ 13 | 120 37 Ir ?
— 12 293 39 ry
—1I 173 40
-5 200 41 71 31
- 8 438 43 &
i ‘ 238 44 16
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TABRLE XV (confinuned)
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if the curve as drawn lies above any point it should lie below
some other, or, more accurately, the sum of the vertical distances
which it lles above points in the actual distribution should
equal the sum of the distances which it lies below other points.
In drawing a frec curve for incomes, Chart III, the preserva-
tion of tolal area is a difficult thing to insure, but for maximum
temperatures, Chart £, it can be accomplished with fair accuracy s
and liftle trouble. The personal element which enters into
methed {¢) gencrally makes it inadvisable for published wosk;
but for original, hasty and personal research it may fell be
the one most [requently used. N

Section. 6. SwvoortHING Data (¥

The smoothing of data preparatory to plot‘ﬁirfg (Method ¢)
may be illustrated by the accompanying.{edords of the U. 8.

Weather Bureau for New York City; £ &
TABLE XVRV
Mean Monthly Temperataires for 1017

Jan. Teb., Mar. Apr. May June :';fﬂy Aug. Sept. Oct. Nov. Dec.
B4 27 7 472 532 SREligl TS Sio sme 412 250
We have here a temporal series, and as’is f%-equently the
casc, periodic fluctualions are shown. To obtain a general
idea of variations @Lhin the vear the curve at the end of
December should jdin on to the curve at the beginning of
January, as indicated below in Chart IX drawn by Method (¢).
It will be avticed that in the 1917 data there is a minor mode
in januz}r{-;j}ﬁd a major mode in August. As such hi-modality
is not tyvpical we will smooth by means of the moving average
method and plot the resulting series. The moving average
method consists of replacing original items by averages of a
\mc,e“rtain number of class frequencies, In the present problem
we will average the frequencics for two neighboring class
intervals and assign the result to the point midway between
the iwo frequencies. If we consider the averages for each
month as belonging to the 1s5th day of the month, we can
take the average of the temperatures for January and February
and assign this average to the end of January or the first of
February. Next the February and March temperaturcs are
averaged and the result assigned to Mareh 1. Continuing
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throughout the series, finally averaging the temperatures [gr
December and January, gives the data of Table XVI, indi-
cated on Chart IX by the X’s.

Caart IX
Mean Mon+h'ly Tempensitures NY.City Jan-Dec.

¢
t A
,1?, Legend | | " [ 1 | ||
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o ’ I N
Bes| |-~ 19 5mothed "“7% N O\
Eeo| |mm- Avp-aTYes. 17 2 1 [ \5 o N
’EJQ L) %
Ehw s, j \-“.-\m-i—'i;:.‘
o yd EENNS
-:i_ a8 .4 as
N 4 % T
§ 2B | NG
zs b
= & ] ) RN
W ¢ oW oL ow o p B o0 iA e B i
8 i 5 T s, S 2
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TABLE-XV¥i-a
Mean SmoothedTehperatures for 1017

Ja 1 F\.M}'Wiﬁrfl.b{aﬂl.ﬂlaralcy‘?I'%:El} Jor AT 51 01 No1 1hx
o 2B7 300 332 43.0 502\ 008 712 744 683 57.5 406 33.1
The reason this pzﬁ&sa is called that of taking a “moving
average” would Be\better exemplified if groups of three or
more items were mveraged, in which case each successive sum
is obtained drém the preceding one by dropping one item and
adding a gegond. It will be noticed that this curve has but a
single, fiode, is much more regular than the curve from the
origiﬁls data, and docs not have as high a maximum or as low
a,\.’m'inimum, which fact is a nccessary consequence of the
~Jmethod of smoothing. Moreover, it represents the annual
‘fluctuations better than the curve from the original data, as is
shown by comparing it with the dotted linc based upon the

records for the 47 years from 1871~1919, given hevewith:

TABLE XVII

Jan. Feb. Mar., Apr. May June July Aug. Sept. Oct. Nov. Dee
3L.0 303 37.8 487 398 688 740 726 664 557 43.0 340

Since the average of two unequal numbers is never as large
as the larger or as small as the smaller of the two, the smoothing
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process tends to flatten a curve out and lower mades. If the
data are particularly irregular it is frequently desirable to do
this to reveal a general trend, but it should be borne in mind
that something of significance is always lost in the process of
smacthing. Numcrical caleulations should never be made from

TABLE XVIII
Distribution of Murks given to Women in § Elective Colloge Subjects. Below,
oo Failure; do—74 Condition

(Tekea fram Mary Theodora Whitley, A Statistical Study of College ’\’Ierks
— Master’s Dissertation, Lolumbld., 1906)

. Gt - " _
| i O 1
Ge 4DJ'| {F‘m - Ay 017} A»fcur A\’Jj- o ||Grans| (FJ;;E— AV, fm? Av.OF [ Av. oF
IQUENCY) I‘1[RE1“| FIveE | FiFTEEN [QLV\I("&) THR}m 'FI\"E FreTEe~N
— e =
43 | o7 | 75 2r [NL¥ | 94| 1113
441 06 | 76 7 (NSO [ T24 | 1347
45 J .07 77| 1LY g 154 | 14.33
46 Rl 78 64 4.3 | 21.0 18,00
47 i .07 T N 2.0 | 200 | 20.00
48 i .2 a3 5 807N )85 24.3 | 20.4 | 22.80
49 3 .2 14 L g1\ 2 23.4 | 24.6 ¢ 26.07
50 I 4 .2 I3 | W2 13 173 | 24.2 | 27.53
51 3 .2 .r4,J~. 83 | a7 21.3 26.8 | 32.07
52 .z ANyt 84 ) 14 9.7 | 32.6 | 32.00
53 [ 2 WSav wvadbratibrayyory 586 | 3473
54 3 .2 53 | 86 3t | 47.3-T 41.2 | 37.00
550 11 .9 2 53 | 87| 43 | 413 | 430 | 3707
36 .3 2 B3 88 | 30 387 48.4 | 37.60
57 I \3 .54 89§ 23 ] 56.0 | 43.4 | 3900
58 "2 |93 00| o5 ;413|432 | 388
59 | 2.0 } 1.2 .93 91 6 51.0 45.2 | 36.73
H0 6 e 1.2 .17 G2 52 300 44.0 | 35.87
ar J [22«; 1.2 1.20 93 | 350 30.7 | 37.6 [ 31.32
6z | A\ 1.2 J 1.27 04 17 43-3 4L.0 22.2
63 | U 14 | 207 || 95] 63 | 344 | 32.8 | 2640
64 N\ |23 | 1.4 | 213 g6 | B[ 323 | 23.2 23.07
55¢ 724 ( .8 / 2.20 97 | 1 130 | 23. ;ngg
G5\ | 3.0 2.2 2.27 o3 J 5 5.7 0 15‘80
2070 2 1.3 2.4 2.33 99| I 2.0 34 | 14.
{68 | 2 17 | 36 | 373 | too I 3 L.2: é‘gg
Y69 I 5.3 3.8 4.20 | 0% .2 5
70 13 | 5.0 3.6 4.93 | foz | 2A6;
71 I |50 | 3.4 | 600 103 J 2.6
72 ] I ( 1.0 34 7.07 | 104 . g
73 1 Lo | 6.2 | 1027 | I03 | .37
74 I |9.7 7.4 [ 10.40 { 106G |
. [ '
|773- [773, 5 773 (7?3

;moothed data, as a spurious consistency in the ﬁndmgs may be
introduced and significance of the original data may be hidden.
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The possibilities and limitations of smoothing will be better
illustrated by application to the data of Table XVIII which
are decidedly multi-modal,

In the accompanying Chart X, the histogram represents
the original data; the smoothed average-of-three curve is not

CImanT X
Distribution of School Grades

——  Groch from erignal data 7N
a8 ~—— Graph from smoothed date. Avge of 5.
B 1 o @ ¢ (Graph from smoothed dote. Avige of 15 ) ™\

Number Recewing Grade indicated
B
[+]
|
1

oL-r-q-@u;A-,—&-P"}'ho"

13so@aagyassareeegYIssaY g s
'\“ Grades Recewed

~E
shovq&\"the ordinates of the smoothed average-of-five curve
are srépresented by dots; and the ordinates of the smoothed
.. Byerage-of-fiftecn curve are represented by o's.

) The curve from the original data has fourteen modes, ten
of them located at grades divisible by five and four located
halfway between such grades. It seems that many icachers
do not grade on a percentile scale in units smaller than five
per cent, and that most of the remainder do not grade in units
less than two and one half per cent, An examination of the
frequencies in the average-of-three column shows that these
minor modes, which occurred about every 2} units, have been
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smoothed out by the process of averaging three neighboring
measures, but that all the major modes persist though they
oceagionally are no longer exactly five units apart. It is
found, by reference to the plotted distributions, that it requircs
the smocthed average-of-five curve {+---) to smooth out
the maodes periodically oceurring every five units, It is also
apparet:i that the smoothed average-of-fifteen curve has
flatiened the mode at go and spread out the extremc measures
altogether too much. It is therefore a desirable rule, when
smooihing must be resorted to, to average such a numbeii of
ncighboring groups as just cover the periodicity whichydt is
desired to smooth out. If the data show great urcgulé.nty,
rather than periodicity, it is bettcr to average too small @ num-
ber of groups than {oo large a number. In thewqrse in hand
there is no doubt that the smoothing by averdging five class
frequencies 1s the preferable method, but SO s0, something
of significance, as is always the case, hag Sbeen lost by the

smoathing: To illustrale; the percentdge of failures shown by

the smoothed dala, .57 per cent, 15 over twice as large as was
m reality Lhe case, — .26 pe];!(xﬁptﬂbl -aulibrary.org.in

Section 1. TI:IE Ocive CURVE

When it is desired to desermine the number of cases or per
cent of the population! Wying below a certain record, it can be
readily Jom, il a c&\e is plotted showing sums of the fre-
quencies of all mmqurcq Lelow designated amounts of the
trait. The 1'11(31‘}1(;(1 may be illustrated by the data of Table I.
The first 1w U‘&Olu mns below repeat that table; the third column
i obtalu.ﬁ‘ by cwmulating the frequencies in column two.
The rd@\olwmn three recorded opposite 65.5 means that one
day, fOtﬂ. of 1he 62) had a temperature less than 65.5. It will
{‘)f; nntm\d that 1wo days had tempemtures less than 66.5,

& 07 3, 0r 68.5. or 6g.5.  In such a case it 13 sounder to assign
the 2 to the point ‘['[11(_1“. av between the 65.5 and the 69.5 than
to any other point in this stretch.  Accordingly it is recorded
m column three that 2 days had temperatures less than 68.q,
Contmmncr there are 3 days with temperatures less than jo.5;
4 with less than 72 5. cle. Finally it 18 to be noted that the

72.
last point is indeterminate, ie., 62 days had temperatures

N
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less than g8.5, or gg.5, of 100.5, ete. It is impossible to deter-
mine from finite data what is the maximum temperature below
which the tempcraturcs for all days lie. It is of course also
impossible to determine what is the minimum temperalure
above which the temperatures for all days lic. For this

TABLE XIX
Distribution of Daily Maximum Temperatures, July and August,

New York City, 1917 :a\.
N | oo e P
R e B Y e
TEMPEE-~ WITH TLONS E _Tm‘\f‘ — 1 TEMFER- | WITIC w‘i LExprussEn
ATUgeS | Gwvew | o SF 0 [BREREEED srpprs | Civen ;”{JF i PER-
ngf:}?' Davs | crdTacis T\ET?IPR];T \'D avg | CENTAGES
[ | _ e & - — |- -
05 i ! [ i 43 72.6
gg.s 5 1 1.6 ||I 84 ¢ l\” :
- I r 47 ¢ 758
66.5 eg,\ | e
67 | | st 82.3
68 | 2 3.2 .}‘ -3 ‘
69 | g 34 &7.1
rin] | 1 ﬂ I
L3 55 . B8y
;; \.\@-rw\\r_glbrjuhbl ary| p’t‘é‘m V g8 2 | |
by | | A0 64 | | 57 9o
RS I
75 3.0 | I o2 | j
-6 2 145 | 8 ! g6
i 93
- N !I o 16.1 94 1 ';
N 1| 95 | 1
w4 IT | 17.7 | : 9 = o
) 7. o | 59 | 95
jgé 3 14 Ii 226 | 37 T 60 56.8
I T gl 2 ||
o\ I5 24.2 | | 6z?
NS & o | 99 [
25 40.3 I 62?
81 [ 8 II | 'l 100 J
3 2 &27
52 | s | 33 [ 53.2 | o 2}
38 | 6r.3 ‘
83 7 | l ] |
i I B

TEASON the ZEro and one hundred percentﬂc points for this
ogive curve are not plotted. This should be the case for all
ogive curves — the common practice of plotling the lowest
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and highest recorded data as the o and 1oo percentiles being
inaccurate and confusing,

Column four gives the same data as column three, expressed
in percentages of the total frequency, In the accompanying
graph the ordinates are the cumulative frequencies in per--
centages and the abscissas are the temperatures as shown:

Caarr X1 \
Daily Maximum Temperatures SO\
July & Avqust 191T-New York City 7'\

g [ R \w
£ N
5 3
g
£
1o
£ &
3
£
$w
z X

Pad )..“

5 1o zo 44!’. €@ To 10

Percentaqe of days Falling short a‘F qgiven 'iamp.
v ¥ ww.dbraulibrary.org.in

It is interesting to<nbte that the relatively irregular data
uged has resulted ll’lx\d fairly regular ogive curve, and that,
without any smo\\f‘hmg The ogive curve facilitates interpre-
tation, c.g., 1t iSyimmediately read from the curve that:

5 per cent nf Lhe days do not attam a temperature of 7I°

10 I 5°
29 \(l, LS il 4 i Fy ' Ly [ i iy SO
&Q S [ 11 3 o 4 e Wt 1] il it SIU
\’bu i i L Wi 0N i [ 13 (14 ik 3 SSD
TN 95 it i T 1} I T o T I # o
PN fp 4w WS hyve maximum temperatures between 79.5°
@ i and 84.5°, etc., cle,

Or, interpolating the other way:

A temperature of 95 or more 1<, re.a.ched on 5 per cent of thc days

-1

" 13 1] 7§ 3 il i ki £ 871 1] £ [ [ 11} th'

The ogive curve may also be used to determine the mode,
for if a smooth curve (not a polygon as here shown) is drawn
through or near the points given and a ruler rotated so as to
be tangent to the curve at successive points, that point at
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which the ruler ceages turning in one direction and starts to
turn in the other (called the point of inflection) is the modal
poing, its valuc being rcad from the ordinate mcagures on the
margin. Applying this method to these parficular datia the
mode is found to be very close to 81°. The more important
measures revealed by the curve are the median, or so-percentile,
the semi-inicrquartile range more briefly called the quartile
deviation, or one half the distance between the upper and™
lower quartiles, the so-percentile, the go-percentile C-mds“rh('
io—go-percentile range, For the d’itﬂ, in hand thesc. Qre Age-
spectively 81° 76.5% 84.5%, 2.5°, 75°, 88" and 13°. A\ W/

\ X

Section 8. Tur GrROWTH CURVE'\"\"

The accompanying table gives smoothed seores in a reasoning
test as given by Kelley (1g17). Plottcd\\Lhey give a typical

growlh curve, \ &
TABLE 'SCX
ApDULT
AGE . .70 83 94 103 II. 8 13 O 141 153 165 178 102
SCORE oN

Trapug’ww.dbraulibrary, org m'
SCALE . I.I 2.2 3.7 6.1 65 72 7.3 7.8 85 8g 94

m\ CearT X1I
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This particular curve is intercstiug  thi
ing at ages 13 and 14, which is not ol clar
curves of mental 1raits, but as the wim
instead of ntrinsic ability, could cowvenr 0
phenomena the curve does noet prove, Ten i
that there is a pubertal disturbance, Vor oo oo
present statistical treaiment nu attentio ool o
double inflection of the curve,

Rotating the curve through go® and loaidh
(as pictured in Chart XTI} shows s venenn w
an ogive curve. It was possilile It fiw oo o
tures to cumulate scores and obioin (el
the reverse process il is possible from 35 on i
the original distribution of temperaiurcs,
tion it 18 possible to obtain messures o .
from an original growth curve. e ISCRE
plotted as herewith:

CrarT NTTLES

. Growrh Curv%'-\ﬁl@%ﬂgﬁ'é lib ary-org.in
el Score for Diffglant A '
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which the ruler ceases turning in one dircelion and starts o
turn in the other (called the point of inflection) is the modal
point, ils value being read from the ordinate measures on the
margin, Applying this method to thesc particular data the
mode is found to be very close to 81°. The more important
measures revealed by the curve are the median, or 5o-pereentile,
the semi-interquartilc range more briefly called the quartiloe
deviation, or onc hall the distance hetween the upper and
lower quartiles, the 1o-percentile, the yo-percentile and R
1o—go-percentile range. For the data in hand thesg anc re-
spectively 81°%, 70.5°%, 84.5°, 2.3°, 75°, 88% and 13°. :""«:

Section 8. THE GROWTH (szw: ’\

The accompanying table gives smoothed scores in a reasoning
test as given by Kelley {(1g17). Plotte\d‘ Ahey give a typical
growth curve. 4

TABL F XX
ADULT

AGE . . 7.0 8.3 9.4 103 1[8. 130 4.1 I5.3 I6.3 17.8 I9.2
SCORE ()N \
TraprEwWw.dbraulibrary.org! in

SCALE . 1.1 2.2 37 6.J 65 72 7.3 7.8 83 89 9.4
' .z"\\ c
\\w AarT X1
Girowth Clrve in Reasonn g Test Abilrty
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This parlicular curve is intercsting in that it snows a flatten-
ing al ages 13 and 14, which 13 not al all characteristic of growth
curves of mental trails, but as the units of mcasurement,
instead of intrinsic ability, could concetvably account ior the
phenomena the curve does not prove, but merely suggests,
that there is a pubertal disturbance, For the purpose of the
present statistical treatment no attention need be paid to the
double inflection of the curve. \

Rotating the curve through ¢o” and looking at it ina m.tr.rb('
(as pictured in Chart XIII) shows its general resemblaped, to
an ogive curve. [t was possible In the case of daily tempera-
tures to cumulate scores and obtain ogive curves data By
the reverse process it 1s possible from the ogive 915\1:-3: to obtain
the original distribulion of temperatures. By parity of opera-
tion it is possible to obtain measures of growth increments
from an original growth cnrve. The g{ov& h curve may be

.

plotted as herewith: \®

N/

).”
CHART, X‘III

Growrh Cu %Bagdthmglhhlﬁﬁy org.in
Soare g&.‘l‘emn? Ages ¥-org.

mJ
\ 545 A e 95 @5 T

'I'eed' Scare

Thinking of the abscissas as sums of increments of reasoning
ability and rcealling that the graph is for an average individual,
whose maximum development or accumulation is to g4 of such
increments (i.e., the total population of increments is ga) the
graph may be read: At age 7 the individual possesses 11
increments of reasoning ability; at age 10, so increments,
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ctec. This may be an awkward way of interpreting growth,
but if it is desired to think of growth as a sum of increments it
immediately suggests the determination of the increments
added durine each vear of life as follows:

TABLE XXI
el el Sy e —————— |_ ; - '_(-‘__ j—_h_l'_‘_—_ pr— Pl _; _'
AGE SCORE i oar i J acE 2N
A
S el Bttt O
o Q l’b}‘
0 5 {xdm b-1)
1 o *{
53— S5 tmm 2}
54+ A X\s‘(tmm 2-3)
3 I N\ ’
z = /N 3.5 (from 3-4)
2+ LY a5 (from 4-5)
5 5 ¥ ,
3ENY 5.5 (from 5-6}
AT 6.5 (from 6-7}
7 11 AN
a8 5 {from 7-8)
& if
wiw.dbrauli rary.o*g&in 12 8.5, ete.
9 31 “< [
¢ I .
1o \\ 9 9.5
4 12 I0.5
IL < Sé&\ 2
O 5 1.5
Iz O 67
N 4 12.5
13 I 71
1‘4{\}' , 2 13.5
AR 3
O 3 14.5
Q‘Q“ 5 76 6
o N 15.5
"\ W 16 8z 55
/ 5 16.5
7 a7
7.
i . 90 3 73
? (from 18~ t
Adult o4 4 { adulthood)
o o4

These growth increments plotted in the form of an ordinary
frequency polygon give the following figure:
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Crart XIV

Drstribution of Yeerly Growth Increments i a Fleasonng est
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The bi-modality of the growth incremeént curve is of course a
consequence of the double inflectior efthe growth curve. Since
the constanis of this increment cqfve {mean, skewncss, standard
deviation, ete.) can he 1'0&(1'4,};\@]@3}5&5{1%&1}9 GULvG, has certain
advantages over the growth curve. It should be a very con-
venient form in which to{prcsent data for purposes of studying
variability in rate of growth, variability in price changes, ete.
In dealing with ﬁun}tlons in which there is a losg in a given
period, e.g., when'an individual weighs less in one year than in
the preceding, fitgative frequencies arise. These need cause
no troublg.{“ff;}féated strictly algebraically and the negative sign
preserv,%{.w"

Brown and Thomson (1921) have shown that the standard
dgwintions of the class frequencies of such a curve arc not given

\”‘B’y"fhe ordinary formula [Formula 23]

Section 9. Tue GrarHIC REPRESENTATION OF CATEGORICAL
MEASORES

The graphs thus far have pictured the frequencies or amounts
of a quantitative or temporal variable, but if the frequencies of
categorical measures are desired a different procedure is neces-
sary. For example, if desired to represent the number of
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days which le in the following categories, {a) clear, (b) cloudy,
() rainy, a large number ol devices are possible, The signifi-
cant feature to be portrayed in this as in all qualitative series
is the magnitude of each catcgory with reference Lo the others,
or the proportions which each bears {0 the whole. This may
be shown by appropriate Jengths of lines constituting what is
called a “bar diagram,” by heights of shaded rectangles, by™\
sectors of the required number of degrees, by appropriatd
pumber of discrete objects, men, bushels, ships, ete “he
essence of an accurate portrayal les in having the rgpresenta-
tions of the two or more items alike in every respect{@xcept one
and differing in that one by the required amoungsd

If the population of Texas is 5 million apdthat of Georgia
3 million and it a man, representing Texag\is pictured beside
a child, three fitths as tall, representing (fgergia, the impression
conveyed is entircly erroncous. Thelheights are in the ratio
of 5:3, but the arcas covercd by ’;h’e: figures are approximately
in the ratio of 25:9. Howcver theisituation is even worse than
this for the weight of a manjs pictured is to the weight of a
child as ‘pmmﬁill'aw}lmymr‘gely as 125:27 and one is inclined,
in so far as the pictureg(tnean a man and a child, to make just
such a comparisen. ’i*,\

If three dimensignal objects are pictured upon a two dimen-
sional surface tO\¢onvey a one dimensional relation the objcets
should be idc«iitiba] in size and differ only in number. In the
illustratigrg'fﬁentioned, Texas could be represented by a row
of fiv :ﬁ%én and Georgia by a row of three.  The usc of men in
pictinhg population, of sectors of a dollar in showing the items
Of s budget, of bales of cotton in picturing cotton production,

o (:t‘c are conventional and expressive modes of presentation.
’ Accuracy of presentation is favored by the use of rectangles of
different lengths, but as independence of a heading may be
accomplished by a proper cheolee of object for picturization,

. this method has certain indubitable advantages. However,
if a two or threc dimensional object i pictured either (a) ali
the dimensions except one should be kept constant and that
one vary in the proportions desired, or (£ all dimensions should
be the same and the number of objects vary., As an illustra-
tion of (g) the amount of paving in two cities could be repre-
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sented by the pictured lengihs of two roads, the amount of
coal produced by trains of gondola cars of different lengths,
or the number of fish in the lakes at two resorts by angle worms
of diffcrent lengths, ele.

Tt is occasionally possible to represent not only the relative
size of two categories bul also their special temporal or spatial
relation by graphic means. This is very prettily illustrated
by the accompanying figure from Perry.  (C. A. Perry, Educa-

tional Extension. Quoted by Rugg, 1917.) ¢\
NS “
CHART XV R N
Environment of a Mnor \\

Shopr Offoe Sidult-

e s il e m BT

6 &
.M\u.dbraulibrary,org,jn

2

A cross section,ati}”;}y age reveals the proportions of time
gpent in the Varim\m\ways, but it does more than this, as it re-
veals the tempcrr;',d relations of these proportions.

If one cogsiders how many pages of writing matter would be
required €@yConvey an idea of all the rclationships shown in
Chart\XV he will appreciate the art involved in graphic
preséotation. T he will likewise consider that a written
p(és'éntation would probably be obscure and dreary reading

“Narid that the joy of discovery belongs to one who studies an
3ngenious chart, he will appreciate that the graphic method
at its best has far greater advantages than those of simply
saving spacc and time.

The last figure conveyed information ag to three different
items, (g) age', {#) time spent in different activities, and (¢} the
temporal disposition with reference to each other of different
activitics. It ig thus a complex series, being gquantitative,
qualitative and temporal.
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Accompanying is a block presentation of a complex scries.
It conveys information as to three different things, («¢) date,
(b) numbers of immigrants, and {¢) country of birth.

Ceart XV

IMMI{GRATION
binﬁ‘rhousands‘ p
ear periods
lgSJ Y to pi910
from US Alien
Immigration Statistics

|
\
pa
N
i

LEE

This information is fully presented in the figure, but it very
frequently is impossible clearly to present a three-dimensional
situation by a piclurization of a three-dimensional figure, for
commounly a part of the figure would obscure other cssential
parts. The large immigration from Germany in 189195 almost
hides the block showing the immigration from Germany in
18g6—-1Igoo, but as it does not completely hide it the relation-
ships are readily apprehended. However, if the Immigration
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from Russia had also heen larger in 18¢1—o5 than in 18¢6~

1900, the block for the latter period would not have been

visible and the method would have been unsatisfactory,
Another device for presenting such data is given below:

Crart XVII
IMMIGRATION IN THOUSANDS BY FIVE YEAR PERIODS
1891 T0 1910 X
:lw ) F::[%hﬁ ) EETtoB %mmt\

2%c3 5 tof 5t¢9 11 e IR
s, e % )
| S—
Stod 6107 Qtei0 124013
e —— B e B

————™
S°
ITALY e
AUSTRIA = P
HUNGARY [— wrargrd bl 'h-m\?"“l .
RUSSIA - AS
GERMANY F—=—
AE9) 1695 18%-1900 1901 - 1805  i906-19I0

This is &\i‘n\ore flexible method than the preceding, as thereis
no posqbﬂiﬁy of one block covering up ancther, but it requires
a coatge grouping in the measure represented by the cross-
’Qatohjngs or shadings, and in general its features are not out-

tanding as are those of the preceding figure.

In the block figure the last three countries are in the order
demanded by geographical position of the countries. An addi-
tional fact, such as the numbers of literate and illiterate immi-
grants, could be represented by shadings of appropriate areas
upon the tops of the blocks. Still anather, such as age, or scx,
or vocation, could be shown by the color of the ink used in the
cross-hatching, Even this does not exhaust the possibilities
of graphic presentation upon a single two-dimensional surface.
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It 1s difficult to give a summary of the principles underlving
graphic portrayal as they differ with the number of dimensions
presented and with the continuous or discrete nature of the
data, but the recommendations contained in the preliminary
report of the joint committee on standards of graphic presenta-
tion are of broad applicability. This committee represented a
widc field of statistica’ workers and was formed upon the invita<{\
tion of the American Society of Mechanical Engineers, IES

recommendations as given by Haskell {1919) are: R

1. The general arrangement of a diagram should, précee
from left to right. N

2. Where possible represent quantities by lineat(Fhagnitude,
as areas or volumes are more likely to be misitderpreted.

3. For a curve the vertical scale, whenever\practicable, should
be so selected that the zero line will appdabin the diagram.

4. If the zero line of the vertical\geale will not normally
appear in the curve diagram, the z;efqi iine should be shown by
the use of a horizontal break in theidiagram,

5. The zero lines of the scalés¥for a curve should be sharply
distinguithed A ainen ®ibrdinate lines.

6, For curves having{a, scale representing percentages, it
is usually desirable i;g*e}nphasize in some distinctive way the
1009 line or otherSting used as a basis of comparison.

7. When the gtale of the diagram refers to dates, and the
period represefited is not a complete unit, it is better not lo
emphasizeﬁbe' first and last ordinates, since such a diagram
does notyPepresent the beginning and end of time.

8. Wilien curves are drawn on logarithmic codrdinates, the
limiting fines of the diagram should cach be at some power of

qu\on the logarithmic seale.
N o. It isadvisable not to show any more coordinate lines than
necessary Lo guide the eye in reading the diagram.

1o, The curve lines of a diagram should be sharply dis-
tinguished from the ruling.

11. In curves representing a series of observations, it 1s
advisable, whenever possible, to indicate clearly on the diagram
all points representing the separate observations,

12. The horizontal scale for curves should usually read from
left to right and the vertical scale from bottom to top.
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13. Figures for the scale of a diagram should be placed at
the left and at the botlom or along the respective axes,

14. Itis often desirable to include in the diagram the numeri-
cal data or formule represented.

15. If numerical data are not included in the diagram it is
desirable to give the data in {abular form accompanying the
diagram.

6. All lettering and all figures in a diagram should be placed
-s0 as to be casily read from the basc as the bottom, or fromothe\
rlght hand edge of the diagram as the hottom. O

. The title of a diagram should bhe made as clear anfl com-
plete as possible. Sub-titles or descriptions bhould” Be added
AN

if necessary to insure clearness,

PROBLEMS \ )

1. Smooth the temperature data by meansgf. é\movmg average of three
class frequencies and plot.  What is the modalvaluc?

2. Express the populations of Califorgia) «Oregon and Washington as
indexcs with 1900 as base. Which Std.f.ﬁ' showed Lhe greatest relative
growth in the decade 1900-1910°7 ,."’&

5. Chart VI shows that re latlv@w’xdwwﬂaﬁmgmngqmak in Chicago
did nat advance as fast as whalesale prices. Choosing cach year in turn
as base, delermine the relafive increase in the wholesale prices and the
retail prices of steak fo1ythe succeeding year, and answer the question,
“In how many years did retail price advances fail to keep pace with
wholesale price advafices?”’  Using data in the last colump of Table X1Ia
answor the same Qheﬁtion with reference to Wholezale prices and Retail
prices of 22 cogimpn articles,

4. {a} P].Q’t\'x Ogive curve for the raw data of Table XVIII and on the
same paperndg) an Ogive curve for the same dula as smoothed by a moving
av erage‘i}\ reen class frequencics.

PFJot hypothetical dala giving incomes in Great Britain in the form of
ALK C}gne curve.  What is the mode?  Fill oul the following table:

\ Incomes Received by Successive Percentiles

PERCENTILES T §5 10 20 25 30 40 50 60 75 80 90 95 g9
IncomEs
6. Save work for future refcrence.



CHAPTER III
THE MEASUREMENT OF CLENTRAL TENDENCIES

Section 10, AVERAGES
A tabhulation of the data pertaining to a distribution pre: o\
sents all the facts, and a histogram or frequency polygon makes
possible the visualization of this detail. Ordinarily, howegse)
the detail is so great that it cannot be interpreted. Iﬂ\thls
case ceriain measures of the fotal distribution are sgivideable
in summarizing the data, The most important GdP)these are
averages, or measures of central tendency.  THEYost signifi-
cant averages are (¢) the mean [more accuratalx“the arithmetic
mean], (&) the median, (¢} the mode, (d), the geometric mean,
and (¢) the harmonic mean. Note that “Ehéé;e arc all averages.
The word “uaverage” s Irequently ged synonymously with
mean (aﬂtl}\xﬂngpc me.-,:,n) T4 will ’@ccaqmnall\, be used in ths
text in such CXpresaEHe 8EE s average of the means,” in
order to avoid the 1nore apcmate but awkward cxpression
“the mean of the mecang, Ordinarily “mean” will be used
consistently to des1gna‘cq\the arithmetic mean, and “average”
as SYNenymous \m% measure of central tendency,” thus
meaning any ong/ti the five measures listed above.
The most igapbriant single item of information to be known
about a die}taiibﬁtion ig what it is a distribution of.
The segond in importance is the nianber of cases in the distri-
butio\or, ag it is usually expressed, the population.
The ‘third, is to know some measure of central fendency,
&mﬁe average,

\ ) The fourth, to know some measure of the degree to which
the measures scatter, or lie above and below the average, ie.
to know a measure of dispersion or deviation from the average.

The fifth, to know if the measures are symmetrically dis-
tributed with reference 1o Lhe average, or if there is 2 bunching
of measures on one side of the average and a long tailing out
of measures on the other side; ie., to know a measure of
skewness,

44
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The sixth, to know if the measures are exceptionally densely
grouped at the average, giving a high peak to the frequency
polvpon (leptokurtic, ie., B of section 36 is greater than 3.0)
or i the distribution is rather {lat in the middie and contracted
at the ends, thus tending toward a rectangular shape; (pla-
tvkurtic, €., B < 3.0} or if they show a mean between those
two conditions as does a normal distribution (mesokuriic,
82 = 3.0); in short, to know a measurc of kurtosis, .

These are all of the essential measures in the case of a uni»
modal distribution; the next important item would.keta
measure of the iendency to have more than a %mgle n'mde or
place of dense frequency. R N\

No treatment will be given insuceeeding Lhapt a 1 bi-modal
curves, but if il iz noted that uni-modal cuf¥es include anti-
modal or U-shaped curves, — those havingdarge irequencies
at the extrenics and small frequencies ifihe middle, as well
as L-shaped curves, rectangular dl‘iLﬁ\ltIOIl‘w and all forms
of positive uni-modal curves, it w ilh"be seen that the great
majority of distributions found i1 biology, economics, and
psychology belong to the unig bdal type and that a knowledge
of the six items mentioned ;11*‘%’?@’1 diyeilibrerfopeglibut @ small
number of distributions?”

Measures of skcwme% and kurtosis are cssential in mathe-
matically fitling & (s to observations and are treated of in
Chapter VIII am\Curve Fitting. The calculation of averages
is dealt with @lthis chapter and the relative excellence of the
different a{er’agcs will he considercd in connection with their

p1oba&é\errors in the next chapter,

Section 11. Tsr AritHMeTIc MEAN

:*TWMMM%M
\ Jdivided by the number of themy, This definition immediately
snggests the method of caleulation: add the measurcs and
divide by the population. If an adding macbine i available
and other measures of the distribution are mot desired, this
method is the most expeditions one to follow. Generally,
however, it is more economical of time first to group the
measures and arrange them according to magnitude, as was
done with the Temperature data, Table VIIL. ~ Repeating
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these data we have the {irst two columns of the accompanying
The third column illustrales one method of

Table XXII.

TABLE XXII

Coleulation of the Mean

T | | DE\'TA—_ B Dievia- T
TN S CROUFED 'Ij[(}NH
CMPITR- FRE- e J— PR 2 A Plean WEOM
'I:’J:E:]Et :}I:Eréﬁms PRODLETS :RR(I-:'I“— Provucrs QUIEII?“_]J ;\LR LI N\
THARY RARY
('}iwm . ORlGIN A .
J— - e
x | f x| | r | o R
65 1 65 i . 15 _ TS . 1’ N
66 I 66 | —1q4 | — 14 2 <N — I
60 ! 1 3™ — 4
70 I 70 — 10 — 10 LV
7L I 7t -9 @ — 9 AS
[y 8 1] [ 12 \ P -3
74 2 14 - - A
73 3 225 - 5 — 13 .‘|.\\6 -z iz
76 I 76 | — a | — a8
77 1 77 - 3 N\ !
78 3 234 -2 LW . 5 - - — 5
79 1 70 — 1 A= ‘ . o
SO s ! - 34
ETY 10 800 Al |
81 wwir.dbrauliBraiy ecgrin # ‘ 23 o
g2 3 qio | N2 | o :
83 7 38T 4 3 2F i
84 2 168\, 4 | 3 ‘ 13 1 [ 13
85 4 330 5 20| |
86 3 %Gt | 6 ot }
87 L r il 7 7 | = 2 1z
8% 20N 176 B % | ;
A%/
40 ,\:MI; 90 1o ‘ 10 | 3 3
o5, (V7 1 95 ‘ 15 ‘ 5 |
% I 96 | 6 | 16 2 | 3 10
RNL 2 | 196 81 36 '
’3’ 99 _ 2 6 12
\, 62 i 5,086 185 | 62 T 50
96 16
62 62
Correction = 1.548 Correction
Arbitrary =3 X .258
Origin = Bo. Correction = 774
M = Br.548% Arbitrary
Origin = 81.00
M o= 81.774

* Greek alphabet given In appondix,
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caleulating the mean; the fourth and fifth columns a hricfer
method, in that it involves handling smaller numerical magni-
tirdes; and the last three columns another method which is
still shorter in case the number of class intervals is large. For
a method of caleulating the mean, standard deviation, and
higher moments by means of continued summations see Brown
and Thomson (1921) and Tlderton (1g905).

The headings of these colwmns are typical and will be

repeatedly used in subsequent examples: O\
X {or V) will be used regularly, as here, to demgnate gross
scores, PAY

f {F) designates ¢lass frequencies. o\

£* (£) designates deviations of scores frommém arbltrar}
origin, or starting point. In column four, £ represents devia-
tions of the gross scores from the arb1trar} {&rﬁ,m 8o, while in
column seven ¢ represents deviations of (Aass intervals each
of which is three times as large as the, Sldss interval obtaining
in the gross scores, e.g., from o-1 in co}umn seven is one ¢ unit
but it is three X units.

x (or %) has not been used any of the above columns since
it is reserved for a very (1§f‘1"ﬂ‘f&’ PhFpubhraly avglizonsistently
mean a deviation from {heMrue mean, In ithe case in hand,
if deviations from 81,448 had been recorded they would have
been designated ag Jmeastires. Throughout the rest of this
iext x (or ¥} will, mcan a deviation {rom the mean or from an
origin so near da%he mean that no attention need be paid to the
fact that it différs slightly from the true mean,

N. Odefurther symbol is universally cmployed — N (1)
stands{for the population. In the present example N = 62,
[n Qédésional]y has other meanings, particularly when it ap-

Jears as a subscript or a superscript.]
\ A is used to designaie the mean.

3. The symbol T indicates not a measure but an operation.
When placed before a symbol slanding for a measure it indi-
cates that the sum of all such measures is to be obtained,
e.g., If means the swn of the frequencies — in the illustration
3f = 6o.

“With these definitions in mind it will be seen that the mean

* (3reek alphabet given in appendis,
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may be caleulated according to any one of the following
formulas: M= ?NX. {The mcan}. ... .[1]
This formula is used in case measures are not grouped or
arranged according to magnitude.
TfX
zf
This is the method used in columns two and three, ZfX = 5086
and Zf = 62, These two formulas are really idenlicaly ¥or
IfX simply means that each X is taken as many times’as it
occurs, There is no mathcmatical operation in uge 1h which
the sum of the measurcs is taken irrespective of thédrequencies
in the various classes, so that in subsequentieXamples ZX will
mean identically the same thing as Z/X and will frequently
be written for the Jatter as it is more‘doncisc. For similar
reasons Zf will be written for Zf; E;&C‘f(.jp 2, Zx? for Ifa?; ete.

M=

{The mean) ... . fr ¢

M = Arbit. Orig.,;}: %\f (The mean). ... .[t &}

This is the method illustrateddn columns four and five, It is
called thﬁvmﬁibfﬂirliﬁrﬁﬁgméﬁﬁﬁ, ie., of tendencies to produce
rotation about a points Moments may be taken about any
origin and if the po,siti}?e exceed the negative it means that
the origin chosen igteo small,  Similarly if the negative cxceed
the position mofients the guessed mean, or arbitrary origin,
is too largedafid a ncgative correction is necessary. If the
gucssed medn’ is 8o and calculation shows that there are ¢o
eXCess Qéi‘c’ive moments then, since there are 6z cases i all,
the dmoment corresponding to cach measure should be
gﬁ\gff;'z = 1.548 greater than it is in order to make the positive
~exactly equal the negative moments. This point where the
moments exactly balance is the mean. Obviously if the guessed
origin is moved by 1.548 units, i.c., if 1.248 be added to 8o, a
value will be determined such that if moments about it are
taken the negative and positive moments will exactly balance.
(Class interval) 2 £
N
This method is illustrated in the last three columns. It is a
moment method applied to data which have been grouped.
The guessed origin is here 81, the class interval 3, i.e., 3 of the

M = Arbit. Orig. + (The mean)[I ¢]
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gross measure units, and ¢ = 16. Solving M = 81.574. The
discrepancy between this valuc and that obtained before is
duc to the grouping, — the frue value being 81.548 and not
81.774. Such error may be either positive or negative, and,
unless very great precision is demanded, may be disregarded
when the data show no pronounced periodic disturbances and
when the nuwmber of class intervals is 12, or greater. (For
considerations leading to the number 12 see section 46.)

It will be noted that there are 11 class intervals in colurfith{.
In the case of distributions which show peculiar local gEdypitigs
great care should be exercised in combining class frequenuc,s
In the case of the College Marks given in Tahle XVIIIa
combining of measures into groups as follcrw! 50.0 —54.0,
35.0 —50.9, fo.0 —04.9, etc.,, and a des1gnat1ng ‘of the middle
points of the groups as lying at 52.5, 518 62.5, ete., would
lead %o substantial crror in calculatisig‘ the mean, since the
measures in the groups are not alNevenly distributed. To
iltustrate: if the rz measures in the interval 65.0 — 69.q are
grouped and assigned the valub ©7.5 an error of 1.33 has been
introduced, for caleulation jshoms that the true mean of these
T2 measares is 66.17.  Aferfrefbrayibrngiumlg group would
not be serious, but fohthe College Marks data the error is
tvpical of each p, so that a calculation of the mean from
data so arOUpedg%ould lead to systematic ralsing of the mean
by an amount\between 1 and 2 units, Whenever systematic
Jocal tendetcles are apparent in data and grouping is resorted
to, it showld be endeavored to so group that the middle of each
grou )\mterval corresponds to a local mode; e.g., with the
C‘oll‘ew Marks the class intervals of the groups should be as
fQﬂm\s 47.3-52.5, 52.5-57.3, ete., since the mid-points of these
ttervals, so, 55, ete., correspond to focal modes and also approxi-
mately to the means of the measurcs in the group intervals.

The data in Tahle XXIIT reported by the New York State
Industrial Commission and taken from the New York World
of Jan. 27, 1919, are so grouped as to make it impossible
accurately to determine any sort of an average wage. These
data show that 6 per cent of women factory workers receive
from $6-87.99 a week, but certainly the mean wage of this
group is not $7.00, for in all probability a large number re-
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ceive exactly $6.00, another large group exactly $7.00. whilc
lesser groups receive wages of $6.50 and $7.50, and but very
ocecasionaily would there be a wage such as 86.4¢ or $7.90.
Since one cnd of the interval, $6.00, has a large frequency that
is not balanced by the other end $7.¢9, the mean of the group
may be expected to lie below $7.00, possibly considerably
below. Similarly the 14 per cent receiving wages from $8.00
to $9.09 presumably receive a mean wage much below $9.00,
It is difficult to group data of this kind without introducig
large error, but if the intervals had run, $6.25-86.7536%6-
K7.24, $7.25-87.75, ete,, probably the mid-point of cac’h group
would be close to the mean of the group, An atternpt to deter-
minc an average wage from the data as given .né’ight casily be
nearly 5o cents in crror. The unequal digEnves covered by
successive intervals in the grouping proposee*is a disadvantage
which is more than compensated by hainy the mid-points and
the means of the groups approximagely coincide.

.\BLE, XXIIT
Full-time w’%&’@ﬁ]@tﬁ?}aﬁ%ﬁ' o r%}nm Faglories and 23,203 tn Mercantile
shapenls
o § FacToRIES SIU);.; B
\‘ PEr CENT PER CENT
lessthan $ 6 . .\\ w . ... I I
Lessthan 8 .. S . - o . . 7 7
Lessthan 10 . {» . . . . . . 2r 23
Less than s2{3". . . . . . . | 42 44
Less than €47 . . . . . . .| 59 64
$raorowEr)” . . . . L L L. 41 36
foqrowey L0 L 0 0 . L 11 9
I

—— T e e e

< = ! - —
2 &
. «Iit any research the question nsually arises whether to group

Cat all, and, if g0, what groupings to make. It has already becn

i

“suggested that groupings should not he made which result in

less than twelve classes.  This is alower limit.  If the distribu-
fion 18 pronouncedly asymmetrical, as for example is that
showing incomes in Great Britain, twelve is far too small a
number of classes, The lower end of that curve could not be
at all satislactorily represented if the income range covered
by each interval should be as large as £100, nor with such
grouping could the arithmelic mean be accurately determined.
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A range of £40 for the lower intervals will answer, though a
range of £1o or £20 would be much better. Since incomes
range from about £o to £200,000 there would be no less than
sooo classes needed {0 represent the distribution if the class
interval 1s Lao,

The distribution of Wholesale Price Indexes is not as
markedly asymmetrical, but it has such a phenomenal peak
at “no change” that a coarse grouping cannot be used, or this »
characteristic is hidden, The plotied distribution has 41
classes and 38 of them have freguencies other than zero.g 'A%
plotted, the peak at “‘no change' is less pronounced than)it is
in reality and if the grouping were coarser il would Qe~ﬁpill less
apparent. A slightly coarser grouping would notXiave very
great effect upon the mean, but it would havew@&c\:ided eflect
upon other constants, particularly those meaMiring kurtosis.
Forty classes is close to the minimum w}l'\&i would be satis-
{factory for either graphic or mjmerlcal\vork with wholesale
price index measures. N\

For graphic presentation of Co,l}egé "Marks 2 groupmg into
classes of five units each, with n‘n’:er\» al limits chosen as already
indicated, would result in awgrambmqrﬂ_&a@f O}agt}g‘factorv as
that based upon the mov mg average involving five neighboring
classes. Such a groupingNeéads to but 11 classes, which is too
small for very reliable\pésults, However, groupings into units
of 4, 3, or 2z arc ngt satisfactory, as they do not conform to the
local perjodicityy,\which 18 five units. A grouping into units
of 21 would¢be”excellent from the standpoint of statistical
accurac5’3"\b:1}is"as it would involve splitting the frequencics in
the groseiscore classes it would be uneconomical of time. All
thingg\considered it would seem advisable to usc the gross
score intervals, or, for rough work, a grouping of five gross

\sgcire intervals,

The situations presented by Incomes, Price Indexcs, and
College Marks are not typical, but illustrative of the more
difficult grouping problems encountered.

Consider the Temperature data, Table XX11, and note that
if two gross score intervals had been grouped the frequencies
in Column I would have been for intervals whose mid-points
would be 65.5, 67.5, 69.5, ete., that when three gross score
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intervals are combincd the mid-points are, as shown, 66, 69,
72, ete.; and that in gencral if an even number of gross score
intervals arc combined the mid-points of the resulting intervals
do not coincide with the mid-points of any of the original
intervals but lie halfway between original measures. Ac-
“cordingly if an even number of gross score intervals are com-
bined an cntirely new table has to be made out. As this .
involves work and an additional chance for error it is undesirablé\

il a grouping of an odd number of intervals will suffice.

As a general rule, applying to distributions not espg'c‘iaﬁy
asymmetrical (skew) nor peaked (leptokurtric), (1 ‘an odd
number of gross score classes should be grouped, (2)4H8 number
of classes resulting {rom grouping should not b {&ss than 12,
and (3} the number of gross score intervalg .2 group should
equal the number involved in local periods, ‘Wr divide into such
nurber without remainder, or be an intédral multiple of such
number, Finally in case the distrikdipn is markedly skew or
leptokurtic, conditions (1) and (3} Jemain the same but (2)
the number of classes shonld Jigdgreater than 12 and great
enoughibat sigaif m&?j@.@}*—g@gﬁs}of the distribution arc revealed
in such detail as is commengnrate with their importance,

In determining the sigmber of gross score intervals to be
grouped in ordinary(data a serviceable rule to follow is to
subtract the smallest from the largest measure and divide by
twelve. The nédyest odd integer below the resulting quotient
is the propebdiinber of gross score intervals to combine.  E.g.,
in the cage™df maximum temperatures (98 — 65)/12 = 2.73.
The ncarest odd integer below 2.75 is 1. Accordingly the
datadare not grouped at all and the gross score intervals of 1°
k@t‘as the proper steps. No material inaceuracy would have

~\been introduced by combining {wo of the gross score intervals,
but it would have been of questionable economy to do so.

Applying the rule to the College Marks data we have,
(g9 — 50)/12 = 4.1. The nearest odd integer below is 3. It
would therefore be appropriate to group three inkervals were it
not for the fact that there is 5 local periodicity extending over
5 gross score intervals, Applying to wholesale price indexes
l[to3 — { — 55)1/12 = 13.2. Since the original scores were
recorded in 2 per cent steps the interval of 13.2 per cent is
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equivalent to 6.6 of the gross score intervals. The nearest
odd integer below 6.6 is 5, which would be the proper number
of gross score intervals to combine, were it not for the fact
that the data are very exceptional, having a phenornenal mode.

The proper laheling of class intervals is important in con-
nection with grouping. Class intervals of either grouped or
ungronped scores should be labeled by recording the lower and
upper limits of the interval, eg., 75.50-76.50, or by labelinf
the mid-point of the interval, e.g., 76.0. If the successiveglass
intervals are the same the labeling of the mid-point 48 Seth
clear and concise. A great deal of neediess confusion ig*taused
by improper labeling of intervals. The writer had found this
cxpecially true with reference to age data, such aé@hc following:

N\

w\,/ J SCORE N
NGE IEzHT or AGAIN, .’.}i\m Ak THMETTE
IN O, \ » Trsr
iz 140 s W 12 18.324
13 150 N 13 20,002
14 i35 s [ £] a2e.080
13 1 N 15 23-345
___ _Swwwdbradlibraryorpin

With data stuch as thés® it is a matter of sheer guess whether
the scores corres ﬁ\ciit’() mean ages of 12,0, 13.0, ete., or of 12,5,
13.5, ete, If aﬁ?}gle score iz recorded for a class interval it
should universally be that of the mid-point of the interval,
and in orddr %G make it unambiguous the labeling figure should
he carrie;d.\c;nc decimal further than the unit representing the
class,@térval, e.g., if the above tables had read:

R S e ——

e g

e t ASCORE N
. \ Y/ : : AGE RITIIMETIC
12.0 140 2.5 ’ 18.324
13.0 150 13.5 20,002
14.0 155 4.3 20.980
15.0 160 15.5 23-545

140 would have been taken as the mean height of individuals
exactly twelve years old, ete., and no uncertainty would arise.
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Section 12. ThHe MeDIAN

The median of a geries is the value ol the mid-most measure,
hence half the measures composing the series lie above it and
half below.

We will proceed Lo calculate the median of the daily maximum
temperatures in New York City for July and August, 1917,
The raw data are given in Table VIII. A hasty inspection
shows that the lowest daily maximum temperature is 63° afd
the highest 08" and, a priori, knowing of no reason fo  expect
that the distribution is skew it is assumed that thelmiedian
lies about halfway between these two extremesy We will,
therefore, make out a table of frequencies, as shoWn below:

f A

NuMpeER o Davs Tavivg TEMPERATURES W OTED

Temperature below 86 —[-|<[ |~ ~|=I-| {\\,—-"~| |-~ =131,
o e L L = 10/
" ‘st - KD = 8
N 1] 22 _!._i_¥_|_, 4 J = 5
it LIRS = 429
www dbradlibraf$ oriny = 2
R i N A Sty

above 84 ®

o
[

P4\

Adding up measur é.ﬁ?\om both ends, it is found that the median
measure lies inythe group with temperature 8¢°; or, since therc
are 62 meagyres, it les halfway between the wvalues of the
318t and 32(1‘ easures. As all measures from the 26th to the
33d mc\i'Ewe are rccorded as 81°, the z1st and 32d are so
recorded and 81° may be taken as a rough approximation to
the median. However, it is not to be presumed that the

oahaximum temperatures on all of the cight davs for wh1d1

“the temperature of 81° has been recorded were exactly 81.0

It is morc reasonable to consider that the average of these
& temperatures was 81 and that they ranged all the way from
80.5 to 8r.5. PFurthermore, since this interval is small with
reference to the cntire range of temperatures, 34°, we may
with satisfactory warrant consider that these 8 measures are
evenly distributed over the interval 80.5-81.5, as shown in
the diagram on page 53
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26th | 2¥th | 28th | 29th |30th | 3ist | 32nd | 33rd
MEASURE | MEASURE | MEASURE {MEASURE [MEASURE |MEASURE [MEASURE | MEASURE

f=1 I "y

B 3 2 S g 8 8 B 8

8 g 2 2 ® = & @ &
TEMPERATURES

It is immediately seen that the temperature midway between
the 318t and zzd measures is 81.25°. This is therefore thel
median songht, A

This method is not the best possible, but gives gl,\'gbb?i
determination {or all practical purposes. For other gmethods
see Bowley (1goy). The best possible median is determined
by mathematically fitting a curve to the ohsenfat{oui’s aud then
integrating {or summing areas) from one endf)the curve up
to the point giving one half the total area.  Adthus determined
the median is a function not only of positich above or below
a certain class value, but also of the dis?aﬁces of the measures
above and below this median class,{BeCausc the magnitude of
each of the measures from the lowest to highest enters into the
determination of the equationwihich fits the distribution.

Foliowing in principlc tl?@ﬁ«@?ﬁﬁ?%ﬁﬁﬁﬁ‘%‘?gﬁogi a median
may be determined mechanically from a caré%.uﬁy plotted
frequency polygon ?{}}h& use of a planimeter. A guess 18
made as to the redian and a perpendicular erccted. The
planimeter is rupharound the boundary of the arca thus cut
off and the r{:s\iiit’ noted. If the area recorded by the instru-
ment is nofledactly one half the total arca an adjusted guess
as to theuwnedian is made and the process repeated. This
mav E)&K\cn}ltintled until the desired degree of accurzey is ob-
taingd® Continuing the preceding illustration: If 63 days

,..\heltéf been considered, and if the temperature of the added day
\Bé{d been greater than 81° there would have been one measure,
the 32d, which would have had just as many measures below

it as ahove, and the temperature corresponding to the middle
of this mid measure, 81.3125°, would be the median. The
median, or mid measure. may therefore be defined as the value
of the {N 4 1)/2 measure., but as the value of a measure is
the value of its mid-point, this is equivalent to saving that the
median is the limit of the range covered by N/2 measures



56 STATISTICAL METHOD

counted eith,er down irom the top or up from the bottom, The
method pursued in the calculation of a median may be suwn-
marized and cxpressed in a formula as follows:

1. Arrange the measurcs in order of magnitude and list the
ffcqueucies for each class interval, grouping such intervals as
arc well below, or well above the median interval,

2. Let N = the total number of cases, i.c., the sum of the
"frcqucnmes of all the classcs. QO
' 3. Determine the class in which the (N 4 1}/2 meAstTe
lies. Ifit lies hetween two classes, as sometimes ha.ppom When
N is even, the commeon boundary of these two L‘ld,ascs is the
median and no further calculation is necessas, (lho infre-
quent case when these two classes do notmﬁ‘te 4 COmHmuR
houndary is treated in the next paragraphyy

4. Let f = the frequency of this clasg N\ )

5. Let ¢ = the class mterval, or ragkgx&covcrcd by the median

class. N 9
6. Let F = the sum of the Trequenuos of all the classes helow
this class. N\

Let B . ahgaﬁwgg.gfyi&eg f;:pqucnuea of all the classes above
tl‘ns class,

. Let v = the valfle of the lower boundary of this class.
v = the a‘.aluc of the upper boundary of this class.
8. Let Mdn ~\he median value. Then

s N
\ f v F
O Mdn = v +2—— i  (Median caleulated
' / from below upl.. ... [2]
:"\ W N
\‘,u X ; —
A\ Mdn =9 — ¢ {Median caleulated
"\., N from ahove duwn) [2 ¢]
Q) These two values of the median will be identical,
\ Using the first of these formulas to calculate the median of
the maximum temperatures we bave the following:
N =62
f=3
i=1 (ie., 1%
F =25 {frequencics below the median class)

¥

AMdn

80.3 (lower boundary)

I —25
3 1 = 81.25
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Or again, using the second of these formulas and ecalculating
from above down:
N, f, and 7 as ahove
F' = 29 (frequencies above the median class
¥ = 8.5 {upper houndary)

Mdn = 815 — “—;—3‘?‘ I = 81.25

All cases have been covered by steps 1 to 8 excepl when the
median lies between two classes which do not have a comman
boundary, as in the accompany- (™

28 "
in;:r ilustration;  Here the kau}___mmi L I—w\\;:
(N + 1)/2 measure les between _ _ __ _ ___ 47N
classes ¢ and e, but the upper limit r ! \\ g
of class ¢, 5.3, is not at the same 3 ! % i
time the lower limit of class e, (IJ L‘ A 3
6.5. The median value might be 2007 .3 ]‘3
considered to lie anywhere be- ) | § a.
tween g 5 and 6.5, but the most ‘“1‘; |
reasonable procedure is (o eall it % i

the average of these two valueg s

The median is therefore (5.5 ‘i?i‘f?w)dﬁmuﬁl?rar ]Lh ‘this under-
standing every distribution/wields a single \'alue f0F the median,
If this value has been galaiilated from the bottom ap it is well
to check by calculatist\ﬁi‘om the top down.

‘.\“‘Sécﬁfﬁon 13. PoRCENTILES

The mcdianiui?s the value below which 3o per cent of the
mceasures 5™ Tt is, therefore, the so-percentile.  Similarly
the 10—p’§cﬁentilt is the value below which 1o per cent of the
measiires lie, etc, The derivation which gave the formula
fﬁ{ the caleulation of the median may readily be generalized

‘as to provide a formula for the calculation of any percentile,

Let N = the tolal population,

Let P, = the percentile, the value of which is to be calcu-
lated.

Let p = the proportion of cases having values smaller than
P, Thus P, is the roo p-percentile. For example, if the
15-percentile is being considered, p = .r3, and P.; is the
symbol standing for the value of the 1s-percentile.

Q!
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Determine the class in which the 100 p-percentile, or the
(pN + }) measurs, lics.

Let f, = the [requency in this class,

Let 4, = the interval or range covered by this class.

Let I, = the sum of the frequencics in all the classes below
this class.

Let v, = the value of the lower bounddry of this class
interval, \

Then: e > N

Pomn e __‘f:f‘l_i‘f{‘.”?’_gg]

This is the formula for the calculation of any *pti:contllc
proceeding from small values of the variable to \l-we values,

If the caleulation is from the other end of thédigtribution the

formula is: N
P, =, — (i —p)N— Fy i (Value of dypercentile - caleu-
? fa i latedﬁ»rt‘}m above down).. |3 @
in which, P \%

', = the value of the upper bqundary of this class interval
F',= the sum of the frequencles in all the classecs above this
wwiptadbraulibrary.or 8 in\
To insure accuracy it is w:;:ll 8 calculate from below up and also
from above down. K

The samec proce u{éma}s in the case of the calculation of the
median is to be folowed in the case of a percentile Tying some-
where in a group}wﬁth zero frequency.

For sake of jifustration this formula will be used to calculate
{a} the SQpercentﬂe (the median), (b) the 25-percentile (the
lower q\\}artﬂe), and {¢) the 75-percentile (the upper quartile],
for thc temperature data.

"’Qa) The Median (Mdn)

\ N =62
p =50
(.50) 62 + § = 31}

The 313 measure lics in the 81° class,

fn =28

50 = 1

Fu = 25

e = 80.5

P = 0.5 4 (5062 =25, _ g s

8
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Note that in caleulating from the top down F' 5= 2g, and
'E-"_r,g = 81. A
{(b) The lower gnartile (L.Q.).
N = a2

£ =.25
{25)62 + 1 = 16

The 16th measure lies in the 80° class,

fon = 10 a

fn =1 \'\\\

Fou=1T5 « \/

ta = 79.3 N

25) 62 — o\ 3
Pus = 70.5 + Lzsl;i__ 151 < 70.55¢
\:"‘\
Note that in caleulating from the other énd¥’ .5 = 37, and
'f,|"25 = 8o.5§. :.‘\\,;
(¢} The upper quartile (T.Q.}. \ !
N =62 O
p= 75075 ﬁzwm = 47.
The 47th measurc lies 1n~82,{“’0’:'a§§11 aulibrary .org.in
C fm=20 )
N\
i = ”r\
Fr\é\nﬁ
) .'!)-7» = 83.5
p\':P- =835+ 75) 66 451 = 8425
In cal uIz?}mg from above down ' = 15, and v = 84.5.

ifference hetween the two quartllee. 15 the interquartile

r.mge d]’ld of necessity 5o per cent of the cases lie in this range.

\1;1\:the problem in hand the interquartile range is 4.7° and indi-

4ates that onc balf of the days studicd had maximum tempera-
tures within 4.7° of each other.

The consideration of percentiles has been a diversion from
the main purpose of this chapter, the study of averages, oc-
casioned by their intimate connection with one of these aver-
ages, bu we will here take up the main problem again in the
study of the mode.
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Section 14, Tne Mobde

The mode is the value in a scries at which the greatest
frequency lics, or it is the place of densest frequency. In the
Tase of Price Indexcs, Table XV, this greatest frequency lay
at ““no change" in price, which 15 accordingly the made.

In the case of College Marks, Chart X, a pronounced mode
at go is shown by the raw data. Howcver, such data hafe
several modes and it 18 correct to speak of the distribuian s
multi-modal, If, from a priori consideration, it ig.$htught
that the minor modes are due to causes either changear irrcle-
vant with reference to the main trend, it is desira,b]é"t@ smooth
them out and determine the onc mode. In th¢ &ase of College
Marks the minor modes at &g, 8o, 735, ete., @rewwt due to chance
but to psychological causes lying in the minds of instructors
when called upon to grade individua ’U}Jon a finer scale than
parallels their competency to mak® jhfdgments. These modes
at 8s, 8o, elc., would not he expe:ctéd to vanish if the popula-
tion were increagsed manv f@jlcj;"but the minor modes in the
tempergiye i GARTIERS 63" 55 15, cte., are probabls
due to chatice and would disappear if records for a number
of vears were takengbut the mode at 8° would probably
remain, though it fnight shift slightly one way or the other.
If one is studying bemperatures this latter mode only is signifi-
cant. If one(®studying the distribution of talent of pupils,
the majopnthode only of the College Marks distribution is
wanted{while if one is studving the psychology of pedagogues
the wfinor modes are very significant.

Alsuming that the major mode only is sought we will consider

p \ii;s‘ calculation, It is obvious that if the mode shown by the

\raw data is taken it will be very unreliable, for usually a change

of but a measure or two will shift the mode, e.g., a shift of but

a single measure in the temperature data from 80 to 81°

would make it indeterminate whether the mode was 80° or 81°

while a shift of two measures from 80° to 83° would shift the

mode 3°. For this reason the mode is always determined from

smoothed data if the raw data show irregularities in the vicinity
of the mode,

The College Marks data have been smoothed by the moving
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average method. (Sce. 6.} A perusal of Table XVIII shows
that an unquestioned mode is not established by the class
frequencies given by a moving average involving three classes,
In that case modes cxist at 86, 8¢, g1 and g4 -— the largest of
these being that at 8. When five class frequenciles are aver-
aged, modes appear at 88, go and gr — the largest being at 88,
so that the mode 18 still undetermined. When fifteen frequen-
cles are averaged a single mode appears at 8g, hut the fre-,
quency of the 8¢ class is only .13 larger than that of the oo
class, out of a population of 7y3, so that the reliability of Ghe
determination is obviously not very great, O '

The distribution of frequencies given by averaging sen elasses
does establish the mode at 84.3 (the proof of this e eft as an
exercise) and accordingly 8¢.5 s the correct wahde to adopt as
the mode. ’

The moving average method of determihing the mode may
he summarized as follows: Calculate gmoethed class frequen-
cies in the neighborhood of the modenby means of a moving
average involving a small ﬂum‘qt;r'of intervals. Repeat the
process, averaging greater and{greater numbers of intervals,
until a major mode with m&;ﬁ&iﬁ@ﬁﬁl}fﬂ}%ﬁggrﬁ?ﬁc proximity
appears, The smallest gromping by which this major mode
is obtained, gives thcj@st resuit,

Another method @r, Aetermining the mode follows from the
relationship betvye}n the mean, median, and mode, Pearson
has shown (18¢§pthat in the case of his Type I1I curves the
following relation holds:

Lot M@}"mode, Mdn = median, M = mean, and ¢ = the
standfrd deviation of the distribution (s defined in the next
chapter). Then
A Mo = M — M = Mda (The modc) ... [4)

~\J P
N\ in which ¢ is a magnitude differing slightly for different distri-
butions and closely given hy the eguation
0846 (M — Mdn)®
&= .3300 — > _B'ZEI — I\’Idn_)é ..............
Therefore, knowing the mean, median and standard devia-
iion, the mode may be calculated. Pearson’s Type III curve
is a skow curve limited at one end and unlimited at the other.
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It is a very flexible curve and excellently represenis a large
number of skew distributions. I by inspection, a curve seems
to approach a finite limit at one end, to be uulimited at the
other, and if its kurtosis (scc Scctions 10 and 36) is not extreme,
no serious error 18 likely to be introduced by assuming it to be
a Type I curve,

Since the mean and median can be very reliably determined,
the mode derived from them is a very much more stable measurel
than that as determined in the last section, A\

In case the distribution has a pronounced mode near tb@ end
at which it terminates, and a long and very thin tall 7t the
other end, e.g., of the type of the distribution of fncemes, it
i3 well to use Formula [4 4], but for the grgat\mdjont}r of
skew distributions it is quite accurate enough\$6 use ¢ = .33.
The mode is then given by equation: Y,

Mo = M — 3.03 (M — Maah (The mode) [4 4].

Applying this method to the CpHégé Marks data for which
80.5 has already been found toditMthe mode, as calculated by

means of a moving average, we ha,\ c,
www.dbraulibrary org.in

M = 86.405 Caltulated by formula [1]
Mdn = 87.696, Pl

M — Mn~ 1 195
Mo s %.495 — 3.03 (— 1.105) = go.a2

Of the twe ralues obtained the greater credence should be
given to gaye. Using, instead of .33, the valuc of ¢ as given
by th M formula [4 2], leads to go.13 as the mode; hence it is
evidefit.that the short formula is satisfactory for such a distri-
bu.t1cm ag that of College Marlks.

.~ (In handling distributions so decidedly skew that the skewness

\ approaches r.o, in which case ¢ = 3(M — Mdn), neither of
the two formulas for calculating the mode from the mean
and median can be used.

The three methods given, (@) graphic method of Section 7,
{b) by smoothing the data, and (¢) by derivation from the
mean and mcdian, arc mercly make-shifts if the student is
able to avail himsclf of the precise determination resulting
from miathematically fitting a curve to the data.
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Section 15. Tar Harvonic Mean

Dunn's Wholesale Price Index is the cost of a year’s supplies
of a certain type. If the mecan of the twelve of these indexes
far g given year is calculated, it gives the mean cost of that
vear's supplies, But suppose instead of keeping the amount
of goods constant and noting variabiiity in price, the total cost
had been kept constant and the varability in the amount of
goods purchasable had been noted; how would one then pro-
ceed to obtain the mean cost of a given amount of good\
The following table, adapted from data given in Bradatx@et &
Journal, will serve to ilustrate the problem:

Ny \
27N
S ‘«

Ruling Wholesale Prices, November 1 '\\
1913 1914 1915 1916 I9IY 1g1"é}
Pouxns SUGAR

Botveont rox $1 23.0 185 104 13.33 11.9\\;1.11 {Designated as
.\‘ { X mcasures)

Let i be desired to determine the mEan price of a pound of
sugar for the six years. We willirst build up a table giving
the cost per pound at the sucrﬁgﬁswe dates, by taking the

aulibrary or
reciprocals of the X measuresas foliows: ¥ Or&n

Ruﬁng"}é@m’emle Prices, November 1

. 1913 Ql.ﬁ 1915 1916 1917 1918

CosT OF SUGAR \
Iv DOLLARS 0438\ .0540 0515 .0750 .0B40 .0goo {Dcsignated as
N \ 5 )lf meastres)

7

Thegtgan of these measurcs is 06633 which accordingly is
the meah cost of a pound of sugar for the six years. Itistobe
nofe:& that if the mean of the X measures is found, 16.266, and
~ihe reciprocal taken, 06148, the same value is not cbtained.
The magnitude 06148 is not the mean price per pound — it s
the reciprocal of the arithmetic mean number of pounds bought
for $1, and a difficult measure to interpret, though not meaning-
less. The information of moment is the mean price per pound,
or the reciprocal of this, the number of pounds which could be
bought when paying the mean price per pound. This latter
is the harmonic mean. In the case in hand it is the reciprocal
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of .o6633, or 15.08. Designating the harmonic mean by H.M.
and emploving the usual notation it is defined by the equation:
HM =1
L
_ e

In words: The harmonic mean is equal to the reciprocal of
the mean of the reciprocals of the measures.

In deciding whether to use the arithmetic or the harmonicy
mean one should first decide which is properly the magnitude
to remain constant (in the illustration, (o] the amount of su*geﬁ
bought, or [b] the amount of money spent). There i3 Scldom
a doubt as to which should be the constant. If thé™data are
recorded in such a manner that this appropriate item;is conslant,
then the arithmetic mean isto be used, If the 4t as recorded,
make this item the variable, then the hclrl‘Q()ﬂ.'lC mean should
he employed.

One further illustration may makes t‘[hq clearer. The fol-
lowing scores were made in a Lhre\j—m“muLe test in addition:

®

X: NUMBERS OF "..
PROBLEMS
(,mmmmdblmuubrar)aorgnﬁ 6 7 8 9 10 II

f: NuMBERS OF
PuriLs Max- L
ING SCORES RS
Desiexatep 0 g{H'o 4 710 8 3 2 2z o Total =37

The question shox}k\r now be asked, Is the significant measure
{a) the rate at wifich a pupil works a problem, or (b} the number
of problems At he can work in a given time? The writer
would judgeythat the rate at which the pupil works, or the
numbefof minutes required to work one problem, is the more
straigh'a‘orward, readily comprehended and generally mean-
ingful measure. Accepting this and noting that the data as

"'fig;ccirded make the time element constant and not the gumber
\of problems worked, the harmonic mean is seen to be the proper
mean to use,

If in this problem the arithmetic mean is calculated, there
is a certain significance in it, but the reciprocal of this mean
should not be compared with rate measuresin which the number
.of problems is constant and the time allowed varies,

For discussion of the properties of an index number based
upon the harmonic mean, see Fisher (1g21).

(Harmonic mean}... {3}
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Seciton 16, GEoMETRIC MEAN

If the items in a series arc so related (usually a temporal
rclationship) that the expression of each one in terms of the
preceding one, Le., relative to the preceding one, is the informa-
ilen required, then the averages thus far treated do not serve
the purpose, These measures are, of course, ratios and the
geometric mean is the significant average.

In Table XII, columu two, are given the costs, on Januaryg O
of successive vears, of a vear's supplies of certain comen
procucts.  If the cost for cdch year is expressed in tesms0f
the cost the preceding year, we have the {following T{:g,ble :

\

TABLE XXIV >

Dunn's Wholesafe Price Index for each Year Fxpresyed ﬂM Re!a.!ws to the
Preceding Year

1908 . X« .13

1909 Ce e e \9882
1910 [ \ T.1036
1911 e e e NN/ D323
1912 S SRR
1913 . L T Q753
1914 P .v'j; . - . rozos
1915 .o . . .ugTI
1016 P ~\.,r\;.rw d'hl'a'll].l.b]“]éugﬁ 071‘3 in
o 915, 2681
‘\ 079;9

If the mean adva}ce per year is desired and the arithmetical
mean, 1.02979 {aken as the measure of it, zerious error would
be mvolvcd NThe ratio of the basal vear, 1goy, with reference
to itself 486f course 1.00000, 0 that the mean advance as
glven\py the arithmetic mean is o279 and nine times this
gIW:S %2681, a measure for the advance over the entire period
sfnine years. That this is an incorrect measure is shown by
\m \the fact that the ratio of the prices in the last vear to the
hasal year (137.666 - 107.264) is 1.28343, showing that the
actual advance is .28343. The reason for this discrepancy is
that each advance is figured upon the preceding year as a base
and not as a proportion of the price in the basal year. Strictly
speaking 1907 is basal for 1908 only; 1908 being basal for 190g,
etc. Accordingly 1.0561 X Sro7.264 gives the price for 1908.
The price for 1908 times .0882 gives the price for 1909, or
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09882 X 1.0561 X $107.264; cte. Finally the products of all
the nine ratios, 1.28343 fimes $107.264, gives $137.666, the
price for 1g16. In place of these nine different ratios whose
product gives the ratio of the last vear to the basal year, may
be submitted a single mean ratio which, when multiplied by
itself nine times, gives the same product.  This is the geometric
mean and, designating it by G.M. and the ratios for the separate
vears by pi, o2, p3, - . . g, it 18 defined by the equation:

G M, = ~or Xow Xps X - Xpu
It may he readily caleulated by mecans of a Log Log indE rule
or by means of logarithms as follows: \

N

. N
(Geometric meanX, 0]

Ny
7
<

. L e L
log G M. = log ps + log pu -~ lugps + L log pa

% (Geom‘kt\ric mean) 6 o]

Using a slide rale the G, M. for the preceding data is found to
be 1.0281. Using six place logarithms it igfound to be 1.0282.

A check on these values is possible) bj{%aking the gth root of
the ratio of the 1916 price to the rgd7 price. By logarithms
this is found to be 1.02811. ‘FHAIs figure means that on the
average, wholodhtauitiessy ingrgdsed 2.81 per cent each vear,
from 1907 to 1016. N\

The Index of Means, or of Sums

Another probl&grr\ﬁrises in connection with indexes which
may he illustrated®by the wage data in the last three columns

of Table XIPN The essential portions arc copied below:
A

e\ Chicagoe .
K s’\\ |[ UswoN Wacke reErR Hour
) .:':'o II p— - -
w\\: ;\. ]l Painters é‘;‘éﬁ;{g& Carpenters
\ — f —_ —
1goy . { s0¢ s0¢ 30.3¢
1916 » 70 30 70
Same data cxpressed as ratios — 1go7 as base
—_— || — = T -—-— =
1907 . 100 ! 00 100
1916 | 140 I 100 124.334
|
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Let us suppose that there are the same numbers emploved
from cach of the unions, and let us designate ihis number by
N. The question that concerns us is how to determine the
average increase in wages. Docs 140 1 100 + 124-334 = 1.2144,
indicating an increase of 21.44 per cent, give it?

Bearing ihis in mind let us approach it by another method,
(N50+N50+N~63)

The mean hourly wage in 1907 is

T T
52.10 cents, and in 1916 it is (N ot P; f\? + A 70) 63 33
cents. Dividing 63.33 by 52.10 the ratio of the m‘can wage in
19106 to that in 1907 is found to be 1.2156, mvzng@m increase of
21.56 per cont.  The two values found aredet identical and
it can be easily proven that in general they will not be, for,
letting P, L and € cqual the initial w ¢ in the three unions
respectively, and p, I, and ¢ the ratios of the final wages to the
initial wages in the three cases; then ¢ 7, I L, and ¢ C equal
»,“ [ 7
the final wages respectwely,“ and, NP+ ;,\;{J’ + NC the

Ng M\Mﬁrﬁ*ﬂm £y ofRdamean final

mean initial wage; aIso,

pPHIL+cC g
wage; and the rat\(&&f ‘chese two wages is Ry s, This
is identical Wlth 2 :-’:ji—f only in case P = L = C, which

in gener 15 not the cage. The fact that the initial wages
were sgepearly equal in the illustration accounts for the small
chfferq &e in the two results.
e may therefore conclude that it is inaccurate to take the
hean of ratios as equivalent to the ratic of the means (or suros)
) of final and initial scores.

Section 17, WEIGHTING

If the numbers of workers 1n the three trades had been the
same throughont and if because of considerations other than
population the trades possessed Importances W, w, w, then it
would have been proper to multiply the wages by amounts
equal or proportionate to W, w, w. This is ' weighting.”
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The multiplying of a scorc by the number of cases having it
has at times been called weighting, but in this texi the term
will be used to mean the multiplying of scores by amounls
determined not at all, or not solely, by the population, but
from other evidenccs of importance. (Scc Scetion gr1.)

It is generally a difficult problem to determine just what con-
stitutes proper weighting, When one is confronted with the
problem of weighting measures which are 1o be combined adN
feels incompetent to accurately judge of their relative impet-
tances he is inclined to “ solve ™ the problem by “not \\-'c:igl'\fﬁng at
all.”  But the failure to assign weights 1s actually a verysdefinite
weighting — that of calling the units involved in{{He varions
measures of equal importance.  This is not thme‘\sa‘fna as =y ing
that the failure to assign weighis resulls inglidhe cqual impor-
tance to the different items. This lattcr{smot the casc if the
dispersions of the scorcs for the varidgd items differ, This
point, together with others involveddihweighting, 1s treated w
length in conncction with partiol torrelation, It may cer-
tainly be said that, judging bywdhe ordinary run of studies in
economigww@bdaﬂgg}g}%gypgﬁﬁich more crror has been com-
mitted by “‘not weightingsat*all” than by improper weighting.

C }\ PROBLEMS

1, Calculate the mdde for the maximum ifemperature data of Tahle
VIII. Is the shopf formula, in which ¢ = .33, appropriate to use in this
casge’? & N

\Y;
2, Caleulateithe L. Q., Mdn. and U. Q. for the hypothetical distribution
of incomes, {cbmparing with graphic determinations (Problem 5, Chapter

m. A&

Calellate the mean. Assume that the mean income for the highest
gm\cofﬁe group is £21,000. Since these data have very irregular class in-

“Ntervals, in calculating the mean, great care must be taken in assigning

‘¢ values to the different classes, no matter where the arbitrary origin is
chosen. For this reason it will be more accurate and almost as short if
the method given by Formula [1] is followed. The student may well
make the calculation both ways to become familiar with the handling of
irregularly grouped data,

Calculate the made: (2) by finding the point of inflection in a smoothed
ogive curve, () by deriving from the values of the mean and median,

using ¢ = .33 and (¢} the same, using the full formula for . In doing this
take & = § the interquartile range,
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3. The following three series are scores of individals in three tests,
They may be used as practice series for the caleulation of M, hMdo,, L. Q.
and of constants treated of in subisequent chapters.

Practice Series

Iorvmovs | SO R8 A Cusss | Soums or S| geones o5 S
Series 1 [ Series 2 Series 3
A 15t 132 148
B 147 132 143 .’:\
C 145 130 133 \\ N
D § 138 J 124 138 £ )
E 134 121 ‘ 135
f ‘O
F 124 l 103 ! K2, sTN
O 120 | 105 { W M8
B 178 { 122 '5\’ 3 138
I 116 f 9g J 128
1 114 123 124
’::\\)
K 113 1008, 131
1 107 4,/ 136
M 166 {03 124
N o5 | 08 126
104 . “,u L 108 133
b 101 “zt".,“ 104 122
100 S\ 1
g go A db]“?&lj]hl‘a]"_y org.in I‘%Z}
8 ] ! 107 121
T 'q{)z i 02 124
w4
5] \\&g i oh ; 718
v N 87 04 , 126
. 7 d _ | |

4. Lalmlat Sk sth, 1otk, 13th, ete., pereentiles for the scores in hand-
writing upms‘c Avyres and ThOI’I‘ldlk( soales, given in Table XXX,
Section ,%\“md (,hu:k answers against columns 1 and 2, Table XXXIT,
Section'gs.

nQﬁp the Ayres data in 3's and the Therndike data in §'s, calenlate the
@(ﬁ percentiles and check against answers in colurmns 3 and 4 of Table
XI1I.



CHAPTTER IV
MEASURES OF DISPERSION

Section 18, THe Mpan DeviarioNn ¢\

Distributions having the same average may differ mésledly
in the spread of the measures compasing them. Thc\tolkm 1y
two series of measures have the same mean, medl;m and mode,
but the scatter of the measures is very (11fferent

.7 7 B 8 8 B 8 .9~.} 9, ©

I, L, 1, 1, 3, & 13 15 \%¥ 15, 15
The range in the first series 18 tl‘lrce,,:v%fn’le m the second 11 1s
fifteen. If deviations from ihe n}c&f,’ 8, arc caleulated, they
ran: O v

-1, \'\_"_.chr'-dbrqn'llibra(;‘,y 01’831’1'1" 0“ o o, 1, I, T Sum= 6

-7 —=h -7 7 .—~3, S5 % 7 7, 7 Sum =66
The means of these tWOSLI‘IC“-‘; of devxatlons are of course zero if
taken algebraically, Bt if taken absolutely, i.e., irrespective of
gign, they arc 345‘\11(1 6.0 respectively. These are the mean
deviations. \\

The mean(@eviation may be defined as the sum of the abso-
lute valgelol the deviations of the separate measures from
the meany’ divided by the population.

g\ﬁ be calculated by the method of moments. Referring

ble XXTI, columns four and five: If the deviations had

'been from the mean, 81. 548 (in which case they would have
o\ D becn designated by x instead of by §) instead of from Bo, a
) mere guess, the products f - x, would have been slightly different
from those recorded in column f - £, and their sum, irrespective

of sign, divided by their number, 62z would have heen the
mean deviation. Since, however, the caleulation of deviations
from the mean, 81.548, involves fractional or deeimal magni-
tudes it i3 in practice inconvenient to determine the mean

70
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deviation in this manner. Deviations from 81.548 run as
given herewith in hne (x):
(x): —16.348 —15.548 —14.548...—2.548 —1.548 —.348 .452 1.432...16.452
(&): ~15 -1 —~13 ..—I o I 2 3 .18
For purposes of comparison, the corresponding deviations
from the arbitrary origin, 8o, are given in line (£). It is seen
that algebraically each f measurc is 1.548 larger than the
carresponding x measure. In absolutc value all the & deviag
tions up to and including those for class 80°, 25 in rnwdber,
arc 1.548 too small; those in class 81°% 8 in number, dtet.452
too large; and those in classes 82° and on, 29 in nu.mlﬁcr are
1.548 too large. Tabulated, the data show:
25 meastres 1.548 too small ."’}\\
20 measures 1.548 oo latge

J— \

Excess of 4 measures 1.548 too large = excessfphsitive moment of
T 548 = 6.792
Exrcess of § measures .452 too large = e.\\coss positive moment of
B X452 = 3.616
Tomf’ Sexcess pasitive moment = 9.808

The sum of the moments ag caiculatcd from 80° is 8g + 185 =
274, but this is too large By"3 868branlibsatingty. whe sum of
the deviations from thq wiean is 264,102 which, divided by 62,
gives 4.26, the me\ ‘dévmtlon sought.

The calcalabiony as shown, is cumbersome, A simple
formula for thewtaleulation of the mean deviation from the
first momenh about zero as an arbitrary origin is herewith
derivcd..\";\"

Giyehsthe serfes 11, 12, 13, 13, 16, Mean = 130, The
deuéﬂons of the successive measurcs from the mean are,
7~ 2, — 1,0, 0, 3 respectively, giving a mean deviation of 1.2,
”*Theser]ewatwnsclre(n ~13), {v2—13), {13-13), (13—13), (16-13),
bul: since all dre to be taken positively they must be written,
(iz-11), (13-12), (13—-13), {153~13}, (16-13). Using the usual
notation we have.

(M~ X0) + (M — Xo) + (Xs — M)+ (X — M) + (X - )
AD, = = - S S22

XA Xt Xs =X —Xs + M+ M- M- M- M
S G SR o o
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If I¥ = the number of measures lyving helow the mean (here 23,
then it is seen that A enters mn positively F times and nega-
tively (N-F) times and that the X's which are smaller than the
mean enter in negatively {Lhe sum of these may he representaed

F
by EX) and that these greater than the mean enler in posi-

N
tively (this sum may be represented b3 2 X)) Accordingly W
1t \

have: N .
& F ¢\
Z X -IX PN M R\
tAD. = FRL v Ay 6
Since, however, m‘\'ﬁ.‘
i h F I \' v - 'F
VX——EX—“XT X — 22X ANEX — 22X
Foit 1 F4r 1 I :’\\" T I
and since, o\
>: X = NIRJ
the formula becomes N
WOWWL dbraullbrary org,m
A.D = ¥ (FM' - X) " {Average deviation from the mean [7 o’
..,\

This i3 a very si?ﬁe‘ formula to use in connectinn with an
adding machine; the entries are not arranged according tn
magnitude add ,them on the machine and detcrmine the mean.
at the samé_ tlme determining the population, N. Then add
all the médsurcs which are smaller than M, thus ohtaining

X @b\ﬁhe same time determining the number of such measures,

I, N3
F\ Thus two listings on an adding machine will yield the
\ ‘three Important constants N, M and A.D.

If the measurcs are arranged according to magnitude a
single Hsting will suffice, it only being necessary to take sub-
totals for cach of the group frequencies in the neighborhond
of the mean. Tor cxample the adding machine listing for the
preceding series would be ag shown herewith:

# This formila, with empirical prool, was independently discovered by two of the
writer's students, Miss Elva Wald and Mr. John P. Herring,
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11
1z

2 235
T3
13

4 49s
15

5 b5t

One would guess that the mean lay somewhere befween 12
and 14 and would therclore take sub-totals affer listing 12
and again after listing the 13's.  Having N= 5 and the sun(%’
&5, division gives the mean, t3.0. The lsting show‘;\that

there arc two measures below the mean and that, theu: sum is
I " 3
23, ie, F=2and X = 23. Thus immediately,? .\’;

T /N

AD =iz i30—23) =
The peculiar expedition of this {formula s}}e‘;}‘ah‘d malke i service-
able in large studies where time of compatalion is an important
factor. It will shortly be shown that”the probable error of
the average deviation iy but slighllv greater than that of the
standard deviation, so that Vy{;}l‘(;&.&b Lht[ oreslest ’-Lccurq.cy is
demanded, and unless the «st*md’nd ([C\'latl(yn B flecded for
such further purposes as; use in correlation formulas, the aver-
age deviation will he fo’amd advantageous.

Returning to thx?’*a:]d -Herring formula {7] it may be noted
that i devialion®ardund some point, P, other than the mean,
be taken, and ﬁ ¥ = the number of measures lving below this
point, the ﬁo\imula becomes:

."\.‘. 1 1
A.D. et P = AR —zX—i—(a — N) P
N 3 (A\'Lragn. devialion avound any point P} 8]
AN
\”\Ei F o= ‘—?\i then P is the median and the furmula heeomes:

N

N

I {Average deviation from
A Dl around Mdn = — | T X ~ 2 X : .
around Mn N [N-a-z ] the median) .. ...... g}

2

Note that if N is odd, iﬂ\f and (% -+ I) are fractional, In this
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case it is necessary to add one half of the median measure in
each summation. For the scries tr, 12, 13, 13, 10;

A D, wround Mdn = ) [(6.5 + 13 F16) ~ {11 + 12 + 0.5} = 1.20

This is the same as the average deviation from the mean for,
in this particular problem, if measures are taken at their face
value, the median and the mean coincide.  Such measures we
usually oceur may, with insignificant error, regularly De takey
at their face value in caleulating the average deviatiou I..(‘rl{\
the median, but they should not be so taken in caleulaling e
median itself. The method already given in Section g% WBased
upon the assumption that the measures s,pr{,ad 1-,hcm%]u
cvenly over the interval, is to be followed in (,a{(}ulzltuw the
median,

The mean deviation, unless stipulated goXthe contrary, 1s
always caleulated from the mean. It 19\;1{, times desirable to
caleulate it from the median, in which.ease it shnu]d he reli-
nitely labeled “mean deviation fpom the median.” A real
reason for calculating it from the ‘median exists in the facl
that whammbf@ﬁq'maﬁgﬂm}*g i smaller than when caleulated
from any other point, as canreadily be shown:

Let ¢ = a deviation irqm the median. Then the

¢ \J

M\&f‘v from the Mdn = = -'r—ﬁ'

Let £ = ad&hation from a point P which is A distance
from the rqe@ia’u; A < one class interval. Then £ = ¢ + A,

N\
| £1 A . _
\Mde» tromP-E £ EH’lL"A Sl — A
O n n

SHRPOSS A is posilive, then P lies above the median and /& >
\(ﬂ F) gso that the above right hand member = - 'If L1 a

positive magnitude. If A is negative, I7 lics below the med1a11
and FF < (» — F}, so that the right hand member still = z L_C | +
a positive magnitnde, Therefore, whether point P lies above
ot below the median the mean deviation from it is greater than

ERL

, the mean deviation from the median, The proving of
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this same relation when A > one class interval can be readily
accomplished and is left as an exercise. Accordingly the mean
deviation is a minimum when taken from the median.

Section 19. Tue QuartiLt DevIaTION

A measure of dispersion may be obtained by taking the
difference between any two perceutiles. One such Measuren,
the difference between the upper and lower quartiles, or the
intercquartile range, has already been mentioned. The Ginét
customary measure, however, is onc hall this measﬁre, the
semi-interquartile range, which for convenience gug brevity
is called the guartile deviation, and is dc.gigqapéd by “Q.”
Using the usual notation for the upper angdeduwer quartiles,
we have: ’

U.Q. —L.Q.
Q=

(an{:’?ﬁé Deviation).. ... . [10}
It is to be noted that the quartile deéwiation is not a deviation
from anv of the averages thus iax considered. It 1s simply a
measure indicative of dispersigm Ii thought of as a deviation
at all it should be as one, fmm a point ntidway between the
upper and lower quartile® A fatlbragdifearyworgtin interpret
it is ag one half the i@erquartile range, a range within which
lie 50 per cent of.tlgé,’measures.

Sectioh 20. Tug 1o—go PERCENTILE RaNGE

A rangeSothewhat larger than the interquartile range has
advaﬂtag‘ge}“over it and the quartile measure derived from it,
as a, measure of variability. I have shown (Kelley 1921 new)
that\for a normal distribntion the interpercentile range having

:tl;é ‘minimal error is that between the 6.917 and the 93.083
“NYercentiles. A range but slightly different from this and
having nearly as great reliability is that between the 1oth and
poth percentiles. This distance is called [ and is given as
the most serviceable measure of dispersion based upon per-
centiles.

D=FPy—-Pu {10~g0 percentile range).. ... [171)
Its calculation and interpretation are very simple, and as over
72 per cent more cases are required to secure as great reliability



76 STATISTICAL METHOD

in the quartile deviation, this measure of dispersion is reonm-
mended wherever percentiles are used. Tts relationshin, in
case of a normal distribution, with other measurces of dispersion
is given in Scetion 31, TFor proof of the next ten formulas the
reader is referred to the reference cited.

The standard error of 77 i3 given by formula {10} whieh in
turn depends upon formulas (40}, [43] and the {ollowing: . 2\

|'fq

{The correlation helween anyvMyrs
r — = in which p < 7%
PPy \ ap <y

percentilos Py angd Po’) \' e IR
I '\f)g f\p g_' 2 F\;bq {The standard error u{ aft inter-
TPp—Pyr = \ {}}j - {' )¢ ey percentile mum}s Jea!
in which p < p’ and p is the ordinate of the Lm’\re at the per-
centile Py, and similarly for " and 7, }
Assuming normality, formula [13] beQC{qles

= P _g :J_E)g’_ {Sta&l}irt_] error of an interner-
TEy—Pyr \/'\T \{( LN PO ol .st::eiltile range in a normal
\ Ndistribution) . . Y
in which z and 2’ are ordmafcs as given in Tcibl(‘ K-W for
ATgUIMETHEDE, @bagxgj,grﬂmljm lmLh(,r percentiles equaliy digtant
from the ends of the distfibution are calculated, p = + - pf

and formula [14] bcca@c&,

(Standard error of a symmetrical

op _ P \('Z - R - -

Pl 1-n = A plg - interpercentils  range in a
normal distribution) | oo [13]

We now ob‘cam for the standard error of the 10-¢o interper-
centile J@Qge
R \'\ op = \—;% DEFOR2A L e te6]

A

Errtenng Table K~W with ¢ = .1 we find that x = 1.281552.
\ VThus D = 2.563104 o which gives
- *
P.Ep= &83__10 (Probable error of D) {16 a]
v N
This is a very convenient formula, as, for ordinary purposes, we
may take

* On p. 744 of the reference eitad (Kelley 1921 new) this value is incorrectly given #3
Soox
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Two other constants which are of value in determining the
type of a curve are Sk and Ku defined by the following equa-
tions:
Sk = Poy — 3 (Pop 4+ Py (A measure of skewness
. based on percentiles] .[17]
The standard ervor of Skis
{The standard error of the per-

b
~ = . I - = .
78k 59914 VA centile measure of skewness) . _[18

% 0 {A measure of kurtosis based om}
SAD = =
D percentiles} .. ... ... 2 \ {19]
. ¢\
The standard error is £\
o e 27779 {The standard error or sth(‘ per-
Ka VN centile measure of ertrm\) .[z0]

For a symmetrical distribution Sk = ¢ and i(x-‘x mesokurtic
distribution Ku = .26315. If a given Bavribution has a
Ku > 263715 it is plat}-'kurtlc and if < 2G2¢5 it is leptokurtic.

We thus see that (he percentiles ¢ & distribution may be
used to answer some of the importahpiquestions of curve type.
If populations are large, so Hut standard errors are small,
regort 10 the longer though gcr'cﬁlh' more accurate (not always,
as it is dependent on curve *type) melhods of Chapter VII
may frequently be cwmderi * www.dbraulibrary org.in

Sectron 21\ T STANDARD DEVIATION

The stdndard\ibwatmn is far more universally significant
than are any| ©b the preceding. Tt is based upon the squares
of the dedifidons from the mean, instcad of upon the first
powers A8)1€ the mean deviation. The exceptional advantages
of thig measure of dispersion will appear in connection with
suBsequent work. The standard deviation is defined as the

_stiare root of the mean of ihe squares of the deviations and 13

\tegularly designated by ¢ Unless otherwise stipulated

\ deviations arc always from the mean. Using the usual nota-

tion:
% % {The standard deviation

*=NT of & distribution). .. . [21]

This is a fundamental formula and should be recognized
whether written as

et=2T ez a]
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or as,

Ex=mat 2T ]
The calculation of the standard deviation for the temperature
data of Table VIII is as follows:

TABLE XXV

Calewlation of o

— — — :L‘_._—_":"—‘_:l
‘ Dy, S 7N\
c reont | Fres HEoND - AW
S(?ucr}f; U&';z !:::S- | ;A*EE: MO&?;; ]_C‘II Mr.l\?m Srcowp MomeNTs r-'[{cm{;\{h}n“
_— — | >
i | S
X | f L & | f& |[fer fuf A0 B ¢
65 I :|— 15 |— 15 225 . 1({~15--8)!= LN.%.:_ESI_‘IS]"—O.’
66 I —L4 [—14 [ 6 | 1 (=143 0y 2 a[—14]4-6%)
69 | | Y, _
70 I —10 |—1n 100 1 (—m‘—ﬁ)*: 1 {10%—2 5 [—i10]+4%)
71 R 81 | 1{qger= 1 (925~ ol+7
72 AN
40 2 |— 6 |—12 ‘;% l:? (t: 6—8)12= 2{ 62—z 6]'
[ N N Eg’j~~3€~ 5~6%3= 3% 5”—25%—
AL I S Rl N 6% I{— 4—8]°= T1( 4°—26[—
w7 AR dﬁalcullb,}-ary,orggm 1{— 3—8)= 1{3*—25[—
B3 -2 -6 M2 3(~ 2-8)"= 3(2~28(~
79 i I |— 1 |- r\c I ‘ T{~ 1—48)= 1{ 1?—24][—
8o | 10 | o,lefJ ol{0—8 =10( 0—2&] 0]+&)
8t | 8 ' qN\N'B ’ 8| 80 1—82 = 8§{ rr—24] 1]48%
82, 5 i =&l 0 20 5{2-8° = 5(22=25[ 2|46
83 | 7 eN| 2t | 631 7( 3-8 = 7(a*—28) 3]}
84 5 2[4 8 32 2{2-8° = 2( 43—235] 1447
83 [ ANS 5| 20 | 100 | 4058 = 4(3°—28] 5]-69
84 6 B | 108 3{6-52 = 3( 62251 (1489
87\ Jb 7 7 J 49 | 1(7—=8) = 1( 7*—28] 7|+359)
.8_8\\. 2 1 5 16 | 728 | 2( 8- = 2( 8:—248] 8]+89
"\‘f." I | 0| 10 ( 00 | 1{10—38? = I(20°—23510]45%)
'"\3"' 95 I -| 15 15 225 1{15—8)* = 1(15%—=238[i5]+8%
96 1 J It 15 256| 1(16—8)% = 1(16%°—2 5 [16]458%)
o8 2 1B 36 648  2(18-8) = 2 (182—2§[18]+5Y)
99 | — i
62 183
95 2524
§=1.548 40.710; X — 253k Ba0

|
|
|

40.710 — (L338)2 = 6.190
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If the arbitrary origin, 8o, had been the mean, the standard
deviation would he given by /2524, 62, but as the arbitrary
origin 1g an amount §, {= Z§/N = 96/02 = 1.548), below the
mcan, each £ deviation is algebraically too large by the amount
8. Accordingly, if, in place of Z# we calculate E(¢ — §)° it
will lead to the appropriate sum from which to calculate o.
Magnitudes (& — §)* are expanded and tabulated in the last
three columns of Table XXV. I is immediately seen frem™\
the table, aud is of course also apparent b}-’ squaring the b
nomial, that 2xf = Z(¢ — &) = g — ¥ 2 6f + T "%mfe
5 is a constant and does not vary from c]qaa to class E 3 3k =
2 8ZF and similarly T8 = Né§* {(herc = 02 X 1.54% 2y, The
summation £ has already heen obtained in sumn;'iing the first
moments and, from the definition of §, =t = N&\ Accordingly
Zxt = Z8_ 2 N&* 4 Né&*, and

RN
_ Fig_“ 2 (The standard d& \fmtmn of a distribution
TTNw (alLu‘laLLd f*r{)m an arbitrary origin) . .[22]

The symbol 3, nsually standmg»for a small magnitude, should
not be so interpreted here, fofythe formula is rigorously exact
whether the arbitrary originy \difivrs drsnths- -ERGAL g’}’ a fraction
of a unit or a large number of units.

The sguare of the“&tandard deviation, ¢*, is frequently an
essential constant, '\‘It is designated by s, meaning the second
moment abouththe mean. Without further explanation the
meanings of; the varigus meoments, all taken from the mean,
will be 1.111(T€1‘§i()0d {from the following eguations, in which x,
as usuad, & ands for a deviation from the toean:

p -

’J‘hefﬁ}st motment, g = '}{C =0 (23]
AN
E 4 3 2: s

The second  © uf =0 =g 23 o]

. {Definition of the moments) |
The third  * = i (23 B]
> =
The fourth  * = —f (23 ¢]

etc

If deviations from an origin, P, 5 distance from the mean, O,
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are caleulated, then () — P =&, and x =§ — 6, amd ihe
following rclationships hold:

(¢ -8 _ ¢
”‘ A i
S -8 252_5:
pe= T N
I 2
Iy =
= ele, ’~\

If g1, we, ete., stand for the moments arcund Um\nlmmr_\' CTigisl
the above equations may be more simply wwiten:

= AY;

5= "'_E = ,:_.L ) 2 ¥ o\ | )_{‘5
N ! | N B
- — CUThihgnenls abxoud The mean )
B = F— CHHAg@ments auout The n frpo!
; —y sogladtermined from heae ghons - ‘]
1 —— 3 . PO =N

e = e Ay arbitrary wriging L24
Me = @y = 3 wab1 + 2 6% SN | 24 ¢!
_ = — — i % Iy o
Hi = 4 WW&BMB%@BIM‘%W.gﬁg”‘.'m L2

ate,

The following fmmu‘hxs give the same results and are usually
the more ‘;ermces{b{e

we=0 p o\ ',‘ - {Moments about the mean 23]

se = wa = BN deternvined from the mo- J[—’S 4

py = py -:4}3,(;;, — ufy ments about any arbitrary I\ 25 0]

Hiy = _h}’i H&El — 6 HEF—_¢31 - 341 origin) EQS L-J
\ete

‘TL is sometlimes desirable to determine the moments from

' \ Some arbitrary origin knowing them from the mean. Solution
/ of the preceding formulas gives:

nin—1)

He = pn + tpn—~, g + Yl

ey 17
+ 'n'LI,.)l {n — 2)_#,;_2313 T
{(Moments about an :rk)itrary' origin deter-
mined from moments about the mean) . . .[26]
In case the grouping is not fine a small correction to the g's as
given in formulas [68] is necessary.
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We may now investigate some of the properties of the
standard deviation. Let us comparc the magnitudes of two
standard deviations; (g) tuken from the mean, O, and (&)
from a point, P, § distance from the mean. € — P = §,
and x = § — 4. Let ¢ = the standard deviation from O and
s = the standard deviation from 7

g _ o XT
TN
L_ZE I+t sa Xx | L L Tx AL
S A R ey L & =&
Hence O
=t e B (.‘::;: . 27]
or A

&
s = V5 1§ (Standard deviation about an arbitrarff%igin deter-
mined from the standard devidtden about the
ETi7E0 ) x.\\.f. ............ [27 a]
Since 6, whether positive or negative,ufers into this expres-
sion as a square, s* > ¢%; in other wards, the standard devia-
tion is a minimum when taken from e mean.  This is a very
important property of the mean 0N
Formula [24] for g gives thesstandard deviation squared in
terms of the moments abguf ’aﬁ'm;ﬂhmplﬁjﬁ{ghy_opg@mnuia (271
for s* gives the standard\deviation squared from an arbitrary
origin in terms of th& 2econd moment around the mean and
the distance betw@e}\t e mean and arbitrary origin. It should,
however, be npted that neither of these formulas gives the
standard deylafion around a sceond arbitrary origin in terms
of the moménts around a first arbitrary origin. This problem
may res\d: x be solved: it P and ¢ are the second and first
orig’irl'sxnd i#f £ and ¢ are deviations and s and S standard
d@x{iﬁ{.ions around thesc origins regpectively, we have:

\‘\. P—(g=a

E={—4A N
e DA SEoaaSd N oo
DR T L LA S el L e M Y
§ N N & F Hi
{Relation between standard devigtions
about two arbitrary origins) .. ... (28]

Expressed in words: if moments around any two origins are
taken, the second moment around the second origin equals
the second moment arcund the fist origin plus the square of
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the difference between the origing minus twice the product of
the difference (taking the sccond orygn minus Lhe Lest) and
the first moment around the first origin,

The formula as written 15 to e uged in deterumuive (he
gsecond moment around the ' recond” ortgin when the momenis
around the “Arst” origin are known.

Sectionn 22, THE BraxvarD Lrror or 7yt MMiEan \

If it iz desived to determine the reliability of the ng ..’\" NDis
necessary 1o have an cstimaie of how a number of ‘t.qu‘ll.i.f\
excellent, Le., similarly derived, means distribute h'(’ff'f»tiw'
that is, a new distribution is to be concelved v\i\h the means
themselves as the gross scores. The standded devintion of
these means is indicative of the prectsion .&f‘ unv one of 1hem,
If this distribution of means has a very spfalt spread. or standard
deviation, then any onc of them {sM good measure, good n
the sense that it is a close appro,xfm’ati(m to the mean of 11
the means. We thus need a__u,;ﬁbé standard deviation of the
means, If there are M setegf N measures each, and if t]'l(
mean Q&Mi,\hgb{lg&\hb \g}gpg; IH;'\' equals a very large numbe
measures, , the mean of the means, ig the true value, or
true origin, then x stands for a deviation of a measure from
1\{’ "Cﬂ . Jﬂ\,

- N
measures, 1s‘c,\xpres‘\ed as a deviation from this same origin.

The stand‘c},rd deviation of such means is o, the standard

deviati ml boughp The standard deviation of the distribu-

tiop.é}\measures from the mecan of the N measurcs will noti be
ié@ﬁiﬁica& with the standard deviation of the same measures
""tfro’m the origin as here defined, but the difference may be ex-
pected to be negligibly small if N is larger than 2z, which we
shall assume to be the case in this derivation. We will desig-
nate the standard deviation of the original measures by ¢.
We have:

this origin and , the mean of one set of .

L I R St

T
g2 = N
M M y 0T

MNJ“M =
. (x“\+x’a+- cxfu 2 mxed-2 x4 -2 xltN—]—z KXoyt -2 £y ]xN)
5 SR e
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o]
R T :
However, (-—— o - T ) =gy, and as T designates a

N
. ) 2
summation of M such magnitudes, T (Aii—i,\? -_-_.x_‘\-) =M.
Algo 2 2 + 2 3z + - - - mayv be rewritien, xxs 4+ s + - - -
Gt 2 S a2 A I P 2 SECICIEE AU SV S N s S 2t e Y i 2 S JRCR - 2.0
+ -+, which, if 5;, Se, -+ stand for summations of N — 1
terms each, 18 = x50 + 15 + - - - ¥a5ax. Each of these
S summations is closely equal to zero. [Product theotery,
gee Section 23.] Since these summations are at times 33:1}311’
positive and at other times small negative magnitudesand
since xy xp - -+ are likewise both positive and negatj\{et antd are
entirely independent of the S’s, it is clear that the, Whole ex-
pression, (S: -+ %S -+ -+ 254) does not var}f from zero
by but a small amount and is negligible inledmparison with
the sum of the square terms. The equation may then be
writtoen: ¢ \%
NMe®y, = Mo, ory ™
T = ;i—_ . ’( Standard error of the mean) [29]
By

This is a fundamental relzgt?oﬁ' applicable when n > 23 «--
Gxpressed in words: To stanag i AARRERTY 058 ihe mean
equals that of the grodg kcores divided by the square root of
the population. L\\

Any measure ashatsoever may be thought of as one of a
distribution, thé“¥ariability of the distribution being an indi-
cation of thg)érror involved when any single measure of the
distribu it tuken at random, is chosen as the valuc of the
thing m}asured. Thus when a measare is taken as the best
ohtdinable value the standard deviation of just such measures
Eiés;tﬁe one taken is the standard error. Thus the *standard

fror’ of a measure and the “standard deviation™ of such
measures are synonymous cxpressions. The relation between
the standard error and the probable error as derived in Sec-
tion 28 13

Probable error = 6744898 standard error [Formula 33 of Sec. 27].
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Section 23. Tui Stavoarn Burok or sy doowsxt
The product theoren used o the preccding derivinlon may
be stoded:
The st of products of mensures wihich are
trulependent of cach other and  whose
MGNS are Zero, cquils zoro, [Vroscdzes 41 oreml]
This theorem, only roughily proverr above, wilh oers 4
nection wilh the sulyjeet of correlation, b sceentalw np

consequence of ndependence hetweon mesures, J}z‘ Ny
it we may determine the standard Jdoviation of U?‘ nusient,
iy, ina manner very stimidar to that nowhich we H l'\l_ il L1‘1T1‘-,m';d
the standard deviation of 1he first ]11(]]1‘1&.111.,"1!‘1\ e el

Consider a population composed of Al WYs Gf N mensures

each. The #'th moment of the toial pQ}»m ation fs0 90 Y ndi-
cates a summation of M terms and H‘&Bumm im of A Lesms:
(5\ ‘}
BT\

The deviation from this \a}uﬁ, of a Jdetermination based noon
one set of drineasURsdSen

[9 z %\ [9{ _ “] [‘w(\— ]

This is a ¢mall n}g‘gmtudt, The sum of M such would of course
be zero, but the sum of the squares would not, as there would

then be 1y \I’lﬁ‘_‘ﬂ’d,t‘LYC terms.  Accordingly the standard devia-
tion de;,:rs\e& is:

"\s. K \u — ,u:;,l
\*w |z v
\ T \ [ };{ l
\S(xn - p‘ﬂ) (xﬂl - lu-u) + ree (xul\-' - Ju‘llf} = 61 + 52 + e BN’
let us say. Then MN 6%y = 15 = S8 in which S5 = S&

I\T
.
-+ 2 5" 8,8,, where 5 = a summation of - N (\'2 terms which

approaches zero according to the theorem just stated. Ac-
cordingly,

MNot,, = Vzb& = % =82,

in which ¥ indicates a surmmation of MN terms.
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Replacing the §'s by the equivalent binomials, we have:

MNely,, = \, T (x— 2 pax® - ply, which, since 2 up Te® = 2 MNu%,
= x, (M Nz — M Nu)
= JI“;‘:_“T” {Standard error of any moment)
a“n_‘\_"_j-‘_—' b y mement). ... ... [30]

It is thus seen {hat the standard error of any moment is des
termined when that moment, the moment twice as larged audl
the population are known. It i to be noted that thig farmula
is entirely general and does not depend upon hay ‘(ﬁg“'l Sym-
metrical distribulion, It only requires that the \polmhuon%
dealt with shall not he small, ’ \

Applying this lormula to the determinatieh of the standard
deviation of the mean, # = 1, and we havdy

x\ e

{Starflf-fﬁl:{l crror of Lhe mean) (20 4]

This is the genera) formula. #{thay be written more simply
for it has already been pombed out that w1 = o, and py = %,

so that the equation becomes, ~ww dbraulibrary.org.in

i 8’
oy, &Nt -
’\i W
This, of coursey 15 Adentical with that previously derived,

We maviie(ermine the standard error of the standard
devmtlom\ut shall first nced that of the standard devialion

‘square\\d‘ #,: By formula [30] we bave

{Standard error of ihe mean) . . [29)

~\ :' au, = . JH‘ ‘; #%2  (Standard error of the seeond moment}. [31]

\ Tt remains to determine what {s the square root of 4 guantity
corresponding to a given deviaton m lhe gnantity tself,
Consider the magnitudes p» and (w - A] and also Vs and
Ve + & or their equals ¢ and {¢® + A) and also ¢ and
s 2 I3 + o

(a -+ A 8%1 + - ) - {This latter after expansion of the
29 Wk

radical by the binomial theorem.)
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It is seen that corresponding 1o small error A in 6%, tiwie i

an error
A Al
in ¢. However, in all ordinary stuations, A% 8o¢ and Tovher
terms are uneghgpble in comparison with A 200 w0 Lol we
have:
_ &N\
oo = | Ilug — ue
“ 20 ¥ N ¢ \ \
I o4 .
= |F—" e {Standard error ol the standan! ]L\]y‘“} RINIRER T
ar OF 3
7%
. .. A
Utilizing formula [g1] of Section 26 we have AN
K7, 2
e o T (Stardarn] error of the tmu]ud.«}\ Tlien i g
g Va2 N normal disteilations oD AN v L N R

$
Section 24. THr STaNnvarp Errop 0t "4 Crass FrREgENCY;
OF THE MEDIAN; AND OF’»\" PERCENTILE

The deviation in the value, ot thc median 13 a function l
the deviation in the frequenm{;‘s below, or above . Consider
the adﬁﬁﬂi}ﬁﬁkﬁ&&h&?f@ra‘;ﬁrgtmrepre‘%cnt the distribution of cer-
tain scores in the casgfef a very large population. T A fre-
guencics are tmmfcm: from below Mdn, the median noint,
to above it, the fubdfan would be shifted up. The amount of
this shifting may be readily determined.

.'\} |
o\ » 4 "'"\.

\v

N/

Let f = the frequency in a small interval of range, ¢, near the
center of which is the median,

Then the new median has been shifted an amount (A/F)
above the old median, assuming that the frequencies in the
interval i distribute themselves in a rectangular manner. The
fact that this assumption is not the most reasonable which can
ordinarily be made has entirely insignificant influence in case
distributions do not show very exceptional rates of change in
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the vicinity of the median and in case populations are not small,
let us say not less than 23.

It is thus seen that corresponding Lo a change A in the number
of frequencies below the median, there is a definitely established
change in the median. The standard error of the median may
therelore be wrilten,

M N [33]
Thifln = @Th L oo oo e
f

It only remains to calculate the standard deviation of the
A's and substitute in the above expression in place of 748 te/)
have the standard crror of the median. \

In drawing a sample of # measures from the tolal popufatlon
in which the chance of each measure lying below 1:}1\9 median
is onc half, we will call those which le belpw™the median
successes and those above failures and we willNgt F equal the
number of suceesses. I two scores are d;'s\}vf) {# = 2) then
the chance of both being successes; of {hé\G¥st being a success
and the second a [aihure; of the first & faitire and the second a
suceess or of both heing failures is [Qr 2) (1/2)]in each instance.
Each of these is cqually likely to ucurr g0 that if a large number,
N, of such samplings of two. ar®*made we have the following
distribution of successes, or 0%”?1‘@5&%%]%?‘%3?@ JRelow the

median: K
successes 2\ FREQUENCIES
R\ NiXi=Nt
D N2xXix}=N
el Nixy=N1

That is, one'{oﬁrth of the samplings will show 10 measures in
this cat "\:y {below the median), one half will show one
measurein it, and one fourth will show two measures in it.
If thrce scores are drawn at a time there is just one permu-
»tsa;uwn vielding three successes, three permutations yielding
wo successes and one faiture, three vielding one success and
two f{ailures, and one vielding three failures, so that we have
the following distribution:

SLUCESSES FRF:OUEY\'L‘.IER
o NiIXixt=Nji
f NaxXixixi=N3
2 NaXiX3ixXi=N23
3 NixXixi=Ni
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That is, 1/8 of the samplings will show zero successes, 3 % e
success, 378 two snecesses, and 1 8 three successes,

If four are drawn (1 = 40 the frequencies wall ran N g,
N{g/16), N(o/16), N{qa 6y, NCooaoh and inogenersd, il w0 o
drawn at a time the frequencies will Lo given by the roeiticienis
of the successive terms of the hinomial N5 < gy D ing

;
N, which 18 a constant throughout, the wencral dminlegatg
may then be written:
. .’\ N
SUUCESSES [N »
Tl awisos or TR U N L \
At oA T % \/
o 1{vn ) (&35
i n ("i} w '\'\:..
# - 1) A $
2 " DR\
?1L?:-~I1Ugs§\">()?
? - 1),
3 1 aXY :
ete, cteyg ~:w

Starting with this distribut im{ wg( ould readils detesminc-— ils
mean and standard dev 1atum, ?:ut as it 1z Just a gpecial en
of thc‘"ﬁimbﬁ?&mkbarhrmoﬂ-gm in which the chance of success
for any single dr(mul& is ¢ {p not necessarilv §) this lurter
will be atracked. 0

Let p = the ci\imtc of success and g that of failure. Then

'"; plg=1. R 51
Following¢ th\e) same argument as for p =
tion of su\esbes when » at a time are rlra\\n bu,omes

\“‘SU(_("E‘RER N

.5, the distribu-

,\ 2 TIRAWTNGS IREQUENIES
N\ o T
O : =y
\, 2 #o{n — 1)
e N . Y
; e p
3 i (E :_])_(??_:E) g3 po
I X2xX3
ete. ete.

We will now proceed to caleulate the standard deviation of
these numbers of successcs by caleulating the second moment
from the point “zero successes,” and then transferring to the
mean by the ald of formula [22].
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SUCCESSES 1IN

Drawixgs oF i FrupUeNciEs
AT A Tine
X f X
o g% o
3 ﬁpgrx—l %?Q”_l
a ??r'i—r}(ﬂ—ﬂ . , N
“ 1 X 2 - P — npin — 1ipygn—2
w0 2) o, (n—1)(n—2) . N
4 1243 prgn—® np __ITX—QH Soptgu-® &
np—tiln —2){r=3) , 4, #plr—1)n—=2){r 3} ’~\4
4 I X2 X3 X4 b ngx\as““__::.é":‘
et ote ete, R N/
Tf=@tgr=1 ZFY = mp (b + QEN' = p
+¥4
&/
Therefore u,, <55 = np. ... [35]
A
fx:
o ..\\,,

af 4
1%

wp (5 —~ 1) pgr—t +p(n — 1) pgi—* ..

=G e - @ 2) ot gn
fp—~1ym—2z2)®—3}, , ,'. (1: —Iif{n—~-2](r ~3)
np - 3 X3 3 4oy M% L% s = pget

S "
ele. Ny Wrww, de‘aquhrar_y org.in

2AX = mp (o @t RN = 3 (p o+ P = b R =i

" ¢ j‘lutfnrn pe = npg, and o = Viapg .. . {361

The third and mu}t} moments, derived by the same process,
ara: AT,

:‘;\'} sa=mpglg —pl.o.o Lo 37]

“\*?\ wr = g 11 43 Or — 25 pa). e [38]

They %rre recorded here for future reference, hut are not used
m ﬁ:ﬁ immediate problem, — the caleulation of the standard
eﬂ,c‘ir of the median,

Q The magnitude g 18 the standard deviation squared of the
sum of the frequencies tn a category for which the chance of
each of the separate measures heing in the category is p. Thus
if & (instead of # as above) cquals the size of the sample drawn,
F the frequency in a ceriain category, p the likelihood of the
measure lving without it, then

. = V' Npg (Thestandard deviation of the fre-
quency in a given category) . . .[30]
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If the propertion in 4 category instead of the gross frequency o
considered we have

b= ;T}and 7y, = %{"’F' so that fnally

oy = J?—& {The standard deviation of o proportion}. RTRY

This is the basic formula underlying the theory of conlingenc: .,
i.e., the statistics of categories.

We may use this general result in determining the stzmdigrd\
deviation of the frequencies below the median. In this Loie
p = g =%, sothat v \

S

V(N n\ 3

This is the standard deviation of the A's, r

U'F‘—_

echired to deiermine

the standard error of the median.  Substiyting in {33
- R
ivN \J ,
Man =, F {The standafDeFror of the median) .. . [41)

By parity of reasoning the s'taﬁiiard error of any percentile
may be E&@%‘%}aﬂ%?ﬁ%‘?- Qg;;pce notation as in Section 13, it 13

3
i Wepa s
P, = E?i\j fi i{’I‘hc standard error of a percentile}. . .. .. 421

O. 3 .
Formula {42] is Q@‘ﬂanly the one needed, but for ceriain

problems the gkisténce or assumption of normality permits
the use of théidllowing (Kelley, 1921, new);

) ..q_\“ _e d}ﬁ {The standard error of a percentile of a
(NP 2NN normal distribution) .. ...............[23]

ingvﬁﬁch v is the standard deviation of the distribution and 2

: \the' ordinate corresponding to ¢ as given in Table K-W.

o’

A precaution is necessary in using formulas [41] and [42] in
that, theoretically, f is the frequency in the interval { in the
case of a very large population. A single class frequency for
ordinary finite populations is a quite unstable magnitucie, S0
that in determining the class frequency for £ it is well to smooth
the curve in the neighborhood of the percentile by averaging
the three or five class frequencies nearest to it. The exact
number to be averaged depends upon loeal periodicity and the
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total population, but as a general rule for populations less than
200 it is advisable to average such a number as extend over
approximately 1,8 of lhe total range, For larger populations
a smaller number of intervals may be averaged. Tt is obvious
that the same result is accomplished if the frequencies in a
small number of neighkoring intervals are added to give the £,
and the tolal range covered by these intervals taken as the ¢,
used in the formulas.

The standard errors of the two most important averagcs,
have been determined. That for the mode, except wheff\eal-
culated by determining the cquation of the curve y.lnch fits
the data, is known to be very high. No simple f@rmula for
its determination is available. N

In order to compare the reliabilities of difféxert averages we
will calculate the standard crrors of theymiean and of the
median for the temperature data of Tabh\VII

M = 81.35; \Idn—8125,57619, = 62
6.19 _ o
= = 580, s\
L vralalt \

To comparc with this, the. si‘:‘af}ﬂragﬁ BUBRraF V19T 818 dian will be
calenlated, using five dﬁﬁqrent intervals in the neighborhood of

71

the median. .

. A Vi
{a) i=1. fof interyal, 80.5°—81.5°, =48, OMdn = —_— XB =.4G3

</ —

. O V6
(b)i=2.f off\liitenfal, 80.5°-82.5°% =13. oMan= o2 ><-125= 606
(¢) i= \fc;f interval, 70.5°-82.5° =23. 0Mdn =.514
(d) @:»4 f of interval, 79.5°-83.5°% = 30. oMdn =523
Ag(%=s. f of interval, 78.5°-80.5° =3%. opam =.636

\It is well-nigh impossible to say which of these five values is
the most reliable, but since the population is only 62, the last
value, .636, based upon an interval which is 1,/7 of the range is
rather to be preferred to any of the others. Accepting it as
the best value it is seen that the median has a smaller standard
error than the mean. This means that, if this sample of 62
is truly representative of the distribution of temperatures, the
median of the distribution can be determined with greater
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accuracy than can the mean, and that accordingly the median
is preferable in this instance to the mmean, as a mez.asure of
central tendency. Other considerations may enter m, such
as, for example, the desirability of combining different sets ol
data, calculating correlations, etc., in which case the mean
should always be used, as it permits of such statistical treatment
whereas the median docs not: but if such considerations are »
not present the proper average to use is the one which 1s the myst
relioble. It is thus scen that the all too customary choigdudf
an average “because of the nature of the distribution” should
give way to a choice based upon rigorous statistical cenfidera-
tions as to reliability. Having decided upon anfayerage the
appropriate measure of dispersion follows as a‘"c’(;}lsaqmnce —
the quartile deviations or preferably D, theNfo-go percentile
range, should be used with the mediari,\\and the standard
deviation with the mean. The standard deviation is much
the more reliable of these two megSutés of dispersion lor all
ordinary uni-modal distributiops,’;e\;en though they be very
appreciably skew, Theref01:§::; 3 for a eertain invesiigation,
the m%gygpﬁagmqpy&égﬁ more important measure than
that of central tenden(;y‘ ng crror would ordinarily bie made if
the mean and standiarzi deviation are chosen, no matter what
the reliability of%@'median may be,

The reader will have noted that measures o reliability arc
simply meagies of dispersion, Any measure not infallibly
determined may be thought of as one of a population of such
measures.” It then only remains to calculate a measure of
dis\ ion for this population to secure an index of the rclia-
hikty of the measure. The measure of dispersion most uni-

;:%}ersaﬂy available and most reliable is the standard deviation.
) The range though frequently available, is very unreliable and

should be used for rough or hasty determinations only. The
relationship of the five measures of dispersion — standard
dcv?at’ion, mean deviation, 1o~go percentile range, quartile
dev1:?,t10n, and the range, to each other will he considered in
Secpon 31 and Problem t, Chapter V, for the normal distri-
b'utmr.i, which is probably moare typical of uni-moda] distribu-
tions in general than any other single distribution.
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PROBLEMS

I. Calculate the first and secomd moments from ‘'zero income” for the
data of Table X and by proper transformation {a) determine u,, the sceond
roomentl from Lhe mean, and (6) determine the second moment from the
median by formala (28] and check hy formula [27].

2. Caleualate the standard crrors of the {o) L. O., (#) Mdn., () T.Q,,
{d) M, for the hypolhetical distribution of mcomes, Table X. Which is
the more accurate average Tor these data, the mean or the median? O

3. Using the grouped data giving changes in wholesale prices, TableKV
feierming which is the more reliable average, the mean or the mcc{mn e

& {r) Which iz the morc rveliable average, the mean or t]“LE: ‘meaxan in
the case of College Marks, Table XVIII? ¢
(5 In this case what is the proper numther of class dntervals to com-
bine in determining the standard crrvor of the m@dlﬂ.ll?‘ [—\nawer Lo (8):
The population, 773, 15 large and an interval of theee umtq, &, the range,
wirald be reasonably satisfactory weve it not forhe fact that there is a
decided periodicity, which is irrclevant so fa (a§/pupils’ talents are con-
cerned, so that the proper interval is one Of ‘ﬁve units.]
. (] Determine the standard erron c;Evthe second moment of the in-

"
e

LUJTT\" dara, Table X o
{B) Determine the :,tandard etror of the standard deviation of the

sarne data. W\a\!w dbraulibrar y.org.in

6. Derive w and ug for [rQquLnuF,b given by the terms of the binomial
(p + g)» in a manner m?i.ar to thatl illustrated for pr and ps. Aluch
serateh paper will el \ethftl

7. Prove that if &= a constant and x a variable then
s N\

) ZN ¢/ Ty = OO
8. Deviggformula similar to [7 a except that the sum of the measures
above ‘%e”hﬁ:’an instead of the sum of those below is involved.
N/
p

..\
»\ 3
»o\“,



CHAPTER V
THE NORMAL PROBABILITY DISTRIBUTION

Seetion 25. Derivation oF EguaTioN 0¥ NORMAL O\
DisTRIBUTION PR

Many frequency distributions are very similar iny t‘_&i}ne.
These distributions are characterized by being syshnctrical
with respect to the mean; by having a single 1@@?1{5 which is
at the mean: ie,, the slope of the curve at thexmean is zero;
by tapering off from the mean and in such axthanner that the
slope again approaches zero as the frequéncies or ordinales
of the curve approach zero. The symbol v will be used for
the ordinate unless N = 1.0, in which ¢ase z is used to conlorm
with certain tables in this text @and with Sheppard’s tablcs.
Following Pearson, we may desive the simplest curve which
has these elitreathitistics.orBHNS necessary to use the caleulus
in this derivation, so that one unfamiliar with it may simply
note the conclusions., ()

The differential égﬁation dyi/dx = Cxy 18 an equation, origin
at the mean, whose slope is zero both when « is zero and when
7 is zero, Itis/the most concise form imposing the required
stope conditibtis of any which has been noted by the writer or
any which he is able to conceive, Integrating this equation
give VAl the integration formulas used in this chapter may
bf,f found in Peirce, 1910.)

O 2
<\\3 - y==Fke &
If k and € are both positive it ig found, by plotting or by

more analytical means, that the curve has a minimum insteac
of a maximum at x = o; also that

; » does not approach zero for
any rea‘l value of x. It is therefore necessary that C be negative
or setting € = — ¢ the differe

ntial equation may be written
dy/dx = — ¢xy and the integral
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Let us investigate the motmenis of this curve. If N is the
iotal population or total area under the curve

Nug = ryd«c = k\|—-’-’ =N
N =_/‘ ydr = NM =0
— a0
Boojem

£
Nuz = S yx2de = No? = = o |—
— 0

4 £ 7N\

Solving the first and third of these equations for ¢ and !a;gtiveé

e=1/stand & = Nfs V2x :uf"
This gives as the final equation of the curve '\';.“
T _.xS Q '}
¥ = "\'____ g 20° (The Nornial FrobabilitwCurve). ... .. [44]
oV \ W

in which 3 is the frequency or orrhnaté. corresponding to a
deviation x, ¥V is the total [requencyf m‘the standard deviation
of the measurces, r = 3.1416, anded = 2.7183 — the Naperian
basce of logarithms. This equatmn is identical with the fol-
jowing convergent series: W

" \-.?W\( dbl ayhbral V. ori,}n
.._ﬂ\m?r[l —( Y\Q\ -y 075 + - --fa3l

N

Section 26 CLRMIN PrROPERTIES OF THE NORMAL

\“ DisTRIBUTION
The f‘LRSt Sderivative of equation [44] Is:
\ 1 _xz p—
dy N e oy XDl
"\ g5 gVanr 7
~O

\&nd as the mode of derivation necessitated, it has a maximum
at the mean (¥ = o) and a zero slope at the extremes (y = o).
The second derivative is:
—a
&y N e_a?(_i"‘ ) _
thmga\/;re 62-{-1 B I 4|
This is zero when x equals plus or minus o, so that the points of
inflection of the nortal probability curve are at points one
standard deviation above and below the mean.

N

¢\
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The first moment, uw, for the entirc curve 1s of necessily zero
as deviations are measured from the mean, hut if the first
s . - -
moment from the mean for half the curve, w1 |, 18 found it will

give the average or mean deviation.

w L 20 .,
= = dx = ——==.7979¢ -........ 418 a]
Fl]ﬂ }_V{yx Voo 19T /
2 N ¢
KO
It is thus found that the average or mean deviation i ;}797' 9
times the standard deviation.

N
M. Dev., or Av. Dev. = 7979 ¢ (Relation between aver”;‘l’cﬁl’eviation
and standard degidtion in case of

anormal distribubion}. . .. ... [48]

It is frequently desirable to know.,{@; far out, in both
directions, it is necessary to go todseeure onc half the total
frequency, This distance is called the probable crror because
of the fact that if the distributidnis one of magnitudes varying
by chance from some one thagnitude {the mean) then the
chanceww-dheahdibm&rﬁha’tginy single measure will vary from
this magnitude by an d@mount as great as the probable error.

The area unde%;he? curve is given by the integral, fadx.

Therefore if the equation
xt\"’

cou%({b}e"solved for x, it would give that distance which if

I{J@GEuTEd in each direction from the mean would include onc

'"\hs’t}f the. total population. The intcgral desired may be ex-
»\}' wpanded into the {ollowing convergent series:

Jrae=E[E - () +.L (=)
0 vVelevz 370\, 52\ /5

2
(]

Setting this equal to .2 5N, the number of cascs between the
mean and plus one probable error, and

solving for x gives
-6744808 5, the value of the probable error o
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Section 27. KELLEv-Woon TARLE or THE NORMAL
ProvasiLiTy INTEGRAL

x
The upper limit, x, of the integral, I = fzdx, when N =1
L]

and ¢ = 1, has been evaluated for values of the area, I, by
.ont's, from .ooo 1o .49g and arc tabled in the K-W tahle®
given in the last pages of this text. The argument fog the
table is either £, the area from the mean on to the sténp of
the distribution, g, the area of the smaller portiQ.n's.(\}ut off,

or p, the arca of the larger portion. 7 in this ta?blé" equals %
LS

of Sheppard’s tables, but whereas the t&Bi;I’ated entry in

Sheppard’s most extensive table is C: a.ndx .‘Qm‘argument is %, here

the tabulated entrv is x and the argt&‘fént I. In both tables
the ordinate is a tabled entry. (DHe two tables supplement
each other, Sheppard’s tablegwill be found the more con-
venient to use if deviates areJolown and either areas or ordinates
desired, while the K-W t,h."f:»]é will prove the more serviceahle
if arcas arce known add devatesdbraghidimagesrdénired. For
cxpressing a distrijgnﬁion composed of categories arranged in
a rank order andiaving varying frequencies, in terms of a
normal distribaton, the K-W table is much the more service-
ahle. Contitiiznﬁ reference to Table K-W is made in subsequent
chaptersypfthis text and if the meaning of I, ¢, o, x and 5 are

deﬁn%%}:‘ fxed in mind it will greatly assist in the understand-
ing §hsubsequent derivations and formulas (cf. pages 371-383).

2NN The table is called the Kelley- Wood, or K-W, tahle because Dr, Ben D. Wood caleu-

#\Nat=d by interpolation. vsing third and fourth arder differences, from Sheppard's tables,

\ ? values of Lhe abseissa % eorresponding to areas from § = .oon to I = .400; beeause mny wife

caleulated, by formule [40], valnes ot decressing intervals from [ = 400 ta I = 400, and

berause T ealeclated Ly interpolation cortain walues of the deviste from 7 = 400 t0 I =409

and alan cal 2 either by intorpolation or by the aid of eight place logacithms, values

of the ordinale, 2. The lebor has been substantizl and I cormeend to the Inguisitive the

caleulation of the deviate for I = .a00, which Mrs, Kelley determined to be cgral to
Aoz zEgot.

Columms F, % and 3 constitute the basie tahlz of the probability integral, but the added
colummns 549, 5/p and pg. aleo caleulated by Mrs, Kelley, will be found serviceable i mmany
forraulas.,

The tast figure nf the entries in (hc basic table may be expected oecasionally to be in
creor by 10— T LKL
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Section 28. FURTHER PROPERTIES OF THE NORMAL
DISTRIBUTION

The probable error was found by means of formula [49].

P.E. = 6744808 ¢ (Probable error of any magnitude in terms
of the standard deviation or standard
error of the magnitude), ... . ... ... .[50]

™\
It is to be noted that the probable error is defined as a certain
fixed fraction of the standard deviation, or standard erzoc)y
The relationship that half the population lies betwecn{ plus
and minus .67449 &, is strictly true only in case of asadrmal
distribution; however it is the customary measipe to usc
whenever thinking of chance variations, whethef"@?he distribu-
tion under consideration is normal or not. {e’must be defl-
nitely kept in mind that the P. E. has np«'st}t‘tus or means of
caleulation independent of the standagdhertor; it is simply a
measure of deviation 67440 times 4)large as the standard
deviation and should not be conﬁt;séd with the guartilte devia-
tion which, regardless of the shape of the distribution, is one
half the distance from the Igiwer to the upper quartile. From
the 10w‘érrw&fti§|1%}féu{lf) ]fﬁg,}iﬁ%rﬁ}nquartﬂe is always a distance of
2() and is a range that’ always contains just one half the
measures, whereasifeoth 1 P.E. below the mean to 1 P.E.
above is a rangg\phat contains exactly one half the mcasures
only in the spEeidl case when the distribution is normal. It is
to t?e exPP\étgad that distributions of measures which are com-
pt?mt_e measures based upon a large number of separatc scores
ml}\tq\g&neral more closely approximate a normal distribution
t}?ap do the distributions of separate scores themselves,®
. (80'that the. error introduced in thinking of 5o per cent of the
) cases as lying between + 1 P. . and — 1 P. E. is very small,
if the P.E. under consideration is that of any average, of anv
coefficient of correlation, of any measure of dispersion, or In

fact of any measure whatever derived from a large number of
other measures. Quite substan '
introduced if the P. &,

is taken as such that

tial error may, howcver, he
of the distribution of original measures
50 per cent of the cascs lie between

t : i i istri
dl;af&’\"ll‘s"r?l}ihl.{xrrc found it to be true with many distribu-

) *1 l?a\'e not proven this anal
tions with which I have had to
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+ 1 P. L. and — 1 P. E. (See problems 2 and 3 at end of
chapter.}
Certain important relations between the moments of the

normal distribution exist.  The third moment, u* = I—i ¥A 'szxadx,

of course, equals zero as the curve is symmetrical with respect
Lo its origin, the mean.
For the fourth moment we have: A

LI 4 '\ Y=
e, ‘[mjx de =30 .. ... . Lo 3]

These last two relationships are important in that thé}?’j"}rovide
a means of determining how clogely given data}“‘[\is ‘a normal
distribution. If gy = o and py = 3¢ the fitig\entirely satis-
factory and the normal curve will better (it the' data than any
other uni-modal curve. If these two ofelﬁt'iousl'lips do not
exactly hold, the significance of the didciepancy can be deter-
mined by the formulas giving probatielerrors of any moments,
given in the preceding chapter, ee¥more nearly by determining
the values and probable crros§Yof two constants 8 and B
These are used in all curve fifting followiqi Pearsonfs method,
and are defined by the edliatidngy -dbraulibrary.org.in
- ™ [Formulas 69 and 70
f =\@ - Bz = a% of See. 36|
For a normal digitibution 8, = o and 8, = 3. The probable
errors of 8, andlB, may be found from Tables 37 and 38 of
Pearson's Tables. If for any distribution the obtained §'s
differ frofn)c and 3 respectively by amounts which are small
with réference Lo their probable errors the data may be con-
side\r}eﬂ normal. The probable ervors of these §'s will be found
tabe large if the populations are small, This is simply indica-
iwe of the fact that it is impossible to determine the type of a
distribution from a small population and it is scarcely worth
attempting unless the population is over r1oo.

Section 29. PROPERTIES OF PORTIONS OF A NORMAL
Di1sTRITUTION
The method followed in the caleulation of the average
deviation is serviceable in determining the mean deviation of
any tail of a normal distribution. Let a “‘unit normal distribu-
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tion” be one of standard deviation and population each cqual
to 1, then the mean deviation from the mear, of the tat of &
normal distribution covering the portion from x to o i glvew
by the equation:

2 (Mean deviallon of
f v de et yr oo the tail of a normal
M. Dev. of Tail = TNy T N: T g distribution) . ... .. [52! )

in which 7, is the ordinate per unit base at the point of truncas
tion; N, is the number of cases Jying bey ond this pofuk]

. is the value of the ordinate of a untt normal curve( (aehic
stump or point of truncation ¥, and g, is the numbgs 0{ cases
in the unit normal distribution from the point ob Fruincation
£ om b0 oo, In case of 2 unit normal d1str:hut1r>h~we have:

.z (Mean deviation of #lle‘tail of a unil
M. Dev. of Tail = P [ ﬂormdil (111:Lr11 m.t'ﬂ\}l} .............. 153l
This magnitude, z/ g, is given in Tach\K W. In case ¢ <5
use column “z/¢” and in case ¢ > r;”uae column “z/p "’

This relationship between ordmate and mean devmhon of
tail is onc of ihe unique and. Yery interesting properties of the
normald¥rieehbrary Rifgtimany applications, one of which
is considered herewith,{\In case the tail is one half the curve

we have: 5949 c\ ?\)” in which 4 is the ordinate per unit

base interval at'the mean. Solving for s gives, approximately,

4 N {thmulﬂ for roughly determining the standard deviation

y,) t\~of a distribution which is approximately normal}. .. .. [54]
Accb{dmgl‘_\,, if a rough estimate of the standard deviation of
as dﬁtnbutlon will suffice, it may be obtained by dividing .4
ef the iotal population by an estimate of the height of the
ordmdte at the mean, of the normal curve which would best
fit the data.

A simple extension of the method followed in obtaining the
mean deviation of the tail will give the mean deviation from
the mean of any part of the distribution, Consider the standard
deviation and area of the following figure to be 1 and lct
it be required to find the mean deviation, from the mean of
the entire distribution, of that part of the distribution between
x1and x;. Let the ordinates at these points be & and z. Let
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g1 and ¢z be the proportions of the population Iving above x;

and x respectively. Lot d = the required mean deviation;

d1 = the mean deviation of the tail from #; on; &y = the mean
deviation of the tail {rom x: on. Then (g — go) is the pro-

A\
portion lying in the interval from 2 10 x;.  The first filgment
of the distribution hevond x1 18 cqual to the hral, n‘;oment of
that part between %, and x plus the first moment of that
part hevond #,, or 4 \\
qidr = (g1 — gz} & + gady )
That is, solving Po \d
0= g — g2 d + \‘
d= _st; (‘\Iean deviation of a portion of
— g1 . .amm normal distribution). ..  [53]

The magnitudes g and g aw’:ls‘l;]e proportions lying beyond the
upper and lower limits res‘pecwl\»elx apl g, ]Q;f_l?so},%x]?lved and
21 aned z are the ordinates for these proportions as given in
Table K-W. iw\

As an illustratiaf the following problem is given. Assuming
a normal distmbytion, express the following school marks as
deviations fréh the mean:

. ‘p;;;im'\:r T : CAMI:IL-'LA'i'm.\' 1"-1;.0_;1_ —-
WF P IL; TaBLE K-W 31—
M \R\Kb\ I{]hfi:E\I;'IC\( g g — — - — w—a

R N INDICATED % || &
NS — —e—

- 5N 11.4 114 000 162000 ' LO00000 1.692
B 34.7 40T 114 397034 .J . 192900 588
C 325 1 786 | 401 297309 ‘ 397034 |— .325
D 10.2 883 736 190478 | 291399 |— 980
E 9.0 978 688 .052485 ‘ 190478 | — 1.333
F 2.2 1.000 478 000000 | 0524853 [— 2,346
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The table informs us that a mark of A is equivalent to a posi-
tion 1.6092 standard deviations above the mean of the group,
that a grade of B is 388 standard deviations above the mean,
a grade of C is .325 standard deviations helow the mean, clc.

The standard deviation of a portion of a normal digtribution
is developed in Section 6o in connection with another problem,
— see formula [188].

LN
Section 30. Tus PROBABILITY OF EXCEEDING A GIVESZN)
7'\
DIVERGENCE .\

The normal cutve assists in establishing the degrée of con-
fidence which may be placed in statistical (iddngs. The
significance of any measure is to be judgedsby comparison
with its probable error. If a child makes a $core of 30 on a
certain test and if the probable error of ghéscore is 3, we may
estimate the chances of the child’s trugaBility being as much as
100, We assume that the distﬁbuj:foﬁ of the child’s perform-
ances would follow a normal curve,® Note that the assumption
is not that the talents of childrén in general follow a normal
distributi#iy 'dJ{’Iﬁ%“m"’u'éi“%iﬁﬁHt be less reasomable than the
one we are called upomitp make. Moreover, so little differ-
ence in probabilities, €@¥cept for extreme deviates, is ordinarily
consequent to diﬁ'e}enccs in forms of distribution, that the
assumption of pormality is little likely to result in serious
error for such/problems as the present one. For extreme
deviatesi db\generally does not matter so far as any practical
deduetions are concerned whether the chances arc 1 in 1000
or téidtimes as great. Nor for smaller deviates does it make
'.a\ziy" part'icular difference whether the chances are 400 in 1000
m\; OF 430 in 1000. Should such differences as mentioned be

significant in any particular problem, no assumption should
be made, but the type of the curve should be experimentally
determined.

For the problem in hand: If the P. E. is 5 the standard error
5 .
is (3%4—5) = 7-413. The difference between the scorcs that

we are concerned with is (1oo-80) = 20, which is ( 20 ) _
7.413
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2.608 standard errors. The K-W Table, or more conveniently
for this problem Sheppard’s Tables, may be used to find the
arez in the tail below the point which is 2.6¢8 standard devia-
tions below the mean. The tables give .oo35. To intcrpret
this we should postulate the person’s true ability as being oo
and his various performances distributing themsclves in a
normal distribution, with standard deviation equal to 7.413 2
around this mean. Then .oo35 of the area of the curve will
lic below the point 8o. Accordingly if his true ability isg mo\
only 35 times in 10000, or 3.5 times in 1000, would a Sqo}e as
low or lower than 8o be cxpected. With such figuregha person
could accept the proposition that the child’s abj.hty was nol
as great as roo with about as much certainty as\hc can start
across a busincss street expecting not to behit by an auto-
mobile. If is, in other words, just such a oénclusmn as one is
justified in acting upon, ~\

Table K-W is built upon the basis 3t the standard deviation
as the unit of variability, instead\of the probable error. If
probable crrors instead of sta:.id*ird errors are known, the
{ollowing table may be used, o) w{ ro»é% ngaltglgfg%}rmdmg the
labor of division by .6745:

m’}i\BLI: XXVI

The L.'kehhd of a Difference as Great as this Obtained One
It a differ-
ence s x; and Jn thé same directivn, and in the same or the opposite
times its: i8¢ Too t in 1oo, or 100 p direction, iz 2 X 100 P i 100,
probable t’h’mc‘eq of ifs occurring or 200 ‘chances of its ocour-
P \{m 100 g chances of its not ring to 106 (I-2 p) chances of
'\\ ‘aceurring its not occurring
—_—  $ - —_—— ————————————— _————
® '0
S v 100p in 100 100 to 1004, 200411 100 2008 t0 100(I-24}
N X v 2 . .
\ Vs 37 inloo 37 to 63 l 74 inloo 74 to 26
1.0 25 InTo0 25 to 75 30 1mioo 50 to 50
1.5 6 ImTO0 16 to 84 3T inroo 3I to 69
2.0 g in 100 g to g1 18 intoo 18 to B2
2.5 5 intoo 5 to gg 9 intoe ¢ to OI
3.0 21 TO0 2 to 8 4 inton 4 to 96
35 I N 1oo I to 99 2 infoo 2z to 98
4.0 3 In I100.0 7oin 100.0
3.0 W02 11 100,00 W04 10 100.00
6.0 00T 1IN T00.000 j 003 inT00.0600
7.0 1 000L IN 1000000 D001 in 100.0000
8.0 Loooool  In 100.000000 LO00003 16 [00.000000
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Section 31. Summary or FacTs CONCERNING THE NORMAL
DiIsTRIBUTION

A summary of the facts already discovercd together with a
few determined later in regard to the normal probability curve
gives the following:

1. Tt is uni-modal, symmetrical with respect to the mean, and
is completely determined when N, the population, M, the mean,
and g, the standard deviation of the distribution, are known, ()
2. The mean, median, and mode coincide. O
3. Meastres of dispersion are related in the i{ﬂftgwing
ways: K,

0 =P.E = 84535 A. ). = .67449 ¢ = 20315 I} O
AD =1.18290 = 11829 P. E. = 79788 ¢ =_Jur20 D
o= 1.4826 ) = 1.4526 P, K. = 12533 A, D.‘%.\,é'gms D

D = 38001 ¢ = 3.8001 P. B = 32124 8{10 = 2.5631 ¢

&
.. I56]

The range covered by the mea,suge;s’i«s'appmximately,
In case the tolal populaibnis 10, = 40

w‘\r.rw.:cibra;:libr‘ail'y_or:g;';’ ‘Y s0,=350
‘ ) SNy i 200, = 6 ¢
113 (14 (13 (.i\”‘ L1 LR} IOOO, — 7 o_
7= approxima.tehi'}ip.ﬁf + the height of the smoothed ordi-
nate at the meanymedian, or mode,

4. The pointsydf inflection of the curve are at distances 1 o
and — 10 ﬁroi’l}\ the mean.
g. Eve;,r@:i;g\:ld moment uy, pz, g5+ -+ of the curve is equal to o,
The e\z}\a@moments are given by
“:; Me = at

P - pu
m\J B = Fpufs = 30t

\ ) Moo= T5p% = 1505  [TT0TTTTTTTY [s7]
py = 103 pty = 105 48
Br=o0,and 8 = 3.
6. The mean deviation of a truncated portion of the curve
taken from the mean of the entire distribution, ig equal to th(;
square of the standard deviation of the entire distribution into

the height of the curve at the paint of trunecation, divided by
the number of cases in the tail,
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7. The most reliable constant of the distribution is the
standard deviation. Its probable error =

H744898 & I
VaN T VN

"This {follows from formulas [32-a] and [so),
T"he probable error of the average deviation =

of its own magnitude. ..., ... ... (58]

4066 ¢ IO L. . \
2200 , or STO of its own magnitude | . . -[501
Vi VN ¢

oA\
The probable error of 1), the 10--go percentile range, =;\ "\

”

13 3,_3 ¢ , of L/O_O of its own magnitude . . .[16 a]
N VN ,
A - m\\'
The probable error of the quartile = ')
i@_oﬁ‘l, ur 7,—87 of its own mag{xi’gﬁde ........... [60]
VN VN ¢

This follows from formulas J14] and [58], \

£ 15 thus seen that if N measureSJesult in & certain rela-
bitiiv in the standard deviation, qf “requires to obtain an equal
relability, 1.14 N measures msthe average deviation, 1.58 N
mensures in the 1o- go })ercenms@v&”#lﬁ%uﬁBﬁa@?@ré\lrg’nedsures
in ihe quartile deviationg

. Measures of ccnfn\i tendency are less reliable than

measurcs of dlsper%\n Little, i any, significance attaches
to 2 measure of Ghe unreliability of an average expressed in
terms of ltw(‘lf ‘smd furthermore, gince in the normal distribu-
tion all meaéures of central tendeney coineide, it will suffice for
PUTDUSG\QT comparison 1o give the probable error of each.
6745 ¢ (Normal or any other distribu-

:..\’;:' . E.of mean = VA £1151 ) fo1]
N . 845350  {In case of normal distribution
\ 4 P B, of median = VN otilyd. e [62]

P. E. of the mode is unknown unless the mode is determined
from the equation which best fits the data, in which case its
probable error comparcs favorably with those of the mean
and median.

It is seen that if N measures result in a certain reliability in
the mean, it requircs 1.57 N measures to obtain an equal
reliability in the median.
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g. If a distribution is normal the most rehiable measure of
dispersion based upon percentiles is that between the 7ih and
g3d percentiles. Of almost as great rehiability is the 1o-go
percentile range.

10. The distributions of frequencies in the point binomial
(p + ¢)" closely approximates a normal distribution if # is
large and neither p nor g very small. For » infinite andl
neither p nor g infinitesimal the point binomial dlstrlbutmg
becomes a point normal distribution. O

11, The average deviation from the mean of any lgorhon of
a normal distribution may be obtained from the equ‘atlon
5] — 23 ,”.\\

@ — g’ ’
in which the g’s are proportions of the popﬁﬂ’ation and the ¢'s
are corresponding ordinates as given i-Table K-W.

12. The standard deviation from thé¥mean of any portion of

a normal distribution may be ob‘sagncd from the equation:

N
X2y R\ =“€§ZQ

=1+
Q’z

www.dbraulibrar ygérg in
13. The equatlon of tHe normal distribution is

—d*  [Scetion 63, Formula 188]

o\

; v,_ “\\ ...................................... [44]

w[ A AR AR R

NE

'“';.' FROBLEMS
.t\' ¢
”\ u;” ) ;e &C‘;::ven a n(r)rmal distribution with areas and deviations as indicated
\ ompanying figure, then (I — &) /1 is the probability uf a measure

5

or,

lying in the shaded portion or, in other

words, of a meas
from the mean by a distance greater than x ure Ceviating

If the probability of 4 single
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measure bying bevond x is this small amounl 1 — «, then the probability
of a measure, it case of a population of ¥ measures, Iying beyond this
point iz & {1 — ). If this probability, ¥ (I —e), equals .5, then the
value x corresponcing to the « is such a devialion that the chances that a
riggsure will lie heyond the point x is just equal to the chance that ne
measure will Ke beyvond il, The distance x is therefore the most probable
maximum ceviation which will be found in the case of a population of N,
Az aosuificiently close approximation ¥ may be taken as equal to one half
the range.  Accordingly vsing Table K-W the following tahle ig obtain\ccl:

N, Suca Twoar O\

RaNcE x I—a Ni{i—a =.5 LW
k¥ 50 L1336 '\\

40 2. 0455 ] 4 ,,:’.‘

5 250 .01242 40 AN 0

6o 3 T 00270 185’\§

7o 350 000405 1075

8¢ 4. 5 0060634

Complete the table, determining values for 3 5,438 8 5. {Answer: If the
woulation 13 1 {more exactly 3.75) the range’oti‘tﬁé meastires is (providing
e Ll disuribution from which the sampledf's is drawn is normal) most
probaily cqual to 3o; and if the popnilation is 8660 the range is most

probably equal to 8. N

al

2. Ia the case of the distribu ;iﬁn:ﬁff incomes given in T'able X calculate
the L. 0. and the U. Q. and thé'mtsdmftmﬁeﬂﬁggoﬁg_m P.E. and
L P.E. Compare values f&ed. What percentage of the cases lie be-
twoen these = and — Puz'}:}s\poiubs]’

3. Do ihe same f&{{tﬁ'e distribution of Wholesale Price Indexes given
in Table XTV, A\

4. Estimat:e{che“standard devialion of the distribution of temperatures
given in Tablé BIII and Charts I and TI by first cstimating the height at
the meat gf j}le normal curve which would scem to fit the data.

5. EQ“L‘E-.[(; same for the College Marks data given in Table XVIIL
Compard e found with the correct o
o~ \:6,:” Group the College Marks data in fives, 47-52 constituting one

sgeDhip, 52—57, the next, ete. Plot and from height of the curve at the
fean, estimate the 5. Compare with correct valee, What adjustment
in cstimating ¢ by this short method i3 necessary in case the data are
grouped?  |Answer: The obtained ¢ is in terms of intervals and must be
meltipbicd by the number of elementary units in each group to give the o
expressed in elementary units.]

7. Verify the calenlation of equivalent scores given in Table XXXV,

8. If the plumage of certain fowl is cither blue, splashed, or white,
and if ithe percentages in Lthese catogories are 28, 60, and 12, what numerical
values should be assigned to these colorations shonld it be desired to treat
thom as eolor deviations in a normal distribution?
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g. Assuming normality of distribution in the temperature data, Table
VIII, and using 51.548 and 6.190, the values of the mean and standard
deviation already found, calculale the ordinate at £ 1 P. B, 85.723, and
compare with the actual ordinate. [Answer: Theoretical 3.17, Actual with-
out smoothing 3.00.]  Still assuming normality, what is the average doevia-
tion from the mean of the trunecated portiom beyond this point?  [Answer:
7.86,] Of the portion below this peint?  [Answer: —2.62.] N

10. Verify all staternents in paragraph 7, Section 31. A .

2 N
11. Verify statement in last sentence of paragraph 8, Section 31.\\";~

12, (g} Calculate § and 3: for the point binomial when p %\g = 1/2
and # = 25. [Answer: & = 0, f2 = 2.02.] "x'\”‘

(#) Calcudate §: and #: for the point hinsmial wheﬁ.ﬁw\-: I, =.9
and # = 25. [Answer; $1 = .2844, £ = 3.204.] \\,

{¢} Calculate 5y and 8s for the point l'ninmni.Kli}hen ¢ and g are bath
finite and u = . [Answer: g1 = 0, 82 = 3.] ¢

P 4
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CHAPTER VI
COMPARABLE MEASURES

N
Sectton 32, Tur CoNbItioNs REQUISITE FOR COMPARISON')

In many studies measurcs of the same, or nearly the ‘s;mlc,
phenomena are obtained and it is desired to compgi‘é"?esults.
(;ross measures or scores can with Validitywk{(& ‘compared
directly only in case they are in the same unitglahd have been
obtuined under very similar conditions, \Fhere are four
methads in common use, the purpose of Cach of which is to
rnerive comparable measures from ofigial scores obtained in
such manner as nol to be directly)comparable. Of these
four the first and the only one.¥hich is universally sound is
thal based upon the c01npqu§j\},gqm';§%{§f}5{;a p;_o‘%hemscales of
measurement involved; a sedond is the ratio of in&ex method;
a third may be called $h& eqguivalence of standard measures
method; and a four’glg’"%tay he called the equivalence of suc-
cesgive percentiles meshod,

The first methgd presupposes that the complete equivalence
between measfu‘e's“ is known. If both are rectilinear scales
and two points of the one have been determined to be equivalent
to two dints of the other, then for every point of the one an
equivalent point on the other may be immediately located.
As.ﬁ:ll"'illtlst.rat.io11 of this method may be considered the com-
‘pdvison of two heights, one expressed in centimeters and the

ther in inches. In the case of inches and centimeters the
two points which have heen determined as equal are:

0.0 centimeter = o0 inch
100.0 centimeters = 39.37 inches

This type of equating is common both in the physical sciences

and in the social sciences, but it should be noted that it is

entirely sound only in case the two scales measure identically
10g



110 STATISTICAL METHOD

the same thing in the same linear manner. Any number of
functions may be found which agree at two or more points,
2 “Y

. . +
but are not identical, such, for cxample, as, f* = sinfx; ' = -

ete. For each of these the function equals zero when x equals
zero and the function equals 1 when x cquals w4, but in gencral
ff ?é f”

The minimuum numbcr of conditions which must be met
before two scales can be fully cquated are three. The com'h——\
tions are, (a) one point of the first must be known to be equdl
to a point of the sccond, (&) a second point of the &rbb st
be known to be equal to a second point of the seg:ond and
{¢) the law establishing tbe relationship hetwéch’ successive
points on the first must be known to be the l{w dnderlyving the
second, This third condition is the hardéhto establish and
should be examined the most critica]ly,“ﬁi%&tn in the physical
sciences it frequently can only be approximately cstablished.
Compare, for example, the relasioh between Lemperaturc,
pressure and volume in the cdse of two gases. When these
three conditiendlareulletafhdidetarmining of equivalent scores
is simple and is just such @problem as that of finding equivalent
temperatures in the cent; rade scale to those in the Fahrenheit
scale, knowmg thake>and 100° centigrade correspond to 32°
and 212° Fahrenheit respectively and that both scales are
rectilinear. |

It frquﬂ@ly happens that only two of the three conditions
mentionediare established, in which case a guess is sometimes
madesds™to the third and an equating attempted, The excel-
lence of the resulting system of equivalent measures is un-

~ (Certain, and all interpretations drawn should be with the reser-

\ )vation that they are subjcet to the validity of the assumption
involved.

Section 33. TuE Ratio METHOD
In case conditions (@) and (b)) are met, and condition {a) is
‘a score of zero on the one scale is equal to a score of zero on
the Dtht?r, condition (¢} is frequently assumed to be * the same
proportion between the units of the two scales maintains
throughout.” With these underlying conditions the ratic
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method 18 frequently used.  TlHustrations will show the hazards
mvelved.  Given the foflowing sets of data:
TABLP YX\'II

I Hercnr v O | WEIGHT 1 LBs.
1

Medivideel A 0 0 0 0 L 0L 138

75
Average adule oL 0 . 0 o L L 172 145
—r—— - —_— . = = = = =] V\\
(L)LLLa fln individual A are those given in Whipple for the averag&m o
v old hov,) A ™
4 '¢"
TABLE XXVIIT e\
. B — 5 4 A
WRIGHT )
. 4000 pounds Butterfly BAY . . 2 grams
. 3600 pounds Averaggx@lkﬂpecies . 1 gram

- — AN —
— T TN .,_' —_—

TABILE XRIX
i’fmfra‘ Swte, Bureaw of Laber Smtz.féecf—zduerage Aug. 15 Retail Prices

S — _r =

!
‘| st Ec.uqd

53,68 doz. %%’i?d’" ek e AJnsssmd
N B, & _ -
Gass | 22 L l 55.7

— A — = —— -

Ii one is atfefopting to secure a maturity measure based
unon l*eight,\ém‘d another bascd upon weight one might start
with the f6Newing propositions:

{a) Q%‘ﬂ height indicates the same mount of maturity as o
poundq weight, (b} 172 cm. height indicates the same amount
af{ {iaturity as 145 pounds weight, (c} the law of development
\QF ‘height is the same as that for weight. Of these three state-
ments (a) is probable entirely sound, (b) probably tolerably
satisfactory, particularly if dealing with groups and averages,
while (¢) is probable quite absurd. Accepting these three
propositions is equivalent to saving that scores Xi and X, in
the two measures, which satisly the following equation, in
which M, and M, are the means of the two series, are equivalent:

X X:

M, M
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The ratio is oftcn used with some other magnitude than the
mean as a base so thal a more general statement of the equa-
tion connecting equivalent scores is:

X, _X: (Equivalent scores upon the assumption

B, B: of equality of ratios) .. ... ...t [63]
By and B. should be values of the variables which are known
with more than usual certainty to be comparable and reliable.
It is also desirable that they be not small with reference to the
scores involved. Due to the greater rcliability of means tHah
of individual scores the use of the mean as a base has maich to
recommend it. Letting o1 and o stand for the stdndard
deviations of the Xy and X; scores, one criterion Qf\the sound-
ness of the assumption of the equality of ratiosigs

Bi _ By (Criterion to nse in jud#ing of the appro-

o1 T2 priatencss of thfs ~r}1.x’c3 method) ... ... 164]

The nse of this criterion is illustrated! 12 the next section in a
problem in which the bases are the tmeans.

The calculated ratio scores of, Iri‘d{vidual A are not equal, for
A stands WQ Yo };H‘alz aftdthe height maturity scale and
{72/145 = }.517 on t ¥ve1g%t maturity scale. Accepting
proposition (c) one wou}d\conclude that individual A is a very
abnormal person, béx@g some 28.¢ per cent more developed in
height than in weight. In dealing with mental traits not
amenable to dl]‘\ECt observation a conclusion equally as absurd
as that jug ‘dfawn might pass for vears without discovery.
In the cage\bf height and weight the fallacy can be immediately
detectedand a method followed which will be more reasonable,
though'it is impossible to say that it is entirely sound, ag the

Mp'répomtlon (¢} 15 still an assumption.

\ ) Height being a one-dimensional magnitude and weight ap-
proximately three-dimensional (@) and (5) stand as before and
the third becomes: (c) The law of development of height is
the same as that for the cube root of weight. The comparisons
then are: Maturity index based upon height = 803. Ma-
turity index based upon weight = Vy5/143 = .803. Upon the
basis of these two ﬁgurcg one would conclude that the individual
1=;‘ equally developed in the two traits. This iliustration is
given to show the material diffcrences which result from
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different assumptions as to the laws connecting siccessive
scores of two scales and not to suggest that cither of the two
metheds followed is cstablished as sound. At best, in the
problem in question, propositions (b) and (¢) are questionable.
Logicadly proposition (a) scems sound, but there are many
situations in psychology and ccomomics where a similar state-
ment would be very fallacious.

The hazards of the ratio method are not lessened whend
dealing with the same sort of function of different things.  &or
exampite, the weight of one child expressed as a proporiion of
the everage adult weight in comparison with the weight' of a
second shmilarly expressed may be very misleading. The two
children may have very different hereditary endowments, the
one beeoming a normal adult of weight 128\peunds and the
other o normal adult of weight 145 pound$y” The fallacy in
using indexes in the casc jusl mention dis the same as that
for TalJe XXVIII. Elephant A hd¥ 3 ‘weight index of 1.11
and Tuticrly B one of 2.00. Th;:s: eonstitutes no proof that
as u butterfly B is more exceptiphal than is A as an clephant.
It might be true that 1o per cent of butterflies exceed 3 grams
in weight and bul 3 per cond of GEEthRbhERY g58dbounds.
The indeses do not telgs, but in such case it would seem
reasonable to call A 408 more exceptional.

Using the Labor Bureau data of Table XXIX we find that
the 1618 Augugt{y price of fresh eggs is 150 pet cent of the
averago Ang:u&;ft 'v5 price for the years rg13-17; of potatoes
177 per ceddyof bread 136 per cent; and of tea 118 per cent.
Thesc fafiratios toll an important story, but at the same time

- they dha¥ be migleadin o and for the same reason that the weight
ra}t{és’”of clephants and butterflies are misleading. The ‘1aw
“egvering the fluctuation of potato prices is almost certainly

\dfffereﬂt from that covering the fluctuation of bread prices
and similatly for any two of the products which may be com-
pared. Conditions (@) and (§) may be fairly sound, but very
questionably o of condition (¢): ’

(@) o ¢ per dozen cgus indicates the same sort of a price con-

dition as o ¢ per pound lor potatoes. _

() 35.8 ¢ per doz. eggs indicates the same sort of a price

condition as 2.2 ¢ per pound for potatoes.
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{¢) The conditions determining the fuctuations iT.l the prices
of eggs are proportional to those determining fluctua-
tions in potato prices. '

Because of the peculiar difficulty of establishing condition (¢)
the ratio method for economic and psychological problems
may be expected to be an artifact and not an exact quantitative ,
procedure. .

A part of the error involved in combining price rati%,q‘f
separate items to obtain a gencral index may be elimiqat@z‘d by
weighting the separate ratios inversely as the squargsJpf their
variabilitics, as proven in Section g1 and illustrafed in Sce-
tion go. This method, however, will not result\fn as great
accuracy as will one based upon the multipls sorrelation and
regression of the prices involved. Further etnsiderations are
given in Chapter XIII. AV

% 3
NN

»:’ ’
Section 34, THE STanDARD MEasure METHOD

This 15 owth of thé,method used by Francis Galton.
It has ceﬁﬁ%ﬁﬁ%&?ﬁ%ﬁg measures involved, but rests
upon practically the samte principle. Galton considered two
measures which ttf{mﬁ)ted to measure Lhe same function to
be comparable heh each was cxpressed as a deviation from
the median uﬁ’ihé group to which it belonged and when each
such devi&tiﬁgu was divided by the quartile deviation of the
group. ,EBlie three propositions essential to the scundness of
this\@écédure are:

'\.:(tft) The median score of the first measure indicates the
m‘; o’ same sort of a condition as the median score of the
\ second measure.

{(b) A score of the first measure which deviates one quartile
from the median indicates the same sort, of a4 condition
as a score of the second which deviates in the samc
direction onc quartile from its mediaz.

(¢} In general, deviations of the two measures which are in
the same proportion as the quartile deviations are
indicative of the same sort of a condition.
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More LricAy stated these propositions are.

(b (_:_'!uarf.ﬂe deviations are comparable.
(¢} The same proportiens as between quartiles holds for all
eriivalent deviations from the medians.
Since vhe mean can generally he more reliably determined. O\
than Lhe me rl an, and the standard deviation than the quartﬂe .

deviatiom, » Galton procedure has been dropped and, tﬁa
following propositions taken as a basis: R O
] N
(7} Alean scores are comparable, e\
L&/
(B Siandard deviations are comparable. "‘\

(] The same proportion as between staidard deviations
holds for all equivatent deviations from th{’rﬁean.
Let
Ty A ‘-V], and zy = )‘2—_11—{—9 {Standard measures). . .[65]
ﬂ—

T

Then the mensures Lo be (,omp'LrBd are i and z. Such measures
as these may be called “s@ndar&"ﬂ?é&ﬁﬁi%sﬁbusl%em meas-
ures of devialion expressed in tcrms of standard deviations.
The last proposition &iﬁ\’r’fhen be stated:

(e} Toequal st :;11(1&1"&1 measures arc comparable.

It should he noted that there is no 1mp11cat10n that a zero
score In the 111 Lt measure is equal to a zero score in the second
measuy t?.\\Pr(;L_)osﬂ.,{_an (¢) always needs experimental verifica-
tiomn, bi:f‘r for the usual distributions {ound in the social sciences
it wama reasonable to expect that if the means of the distribu-

i0NE are set equal, and il points one standard deviation away
from the respective means be placed together, a better ap-
proximation to complete equivalence throughout the cntire
scales will be obtained than if the means and zero points are
equated and other values taken in proportion. The following
data taken [rom Pintner (1914) and Kelley (1¢14 comp.}™
will illustrate the method and they also are such as do not

* A numerienl errer coeurs in this reference. the feurcs herowith presented being the
cotret ones,
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reveal without statistical analysis the inaccuracy of the ratio
method;
TABLE XXX

MEAN SCORES GIVEN TO SAaMPLES oF Haxpwerring Upan
N oF SAMPLE _— —_——
Avyres Scale Thorndile Seale
2 20,6 5.9 e\
6 24.2 0.5 LW
8 25.4 73 O
21 35.3 84
4 30.2 B.al ™
15 36.3 B3,
I 371 . m\ﬁ.\r
22 40.3 B9
3 40.3 g.o
17 41I. » G
18 48.9 ’xt’\\" 1ol
14 49.2 . \ » T0.2
G 32.4 W\ In.7
i 357 O 10.6
24 857 A 10.8
Ii 36,0 A5 10.7
10 56008 1.3
2 KT 10.9
13 br L] . 5810 Ii.z
Yy w.dbra library.org.in L
20 N 642 1.8
23 ':\"’} 54.2 - 13.8
3 - G X 4.2
16 Y \\ fz.1 11-3

Calling the’A§res X, scores and the Thorndike X, scores and
calculatinaiﬁﬁsé'required constants yields:
M, —,\\Luj.ﬁo 01 = 15.93 M = 10,08 o2 = 2.229
)‘{‘1;;;\5111(1 Xy's satisfying the following equation are comparable
) ”{n'séjg’sfures:
\ } Xy — M, _ Xy — My (Equivalont seores upon the assumption
a1 72 of equality of standard measures) . .. [66]
Solving for certain values vields the equivalent scores given in
‘the first two columns of the following table, XXXJI. Treat-
ing the same data by the index method gives the equation:
IESUNEN ¢]
44.60 1008
S_cores_which are equivalent as derived from this equation are
given m the last two columns of the table,
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TABLE XXXI

Stndard Measures Meﬁﬁod Rath Meﬁhod
Fiptivabent SCURES BEQUivALENT Scorus
Mvres | Thiorndike Avres . Thomdike
R _ X X, Xa
— 22,4 : 0.0 _ 0.0 0.0
2.0 3.1 i £ ‘\~
205 [ 6.0 [ 2.5 6.0 W
6.0 i ot i 4.6 10.1:‘\
HiNe ‘ 2.9 FO0 1482 ™
51.8 | i5.0 | ;'3.8 ;(5'.9,

PR s — gy = — T T T = — T/ T .a_ ¢_\_ -

Tre tweo Cihod& lt,ad to dxﬂerent results ana a4 very brief
study ol the onginal data shows that the equly alents obtained
bv the gtandard measure method are mucl’shé more reasonable.
Tre fundamental error in this problem})fvthe ratio method is
in the assumption of equality of zefdyscores. That this is an
error would not he seli’-evidcnp”tb the user of the scales, as
samnples of handwriting of le%’alrhcrit than 20 on the Ayres
seale or 6.0 on the Thorndile cuc sc om Tinlgr@ 36? that what
comslitutes a sample of{wero ment on Cither sohle s quite
unkzonwn, A similary ‘shecrvation applies to economic situa-
tions, [or who has \'\\permmc with, or knows the meaning of,

o ¢ as the cost of et us say, a pound of bread?
Reference $8Jshe cquations giving equivalent scores shows
that know lpr{afo of the means, in case the means arc the bases,
is all th 1t"\ fecessary to determine the equation glving equiva-
Tent %&&s in the case of the ratio method; but that an added
Homt OI information, the standard deviations, is required in
%JIQ\ case of the standard measure method. If cquivalent
\Ultdsur(a really are proportionate as assumed by the index
method, the equating of standard measures results in the same
sct of equivalents as given by the ratio method. This special

case exists when
My M X — My X:— M X _ X

- ; A T L 2 Zreduces to — =
= P fur ther o . M M

Accordingly the standard measure method is the more general
and contains the ratio method as one of its special cases.
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Section 35. Tuk EQUIVALENGE OF SUCCESSIVE PERCENTILES
MEeTHOD
This method involves no assumption that the law covering
the relation hetween successive scores is of any particular type
other than that involved in the statement “the larger the
score the greater the trait, or characteristic, being measured!”
Otis (1916) and (1918) in dealing with paired mcasures, Ja
uscd a graphic method which gives a line of “rank relafion.”
His method, equivalent to setting the lowest scoreswy séries
one equal to the lowest score in scries two, the ngtt Jowest in
series one equal to the next lowest in series two, ete., could
be called *“the eguivalence of successive ra1ﬂ§§° method, but
the title here given is used as being thesmore general. The
method docs not depend upon paired meagures or upon having
two series of the same po;axllatiog;<though if measgures are
paired and high correlation exist$\between them the reliability
of cquatings is greatly increased, ™

Letting P stand for percentiles in the first series and P’ for
those in the second, tbc~ﬁ1eth0d assumes that equivalent
scores at%rRodBRsidhrivy Srig if0d F.x; etc.; and in general
Ppis (icp'{ivalent to P'p»  {Comparable percentiles). .. .[67]
No single one \these equivalents P, = P.,, etc., can be
determined Wi}l the reliability that appertains to M = M,
or ¢ = g'¢bmt, unless it has been experimentally determined
that rg:]z[t?onships between the two series are rectilinear, or
cur\;i(in}ar according to a known law, a more accurate total
sebofequivalents may be expocted from this method than from
‘}ﬁt}ﬂer of the two preceding. Objections to the method are,
o -~ first, ‘Fhat no concise algebraic statement of relationship comes
Q ™ fr:om.1t a.nd secon@, that it is responsive to chance odditics in
distributions, This second objection can be largely overcome
by smoothing graphically as does Otis or by a moving average,

as will be illustrated, using the data upon handwriting.

There are bgt 24 samples of handwriting so that a percentile
below the 4.1667th cannot be caleulated except by an arbitrary
assumption as to what constitutes the lower limit of the interval
corresponding to the lowest score. We will therefore begin

with the sth percentile and, to shorten the work, proceed by
fives to the ggth.
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TABLE XXXIT

EgtivarixT HANDWRITING SCoRES Ssoormine EQUIvALENT ScorES
Frroinrges ——m — — - — = —_—
Ayras Srale Thorndike Scal: ! Ayreg Thorndike
i
e e — I
5 . 23.18 6.34 23.1 6.35
Lo f 28.52 ! 7.20 26.7 7-30
135 | 34.19 ! 7-50 32.4 i 7-00 ~
20 36.15 .17 34.2 g.20 \
25 | 36.70 4.35 36.0 8.50 . °
30 38.933 4.68 37.8 880, N
35 qo.145 | B8.86 39.6 : 9- 1A\, "
40 43.05 [ 9.31 42.3 0.40/
43 48.31 10.03 46.8 880
30 50.80 16,40 49.5 RSOE
55 54.23 10.00 54.15 f{ 1045
0 35.31 T0.72 55.05 (M \ " 1063
63 5021 10.81 ] 55.95 N} 10.85
70 3713 11.01 56.83 1L.03
735 57.85 I1.25 5;&',,’ I1.25
S0 59.07 Ti.43 %1 I1.55
85 (4.01 J 12,11 ) "'}34,5 12.25
G0 73.97 : £3.52 N 744 | 13.45
03 80,31 ‘ I14.40 NS 70.8 ! 14.35
I AY i —
N vy
TABI{.F:’; wor-Hhraulibrary or 2.in
Differences befwegn Shccessive Five-Percenttles
.. T . T _—_\__ e ——— = = = =
R oaw PECR(‘_‘EI\'TILE‘S{“, SMODTINER PERCENTILES
______ e si\”_'____.h___,__ :
Avres O\ Thorndike | Avres | Tharndike
- _ J— S
\Y .
5.34 O .86 3.6 95
5.07 (N .69 5.7 6
1.6\ .28 1.5 .3
ew NS 18 I. -3
~-5}' . .3 1.3 3
oY ‘ k- L8 3
™\ "3.503 45 2.7 -3
. rr) Rrid 4.5 i
2.49 .37 2.7 -43
343 i .26 4.05 2
I.08 06 .9 2
L0 |I 00 9 2
.02 .20 9 .2
e .24 .9 .2
I.22 .20 1.35 .3
53-54 60 5.4 -7
0.26 31.4T 9.9 1.2
6.34 .88 34 -9
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The smoothed percentile scores have been caleulated from
the original scries after grouping the Ayres data in 3"s (score
21, frequency 1; sc 24, f 1; sc 27, £ 13 SC 39, fo; sc33 Lo
sc 36, T 4, etc.) and the Thorndike scores in 3’s {gc 60, £ 1
sc 6.5, T 1, ete) A moving average would probably lead to
slightly better results, but would be laborious with the uneven
spacing herc present in the scores. )

We mav judge of the exccllence of the two sets of equivalehf
scares, since the drawing up of a correlation table for the daga
of Table XXX shows that the rclationship between lhe {¥0
scales is almost exactly rectilinear, so that difl‘erenc;s}lfétwcen
the percentiles upon the one scale should be progcirtiéna’ce to
the differences upon the other scale.  Columing Ljém‘d 2 of Table
XXXIII give these differences for the raw duta and columns
3 and 4 give the differences determinedMrom the smoothed
data. Rather better resulis are obtai@'d from the raw daia
than from the grouped, as would baégspected from data show-
ing the high degree of correlation™herc present. The small
fluctuations are, in materialvﬁafﬁ, not random, bul genuing,
and the grouping process, las therclore distorted the facts.

This méttsABr LIRSS is thoroughly empirical and
therefore applicable tdsituations in which the law of relation-
ship between vagiables 13 unknown, or at least cannot be stated
in a simple algebrdic formula, but in which sufficient reason
exists to warthnt the cquating,

If several $eries are to be cqnated a very scrviccable modifi-
cation afitic preceding method is to equate each series, not to
an}wﬁé of them, but to a normal distribution. This can be
@Qﬂ’e\: using formula [55], glving by the aid of Table K-W the

:,\mean deviation of a portion of a normal distribution. An

Ablustration will make clear the steps involved:

It‘is. frequently desired to compare the performances of pupils
recciving marks in different subjects. If the pupils have no
subj?,cts and no teachers in common, this can only he done by
making some assamption. If therc are throe teachers, cach
wi‘F}? 5o pupils, it is more reasonable to assume that the mean
abilities of the three groups are equal than that similar literal

or percentage grades of the threc teachers arc equivalent. The
data of Table XXXTV present the problem.



COMPARABLE MEASURES 121

TABLE XXXIV

Marks USED | Frecewtacr | Marks Usen| PeRCENTAGE

BT SECOWD GIvES Mark By Tomn  |GIVEN Marx
TrEArHER INnICATED TEACHER ExvicaTED
o _——— |_._ [ . —
A | 20 A+ -7 1 43
B | 17.1 A L3.9 2 377
C 37.3 A — 4.5 3 50.3
I» | 20,0 B+ 1.6 4 7.7 N\
[F , 77 E 29.4
b i I. — .2 N ¢
B o I N,
‘ C 22,7 N
D 0.2 g
= 6.0 ! M

————— e e L __,_ﬂ_ﬁ I
lt 1 ()1)\ ous Lhcl‘r a marly of A given by the ﬁr@t Leacher indi-
cates greater merit than a mark of A given bytbe second teacher.
Equating each mark to a standard- meaw& score in a normal
digeribution gives: ;~\\

_TABLE XXXV i

— = = _—“_—_ = == = _,:: == =

i ;
Mangs Usin | EguoivaiesT | W arms TaER } T,QL;\ ALERT  Manks Usen| EouIvaLENT
By Frgsr ' ST ANDARD 1 By [SIARERNN SranmarD uv TuiRD STANDARD

Teacurs | Mn | Teau HER *.  MEASURE TEACHER Miastrs
L T X __xm\aa_d.bpaul-jbrary:m-\gl_h.li
A | 24 JRY 2.8 i 2.1
B | £3 Lo | i 2 2
c de{A- 0 T0 3 -5
o P— 8 B+ | 8 4 — 1.9

B, —16N 1 B ; 3
I —(95” B - s
P A4 ! C _{__ — 2
>\ 4 | - 6
'”\I:'\ | }]? — 1.3
\"4 : % i —20
Q | |

Tke mc’rhud requires little time, but were such eguatings bemv
“dene for a Targe numbcer of classes a still briefer method could
be followed. Tnstead of finding the mean standard deviation
score for the upper 2 per cent, we may find the median: 1/2
the percentage of A’s = 1.0, therefore from Table K-W 2.3 is
the standard deviation score which is equivalent to the mark of
A given by the first teacher. The percentage of A's plus & the
percentage of B's = r10.6, therefore 1.2 is the score cquivalent
to B, Similarly, 4 is equivalent to C; - .5toD; — 1.6t E;
and — 2.4 1o I‘.
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The marks given by the second teacher are typically those
of a careful grader and show more discrimination than do those
of either the first or third teacher, but nevertheless it is more
reasonable to assume a normal distribution of talent than
such a tri-modal distribution as is indicated by the second
teacher’'s marks. The method may frequently be used for the
single purpose of warping data showing an extreme distributiof
into a more reasonable mold, £ “\’

The observation has been made that in order to ba\com-
parable the two series should be independent meaqumc; “of the
same thing, It is shown in Section 36 how Certa.m correlatlon
functions enable one to estimate whether tv\gmgeﬁes of scores
are measurcs of the same thing, In general\itJs not nccessary
that a raw correlation between the two setied approaching 1.00
be found, but merely that a coel’ﬁ(ﬁent\cx)i correlation corrected
for attenuation of 1.00 be present. Py \/

o



CHAPTER VII
THE FITTING OF CURVES TO DISTRIBUTIONS

Section 36. Mrrnons or Frrrine Curves 10 OBSERVATIONS |
. T . . e\
The properties of the normal distribution as given in Chap-

ter V arc such that if data fall approximately into this fqr{ﬁ‘t’heir
interpretation and treatment are frequently greatly..ﬁrﬁjaliﬁed‘
As a practical matter it is often serviceable to ticat data as
normal even though slight divergence from ngsmality may be
known to exist. Prohably, however, the majarity of distribu-
tions canuot by any stretch of interpr tafion be considered
normal. In such case one may resortsbd dne of two procedures,
{a) either warp data into a norma;lt‘rﬁo]d by transfermation
devices, or (b) discard the conceptof normality altogether and
endeavor to discover an equebiSn. whghisiaes, deggribe the
data. N\ ©
The equation of the nog})al curve i

¢ \J —x?

AT
\ Ve

Not counting M,/ the population, which does not affect the
type of curx%{:\tﬁert: is only one degree of freedom in this curve
since g m\ﬁhe only constant which is to be determined from
the daaN' To permit of greater freedom one could start as
did".@f,?geworth with an equation of the tvpe
o\ o

9 RO

crfW/z w
in which f is some function of x, As f(x) is made more and
more gencral, greater and greater frecdom is given. Other
variations of this approach have been followed by Edgeworth
(1904), Kapteyn (1go3), Thiele (1go3} and Charlier (1go6).
Pearson has criticized this method because the function built

123
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up is what he terms a ‘“‘shadow function,” something not
corresponding to any physical measurement, not representing
any telationship which is in itself capable of independent
interpretation; and as a procedure which tends to malke a
fetish of the normal distribution, However, should this ghost
take on flesh and bone and be found, in certain Important cases,
to be a measure of what would scem to be a causal force, the
method would be amply justified. Judgment may well be held
in abeyance pending further experimental treatment . \aater
in this chapter the normal distribution will be shown 49 hold a
unique and peculiarly dominant position among all ‘the Pearson
curves, but this iz not an argument for arbitra,ri@y forcing data
into this form. It is rather an argument fof’t\.he study of the
features of a given distribution which diverges from this form.
The first four scctions of this chaptep’,ai%’ concerned with the
practical details of curve fitting white\the theme of the last two
sections 1s the bearing of types of distributions upon problems
of stability and trends in evqlgﬁioﬂ.

Section 37. THE PRINC.IEL]; \UnDERLYING PEARSON’S METHOD
www . dbraul bragiyess: P roTivG

Pearson imposcs {Lortain very broad conditions upon the
differential equagion of the curve. These conditions ave <o
general thatymany varieties of non-bi-modal distributions are
representedy\JThese include (¢) curves with a maximum fre-
quency @efmewhere between the limits of the range, called
“i-sh@gbd” curves, (f) such as bhave an anti-mode, or point
of snidimun frequency between the limits of the range, called
Lushaped” curves, and {¢) such as have no mode, called

N V'j-shaped” curves. The present treatment will describe the

calculation of a few of the more important of the fifteen Pearson
types, and will present such criteria as are nccessary in determin-
ing the type of curve to which given data belong, so that one
may then go to Pearson’s Tables (1914 tables) and other SOUrces,
Elderton (1906), Pearson (1894), (18g0 and sup 1go1), {1goz
sys), (1906 skew), (1915 cert) and (1916 app), and determine the
equation of the curves.

The fundamental proposition in Pearson’s method is that in
order to have a good it the first four moments of the data
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gshould cqual the first four moments of the derived equation
and second that formula [81] cxpresses the general differential
equation covering all um-modal curves. The moments arce
fundarrentat and may be obtained by aid of the accompanying
formutog,

T the reguired moments be . ps, Mg, b

Let the four moments from the rrean, but wncorrected for,\
grouping e s v v, vy \

Lel il raw rroments from the arbitrary origin be s, e, % W
Then the fuilowing equations lead to the caleulation ofthe g's:

X X®__zZxy . oDyt :”f'«.
o= .i\'r , W = _N_’ Py = -f_\"_’ ry = fV ’
\\’
=T — =0 (Momeﬁts} from the
By = py — pé meaily knowing them | [24]
we = by — 3 pgi + 2 0% g an arbitrary§ [21]
vy = py— 3 Fry + G Rl — 3w \Eﬁi’lgm) .......... see
Comtinuing . :w"
HL— =0 (Shc:ppard s correc- [68]
i [68 a, see
e N N tmns applied also Sec. 471
P t‘f‘f‘ﬁ;‘z‘frﬂc‘?ﬁ@lﬂ'bfa"y-m’g-in (68 Bf
o= I;’ -+ -’i- " i?’\ frorm the mean) (68 ¢]

10 &N
Sheppard’s Correctzonq are for an error n the moments due to
grouping. Nw\ arc to be used in case of “high contact”
that iz, wh&ﬂ the curve approaches asymptotically the base
line, \}ams, at both extremities, In case high coutact ab
bf)th}&remities is mot present. corrections as given by Pair-
maf ind Poarson (1910) should be used.
A\ should be noticed that the »'s are here defined as were
{he &'s in Seclion 27, that the »'s herc are the same as the p's in
that, section, and that the u's here differ slightly from the »'s
(or the p's of Section 21}, being corrected for a grouping error.
Certain derived constants, 81, S and the criterion & are also
needed in determining the tvpe to which given data belong.
In carlier work in curve fitting a criterion m was used and
though it is not as general a criterion as & it has much theoretical
mterest,
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g ="t (One measure of skewness)...[69}
B
By =12 (One measure of kurtosis) . . .[70]
#22
k=20 —38—6 (Criterion «) .. . ... .. [71]
B (B + 3P,

- ; Criterion «2) .. . .[72]
K 4B —38) (28— 35— 6) (G "

The connection hetween the 8% and the type of curve may
be shown by the illustrative curves of Chart XIX an('i\ by
the following Chart XVIII which has in addition so\the
fines of Diagram XXXV in Pearson’s Tables, certail}‘.}’iﬁes and
points for more recently discovered types of cugyes, Jas well
as lines giving the finite limits of various_m@ments. The
meaning of the (u, = =) lines in Chart XVII wili be clear by
an illustration. [t is found by referencesto'the Chart that
the lines (s = o) and (uzp = =) app}j(g’ci&lately pass through
the point (81 = 1.45, B = 5.66). Theiequation of the curve
fitting a distribution yielding these'\#'s has all of its moments
between p_g and ps, finite, andjfrh'ornents outside these limits
are infinite. For the positive’ moments the mean, a finite
boundary, oyt ey miginmay be taken as the origin,
while for the ncgative/gdments one of the boundaries of the
distribution is the érigin. For a point above Type III no
positive momegtsare infinite and for a point below Type V
no negative soments (defined further in Section 40) are
infinite. OmMcertain of the breakdown fincs, i.e., lines where
the momeﬁt'becomcs infinite, have been drawn, there heing an
inﬁﬂillz}f positive moment breakdown lines between (i = =)
and{Type III and an infinity of negative moment breakdown
lifles between (u_y = oo} and Type V. The discussion of the

N\ S\Txgniﬁcance of these lines will follow shortly.

After determining £ and g, from the data, a corresponding
point on Chart XVIIT may be located. Should this be a point
on a line the cquation of the distribution will have two degrees
of freedom in addition to that bascd upon N, the population.
If the (81, ) point lies in a space between lines, the equation
of the curve has one more constant in it and one greater degree
of freedom. If the {8, ) point falls on certain designaited
spots on the lines, especially if it falls where two curves Cross,
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the equation of the curve simplifies and has but one consgtant.
In general the (fif:) point will not lie cxactly on a line or on a
unique point in a line, but if near such a place much labor in
fitting a curve may be saved by choosing the simpler equation,
This is frequently permissible, as may be decided from Charts
and Tables given in Pearson’s Tables, from which the probable
error of the location of the (§18:) point may be determined Q)
1t is therefore possible to tell how unreasonable it Wouldsi)c
to choose a type represented by the simpler form. A\

Section 3%. DEscrirTioN oF Types oF CURVES

We will first note points upon the lincs whic}f\g’ix-'e the very
simple one-constant equations. Relcrencetoothe drawings of
Chart XIX will show the general form of the curves.

(M) The point of meeting of the lindk = o, along which
all distributions are symmetrical, addthe ine, 8: — 81 — 1 = o,
along which all distributions ggtieriét of frequencies in two
categories. SN '

B1 20 Br = 1.0

At point (Kﬁ%#glgﬁéhr%5¥é%‘b%igé constitute the distribution.
Pearson has not gl\:e{I & name to this point nor assigned a
type number to, the fine, B2 — 8, — 1 = o. Due to the im-
portance of the W'1 ratio from the Mendclian point of view
I have called\this point (M). The linc might be called the
Mendeliaphline, but as it includes all two-category distributions
and nptf}s%mply those having Mendelian significance, I will
cal} if, fhe Two-Category T'ype Line,

. {R*} The point corresponding to a rectangular distribution.

M;’\:' Br=10,8 =18
9 This_ point is the juncture of many Hnes and may therefore be
f:ons1derec1 a special case of any of the types which meet here,
Le., Types IT-u, II4, I+, I, VIII, IX-1, XII. This point
shares with the exponential the distinction of being the conflux
of the greatest number of types of any point in the diagram,
not excepting the normal point. There is 2 point, not in the
field corresponding to real distributions Br= -4, 8= ~3),

\\.fhich is still more exceptional ag judged by the number of
lines which pass through it.
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M. Special Case of TypeLu
8o

N

Zera Dagse,or Zero
width Claas Interval.

R. Rectangl'e.
l 1,
.
-] -+

+a
B=0 8. =18 y=Xo
Range from -a to +a

N. MNormal or Gaussian. P, Parabglic.
n B
Y e O
?J!“Os r @'Z‘e Yo '.}‘ )
i S BT
—oc} L 2 0C ] \ >-3=2
L 7 =0 8,00, yhip ™ &

Range ﬁ'o,rr\\ya fo +4

£. Cxporential: Type X

e
YeYol -
x’{l

@l‘dﬂ @2‘3 ’{’C

(=614 %)

WP W dbrauli

1%

L. Line¢Bsint of Division
Bebkeen Type K;end Kz

| @32, Bpr2.4 Range-ato O

Randge from © o
N

“A. Curve drawn s’ y=—be (21317
Corresponding o Foint @f;ﬁgﬁd is
Stightly Legifpeaked Than PointA Curve

Normat G O
Comparia:;?i‘\

| Mapies from Nto a Curve

Type VL. SeeA.
%=0, B6=0, & »3.0

H
Y= % TET”

More LeploKurkic
Hhan
Range from -oc foec

= |
V" Range from —uc fo o
N

Type T-u

Type IL-1i

mef\o "

choiﬁlaoll 1.8 <rnbg <3-°
yeyo [+

—a 35
Reande from -2 tosa
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(N) The point corresponding to the normal distribution.
' G =0, 3= 3.0 '
This is the conflux of Types I-i, 114, 114, IV, V, VI. and VII.
All of these are i-curves, that is, they are characterized by a
single positive mode and have zero frequencies and a slope of
zero at the upper and lower limits of the distribution. Further
unique characteristics of this point will be poinied out in con-
nection with reliability. O
(P} The point corresponding to a parabola. N

B =0, =2t ) N
This is simply a special point in the Type I line. £
(A) The point corresponding to the symmettical Type VII
distribution for which the mean and the mefijan are equally
reliable averages. The point is not here ,\lﬂcgbated exactly, but

it is in the neighborhood of O

g1 =0, 110 < B’z.;<: 2.0
Below this point the median is, morc reliable than the mean
and above this point fess reliable? It should be noted that the
line wiwwidbrau lb'['al.:y’.‘@]‘,‘g,jn

8PS 158 —36=0

is far above thig o@’.t? The probable error of the fourth
moment becomesh ;&mity below this line. Accordingly the
equation of \al&titve, or any other function involving the
fourth mqm{'mt, loses significance, The mean and the prob-
able errom6f the mean do not involve a higher moment than
the sg@n“d, so that they remain significant for distributions
for’wihhich it is impossible to fit a curve. In other words, the

J6wth moment breaks down as a significant feature of a

distribution long before the second moment or the standard
deviation; and thesc latter in turn break down before the first
moiment, or mean; and for certain distributions (e.g., §1 = o,
B > 12.0) the mcan breaks down not only when the median
does not, but when it is in fact rapidly improving as a measure
of central tendency. Were we to go in the other direction
into the Type 11-u region we would find the median breaking

down while the mean remains very reliable. This point is
taken up later,
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(L) The point corresponding to the ine distribution
B = .32, = 2.4

This is a point of change of types. On the line to the left of
this point distributions are Type IX-1 and to the right Type
1X-2.

(E) The point carresponding to the exponential distribution

B = 4.0, 2 = 9.0 )

This point, which is well off the chart as drawn, i¢ at the iu\'e\f«\
section of Type IX-2 and Type III lincs. Type IX-2 glrves
become Type X curves at this point and Type ‘(’I Burves
beyond it. Type III-i curves become Type X g&\ieﬂ; at this
point and Type II[-j beyond it. The exponediial1s therefore
located at the juncture of Types I, I+, B, 114, VI,
VI3, IX-2, XL 0

There are at least five salient ong“constant distributions,
three of them, (M), (R) and (?\’} represeniing symmetrical
distributions and two of themg (L) and {J7}, constiiuting
division points on the one Hﬂf:gtilé’lt divides 1 from j curves.

Exceptifg'thid bpudiirpegrdsirioted, points upon any of the
lines in the diagram correspond to two-constant distributions.

Types 1T-u, T, VIL \Thc line

b\

A\ fi=o0

represents thrgé ‘typcs, IT-u, II4, VII, in addition to the
special pom{s M, (R}, (B) and (N). TFollowing Pearson, this
line would, be 2 boundary of “possible” distributions.

T \j\f\@\\Satcgory Type. Another boundary would he the line
\ Ba—Bi—1=0
Lookmg upon distributions along this line as limiting cases of
Type [-u distributions, it is seen that the equation representing
them involves cxponents which are infinite.
no cquation for this type is given.
Types VIII, IX-1, IX-2, XI. The line

Br{8B8:—0f —12) (B2 332 = (108 — 128, ~ 18)2 (4 82 — 3 B
reprt?sents Types VIII, IX-1, IX-2, XI in addition to the
special points (R), (L} and Type X, or (E). This bi-quadratic,

which we will call f, divides, on the one hand, the u-shaped

N

W

For this reason
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curves from the j-shaped, and on the other hand, the j-shaped
from the i-shaped. All j-shaped curves lie within the arms of
this bi-quadratic.

Type XII. The line

5 — 6/ —9=0

tepresents Type XII curves, which are j-shaped throughout £\
the eniire length of the line. In addition the special point
(R) is on this linc, LD
Types 1114, I1I-j. The line N\
20— 35 —6=0 ”‘\ 3
\

represents Type III4 between points (N) and {E\) and Tvpe
I11-j beyond point (E}. Containing as it doeg\the two impor-
tant points (N) and (E) and all points, {}f}the straight line
connecling them, it is a very important’}yiﬁe and, considering
that it has but two parameters in 'aﬂfdifion to N, the popula-
tion, it fits in a quite remarkahl&wianner a large number of
skew curves, Further charactét:isﬁics of this type are pointed
out later. www.dbraulibraryf.ﬁ;‘r‘g,jn

Type V. Theline \

4 He — 2 —_ — = 2
(Jrléinttcfxl{égi Ez iz > 38 =6} =8 (T +3)

represents Ty.gé. W, composed entirely of i-shaped curves, in

addition lg {he special point (V).

This gempletes the points and the lines. Points anywhere
in Fl}&}f@gions between lines correspond to three-constant
distzibutions.

',,‘:'"\.Type [-u. Composed entirely of u-shaped curves varving
N2l the way from the Two-Category type to Type VIII.

Type I-j. Composed entirely of jshaped curves. This
region might appropriately be divided into two types, I-j-1
and I-j-2, depending upon which side of the Type XTI line the
point is located,

Type T4. Composed entirely of i-shaped curves varving
from Type IX to Type III. This is the only type area which

is finite, as Type IT, Type IX and Type III lines completely
bound this region,
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Types VI4 and VI-j. Type VI4, composed cntircly of
j-shaped curves, lies below the Type III line and also below
Type XI line. Type VI composed entirely of j-shaped
curves, lics helow Tvpe [IT line and above Type XT line.

Type IV, composed entirely of highly leptokurtic i-shaped
curves. This region lies below type V line. Below the line

89 — 1561 — 36 = 0

is a region in which the probable crror of the fourth moment is
ifinite, but it is not uncommon to find data which yieldla
{%, B2) poiut below this line. In such case onc of thé put-
standing features of the distribution is this very faed of an
infinite eighth moment in the fitted curve, which 15\ Mhe cause
of the infinite probable crror of the fourth mengent. Other
gignificant {eatures of the distribution may BE determined
{rom lower moments than the fourth, wl-?gl*&ontinue to have
finite probable errors for some distaneg-Deldw the critical line
given. Pearson has named the regigihbclow this critical lne
ihe heterotypic region. As [ u13d£;;-sfand the bheterotypic to
include bi-modal distributions Legisider the designation inapt,
as I can discover no evidencelstiggesting bi-modal tendencies
in Type IV distributions, ~ATDEEEE R Braryetgdh no-man’s
land. TItis conceivable:tl?at there mav be lines in it, correspond-
ing to two—constan&@‘rstributions not involving the fourth
moment, and thdgfdre determinable. There may also he
unique points Gol° involving either the third or the fourth
moment. Fgglone, the point (Bt = o, f: = o) mav be con-
sidered guehl’ The equation of this curve is

O o g6 N
A\ T vy %
e v 3+:}'§

2

\pis the Type VII curve having the smallest possible integral
exponent, and is completely deiermined by moments below
the third and fourth. PFurthermore, the probable crror of the
second moment, or standard devialion squared, is finite
although the point (8 = o) is exaclly twice as far down the
Type VII Jine as the intevcept (8 = 4.5) of Pearson’s critical
line with the Type VII line.  That this curve 1s not exceplional
1s obvious from the drawing of it given in Chart XIX, A,
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Section 30. Tur FITTING OF THE Most IdMporRTANT TYPES OF
CURVES

The normal distribution. The cquation of this curve from

the mean as origin is

The constants involved have been defined. The population,

£

that are needed to detcrmine the normal curve which, Best

L 3

represents given data. N
Type II.  The equation from the mean as origin 15\’ O
Nm \

y:j’u([—'za) .-‘H..; ........... [73]

in which ) ::\\w
=58:2709 ~
?}1-—6_252 o .QQ‘}
Zoafz W

= 1 the range = \
a = Jthe range = 177 5 o

= ordinate at the meaned ST 27 F2)
Yo = ordinate at the meart g 2zm+ LT (m A+ 1)]%

3 .dbraulibraryerg.in . .
The T function may be lc@&ﬁé%ﬁ"{{rlthout resorting to tables.

First, if x is greater thaped, the following equation holds,
Tlx+1)= xr{\"('r function reduction formula) . ... ... .[74]

Second, i # is an inbeger greater than 1,
3 3
T {x HNE (I" function of an integer}.. . ......... [75]

Third (qu.{u?h, quoted by Pearson 1gor1 supplement to 1805},
as a clg{&aﬁproxhnation to the value of the function, may he
given,\

NS VI 4+ x +x2\=F4  (Forsyth cvaluation
.»\; T+ 1) =m(Le+_) ( of the T function}.{76]|
\I‘o guote from the reference cited, “If x be large the error is

less than 1/{240 %%} of the whole.” BEven for an x = 1.5 the
error 15 only in the neighborhood of 1 per cent. We may,
however, first nse the T reduction formula and then Forsyth’s,
for small values of x, resulting in as high a degree of accuracy
as may be desired. TPor example,

reg=125__T35 _ I"4.5 _ T 5.5

L5 13X25 15X25X35 1.5X25X35X45

¥, and the standard deviation of the distribution o, are allNJ)

N\
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The evaluation of T g.5 by mecans of Forsyth's formula is
highlv reliable so that I 1.5 18 readily obtained.

With the determination of v, the general solution of the
Tvpe 11 equation is completed.

Frequently, with immaterial loss in the cxeellence of fit,
m omay be set equal to the integer most nearly equal Lo
(3 — 016 — 2 8) and the resulting cquation will be much
simnler to plot, The use of an integral value for the exponent
s coually serviceable in other types of curves. W hatever\
value of #2 s used as the exponent, is of course also to befused”
in the equation giving ys. \,Q}‘

Type VII. The equ&tion from the mean as origigqff, ’

oz l"{m ’1)\??!1—--
Note that gs 18 not involved\in %hemdlhltaoﬁlfﬁaﬁgl%ﬁg‘ﬂﬁmonb of
Twvpes I and VII. Ty pua‘ll and V do not involve u,.

Type 1II. The eq\k@:mn from the mode as origin is,

—“J‘\.

-~.'ﬁ.:| I T R ]
e (1+ ) (78)
NP _ 2_»_:
\i"\;" ia
O - (a) (p)
N Npprt o
~\/ Yo = Ter ip + 11 .al"l'ﬁ"l’l)

\}. e— P pP

Mode = Mean H%

Pearson (quoted in Dulfell 1gog) has shown that
. . 25°.623 -
lU%(F'(_‘?o l;;;)) = 3990809 + % log p + 080929 sin 2 P)_ oL qrel
is a highly accurate equation for values of # > 2. It is ac-
cordingly a simple matter to determine 3, by the aid of this

cquation.

N
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A fitting of the distribution, not involving ps may be ac-
complished by utilizing the fact that the difference between
the mean and the mode equals a/p. Determine this distance
by the use of formula [4] or [4-a], thus ylelding a/ ‘p. The
constants @, p, ¥ are then found as above, completing the

solution, ]
Type V. The equation from the boundary as origin 1s,
= u - ?’ - -
¥y =o€ %= P\f .................. ) }1\8{{5
av {31 + 4 Plus sign of radivy
p’4+E_L B Lobt,u:acd

y=o(p—2)vp—3 Signof rachcb_l 13 the
SATe a(chat of pa.

L Ll
ST
Distance from origin to mean = g s&.-— 3
Mean — Mode — 280"

pIg e 2)

Sectron 40, ThH: BrARING OF CURVE Tyrr UPON STABILITY

oF Ih bTRI'BUTIO\T
wiww.dbra uhhrary or

With the visual pictures of tﬁcse curve types in mind we
may proceed to a dis€lssion of the bearing of type upon
stability of distribution!

Mention has b@e%smade of the fact that the point (f; = — 4,
B = — 3} is a\wery unique point. The equation of cvery
significant Hhe”in the chart except the line §, = o, passes
through, Lh\s, point. Many interesting relationships are made
very r b} shifting the origin to this peint.

The tegion enclosed within thc Tvpe II-ViT and the Two-
:C@t-egory lines correspond te “real” distributions. A real

\”'“;distribution, as implied by the steps in the Pearson method, is
otie having the first four moments finite in addition to a finite
total population. Other feaiures, which one might insist
should be finite, are not infrequently lacking. All of the u-
shaped curves which are asymptotic to their upper or lower
limits have infinite ordinates at these limits, though their
areas are generally finite. One desirous of defining a real

distribution in parrower terms than has Pearson would prob-
ably exclude these,



FITTING OF CURVES TOQ DISTRIBUTIONS 130

In speaking of infinite positive moments, ordinates or popu-
letions, the reader will of course understand that no obtained
distribution can possess such a feature. Attempts to fit a
smooth curve to a distribution more frequently than otherwise
result in obitaining an equation with some infinite characteristic.
Accordingly a reference to a distribuiion with such an infinite
property 18 to the fitted curve, and though this infinite feature
is not characteristic of the specific data in hand, it may be
entirely descriptive of the total population of which the givem
data are a sample. In dealing with data in which céftain
reciprocal functions are infinite we will likewise be spﬁaiang of
the fitted curves.

Cortain of the Pearson types have infinite chhr’xctenstlc%‘
ordinates, abscigsas, and moments. As “reall distributions
these might be looked upon as shortcomimgs. The point is,
simply, that different limits as to thegktent of distributions
v¥ill exist dependent upon what is dnotided in the concept
“distribution.”  If negative frequéncies are included, and it
& to be hoped that a batisfach}i‘v" physical meaning can be
given to them so that they m,av be included,* then the limits
of digtributions greatly excee@wtbgb;%%lﬁgm ounded by the
Twvpe VII and the TWQACdtegory lines. t')(le other hand,
were one to restric ]'({S Loncept to curves ha,vmg finite eighth
moments, the crisical line (us = ) would be a limit. The
writer would thmk it logical either to restrict the concept fo
such as have aﬂ their moments finite, or to throw the fleld wide
open and A0 ude everything which has as much as one de-
termma,lile feature, such as the population, any one ordinate,
any gii¢moment, any oue derivative, cte.

) Tﬁc qceeptqncc of this broader definition of “distribution”
\i”\n%zﬁediately suggests 1he study of distributions for the purpose
of ascertaining the nature and number of features which are
finite, i.e. determinable. This has been done with reference
to the moments of the various types of curves with results as
shown in Chart XVIII. If a positive moment (/v x7dx) ig
finite when {aken about a certain point, it continues finite
when taken about any other point a finite distance from the

* Por a suggestion as to this sec Chart XTIV and discussion of Sec. 8.
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first. In dealing with negative, or inverse pioments
(fy x—*dx), however, the point of reference determines whether
it be finite or infinite. The only natural point of reference seems
to be a limit of the distribution. It is found, for all the Pearson
curves, that if u_,= o, then pu_(yts, where A as well as #
is positive, is of necessity also infinite, so that moments have
been taken around that end of the distribution which showsg
breakdown, or infinite value, in the lower inverse IOMe,
(u_s is called a lower, or smaller, negative or inverse ma:-mcnt
than u, etc.). N\

The method of determining which are 1nﬁmte ibilows from
the fundamenial differential equation, which ig?
4y _ _ evtaw _ (Pearson's dﬁurcntlal *equatlon for all
ydx €1 F o T ot types of uni- mOHA distr ibutions) . . [B1}
If the roots of {a 4 o + cx® = ©) ar?&\ﬁnagmary the limits
of the curve are 4 o, and if theyareweal the distribution lies
between the values given by thi€)Foots. We may illustrate
the method of determination ef the moments by means of a
Type I curve, To deteﬂnme the infinite negative moment we
will first shiftrthe. dhganl‘im’f&qulaﬂgﬁhtrcmlw of the distribution.
Let et e 4 61 = a3 (x + b)) (x — B2)

o\ =B+ b
’\,.’ HA}-‘—'sz
\ \\ 23 — @by = @ ¢y
L ) 2 = x - b]_
Then thc‘equdtlon from the pew origin is
'\“ dy o - bz
\’\ yd”‘—_cz_i_zz.,.,.,,....,.........[821

afidthe limits are s = o, and 2 = ¢.

Multiplving by 2" and
c}earmz, give

Sayzndz + Sy tide = f{— ettt e antr + zn+3) dy
Integrating,

S = (n+ 1) yends

—~f{n + 2} yanFade

le—elmTINMet b4 n+2) Myt = (= con 1 4o gnta) ;}‘ .
o

aMn 4 bMrts = [(— et o znta) y] —
S0

.83l

The M's or momcn‘?s of this equation differ from the usual
moments, p's, only in that they are not divided by N, the
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population.  The two terms in the left hand member arc
functiong of the entire distribution, while the right hand
merher iy a function of the lUmiis only, Whenever the
coctlicient (b -+ -+ 2) equals zero, then M,y can vary atl will
witnoeut allecting M. Therelore that value of » which makes
this coefficient zero locates the moment, M, ., which becornes
infinite. Thiz 13 the procedure that could he followed in .
finding ont where the positive moments break down, but in\
desiing with negative moments M, becomes infinite befars
Maar 50 that [@ —e(n 4+ 1)] is then the coofficient thaf eon-
cerns g, 1t remains to express g and ¢ in terms of ,Blzand B,
Tt — afc = my and b = my + me, then the m;cegral of the
dilferential equation {82] is "‘\
v = kami (¢ — g)m ’ vene . [84]

and the differential equation is, N
—cimy 5= 1) M -b iy om0 4 2) 15?}—1-1
= [(_ Point3 - gn-ba) y] ..... (83 a]

If the origin is taken at the et‘bt,r houndary the differential
couation is the same as abow, with s and #e inlerchanged.
The constanls for any given dlstﬁimﬁm@mm{g},ém e fimctions
of By and 8, (Pearson #3¢8) and can be t}q}reased concmely if
the following qubm&u@i(ms arc made:

O v=5+4

A& A=p2t3
N im A -3y
\O" j=s5a—6y
<\ E=3v—24

Thedi¥o roots of the following equation give the two values of s,

N /
y s 19 A (A — ) s
\ ke =ik AT {851

For the determination of the first inverse moment which breaks
down we are copeerned with the value found by using the minus
sign of the radical. Values of sm along a ray through the

point (# = — 4, B = — 3) may be readily determined. For
cxample, for Tvpe 111 line, B = o, and
&= —4

w41
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For Type X1I line, j = o, and

3m®
et

Portheline tiy —8A =o,

b= _4ofzm—7)?

121 (8 — m) (m 4+ 1)

. '\
As the M, inverse moment breaks down when n = —m — 1,
we may write for the Type III line, fi = — 4/ ‘u, quhshtuté\
—1, — 2, — 3,ete, values for # and aseertain the Bi's or {he'
points along this hne where the successive INversc mdments
become infinite, A similar procedure for other rayq enables
the plotting of the entire region, as shown in Ch'lrL,RVIII
Transferring the origin to the mean, so that pesibive moments
will not become infinite merely due to the buundary being an
infinite distance from the mean, and ﬁn@}g when the cocffi-
cient of M,y equals zero, gives Lhe Fghiting values for the
positive moments. These are more ~31mple functions of 5
and f;, all being straight linesOeassing lhrough the point
(B = — 4, %Ww dbﬁguhlgig%n‘gé}@qnthe chart, from below up,
these rays become moré a11‘¥1 re dense until the limiling
Type 111 ray is reached;(ust as, going from above down, the
negative moment-bredkdown lines become more and more
dense until the lum}u}g Type V line is rcached. Special note
needs to be madeof the lines for moments g, i, po, s, and e
The last threof these moments are incorporated in the very
axes, anc{‘ﬁ,, of the chart. Lines determined from the coefli-
clent o&ﬂ?]hl, showing where these moments break down,
wotldh Bhow, as might have been anticipated, that the rays
for\m, uy and uy lic outside of the region described by Pearson
“as7that corresponding to real distributions. The line for
N\ my = oo} when the coefficient, of M, ; i usged lies within the
Pearson possibie region, and the line for (u, = =) lics at the
boundary of it. The population, g, is not necessary to the
caleulation of § and $: so that the fact that it Hes within this
region is not inconsistent with the definition of the axes.
Towever, py and py arc smaller moments than those involved
i B and B and it may he necessary to detcrmine their points
of breakdown from the cocfficient of M, and not of M

LR S
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Pending Turther studv of Type I-u distribations T will not
attempt an answer to this question or a deseription of distribu-
tions having infinite zero and first moments.

1f the cocffeient of A, 14 18 examined with reference to the
negative values of # for which it becomes zero, ravs above
Type 11T are located and these become more and more dense
as Twvpe 1T is approached.  These have not been plotted, as
earlier points of hrealkedown of the negative momenis are located
v desling with the coefficient of A, but it is worth While\:\
aoting that, jndgtng by the cocffictent of M, 4, Type TTT distribas ©
tions are 1he only ones which do not possess certain ;'ﬂ;ﬁfﬁte
positive or pegative moments, le., cerlain elememgsf of e
stability.  If these unplotted lines should prove qf..én‘y signifi--
cance Tupe TIT distributions become unigue ndt\orly because

of n sing finite positive moments, but glge because of the

finite nature of whatever the inverse fénetions are whose
points of breakdown are given by theséoeflicient of My
It, then, finite positive moments ate, 3F most importance 111
is the most siable of afl the tyﬁeé';' however, should finite
negative poments be of greafé® importance than positive,
Type V would be the most, étaf)lww;ﬂlsl-aifliﬂi‘é‘@@éﬁﬁ%ﬁim of
both finile positive and nefative moments is matérial then the
normal distribution is@hé most stable curve within all the
types, X
Tt has for somesbithe been known (Pearson, rgo3), that if,
by means of (e first four moments, a curve is fitted to a
disiribution ,,b%{}ing a (B, B2} point in region VI or IV, certain
of the highertnoments of the fitted curve are infinite.  Pearson
and Rhi;id {(1g0g, pp. 130and 134} have apparently interpreted
this A% mean that for such distributions moments higher
1ah the fourth are needed for an adequate description of the
data. This, however, hardly seems to me the most significant
puint of view. We can adequately and completely describe
the sample collected by calculating and recording enough of
the higher moments, but as Pearson has himself pointed out,
this would scarcel v vield valnable s nformaiion as to the popula-
tion of which the data are a sample because the probable
errors of these higher moments become extreme, The really
important conclusion to draw js that data, such that the



N g,

144 STATISTICAL METIIOD

sample drawn gives a {8, f) point in the Type VI or IV
regions, are of such a nalure as to have indeterminate higher
positive moments. The lines labeled uy = o0, ps = o0, - s
= o, p_3= w,ctc, on Chart XVIII indicate where, judged
by the first four moments, these higher positive and ncgative
moments become infinite.  Suppose that for a given (81, 8. a
fitted distribution is obtained for which peo = ec. S‘agch
analvsis as I have been able to make leads me to infoer thaba
few added moments in the filling of the curve would gt be
expected to materially change this, and that son}e.};gnoment
not far from g will break down in any casc. 2

These phenomena of instability of certain typ:bs of distribu-
tions are not mere odditics of the cquationd¥epresenting the
types. Lither coefficient of the diﬁ'erenct;\%q:uation connecting
the moments may be written in the fufm,

& (3, B n - f {.51:;:132') =0

in which ¢ and f are definite futictions of the 8's.  Accordingly
the breakdown of a momcut}isﬁ function only of the moments
involved in the g's. In.other words, were we to fit a Tvpe I
curve and &Wﬁi@tﬁ(ﬁbr@r—:ﬂpfﬁdﬂtiv& or necgative moment
hecame infinite, Q’ﬁ%ﬁ(ﬁﬂd not improve the situation by filling
a Type Il curvwe te'the same data. The breakdown is nol a
function of il particular Pearson type chosen, but of the
data, or of hé differential cquation back of all the Pearson
types. ;Th{it it 18 hardly the latter may be shown.
Hgbs(Péarson decided to use the first five moments in fitting
curdes it would have involved, in addition to the usual &
and’ g constants, a third which we may call y. A solid having
three axes, B, B and v, would represent all the tvpes just as
the plane with axes i, f: now represents them all.  The most
serviceable function to constitute the third varishle v is not
immediately obvious, but there would be certain advantages
in defining v as the difference between the §; (8 = IS TAN
given by the dala and that derived from moments lower than
the fifth by means of the present diflerential formula [81]-
Wten so defined, if v = o a distribution would be represenied
by a point on the two-dimensional (8, ) chart, It is barely
conceivable that there might be a (8, fe, v} line for which all
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the nositive wud negative moments are finite.  If there is such

a line it cuts the (3. f) planc in the Normal point and nowhere
else, su thil the rormal distribution loses none of its peculiar
stability.  The cxistence of such a line seems unlikely in view

of {he lacl that there 1s no line (as opposed to point) in the
(B:. 3 nlane for which all the moments are finite. Otherwige
exnressed. had two moments only been used to derive the | A
equations of curves, the special points on the chart could have,
been found and 1he normal distribution would have heen thew)
only one having all s moments finite. Had three momé.]n}ts
heens used the @pecial lines in the chart could have been'feund,
but no line would represent distributions baving 74N their
monmenis fnte, the single Normal point again ptdé;:g.}ssing this
charzcteristic.  Again, by the use of four momeds: no area, no
Hne, but merely the one Normal point is f@'ﬁéd for which all
the nesitive and negative moments arg ﬁn}té: Acecordingly it
seems unhlkel:- that the addition of a fifffymoment would result

in any extension of the distributionghaving all their moments
finite. * )

The preceding discussion suggesis that it wowld be futile to
add an xy term in the dcnom{naﬁoz@&%@é@g)@gﬁﬁk@ﬁ}}ﬁtﬂﬂ,
B ot
\f}‘ . o1+ ear - eax?

The addition of afl ¥ lerm in the numerator introduces bi-
modalily and cfiés the problem into an entirely different
ficld. correspofdifig, in all probability, to the operation of two
Opposing tfx‘\é1g\cfé, nstead of a single one such as we are here
considerigg

Th(:\'bfﬂ_\; cenclusion which seems to me to follow {rom the
sitabion as described is that the weakness in distributions,
evidenced by the existence of certain infinite moments in the
fitted curves, lies in the data. 7This far reaching conclusion
1s supported by (1) the fact that an cxtension of the differential
equation to include additional moments will, apparently, some-
Uumes change, but not materially better the situation; and (2)
T}}-’ the known illustrations of instability which may be drawn
from economic, psychologic and Liologic ficids.
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Section 41. TrrustraTiONs OF UNSTABLE IMSTRIBUTIONS

Two distribulions have come to my attention which are
difficult to interpret, except as being unstable Type VI distribu-~
tions.

The first is of pricc ratics, see Chart VIII, each ratio
heing the quotient of a price in a certain year divided by the
price of the same commodity the preceding year. The distribu<
tion is very peaked and somewhat skewed and gives a {(Bia8.)
point so far down the chart that the fourth moment hgs‘ -gh
infinite probable error wheun the differential cquation, method
of determining it i followed. The apparently pug,sszg ues-
tion is how the curve fitting method can be so faf @rong as to
positively describe this distribution as one ha§ing an infinite
feature. Recent study of similar price datd shows that the
fitted curve was undoubtedly correct afidhthat the data did
actually have such an infinite chardferistic. Certain com-
modities for sale in 19ty were nat Burchasable at any pricc in
1918 and the series of 1918 ratwes covered only such g1y
commoditics as could be purch%aed in 1918 In other words,
such price ratios as were reforded were in truth but a part of
an unstahle m&fﬂBﬁ%&PF%ﬁaﬂﬁﬁg such they gave evidence
that an occasional uﬁi};\tc price ratio was to be expected.

The sceond cerl&i\% such as may be collected by anv experi-
menter. A cepfain student was a subject in a reaction time
experiment s, (The stimulus consisted of a spoken word and the
reagent wa;& directed 1o reply with the first word coming to
mind, ¢Ehe scrics of reaction times revealed a Type VI distri-
butwn\uth a fourth moment having an infinite probable error
when'determined from the differential cquation. This reagent
v&as not tested furiher, but other reagents have been, with the

\ ) result that a mental confusion or blocking has been found to
occasionally oceur, and to he so pronounced that the reagent
has refused to react at all, ie., the reaction time for that
particular stimulus has become infinite. I have no doubt that
were it possible, without changing the conditions, Lo continue
the experiment with the first subject, sooner or later a similar
blocking would be found, so that here again the probability

is that the infinite higher moment is a true deseription of the
sifuation.
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Aceorling 1o Angell (1907}, who points out that judgments
of equality between two differing stimuli cease to constitute a
homogeneous series if the stimuli differ by too great an amount,
the sane sort of coudition holds generally in psvehological
threshold experiments, That is to say that reactions from such
widehy differing stimali will vield distributions having unstable
tails, or, what 1 would take as the statistical cquivalent, Type
IV or Type VIdistributions.  The use of the curve fitting
methad Lo determine the degree and nature of the instdbi]it\\
in threstold experiments s suggested, but it suffices fors (Our
Irmrediiie purnoses Lo nole that psychologic as well ag eg@nomlc
data ocecisionaily vield distributions actually pocsebscd of un-
stable tal foctions, or in other words, infinite p0%1t1»é\moments

These dlnstrations point the possibility of thele¥stence of a
causal relutionship which 1s determinable f&h‘m a lknowledge
of the positive, and probably also negatiiéy moments which
hecome infinite,  Infact, the order of tthe} Wreakdown moments
may prove a touchstone 1o the diggoyery of causal relation-
ships, The method at present ,z’ivaflab]e for locating these
critical moments is that of ufflhzmg the first four positive
momenls from the actual dafa sordefienmit-sydfigrantial
equation consecting mgrqcnts. Having ihis eguation the
critical maoinents may L’@ul’ocatcd immediately.

Slight shisting of\ %3 origin entirely changes the situation
with relerence toshe’inverse moments, go that, {a) it is cither
impossible 1o m’m\.lme inverse moments, (0) the conditions of
the 13>1"0b1f:133.\’x}ﬁst give the limit with absolute definiteness,
or (¢} mube~definite features, such as the positive moments,
must bé wsed for the indirect determination of the limits and
ol the' inverse moments arownd these limits. That method

J Wil result in deternminations with relatively small probable
€rIors in case the lower negative momcents are the critical
ones is apparent from the appreciable distances apart of the
#—y Hines of Chart XVIIL

Thovgh the laws controlling biologic phenomena have proven
Iess easily and definitely determinable than many of those of
physics, novertheless the distributions of traits resulting from
biological forces can readily be determined and examined. Ts
it not reasonable to think thail, whatever else evolution may
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involve it certainly involves a trend toward stability? If it
is a development through laws representcd by positive mo-
ments, its limit is a Type T distribution; and if through laws
represented by inverse moments, its Jimit is a Type V distri-
bution: and if both are involved, the only final limit is the
normal distribution. This approach may be peculiarly valu-
able in studying evolulion and it should not be a diffieult matter{
to test it. Distributions of shell and skeletal structure of past
ages can be made. Should it prove a fact that forms cxis{tat
in the past giving distributions different from TypesI¥ and
V have disappeared, and that ithose cloge o these}’f’fpcs are
glill representied by extant life, it would be comn(pﬁe’te support
of this point. \V
We mayv note that the peculiar stabﬂ@f of Type III as
judged by the existence of determinabl AORtive moments is in
harmony with the unigue facts of Wér¥clation which Pearson
has pointed out as belonging to thig" type. This is the only
type in which “each contribt}t’cﬁ‘y cause group 1% of cqual
valency and independent.” &Me writer may have overlooked,
but at least he has not fayihd, in Pearson’s contributions a
satisfactory” ¥xpABrRubRreR C6kliration of “cause groups.”’
He, however, interpm"ts\them as analogous to separale chromo-
somes, each of whﬁsJ;Nﬁay affect a single character, or to separate
cimatic and ctdmomic conditions cach of which may affect
a given foodhptaduct, ete.  If cause groups are net independent,
so that a,jlﬁeé_sure of a certain magnitude implics other magni-
tude 3@‘5iﬁivcly correlated with it, we have a siluation which,
fropd a" priori considerations, one would expect Lo correspond
teles trend, or tendency operating to pull measures in a certain
\ d\ircction, possibly entirely out of the distribution. It may be
“that a sufficlent number of counteracting pulls, or vectors,
could exactly balance each other, resulting in a condition
identical with one not Involving any pulls whatscever, so that
1t scems equally reasonable to look upon Type 111 distributions
as those,in which there i3 a perfect balance between positive
and negative correlation tendencies, thus reveuling a zcro
correlation, or as distributions in which the pulls between
elements arc all zero. Whichever view is taken the significant
result remains the same; that distributions which differ from
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Type 11T thereby give cvidence of the existence of uncompen-
sated correlation belween cause groups, -—and of lack of
stability sincc certain moments arc indeterminate,

The determination of the specific nature of the correlation
hetween cause groups in Type Vo distribulions is a promising
field of researchi.  This tvne, holding as 1t does the same
position with relerence 1o stability of negauve moments that
Tvpe TIT holds with reference to stability of positive muments,
muy possess some equally unigue and stable {llhlfclft(_ll‘—ﬂ.}@\
with reference to negative productsamoments as that possbeded
by Type ITI with reference to positive product-mormendss

In the light of all the facts presentod it would, &0em that
evolution must be a trend toward the ﬂ(}rmaﬂ."ﬂ}q‘tribmion.
Also, dependent upon the causal forces openhz, it would
seem that subsidiary trends would be towdapd“the three Hnes
running into the normal point. Tf thegegusal lorces can be
expressed as positive momeoents, Lh’mg@J w1 distributions helow
Type 11T in the direction of Type IT{ seould mean cver grenier
stability, i.e., evolution. If the Lcm'sal forces can be exprusul
as ncgative momentq Lha.nqea‘m distributions ahove T vpe V
in the direction of Tvpe V, woulnlmmfmliﬂmnyjm gBnianced
or symmetrical distribulieds’show a peculiar stability in that
all odd momenls are 4efor If stability of this type is the poal
of a certain line of @volition, the trend wotld be toward Type
IT or Type VH{ZFmally, a cerain development (biologie,
economic, pPLy “htﬁogic or what not) having reached one of
the three supsidhary goals, Type I1 or VIT, Type I, or Tape V,
further gd¥ance, to insure stability of a still greater order,
would, ba along the line toward the normal point.

,T hé possession by an individual of a trait of such magnitude
ds.1b lie outside of the distribution given by the other members
of the species ordinarily carries with it the climination by
death of the individual* hence stability in trait is intimately
connected with St’iblllt" m species,

Urﬂ}.r in case a trait is operated upon by such influences as
result in the measures of Lhe trait falling into a normal distribu-
tion can it be said that therc is complete stability, or that the

#Cf, %o trults possessed by lethol drosophila welanugasier,

QY
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Tace or species possessing it gives evidence of a self-contained
permanence.

Clearly if this analysis is correct, the evolution of a bisexua’
type of life would be as follows: (1) two centirely distinet traits
which we may call male and female; (2} an occasional modifi-
cation of the two, each in the direction of the other, giving
a u-shaped distribution; (3) a building up of a common ground N
between the extremes, giving a limited range Type TT-1 distrd
bution; and (4) a further weakening of the extreme chas 'c\t“@\r—
istics until they become of infinitesimal impariance, i com-
parison with the commaon ground between, resultiig in a
normal distribution, '\\

Following the lead of the argument we find the humean species
much further developed in certain parts 0@9 makeup than in
others. As illustrations of the four %Mg& nete (1) primary
sex characteristics; (2) secondary sepCharacteristics; (3) mus-
culature; (4) intelligence. In c@ric],t,fding this chapter let me
emphagize the promise thatl 1i33’;:§11 an cxperimental study of
evolution, utilizing the £ac1‘;s..u'tfdistribution types.
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CHAPTER VIII
MEASURES OF RELATIONSHIP

N
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Section 42. THE ProsLEM oF CoNCOMITANT VARIATION IN
THE SCIENCES \ o

The determination of the law underlving coacon:lij;éﬂ’é varia-
tion is a problem common to all the sciences, Bl physical
sciences have a great advantage over the sodidhand biological
sciences in that (1) crrors of observation a:n(’.\kmeasuremeut are
usually very small in comparison with thé/measures involved
‘and (2) fewer factors arc ordinarilynpresent., Tn mecasuring
gsome intellectual capacity of a g;mlp’ of children, it usually
happens that the probable errord~of the test scores obtained
are greater than half the st%ﬁiﬁi@(&b&ﬁﬂﬂﬁ#@ﬂ%%_ﬁgores of
the group.  Obviously any réfationship between two capacities,
each measurcd with no{gréater reliability than this, will be
clouded bv the errogsdlmeasurermnent.  This is serious enough,
but it is not thesorly difficulty.  In measuring the effect of
gravity, physicisfsttan ordinarily assume that ten pounds of
lead and ten palads of iron will act in a similar manner. DBut
in measuﬁ,;{@ﬁ"ccﬂcc’c, food prices, ete., to say that one reagent,
one cogtmedity, etc., is cquivalent to another with respect to
the Qqhétion being cxamined. Is usually questionable. Ac-
cord;h{gly, where the investigations of physics lead to the estab-
Tshricnt of “laws,” those of the social sciences ordinarily lead

\to the discovery of “tendencies.”  Relationships between two
psychological, biological or social factors frequently depend
upon a number of causcs, cach more or less independent, and
no one of which is so important as to dominate the situation.
Under these conditions, the relationship tends to be rectilinear.
In other cases, wherc the true rclationship is not rectilincar,

large errors of measurement will lessen the strength of the
I51
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measurable relationship, thereby making it more difficult to
determine the exact nature of whatever curvilinear relation-
ship may cxist. Tt is also true that relationships which arc
intrinsically curvilinear when detcrmined over a range of the
two variables from very low to very high, may show practically
rectilinear relationship throughout a short stretch of the range.
For all the reasons stated, a measure of relationship based upon
the assumption of rectilincarity is of great importance, PO
in the case of known non-rectilinear relationship it is ofwiuch
value as a point of departure. The balance of this gh}}f{ter is
devoted to a discussion of Pearson's product-mpménf coeffi-
cient of correlation, the “best” measure of mujgalimplication,
if relationships are rectilincar. ’

The most fundamental properties of thisgneasurc of refation-
ship were discovered and presenied graphically by TIrancis
Galton from 1877 to 1888. GaltonB\jmvestigations had to do
with the inheritance of traits, and\ cfrtain of the terms which
he used would hardly have afisen il the devclopment had
involved other data. For .Ei:;g‘aﬁlple, the symbol “r” was a
measure of the “reversion.™ such, for example, as oflspring
upon mid—pa‘i‘éﬁ“ﬂ‘@rﬁﬂ&iﬂﬁf@fﬁr&&sure is the average of the
measures of fathcr<aﬁa1 mother). Later, Galton used the
lerms “regressionh\and “corelation” and called the measurs
the “Index ofsSe-relation.”” Weldon very properly calls this
measure “G%ﬁ;on’s Function' and Tdgeworth in 182 gave it
the namgt}vhich has survived, “Cocllicient of Correlation.”
Pears,@%lgeo notes) has pointed out that the product-
QO‘ent function of Bravais bears but a resemblance in form

" #othe product-moment cocfficient of correlation. Whereas
4 ;Bravais started with observations which were assumed to he
independent, and in treating them obtained derived measures
whose product-moments did not equal zero, Galton started
with the epoch-making concept that the criginal measures
were dependent. The Bravais treatment leads nowhere o
far as correlation theory is concerncd, because the measures
which arc correlated do not constitute original data, nor
funetions the correlations between which are of any moment
on their own account. Partial correlation analvsis leads Lo
independent mecasures, having given related ori’ginal SCOICS;
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which is exactly Lhe reverse of the Bravais or Gaussian
ments.  Galton alone seems deserving of heing ca
father of correlation.

Section 43, FIxDINGS RESULTING FROM (FALTO:

GraPHIC TREATMENT Ke

Galton s procedure, based upon medians and q*u[értf
tions, has given way to the more accurate cme vl
product-moment formula, AN
¥ oxy ,,,\\
No 12 \V

r=
developed by Pearson.

We cannot do better than to use) @'ﬂton 5 data in de
meagure of correlation. Galton,mbtamed the heights o
and the heights of children, afiddrew up a “correlatio
or ‘‘scatter dlagram” slj_g@;‘ing the relationship bete
two. All female heightgagcre multiplied by 1.08 to me
comparable with males heighls.  This procedure is
most sound, butn this problem leads to no mater
Letting X, Xg‘«ra)re‘aent male and female heights, g,
standard ddgdations and M), M. their means, it wot
been belldy to have reduced e¥eh q@h?a%lhﬂ'éfgh?r &d
parable @gle height by the equation

’t\:Cbm])arable male height = M + (Xs — M) o1/

Lhe discussion which follows will assume that the more
{utthod of transmuting foamale into male heights was
\~f % and also that the mean was used throughout. Pre
Galton used the median, but no fundamental dific
treatment followed from such use, it simply being a
less reliable procedure.  Galton's diagram contained
given 1 the accompanying correlation table or scatter
Chart XX. Deviations being measured [rom 683 inche
is a small fraction of an inch away from the truc me
labeled £ and ¢ instead of 2 and 9, but no account of tl
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(@) A plot of the means of the vertical arrays (columns) as
shown by the X's shows the “‘reversion” of offspring upon height
of mid-parent. Thus if the mid-parent height is 2} inches
above the mean the average or mosl probable height of offspring
is 1% inches above the mean.

{b) The line connecting these means may be closely repre-¢°
sented by a straight line through the origin or intersection,of
the means of the two distributions. This is the line qho‘w’m}g
the regression (or “reversion”) of offspring upon mid- p.srént

4 '0
< "

CHarT XX

Correlation Debween Heights of Mitparedt a}d (Offspring

Hewghts of Adult Chifdren Eupressed as devia .,\\‘:
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(c) There is a reversion or regression of mid- -parent upon
of{sprmg This would be represented by a straight line pass-
ing approximately through the o’s, Thus for every correla-
tion table there arc two regression lines.

(d) The slopes of thesc two lines are equal, provided the
standard deviations of the two distributions are cqual.
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{¢) M standard deviations are equal, this slope varies between
zero and one (Gulton did not suggest the existence of negative
corrclations), and may bec represented by the symbol ¢

(fy The standard deviations of the measures found in any
one array (row or colummn) are approximately equal and are
smaller than the standard deviations of the total distribution
go that if ey equals the standard deviation of the heights of
offspring, and ey the standard deviation of offspring correspond-, ),
ing to given heights of mid-parent, then O

glqq = oh (I = A) (“}".
where M is a positive quantity, also dealing with QQ'ImnnS
instead of rows, )

oy = o {1 — A} \
in which M is the same as before, o the sf:amgki‘?‘a~ “deviation of
heights of mid-parents, and e 2 the st-and}zrd deviation of
heights of mid-parents corresponding €0 ‘given heights of
offspring.  The svmhol ¢, will, sqbﬁéquent formulas, stand
for the standard deviation of an .ijf‘rax around its own mean
and oy (or g.q) the standard dfcﬂﬁation of an array around
the regression Ilmc. but as pl\arc hegs g iR e
seedagtic reetilincar rcgrc§;ﬁrﬁa cither symhbol can be used, as
Fa = 0o \\"

(g) There is a simpleyrelation between X and 7,

Itis, A = #2 Dsdlthat
,,\'L\G:'zgq =¢% (I — 7% (Standard deviation of arrays
and \:“ } from regresston line, sec
,.s’\ gl = ot (1 — #%) also Section 48). ... ... [&6]

(k) Each array is approximately a normal distribution if
the(total distributions are narmal.

{z) I[ contour lines for different frequencies are drawn in
the diagram thev constitute a system of similar and similarly
placed cllipses, the conjugate diamciers of which arc the two
regression lines.

Gallon made no claim to mathematical ability but through
sheer ingight into the phenomena of mutual implication made
these penetrating observations. Ile carried his conclusions,
stated in probability terms, as to the nature of the correlation
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surface, to Mr. J. T, Hamilton Dickson (1886), a mathemati-
cian, who readily wrote down the normal correlation equation
involving two variables. In our present nolation this is:
N S (_~3 . '—‘f: ~ &) (Normal r:om:.-lation sur-
PR — Tt CAS S face: 2 variables). . ..
2aoies VL — 17 [zee B8]
Galton’s humility, after yvears of collection of data and subtle
analysis of the same, in the facc of the neat but not involved
mathematical derivation, is worthy of note by the sogfaly
scientists of this day who scoll at mathematical analPgis.
Upon receiving from Dr. Dickson the solution of hls\pr’oblem
he wrote (quoted in Pearson 1g20 notes), “I may he/pérmitted
to sav that I never fcit such a glow of loyalty‘}c}r\ld respect
towards the sovereignty and magnificent swav efhathematical
analysis as when his answer reached me, conlistning, by purecly
mathematical reasoning, my various and\Jahorious statistical
conclusions with far more minuteness Phan [ had dared to hope,
for the original data ran qomewbat Toughly, and I had to
smooth them with tender cclutwn

Section 44. AT(FHRAIC TATE 11%1\11.“ on GALTON’S GRAPHIC

FINDINGS AND Drmvawon OF ORRLT&TION Formuras

Let us consider ghese discoveries in more detail. Let x,
the first variable; e,knd for height of mid-parent, » height of
offspring, each sgxpressed ag a doviation from its respeetive
mean. The ¢ St\andard deviations are respectively o and oq,
while # 15"\1:\3 slope of the regression line in the “reduced”
scatter diagram, — that is, in the corrclation table, — in which
the measures entcred are /oy and y/e, respectively. Galton
reduced by dividing by the quartiles, leading to essentially

\”}he same result as here. The slopes of the regression lines are
€qual, and equal to . We will shortly obtain the numerical
value of 7 by other than the graphic method of Galton. Finally,
let y stand for an estimated height of offspring, knowing the
beight of mid-parent, and ¥ the estimated height of mid-parent
knowing height of offspring. With this notation, discoveries
(a) and (b} together are equivalent to the equation

¥ _ ;X (Fundamental {orm of regression

oy a1 cquation). ............. [see g1]
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Propositions (¢) and (4} are eguivalent to the addition of the

following equation to the preceding
IR |zee g1]
28 ] oy

These are the two fundamcental regression equations char-

acterislic of every regression table, showing rectilinear regres-

sipn,

Proposition (¢} is lable to misinterpretation. I » = o, it
implies that there is no relationship, no reversmn or regression, \
of one variahle upon the other while an y = 1 meuns complQ‘t‘b
mutual implication of the two variables. More looscly sta‘ted
this latter situation will be described as one of complcte hiutual
dependence, or simply dependence of the two varlab\[‘e% The
student, howcver, should not postulate causal d&pendence.
So far as dala arc concerned there is 10 c,viziehce that the
heights of the parents have any mote fo ﬂo in causing the
heights of the offspring than do the hcwhts of the offspring in
causing the heights of the parents. (This is characteristic of

all measures of correlalion. A s1tu"tt10n exists and a correla-
tion coefficient measures the tendencv of the pairs of measures
to be related but gives no evidatice \&Wﬁh@bﬂaﬂlghgr;? 2 of
v, ¢ the cause of %, or wheb,bcr the causc it unknown and lies
back of both. We t ’xk Of parents being causal agcnts in
determining the heighis ol offspring, bhut we do this for reasons
outside of the s-::aftei“ diagraun, namely, the parents have
existed earlier thab the off spring in 4 time series.

Propomtmm{ ?‘f } and {g) arc of course the result of careful
collection a\i\xd studyv of data, but Galton gave a very 51mple
proof ofd (g) The variability of the offspring generation is
dcr;gnmﬁcd by the variability of the arrays (rows} and the

ighility of the means of these arravs. If A equals the
distance of the mean of an array from the mean of the distribu-
tion and, as before, guq cquals the standard deviation of the
array, and if # equals the number of measures found in an
array, then {ne%. + #A?) equals the contribulion of a single
array in the caleulation of the standard deviation, of the
distribution, thus:

ot = Zari —|— I n AT
N
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Since Swo%. = No%.y and since for any array A equals the
estimated ¥ corresponding to the given value of x,
w9
A=y 7 o x
so that SnA? = Zny? = Noje, therefore
aly = g%y + o% (Standard deviation of distribution
in terms of standard deviation 2\
of arrays and of slandard devia-
tion of means of arrays — recti- 4 )\*

linear regression)........... .18){] g
By proposition or discovery {f) D
"
A
i\iszgm =gl = g3 (I —X) 7
= m\\.
and N\
E?z_f_\_“_?'zajg}}xz_f%s v
_N - o5 N - z . \;
Accordingly, D
aly = o3 {1 — A} + ﬂazi“x\
and finally, AV
A= s W

so that the important proposition (g:)"’i?estab]ished cven before
a formula for the arithmetical ca{(:iﬂétion of # 18 al hand.

() is an experimental fndinRashichr caoled with (g) and
(@), (b}, (c) and (d), immediatcly gives the equation of the
normal correlation surfave. The equation, from the mean,
of the normal distribution is,

N — 4

y \ N U"g Vag i
If the distt:;ib}rtion of an array is normal, its standard devia-
tion = o vz} — 7% and if its mean is A ( = 7 gy/0y %) from the
mean gfithe total population, then the equation of the normal

dis{ﬁ;\bﬁtion representing the array, from the mean of the entire
digitibution as origin, is,

— (¥ — vario ap}

1 ) —
"
e 2% (1 — 1Y

e Vi-rvan
The 5" corresponding to an assigned y is the probabilitv of a
measure 4 this array having the value 4. The probability of
a measure being in this particular x-array is
-
;  =F
g= L _ g
Ty '\/2 T

-1
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Therefore, the probability of a measure having the particular
value v and also the partcular value ¥ i3 the product of these
lwo probabilitics, 2 = 2%,

—x? —i5 — 3z reddm + 2 eh et

o= . 3 85-53’1 o 2eh (£ — 1Y
2amer VI — ¢t
which simplifics to,
T (i’ ¥ _2”3')
5 I Bgl’\ L — ¥ Ael o T p ,\‘\

2reer VI — ¢ 2%
(Nuvrmal Correlation surface — 2 variables) .. [88]
This is the equation of the normal probability cortélﬁ“&ion
surface of two variables and of a total population Of\ane If
the right hand membher iy multiplied by N, we hgvg the equa-
tion in case the total population is V. The q}anuty r has to
this point been defined as the slope of the fegrossion line in
case standard measures [see formula 63 etc the mecasures
entered in the correlation table, We will now prove that in
any scatter diagram, the two “'best .:ﬁ‘p’i’ reclilinear regression
lines are .;fj‘
¥

x
=+ T an P .. [zee o1
T oM 0'1

3 |\EI

: www dbrauhbl ary.org.in
in which the two #’s are 1de11\t«1ca1 and given by the equation,

\\ = wy _ Xwy

L LREE QO
\/Eﬁ VE e T N [see 90

&,

The term “best A8 ™is used as in the method of least squares.
A Vhesl fit” (k}terrmmt:on is one in which the sum of the
SQUAares o \bhe errors of cstimate i3 a minimum, that is, the
standard\error of estimaic is a minimum. Delerminations
can | ];c\madc resufting in the sum of the deviations; of the
cubey ol deviations; of their fourth powers, etc., being a
minifnum, bul since the days of Gauss, it has been known
that in the case of a normal distribution, none of these deter-
minations will result in as small a median error as one in which
the sum of the squarcs of the errors of estimate is made a
minimum, The constants of distributions which are widely
divergent from the normal, so determined that the standard
error of estimate is a minimum, are undoubbedly very excellent
determinations, but it is no longer possible to say that con-



160 STATISTICAL METHOD

stants so calculated have smaller median errors than would
others derived upon a different principle. In all of the follow-
_ing treatment of simple and multiple correlation, the principle
of least squares is involved and the standard errors arc minimal,
and because of this fact the determinations are called ‘'best
'fit" determinations. They are “hest” if the principle of least
squares is the proper principle bhut they may not be so if some
other principle is more sound, though in all cases we certainly
can describe the least square as a highly excellent de tenninz}ti'o‘rr.\
Referring to Chart XX, if the slope of the line drawn wlich
is the regression of “‘y upon x,” or the reversion of 3 fowurd =,
is By (the numerical value of by is equal to tan ¢) 1Hen having
given a value x, the best estimate of the cdfresponding v
vaiue 15 y. ¥ = bawv. In general ¥ will not\bc identical with
the actual or experimentally obtained yatuc of v, so that
{ — ) indicates an error of cstimatcl':\The standard error
of eslimate o.; is given by the equat;iéﬁ; J
g = ZOOND)

olu] = —
HTOSW

The regression linc which Ipéké's this magnitude a minimum is
the regression Hhe 25?1%' LI RtE Py 12) derives it without the
use of calculus, but tHg)calculus derivation is so much morc
simple that it is‘l}or given, See also in this connecticn

problem 6 at end'ol this chapter.

AN
£ =20 Zop0 By - 2bn Xy + B Zat

&/ N

df _X\eXxy | 2by3al

T TN + — =0

dbm N N N

631 = Zxy _Zxy  (Regression coefficient of varigble 2 upon vari-
&\ Zxt Nopt able 1, or the regression of ihe dependent

/ variable, 2, vpon the independent wvuri-

able 1) ... [8g]

This is the desired value of the regression cocfficient. If
standard mcasures are used the regression equation,

T = xjr) N
y l\rti'l2 *

3 (ﬂaz_) ®.
7y I\'Yo'la'g T

becomes
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and the coefficient Tx1/(Neym) 1s the cocfiicient of corrclation,
r, or the measure of mutnal implcation, lor a derivation
similar to the preceding and involving the other regression
line gives

B — Txv  Txy (Regression of variable I
1% — = -

=32 Noyt upon variable 2) .. .. [8gl
so that
~c_ - (ij-' ¥
a1 Neae/ a0 .
. N (\H
Thus the coofficient of correlation is given by o\
N/
;o B oay _ ZTxv _ N (Pearson product momenteco-

efficient of correl;ttfon) Y. lgo]

PAL
'""\\.

'\/3 3-‘! \,:"z_:}_.?: A"U’JU’;}

and the regression equation may be written,

x_ 0 (Pundamoental form of {g;ressirm equation
a

o between two variablesy ... ... fo1)
- LY
The other regression is O
¥ ox \ \
peil Q:’”[QI]
Formula [91] may be written O
%o Ty Ry pevdbraulibrary.orgin (o g
AN o1
or as ¢.&\J
RS b\l,_s\y, and ¥ = bax ... e [o1 8]

Tt is to be espeelally noted that whereas 7z always cquals ry,
the regressid@;\cﬁ:efﬁcient bie cquals by only in case the two
variables idve equal standard deviations,

O
Sectiggr 45. Tre DETAILED STEPS 1IN THE CALCULATION OF
\ CoRRELATION AND Rucregsion CoNSTANTS

O
\ ) The steps nccessary to the calculation of Zx%, 4% and Zxy
arc shown below and to the right of the diagram. {Chart XX )
The origin taken is 68] inches, but as shown by the sum of the
fy row ( — 20) and the sum of the fr column (38) the exact
means arc slightly different.  We will calculate the correlation
and regression coefficients without correcting for these slight
discrepancies.  They are taken into account in the caleulation
at the close of this scetion, To avoid working with fractions,
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deviations from the means hawve been expressed 1n fermes of
one-half inch intervals. Thus a p-value of  — g mcans, oo
half inches below the mean. [n terms of these units we v,

Xt = 6320
XET = 2740
L0 = 161R N\
Thig last summation has heen caleulated m two wivs 5o 5&:\‘.-3
provide a check upon the arithmetical accuraey o thgyh ik,
The first entry in the 2f¢ row is ~ 17, This is the ;;u}zauul‘ i
products of the frequencies of the £'s for the sh }g:fkj: afriy [or
which £ = — g. The notation, St iz 115(:(1.?9\\('10&5\,{11;1&: “
summation for an array, whereas ZfE, or mape simply, Yo
the summation for the entire table. Simildrly for Sf&r aud
ZE. We have, NV
)
. 1618 - 4885+ ::’:,.
Voezzovazo TGN
by = I618 N

;?E' = .3905 {SI}}iJe of regression line drawn)

1618 Ao
bia e @b__i‘a,ﬁlm'&@%%% g]’.iﬁtl'w.r regression line)

ey
oy = \@2&-—- 2.908 {In one-halt inch intervals)
. = 1.454 (Ininch intervals)
‘_} / Iﬁ_j,_zo

“\xi({..—v \i 3 24 = 4.417 (In onc-half inch intervals)

= 2.203 (Ininch intervals)

'.I‘}}g\}o.gression of height of offspring upon mid-parent, in
Ql(,h units, and measured from an origin of 68L inches, is,

»0\;“,‘ ;
Iy 3
— = 3888 — 5
2,208 ~ I.
or 454
¥ = .5905¢
Iav

ing the equation in this fundamental form it is but a step

toh.express .1t‘ n terms of gross scores. Letting M’ = the
arbitrary origin or approximate mean, we have
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Accordingly,
¢ = bu
may be written
YV My = by (X — MY
or
}_,

B
<1

i

fo X 4 (M — by M)
b ¥4 (M~ b M)

H]

To illustrate the use of this equation Tel us estimate the O\
most probable height of male offspring if {he mid-parent .,
height is 64 inches, \' N

V= 5005 X + [68.25 — (5903} (68.25)]  _ \ .7
= 39035 X + 27.95 A\ 3
Solving, when X = 64. gives, ¥ = 635.74. as theunost probable
height of offspring, or the mean height of manylsitch offspring.
The calculation of the constants in\-'ol\-'czzdti.p’] the regression
equation as shown assumes that deviations arc from the means
of the two distributions. In case ofgts other than means
are used corrections may he applied“to sccurc the product
- moment and standard dev iatiorlsi from the means. The cor-
rections for the standard devlam@m have alrcady been given,
formula {2z,
Let Ay = M, — M, Ll\é\dlﬂstcfn‘ég iir?ﬁ]lult"flféad%?fﬁiﬁ origin

1o the mean of the X' {"md let As = Ay — M. Then,

UL 4
’0'3 = .V = A — A%
\Y .
O _ZTy _I® .
oy ThE R TN T AR
O\ . -~ : '
’\s.; Ty =3(2 a0+ A)
O =S+ AR E+ A
= IE F AZ0F AT ()
axd&mce “(5 + &) = = g and Zf = — N4a., therefore,
xy = Sir — Ny (Formula for eorrection of product —
moment due to wse of arbitrary
GEEITE) .o [o2]

Accordingly 7 may be calculated from any origing whatever
by the formula
_ T —Nade  (Pearson product — moment
T vy £ — NaL VT — Nad, coeflicient  of  eorrelation
caleulated from any origin) (93]
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When zero is, for each variable, the arbitrary origin the
above formula is equivalent to
XV - 2X)(Z YN {r calculated from

v’z X (S XR/N \/E ¥~ YN ZeT0 a8 arbitrary

e e ovlgin} .. ...... lo4]
Another variation is
_ EXY - NMM, (7 calenlated from zern as, ¢
N E_M" VE Frl NM% arbitrary origin). .. .. ;[g:r,]
Similarly, R \ \)
by~ ZXY = NI, BXY = NI W
BEUTRTCNRMy YT 2R — NI N
{Regression coeflicients o.a.lcula,tezl drom zero
as arhatrary origin). .. .« .3:\\. ........... [06]
Thus, for Galton's data, the correct valudsM&r the requisite
constants are \\«
1678 — {38) {— 20/ ¥
_ {38 ¢ ;)3’*4___5H=_3897

\/2740 ~ (387324 Vﬁszﬂ 5 20)%/324
a1 = .5923 \
M) = 68.25 4+ 38/324 = 68. ?7:
M = 68.25 — 20/324 = 6& 19
2.906 ;.

N

I

71
Fy =

4\'43'ww dbraulibrary org.in
y.org.
Thus the corrected ragwr ssiofl equation from the actual means

as orl glﬂ‘:‘» l&u \\

¥=.3923%
which diﬁers bqtshghtly from that obtained neplecting A; and A,
'\’J ¢ =.5905 ¢

and th&‘eorrected regression cquation from zero inches ag
ong\‘n\sl‘; _
V= .3923 X + 2760
"\;h1 ch in turn differs but slightly from that cbtained neglecting
\ ; ﬂ] alld ﬂg

Section 46. Tur TrrOR INVOLVED IN CERTAIN
- APPROXIMATIONS

It is desirable to know how large an ervor in the means may
salcly be neglected. We have, letting 5, = (Z2/N and s
= (Z{3)/N,
= &g’_ - iVA}ﬂ?

¥=— "= — —
N \/512 — A0 '\/832 — Ak




N
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and we wish to ascerlain how greally this differs from the
approximate value,

oo ZH

T N8

Setting the expressions 1/Vs? — A? cqual to 1;>\|1 - ('? )~ and

expanding the radical by the hinomial thcorem, discarding
powers 11 ASs greater than the second as being nepligible m\
comparison with the sceond powers, gives, after cerlaln smtgle

reduclions, A
yoo [l_ (A_L ? L 1 (_\_: *1 _ AAy (Showing errori in f"{rom nse
2 5 2 A\ 52 §182 of '113131(mmatt rrIe'Lns) [o71
=+ +r Ry
. W

. . ] . : B\

in which e ig the error 1r1t1‘oduced in case J N taken ag the
value of v. Note that if 7 i3 posilive, lcsiim‘or 1s introduced
if Ay and As have the samce sign than af \thcv are of opposite
sign.  Let us assame the two magn}pud{:b (A/s) are equal

Then,
€= (? —‘I '( )

In this case e is negpative, 3f approximate means which are
in error inn the same se}}se are skt dautiddingdrgonrelalion,
7', 18 larger than the eberect value, v, We may solve the pre-
ceding cquation [@fA7y [or assigned values of # and . The
{ollowing tablesigive certain solations:

N
I LRROR: QNPMEANS akE Boual ! I Errors 1x MEANS ARE HouaL
ANE e BamMu SiGy I AND 0F UPPOSITE S1GK
—O . : )
\'\\r’ Afls A = apzronimatlely & ¥ Afy A = approximately
g —— - — —- | -
ENvor | 0| .n32, 1/i58 of vange [ .oor | .0| 032 a158 of range
V.00 | L0 o7 14’ 7T 1 .o03 .0|.071 71
— 010 | 0| 160 I/ 50 % " 010 ;.0 ,IOO‘ fogp
- 001 | .7 | .058 ‘ /%7 % < il oot .7|.021] r;’zo; W
—.ww5 | 5|1zl i/ g2 ¢ ooy ‘ Flwze, 1/ g2t
—.010 | 7| .183F 1/ 27 ¢ oio by 7| 17 6y ¢
— 001 |.9|.100] 1/ 350 ¢ 00T glo23| 1218 ¢ ¥
—.005 | .9|.224 If 22" Y 005 g o5l 1/tog 0«
—.010 [ .9 .3I0 | S LI | 0T | 9,073, 1/ Gg o
i :

Since for A's of a given size, there is much greater error in the
correlation coefficient if they are of opposite sign than if of
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the same sign, therefore in choosing arbitrary means, it is
frequentiy desirable fo so choose that Ay, A: have the same
gsign. For example: suppose o1 = g2 = 3, M1 = 12,56 and
M; = g.30, then better results will be obtained, if correction for
arbitrary means is not made, by choosing 1z.0and 9.0 (A = .56
and A, = .30) than by choosing 13.0 and g.o (A = — .44
and Ay = .30). Tor many investigations, an error of 1 per,
cent is not material so that, as a practical procedure subject
to refinement if low correlations are involved or if a 1 per o€k
error s serious, it is safe to forego correcting for arlgitrary
means if the crror in each of the means is less than 142y of the
range and if they are of the same sign. This’reeluifement
is more easily met than one imposing the cond:i[?k?n that the
standard deviation should not be in error byldhdre than 1 per
cent. As standard deviations are usually fegtaes of a distribu-
tion which it is desirable to know, it seems better to forcgo
correction for an arbitrary mean onfiid case the error intro-
duced in the standard deviation ig\18%s than 1 per cenf. We
have o

o=VE A= 4 ,};g + higher powers in (3) -

www dbraulibraty.ofg.in s
The error introduced byusing s in place of ¢ is
_ At (Sh?nwmg error in o from use of approximate
T2 \\n{ean) .................................. 98]
and the propottionate error is

s — o\ GA?

F—

B
If an ch}}fc’)f I per cent is permissible, we may write
. &\ At
o == 0r
AN 257 -
) A
O 2=y

or A is approximately 1/35 of the range. If there are 18 or
more intervals in the range covered by the measures and if
the arbilrary mean is chosen as the middle of the interyal
nearcst the correct mean, then the error will be less than 1 the
interval or less than 1/36 of the range, so that the error in the
resulting standard deviation will be less than 1 per cent

The correction just considered is on account of displacement
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of the mean. Sheppard’s correction, formula [68 a), is for
grouping. If ¢ equals the correct standard deviation and
S the standard devialion obtained from coarsely grouped data,
Sheppard’s correction gives

et =52 — 1/12
= & = 1/24 § 4 higher powersin (1/12 5}

ig g

LS_' —
5
and if this equals .o1, we have A
S = 2.041 p ( Ny
Tf the standard deviation is 2 or a trifle greater, the range is
in the neighborhood of 1o or 12, so that if we hax®, ak many
as 12 steps, the error of the standard deviation d@;‘té grouping
is less than 1 per cent. The most cxacting ¢endition is there-
fore the one preceding this, RN
Accordingly, if there are 12 or more iervals in the ranges
of both variables, and if the originssite)so taken, by resorting
to & or 3 steps if nccessary, as nqtfh differ from the correct
means by more than 1/25 of ghE¥range if the correlation is
ahove .70, or /5o if near .oo;¢aftd if the origins taken lie either
both above or helow the cofyéct means; the error introduced
in either the standard dgvaations SF ¥HLPEIUHREERY OF §dbrelation
by not correcting foi @rouning or for approximate means, is
less than t per cfud.  In case intervals arc of necessitv so
broad that a rfidferial error in correlation results, the raw
correlation cgeiﬁ‘ii:ient requires a correction for broad categories,

= 1/24 5% {Showing error in ¢ due to grouping) . . (991,

Seci-iotb\'i}. Tae Bearixc oF Broap CATEGORIES UPON

A CORRELATION
Wagting pu for the product moment Zxy/N, as in Section 48,
~JHehave
9 s =01

oo
Ordinarily oy and o2 will be taken as the standard deviations
of the class indexes, but more accurate values are obtained by
first applving Sheppard’s corrections, {ormula [68 o], Thus if
k and k arc the group intervals, s, and s, the standard devia-
tions hefore applving Sheppard’s corrections, we have,
},2 k?

ol = 57 — I.;’ and oty = 52y — 3t {68 a]
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To a first approximation there is no correction for grouping
to be made to the product moment, $11, 0 that we have

fu X xy

e |z—__'i2 |.“2 _? N lea _ &-z. il 2 k'
N TN 1z N TN T T
(Cueflicient o1 correlation after applying
Sheppard’s corrections) .. ... .. [100f

If the grouping is vory coarse and irregular we may as'%ume
a normal distribution and determine the mean ol each, clhs'a
calculate the correlation, using Lhese mcan class xd.lucs *ﬁs our
variates, and correct for grouping. The correction fof Trouping
is different from Sheppard’s because herc our cc\re.(,uon is on
account of using mean-class-values in place of\the continuous
variate, whereas Sheppard’s correction Is c{l.accoun‘c ol using
mid-class-values in place of the continugfigwariate. To point
the distinction the following 11ypothet}d1 problem involving
trade ratings and gencral mtellwcnca mtmgs is given,

s

~' gEk i g4 s, — OrpI- | . —
RaTmngs o Grxeran, EvT | Pro- | ONATE AT | MEAN
N ¥ |porTION  UPPER o
MenzalL ABnary, FacH | ABOVE +  Lnarr (Lass
W dbrauhbrary,org,j n| CrLass | CLags o CLass
S e - !
Dull wﬁf Bright .00 | .oooooco
Expert . 1\" 4 ! 5 1o 10 1.755
Journeyl 737 10 | 175408
maﬂ\ D N S L 16 [ 30| 30 703
- 386342
Anpren- | 40| 386342
tlge . 4 11 5 20| 20 00
\ Y Novice i _ Lo | 386342
11 25 . 4 || 40 4o ]_ .66
R 1 i
2a 30 30 100 I.OO  .00000C

+

3 DODO0D 279062 347003 000000
~—L.400 —.I35 1.159
ox = V80.40068/T00 = 896714
gy = \/8_2-.'9527_6,&05 = .0I078%3
Fox = ﬂﬂi = zagiy
100 X HGO7TT X 910*'*44
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The symbols ¢, ¢ and x have the mcanings of Seclion 27.
Formula [53] is used in determining x from ¢ and 5. Treating
x and ¥ as the values of the deviates from the means, the
correlation coefficient is, by the usual process, found to cqual
.34087.  Thig value, however, suffers from a large grouping
crror.  We cannot apply Sheppard’s corrections because we
do not have equal clags intervals and hecanse we have not
dealt with class indexes, but class means. Whercas s, the\
standard deviation of class indexes, iz greater than e, £he’
standard deviation of the continuous variates; s, the stagidard
deviation of clags means, is less than o If class mtermls are
equal and cgual to the unit used, we have,

<C
i NS .
g = 52 — - (Sheppard's rerrection)  [68 )
also \J
sy L (Pecurao}I s correclion to
o= 12 Al standard deviation
p\ Qf‘ class means) . 1o1]

This sccond formula, as well as qubc;equcm Ones in thlq section,
was derived by Pearson (1913 ;meas) We thug sce that an
entirely ditferent correction ig necded This Tast correction is
not of general utility, as ghe W@bledh\ dulibfahomginse class
means instead of class u‘ule\eq arc usually such that we do not
know that the cla&;\@term s are equal. We may, howcver,
determine the cofseetion by aid of the correlation between the
variate and Lhe eloss means of the classes into which the
variates are Jlaccd
Let x ba\lﬁ value of the continuous vartate, and x the valuc
of the méﬁ.ns of the classes into which Lhe y measures are placed.
Then.;tg}le regression of the x's upon the x's is
\"\} > 5= rxx j—x«,
but ¥ 15 the mean of all the variates in the class of which x is
the clags mean, orsimply ¥ = x.  Substituting in the preceding
cquation we have

gy {Correlation between a variate and the means
Fyx = — . L s
ax of the classes in which it is recorded) .. . . |102]

The standard deviation of the class means e, is obtained by
calenlation, and o, is known if the form of distribution iz



S

N\

a s

) Y
 §

MEASURES OF RELATIONSIIIP It

Substituting in the determinant and solving for 7., glves, if
we let urog = ray
rev _ Yxpoyay  (Giving the correction to v op ac-

P
T ety TxOy count: of use of class means) . . .[103]
Tn case a normal distribution of standard deviation 1 is assumer
to fit the digtributions of the two variables, and the means of

categories caleulated upon this assumption, o, and &, cach

equal 1 so that we have Q
oo TEr _Zxy {Correctiion to r on account of uge
ST ey Natioh of class means, upon '15'sumpL{(m »

of a unit normal d1str1buL1Q1'D [rog]

The correction here derived for broad categorigsnis’ equally
scrviceable when determining correlation ratios or contingency
coefficients as described in Section 68. “\

Note that there are two corrections; ong, Sheppa,rd 5, to be
applied on account of broad equal mtervs:k when class indexes
are taken as the variates; and the qechnd the one here given,
to be applied when the class means Of broad cqual or uncqual
intervals are taken as the varites. No correction is as yet

worked out {or application vﬁiien class indexes are used and
the intervals ave hroad and "111‘1equdl though in such case good
results may be expected. by em pissoulib stz dy ior Sleppard’s
formula [68 &) equal\to the mean of the several intervals
involved,

We may r‘CLu_r} to the numerical problem and apply the
correction tosobtain the correlaiion corrected for broad cate-
goties betwdeh trade ratings and estimates of intelligence. It
yields SO

O "
& S57s 5 oToTEL = 4%

WTh this caleulation it has been assumed that x is the same for
i\he first cell (experi-dull), the second cell (expert-average),
and the third ccll {cxpert-bright), and similarly throughout
the rest of Lhe table. This is only approximately true, and in
case the categories are very hroad and the correlation high it
is far from true. The method should not be used with a four-
fold table and it is of doubtful validity for the table given.
It mav be applied with good results if no class contains more
than 235 or 3o per cent of the cases and if the correlalion is not
greater than .g.
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known, For the problem given ¢, = .8¢fi714 and o, = 1.0
since a normal distribution of standard deviation equal to 1.0
was assumed, so that 7. = 8967/1.0 = 8967, and if v stands
for the continuous variate in the case of the second variable,
then#., = .0108/1.0 = .g108.

Continuing we may find the correlation between two con-
tinuous variates when cach is recorded in broad categories.{
The following simple derivation depends upon principlesaof
partial correlation discussed in Chapter XI. The reader ahoirl\d
therefore be familiar with that chapter belorce attemptmg to
follow this proof. The symbol rg.,, stands for tHe“gorrela-
tion between class means for constant values of géeraduated
variates x and . Clearly when y and v dfe)céonstant the
corresponding class means x and y do gabvary, so that
*ayxe = 0. This partial corrclation coeffigient, ., is equal
to a numerator determinant divided hv\the square root of the
product of two others. The dnnsor s easily shown to be
intrinsically positive so that thes quotlent becomes zero with
the dividend. Accordingly We ‘have

wiww dbra xtﬂrarng oi%‘ln

Xy
wy Fay I ’

S
in which r,, is the corrected value sought, and 7., is the value
calculated, ubi\ng" the means of the broad categories. It has
just been %own that r,, is equal to o,/c,, and r,, equal to
5./ 0y V\(e need to know 7., and #.,. The partial correla-
tion r@ is that between the variate x for a given value of
the, second variate v, and the class mean » for a given value of
. the ‘ccond variate v. The class mean for a given value of the
\ yariate is invariable, so that ¢ for constant ¥ is constant and
accordingly #.,, = o. This partial coeflicient can be zero

only when the numcrator of the quotient which is equal to it
is zero; that is

Tay — Fxy¥opy = 0O
or

Yxy = Yaylyy

Similarly

Ty = Fyvy¥xx
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Substituting in the deferminant and solving for r,., gives, if
we let ey = 74y
ray_ _ twyoyoy  (Giving the eorreclion to ¢ on ac-
Fxal vy oy coumnt of use of class means). . .[103]
In casc a normal distribution of standard deviation 1 is asstimed
to fit the distributions of the two variables, and the means of
categorics calculated upon this assumption, o, and o, each
equal 1 so that wc have .
po o rey _ Zxy o (Correction toron account of use A
T ey N afal of class means, upon aasumptmn
of a unit normal distr Lbutiorb} [104]

The correction here derived for broad categoriesgisiéqually
serviceable when determining correlation ratios or ?\:’@ntingency
coefficients as described in Section 68. "‘\

Note that there are two corrections; oncySheppard’s, to be
applied on account of broad cqual intcrva‘]‘s}ﬁ'hen class indexes
are taken ag the variates; and the secm‘rd “the one here given,
to be applicd when the class meanst of road equal or unequal
intervals are laken as the v&rlz}‘se;,. No correction is as vet
worked out for application wheyl class indexes are used and
the intervals are broad and uﬁé’quﬁ though in such case good
results may be expected by elnrmumlﬂlhlﬁfiilhm{m;y%éhﬁppdld s
formula [68 ] equal t‘& the mean of the several intcrvals
involved,

We may return%’o the numerical problem and apply the
correction to_ghtatn the correlation corrected for broad cate-
gories hetwee‘p\ trade ratings and estimates of intelligence. It
yields &

.s'\ Sgéz;, % 910 8.1. = 4284

{n ‘this calculation it hag been assumed that x is the same for

mfzy =

'"‘t.he first cell (expert-dull}, the sccond cell (expert-average),

and the third cell (expert-bright}, and shmilarly throughout
the rest of the table. This is only approximately true, and in
case the categories arc very broad and the correlation high it
is far from true. The method should not be used with a four-
fold table and it is of doubtful validity for the table given.
It may be applied with good results if no clags contains more
than z5 or 3o per cent of the cases and if the correlation is not
greater than .g.



172 STATISTICAL METHOD

Section 4%. ProprErTIES OF CORRELATION SURFACES

With the scatter diagram of Chart XX before us, the mean-
ings of certain terms will be readily grasped. If the standard
deviation of the successivé ¢ arrays are equal, the distribution
is homoscedastic in the x variable and if, in addition, the
standard deviations of the y arrays are equal, the correlation,
surface is homoscedastic in both senses. If the slope of the
distribution in an array a given distance ahove the meaf of
the array, is equal to the slope the same distance below;\ “ahdif
this is true of all arrays, the total distribution is caligd-homo-
clitic; thus, a distribution composed of symmet;ic;zﬂ atrays is
homocelitic. TIf means of successive arrays lislin” a straight
line, the regression is rectilinear or, by somé Witers, is termed
linear. In case a regression table is homps‘\eeﬂastic, homochtic,
and has two rectilinear regression linesl the most probable
value of one variable when cstimated ¥fom a knowledge of the
other, is that given by the rcgresgioﬁ'Equation. The regression
determination in the case of distributions showing modcrate
divergence from these ihreg €onditions will still be very nearly
the most probablﬁb‘Sciaﬁfer: diagrams showing extrcme di-
vergence should be tf;;ae%tle aiﬁ{of{ e other method. Lack of
substantial rectili,n({irity in regression is the most readily de-
tected featurc Qf\a correlation surface which vitiates the use
of the produetvmoment cocfficient of cotrelation, For most
problems, ghe“establishment of rectilinearity is sufficient to
complep"e\]k\justify the usc of the Pearson product moment
coeffitient of correlation. Note that this is a much easier
regqi'tément to meet than that the corrclation surface be
:n(?riﬁa], that is, capable of accurate representation by means

\m yof equation [8g]. Accurate correlation results may regularly
be expected from distributions showing rectilinear regression
lines, but otherwise widcly divergent from the normal cor-
relation surface. Due to the fact that Pearson’s earlv de-
velopment of the product moment cocfficient of correlation
was based upon the assumplion of a normal correlation sur-
face, it has frequently heen assumed that such a surface is

prerequisite to the sound use of the coefficient, but this is not
at all true.



MEASURES OF RELATIONSHIP 173

Having the means at hand of estimating a second variable,
knowing a first, it is desirable to ascertain the probable error
of such determinations, Obviously if arrays are homoscedastic,
the standard deviation of any array is the standard error of
any single estimate,

oo = o2 VI — 7% = g2k (The standard deviation of an array or
the standard crror of estimate of a
fla=ao VI — 2 = ak second variable, knowing the first) . 86]
The quantity % of the above cquations is defined in the ﬁex%‘
paragraph,

With the data of Chart XX in hand, ss.1 = 2.208V 1 («3888)*2
= 2.034. That is to say, that if the correlation beu'(een height
of mid-parent and offspring is .3888 and if the standard devia-
tion of heights of offspring is 2.208 inches, thda the standard
error of estimatc of a child’s height, dé,té"mined from the
mid-parent height, {s 2.034 inches. éué'ss that the height
of cvery offspring is 68% inches wonld ‘h'wc a standard error of
2.204 inches so that the mcreascd’mccuracv of cstimate due to
utilizing the correlation of 3888 between mid-parent and
offspring reduces the %anr}mﬂ error of estimate to 2.034
nches, or about 8 per cepb recuction 4k ik bhwsyseep.ithat no
very great Improv ement\m cstimale results from a correlation
no higher than 3&3 "The proportionate reduction is given
by the factor V1 A< 7%, This factor measures the lack of rela-
tionship betwp@n “two variables just as r measures presence
of relationship?® 1 have elsewhere (Kelley, 1919) described
certain of«jts properties and have termed it a coefficiont of
alienaten.” The coefficient of alienation may be interpreted
in aqioﬁtive sense for if a criterion, x, correlates to the extent
o, W}th a given measure, x1, and if there exists some other meas-

\ui-e ¥, independent of x but which together with it com-
pletely determines %, then the correlation between x and
i £ Its immediatc determination, having any value of r,
is given by

E=+1—+® (Coefficient of alienation). . [86 a]

and the caleulation may readily be made by the aid of the small
alignment chart given in the appendix or the large chart which
is a supplement to {Kelley, 1921). To secure an idea of the
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improvement of estimate with increase in correlation, the
following table is given:

COEFFICIENT OF COUSFICIENT OF CORNICTENT OF COEFFICIENT (N
CURRELATION ALTENATION ‘ CORRELATION ALIENATION
1 B _
r k r k

.00 1.0000 .80 Kitalels} ~
Lo Y50 ] 8660 5000 &
-30 9339 f 90 4359 A,
50 8660 J 95 3122, N
6O Booo : 08 19967
.70 14T } .50 4%
7071 071 | 1.00 ¢ ~0000

Notice that a correlation of .866 is necessatw b@fore the error
of cstimate has been reduced a half, and ’that evert with a
correlation of .gg, the error of estimate i%’s}ﬂl 1/ us great as a
sheer random guess. Tt should he ob\lous from these facts
that if individual esiimates are te’be made, it i3 necessary
that very high correlation be pr,eqent in order to secure even
moderately reliable results. 4 H
1t is sometimes conveﬂ}e;[ﬁ:' to work with probable errors
instead of stapdasdiaintions, dngihich case we have
P.E,.=PE, ,k \{Prubable error of estimate of the sccond
A variable, knowing the first} ... ... ..., [86 B

\\ »
The caleulation of the formula for the probable error of the
coeflicient pl¢eorrelation is involved and has several times
been given, (Sheppa,rd, 1898}, (Pcarson, 1913, freq.), and is
no eated here, but the formulas upon which it 1z based
havs’éﬁeneral valuc. Not only the probable error of the coeffi-
gmzjt of correlation, but many other probable errors as well,
N depcnd upon certain higher product moments and upon the
‘correlation between product moments. The notation and

meaning of product moments mav be made clear by certain
illustrations.
XV
Pll = T

and 18 a second order product mement,

ZXYe

P =y
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and 15 a third order product moment,
T X9F*
Pu = N

and is a seventh order product moment, ete., and in general,
, XYV

R
gives a product moment of the {g + ¢') order around some
ﬁxcd point. Following Pearson we would use the symbgl
P o represent the same product moment around the mean)
ag origin, but as mowmenis ‘uound the mean arc the onlw, (}nes
herc concerning us, we will drop the supcerior bar and™Mide pgq
in place of 7,,°. The meaning of the notation, mav be il-
lustrated by a few examples involving fammbawg "c\ﬂbtants

Exyt x|

=& =0 A)

Pu N N ¢ \\.,

Xy Nt
Pu1=ﬂ_?—”=0 \S

Zxhy® _ Sal \ o
b = I.\TJ— = 5 T a =2
Poz = w'a = a2 (The “ph‘%xfi: dusignating the second variable)

T oxy 7 www.dbraulibr g
Pu = .\,v} = 11201, ¥ aulibrary.org.in

S

Section 49. STANDL kD “Drviations aND CORRELATIONS OF
y Variors CONSTANTS
The standard\cﬁ'ror of any product moment is given by the
equation (Péar%on 1913, freq.),

Naty o \P‘rz st — Pr @ PP g o T 47 P P g
-i-'}‘jflﬁ?u Pr—vgd Pog —2@PotLa P g — 2800 ¢ +1Pa g —1
V (Standard error of any product moment {rom the means) . . .|105]

\'ﬂ‘xe correlation between any two product moments is given by

‘Vo-i‘bq,q’ T Pu rﬂq‘-ﬂ"f’u e =Pg-Fugu — Pag Pua’ -f—(,‘-’ﬁfbsu Pﬂ}' —Lg Pﬁ:—l. '
F o' b pa o — 1L Pu o —1F R PR Pe—1 7 Pre v — 1 G B0 P g 1 Pr—rn’
—uprd o Pu—r e — W P Paw—1 — @ Pr 1w Pa—1. g
— ¢'bu, v’ g, 7

{Correlation between any two product momesnts taken from the means) L1106]

These two equations provide the basic relationships which

lead to the following special probable errors and correlations,
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As will be noted the formulas greatly simplify if homoscedasti-
city and rectilinearity are assumed, and simplify still further
if normality of correlation surface is assumed.

Standard error of the mean,

o
T = 7,\} .................................... [206]
Standard error of the standard deviation,
a' ‘ LS Y
Gr = sz; {Assuming a mesokurtic dlStTibuthT}}\. [327a)

\

~

Standard error of the regression coefficient, N
o |I - rf _ __q_'i {Assuraing h(«{mmhby and
g crg\ aev' N rectilindariy) ... ... .. [107]
Stand.a_rd error of the Lorrelatmn coeﬂicmn% \

(Pw — P 1 Pw — i, o — f’:o "P*z = P Pos
=N £ 4 P T 4 P“u% 2 Pan Puy
. 'u Psr bupw P — Pu :buﬂ)
”’.. P pw fJu Doz
(No assumptions except tha‘t [error/ N Lo sceond and higher
powers arc negligibled 1:3 Somparison with first powers). .. .[108]

This complete, fapauladits festgian by Sheppard (18¢8)

I , RELAW
G’rio\{’,__g( - 4 (B2 + 82— 6} k:)
{Assuminy rectilinearity of rogression.  This assumption
carnes. Avith it the necessity of equal kurtosis, i ATTEYS
aré }iommcedastu,) ............................... [108 a]
This fo@}ﬂa, as well as others In this séction, is given by
Pe'lr@%lgl 3, freq.]. The constants, G and §%, are the 8's
for“t:he two distributions.

7% N o — k2 (From preceding formula, assuming mescknrtosis,
s w4 r -

\ TN maddition) ... ..o [108 5]

This standard error was first derived by TFilon and Pearson
(1808}, npon the assumption of normality, bul note that the
formula is in fact more general than this. Also note that if 7
is high and the kurtosis small, the formula gives too gmall a
value; and that il the correlation and kuttosis are high, the
formula gives too ]arge a value.

i ( (Standard error of 7 to a second
¥y = : "
VNI 4 (‘\.’ -1 approximation). .. .......,.. [108 €]
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In the derivation of this formula, squares of the magnitudes
[error/ ] were kept and normality of correlation surface
assumed. (Soper, 1013.)  The magnitude p is the truc cor-
relation and for such small populations as this formula is
intended it may Jead Lo substantial error to usc #, the obtained
correlation, in its place.  This 18 particularly true if 7 is very
large. However, the use of # in place of the unknown value,
o, if 7 < .95 and caleulation of the standard error of » by the
ahove formula in case N < 23, should give hetter results tham
formulas [108 #] or [108 &, If formulas (108 a] or [108 b} Rt
used for these small populations an improved resulf, mav hre
expected by multiplying the standard error giv en I_ry them by

[+ (1 + 5579/ ML . “\ ...... (106 ]
As a practical matter, » determined from samp]es < 5 may be
considered mc’mmg]ess and necarly soo\xf determined {from
samples < 7 O

Standard crror of the constant t(%rm (M) — bddy) of the
regression equation. Let ¢ = {Ml 2 bedds), Then,

O, = Oy Y M’*z + o’ {Assuming homoclisy and
s dBPR R org.in - - 709]
Standard error of the\eql,zmdted mean of an array, ¥, (the
mean ¥ score of the\@arrav)

A “_?E |'I ' T x? {Aszsuming homoclisy and
A By NN afy rectilinearity) . ... .. .. [110]

Note the,dem‘ease in the accuracy of the means of the arrays
as we goNtrther and further from the mean of the total distri-
1::11t.ioi1: A forther important consequence of this equation
) »15 that for certain situations it gives the standard error of the
mean of a total population [see formula 111} since the esti-
mated mcan of the array for x = ois the mean of the total
p-distribution.
otk (Standard error of a second mean in case a first mean
T3 Ny is known with =zero error, and in case the correla-
tion between the two serics of measures is#) ... . [117)

Certain corrclalions hetween the constants of a correlation
surface are al {imes needed. Let n, = the frequency in row
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57 un’ in columu s'; and #,” in the compartment or cell
given by the intersection of the s row and the s’ column.  Then,

sz’
2 = - B | $-3
cr ?ESS. (I N/ [ ]
s B
Friger Titgyr o My = — —-{V ............................... [113]
s s’ i pe
g Uﬂ,fun,—ﬂn i R R AP IFaN
P = = eyl
T Oy T oy I AT PR PTRRTRREES g\ 2
— ot s L Y \J I116]
g a"’ss' rﬂsﬂss’ = s I - W e .'\..,{ v
#as’ (Correlation between g mean
» _ Pl % .
T Tnge TMmge T {O and the {requency \{‘.3 el [t17l
- Jat] ) ) T
Tar Ms = T {Corrclation }.)e"i:{c}n means) ... .. [118]
B Sl 2. 2 R A
Foime =

Vi — pt "n\/@n“ ‘f_‘)f:;
Pz — #2# EIN ; b4
Vi — pa? Vs pb?
(Corred amqr‘t &et& sen standard deviations) . [115]

‘

_pox
= -1
wwaw dbra u_I}Lﬁrgry org.in 7 {8 )
(A.ssu ptiot that both distributions are ho-
\\moscedaqtlc and regressions rectilinear). . [120]

Thus,
Forge = ¥2 (Assﬁmptton of rectilincarity, homoseedasticity and
N \«{‘ctual urtosisd . . oo e e l1z2r1]
P13 f\‘r{}l o8 3’ (Amsumption ol rectilinearity)... ... ... . ... [122]
Ny B
- j— 1 - 1
:7‘??"1 = Typ. = \ F— (INo assumptions). ........... ... Jr23]
RN '
..\‘ _ _ .
,”\i ’.;H B¢ = 0, then T Jrzz al
} — — . o
/ , - r(\/ﬁ_ 1 —rva L} (Ass_ummg rectilinearity and meso-
rAy 2 Bt kurtosts) ... Lo j124]
Toag, =0 {Assuming rectilinearity mesokurtosis and ho-
MOCESFl. e e 124 a)
Fral = — (\/L“_z ——I — ¥ '\rf_sfz — 1}
2 o'r\/.N-

{Assuming rectilinearity and homoscedasticity). . [125]

7
Tro = 7a (Assuming mesolcurtosis in addition to above) .. [125 a]
2
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Let ¢ = {M; — bpMo), Then
Juzﬂ;:1k2
E\"rrzzo'{_n}'bu

Let B3, Brsa, ele, be defined as in Scetion 8o, Then,

(Assuming rectilinearity and homoclisy) . . [£26]

Feing = —

Py = l}-_-_ (rizfia.2 + rufizg)  (Assumption of normality).. . [127]
2

<.

Prigm = 3 (Far.23n.0 b Suafi + Sz + Barafu.)
Assumption of nermality} . ... ... fr=4] 4

Frim = Fay — Mk”u - f"v -~ rlg T 2 ?’12?‘131"2;:_} , .

2 k° 1Jk 13 e\

{Assumption of normalitv) . ... ... . 7 5r26]

The last three cquations were first given by Filon and. I:éé}son

{15898). Tormulas for a mumber of the prcccdmg standard

errors and  correlations, nolt involving the ’-LS\;sumptlon of

nermality, are given by Isserlis {rg16). THHe dalsh” gives reduc-

tion furmulas for higher product momentax\such for example
as [or e \~

Section 50. FORMULAS FOR THE CAL{‘UW\TIO\T OF THE PRODUCT-

MouENT (/OLFHCIE\W OF CORRELATION
There are a number of useﬁﬂ variations of form in the

product-moment formula., Fhe e tines libhratly tdg fnllow-
ing statements should {he immediately recognized by the

student: ¢e\J

239 \h X1 Xa
£) riz o= T dn which 2y == and o ==
() 7o N Il e P
ZxEy
(B} #42 = ,\n—lvz
; 4 Nz
P\
P —
@) na>E = {Pearson producF
o ¥Tios moment coefficient
(dl'?-‘:r\} — Nrjamms of correlation) f5o]
)™ puy = roas, Or s = il
N Ty
"
\ (f) 7= b = b 2
&1 &2 J

In case a table of squarcs is cmploved it is simpler to work

with sums and differences than with products: Let d = the

difference hetween two devialions, each taken from its mean.

We have

S 9 Txto22ay 4Ty
N N

o4 = = g2 + g% — 2 roT:
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or, )
gl @% —gt  (Ditference formula for 4, based upon

r=—— -

2 o0 deviations from means)............ [130’
in casc ¥ and ¥ are cqually variable, so that oy = ¢z, we have,

g% (Difference formula for » in case of cqual vari-
2 ¢* ahility, based upon deviations from means) . [1 31{
Ttilizing the usual relationship between a standard devigtien
around a mean and that around an arbitrary origin wéx may
capr{:qq the last two cquations in terms of gross ﬁ,(‘(n;e% T.ct
= the standard deviation of the gross scorcs /\,‘mouﬂd the
origin, X = o; IZ; that of the V's, and Z; that of the quanti-
ties (X — V), and let M, and M, stand ft)r"t}t(‘ means, then
the {ollowing formulas are easily derivedMgeln Lhe preceding

1wo. \\
L BN F 2 o2 M M- 2 (D}HE(emehmnuldlm ¥ based
T2 VEE - MEVEL - My ~L1}1011 LTSS SCUTER) cl13z2]

In case the means, and standaxdy devialions, are equcll ~guch
a case ag would arise if two Swmlar [orms of a test are correlated,
the formuld, hecomes 3 \"

3

Difference formula fur » based upon
gw}i‘wh ra‘?é""&j%%‘s and N case Tmeans and
\ v/ standard deviations are equal}. .. ... [133]

The differencgMormula based upon gross scores may be trans-

formed intoldne involving summations nstead of averages,

Let Sl :r\{—f T "?2 :V Eg-_;, Sa‘ = A-" 22,11, EX == A'\'rﬂ’!rl, ZY= h‘rﬂfg.
&

Then swé have,
) \'\ _N (S + Sy — Sd) -CX) e (Difference formula for
D . - r based upon sums of
~O \/ﬁ Si— (B X2 VNS, —(Z Vi gros scoTes).. ... .. fra4]

\ Formulas such as [134] involving gross scores only are advanta-
geous in that they lend themselves readily to mechanical and
routine caleulation. The numerical figures involved frequently
- become large but this is not much of a handicap, i a table
of squares is used, and if an adding machine is available.

Formulas similar to certain of the preceding, based upoen
sums instead of differences, arc as follows: Let v, stand for
the standard devlatmn of the sums of the deviations from the
mean {x -+ 3}, and ¥, for the standard deviation from zero
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of the sums of gross scores (X 4+ V), and let other symbols be
=8 above, then

ot - et —- et (Baum formula for 7 based upon deviations
PR i i
2 Firs from means) .. ... oo lt35]
ol Faen forrula for 7 based upon deviztions from
P — . Il
2ot mesns in case of cqual vartabilityy, oL [136]

Eiiminating ¢* from formulas [121] and {136] gives

N
tions Srom means in case of equal variabality) | »{i\}“}

g% — off  (Sumend diference formaia for 7 based apon devia-
g

2 --

If gross scores are used and if means, and standard dev i4tions,
re equal, formula [137] mav be translormed into the ioﬂown‘ig
, - M2 (Sum and difference Tormula fur # hased

__,-g — 4 AfE WpOTL Zross scores In casa"rg%ans, and
standard deviations, ard\Néagial) ... .. .. 1138]

A general formula based upon the stgndard deviations of
sums may be readily derived and is_sOuletimes useful, as is
also one hased upon summations of fmm%

Tn general; if, fur a given problem,“certain relationships are
Inown to hold ahead of cah,uf'itibn such, for cxample, as
equal means, cqual standard, ffeV‘ld‘t]OIlS proportionate means,
proportionate standard dey iations, means or standard dovia-
tions having known valaes, etc., v et ibranyiargian the
veneral one may heddetived. If inexperienced help is doing
the work, g mech}ﬂcal routine method not involving such
mental operqticm% &s multiplying three times seven, but rather
such opcratighs™as copyving 197244 and adding on an adding
machine, Jg\er\7lcecxblc If multiplication as high as twelve
times t\@lv ¢, and good judgment in selecting approximate
mcau% ean be counted upon, the method used upon (Galton’s
ddtu is probably the most expeditious.

\
7 . - .
\ Section 51. TuaE INTERPRETATION OF RECRESSION
SOETFFICIENTS

The derivation of the correlation coefficient shows it to be
the regression coeffictent in the case of standard measures.
The regression coeflicient is statistically the more fundamental
and in all actual problems involving the estimate of one variable
knowing a second, the regression coeflicient and not the cor-

elation cocfficient is the essential measure. A wider use of
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regression coefficients in place of correlation coefficients would
lead to a more accurate and detailed understanding of the
situations portrayed. We may illustrate this by the data
of Chart XXI, but will first necd to krnow the standard error
of a difference. This is readily dcrived. Let d equal the
difference between two measures X and ¥, whose means are
M; and M, and let x and y be defined by the cquations x o
X—-M;, y= ¥V — M, then .

d=X—V=(x—v) + (M — M) <O
If any constant is added to or subtracted from d, the Stindard
deviation around the mean is not altered so that (™

T T @+ M — MY “,'\i"

and since N
g+ My — M =x—¥
we have PN

93 = ¢z — 5 L&
but & — 5 15 simply oz of formu'[*a, [130]. Solving [130] for
a3 we have , \

ofd = Vi + 0¥ — 2 rizoym (‘S andard error of the difference be-
? .’; tween 2 correlated measures). .. . [13g]

in which oy ¥ ENeIOEAMIRTSAONEAD the first measure, o of the
second measure, arzldvu ig the correlation between the two
measures. 1n ca\&‘she measures are not correlated we have
= Vg% —{:g » (Standard error of the difference between two in-
UZ - dependent measures}. .. ... ... L. [140]
The c&mstants calculated from this chart, including the cor-
relatgl\ratlo n and the test for linearity ¢, deseribed in Section
68,4 as given in Tahle XXXVI, in which variable one is
the percentage of men voting for Thompson, and variable two,
~\.the percentage of women.
) 4
TABLE XXXVI

Standard crrors of

M: = 6o.768 M, = 60,558 My, 374 - M, .a41

51 = T14.707 F2 = 17.354 o, 204 oz, 312

By = 73527 by = 1.02377 b3, 0107 ba, L0149
*1g = 86761 F1z, 0003

iz = .86g42 . = .ByII2 ny, L0081 pm, 0062

f1z = gh1e — #h2 fa1 = 9% — i {1z, 0040 fa, 0028

= 00611 =,00314
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The method of calculating the standard error of ¢ is given
later, but sinec its probable error is nearly as large as itsell,
rectilinearity 1s shown to be a sound assumptlion. Let us,
therefore, consider the other constants and attempl to answer
the following questions:

{1} Ts there a sex difference in regard to the mean tendency:
that is, 15 the difference (M, — M3) which equals .210, one fifth

of one per cent, a significant difference?
CrsrT XXI* O\
CORRELATION BETWEEN SEX AND VOTING TENDENGIES O
FERCENTAGE OF MEN VOTING FOR THOMPSOH s
27 |mli7]ez|27|3e 37]42]ar| 32|57 ez o7 | 72 | 77182 | 87 {98 er [l
EINEEIA REEE
7| [Nzt ) 3
BEEINERE \ 1o
tr NEIBR I e 12
gzz T IN N NO) 21
gler IR NN EAL 35
ks HENERGCIEIEINVARIERE a6
237 t BEEENE A I | 85
Ziae ) 22 s ndde|ellalg] [ {77
*9:4? ) g 2 I‘S g\f-lgu_l.clJélJl 1 Ul.g.llml
(52 IR REENTIEE L | 142
$le7) S Jolee N\l s [1] [1] [1s4
w6l N Tz (2 {533\ 63 |21 148 | M
gle a | 4|5 o|eRegaz[s|2] [2] [
e A\ L oo e o\ as) 3 | i63
Bl 0 [ s e
82 Ny BRIHBESCNE 139
87 b 1 Ms] ¢ e [ hesN 56 |
gzl ¥ 4 %7 N | 4
\ 57| _ - N2 \ 3
iWW'J 217 |8 |6 |23 36|5 |B3|120]16l (143 (199 225 214175 (68 22| 9 1546
M,

* Correlation of percentage of men's votes cast for Thompsen (abscissa) and percentage
of women’s votes cast for Thompson (urdinate) in 1546 previnets in the Chicago municipal
eleclivn of April 6, To13.  Percentages ate of votes cast for the two leading candidales anly.
Class intetvals run [rom 4.5000 to 0.3000, ete., per cents.  The middle of the cless intervals
BFC 7.0003, 12,0003, 17,0008, ete.  The .neos has been drapped in the caleutations, and the
vlass symbals are given as 3, 12, 17, ot The number of votes per precinct did nat differ
preatty and ran about qo0 per precinct, shout 33 por cent being voteg of women.  The data
were gathered [vom official returns by Prolessor J. W. Canning,

Q.
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{2) Ts there a sex diffcrence in regard to the variability of
mean precinct votes: that is, is ez — o = 2.647 2 significant
difference?

(3) Is there a sex dilference in regression of mean precinct
votes: that is, 18 Pn — bip = 28850 a significant dificrence?
We can answer these questions by using formula [130] If we
know (1) the correlation hetween means, (2) that hetween
standard deviations, (3) that belween regression coefficients$
By formula [1158]

N
. O\
= pyy = 80T ¢\,
)"“:z.__._,”.ﬂ iz = BOTO A\

by formula [12} « M
tou, = N2t = .7527 P §
We have no {ormula for the direct calculation of Lhe cnrrelatlon
hetween 5’3, but we do not need one.  If the dllf&\‘nc,e Bio =~ Doy
is significant, then the quatient, b/, is swmhcantiv differcnt.
from 1.00, but bp/by = 021'032 Theref@m\ﬁ brafbay 18 signifi-
cantly different from .00, /o2 13 d,lbO,’cbxﬁL If this s s0, then the
difference {5y — o2} 15 significant. CACordingly if we prove
that there is a significant dificrengg between Lhe two standard
deviations, wc have with 1.118 \samae certaintv proven that

there iz a gignificant d1[Terepcc; i the two regressions.
Letting o WEsabrBliBIRI Sa98ridhee of the measure under

discussion, we have \ )
My — M= 21 <
og = YH374) + (441)* — 2 (56767 (374) (441) = .2
az — I :—_’\’:’."64?
A V(26907 F (312)° =2 (.7527) (263) (312) = .207

As the ghawdard error of the difference between the means is
equaltd the difference, we cannot conclude that the difference
is gignificant, but as the standard error of the difference hetween
th\e standard deviations is but 1712 of the difference, the poing
\ Js definiicly established that thcrc 15 a sex difference resulting
in difference in the standard deviations and in the regressions.
In other words, on the average, throughout the citv, men and
women voted for Thompson to about the zame éxtcnt, but
judging by the precinets, the women tended to vote in blocks
to a greater extent than men. It the precinct was a “Thomp-
son precinet’’ the majority given to Thompson by the women
was greater than that given by the men, and if it was an “anti-
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Thompson precinet,” the majority against Thompson given
by the women was greater than that given by the men. One
procinet i particular i a notable exception. This is the one
recorded in row 1z and eolumm 77 of Chart XXI. There
exigted in this precinet a very strong anti-Thompson women's
crganization, with the result that though 77 per cent of the men
voted for Thompson, only 12 per cent of the women did so.g
The two vegression lines involved are drawn and the constanls
given in delail in order to point the significance of 1egre§ﬂo\
lines. That there is a correlation between the votes, & men
and women s of quite secondary interest to the f‘lLL’Eﬁ&t there
iz a wide difference in the regressions of the two Qexcs The
interpretation of the correlation table given 1}11’1}3&, upon the
slopes of regression lnes in a much more fgndamental sense
than uson the valuc of the corrclation. 'xi\\'

Seetion 32, PRODUCT-MOMENT CQ'R:QLATION oF Nox-
Recmiinmag, Dara

We will now consider a pmblem mvo]vmo the caleulation of
a Pearson product-moment we{hmcnt of correlation from non-
rectilinear data. I am mflebtc‘d to Mr. H, A. Richmond for
the accompanving probléay and H3FY db%}}:’r&‘l&ﬁ’r &i"'ablc
XXXVIT s for a %m,gﬂmstme except the starred cntry which
iz Jor the T)ls*nct\) Columbia, From considerations alto-
gether outside fHeddata it seems appropriate to consider the
Districl of Chlshbia data not to bc homogeneous with the
rest, and Lho‘} ar: accordingly omitted from caleulations.

W
\ CHart XXII Crapr XXIIT
9 PER CENT WHlTE PGPULATIDN FER CENT WHITE POPULATION
N I R e P 1 |&
LAl | eF | X 3 ETe I I e Rk O L I X
. 1 _-Ei I [ i )
H i | 5vF |

350 | T (&}
HEE 35S [ANEL
7| 1] a0 | || 2] |«
3 2[4 w E5 ] EINE
% FIRE g [=so ] 51 |2
- HNE g [z ] &l [
E{c ] 3 FA 2nd T a
I EL w173 e |1
g % Ta g_l'ao HEE! 4 |+
g 4 | ER T 1 NEHNELD
- e 2 '104 e T e
2 5 ZI s ‘ Tl rLpptrs
mm T T T
BO [ rl'.%!s s[l HEEEETER

| 5 2 329188

by ] — 14 ﬁ,_ 1
T 1R e |a e AlE s e Felsha=z1]o) 1 2|3 I
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TABLE XXXVII

Prr CrNT WarTe | Per CariTa Ivsus- ‘ IPrr CENT Wnire PER Carrra INstie-
PoPULATION ANCE IN FOmrcE FopPuLATION ! ANCE 1IN Foree
—_ e
99 341 I a5 Jeq
49 285 | 95 231
99 270 95 237
59 219 94 T40 I\
99 192 23 103
99 g0 90 167 A
oy 170 58 T42 g \ N
90 — 224 87 105\ v
58 321 84 %54~'
58 290 83 .t
g8 272 g2 MN\227
98 269 82 ¢ 101
98 253 7 XN 133
93 244 *rg v’ *342
241 T =N 9
38 1482 68 x'\\" a1
08 171 6*{\ & 158
97 272 &8 133
a7 234 ONST 105
a7 204 W W —6 726
97 197 N 54 147
97 132 L\ 44 132
92 237 LN 43 84
36 www.dbr atflgﬁral y org.in
& Lo\
’ A ]

Let X stand for The per capita insurance in force, and ¥ for
the per cent popitlation, then caleulation gives
'@ \ o Ty = 6430

Q> s = 7955
(Jorrebt\&or fineness of grouping error

™ .

s = 7310 T {Caleulation given in Section 6G8)
\,N nar = 8019
- ,\, ’ Corrected, 11 = 7394
\\‘ f2 = 9% — ris = (7985)° — (.6430)2 = 2193
a, =.1202  {Calenlation by formula. .. ... {1971}
i‘; = 1.823

s0 that (from Table K-W), the chances are 34 in 1000 that the
true regression is rectilinear. The small population makes it
impossible to prove the appropriateness of a cortain regression
line, rectilincar or otherwise, but with only one chance in 30
of the regression being rectilinear, we will proceed on the
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assumption that it iz definitcly non-rectilinear. Since the
populations in the successive arrays are very small, the regres-
sionn Ve following all the chance fluctuations of the means of
the arrays leads to a measure of correlation which is too large
io represent the truth,  Accordingly .64 is too small and .30
too large, and the true regression is neither a straight line nor
one following all the means of the arrays. A value in the
neighborhood of (7304 is more trustworthy than either of these.
As an cmpmca.l prncedure which will result in a more reasong \J)
able regression line, and a measure of correlation bctwc;ch
61 and 8o, we may use a coarser and coarser grouping ‘of
percentages as the data deviate more and more ,frpm the
mode, assign interval values to grouped data, and( c\lculate a
Pearson product-rmoment coctlicient as shown i m Lhart XXIII.
Percentage scores are transformed into aumhm scores accord-
ing to the following table: \

: I V) o |

Per CextT oF WHITE 43 54 64 [ 73. ’81 83 | g4 - ! ’

PorcLaTioN as o to o to 1.;) % to | to 97 098 oy
FoLL.ows . | 53 . {:3 72 | HRY 87 9g | 96 1 J ;

Assicn I‘mrownG !
SCORES . . . . 1‘2

“3'4[ 5 6| 71 8. 9'

wiww dbraulibracy opgdn

This transformation \cﬁerﬁe is empirical but it should be
noted that it has noibeen so drawn up as to capitalize chance
fluctuations, thus(giving a spuriously high measure of cor-
relation. We akednot endcavoring to secure a high measure
of correlatioméach, for example, as the raw correlation ratio,
but rathemla” reasonable measure; and second, we desire a
pmcedure which permits estimating one variable, knowing
thg@e@tmd, which the correlation ratio method does not permit.
We %riay judge of the excellence of our transformation scheme
by the approach of the resulting product-mement coefficient
of correlation to the mean of the values of the two corrceted
correlation ratios (7310 + 7304)/2 = .7352. With this auxil-
lary score which hears a 1 to & relation with percentage of
white population, the regression is practically rectilincar. The
means of the arrays vary from a position on a straight line
only to a degree which we may reasonably atiribute to chance,
Since there is g 1 to 1 relation between the auxiliary variable
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and per cent of white population, an estimation of the auxiliary
variable is equivalent to an estimate of the per cent of while
population. The Pearson product-moment coefficient of cor-
relation found hetween the auxiliary score and insurance in
foree 1s 7146 which, though it is not quite = 7332, the most
reagsormable value, {8 certainly an iruprovement upon eithoer
the straight correlation coefficient or the raw correlation ratige

In addition to enabling an cstimate of one variable from™\g
second, and to providing a reasonable measure of correlalipn,
a reduction of one variable so as to yield a rectilinear regieksion
with & sccond makes possible an investigation of) Smultiple
correlation tendencics which otherwise would be véry laborious
or altogether impostible. N

If we have three variables, X,, X1, X, and desire to know
all the interrelations, we require nﬁorm;gb{bn as to i rogres-
sion lines which we may call Zn, Lo, Lionlos? Lo, In. Lt us sup-
pose that the correlation table ingeling variables o and r
shows 2 rectilinear regressions, Iu and Lin, aned that the regrcs-
sion Joz 1s curvilinear, and that Lhc nature of the others has not
been determined, Let us snp‘poqe thal a simple transforma-
tion of Ay SEOrCs (11% ‘c%]g{]a \BK, scores resulls in a rectilinear
Loz regrc551on T{nc J,hen g:s proven by Isserlis (rgrs4), the
additional regress r@ Hines bo, le, and 4y are also rectilinear.
The propositiofn may be stated in the words of Isserlis, who
uses the wordsSinear” as we have used rectilinear: “Wo may
conclude then that in general the linearity of any three of the
six regress 1 lines involves that of the remaining three.”” . ..
{(Issexhgtheorem.)

OE)VIOU,'%I}T the principle can be extended to any nmumber of
) wnables Lt Xo bo the dependent variable or the criterion,
o ‘;dl’ld let Xy, Xy Xa...Xus be independent variables which
are combined into a single score for the purpose of estimating
the criterion. Then, if each independent variable showing
curvilinear regression with X, is transformed into auxiliary
scorcs having rectilinear regression, not only every correlation
with the criterion but every intercorrelation between the inde-
pendent variables as well will be rectilinear. For example,
given the four variables Xo, X1, X5, X3 Let us suppose that
none of the regressions are rectilinear. In this case the first
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investigation to make would be to see if a simple transformation
of Xy may not result in making all the regressions involving
Xy rectilinear,  If no such transformation is possible, we may
transform the scores of the independent variables. We have
the curvilinear regression lines In, hop o, b los ooy D Lo
Ly Loy oy fae Probably a transformation of some one of the
independent variables can be made so that both regression
lincs involving it and the criterion, that 1s ly, La, or e, &g, or
log. la, Become rectilincar. This is probably always possible(’
in cage of single valued {unctions. Rietz (1979) has shotn
the tmpossibility of accomplishing this in the case of nguiiti\ple
valued funetions, Let us then sa transform X, Xymand X,
that the following regression hines, {%n, I, I and Z.’.@é\a"rc recti-
Hnear. Since Vo, o and I are rectilinear, we khow, by Isser-
g theorem, that [y, e and l must also ho\eBetilinear, and
since Iy, g and g5 are rectilinear, ', Z’;g,'sqx‘ld Iy are also, and
sirce g, 'y and Fop are rectilinear, Yadaod Vs are also, com-
pleting the list. An extension of the ‘cthod o # variables
shows that for the practical purpogeel cstimating Xy scores we
may make empirical single \-‘thqéd “transformations of the de-
pendent variables, wherever netegsary to bring about rectilincar
regression, and then procge@ o cxfrirthratibronitgre inegres-
slom equation as deseribod in the next chapter. Thus for
single valued funct.iqnska lack of rectilinearity ordinarily con-
stitutes no bar togwltiple regression procedure,

We have, to Lhﬁ i)oint, considered the significance of corre-
lation as a mé}s"ure of mutual implication and as a measurc
derived frag/the regression coefficient. This interpretation
is to bg ~1p3ked upon as basic in correlation treatment. There
are, hdwever, other wayvs of interpreting it, which may oc-

'ﬁ@ardlly be of value, Weldon (see Brown 1gr1} has related
thevcorrelation coefficient to the percentage of elements which
are common to the two serics of measures involved. Suppose
standing in trait X depends upon the presence or absence of
A 4 indencndent elemental factors, and that standing in ¥
depends upon the presence of B 4 € independent elemental
factors. The C factors are common to both X and Y. The
A factors influence X alone and the B factors, ¥V alone. Further,
suppose each {actor is as likely to be present as absent, ie,

A
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p =g =1, and when present, to add one half to the trait
seore, and when absent, to subtract one half from it. Then
x=A+C y=EB+4C; and in the long run, 24 = 25 =
20 = o. Let us cqual the number of A factors, #y of B and
n, of C factors, then

“3=“’K”b
oo =13 V/?i._ ’\:\.
capp=tVr,tu O
7B c—i”/”_b‘*‘” g
Nmmz—zxy—z(A—i—C)(B—l—C)FEAB—J-Z:AC—}-EBCoi—LC?
=% (i= N (&

since, by supposition, all the elements ase\jmdependent, all
summations of products equal zero. AccQ;‘dingly
} n
"= Ve + e V”m:%—m
If the number of elements deteﬁmnmg the score in X equals
the number determining that 11*1 Y, ns = m and we have

He "~;
Fo= G

WW W dbraulﬁn "ary.org.in
or, the correlation eQeficient is the proportion of elements

common to the tigh traits.
Again, suppose trait X is determined by #. elements and that
trait ¥ is determmed by these plus #s additional ones, that is,

e = O, tlken;
e
'\ _ -
N e T
A\ Ve Vst
ands\
:u' 7t = - He
o»\:»\j #h + e

\| ) or, the square of the correlation cocfficient is the proportion of
elements deternuning X which are involved in V., We of course
do not know that traits or scores arc due to summations of
independent elemoents, so that these results at best have rather
doubtful interpretive valuc, whereas, the interpretation of cor-
relation In terms of regression never fails. Thomson (191¢)

and Brown and Thomson (rgzr) deal very fully with this
subject.
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It has bheen assumed that the limits of the coefficient of
correlation are — r and 1. This may easily be proven. Let

x
zr=—,and zz = ¥
71 23]

then o, = 1.00 and g, = 1.00

(Zi - Zg)"‘ =0
-;,2(31—22)2=Zz12+2222_22:2122=1+[-—27 .
‘ RGN
but _ o\
= (5]_ —_ Zz)g >0 % N/
therefore N

2(1—#1>0 orr<t M'\"\','
Thus the upper imit of r 18 4 1. \/
Tz +at=2(4r}>o0o0r r>\\7’ I
Thus the lower limit of ris —1. Accorgiii}gi‘y all values of r lie
between — 1 and 1.

Nos
®d

Section 53, THE Raxk METHOD oF CALCULATING
CORREFLATION

The product-moment method oF ¥atcihgaitibreryebision may
be uscd when differenéed in merit arc expressed in ranks and
not in graded scare: \ Formula [130] is the most convenient
1o usc in deriving bhe expression for the coellicient of correla-
tion when rapk&/are used.

The standdrd deviation of the ranks in the one trait equals oy,
and of f}gm}sc equals the standard deviation in the other trait,
oz, a5k number of ranks is the same in the two cases. It
Sh,@Qldf however, be noted that if scores such as

R
\J % o+ 90 90 & 85 8 & 8 8 75
are asgigned ranks

r 2 3 3% s 7 7 7 9 ¥ U
the standard deviation of these pseudo ranks is not identical
with that of ranks 1, 2, 3, 4, 5, 6, 7 8, 9, 1o, 11, Only slight
error is introduced in casc ranks are but occasionally divided
between two paired measures, but if there are many individuals
all given the same rank decided error is present.
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Since the standard deviations are equal the equation becornes,
using p in place of r as is customary whea dealing with ranks:

T

pET= z No?
The Zd% is to be determined by recording the differences in
ranks of the individuals in the two traits, squaring and sum-
ming. The common standard deviation, ¢, may be found from
the number of ranks, which 13 also N, the population. It
. . . ’
18 only nccessary, therelore, to determine the standard detais

tion of the series 1, z, 3,...N arvound its own mean) We
have ‘ )
Gethzdst N _ ¥4 A
N 2 “,\
F=Ltato- N?:m\‘—r{u’\?-i-’z
N I2 )

This value for w may Be obtained b\ﬁ?st determining the
second moment, wy, in case the distriBution consists of fro-
quencms evenly spread over the C]d"sb intervals, as indicated
in the accompanying figure, mgtea.d of being concentrated at
the class indexes or mid- pou’ii;s as i the case when measures

ww w b 5“3?',5(:‘“3 in I
STRI3AN % ;

’.

of rank position aé used. The frequency distribution drawn
18 repr(,%ented ’m‘ “the line ¥ = 1 and extends from « = 1 up
to x = N 3" The second moment from o of any one rank,
let us say b \he R'th, is &%, whereas the sccond moment of the
dlStrlR},Llﬁn y=1from (# — 3} to (k+3) is given by the
equgtion
The moment of the frequcncy ¥ = correspcmdmg to this
&th rank, /N of the popwlation, is 1/12 too large, as is of
course the case for cvery other ranl«; hence the second moment
of the equation y = 1 from » = 4 to x = IV ++ 2 will be larger
than the desired second moment by

IV(:_z'
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That is _
Wy = W3 7s
— 1 pNid 4N+ 6N+3
e = - tpdfy =T — 1 =7
s b ./,‘; e g Iz
, — 4 N* 46N
Therefore Fp= T +I,;7+2
- ., _ N —1t (The second moment of
frEm R TR T 5 Nranks) _......... . [141]
Firallv R _ 6Xdr {Spearman’s formula for the
nally e NN — 1) coefficient of corrclation

calculated from ranks) .. . IIJ,?J:\'

This formula should not be confused with Spearman’s ;;faot’

rule formila for correlation A\
6Z {Spearman’s Tool rule fopmala for
=1 — = ) o \
Nt —1 cotrelation basad ups tite sum
of the gains in ranlk) J.. ... . . [143]

which kas a large, though. except in the C of zero corre-
lation, not definitely known probable errOry “does not vary
between — 1 and + 1; is not at all coﬂ}pzirabh in meaning
with & product-moment coeficient; &ne in general has none
of the merits except breviy, of‘,tﬁ'e formula based on the
syares of diferences in rank.,.}’%é cocflicient calculated by
formula Lrqz] is usnally designéﬁ'ed by p, but it should be noted
that it is identical with v iftanks cawstitbtadiibracgresg.in

Peurson has shown {';l'ga:t.\if scores i the two traits which are
i truth normeal in ﬁ&‘@ﬁ"ére assigned ranks and p calculated,
it will differ slightly from the 7 obtained directly [rom the
scores.  To allg® for this discrepancy, p's may be turned into
r's by the fo,m\r:?ula,

?:}—3'2 sin g p (Pearson’s corrcetion to Spearman's p) .. [144}

That ,t.’}je\correction ig of small magnitude is shown by the
accpﬁlpﬁmyin gtable:
L

\ ) TABLE XXXVIII
& ¥ g o ‘ ¥
.00 000 .Go 618
10 105 70 H 17
20 200 Mo 813
.30 313 . .Go Qo8
L0 416 ' 95 | 034
50 518 1.00 || 1.000

Q)
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The formula for p is the best of the rank formulas, but in case
scores constitute the basic data there is always some loss in
aceuracy from warping the data into ranks. The probable
error of p as determined by Pearson (rgo7 further) is

P.E., = .7063 _1_;5;_3 {Probable error of p)..[145] ,
or approximately 3 per cent greater than the probable errdr\
of r. A

It case one of the variables is given in terms of ran\k§“£nd
the other in terms of variales, we may assign rankvadues to
the variates and use formula [142]. If the groupifg in the
variate scries is coarse, ranks cannot be as igﬁcd without
losing much of the refinement of the varigtédata, and if the
average of a number of ranks 1s assigned @all the measures in
one class there is a further error if foghdla [142] is used as
this formula presupposcs scrial ranks”i}am 1to N.

To obviate these difficulties it :is’ better to calculate the
product-moment coefficient oi,’(;iarrclation between the ranks
on the one hand and the vdtiates on the other. Let us call
this p’, and let » be the caitelation if the two scries could each
be expressed Vi tdbddibrariapeg And if they constilute a normal
corrclation surfacq,j‘?q‘hen Pearson (1914, ext.) has shown
that, \"

J ,  (To deduce r from p, the product-moment

No
P . . .
Ns cottelation between a variate series and

Ll
\¥ .
O arank series). o o L. {146]
or "\'.\"

Ny = 10233 0
N

*

PROBLEMS

) Plot the correlation table giving the correlalion between the Thorn-
dike and Ayres scores in handwriting given in Table XXX, Section 34, and
answer the guestion, “Is the relationship between the two variables rece
tilinear?’ Ans, Itis.

*

2. Caleulate the correlation between scries 1 and 2, between series 1
and 3, and also between series 2 and 3 of the paired practice serics given in
problem 3, Chapter 171,

3. Caloulate the standard error of ris, the correlation between series 1
and series 2 (a) by formula {168 8], (8} by formula (108 g}, {0} by formula
[108 ¢] and finally, as the most accurate method of all, (d) by formula
[108 a] using in addition [108 4l
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4. Rank the measures in these three series and caleulate the correla-
tions pry, p1a and pa by lormula [142].

5. Dlgermine lor the first two of these three series the regression equa-
ticn for cotimaling variable 1 from variable 2 and ealealate the standard
errars of the two constants, #1: and ¢, involved.

G T the derivalion of &) il was assuried that the regression line passed

Ythrough the means of ihe iwo distributions. Derive the same value as |

Bo: withoul making this agsumpticn.



CHAPTER IX

FUNCTIONS INVOLVING CORRELATED MEASURES , |
oA\
Section 54. CORRELATIONS OF DUMS OR AVERAGES\ \
\/

If the basic means and standard deviations of sc\@rﬁl series
of measurcs and the correlations between series apd alown, the
means, standard devialions and correlation o["z?n? weighted
average or sum of these measures with o sceQngd “weighted sum
may be determined (Spearman, L() 13). \B‘l\’LTl the severul
series {a + b) in number, X, Xs, \Xa, sbt, Ngdm o ..
Xe+s, with meang My, M,, ... .Ua+g.,‘st’dndard deviations o,
G3...0aib, and JntBrLOI'I'eLJ.UOl’Ja»?’u, Fig. . . Fitatl, Tiz. .

let the stand arg NG b}%r thcse variables be, as usual,

A'[‘_ J‘l’fl’,.' Xg _‘_.-u-g
£ = —'O_h“—“'-', g = T, ete,

ry

&\

o\ . . .
If ¢ of the meagupéylare combined by adding into a single
score, and if the re%il}lmmg b measures are also combined, the
correlation bctwesm the iwo composites is

‘\
, A B Tttt 4 - 3)
(e T E———— = ——————
(1+2+<ﬂ{:@., I b] VI (ot t oz Vi(o Fop £+ 50

"\
The product of the two terms in parentheses in the numerator
gr\es a binomial of ab terms each of which is a sum of the sort
\ .,.,4.121, but

oz = Nri, Zgzon = Nen,  ete.

. . ah ah
Accordingly the numerator equals NS rp0. The gvmbol S
: 3

stands for a double summation, p taking in turn the values in

the scries from 1 to ¢, and ¢ in turn the values from 7 to 5.

The square of the first polynomial in the radical in the de-
196



CORRELATED MEASURES 197

nominator gives a polynomial of a® terms, g of them being of
the sort =« and the balance {(@* — a} of the sort Zz;25, But

2y =N, =ty = N, ete,
Tosr = Nve,  Zoamy = N, et

Further

Tz = T osrh
and ag both of these oceur in the summation, there are but
( — a) 2 different product sums involved, though each of
these 15 found twice, Accordingly the magnitude under the

first radical equals L\
e , [ERE N
NSNSy O
i a [@¥<)
in whicl 51 is simply 1 added o times so that 51 = az8h ?ry
1 1 { &

i3 u double summation in which p takes all valye${tom 1 to a,
and g zll values other than p from 1 to a. Thie again each
7 oceurs twice, once as rg and once as rg/3But an 7 with
repeated subseript, such as rpp, 18 not £ound:\in the summation,
The surmmation under the sccond radiéél~ is similar in type, 8o

that R
o }" 3 ah
"C. - ??‘ﬁg

Thta A4+ 0T T T e
f - 11-+ <1/ ot .Wﬁa?’ B;Mi’bqﬁ@o#g}%
/oy I I
(Correl\:;@@.m’ hetween sums or averages ol scores) . [147]
The preceding formwla®may readily be generalized so as to
apply when gross“v@’t’ighted scores are combined. Let wy be
the weight of X i,:;»\z,'{ of Xs, ete, Then we desire the correlation
between (Al wnXy +. .. weXa) and (@ Xy +wuXo+...
whXp) whi?\ﬁ’ﬁlay be represented by the symbol
yl': ¥ Sty X 51 1SwpXp)
In,qa'lla\;iﬂating the correlation, each variable must be expressed
d\z\f deviation from its own mean, Accordingly (wnlM, +
wyMs + . . . ws,) must be subtracted from the first swmma-
tion variable. This leaves (wan + wors + . .. Weke). Simi-
larly for the second summation variable, Proceeding as before
we have i place of 2:% the expression
T (w)?
and in place of Xz2 the expression

T WX W -

Q)
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go that finally we obtain

i@t h
fi S X g {.%‘w pXp)
ab
*15 wﬁ%“’@“@"ﬁ@

(a’ e B 3 ) (G )
«'/éuﬂpcr” W u‘pw T bg Swzprr e+ S WPUPWOCFQ?’?Q
{Correlation between the sums or averages

of weighted scores). ... .......... & {r 18]

Note that there is nothing in the derivation to prevenm,m tain
of the weights being negative. If the correlation ]gﬁt“ ccn Lwo
series is ¢, this is not changed when all the measﬁrex fn the first

series are divided by a certain quantity cm.d?aﬂ those in the
sccond by another. Thus in the preceding; division of the
first serics by ¢ and of the second by dhJeading to averages,
will not change the correlation. The ¥ormula given is there-
fore equally applicable whether, deahng with sums or with

averages. \

In case a single score is correlatecl with the weighted average
of a number of olhers we, Iaswe a situation representicd hy one

of the two sums haﬂngbbu“t, one item in it. Then the summa-
b www . dbravlibrary . org.in._,

tion S has but a smg% term and S has no terms. TPurther,
L s TN ]

wiey cancels Srom numerator and denominator of the right
hand rnemh@r This is the very common situation where one
variable, \ghich we may call the criterion and represent by X\,
is takenas a standard and all the others are combined so as to
giyaahigh correlation with this one.  Under these conditions
fm;mula [148] becomes:

¢ {Corrclation hetween a
Suro,? T
y PP criterion  and  the
Ton(SwpXpt = o = weighted sum  or
1/ Swtye?, —!—.IS WYTHW Tep average of a number

of scores) ... ... .. [149]

Since this formula gives the correlation whatever the ow
products, or the effective weights, may be, one may frequently
by successive trials hit upon a weighting which gives a fairly
satisfactory correlation. If two independent variables are in-
volved and the nomina! weight of the first independent variable
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is arbitrarily sct cqual to 1.0 while that of the second is in-
determinate and called i we have

Uli‘g]_ " wo‘z?’o)

TN d s — -, = D T [150]

+ wWhery? +2 ?‘120‘1wa3
The multiple correlation T (20 +2X) and the weight w arc
the ouly unknowns in this equation, so it may be plotted on
two axcs, w the abscissa and » the ordinate, throwing into clear

rclicf the effect of apuroximate weightings. Thurstone (1g19) 4
has shown the value of this procedure. A plot of the followmg\ %

data will illustrate the falling off in the multiple correhtwn

ohrained as w varies [rom — .0310, which is the rauo\o"f"«thc

regression  coefficients bopp/hue.  Given vy = 4, rK\, .3

P = 12, 0 = 02 = 1.0 e

I w=' —= | —20- — 15 l —1:0\“‘-—9310'i — .9
. m——— - | .

.706 ;326‘ 7846| 784"

....‘_—__ _——— =

N ! o
r,0'13:3- 2.0‘ o

: 030 . 000 — 074 | — 30D
. _..~_ - Wl _b_]__a_pw oroin

; _ ' ~\
Returning to [149), i Sase all of the series summated or
averaged have equa}}& ndard deviations and are given equal
weight, we have: ()

T —‘~'d{§= STl =
o RF = o1 =0
a\‘

,\ W0 T op = Wo Srop =awor,
2 &

\ﬁrhcr“ei?g‘is the average correlation of the various series with the
CPSTion xg,

o

Sw? o, = awiet

1 P ?j

@ —a qf —a

x? Wyl ST ¥ o = wig? § Tog = wie? (@ — a) 7;
I

where 7 is the avcrage intercorrelation between the several
ariginal series so that, finally,
arr_

{&J(S'w Xy =7 SX =
fiab & Pl ,/7“_’_{0'2_&)’_‘

%

N
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or,
" L {Carrelation between a cri-
oo (SupX ) ™ [ terion and the sum or
i n
| - + # average of a number of

equally weighted scores) . . [151]
If the tests are comparable the several corrclations with the
criterion differ but little and any one of them may be taken as a
first approximation te v, and the intercorrelations dilfer b
little and any one of them is a first approximation to ri 5o
SwpXp = af as defined in the next section (55), so fhdi we
have A\ ]
e {Correlation botwooy a\ eriterion
folef) = . T and the sum t‘:;:f.(ft—:ragc of o
\' —a—II +rrr number of Gqhally weighted
similar te&{s@orﬂs) .......... 152}
The coffective woight given a test i&hot wp, the nominal
weight, but wpey, the product of the{ fiominal weight and the
standard deviation of the scores, _Acgordingly equally weighted
scores are those in which the prfodicts of the nominal weights
and the standard deviation&éﬁ"e equal; that is, if whey = wae
= w5y = ---, cte., the X5%X,, X, cte., serics or scores are
actually weightadragtisfey Flgim is the condition that must
hold if the immedi@’@él} preceding formula is to remain {rue.

Sectiogn\55. The ReniapiLity CoBFFICIENT

Let us sgp;lﬁo"se that the scores combined arc those of com-
parable taQts of some single function. If the tests are strictly
compatable, then in addition to the means, and standard
devifitions being equal

For=Fogg = v =,

Faz =iy = -0 =¥y = -7
the correlation hetween one form or test and a second similar
form. Let us define a “true scorc” as the average score on
an infinite number of strictly comparable tests. Then the cor-
relation between the criterion and such a truc score, which
can be obtained by letiing a of formula [r30] become infinite,
may be written as
ot {Carrelation bhetween a fallible
'\/rz_l.' criferion and a true score). . .[1353)
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in which e« designates {he infinite summation. If the relia-
hility coefficient of the criterion rgo 1s known, we have, as the
same sort of formula as [153]

Yo = W (Correlation hetween a frue
' Ve criterion and a fallible score) [153 g}

The correlation 7y is that between a test and a criterion, and
ry 18 that between {wo comparable tests and is called a relia-
bility coellicient., That the notation may be entirely clear, the
meanings of several symbols as they will be used are 1@}E>
listed. 7447 is the correlation between the sum, or a\{c}agc,
of @ measures of a certain sort and /A others of the s418 sort.
Capital A is used in the second subseript instead c{s’mall a to
indicate that the second series of tests (the sd@d in number
as In Lhe first series) is different, though similanh'to the @ tests
averaged or summated in the first seriég) Whenever a is
greater than one, the f is kept in the .Sl\;bscript-, but when a
single test is corrclatled with a single GbHer test, it is dropped,
and the subscript designates the varable. Thus ry 17, means
that an average or sum of two fdrns of the test (or average or
sum of two comparable measi{fcé of whatever sort they may
be) are correlated with the® averagwwaﬂhﬁa@ﬁIii‘r‘é@ﬁféhg_fi;{i}m‘
parable forms and #y z irrféans that one form of the test z is
correlated with a sechld Similar form of the same test. In this
latter casc 2 referg™o the variable, whereas in the former case
(2f) the 2 referse the number of forms averaged or summed,
The S},"I]’lbOl"Kiy‘ represents the correlation between retestings
with the sgthe’form. If the variable X, is a test score the only
TEASON N {oes not equal 1.0 is that there is a time interval
betwetn the two answers, which an individual gives to the
sapfe)question.  Similarly 7.7, 7 means the correlation betweoen
‘aygrage scores upon re-testing with the same ¢ forms.

Certain very specific conditions nced to hold before two
tests may be counsidered comparable, and therefore before a
cotrelation between two tests can be considered a reasonable
reliability coefficient. In cducational and psychological test-
g the first of two similar tests frequently calls forth a response
which is different from the second. The greater {amiliarity
with the form of the test or the difference in interest aroused
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may make the second test quite different {rom the first.  This
would be especially true if certain elements in the first were 5o
gimilar to elements W the second as to lead to what may hoe
called a memory transference from the first test to the sccond,
For example, suppose the following questions occur in the Grsi
and sccond tests respectively:

“{ay John is taller than James and James is as tall as Joe.
Joe ig shorter than Jack. How do John and Jack comoaredd\
height?” \

“(b) Dessie is brighter than Bertha, and Bertha 1&31\1%\LL5
bright as Deula. Beula is not quitc as hright as Beatrice.
Which is the brighter, Beatrice or Bessie?” N

One would expoct memory transference, and Q;‘ﬁiandency to
solve the second in the same way as the fird) We may call
sach a situation one in which therc is a defrelation between
errors, meaning that, whatever clemedtd of uncertanty or
chance operated in the solution of Lh\e first question, thev
would tend o operate in the samé fmanner in the solution of
the second. This situation would Lend to make 7i; too high
a8 & true measure of reliabilitis ‘There are other, and usuallv
more impo\r{t‘?at Egg&ﬂ%&}_;’}{liigggggerate in the other direction.
Let ns suppose the two.fol?dwing questions oceur in two forms
and that they are irktehded to be comparable: “(a) Who was
the first president\éf"f:he United States®” and “(b) Who was
the leading batteg in the American League in 192077  Passing
over the possiBility of some other question than (z) in the first
test being\éo'mparable to (b} and some other than (b) in the
second gedt being comparable 1o (@), let us consider the com-
para{:&k’fy of the two questions given, There is certainly no
memory transference which would help or hinder in answering

”\Q}) ‘after having answered (a), hut the ability to answer (a)
N\ probably tests special capacity or knowledge which is quite
different from that demanded for the correct answering of (b).
In other words (2} and (b) are not samplings of the same
capacity and two tests made up of questions no more similar
than (@) and (&) can hardly be considered comparable, and as
a consequence they would lead te an iy which would be too
small, This is the situation which is the more likely and the
more SCTiCus as 7oe in this case becomes too large. The
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errors of interpretation due to a too large estimated corrclation
between a test score and a criterion ave probably in general
more serious than those due Lo a too small estimated corrclation.
The following rule for the construction of two comparable
tests may be lald down: {1) suflicient fore-exercise should be
provided to estallish an attitude or set, thus lessecning the
kehhaod of the second test being different from the frst, due
to 4 new level of familiarity with the mechanical features, ete.
{2} the elements of the Orst test should be as similar in difﬁcu}t}\
and type to ithosc in the second, pair by pair, as poss‘"blc
t, (3} should not be so identical in word or form ag ‘tg Com-
moenty Jead to 4 memory transfer or correlation bctwecrl Crrors.
It is obwious that condition {3) is not met if a,»&?@t is merely
repeated.  Only in case the repetition be at 3NEmote a time
from. the first test that no memory of the eaflier response could
influence the later would there be nofderrelation between
errurs — - in fact cven were there no @onécious memory of the
carlier situation thore might be a sgbetnscious influence result-
g in correlation between the er’f'i)r; Accordingly the repeti-
Lion of a tost to secure @ I'Bllélbkll‘t‘,?' coefhuenL wto be deprecated,
However, the repetition of, a test to sequ er limit or
WW\!
maximum value above, \hmh the irue el abf] B cient
will not lie may be Q{mdcred to be a sound proccdure
Spearman (1004“\1 1907}, who intreduaced the term “relia-
bility coefficientyd™dsed it as herc to designate 7y, the correla-
tion betwecn:’c?)mparablc tests, and Brown {tgrr} used the
term 1o paaferfal ?:n, the correlation between repeated tests.  This
is an unfdietinate vitiating of the Spearman concept. Particu-
larly je\view of the fact that a reliability coefficient in the
‘wpﬁeu‘mcm, and not in the Brown, sense, is the one needed in
all the formulas leading to an estimation of true correlation.*
It hag been pointed out that the correlation between repeated
tests constitutes an upper limit of the reliability cocflicient,
while the correlation between two forms meeting condition (3),
but not fully meeting condition (2), would constitute a lower
limit. Should these two corrclations lie close together prob-
® The anfurtunate use of ry 48 a refinbility coefficient given in Brown (1617) is eorrected

ir the lates edition s Brown and Thomson (1921) define rip as here nsed to be the reilability
ceefiicicnt.
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ably an average of them would constitute a close approximation
to the true relabiliiv cocfficient. We may expect in most
mental and cducational test work that the true roliahbility
coefficient will Iic Jess than the obtalned 7y, and greator than
the obtained s;. The lack of fulfillment of condition {1} lor
certain age groups and with certain tests probably at times
leads to too high a relability coefficient and at other Limes 10
one which is too low. \

.. RO N
Section 36. CORRECGTION FOR ATTENTATION
Let us return to lormula l147] and write rpe for the average

of all the rpo's. Then we have N

ab €%
b Py = S 1500 )
St 70 = 2 150 .
imilarly \
{at —a)7 =§L—ar '\\\“
#q T fzq\
and PN\
@ - by téf,—’a..
— &7 = B
. RS M
This gives ,.}::
™ ab*? 20

Ferd ml  mViTETIL oy = ——————=

T4z . W‘i}\fjg:'—l&brary\éi;g_h@ — )y rpq \f”b + (BT = B Fen e

N {Correlation between sums ar averages of
N\ equally weighted scores) .. ..........[154]
If we make both ¢ and b infinite, we obtlain an estimate of the
correlation lg’et“vireen a Lrue criterion and a true {est score, which
Spearms.q alls the value corrceted for the attenuation in the
raw,_ ppgivalue duc to chance errors. Let us designate the
scgdés which enter into the criterion as X, Xs, X, etc., and

‘fhpse entering into the composite test score as X, X1, Xs, ete.
\Thcn from [154] we have

7

iz {Correlation betwecn a truze
\/;1; \K;Q; criterion and true test scorve,
Speartnan’s formula for cor-
rection for attenuation). . .{155]
or in the previous notation where ry is the corrclation between
two different measures, vy the reliability coefficient of the first
measure, and ryr of the sceond, we have

fooap =

oo o0 \_‘{?'_Tlfﬁf N § 1T 1|
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The observations as to comparable tests apply equally to the
securing of comparable criterion scores. In particular if the
criteria ave teachers’ judgments there may be high correlation
between crrors in judgments if teachers have discussed certain
pupils with each other.

Sectton 57, RELIABILITY OF AVERAGES

Formuia [147] lov the correlation between sums enables usto
determine the rcliability of the sum or average of a mgfnber
of similar tests, knowing the reliability of a singlestest. If

" the tests are similar, we may call the successive tests Wifferent
forms of the same test, Then the sLanddrdMQemaLmns are
equal; il a siraight average is taken all weights equal one;

& $
and further, 17 the {forms in the S5 av er-;gi:ﬁﬁfe gimilar to those
v . .\‘
in the 5 average, then every ,@ Vevery vy = GVETY TPQ
L

= r1 — the comelation bctwcemone form and a second similar

one. Let ryor e oan cxbrldgcsl Yotation for r, 5 ; that is,
$ QXP SX];,

N

for the situation whicl h(}'ld% whenwcve acolf%lfb ?17‘%8{:1518}3 the
summations are wpod sithilar tests or forms.  This is the cor-
relation between ]L\c\ avecrage or sum of a forms and the aver-
age or sien of 0 é)i'hers. It is given by

\

'V ah Yi1
Yaf bf =% ——
f \& a—i—(u —-a}rrl\/f) -t (bz—b)f'll
\'\ " {Correlation betsween the average score
o\ upon ¢ forms and the average upon
¥ : Bothers) ... veeenr e iaeiae s {156]
\»\I a equals b we have:
_ ar;g {The corrclation between the average
Taf, Af = I+ (z = 1. 7, Seore on @ forms of a test and @
other similar forms}. ... int [157}

This formula given by Brown (rorr} has frequently been
called “Brown's formula.” Jt is, however, but a special
casc of Sprarman’s carlicr formula [r47]. If but a single
form of a test is available it may be possible to divide it into
two comparable halves: for cxample, one half composed of the
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odd and the other half composed of the even cxerciscs, and

caleulate the reliability coefficient of the half form, . f

more simply, #: 1 and then by formula [157] obtain the reha-

z II
bility coefficient of the single test.

2

T ILI (Reliability of a test determined
= 2o from the scores on the fwo
I+ 1 N
Il halves) ... ..o oo iins SSEL
2 I1 2\ N

A second use to which formula [157]) may be put s iniﬁwe de-
termination of the number of forms required to secufeta desired
or essential reliability coefficient.  Solving for a.m{e obtain

Tag, ag (T {1t —r;p (Number of fonghg® re.qmretl to se-
fr1 {1 — Par. af) cure & given pelBility # 4 a4) .. [159]

The use of this equation frequently Qﬁé};es one to determine
whether it is worth while to attemplvo improve a correlalion
with a criterion by incrcasing the.length of the test. If we
have a problem requiring a eorftlation of not less than .go with
a certain criterion, and not. ,p{ﬁrﬁittiﬂ 2 a iest program extending
over mOTe&u@dﬁﬁ.Quhl&rﬁ,yad]%j we (ind experimentally that
the reliabilily of a cersk’nn 1o minute test is .20 we may deter-
mine whether it }.'.:\l‘IE any use continuing with this test. The
test cannot, cxcept’as u matter of chance, correlate wﬂh any
criterion to a'gleater extent than it correlatcs with a “true”
score of thes particular function which it measures, Thus if
the crltefhsn 18 the true score in formula [r53] then ro» becomes
100 an, vor becomes ri1, 80 that we have

* jr}w =vr frI {Correlation between onc form of 4 test and a truc
\. . score of the function measured by thetest) .. .... [160]

\ Thus in our present problem .go =+, Faf, Af, OF ar ap = 81
That is, even il the critcrion is no different in its cssontial
nature from that which is measured by the test, it is still
necessary to have a test with a reliability of .81 in order 1o
obtain a correlation of .go with the criterion. Using formula
[159] we have

B (1 — .20)
.20 (1 — .81}
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Thus a test al fcust sevenicen times as lomr as the one with
reliabitity .zo iz neudol This would require 170 minules
testing time, which accomling to conditions laid Jdown is oul
of the question, so “hai Jhere s no use continuing witle this
tical answer s obtoined with-

particdlar test.  This voery ot
out any knowledye of the criverion or of the test correlation
with the criterion.

Formua [182} aids in determining the fitness of a test Tor a
given purpose. Lot us suopose that we have three 1o mingL@V
tests, the frst with rofinbifiry so. the seeond with reliad Alityago.”
and that these two enmolate with @ ertterion Lo the cx@l‘ﬁ'{' of
30, and that the third tesi hes o reliahility of 20 coﬁ*dfﬂting
with the criteriomn o tic oxiont of 2q. ow ﬂ'nu;f\ivill these
correlations be raized Ly lengihening and t‘.ht‘."]'cﬁ)}' malding
the tests more veliabler  Using formula [I’_;_.%L,‘WC obtain the
accompanying table. '\ &

TADLE XXX

LunuTH oF TesT [— [ o

4 -
¢ 01 test | 288\ + 2. ’w d 3
%_Uf tost | \6\ ) ;i ;h |I .IS
Single test . NG ‘ -.3:) ‘ P! -;
Sum of 2 tests | L w20 32 ,:;6 i 20
Sumol 3tests WM 30 | 32 ‘ 30 '34
Sum of 3 tests “[ 50 ; “33 it [ -%9
Sum of 10 tcs;."\ | 33 | 144 L44
! | 33 | .36 ! 48
‘ 31 47 J .52

N\

Fﬁl‘.'tr_lfthis table it 1s apparent that the relative excellence of a
o In comparison with others is a matter of reliability, cor-
relatlon. with the criterion, and possibility of incrc:.lsﬂin;r or
d??re.asmg the length of the test without changing its essential
:‘E;; Cﬁiéh? Lrthllce tests can be lengthened or shortened
festing v h g\l?*“ Lheir es',sen'tml nature then 2.5 or 3 minutes
Criterigor? :i}a&tff X. would vield a hlgh@l‘ c':orrel‘atum with the
Z Th L[ . 1_{-: same L—_lmOL}nt of time with (:tlth(:‘r test ¥V oor
us 1 the testing time is less than ten minutes test X is
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the most valuable. If the testing time lies betwecn ten min-
utes and 100 minutes test ¥V is the most valuable, and if the
testing time is aver roo minutes test £ is the most significant.
The principle here involved may frequently be used in malking
the original selection of one or more tests and before corrcla-
tion with a criterion is known. If the testing time is of neces-
sity brief, give prime consideration to reliability of test; and
if the testing time is long, give prime consideration to “validit y,”\
to use a term recently employed in psychological literatwyre.
ie., to the accuracy and detail with which the test paral®ls®he
eriterion function, and but secondary attention to theweHability
of the test. If the reliability of the criterion is\iown Lhe
correlations of the tests with a true criterion méw be obtained
from the coefficients in Table XXXIX by Jiwiding each by
the square root of the reliability cocfficient’ of the criterion.
The resulting table will show even m@c,\trikingly than does
Table XXXIX the relative merits af{the three tests.

. N>
Section 58. THE PROBAB};E \ERROR 0F 4 COEFFICIENT
CORRECTED_£0R ATTENUATION

The studg%_mkiim%ﬁ@@g‘jﬂote that the coefficitent of
correlation obtained My ™Mhe use of the Spearman formula for

£

correction for attf{gnaﬁon should never be used for the estima-
tion of one actmal measure from a second, This “ corrected
coefficient is aypromise of the correlation that one might expect
to find bctiv\ecn the variables if one had perfectly reliable
mcastlrﬁ'va'.;.\To use this corrected coefficient in a regression
eqanin would lead to a less close fit of the regression line and
o, éy.:larger standard crror of estimate of the criterion, knowing
) ¢thie independent variable, than occurs when the “raw’ cor-
\”\ ytelation coefficient is used. The corrected coefficient of cor-
relation is mainly of value in theoretical discussions and in
serving this purpose its divergence from 1.00 ig usually material.
The derivation of a formula for the standurd error of a cor-
rected cocfficient is as follows, in which the subscripts have
the meanings stated at the beginning of Section 36.

_ 713

Foogn = —pi———
'\/‘f;g'\/;‘zq
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Taking logarithmic differentials, we have

Gre _ dris _ dra
¥ om V19 2 Fi3 27¥n

_d?‘g;:g =

Squaring, summing, dividing by N, we have

2 2
Tres _'7_2?'13 sl __Ufraa__ Freriaraday FrigraTriales Frivendradron
Fow 2 47 47 Figf1z ¥iafay 2 ¥ ~N
<

We may obtain 7, and # . by formula [129], %, ’t;y\
formitla (128, and all of the ¢,'s by formula [108 8). Doing.\fsc\)',%
colleeting terms and simplifyving yields, s

7%
_Tomw %k“_t_ﬂ Ry

- .
- B ks (I *1a rAN
+ = o0, fM o _ T e
o VN

riy o 4y Z?’zzd ra 2 L‘fkm
Ry (I 4 ftL)+?ﬁgfI“};;) (1'—?'24)_%3

Fas 2 I+ ry o\\; ¥1a¥28

In the notation of this chapter this is \ -
oo oo r #2g

i \/ 1
Fraen = — }yt - — Yy —— =1
\/i\" 3 fe el a] +?'212 ¥ 4],213 ‘:.4« 13
AN

mnyt ;13
NS T ooy T ¥
N —'—+m—~*0%

4 gy 4 P4

N

/N

1551’1‘}”..,..,,,‘.‘;{‘.} .................................

N\
If we let Ay stand %r the first parentheses and A.n for the

second we hawve ¢
N v
b‘“:—t—w—m- ¥ ? 4 I—'-E-/‘MI-[-’IZII)i
e 7. e :

A wwwdbraplibrary.org j
{Standard crror of a cneﬁicie%‘t\of {:orrelatio; calcuﬂtcdl %wn%ﬁg
[161]

The qu,éésities 1/7* and A are tabled for different values of 7,
in f’}éﬁﬂé XL.
““PWhen the corrected coefficient of correlation is calculated by
fdrmula [161 ¢], or by
Tt
== ....””-.,,.‘,,[161 !’Ir]
i ‘/‘?'13 Vrn

in which 7 = (re & 114 - 7.2 + 734)/4, the standard error of
Yo o is smaller then given by [161]. Before calculating this
standard crror let us note that 7 may be expeditiously obtained
by caleulating the correlation between the sum of the two
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tests in the first trait and the sum of the two in the second trail.,
We have:

Flt+a o+ = —i(tl + x—q (II:!,_—L;H) .= —..?:” +_?'2+ ?:'32—’_ y.ij. R
VI )t VE o) 4V ez V(b e
= ——— __....?‘ J— .
VL /2 VT w2
so that A
r=ra+ae+oVi+tnd/2Vitra/z 6N

Thus » may be easily obtained from a knowledge of L,b\é. \fe?‘-\ia-
bility coefficients and of the correlation between the {g,{i-'d ST
Assuming that the arithmetic average is as relfable as the
geometric average, then 7. oo caleulated b"\{“{\ri@l ¢] has the
same reliability as v, o obtained from j

_ {rruraera)t (Yule's form qf»%ear:man's formula

¥ on oo = L . ¥ . .
V! Vgl for corrqg{(.m tor atlenuation). . {161 £]

The standard error of reg oo calct}léieﬂ by ihis formula may be
obtained in a manner very similAnto that given in [16:]. Tt is,
however, a lengthy procedqu"and will not be recorded here.
In Dbrief it involves taking\Yogarithmic differentials, squaring,
sumnting, ARAGIRYORHPRTY 058t uting values as given by
formulas {108 3], [1;8’]’?&1(1 [120], colleeting terms after assuming
that rip = ry = N};' raz = r. The answer is

N

T o oM T 4ty 1 I
Orom o = —— 470 0 + - d_‘(‘ 1:1'1" 2% e L
2VIRY LA 7 a0 rlu
P\ 3
A& )
4

’\‘,: LTI "
"\

(Btandard orror of a cocfficient of correlation cal-
culated by formula 161 g or formula 167 ¢).. . . [161 4]

N\

\Magnitudes 172 are given in Table XL.. Study of this forimula
shows that the error in the correcied coeflicient is very [re-
quently not at all large, being in fact much smaller than given
by Spearman (1910). The disagreement in desivation above
{‘161 .d] and that given by Spearman (1910, equation 24, p. 204},
lies in the fact that Spearman, {following Filon, to whom ﬁart
of the derivation is crediled, used formula [128] throughout,
whe.reas. formula [129] should at times have been used. The
realization that this standard error is smaller than previously



CORRELATED MEASURES 211
reengnized should throw much new light upon the question of
the snecific or gencral nature of intellectual functions.

TABLE XL

N

¥ ! rird A ‘ ¥ | 1770 ‘ A o Ly A
P VI SN I N N
LT 10000, 238y, JI 36, 7716 | - 1.521 g1l 1084 |—3.329
52 2300, 574, .37 | 7.305 ‘ — L34 | .52 LO29 |— 1.316
A3 ITTE L2143 A% Hges ! — 1556 1 r3, LAY7 |— 1.304
A dzE. Y130 391 6.375  — L56H | .74 | 1.526 |— 1291
W5 ik Io7% tgu 6230 [' — 1578 | 75| 778 | — r28g{
Oh | 277,78 | SL8 41| 5940 — 1584 | 6| L3 |~ 1.863
0720408 ¢ 3380 |2 | 5600 ‘ —1.588 - 77 | 1.687 | = k255
O | 130,25 25.60 | a3 5408 — 1390 | 78| L.044 .S D243
af L1230 . 88y | 44 5165 1 — L300 | .70 | L.602Z 4% 1.231
| ‘ 100,00 I 410 [ .15 | 4.038 [ —1.588 | 80 1.5{)}\;'— 1.219
. 826550 1068 |16 4926 | — 1385 | 81 {M)s2g [— 1.208
gz 604 By [y 4527 | — 1581 | AADT.487 |— 1196
T3 AU TFaEl 6.23 | .48 ‘ 1.340 -+ — L5760 | 283" T.452 |— 1.184
Ly 3Lo20l 455 g9 | 4065 — TEFQANNSL | 1417 |-~ 1173
a5 i IEWEES 3.50 | .50 4.000 ‘ — .58\ .85 | 1.384 |— 1,161
I : ¥
Lt zy.nhz’ 2.66y : .51 ‘ 3.845 —:»13555 B6 | 1.352 |- T.I50
A7 31.602 | g3l .52 | 3.608 | NRE46 | 87 | 1320 [— 1138
TH ‘ 30,864 1.332] .33 3.5008h3T1.537 1 88! L2gr |— L7127
19 27701 By3lse ) 34298 — 1527 ) 89 262 |— 1116
2 23.000° 4401 .55 | 3,300 wavksdprpubib a6 grint . 103
21 | 22.676 106 ‘ 36402189 | —1.507 | .07 [ 1.208 |— r.oog
22 20661 — 1724 5\2 J 3078 | —1.496 | 92| LIi8I |— Lof3
.23 ‘ 18.904| — 405 \5 S 2,973 | - 1.485 0 93| 1.156 |— 1.072
240 T17.368 0 — 6pN .50 | 28730 — 1474 | 94§ 1.132 — LoG2
.25 16,000 — ,:FGG'N. Bo | 2778 . —1.462 | .93 | I.108 |— L.O3I
. N/ ! i
26 | I4-?93! '\—'“.’,905 “ 61| 2687 | — 1451 | w6 | L.o85 [ — Logr
27 13-71?.1\"H 1023, .62 | 2601 | —1.439 ° 07| 1.063 |— 1030
28 | 12.pg8l) ~ 1_122” 63| 2520 — 1427 98 1041 |— Lo20
29 II;QS{ —T.207" 64 | 2.44T7 ; — 1415 GO | 1.020 |— T.010
30| IVRIT | — 1258 .65 | 2.367 | — 1402 | 1,00 | 1.ooo |— 1.000
3£\| y10.406 | — 13380 .66 | 2.296 | — 1.300
\:—; b 97061 — 1.38g| 67 | 2228 | —1.378
33/ 9.183| — T.q32| 58 | 2103 |' — 1.366
A4, 8651 — 1467 .69 ‘ 2,100 | —1.353
351 ?5.163| — 1970 70! 2041 [ — I.341

With probable errors available there s no excuse for the
indiscriminate averaging of corrected coefficients baving values
above and Dbelow 1.00, viclding possibly an average nearly
equal to one. If we have a corrected coefficient equal to .go
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with probable error of .02, and a sccond equal to r.1o with a
probable error of .oz, we may concluds that neither coefficient
is a chance variation from .00, and further that the funda-
mental hypotheses of similar tests, lack of correlation between
errors, ete., underlying the idea of a relinbility coclficient,
must be absent in the case of the data yielding the correctod
coefficient 1.zo0. A corrected coefficient greater than r.oo s
just as absurd as a “raw’ coefficient greater than r.oo, and i\
positively found, as for example, .o+ .02, it demangs &
reéxamining of hypotheses as truly as would the latted\Wete
it found to be greater than 1.0o. Only in casc corfected
coefficients differ {rom 1.00 by such small amoquuﬁ"th’tL the
value 1.cc is well within the likelthood of occuq@me Judged
by the probable errors of the corrected coefllefepls, {s it sound
Lo average several such corrected coefﬁcwms\to SECUrC a MCasure
of general tendency’ ¢

..\"
Section 59. ESTIMATES oF TrUE SCORES AND THE PROBABLE
Errors orF THEC;E »qunmws

Formula [1r53 ¢} has value, f'or very practical reasons, For
example, supposc we know $hat the reliability of foremen’s
jndgments V@E"’ﬁiﬁ’@@éﬂéﬁ%%"‘c& Hhechanicians is .36, and sup-
pose we have a trade /et the score upon which correlates with
the judgments of dxkbsroreman to the extent of .48, then, letting
the foreman’s jodgments equal X, and the trade test score
equal X wehave

79 \u _ Ftm 48
o0 retvetYRT |
Thugth - correlation hetween a single test score and an average
of the judgments of an infinite number of foremen would be 8.
mli the hiring of a mechanician is not so much for the purposc
N satisfying a particular foreman as it is to sccure expert
workmen the correlation .80 is nol only the one of theoretical
importance, but is, in fact, the correct one to use in regression
cquations estimating expertncss from trade test score. We
would have, letting %o = the loreman’s true judgment of
expertness and xe« the hest estimate of it,

(Regression of & true eritorion upon @
fallible score}. ... ... ...........[162]

—_ T oo
oo = Fign — I
o]
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The correlation re is given above and o is immediately
available, for we have, letting s bseripts here indicate scores
on successive comparable trade teosts,

. Xk oxp + - xal? L at-g
Fig = 1 2_-'\,"_ i} — ?‘ ap + 5 g Oh€g .. [163]
b T

And if the ¢'s are equal and r stands for the average of all the
inter-correlations hetween the tests this reduces lo

gz = av'a + fut —__ét);' (Standard deviation of the sums

of & comparable tests) ... .. .. IIG{ﬂ\’
or, dividing by a and now letting g, stand for the standard’
doviation of the average of @ guch tests we have, ,‘.}‘
N

|I_-—r: (Standard deviation of LF1:€:’&VL‘.;’~
ages of a comparab‘lh} ests) . . [165]
And finally if a approaches = .
oo = oVe  (Standard deviation %1;% averages of an
infinite no.mber ¢l ‘eomparable tesis) .. [166]
Since o,< o, the standard rleuatlorfof the true ability of a
group is less than the standard d{c;'e iition of the group upon a
singte fallible measurement. f-\céordmglv measures of dis-
persion based upon single tes‘ts AL RIS RbL- §eg}r§§ﬁnt the
true distribution. Estimatcs of true digpersion are given by
formula [166].  As iy ok¥idus from the derivation, ¢ and r in
the right hand mcmﬁa} shonld be determined from the same
population, or at. ]ea';t from two populations which one would
expect 1o be egqually homogcneous T have clsewhere (Kellev,
1oLy meas.) 'ﬁssed {ormula [166] in the process of obtaining a
measure N\i::ue overlapping in ability of two groups.
Retum\ﬁw to formula [162] we obtain

. '»\' 3 . remVme . __ o {Regra:ss'uon of a true
\W g = == T AT T A criterion upom a

3 £
\ 4 MORE ' fallible scored .. .. 162 a]
The reader will of course notice that the right-hand member of
this equation is the same as that of formula [gt ] which gives
the regression of a fallible criterion upon a fallible score.  We
thus have,

Eogn = by (Regression of a tre criterion upon
a fallible scored ... oo ... (162 8]
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and
Tp = byxr (Regression of a fallible criterion upon

a fallible score) .. ... ..evee ..o doT B
or the estimated true score is the same as the estimated single
score. This s, of caurse, as it should be, and further 1t leads
to the interesting fact that the standard errors of estimate in
the two cases arc different. We have

og.1= moko = ag V= 720].
{Standard error of cstimale of a fallible Crid
terion by means of a faltible score) € ,\186]

aml—awkm1~—an\f1’au\|l— —a'u\’?‘ru-—rz};

Fuo
(Staredard error of estimate, aaf‘ & t§ ui Cri-

terion by means of a“s:Ql}b‘le score] . [167]
Thus we are able to eslimate the true<beiiérion score with
smaller error than the fallible criteriom, »This s very salis-
fving. It means that in general, trade :L\(,sts, intelligence tests,
cte., actually accomplish a more as®ate classification of those
exammed than indicated by the, L@ﬂolatlon with the criterion,
since the criteria used are reguiculy fallible, The rcliability
coefficient rpp 15 of necessxpy gf'edter than 7%, but with exccllent
tests and poer.oriibauli ey ook ke very much greater, so that
errors of estimate in pladement may be small, and in fact much
smaller than usually) conceived. As a practical consequence
it i3 seen that a\x\tcmatm crror 1in a criterion 18 very vicious,
but that the.éhance ciror has no consequence whatever except
in the reguiFing of a larger population in order to establish
results"zif‘i‘ﬁh’ equal certainty.
Seot'gn 60. Accuracy or PLACEMENT oN Basis oF & SINGLE
ScoRE
If in formula {162 ¢] we make X .. the average of many
such scores as X, we have

Xy =71 %,

o0
or

X = i X, + (1 — r1) M: (Regression of a true score upon a
fallible score of the same function) . [168]
The reason the correlation cocfficient has replaced the regres-
sion coefficient of equation [162 5] is because we are here dealing
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with similar scores, implving equal standard deviations, so that
rii = 1. The accuracy of this estimate of a true score is
given by
v = orVrg —img
{Standard error of estimate of a true seore by means of
a single scorc of the same function)....... ... .. .. [16g]

This formula is very valuable as it enables a judgment as to |
the accuracy of placement. Let us be given an clementary
school reading tesl, having a reliability coefficient of .8 apda
standard deviation of 10 on test scores covering the same mnge
of talent as that from which the reliobility coefiicient WA “deter-
mined, If the sixth grade norm, or average scores équq]q 30,
the seventh grade norm 38, and the eighth grade’ norm 46,
let us determine the standard error of placemdnt of a pupil
as classified on the hasis of the test score, s\ We will first csti-
male the pupil’s irae score by formulag rg‘o] The standard
error of the cslimated irue scores, 4\’00, is given by formula

fr60].

gy = 10V 80 — 4 64:"—50—

The standard crror of plaocment of the chﬂd is 5 and the prob-
able error of placement a3, or ﬁ\f\“f) ARl ARE &M i erence
hetween grade means. ﬂhe question raised and answered has
not involved a critegiohvoutside of the test itself. With refer-
ence to that capclutj which i measured by the test, we can
say that the C]_\TOI' of classification is a certain percentage of
the differenc between norms; or, if the difference between
grade nomwgds called a year’s growth, a certain percentage of
a year \growth Much may thus be determined without a
Cﬁteﬂl’)ﬂ and this procedure 1s generally to be preferred fo
depisndcncc upon a criterion having a systematic error, such,
\for ‘example, as would be the case were a Leacher to systemali-
cally judge pulchritude, vivacity, or mere industry, as evidence
of reading ahility. In addition to the simplicity of the method
just described it may be recommended from the standpoint of
reliability. The standard deviation of estimated true scores
{estimated by means of the regression cquatlion) is o ., and
the standard deviation of lest scores is oy, Accordingly oo /oy
is a measure of the proporiionate reduction of error in the
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placement of an individual having a given test score, over
random placement. Thz smaller this ratio the greater the
reduction.  This quantity has a very small probable error as
will immediately be shown so that the proportionate improve-
ment due to the use of a test can be very accurately determined.

Let ¢ .1/01 = ¢ = the measurc of improvement duc to the
use of the test. Noting that the correlation between v and
rp equals 1.0 we have O

_ =7 —r2=7r{1—7r) .\:\'
taking logarithmic differentials, X O
2idi _dr  dr_ ~
Fe ¥ 1 — ¥ ‘Mj\'\.’

Squaring, summing, and dividing by N,
4% _ o 7% 2,08 )

L (R TR (¢ #20

gl (1 — 27)2 %
- FENS

_ (14 +r)1.lr~—zr]

a¥VE

(Standard error, B \the measure of improvement, over
\-rami(dlbl&mhhmﬂymlrgsmtmb from the use of a score

of r(,ha.blhty rl=rgl)o o [170}

g =

Fi

Note that if m%\ 5 this standard error becomes zero. In -
the derivationdef the formula second and higher powers of -
errors have, @5 usual been discarded. Their inchusion would
ghow thag’ibhe standard error of this ratio is a trifle above
ZOTO {hﬁn ri1 = 5. If the crror in #y1 is of the order .oz the
squdte’1s .ooo4, which is the order of the discarded portion,
‘?O“Lh'i,t ne material error is introduced in the formula by the

M\ Omission of second and higher powers of the errors in n if N
/ is greater than 25.  In fact, for ordinary values of ry; we have a
remarkably small ¢;. We need not hesitate to place confidence
in an obtained wvalue of i, even though the probable error of
the obtained 7y is rather disconcertingly large.
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Sectzon 61. AVERAGE INTERCORRELATION

The correlation rir has occurred in several of the preceding
formulas.  If but two serles of comparable scores are available
this correlation may be calculated in but one way, but if there
are several comparable series or forms of a test, which have
heen given, there are many ways of calculating the reliability
coefficient. Having five comparable series of measures x, %o,
Xs %4, %5 there are o possible pairings of serics from which fa
calculate a reliability coefficient, This would in itself k8.4
rather laborious task, but if the standard deviationssofthe
several scries are equal, or approximately so, the aﬁé’fﬁge of
these 1o correlations may be calculated in a siqg{a&éperation
since formula [163] may be solved for », giving )

&
g 2 {Average 111terw&clatum between
gy =7 a scries, s#h0se means, and
U™ e g standard d\'iatlon'; are equal) . [[71]
7

The magnitude @ is the number of serics ‘combined, so that it
only remains to caleulate ¢s and e Tf scores for each indi-
vidual on the @ forms are added, eséries of IV scores is obtained
whose standard deviation ig sy, Further the (aN) scparate
scores may all be entereds into A SEIG }E‘ggrbuigon and the
standard deviation, o, :ca\lculated Thus whenevor %he means
and the standard & \‘K‘Ld‘tlol‘l‘; of several series are equal, it is
practically as smp1§0 calculate the average intercorrelation
~as to determine @gingle cor relation. [t will now be shown that
when ranks i sj;ead of scores are involved the calculation of the
intercorrelation is still more simple. We nced o% and o, It
has alreQdy been determined in Scction 53 that if there are
N r:;mks, 1, 2z, 3,...N, their mean equals (N 4+ 1)/2 and
j;,bci“h’s'tandard deviation

12

Accordingly
P
Ll |
12

Let S equal the sum of the @ ranks for a given individual, then

28 _ . (&T_tl)
N - 2

and -
. z 5t [ (: ’V 1)72
Al i
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Substituting the obtained values for o% and ¢% and simplifying
gives
_ . afaN42) 1z %52
Ml T (N—1 Tala=n NV 1,
{Average intercorrelation between s serivs of N ranks). . |172]

This formula may be illustrated Ly a problem drawn from the
writer's material. Six judges, K, T, U, B, L, H, rank ags
cording to merit 12 answers to a given problem as follows:

ne \
Ranks Given by Judges N\
~ -— . N —
ANSWERS K T 7 fii ‘ L ‘ H ‘ SR N5
K & 72 . -
A I 5 7 10 z | 5N'F Qo0
B 2.3 @ 4 6 1 3 AN Y30.5 930.23
C 2.3 3 1 a | I Y 13.5 15225
D 4 z 2 it 8 ’::\\,;' | 30 GO
E 5 12 3 I 4.5 M0 1 35 1,225
It [ 1 5 a ") T 23 324
G 7 It Lo 8 (2" | 1 32 7 2,704
I 8 9 5 7 ,} “6 II ‘ 16 2,176
I 9 4 9 TN 6 47 2,200)
] 1o 7 II | % © 8§ ! 30 2,500
K Ir O} 1z (\“9 10 12 | 6% 4,006
L 12 8 [FRN IL 7 47 2,209
LAS dbr al{hbrc ry.or I,jn 20,500.50
a¥\6 N = 12, 2.5 = 20,500.50
therefore, by torgrm}g. [t72], 7op = 3240

Such a T Bl’e;ﬂ as finding the average intercorrclation between
the ranks(of English compositions when 30 compositions are
ranke&\by 100 judges would require the calculation of 4gse
corrclahon coclficients, if no short-cut were available. But
b#f ‘the method illustrated the work could be done after the
:tabulatlon gheel is available in the time that might be required
for four or five coefficients of correlation.

Buppose for the data just given it is desired to find out who
is the best judge. The data are, of eourse, too scant to answer
the question but they will illustrate the method. We might
find corrclations rxs, #rs, #us, ete., and consider that judge the
best who agrees most closely with the composite ranking.
These correlations wotdd enable a ranking of the judges, but
they would be spuriously high because the rank of the judge
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himself is included in the S composite. We therefore desire
either rres—x the corrclation of the judge with the composite,
omitting himscli, or {rary rrv+ -+ ¥xE)/5 the average of all
ihe correlations of cach judge with the others. If judgments
arc cxpressed in the form of rankings, standard deviations are
cqual.  The formula derived below will apply not only when
ranls are used, but to any case in which standard deviations are
cqual. T.et ¢ = the.common standard deviation of the rank-
ings. Let 715 represent the corrclation belween the rankifxg\'
of one judge and the sum of the rankings of all the ju’dﬁes;
ineluding himsclf. Let r s - o be the correfation be’czvée;n the
ranking of one judge and the sum of all the ran]\sf\j;gs of the

other tadges. Let
_ rietrt+ o, \
Y A I 7\

renresent the average correlation betgv'e;’e,\n rankings of judge
(1) and the other judges, and let 7, edual the avcrage of all
the intercorrelations between the gdﬁks of the judges. Then

N

- 1 8t R
¥y = I S
14 4 — 717 L N

~  www.dbraulibrary.crg.in
where p takes all valuegffom 1 to a except the value 1.

B A
e 5 \"M

where ¢ takes all values from 1 to a, and ¢ takes all values
except the wﬁue .
\_E*cl(m—}—xg—l— +x) u’z—i-(a—l}?‘lpcr_

N oo, ¢ vV agt + —|— (@* — &) Fyu0 57

g

a3
S

w\:“\:' ! + (I:I — I) y'-f"

o ¥
\‘: 15 = Va—i—(az—a}fm
Solving for 71, we have

............................... [173]

B .5 Vo + (at —a)r rpq ~1 {Mcean carrelation betweoen

Fip = ¢ — 1 one series and (@ — 1)
others, in case standard
devialions are cqual) . . . {174]

The requircment that means shall be equal is necessary in case
formula [171] is used for the caleulation of 75, The notation
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ry was used upon the assumption that the scveral series were

gimilar, but note that ri1 of formula [171] and 7, in formula

[174] are identical in derivation. The average intercorrela-

tion 5 18 to be calculated once for all by formula {171] or [172]

and #s calculated by the ordinary formulas [go], [93], [94],
[og] or [142] for cach successive series.

Sey{er +axe +rx, — x)

S0 T Moy +at—air, —1— 2 = I)g ,:\:\’

{0 = T}7 ., y ”

V-0 f@-aim-—2@—0r, N\

{Correlation hetween one series 'md the com-

posite of (@ — 1) others in ca&a@ﬂndﬂrd devm—
tiong are cqual) ... ... L NN N [175]

N

g )
\ .

frgs—op =

Formula {175] involves r, which is alrcx@\cl)v given by formula
[174]. Substituting wc obtain S\

— (1 —-rs\/av‘—{az—a)rm)
I e T =

7o)
{Correlation ~Qé1.w eetl one series and a sum or
average .J‘f'(a — 1) others if standard deviations
W dhraaedpbaiary org.in . 176l

To llustrate these ¢‘o\nuhs we may stu_d}, the rankmg% of the
six judges K, [\\6 B L, H to answer the gquestion; which
judge agrees fnbst closely with the composite rankings of the
others: WeBave

x:\"' _ |']44 _ :[‘

K =\51:\'= T m T = 34520
\\ o5 = i@i‘ff - F@T = 13.6885
~O TapS = (30476254 -} — 12 [1'—’._.+ 1] [5 (122+ 1)]
s
Ks = E;‘T—s' = 80060

A similar determination of the other correlations gives the
table

Frg = H006 ~ *pg = .3086
Ty = 0004 rrg = .Boob
Fog = -7504 Tys = 6437
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These cocfficients establish the order of agreement of each
judge with the others, but they are spuriousiy high in that S
includes the record of each judge himsell. We will, thercfore,
knowing by previous calculating, ra, = 3241, use formula
[176] to calculate rgis—xy and other similar coelficients. We
ODTAL

TRig-K) = 0752 FB(S—B) = 0592
rris—r = 4TT7 7res—p = 6752 .
Fepis—iny = 6019 THs—m) = 4554 oA\

These correlations may be taken at their face valus, Ut is
seen that judges K and L agrec most highly with £he ‘other
]ud ses, while judge B agrees scarcely at all mth tbe average
oninion of the others, {

Sectronn 02, THrE EFFECT OF DIFFEREQ'RANGES UPON
CORRELATION OF SIMILARADEASURES
X 3}

I have elsewhere pointed out '(Kel’lcy, 1921 rel) that a
coefficient of correlation should IeNnterpreted in the light of
the ranges of the traits measy®d. This is true of all correla-
tions, but it mayv be most «8adily proven when dealing with
refability coefficients. /Lo quot¥ " T¥eabraibretyrengdn cited,
making such slight cha}rges as are necessary to conform to
the present notatlfﬁ\\

“The reliabilit{ coefficient is, however, not an entirely satis-
factory measiice of reliahility, for it is affected by the distribu-
tion, in thextrait measured, of the particular group studied.
To sec e"é:i‘eliabﬂity cocfficient of .40 from a group composed
of c,hiléh‘eﬁ in a single grade is probably indicative of greater,
noL ‘lc‘fss reliability than to securc a reliability coefficient of

e Jfrom a group composed of children from the second to
Nptwelfth grades. If it Is reasonable to assume that in terms of
true ability the spread of talent is four times as great in the
eleven grades as in a single grade, the correlation in the second
case would need to he .g14 in order to indicate as close a rela-
tlonship as that shown by a reliability coefficient of .40 in the
single grade. The following formula gives the relationship: -

Vi1l — R p) (Relation betwecn ranges in true

o® = ability and reliability coefficients) {177]

Zo VR U =70
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Formala [165] enables us to express the same relalionship
e with true standard deviations instead of those obtained
r single tests.  Substituting for a; and I, we have

oy |;'(T— E) (Relation beiween irte measures of
2;_;; o \'R (I_-— -rj dispersion and reliability coefficients
obtained in two different rangos,
when the measure is equally reliable
thronghout the two ranges). ... .. .. [1 79]
The fact that correlation changes with range malkes compa;'igdh.\
Letween reliability coellicients difficult.  If one worker seperts
g tost as having a rcliability coefficient of .40 and & $gcond
reports a reliability coefficient of .go for a test p gdrting to
meastre the same Tunction we arc not warranteddn concluding
without further data that the sccond test is thovmore reliable.
For this reason the reporting of standard gogers of estimate of
trie scores is 10 he recommended, for tl cs"e‘\\-iﬂ not change with
che range i the test is equally eﬁec@ii-‘f;' thronghout the range.
Knowing the standard crrors of @stimate we would still be
unable Lo compare two tests, if tI’n}Te is no equaling of the unils
of the one test in lenms of théfunits of the other. I the first
worker reports o slandard{error wivesthratdibsaryiongdn of 10
units, and the second g(‘?;}}mdard error of 2 unils, and if some
method of cquatingXthe scores (see Chapter VT) enahles one
to say that 6 unils in the first test are equivalent in range
covered to ong, Lihﬁ. in the second, then we can definitely say
that the firspybest is the more reliable, for 10/6 < 2/1. More
extende%i&ﬂssion of this point 1s given in (Kelley, 1921 rel.),
{

f‘,‘:e'}fij?}m'a 63. Tue Errect or DIFFERENT RANGES UPON
~ ) CORRELATION OF DIFFERENT MEASURES

In case two different series of measures are correlated it is
ustially not known just what is the nature of the curtailment or
extension of the ranges of the two series which has been brought
about by some sclective agency. In illustration; individuals
of one race are probably less variable with reference to general
intelligence and also less variable with reference to memory
ability than humanity iu general. But how much the decrease
in variability is, or whether it is the same in the two functions

Q.
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go and T, are the standard deviations of the two groups in
terms of truc ability, and ry1 and Ry are the reliability coeffi-
cients of the two groups. Solving this equation for the casc
in which 2o = 405, and 11 = 10, gives Ry = 014

* If the standard deviations of scores in two groups are known.,
it is not nccessary 1o make any assumption: for then the

following formula applies: O
F—— . . . N N
s M1 —R {Relation between ranges in obtaing® N
== VT — seares and reliahility coeflicientsNM1¥s
— ’ \/

In thiz formula ¢ and T are the standard deviationy of (he
scores in the two groups and r1 and Ry the e ';ikiﬂit._\_r cocifi-
cients respcetively. In passing, it may heoted that this
equation is an excellent criterion for dct.P\rmining whether &
test is equally effective in a range T a&/in another range o;
for, if the relationship just given J6Cs* not held within the
probahble error of the determinationfdt is evidence that hizher
corrclation is found in one part gfhe range than in another.”

The proof of the above fon}ftﬁas ig gimple. Let o1 = the
standard deviation of an amdly of single tost scores correspond-
ing to a givegdeughsennebiarthegone range of talent and Zi..
the standard deviat‘ign‘\for the second range of talent. Dy

formula [86) W\ -

.‘, Tlogn & Ty \/I [l ‘?’2130

but by formplalltoo], e = 711 so that,

: \2\“ T150 = 01 V‘I_T?'J_I
Similag&..; : )

A\ Zie=Z1 V1 — K]

bad uf the test is crually as effective in onc range as in the
“wther the standard deviations of the divergences of the single
scores from the truc scorcs are equal, ie.,
T1.20 = E’i-:ﬂ *
so that
o \ir_—__ft‘ (Relation hetween standard deviations and
R reliabality cocfficiems obtained from two
different ranges when the measure  is
cqually  reliable  throughout the two
TS e v e e [178&

-
# The validity of this equation is briefly discussed by Holzinger {1oz .
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Formula [165] enables us to express the same relationship
dealing with true standard deviations instead of those obtained
rom single tests.  Substituting for o and 34, we have

T ll'r (L — R) (Relation hetween true measures of

T NR (I - ) dispersion and reliability coefficients
obtained in twe different  ranges,
when the measure s equally reliable
throughout the two ranges). ... .. .. {170

The {act that correlation changes with range malkes comp,a.fis\(jz}
Lotween reliability coefficients difficult.  1f one workeryrépor(s
4 tesh as having a reliability cocflicient of .40 and{a second
reporis a reliability coefficient of .go for a t.estm};Kuriiorting to
mensuve the same function we are not warranted n concluding
without furticr data that the second test 15 ‘flte more reliable,
Por this reason the reporting of standard efedrs of estimate of
tree scores is 10 be recommended, for th’ésk will notl change with
the range if the test is equally cﬂ'cpt‘iise’ throughout the range.
Knowing the standard crrors of Sesfimate we would still be
unable to compare fwo tests, if.ﬂit‘l:e is no equating of the units
of the one test in torrs of sighunits of the other. Jf the first
worker reports a standap@error ¥resdbtadibrayongdn of 1o
units, and the sccond astandard error of 2 unils, and if some
method of equatin’}_f,\‘tﬁé scores (see Chapter VI) enables one
to say that 6 wilhs in the first ifest are equivalent in runge
covered to onel@init in the second. then we can delinitely say
that the ﬁrssitést is the more reliable, for 10/6 < 2/1. More
exhende%d}écussion of this peint is given in (Kelley, 1921 rel.).
!

Séefion 63. Tue Brrecr or DIFFuRENT RANGES UPON
R
2 \¥ CORRELATION OF DIFFERENT MEASURES

\

3In case two different serics of measures are correlated it is
wsually not known just whatl is the nature of the curtailment or
extension of the ranges of the two series which has been brought
about by some selective ageney. In illustration; individuals
of one race are probably less variable with relercnce to general
intelligence and also less variable with reference to memory
ability than humanity in general. But how much the decrease
in variability is, or whether it is the same in the lwo functions
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is not known., The correlation between gencral intelligence
and memory ability determined {rom a random sampling of
one range would probably be smaller than the same correlation
caleulated from humanity in general, but a priori considerations
would give but a poor estimate of how great the difference is.
In such a case and without additional data a correction of the
correlation as found in the one range to enable a comparisow
with a similar correlation as found in the sccond range 18
impossible.  If, however, the nature of the turtdﬂmeﬂt s
known and is upon the basis of one trait only we may deriv ¢ i
formula cnabling a comparison of correlation (_-Oeﬂ:(CTQlltb ob-
tained from different ranges.  Note that one traipidarbitrarily
curtailed (or extended) and that the other i3 aﬁég\ed only in a
consequential manner,  Let x be the variablezthe distribution
of which is curtailed, and let 3 be the offier’variable. In the
non-curtailed, scalter diagram let usg s‘a})ﬁbse the ¥ arrays are
homoscedastic and show rectilincar fégtession. The dropping
out of certain of these arrays, og of random parts of cortain of
them, will not change the slt;r{é’;bf the regreszion line nor the
homoscedasticity of the p-gtrays, but it may be cxpected io
change both, the sinnalsh atlé,emcg;h@r regression Hne and the
scedasticity of the x-gstays. Thus, designating the constants
of the uncurtailed &15tr1butwn by capital letters and of the
curtailed by sma,li}ttcrs, we have

2N o1 =% and by = By ... .. {180] and [15:]
but o\
\‘ g2 By biz 3 By
.\'\\" a7 I, a3 7 Za
and.\
\ f13 7 Ris

\ By formula [56] we have

gi1 =Yy = oy VI — %y = T,V — Ry
or

oofiz = 2Kz (Relation between correlations and y-standard
deviations whern x-ranges have been changed) . {182]
Note that formula [178] is but a special casc of [182] for by
letting the first variable be a Lrue score and the second variable
a score upon a single test of the same function, formula |132]
becomes formula [178]. We may relatc the y-scandard devia-
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tions to the x-standard deviations and oblain a relationship
between the corrclation and the standard deviation of the
curtailed distribution. By formulas {87] and [180] we have

Thr=ata B e [183]

alzo

Sguaring, summing and dividing [184] by the population gives;
for the uncurtailed distribution, o
{ N\
NS ©
. x,,.

an

; 3
z)_ = ,212622 Ty
¥

Bubstituting in [183]

g=ml+f1‘az( ) = s [(I—?"“m)-{-f”m( 9\] [185

Substituting this value of =% in formula [182}\dividing by o
and solving for Ky, vields PN
¥z E;T ’\ N

Rz = VT =+ ?‘212 (:2'1,"‘—71)2 e 118G
which is the result obtained by Pédrson (1903, inf.}.
This may be written in the fn;-m
Riz _ 7y, (Relau@w@eawmrrﬁfﬁlaywﬂf%dﬁ-

K1 ko L{’l termined from ranges ose
{ standard deviations in the case of

P {
\

\\ v the curtailed measure are in the

N ratio Tefos) oo [187]
The only qgsum;stionq underlying this derivation have been
rec,ﬂmcanty«@nd homoseedasticity in the curtailed trait. The
standard efgdt in K when thus determined is given in formula
[300]. Rfic accompanying table is presented to give a conerete
idea afithe differences in correlation that may be expected due
Lo @ﬁferonceb in range:

h
N/ TABLE XLI

— | _ — __ . | —
a1 Try = - .z = =, =.5 = ¥ )
& Tars RS K2 | RS RS RS g

- i S S
...... e |- ‘ S
750 .I33 263 387 503 | oy WBy2 Q7L
.50 IG7 .378 532 658 . 832 ! .oz6 087
.25 373 632 783 868 949 - 683 -997
10 700G | Sg8 1 .953 | 975 -991 |' 997 | .9093
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A situation in which the ratio of the standard deviations maw
be determined is when the curtailed distribution is a part of
a normal distribulion, We have already noted [181], thai

a P
f'_w;- = _RL‘! — (,m == Bgl

Ty 2

< is nocessary to remember that the first variable x 18 the ong
upon the basis of which there hag been a curtailmoent of disisy
bution; that is, whatever differcnce there may he he‘rweQ’w\m
and X, is consequential to an 1mpose,d differcnee in o ‘md
This equation should be valuable in (Iotcmuumk x\hmh =.'..i,ﬁ
two functions is the more influential n ccmsmw &cﬁcnivw
Suppose that for a narrow and a wide range }ve}ﬁ1.1(.i bay = ap-
proximately By, but that by does not = By This sugge
that trait (1) is the causal trait in bringingdbout the sclection
and trait (2) the consequential trait, orlalére accurately stated.
that trail (1) is more closely relatgd Mo whatever is the cause
of the eelection than is trait (g) “Here again the regression
coefficient is the significant COnStdﬂt for purposes of interpre-
tation. o
Brown (Brown, Carls- “Ske Verkes, 1921, pp. H29-632) has
utilized certmﬂ‘pxd#m‘&l@?ﬁifﬁ%ﬁﬂrmal distribution in deter-
mining the ratios ogthc standard deviations and thorefore in
determining the, (\Tcld’tmns m the two ranges. The Division
of Psvchologysfthe Surgeon General’'s Office found that many
of its inteﬂi;génce tests showed evidence of a4 “jam™ at one or
the othe(}xtreme; that is, the test was {oo difficult, resulting
in largéﬁumbers of zero scores, or too easy, resulting in large
nugibers of perfect scores. Except for the extreme scores
:moqt of the iests gave approxitmately normal distributions.
\ ;Acmrdmglv the extremes of each test distribution were cut off
and the correlation for the resulting scatter diagram calculated.
This is an » from a curtailed distribution. If the ratio &/
can be determined, formula [186] will give the correlation R
that would maintain throughout the entire distribution if the
undistributed oxtreme scores could be replaced by scores as
diseriminative as thoge in the middic reglon of the distribution.
We can obtain o/,

Let us be given a normal distribution of standard deviation

e
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¥y and cut off a proportion ) at the lower end and a proportion
go at the upper end, leaving a population of {1 — 1 — ¢u),
which 15 the same as (g — go) in the usual notation as given in
Scetions 24 and 27, from which the correlation 7 is obtained.
No curtailment, except consequential, is made in variable 2.
Let us suppose that the standard deviation of the non-trun-
cated normal distribution & s cqual to r.o. Then ¢ as a
vroporiion of ¥ 1s the only constant needed in order o use

N

formula [186]. The standard deviation of that portion of the™*

distribution, as shown in the accompanying diagram, lying
N/

P

O
between the ordinates x; and x; is regliged. If the equation
of the total normal distribution is e

2N

2 =256 208

C % d library.org in
the standard deviation ofzdlte trﬁ‘{u\éa\tﬁce&rf)%&ﬁ%rqsoﬁvlen by

g

P\
NS 2
'\\"'f zx2 dx
\ kS o
N d
s\ g1~ g
PN\ e
\J zx%¢
N \/;Cl

."\‘. . R )
integrategkby’ parts and cvaluated at the limits gives
‘w,\ sy — xate 4 (g — g2)
\WQ\d the distance from the mean ol the portion to the mean
dighe total normal distribution, is given hy formula [55] s0 that
i WyEy — Xl 2 — 2412 (Standard deviation sauared cff
5 Cg— g [gl — g a portion of a normal distri-
buition of standard deviation,
=y, equalto Lo} oo [188]

Brown has called the right hand member 1 + J and introduced
J into the equation giving ». We will, however, leave formula
[186] as it is and expect o1/Z to be calculated by the present
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be the standard deviations in the unselected distribution and
let the selection in x alone be such as to change & 1o &, and
let the selection in y alone be such as to change ¢ to 5. Let
Z1 be the standard deviation of the x's and 3. the standard
deviation of the s in the doubly sclecied distribution, To
point the relation between s, and Z; we may write

Z; = the standard de\ iation consequent to the direct selec-
tion of the x's ¢md also duc Lo Lthe indirect cffcect ot A
selection of the v's.

51 = thest 'mddrd dm 1ation consequent to the direct belbc-
tion of the x : N

Thus 5 18 not a standard deviation determined 01Lh::1\f*rom the .
original or the doubly selected popdlation. 1t midy, however,
bhe determined by formuta [188] or othoerwige, Sithe nature of
the seleclive agency operaling upon the 5"%&15 known., The
symbols s and I have similar meanings when dealing with
the »"s.  Pcarson (1go8, inf.), ql,aﬂmg with an original, normal
corrélation surface has given form‘uhls showing the effect of
douhlé selection upon means qta.nd'x.rd deviations, and correla-
tion. Letting & = si/oy, & =“%'oy and letling small lellers
represent constants in treebra BT AR STEI 1 and capital
letters in the sclected, hi§ Jormulas may he cxpressed:

TNy = fooy, Bty PN Given by Pearson (1008 in'}  [18y]
Za = f (5a, ts, trgpi ; Given by Pearson (1908 inf) [18g a]
= & (o1, o z}h Wi, fr, f2, ¥)  Given by Pearsun (1908 infl) (189 4]

ey = & {rz.g{v m,, My, fo, 11, 1} CGiven by Pearson (1908 inf.} [189 ¢
R1:= ¥_ - _.__E‘fz — ———
— (I—Ff)‘\1~—r1n{l--f2z) .
.. 4 {Relation between 7 in a normal correlation
a\"¥ surface anil R in the surface obitained
\ 4 ) [romm the preceding by double selection) . |igo]
Theoretically one conld solve equations [18q} and [18¢ a] for
H and £ in terms of o, oy, Ti. 2 and r; substitute in forpula
[1go] and thus relate R with » knowing the unselected and
selected standard deviations. Howover, a solution of the f's
in terms of the other constants runs into a bi-gquadratic which
apparently does not simplify so that the symbolic solution
is not here atiempted. The numerical solution for a given
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formula [188] in case of truncation at one or both ends of a -
normal distribution and the resulting value introduced imto
formula [186]. Many very neat illustrations of the aid in
interpretation vesulting from the use of this formula are given
in Yerkes (1921). One word of caution is offcred. If multiple-
correlation coclficients are being caloulated it 1s absolutely
nccessary that all the data be consistent, Otherwisc such
absurdities as imaginary correlation coefficients may resully
Presumahly if there are several variables, and every tim€ )
variable enlers a correlation table its distribution is cufteiied
in one certain manner, not only would the #'s, or thelcerrela-
tion {rom these fruncated distribuiions be cons"sstqnj',fwi{h cach
other, but also the R's, or the enlarged correlat«itm\s found by
correcting for limited ranges. I have not fedven this statc-
ment, bul the converse is certainly obviegs/ that if the cut
oceurs in several places in the scveral scatfer’diagrams involving
a certain varfable there is no statjsiieal imposition making
the #'s consistent, so that both the'7's and the R's may be
inconsistent. On page 633 of [Nerkes (1921) occurs a table
showing that army intelligcnép'%est Alpha, was cut between
scores one ‘A -dbraukibigEyebigter diagram and not cut at all
in the other correlation £dbles. There is no evidence that for
these particular da,t:{a,ﬁy inconsistency has been introduced
by - this proceduse, Mout if the correlation had run high,
.990—.9gg, ingteaddo! being loss than g8 the fack of a neces-
sary consistpni:y\' in the original data would be serious,
\’\ :
S&'f}'@i" 64. TeE Errect ofF DouBLE SELECTION UPON
N CORRELATION OF DIFFERENT MEASURES

\ zi correction formula is available in case there has been

\sélection in both variables. For example, consider a corrcla-
tion between heights of brothers and sisters when brothers
between heights @ and b are used and when sisters between
heights ¢ and d, thus dropping out all pairings in which the
brother’s height lies outside of ab, irrcspective of sister’s
height, and also all pairings in which the sister’s height lies
outside of ed irrespective of the brother's height. Here there
is selection both in the x trait and in the y trait. Let oy and oz
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be the standard deviations in the unsclected distribution and
let the selection in x alone be such as to change o, to s, and
tet the selection in p alone be such as to change o to 52 Let
% be the standard deviation of the #'s and = the standard
deviation of the 3's in the doubly selected distribution. To
point the relation hetween sy and Xy we may writc

2, = the standard deviation congequent to the direct selec-
tion of the x's emd also due to the indirect efiect -ofa

selcelion of the 3's '\ b,
= the standard dovntmn conscouent to the dircet 5@~1€c-
tion of the s, Y

Thus s; is not a standard deviation determined cithér from the .
original or the doubly selected population. Ttadny, however,
he determined by formuala [188) or ot.hcr\visg.,\iﬁ the nature of
the selective agency operating upon the #€hs known. The
symbols s, and Z; have similar meaniggs)when dealing with
the ¢'s.  Peéarson (1908, inf.), starting Sith an original, normal
corrélation surface has given formilas showing the effect of
double selection upon means, stanc}ard deviations, and corrcla-
tion. Lotbingy b dbraubibrary=088bn and letting small leticrs
represent constants in thedihselected distribution and capital
letiers in the sclected, hig fermulas may be expressed:

Zy = f (o by, ba ] \\ Given Dy Pearson (rgof in®)  [180]
Ty = f {2, by, Lyt Given hy Pearson (1908 inf.) {189 ¢}
o= ¢ (o1, as,%f, ma b, fa, #)  Given by Pearson (1908 inf.) [18g 4]
e = @ (:r;, }x e, B2y, tyy 4, 7)) Given by Pearsom (1908 inl.) 189 (]

h’lg ?&\e(—:— ft’ . e —
i (‘—52)'\«"[—?‘314(1—{)
., \‘ . (Relation between 7 in a normal correlation
~\J surface and R in the surface obrained
\ } Trom the preceding by double selection) . {1ge}

Theoretically one could solve equations [18¢] and [18¢ @] for
H and £ in terms of ¢y, 63, T4, 23 and #; substilute in formula
[1go] and thus relatc R with # knowing the unselected and
selected standard deviations. However, a solution of the fs
in terms of the other constants rung into a bi-quadratic which
apparently does not simplify so that the symbolic solution
is not hege attempted. The numerical solution for a given
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problem is however possible, so that knowing =4 and I, the
ratios & and & may be determined from cyuations [180] and
(189 4] or morc simply, if the necessary facts as 1o curlailment
are known, by formula [188], and substituted in formula {reol
to obtain R.

- Standard deviations may be either incrcased or decreased by
selection due to increasing ov decreasing certain arravs, 8-
cordingly therc is no necessity that £ or f2 be less than gpneNhor
that K be less than r. Whercas both the Iefrlc:.smi\h\e», n
the correlation surface or scaticr diagram giving £ ,lr{ recti-
linear since normality of surface was a%um@},g in general
neither regression in the scatter diagram ghging K will be
rectilinear. As a consequence formula [1g€]¥¢ not symmetrical
with reference to R and ». Selection catld conceivably be ol
such sort that both the selected andwitsclecied surfaces were
normal, in which case the ‘,q)propricﬁ’e\'formuld would of neces-
sity be symmetrical with respec‘r Wo K and 7. The nature of
the selection which would l’s.id to this result is worthy of
imvestigation, ™
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CHAPTER X
FURTHER METHODS OF MEASURING RELATIONSHIP N

- . N
Section 65. THE Variovus Wavs or MEASURING RELATIONSIN Y

The treatment of the preeeding two chapters h;cn;*::,howu
something of the extent and detail of analysis of infetirelation-
ship between two quantitative variables which aré¥elated in a
rectilinear manner, or al least fn such a mamfck that a simple
transformation will bring about rectilinesr regression. If
quantitative data are not of this natufdy or if the data are
qualitative, a number of accessory™ }hethods of measuring
relationship are available, none of{fhem, however, permitting
the detail of interpretation and ﬂé’.}sibility of treatment possible
with rcctllmcarl\yqx,cph%@agugp ép jyg variables. Three gen-
eral lines have been foll owed, in developing accessory methods
of measuring relationshipy (1) leading to measures of relation-
ship which would b{r;\icnhcal with the product-moment cor-
relation coefficiefd Provided data were () recorded in a
quantitative ingbead of in a gualitative form and (b) related in
a rectilincas ipstéad of a curvilinear manner; (2) devising other
mcasureqQ‘fﬁi'elationship; and (3) interpreting relationship in
Lerms giyprobability,

Theenly method of the second and third groups which has,
heyand cavil, demonstrated itself to be generally serviceable is

o~ the “goodness of fit” method developed by Pearson (1goo,

\ 'cnt) However, before treating of these methods we may
concern ourselves with (1) the measures of relationship which
arc equivalent in meaning to the product-moement coefficient
of correlation.

Section 66, THie Mepiax Ratio CorrELaTION COEFRICIENT

A method has been proposed by Thorndike (1913), which
has not as vet been studied sufficiently to establish its compara-
231
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bility with the product-moment coefficient for a varicty of
tvpes of scatter diagrams.  In the usual notation
J -}.'_I.":.dg) ratios (T‘;mrﬁndikt "y I'I]I[‘i]'].’!l'll

St rafio cociToent ol

corrclition) . ... .. 0T]
In using this method some convention must be adopted with
reference to x/a, y'o, wod oo ratios. In casc OTOUDIY 14
fine, so that there is the possibility of few such ratios, tleJaint
is not important; but if there arc large numbers of, {lzl&{{:lﬁlﬁ‘(:r;
in the mftervals having the means as their class wddads, then
x/o, /o and ofo combinations will make for, l,lilzéé‘rttli vy in
results. Calling 1/2 of these equal to s amiMbe other Lalf
equal to — 20 will throw the burden of (Tf{t&f&ﬁining rupon the
remaining ratios and, at least in the casa)ef a normal eorrela-
tion surface, this would not introduet\@ svstematic error. I
the grouping is fine so that the y&ho and ¥ = o Irequencies
arc lacking or ncgligible m niwmber, and if the correlation
surface is normal, then the n;g:.d'ian ratio for any array i3 cqual
to the productr-moment cpgrelation coeflicient, and, of course,
the g:diﬁ,groi the ratiog fom the entire table equals the product-

T

. R
?imdn ratio) = Median of (}’

W WL d

*

momen Coe%x%igﬁl 11 We thus scc that [or this wnportant cor-
relation surface, afid with fine grouping, Thorndike’s median
ratio coeflicicate hds the same value as the product-moment
coefficient,. F}Y her investigation ol this coefficient 13 needed
and, pendiggdt, the method should not be used indiseriminately
as a suhgtitlite for the product-moment method.
ThéZdistribution of ratios is very peenliar and the standard
d,\ciat’iou of such distribution will gencrally be infinite, so that
15 futile fo calewlate the standard error of the median ratio

e wcoefficient of corrclation. The quartile deviation of these

\ 3

ratios, however, is not infinite, and we may take as a first
approximation to the probable error,
quartile deviation of ratios
VN
(Approximate quartile error of the median
ratio coetficient of correlation) ........ [192]

Noting that oy ¥ foe _ x" Y

¥iew «for a7
the median of the %/ m]

yloe' x/oy

P.E.of ¥mda ratin =
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ratios will be closely egnal to

+/[midn of x/y ratios) (mdn of v/% ratios)
Thus, we will write, as a very much simpler formula to usc,

# mdn ratis = V/ﬁlll ol xfv ratios) (mdn of y/x ratios)
(Thorndike’s median ratio coelficient ol correlation). . [191 ¢]

There is a certain directness in interpretation which com-
mends this coefficient, but even in the form |1g91 ¢] it will hardls: O
prove more expeditious 1o use than the regular product-moment -
method, while its probable error will, for usual surfaces, alwaxsj’je
larger than the probable error of the product-moment quﬁ'i‘cierlt.

Lot us try this method wpon the very cur\-'ilincm‘fiﬁé‘urmlce
data of Chart XXVII. Wewilluse § and ¢ as thqg{g[‘s?che v wWere
x and 4, deviations from the actual means, fosledmparison with
our other calculations in which Lhey were sozised. We have
the ratiog listed below taking the mcasuv\é's.\b@' rows beginning
at the top row. ‘The ealeulation has P made by a slide rule,
so thal one need notl cxpeel an exackgheck upon every figure.
TABLR XK

IS W\\’%M.Id Hl‘aul;lm}a‘r’y.c rg.iny
£ ’ ks :

| 1 m“ ¢ |
I | 1zg oo | (T — 3.0 — 333
T 122 052 YO - 25 — 3750
1 4o OTR 2 — 2.4 - AT7
Ti 98 J02 0 1 — 2.2 — .438
1+ 8.3 S 1.6 616
2 7.3 LA Mad 1 2.74 305 +
2 b 6B N7 2l —ig3 — 058
T =8 gNY=— 120 1 1.0 ‘ 628
1 ,3-\(*” L1440 2 2,2 | 57 —
3 |48 éo ; 200 ‘ I ‘ 3.7 27T
IR S R o iy | 086 \
AN 4 226 0 3.0 3300 |
oo/ 39 | .ash o 510 .Ig6 i
‘1 3.3 ‘ 290 | 1 6.2 l 062
2 2.5 3331 2, -3y 031 ‘
T G300 3000 [ I i 2.61 L3483
2 |— 25i—q000 {1 | — —
2 |— 2 —4500 . . ; .
2 — .2 |—s300 ‘ ‘ | | Produzts S
1 " —8o |— .25 L. —1.215) —.159 —.193 +'—.4393
liItln 2.675 LIII ‘ 27 545 +
\ | lL-, . 5.95 | 20645 lr,573 i 1.235
I
. . R:E
#mdu ratio = .345 Quartlic error of » = s T 122
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This resul, # = .82 &+ .12, may he comparcd with ihe
producl-moment corvelation, » = .64 & .06, and the correctoed
correlation ratiosg, wm = .73 &£ .05 and gy = .74 &+ 05, This
for this particular surface in which the regression lisnes
do not pass through the intersection ol the means, the median
ratio correlation is less than the product-moment corvelaizon.
Thorndike (1913} gives an illustration in which the wfeRan
ratio cocfficient s 1.00 and the product-moment cocihm\ni 35
than 1.00. No gencral rule for the relation bumeoﬂ {hese
two correlations for non-rectilinear and non- homual‘rtu, surfaces
is offered. R

"
Section 67. CORRELATION DETERMINGDNFROM A CURVE OF
CORRESPONDLENCE B\X’l{;&NK
{

This mcthod, which may, moredficfly, be described as the
rank relation method, is propdsed by Otis (r916). 1t prob-
ably hag no essenlial ’-Ldvant,a’gci for rectilinear data, bul offers
promise if regressions arg curmhne'n Having a scattor dia-
gram, a lmc is to be drawn ‘which will cquale scores of Lhe iwo

www.d

xanbll;?élal THY, eo%ossmns are rectilincar this line is given by
the equation chrly yiey {(see Scetion 43), but if not rectitinear
some other %eb\ﬁcc musl be followed., Otz writea (1g10, p.
7200 “In order to get a better idea where 1o draw the carve
of relatioman auxiliary plot may be made . . . on the assump-
tion thag the true correspondence of the scores of the two
te%tc\‘zh\t'ruld be more nearly approximated by that of two scores

awing the same rank than by those of the same child.”  Otis

2 & H - . . . P - .
\does this graphically, smoothing slight irregularitics. Having
*this curve of correspondence by rank we may locate a value

on the x-scale for each value of ¥ (or viee versa) and call the
obtained value 3/; that is. 9" i3, in terms of the x-scale, the
equivalent ol ¥, Thus 3 measures and x measures have the
same variability and the same mean, Let us designate the
diffcrence (x — 9") by the symbo! o, and designate (3 — x7)
by d,.  This enables us to use formula [137] in the calculation
of the correlation. Otis notes that oy /¢» is approximately
cqual to

- mdn of t}_li! dx'st

mdn deviation of | x"s|
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so that, In our notation,

(mdn of |dxs")? (Otis' deviation formula
2 (mdn dev. of [ x's |} {or correlation) . ... .. [193]
or, if x-values have been transformed into equivalent y-scores,

{mdn of |n'u s1p

t=1 —mkv ()f \’55)2 .................... [193]

These two formulas are minor modifications of formula [131].
but Otis" manner of determining the d's is unique. These arg/
not (X — ¥Vs nor even {x — »)’s, bul diflerences when Ja)
unequal variability has been allowed for, and (b) \«lleﬂ ‘one
variable is transformed into a second by means of a cur {ilinear
relation line. Thus the so-called » obtained is in refthity more
closcly related Lo a correlation ratio 5 than to t,hé*correlation
coefficient #, bul it has an advantage over pNmythat not only
is the strength of the relationship measuredytbut the nature
of it graphically established. The m?ﬂ%d suffers with all
graphic methods in not enabling a cepelsC algebraic staiement
" of the relations which hold. We nﬁaj-*’expect the values ob-
tained by its use to morc 11ca1’lv’ap"pr0£1ch corrccted ¢ [200 D)
than the productymeidtradlibrany org.in
The insurance data of C,h'u:t “XXVII may be used to illustrate
the method. but to makesit a Jittle more algebraic than graphic
we will equate n1eaquxes bv the method of Section 35, that is,
we will call equ’xk{eitenmc values eguivalent and will not
resort to qmoothmg

$oomm T —

" TABLE XLIII
" ’t\“ . PEr CesT INsURaRCE
CuRg #PORDENCE OF i ! WiunEe 1% Force
M&W_Es wy Rank |. PoruiaTios Raxy Eqguiv-
R 4 \ Pli{e CENT RANK LBouiv- INSURANCE Alﬁlmr o
NniTE ALENT OF e The - A
TS | I’opuI\T:rIO\ . P,\rR:cll; Ixn- v Foxce PE\“I’{ I?]EE.
7N, N Der Cunt SURANCE IN T
PN \I_nbtfpra.me White “Fonce TPORULATEON
\ ¥ in Hoice Population WMuEAsURE MEASURE
i} {B) 5] | (d) (e} £4]
341 99 99 99 341 : 294
321 99 99 99 285 294
. 304 99 99 99 ; 70 294
Mean| 290 9y : 9% o7 219 2G4
2y4 | 283 99 \ 99 96 ; 1592 2494
272 94 a0 95.3 fisle} 204
272 99 99 90 170 294
| 250 o3 | 98 o7 224 204
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TABLE XLIIT — Coniinued

| " PER Cext | Toeme
. WuItE Lo
BopugaTionN

CoRRESFONDENCE (11

MEASURES Bv KANKE A
P'ER CENT |Ravk Eouiv- . -
S ¢ INsURANCE
i‘rrr‘L:I:L[TLEO:'\' P;L‘lirﬁ (il:\:— I Forci T
Por Cont SURANCE W | WHITR
LR e, GO e
@ ®» | @ @
f 26g g8 98 a9
254 o8 98 698
231 o8 98 98
244 4l 93 o
{ 241 08 o4 98
237 o8 43 98
{ 237 98 9o 95
234 o8 i o8 i 93
AY;
227 97 97 9
224 97 97 PR\ 2.
216§ 279 97 | 97 N\ 97
l 207 o5 v 97 ".3 a6
204 o7 |\ 93
202 ' a6, o 98
W\amggzlﬁl'%giglbyal V. 0?{3 in ,“:332 : 3?5
9o o {96 o6 | a4
03.5 m\ .
TG0 ¢ 48 95 99 3nt 55
185 ﬁ[ 182 \\9 05 o8 251 183
152 95 ag i) 237 i85
\ H
15624 o4 94 82 1140 176
r.rr~ 23 93 56 T03 T
56 90 90} BY 167 170
\Mor 83 83 83 142 165
’\w 138 | 87 #y 5%.5 105 i 138
\ 47 84 84 98
A\ 142 83 83 g7 2354 ! I47
N ] 207 142
& 4 136 { 140 B2 82 97 227 140
\/ 31133 82 82 54 rof 133
1o} 133 133
133 78 78 80
132 71 7T 44 96 132
126 68 68 67 721 120
121 [i¥ 67 87 154 T21
s | _. 5{58 54 R0 133 LO5
ro5 |57 57 57.5 105 103
103 56 50 65
161 54 54 LE] 126 103
a6 44 44 71 147 ror
8q 43 43 43 132 90
84 84
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The measures in column {¢) are insurance in f{orce scores
arranged according Lo magnitude, and the measures in column
() per cent white population scores arranged according to
magnitude. Column {c) is the same as column (B) and is
oblained [rom the first column of Tahle XXXVII. The first
entry, gg, in column (d} iz the column (b} cquivalent of 341
column {a), which is the measure paired with the first 99 in
Table XXXVII. As a sceond llustration; the fifth gg, first \
column, Table XXXVII, is paired with rg2. The valuc a2}
column (&), is equivalent to o6, column (&), which is accordingly
the value recorded in column (d) opposite the fifth og i SOlumn
(c). The mean of column (d) is equal Lo that oﬁ'\cglhmll (¢
and except lor the sglight grouping error in replaging o6 and
g5 by gg5.g and ¢3.3, the replacing of 82 and ;SKV 8o and 8o, and
the replacing of 38 and 37 by 57.5 and 57.5tHe standard devia-
tions are equal, so that we may use formufla} [131] in caleculating
the correlation. Thig gives r = .70. )

A similar caleulation, interchafigidg the vaciables, gives
columns (e} and (f) 'md the findls c-orrel'ltlon r = .65. Com-
pare this with # LA bf?ullfu ary 18 = 74 of Section ga.
These two corrclation coefﬁucnts, or correlation ratios as they
arc morce closely relatgg’t"% 7 than to », should be differently
labeled.  Otis did rfs(.\fjoint out the fact that there are fwo
for each table andgthal in general they will not be equal.  The
method is stilhiw the elementary stage and needs {a) rclating
with # and \yiih’n‘ (b} an algebraic method (such as here used
in cquating™percentiles, or still better a method resulting in the
cquatiofhof the line of rank relation} for determining the curve
of r(,l‘a%mn by rank, (¢) determination of the types of corrcla-
By, Ssurfaces to which applicable, (d) utilization of coefficient
\nﬂ relation line obtained to estimatc one variable knowing
the second, and (¢) determination of the probable errors of
the constants involved. The most interesting feature of the
method is that but a single relation line is used. However,
the physical significance of this line will probably not be found

to be as definite or serviceable as the regression lines of a cor-
relation table,
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Section 68. CorRELaTION RaTtio METHOD

Formula [86] gives the relationship between standard devia-
tions of arrays and total standard deviation, and the coeffi-
clent of correlation in the case of rectilinear regression. Solv-

‘ing this for * we have
el

i A
Formula [87] shows that, ¢% — %2 = azx_y‘ leading to ()’
o AN
r=—" A
(g} ( "N
and also )
3 w v

That is, if the regression is rectilinear ghe’correlation coefli-
cient is the ratio of the standard defiation of the means of
the x-arravs to the standard deviabiow of the #’s: or it is the
ratio of the standard dewviation bf.the means of the F-AITaYS
to the sta@qlqa@rgﬁﬁi@,l;@\o jﬁ’e s, This form suggests Lhe
- use of these ratios when rggressions are not rectilinear. The
resilting values are called® correlation ratiog and are repre-
sented by the symbql{i, eta, and note that there are two for
cach scatier diagg@.,}
%

, : ¥ - ; :
N == - T (Correlation ratio of
T \

W o7 ®upon ¥l ..., {194
"/ _ S
AO o = T¥e _ I, _o%y (Correlation ratio
PR PPN a’y of y upon x) .. [ig4 ¢}

The, Correlation ratio is of necessity greater than zero and less
thafl one. The proof of this is left as an excrcisc, Further,
m;?}'; is the standard. deviation of the z-arrays around their

) means, whereas o1 18 the standard deviation of the s-arravs
around the best fit straight line. The contribution of each
array to o1a will be greater than the contribution to oy, in
case the mean of the_ array is not exactly upon the regression
line. Thereforc 0w < o1e and as a consequence 4 > |I:r|, and
w¢ > %, The difference belween 4 and 2 is ¢ and is a measure
of non-rectilinearity of regression. Therefore the test for
linearity is

=5* — ¢* (Test for lincarity of rogression)
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We need the standard error of this magnitude. Biakeman
{1goz) gives it as
(Standard error of the

g, = _.QT — a2he Y'Y %
£ \/}\7(r [ =) (=it Iﬂ test for lincarity). . [196]

or approximately,

if 9 and r are not very different, A
The caleulation of oz, offers no difficulties. The mes{n\'fc\)f.\
each array is calculated and the standard deviation of these
found, taking each mean as many times as there are &neasures
in the array. If the population is small the datd(Should be
grouped so that at least {wo measures are foundé} each array,
The scatter diagram on page 241 shows thégrouping that
may he emploved for the insurance data §fySection 52. The
class marks to the nearest §1.00 in the jn?mr'ance in foree data,
and to the nearest 1 per cent in per €&t of white population,
arc the means, not the mid—pointsjofintervals, of the measures
grouped, The origins are, W@iﬁ?&ﬁ%&iﬁ}ﬁgrwﬂ 1 per cent,
the means of the total population, Neglecting the slight error
due to not keeping fractional parts of the 8r.00 or parts of
1 per cent gives the t'a{b]b and caleulation on page 241. '
The coarseness b@g”rouping affects the size of 5 With
grouping so finethat but a single measure is found in any
array, 1 would @hén = 1.0 and of course would have no real
sipnificancesMat order to obtain a reasomable value for 4
grouping /should be sufficiently coarse to result in a fairly
regulag\\sﬂthough not necessarily straight regression line,
Peamém (1911 cor) has pointed out that the significance .of
a Eliould be judeed not by its difference from zero, but by its
\di?EErence from the value that is the most probable in case of
zero correlation between the two variables, Or i other words
he has pointed out that a correction to the raw ela is necessary.
Since the standard deviation of means of arrays are of necessity
posilive, this value for finite populationsis asa matt‘er 0? chance
greater than zero, and if the population dealt with iz small
and the grouping fine it may be very much greater. The
chances are, not only in the case of the zero relation, but
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whatcver the relation, that the obtained 5 is Jarger than it
would be from an infinite population. Let » be the obtained
correlation ratio yq the most probable ratio from an infinile
population, And Jel x equal the number of arrays; then,
when the frequencies in the arravs do not differ 1o a very

extreme manner from each olher we have, as given by Pearson,
" (L - I) N
" L J,l\r \
e L {« — 1} {Eia corrected for Lur;
N fine a groupm;;) ]I(,JSJ

Coarse grouping was resorted to in the ca]culqtlon nf 7 just
given for the purpose of eluminating as much ;t*s poscxhlu of
the error coming Irom too fine a grouping. B’ut even 5o the
correction is not neghgihle sinee

ey _ 9 N
(79550 — <
f"IEI? = = '5344‘;‘(};’?12 = .%310
I~ = O\Y
18 « N\
www.dbraulibrary ong.in o
.80‘1%55’—0'9% \%
= —-—-—&— or L = 7394
I — —5
n48

The correlation rg‘b\s) does not enable an estimation of one
variable, Lnomng\\& second, as does the regression eguation.
Iis value Hes i, giving a sort of upper limit to correlation.
The use of doine curvilinear regression line or transtormation
line, as ixn\fhé casc of the insurance and per cent white popula-
tion datavof Scetion 52, may lead to an actual means of esti-
may’qin\t;bne variable knowing a sccond.  The correlation ratio
igtalso valuable as used with the data just meniioned in leading

(3 ¢, and to the standard error of ¢, thus determining the likeli-

\“ hood of viclation of data by the assumption of a rectilinear or

other definite regression line.  The standard ervor of 4 35 usually
talken as

1 —x* (Slandard error of the
VN correlation ratio). , . .{109]

&n =

but if ¢ is large, due to too fine a grouping and small population,
the standard error as given by this formula is too small and a
correciive factor is neccssary.
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TABLE XJIV

v
+ JE— - -
Per CENT WhHitE Popurarios R ¥ & % f({é)“
i
g4 | 56 6o j B2 ) ut L s | wb| o7 | o8 | oo
L _ l% N S U DUV PR ._,ll_ A= - —
2 S RO ORI U U WU N NN (N JOF SUNESOO E -AU R ¥4 :
(2L T W IS SRR SO R e T 123 ] PRI X ¢
[ i 17 i
i 307 L T z =5 — | LN s
R N [ Z (28N
& l.__l.__ R JR— — | — .___..ll e —n = —- -
@ B\ W
£ || 253 | r l I || 2 3 73 | FN\sun2
5 '!__ S el - = — e ___.J_ —j ";{\_ y S
X 5| 240 ] / I 1 3 5 sl 102
A Tl I T A O N O O N Y S - o 0
EN 230 | ! [ T X T || e i
z|
g e — e — | —— = . -
5
197 ( T 2| = 35714
55 T H 1 433.3
A7 T I z 53,25
»,
W 5 35378
— | —— _‘__m}‘ﬂj_l._ —
_2 | Y AN R, N M. }_a
I _“T‘?Yﬂ‘:&:ﬁﬁratﬂl—ﬁl‘arv.orgmrs i
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3
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The usual calculation gives oy = 64.4671 and o = 15. 7778

As caleulated in the accompanying table oz, = si.2760 and
gr.2760 and = 12.6515
o7, ~ 12.6515, leading to 9 = Gaabin 7055 T s

= ,3019.
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The correction n 4 for too fine a grouping grows smaller as
the number of categories decreases and this is as it should be,
but an improved result is not obtained by a very coarse group-
ing, as then a correction for too coarse a grouping hecomes
important. This is based on formula [1o2] and is the same
sort of a corrcction ag given in formula [103] for a correlation
coeflicient, calculated from the means of the classes. Letting
Ay be the value of » cotrecled for use of class means 1t mak >
be readily shown, as has been done by Student {191 3), that,

_ Mgy (Correlation ratio wrru,'bed

May = 'ry; far coarse groupmg) ..... [2o0]
and
L ¥
Ty M\
Ay = 0 e O 2 [zon a]

?’xx

To apply the correction we need to km\v rre and 7. The
correlation between the class meanss and the deviates is
72 = 0/ oy, and for the second variabl®yy, = ¢y/¢,. Thestandard
devl'ltl()ﬂ‘% o33 d%raulqﬁ %1%}% alreddy been determined in the
C.ilLLlldthﬂ of my and fue f%&per,tlvelv Were a normal dis-
tribution assumed o./6, could be determined as in the last
chapter, but, though pra(,f;ically it might lead to good results,
it is theoretically unsmmd for most distributions from which
% is caleulated. Bér “the ungrouped data here given o, may be
determined frope the raw data. Caleulation without grouping
from Table XXXVII gives gy, = 64.6746 and o, = 15.8646.
,f\ccr;)rchngQr

&/ 64.4611
'\\I”\Hx 6: 2746 = 09670 and ryy = 1; égiﬁ -99453.

Thﬁs for the corrected correlation ratio we have

4 0\' 3
& \d Mgy 7310
Mgy = = = = .7350
\ ) My oo 99433 735
i/ Rerde e %
gy = 2= D3 g

T 99670

The values caleulated as o, and ¢, have not heen entirely
freed from a grouping errvor, particalarly o, since perccntage_s
recorded in the fundamental table are to the nearest 1 per cent
only., To correct further it would be necessary to make some
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assumption as to the form of distribution. Plainly the assump-
tion of a normal distribution for the percentages of white
population will not be sound. On the assumption that the
distribution may be represented by a scrics of trapeziums of
equal base, Student (1913) shows that the corrective factor is
V1 + /{12 ¢?) in which b is the unit of grouping and ¢ the
standard deviation of x in the case of 44, and v in the case of
Ney.  Applying this further correction o 9., we have

oy = ‘TSSO\II + TQ_X_TIS_T-#ﬁ =.7352 . 0\:>
This correction is merely a re-application of the ry, éli:rision
and is warranted duc to the fact that division by {Qt4s3, the
7y, Obtained, allowed only for the grouping of‘gveral per-
cenlages and not for the error introduced by Gttering values
in the original table to the nearest per cedt’ only, For the
data in hand the only correction rezlll}r:'ﬁ%'rth while was the
first, formula [1¢8], that for too ﬁm;~h6i1ping. The second,
that for too coarse grouping, willamgunt to 1 percent if b = /2,
or in the case of a normal dist;ibﬁtion if there are some 1o or
12 stevps, or intervals. Thiag:‘gg@gl_ﬁﬂ%a%&ﬁ 3#511?)51_0?%"]?101"% the
eqguation P\
\\/1 +E2£o:i = 1.01
A correction for G(é)ui)ing by means of Sheppard’s formula
[68 2] applied ib. ﬁe standard deviation in the divisor of the
formula givingsthe raw 3, is appropriate, but no such correction
for the stafdard deviation in the dividend is to be made for
this is acgtandard deviation of means, or points, and should
not b?(cdrrccted by Sheppard’s formula which applics to con-
’ciﬁ@bus variates,
& “\As there are so many corrections which apply to % the fol-
lowing summary is given,
Iet o3, = the standard deviation of the means of the x-
arrays,
Let ¢, = the standard deviation of the x's,
Then letting n.» equal the raw correlation ratio of the x’s

upon the ¥'s we have

77,
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Letting gy equal the valuc after applying Sheppard's
correclion for grouping of the x’s we have, if # equals the
number of units per group, _

o, e, )

STy = | ::L—};_:: = gf\l + 12 oiy = Mxy r+ 24 it - 1194 B

ﬂ':\:‘\l T — 1'2—6—%:

Letting « stand for the number of y categories, N the total
number of cases and s the preceding value of g corrected foi\
too fine grouping of the 1's, we have,

. sﬂ::*y — & — /N P "
B Py 1 SRR (s ol

N ¢
RE )

Letting r,y cqual os/cy, L., the correlation hétween the
class means of the ¥'s and the y variates back 6f%@he grouped
data (note Lhat e i3 the standard deviation ShWMe class means,
but that e above [1g4 1] is ihe standard, ‘fbvialion of class
indexes), and letting e cqual the Qﬁr}ceding 7 corrected
for too coarse a grouping of the 3"s wé Bave

ey TS e e [200 B]
www.dbraulibrary or é ; mxs: \ R
In the case of equal inlcryals in y which are not too large
M IEERY . . :
(say not > Z), 2, =ty (I + - 2-)111 which oy 18 as before the
o%
standard deviation of Means of y classes and »' the number of
units per group of\-'\s, so that 1/, then equals

PN “0’ Iz.lg -
\<& (I +24rrzy)
and we ha,\e e
\M\ ey = e (1 —1—24 g-z._,,) e 200 €]

Tn, f208 o] we may substitute the standard deviation of class
:iw(défces for oy, the standard deviation of class means, without
\”\ﬁﬁpreciable error, but we cannot make this substitution in
the general [ormula, 7., = oy/e, [102], which is the formula
which must be used in case the grouping of 4's is in very broad
and unequal intervals, and cspecially if the classes are cate-
gories not related in a numerical manner.
These correclions to 4. are not equally demanded in the
case of any given data. Correction [198] is likely to he the
most necessary. ‘The finer the ¥ grouping, that is, the larger



METHODS OF MEASURING RELATIONSHIP 245

the number of y-categories and the smaller the total population
the more important is this correction. Correction [1g4 ] is
important if the x-grouping is coarse and correction [200] if the
y-grouping is coarse.  All of these observations apply to ns, and
of course similar statements will hold with reference to ny., if
in the statements v and x arc interchanged throughout.

The student should note that the value of » used in the.\
calculation of §, the test for lincarity, and in the calculatiog
of the standard crror of §, is the raw valuc and not the(cer-
rected value. Although the corrected value of 4 ghmﬂd fiot
be used n these formulas (1gs5], [196], [197] as it WS “fot in-
volved in the derivation of ¢, ncvertheless thc~ ’f’o‘r‘mu]a for
{ calculated from raw 4 may be expected to gl\.ﬁ\i value which
is materally too Jarge, and a value for its sbanddrd error which
1s relatively too small, if grouping is fine d{qg} population small,
Accordingly the { test {or linearity is 1‘\00 rigorous if grouping

X

is fine and population small. PAN

Section §9. METHOD OF, ’PARABOLIC REGRESSION

Many scatter diagrams &mw&qaihwﬂﬁmm @érﬁe,&ular curvi-
linear regression lines, If@%single positive or negative curva-
ture is present the regfdssion line may sometimes be closely
repreqented by a pa'f’e?bola ¥ =a+ bx+ cx?;, and if the re-
gression line show\\ single inflection the cublc parabola,

{ v = o 4 bx 4 cx® + dx?
may give a; g’&otf fit. DPearson (1gos) has developed the theory
of parabc'rﬁc’ regression and ilustrated the procedure with
certaig dgta. It is too involved to give here, but must needs
be ré%r“ted to if the specific nature of the curvilinear regres-
smn' line and the numerical values of the constants involved
~ cOmtfcute the crux of the problem,

Section 70. Bi-Seriar » MeTHOD
In case one series consists of variates, or graduated measures,
and the other is dichotomous we may determine the correlation
that maintains if we assume that the trait represented by the
dichotomic distribution is in reality a continuous trait, normal
in distribution, for which we have only categorical information.
Such g situation is well represented by the following, taken
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from the army psychological test data (Yerkes, 1921, p. 748).
We may proceed with the steps involved in obtaining the
numerical value of bi-serial » and consider the general formula

afterward.
TABLTE XLV

! Nungiersk o Blus Woeo Tosrr Sonont

BCORE 1N ARMY ALIMHA
Tnvel aceren TEST

- _._.l -._IL;‘-.T?'-.'.’.}‘.B 9?%1_(&;1.[1&._ Al i: _t}i{:;_t.?; Grra:le _:.“_\
205-212 1 A o
20020 3 ’:t\”x
195 ‘169 F o
150-T194 B
I85-18¢ 1 7N
130184 2 AN ﬁ
175-179 8 ’\»" 78
170-174 1z XN\ 126
165-100 13 \% 149
THO—T64 13 \ 200
I55-159 20 ¢ '\\F 241
150134 43 LV 303
7457149 38) 352
140-144 I 338
735-139 oM 407
130-134 ,~3;3[45 507
125-12 o) 100 2
wufggdhy%uljbrary orgdn, 2?6 230
115113 X 317 643
I1o-114 N 393 674
105-109 "\ 507 682
IN0—T04 :"’,\ 582 601
95- 99 (L™ 761 712
90~ 54 \ slet:d 725
35— Sgn\ 4993 769
o784 1,181 603
78N 1,371 612
79674 1,604 648
§~\{55“ 79 1,709 567
\,,; 60— B4 i 1,062 381
{\ 35~ 59 2,249 430
A 50— 54 2,272 340
NS 45- 49 2,429 305
P \\/ 40— 44 2,455 229
\} 35— 34 2,473 200
30— 34 2,490 134
25— 29 2,213 106
20~ 24 1,835 60
15— 19 I,511 42
10— 14 345 13
9 432 5
o 4 183 3
34,280 13,822
13,822
48,102
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My and 3, are the means of the first and sccond categories
respectively, and ¢ 18 the standard deviation of the total
distribution (48,102} of measures. Caleulation by methods

already given yield

My = 54.987, M) = 98.758
o = 36.000

and finally ~
M, - M \
=M M B s,

& z . N

AN

With this concrete caleculation in mind we may tum'\tc\)"’thc
more general statement of the problem. The aj.zjfglir'"ﬂlpha
serics s a variate series, and the graduation or n@:}gf‘aduation
from the clementary school a categorical series, ot correspond-
ing to a true dichotomy in talent of any sogb whatever. Even
in lerms of schooling the two classes acge» not homogeneous
within themselves. In the non—grg{ﬁ&ion class are indi-
viduals who have heen in scheol vafighsly o, 1, 2, . .. 8 years,
while the completion of the clemgentary school class comprises
those who have been in schjy’cit‘ g, 1o, ... years, Thus the
dichotomy has been arbi:cljc;ﬁﬂg-witﬁm@mibr’é&?&@_iﬁontinuous
trait. Let X equal the seares in the variate trait and ¥ those
in the dichotomousi.tg;zit, then v = by z:

.\'\‘.:
O Y
|at Cabegory 2nd Category |

The regression line

2.
:”\.s.

we
Value of: Variate

[REERRRRI NI 'IIllHIiIT!Hll
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with slepe by passes through the means of the z-arrays, X, %,
of the distribution of cases in the two y-categories. Therefore,
referring to the diagram on page z47,
b= BB _Ratwm o etad S+
' ¥rooM ¥iT 3 a1 a3

Now (x; + x1) is simply (M, — M) the difference hetween the
means of the x-scores in the two categorics, and oy, or simply e,
is the standard deviation of the total distribution of x-scotes,
It therefore ouly remains to obtain %Y

4 N

1 Ju' .’ N/
(3;2 J’..:.l) 7%
&2 o2 \ 3

Let $ be the proportion of cases in the first y-'es,\'be\gory and ¢ the
proporiion in the second. The distance JN&Simply the mean
deviate of the tail of a normal distribgbién and is given by
formula [83]. If z is the ordinate .ds*¢iven in Table K- W,
at the point of truncation of the aprinal distribution, cutting
off p propogtion, of cascs we hayg

".f,; ’ ﬂ'f'.\ — M 1

o

¥_ 32 and i*zé so that r = - -
LT 4 PR A4 o

L oa g
Myl Ey

- N\
which may be i{écﬁ

£ " {My — M) tq {Bi-serial coefficient of correla-
et ot tiom) .. ... Lol [200]

<

This fermula differs somewhat from, and is more simple to
"\‘. ' . . . . ’ .

use \t@a;n Pearson's (1909}, but is identical in the principle

uﬁd'élying its derivation. The coefficient as derived has been

'..\ca‘l’led “bi-serial r,” and must be distinguaished from *bi-serial 5,

“Mdescribed in the next soction.

In case the grouping of x’s 1s coarse, Sheppard's correction
should be applied in determining ¢. Tn case the population is
emall there is a chance correlation greater than or less than
zero dependent upon the point of dichotemy, so that a cor-
rection of the wvalue just given is necessarv. Soper (1014
bi-ser} gives the following correction formula in which 7 is the
corrected value, v the value given by formula [201], x the
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deviate given in Table K- W corresponding to area ¢, the pro-
portion ¢ boing the smaller of the two proportions p and g

o x
o = ?‘-I + ‘\7[ - - i (1’ -%) (1 —}-{:‘}) —I-—::;n];
{Bi-scrial # corrected for smal population) ... ... .. [z02]

Note that for moderate dichotomics and populations greater
than roo this correction may generally be considered neghi-

gible. The square of the standard error of bi-seral r as givery

by Soper is

N
- 2 A

o' =ﬁ§§f-—[2+(1 —%’1'-') (I —E—-g:)]r2+f‘.f ,\'\ N
(Squarc of standard error of bi-serial #) . . . {203}

TPor dichotomies wherein ¢ is not less than 05 a ciqse approxi-
mation to the preceding formula is \

7

E_ )
. ;@téndard error of
VN '\ & bi-serial#)...... [204]
Even for extreme dichotomics this Jas¥ formula which gives a
slightly larger value for o, thans formula [203] may well be
preferred, for the assumpn%“pﬁbx}ggpﬁilhatrv (ﬁf . idistributi{:rn
underlying formula [ze3) 13 g’cmemﬂ\ less sa%(c if 'the case of
extreme than of moderate Qichotomies, so thal an increase in
the size of the bmndm@ grror due to the extra hazard of the
assumption of no ?\\a‘]ht\r i desired and this is given by formula
[204]. Certainyof\he functions involved in formulas [202]
and [zo03] ha\‘»ae'been tabled by Soper in the reference cited.
The evaluatibirof these formulas is also readily accomplished by

the aid p\f:?i‘éble K-W.

..s'\\“ Section 71. BI-sERIAL ETa

~The title of the original contribution by Pearson (1910,
mew) describes the data to which this method applies: “On
a new method of determining correlation where one variable is
given by alternative and the other by multiple categories.”
To quote further from Pearson (rgry bi-ser): “Let x be the
alternative, 3 the multiple vanate, x, the dislance from the
division between the alternative catcgories of the mean of the
array of #’s corresponding to a given value of ¥, yox its standard
deviation and #, its frequency. Let %, ¢z and N be the cor-

ar =

N\
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responding quantities for the marginal totals.” To utilize the
notation of Table K-W, let
x = :Z, Xy = i—%, and K = :%S(ﬂyxzy)

In the notation of Table K-W, «, is the deviate corresponding
to ¢y, the proportion of cases lving above the point of dichotomy
of the p-category, and x without subscript is simply the deviate
corresponding to g, the proportion of cases constituiing the
smaller of the two x-categorics. The number of cases 1hia
y-category is #y and 5 is a summation covering all thg:.\égte—

gorics in the multiple category variate. Thus N
B — xtT L O _
ey =| T K (Biserinleta) .. .. ... g™, .. [205]

There ig no correction to be made to this f()Ij;}@rl:—i 0N account
of the x-variate, but correction formula [1¢30) should be used
if &, the number of y-categories, is large andythe population, NV,
small; and correction [200 3] or {100 F &hould be made if the
number of y-categories is smafl. Il small, so that higher
powers are relatively unimportant: with refercnce to » and =%,
wwyw . dbraulibrdyy.org.in X
the stant‘f,alr"% error of % s gvendy
_1—nifpg 2 pxt )‘%: :‘ﬁThe standard crror of a bi-serial

VN A2 O+ 2N g which fsequaltoo).. .. ... [206]
The magnitudes p, g, glare constants of the alternative cate-
gory distribution hd¥ihg the usual meanings and are avail-
able from Table KW when ¢ is known. If 5 is greater than .5
the full formud@ Yor its standard error as given and fully de-
scribed by Raéfson (1917 bi-cer.), is needed.

We may\'uée data comparing southern and northern negroes
colleatdd)By the Division of Psychology of the Surgeon Gen-
eral’§ \Office to illustrate the method. In general the army
’A\Ipha test was given (o literate individuals of greater than

~\egchlc-minded intelligence, and army Beta or an individual
'test was given to illiterate individuals or to literate persons of
very limited intelligence. Accordingly a division of individuals
upon the basis of whether they were tested by means of army
Alpha alone; or by means of army Alpha and Beta, or arm:v‘
Beta, or army individual, will constitute a dichotomy close]ir
related to litcracy. Table 4, pages 550—6o of Yerkes {1921},
enables us to determine whether there is a correlation between
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ncgro literacy and domicile as represented by State of the

urnion,

used in the calculation of bi-serial  follows:

TABLE XLVI
Negro Draft — Fro-rated by Stafes

The table together with the supplementary columns

SIATE

Alabama
Arizona
Arkansas
Californis
Colorado
Commecticut,
Delaware
Dist. of Col.
Florida .
Coorgia
ldaho
Illinois .
Indiana
lowa
Kansas .
Kentucky
T.otisiana
Maine
Maryland .
Maszachusetts
Aichigan
Minnesota .
Mississippt
Missouri L .
Montana :'.\ .
Nebras&\. ’
Nevar}& -
Neg chpthre
Nes& Yersov
lexico
‘New York .
orth Carolitia
North Dakota .
Ohio ..
Clclahiza
QOregon
Pennsylvana
Rhode Island

South Caroling |

South Dakota
Tennessee

ExARNaiTon TAKEx'
} Alpha- Hay = ?_1:‘_ Xy Hyxly
Alpho ] Beta, Ha g
| Ooly Beta, ar A\ ¢
[ |Indivwidual | J 2 N
| R : .|__"__ s e ——] T\__
2¥1 1,085 || 1,359 004 8452 W c970.82
| 3 4! 7 4286 a78gl 22
1192 v06 | 8oR | L2136 B0 564.14
|3 28 39| .5250 |82 23
5 12 [ an booo Jenz533 1.2
‘ 17 28 45 J 3778 .3107 4.34
40 34 LE 47 GK\ j 0602 .30
30 , 8o 1 w0 -I420 1.066GG 230.04
499 F2z2 | 621 |\ 288354 — 8560 455.03
46 : 1,962 | 2,383 J. V74 .938?_ 2 100,67
4 a0 12\ ’5333 4316 2.24
137 i1y | gy | 5158 |—.1136 [ 333
74 51 .\ 5Gz0 [ —.2327 7
23 139 \Q’W@%l aullahh“al‘y OTEERE 4.56
87 300 117 74ah r— 6557 50,30
I 3409 532 3052 AT 63.36
538 | Gl | 43| s ) 405 arsol
0 - Q L
140 {}’ 379 325 2781 EHE8 152.01
skf 39 | 93 .5502 2043 ngg
NP ¥ 25 42 | 404 .240% 4
e N i1 20 A500 L1257 RY:
773 QL7 [ 1,740 4443 -1408 34 49
P oIgh 182 37bJ BI85+ —.0470 00
2 2 4 L5000 LO00 .
i3 I3 . 26*|i 5000 Holelals] 00
0 3 3
o I 1*
103 72 177 5032 [—.2353 9.80
ki i 4 ] sso0 1 —.6745 1,82
197 tor | su4| 6180 |—3799 43.87
211 1,168 1,379 égg(; 1.0;;13; 1,445. 14
2 T 3 666 —.4316 ¢
163 88 25}’ 6491 |—.3826 | 36, ,4
g8 2171 300 J 3172 4761 | 7004
3 3| 6] .5000 0000 00
183 | 236 419 ] 4368 ] (1536 10.54
q J o 18 5000 OO0 Rile)
334 | L3v3 | 1.637 I 2og0 | 8274 | 1,12068
i 15 16 | 0625 | 15382 37.80
504 I 433 | o3| 5379 | =095 | 853
PR ———————

# Omitted 10 totals.

N
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TABLE XLVI -— Confinued
" Negro Draft — Pro-rofed by States — Continued

ExaMimaTioN 'L‘_-\KEN.f (
S1ATE B _qx;l_Lﬂia_ ny =M s nyxly
Alpha Beta, | 4 He -HARg 4
Only Beta, or
Tdividnal
B —— T B —_—————— SN P "\
Texas . ., .| %86 1,048 | 1,834 4286 | L1789 58 7O
LItah e 4 5 4 45454 .IIz0 RS N1
Vermont . . 0 I o (
Virginia . .| 36 1,148 1 204 o465+ 1.6797 13“3?6.76
Washington 7 9 4375 | 15608 .39
West Virginia .| 67 101 ! 168|| 3088 2539 ) I1.00
Wisconsin . .z 5 ‘ 7' 285y | g% 2.24
Wyoming . . 4 2 6] 6667 'l \4316 | 1.12
6,520 13, 468 : 10,088 =N ) J 1,300.20
', ¢= 32620/ x = 430431
—_ - —'T\T‘_ L. ._'_—_r‘:. = =
7 = 360438,/ Kt = 565340
e 362481 x? = 202838
www.dbraulibrary. org 111 T.585849 360461
431199
qv— 006184

The bi-serial corrclatioft ratio is less than .50 80 that we may
obtain a satisfactory@dea of its probable crror by using formula
[206]. This giv es\ tandard crror of .00618 which is so small
with reference to i as 10 estabiish the fact that shere is a moder-
ate correlatjon of about .48 between literacy of the negro and
domicile, ’\’l‘he obtained valuc should theoretically be corrected
by app\lfmg formulas {198 ¢] and [z00 8] or [z00 ¢]. They
are gnbirely inconsequential in this problem, but will he used
th}row the method. The number of categories in the y-variate
gs ‘45 {(number of states yielding frequencies) so that we have,
‘applying correction [198 a,

2 _ £481199)" — 44/19988
ey = T a3Tg088

from which
Fley = 479423

This correction (.4812-.4704 = .0018) is not large, but cven
s0 it s probably somewhat too great as the 45 y-categories have
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such extremely varving frequencies that the hypotheses under-
lying the correction are not closely met. The states constitute
a geographical series and no assumption with reference to
numerical relationship between them seems warranted, nor
any assumption as to total distribution on a one dimensional
scale. [lowever, some correction for coarsencss of grouping
is appropriate.  We will assume a rectangular distribution of
states of equal populations and will not attempt to justify the,
assumption further than to say that the correction that it
leads to is probably conservative, i.e., too small rather ghah
too large, so that our procedure is an improvement oves one
not involving a correction. The standard deviatio of a
rectangular distribution of 45 ranks equals ,

Vit < 1312 = V2024712
so that since the unit of grouping is'.«‘;&"state, correction
(200 ¢ is as follows: making &' = 1.\ "
My = 479423 ( ; +4;; é") = 479541
W.,\{’{}l-’:di:raulibral'y,org_in
The reader will understand Lﬁfit the number of figures to which
the work has here been garried and the corrections made are
for illustrative purpgsed only and that to meet practical
demands the rawenesull, 7.y = 481, would be adequate for
these particular d:}a. We may now ilurh to a consideration
of the correlation’ between two series, the measures of each
of which lie ir‘“l‘\alterna.tive categories.
A\ Section 72, TETRACHORIC CORRELATION
~ Jn case we have a 2 X 2 fold table such, for example, as is
given by indicating the presence or absence of two traits we
may calculate #, the fetrachoric cocfficient of correlation.
The assumption underlying the method is that both traits are
really contintous and normal in distribution and that the
dichotomies have forced the data for each trait into two
alternative categories. The procedure was developed by
Pearson (1goc cor.}, and tables of “7Tetrachoric Functions”
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have been calculated by Everitt {rg1o — also given in Pearson's
Tables 1914 t). Dearson started with the z X 2 fold table,

TARBLE XLV1J

\ [ i b | a4 b
| K |
- v ] 2\
a-+c¢ b+d N

so arranged, as is obviously always possible, thata + b > c\*\—t— d
and a + ¢ > b+ 4. We will start with a table of thg‘, BAlne
sort dcaling with proportions instead of gross numbers Let

I [ _ o 7 '\ >
@ V’ g= F R A é =N \\
_a+h _e+d st oo b—i—d
= Fa q= ot JD - N p ;)\\q‘; K
Then our table becomes \‘
% 3
TABLE XL\.LI]
'S\
www.dbraulibrary.orgdn .\:,‘1; e ] b
—. ‘.::" "i -
W | & ‘l q
AN '
m\ Pr q{ 1.0

Let x and z he théu\ua.l qn’lﬂtltle'% ohtamed {rom Table K-W,
knowing ¢ and, let x" and 3’ be the valucs obtained knowing ¢'.

Then, lettmg}r)be an abridged notation for 7; the tetrachoric
coefﬁnicnt"&‘f correlation, or the correlation as found from a
four- fu{‘rl,table assuming a normal corrclation surface, is given
by \

\‘& Qq

‘\"‘\‘,l (

f+xx'; + (=2~ 1) (x"‘—~1)—+(x‘ — 3%} (f’sqsr):}l

F it —6x2 4 3) (x" — 6 4 3) 57
+ (#° — 102" 4 15%) (x* — 1o« + 15 x’)g—sr

+ (xf — 1521 - 455 —15) (3" — 15x7 4+ 455" — 15)t—:+
(Eoquation giving #, the tetrachoric coefficient of mrrclatior;)‘. J[=07]

To express the law governing successive coefficients of powers
of 7 let vawn/n be the coefficient of #*, o, be a function of x, and
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Wy a function of «; then #, may be expressed in terms of o's
of a lower order:

Un = %0y -y — (% — ) tn—zand similarly wy = 2'Wews — (B — ) 2y -2
W=TI,0 =3 amd similarly wy =1, @y = x’ [zo8!
Thus the equation as writlen to the # term may be continued
Lo any number of additional terms desired should it not con-
verge rapidly enough to make terms above the #'th negligible,,
For small values of 7 some slight simplification of the work wifl
result from using Everitt's tables {rg10). For values N
equal to or greater in absolute valuc than 8o, tables {Fveritt,
1912z and Lee, 1017} giving the 6 for certain assignedd #%s and
for various dichotomies are of great assistance, qs,fthé“y enable
a determination of » by interpolation without e extensive
labor involved in formula T207], or in BEvenis form of the
same formula which utilizes his tables. Rhe'solution of egna-
tion {zo7| for v may follow the usual m{iﬂ%d.s emploved in the
solution of a parabolic equation ¢ Igher degree than the
second, but the mcthod pursued fthe following example is
more expeditious for usual \-'a.luf:‘é:bf 7. The dala are extracted
from the findings of the Divisoroeudibiomeoriihe Surgeon
General’s Office (Yerkes 1e31, page so7),

< TABLE XLIX

—_—— N e e e —_
.\\M. HeokE oN ARMY TNTELLT-
\ GENCE ALpita TEST
» — —_—
A</ Aorfd Below B
T - X'\ v - — - - = T —
¢\Y | Duepartments other than |
FIrsT m N7 | Medicat Syo2990 437 3371
LAEUTERANTS — | B
AN | Medical Department [ 7G4 550 : 2380
pn, NG - —_— e e -
S

Same, expressed as proportions

5852 = p

5104 = & [ 0748 = 8

r L3123 =y J 02 = o [ 4148 = g

Bz2y = P A7 = 1.0000
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Entering Table K-W with g we find
x = .ZI52I5

z = ,380809
Entering with ¢ we find

¥’ = 925705

8 = .2599714

Substituting these values in equation [ze7] we have

1025 — 07353440
---‘?ITC’I%"EJ' = ¢ 4+ .09y613 r? + 022747 #? + 05255 — 03193 #
+ 0288 r& 1\

Solvi mg the quadratic given by neglecting the last £0m~ terms,
gives v = .2781. It is obvious by inspection of {the signs of
the terms neglected that this value is qhght]v'\tm large. Let
us therefore assume the value .2770, subsiithge it for » in the
last five terms of the cquation and solve er.r to the first power
for which we have not substituted. D i‘rﬁg 80 gives r=.2773008.
The assumed value for 7 was too smally" Let us therefore repeat
the proccss, assuming » = ‘2f7,5;f“.'This pives v = .27737471.
We thyshassathedallosripgtabler

JABLE L

Assunang vow TeEums [voly i POWERS |

CTHER THAXN THE Fmes'r:ml{ = || LEADS TO ¥ =
\\s / —_— e — ———

2770 2773608

AR S2FT3747

.} PR R —— e — —
= T aeew T T —— T T ey

Interppka';t}ﬁg between these two pairs of values o as to find
that Walue starting with which leads to itsell as result, we
fimd\r = .2773757. DLxpressed as an eguation this value of

rr1s given by

_r27ie o 2773998 ~r
2774 — 2770 2773998 — 2773741

The work has becn carricd to seven figures merely to show the
method, not because such refmement in caleulation is neces-
sary in order Lo obtain a three or four figure result.

It will be noted that for this low corrclation an excellent ap-
proximation, r = .2781 to the {inal answer, is obtained by keep-
ing the first and second power terms only. We thus find the
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corrclation between being a licutenant in the medical corps,
as opposed to being one in some other corps, and low intelli-
gence test standing Lo be 2774, We desire to know the prob-
able error of this result. The full formula (Pearson 1go0 cor.},
g laborious to use and Pcarson {1913 coef.) has given an
equation which constitutes & ¢loge approximation to the fuil
formula. We may give certain preliminary formulas,  The first
ig Sheppard’s:
r = cos (2 m8) (Tetrachoric correlation in case hath .\:\
dichotomie lines are the mediansyfeng]”

If the categories {g -+ &) and (a + ¢) correspond topositive
deviations in the traits, then the measures repres(,nted by the
a cell are {4+ +) measures, thosc by d { - n)\thosc by b
{+ ~), and those by ¢ ( —~ +) measures.\Furthermore &
must equal ¢ so that 28 = 8 + v, — the psb;ﬁortion of unlike
sign pairs. We may call this proportl‘&n # and write the
preceding formula,

¥ =cos (ru) ..., o S NPT l209 ]

This very simple formula will m&edgb 3elheanyerg-ihe dichot-
omies differ slightly from, {he medians, but it should hardly
be used if both p and péare greater than .55, or if one is equal
to .5 and the other givgater than 6. The standard error of
tetrachoric 7 when t dichotomies are at the medians is

{The standard error of totrachoric r when
dichotomic lines are at the medians}. . . [z10]

gy = —“———2\T'\/Ct,l3

In ca‘sé:che true correlation is zero then no matter what the
positidn ‘of the dichotomic lines

o ) " ~pap’y’  (The standard error of tetrachoric » when the real
\ YU T VN valueofr =.00) ... [211]

Finally when the true value of r is not zero, and when dicho-
tomic lines are not at the medians, we have as a close approxi-
mation
or = l/_p:_p QQ [ (‘ﬂ.‘ﬂ ) _I (I — r2)
v Nigz' go°
{The general formula for the standard error of tetrachoric r}. [212]



)

\;

238 STATISTICAL METHOD

In tune reference cited are to be found tables of Vv pg/z and of
the radical function of », which will expedite the caleulation
of the standard error.  Tor the probable error of r we have

B P DRl el - e IR 7
'I'E"—g'ﬁd“’?‘(l rﬁj[l (90 )]} VN

{General formula 1ot the probabic error of tetrachoric #) . [213)

The term in braces is tabled herewilh. &\
A ¢
TABLE 11 r’\“"\
Functions Tnvolved n Calewlating the Probable Ervor of T.:z!.?’(i“t};.oric r
- - —a | | _. e — T '2-“:‘ g —_— . =
¥ Frnerion oF 5| r FumeTion o rf A TUNCITON OF 7
Lo _ o
i _ WY
00 674 | 60 402 ) 327
10 f £70 | .61 ARG N 316
.20 655 | 62 4,9 .\\ ;B2 .303
.25 045 63 Ry O B3 204
30 | 631 64 | 4(\ ! By . 283
.35 : 61y .65 - am'g : 83 27T
40 | 597 L 66 « NAA50 i &6 -259
42 ,5623 rJ ,67 N »J,}‘ 423 [ By 246
44 N das | 58 233
AT dbrag,;hbl arLy mg;gn ~ 437 By .220
48 361 L 410 G0 .206
.50 557 l 7'1 | 41T g1 .Tg2
.51 545 . 402 g2 17T
.32 .340 ‘\ -rs -ago 93 | .61
33 L3aR 74 383 94 -144
54 -a%\\ '3 oS Y e
.55 :.50" : 7 366 el 108
.56 17 FT 357 97 088
.57 N5 .78 .347 08 066
\..: -503 7Y 33 b e 039
39, § 30 I| 1.0 L0000

\ L —
W’b may use the preceding formula to caleulate the probable
"\E'rrm' of the correlation between being a first leutenant in the
medical corps and low Army Alpha standing.
e 0378 _
V3760 X 0307 K 6661 X 1.4656 X 3158
The item .6378 comes from Table LI; 5760 is the population:

and the other items come from z/p and z/g columns of Table
K-W,

P.E ,=

= .0130.




METHODS OF MEASURING RELATIONSHIP 259

Section 73, CORRELATION IN & FOUR-FOLD PoINT
SURFACE

In case the categorics inn a 2 X 2 fold table cannot reasonably
be thought of as indicating difTerent quantitative values of the
variate, but of neccssitv as being indicative of qualitative
dilferences, we may consider the distribution to be a point
distribution, i.e., that the p lrequencies are all concentrated at a
single point and pot spread over an interval, and similarly J‘Ot:
g, " and ¢, Tt will make no difference what the numeuccﬂ
valuc of the difference between the two points of the dﬂtnu
bution is, or in fact whether the value is, in the mathéarical
sense, real or imaginary. 8o we will call the distzmob'betwecn
the £ and ¢ points j, and that between p" and ¢&eints &, and
caleulate a regular product-moment coefficienNbf corrclation
using formula {g3] and taking moments argdixd”the intersection
of the p and ¢’ category point values, ‘H:\,.

pmo b= ap @R (3T 8 —ar
Vit — (e VR & Vg V'Y
Algebraic transformation enamﬁm@ﬁré};ﬂ@f-ﬁ{r}%rgﬁ formula
in the form

b — iy
& 2N\ -
N E T Vg iy
(Product—mom.i\t eerrelation helween Lo rinnt distributions,
Peorson’sye Rt or @, Yule's theoretical value of #) Lo {z14]

Pearson and H\Lron have called this ceefficient the Boas-
Yulcan ¢. Q:u a disenssion of it sce Boas (Science, May 1,
1gog, page~deq), Yule {191z meth.), and Pearson and Heron
(1913).~Fhis formula may safely be used if the point nature
of the ,dlstnbutwn can be established. Tt would scem to be
tJ;e ’Lppromlatc formula in caleulating the correlation hetween
\th trails; peossibly that, for cxample, between sex and
albinism. The statistical critena establishing 1the point nature
of the valuc of a variate are still to he devised. They would
constitute an important supplement to experimental and bio-
logical work. TPearson has shown (1goo, con.) that 4 (in the
notation of thig chapter and of Table K-W this is #.e) 18 the
correlation between the means, if measured in terms of the
standard deviations of their distributions, of two variates of a

™\
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2 X 2 fold normal correlation surface and that it 1s also {1904
theory}, ¢, the squarc root of the mean squarc contingency
of a 2 X 2 fold table without any assumption of normality.

It is necessarv to distinguish between 7 and vanan of See-
tion 49. This latter was found Lo equal rv [formula 18]
But since

and k= —
[ra} T

k,—-‘

.
it will be seen that only when division of the nwe&1qs\'l§y> the
standard deviations has no cffect upon the corrclatiow, would
ra = 12, This is not the case for continuoug{Variates. so
that ¢ or ru should not be taken as the cor Yation between
continuous variates even if they are recordedQh a two-category
manner. The coefficient ¢ 1s a product—{norncnt coefficient as
coneerns k1 and k or discrete variablesi/but with reference to
continuous variables it belongs td(group (2) which we will
now consider, QO y

o\

Section 74. h-IIEEaSIIREs oF SORRELATION NOT CQUIVALENT TO
whw wodbraulibrasy o i ™ ) -
rHE PropucT-MoMEs Cowrricient; Yuuw's COEFFI-
CIENTS OF ASSOCIATION AND oF COLLIGATION
Two coeiﬁcients{dg\-clcyped by Yule may be considered in

connection with ’}ﬁ‘\"t.’sin g the same notation they are

~\.J ad — b , . L
& 0= i e {Yule's cocfficient of associatlion) . [215]
"\xi\" - = Vad — Vb (Yule’s coefficient of colliga-
\Zw; vad + Ve tion).....ooo e 216])
A

&Z@e {1912) points out that ¢ is not changed by muitiplving
M\;"‘{éhe frequencies in the wvarlous categorics. Thus the ('s for
3} the two following Lables, the second of which has been obtained
from the [irst by multiplying the frequencics in the (g + &)
category by ten and those in the (& + d) categery by five, are
identical.

a | b T0a 50b

¢ l a ¢ 5d

Yulc claims this as a peculiar advantage of the coefficient, but
for a coefficient to be stable under such violent treatment may



<

METHODS OF MEASURING RELATIONSHIP 261

be locked upon as a detriment, as Pearson and Heron (1913)
have shown, The coefficient of colligation has the valac that
¢ takes when the g-old table is “‘cqualized” and when the
classes are given equal or their “natural” percentages to
employ the term used by Yule. Thus given the 4-fold

]
a i b
i

4 a

’ \‘\'
let us multiply the first row, second row, first column and
second column respectwelv by the {ourth roots of t,h& qua11t1-
ties »

Ed (_11? et a2 o\ '\'.
ab  od o’ bd \/
This gives the “equalized’ 4-fold PN
_ N\
~vad l[ vide,)

NG [ \ad

in which plainly p = ¢ = EWQ""*””‘“%"'{&)#P«?MUM )
may be caleulated from thié,’ noling that

£
aﬁag%@ s=y=YE
so that AN\
ek b Voed = Vi _
:,\:“j \/E‘\/E(f_—f—_.\r_/bc” Vad 4 Ve

Thus Yiie's coeflicient of colligation constitutes a ¢ caleulated
from the equalized table, Conditions which would warrant
1t\ W8 as a measure cquivalent lo a product-moment cocfiicient
“of‘correlation are seldom present. They are (@) point distribu-
tion in the traits and (&) warrant for equalization of the table.
Warrant for. equalizing may oceasionally be present; as for
example, if ten men and i1co women are measured and 1t is
desired to find the correlation when the population of men
and women arc cqual, but it 1s difficult to think of a reasonable
problem in which there would be warrant for equalizing in
the case of hoth traits, If o has peculiar value, not as a
product-moment coefficient, but as some other kind of a cor-
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relalion coefficient, its physical meaning is still to be demon-
strated and meanwhile it would seem the part of wisdom Lo
limit its use to the narrow field in which conditions {a) and (&)
arc met. A still narrower range of utility for the association
coefiicient ) scems indicated, The greal casc with which
and @ can be calenlated, az compared with # and € the con-
tingeney coefficient, will tempt one to use them {or situations
for which they are not applicable, Yule has derived th€™

standard error of ¢ (see Pearson and Heron, 1g13). 1t 13 A\
&

o pprmer () [V- VNI O

3@2(@@ P )(@" il E%
—==-|L4T -2 bt — 2

+ \F g WP * 7
{Standard error of ¢ [rom a gLl gabled. .. .. .. [217]

Although w is a special case of ¢, the mulsiglication of the fre-
quencies to oblain the equalired 4-E01(]..Qit}le introduces another
factor so that we cannol in general takg o, as being equal to o

The contingency method develgped by Pearson leads to two

*

conghantSy e Gitpin Ay, ol irobability of & situation as extreme,
as that found, arising as a matter of chance i the two variables
arc in truth uncorrelated™ience il P is small it argues for a
correlation. The secafid s €, the cocllicient of contingency,
which under certaif gonditions is cqual to ihe cocfficient of
correlation whigh\\- ould be obiained from the same data.
The cocfliciep{\of contingency belongs to the first group of
measures ginfelationship, but as it 15 derived in connection
with P E\iéﬁ\?ﬂl consider it here,

S@C‘iﬁ’r‘?\ﬂ 75. MEASURES 0F RELATIONSHIP INTERPRETED IN
NN Trras 0F PROBABILITY

\\ ) The product theorem in probabilitics is that if p is the
probability of vceurrencec.of a certain event and ' of a second
unrelated cvent, then pp’ is the probability of the joint cecur-
rence of the two events.  Thus if 30 per cent of a given popula-
tion have blue eves and if 30 per cent are males and if eve color
and gex arc uncorrelated, then the likelihood, in méking a
random sclection of obtaining a blue-eved male, is .15 ( =, 30
X .ga} or, in the long run, 15 per cent of the random selections
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will be bluc-eyed males, TIf, then, a large drawing resulis in a
proportion sufficiently different from .15 to preclude the pos-
sibility of chance, the existence of corrclation between cve
color and sex is established.  We need to know P, as defined
in the last paragraph of Section 74, and we desire a measure
based upon P which is cormparable in its general meaning to a
product-moment coefficient of correlation. Let us be given

the manifold tahle,

o
TABILLE Lil 28N
T. _—I o\
fra 1 | flic % N/
R W S _’__.._ N
Tag Hub | : Ha 75 é
1 |I_ —_—— -
Hip Bab | Hac Ty ‘N szgnaied 2y
T i e
Hia B Hyh MHic HY N
[ | S s
e | mb | W o &
' ..N -

T designated m ONY

in which # iz the number of ul’%%’:s in a category of the first
variahle, #y in a category of ﬁhw‘ﬁeduhnél;liw%l'fysdrg 15 number
in the cell given by the mtufs@ctmn of the #, and ny categories.
There are as many #, freqummcq as there are catepories in the
first variable, as mzm;iﬁg\ frequencies as categories i the second
variable and as wany s frequencies as the product of the
number of categhries in the first variable times the number in
the second.s, ;& chance situation maimains, the proportion
of the whe(e«.found in a cell will, by the product theorem, be
given by

LN\ " 31%7__% . 7—; or #Hip = —j,:?? e f218]

a3
S

I“i’b general this situation will not maintain, so that the actual
number in a compartment minus the chance or theoretical
number, measures the divergence of the situation from chance.
This magnitude will be designated by dow and will be called

the cell divergence
asnse (Cell divergence from chance

oy = Mas' = =5 sitnalion) .. ... ... ... [219)

The cell divergence is the divergence of a cell frequency rom
a chance frequency when it is desired to compare the obtained



264 STATISTICAL METIIOD

situation with the uncorrclated or chance gituation; but if it
is desired to test out some iheoretical cell [requencies (mie),
then the cell divergence becomes the divergence of an actual
ecll frequency from the theerclical frequency, or (ser — Hiss').
Therefore we have for the gencral case

degr = sgsr — sy (The cell divergence) .. .. ... .[220]

The square of the cell divergence divided by the theoretical
frequency (which is usually the chance frequency) wil)f (e
called the cell squarc contingency, while the sum of dl\lf‘_.ﬂ(ll
cell square contingencies has been termed by Peargen (1900,
orit.) the square contingency, and given the symb(zﬁx”.‘ Thus

(d%;') (nsy — sy )2) (THe B\C[uarc con-
Hlas’ s’ §ngeney). ... . [221]
Obviously PN

S dlssr = 0. ’\ &

A measure of total contingency can Be'built upon the absolute
values of the cell divergencics, | diy | (Pearson, 19o4), but the

measure of square ;’:ontngglencw has superior advantages.
L T
he square contingehcys cihnot bhe dircelly interpreted

because two factors are mx olved 1 1t, the number of cells and
the strength of the con‘k.mgenu' To eliminate the number of
cells from conmder{s{oa Pearson hasg given the two equations

P = '2 P + 4= ( X
‘I“j/;\ 4 X ‘I’r + T 33
»\‘:.\“ + .- +-1-- L) if »* be even. [222]
\ '3'5 - 33
& N\ ( x® x" w2
= T L B xr-
~N e 1+2 24 + +246-(ﬁ'—3}
& N ifr'beodd............ [222 &)

S_iu which #’ is the number of cells and P the probability that
random sampling would Jead to ag large or larger divergence
hetween theory and observation. Elderton (1goz tables, and
also, Pearson’s Tabiles) has tabled P [or various numbers of
cells and values of x*. It is thus a simple matter to determine
the probability of a sitnation as extreme as the one observed
{note that this i3 not equivalent to saying *'the probability of
the observed situation ™) arising as a matter of chance. There
1s no assumption of normality 1n-the determination of x%, but
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in deriving the cquation giving P from ? it is assumed that
the frequencies in a cell resulling from successive samplings
form a normal system of variates. This is entirely different
from the assumption that the categories are classes in reality
constituting a normal distribution. It is because of avociding
any such assumption that the contingency method has its
chief value. The asswmption that, within a single cell, the
results of successive samplings will constitute a normal distriz
bution of frequencics, may regularly be expected to haldy)
provided p, the probability of a measure being in a cell, ot
so small but that (p 4 ¢)* can be approsimately repfesented
by a normal distribution. As a practical matter’{p'N) the
theoretical number of cases in the cell should nef\Pe less than
r.00, If the categories are such that tbe theofefical frequency
in any cell is less than .00, two or more'ca%egories should be
combined so as to give cells with phitofetical frequencies
greater than 1.0o. As a very minind ot to be approached
it avoidable, the smallest theorqt»ii;al" frequencics should not

be less than .7, N
_ Jeiese dbraulibrary .or g.in
Section 76. “EQUI-PROBABLE 7

In case p is very smallNits meaning is difficult to interpret.
Pearson {1g12 novel)¢has pointed out that the improbability
of the obtained g4fold arising as a matter of chance is equal to
the improbability\of a tetrachoric coefficient of correlation of
a certain maghitude based upon the same number of cases,
and Pearsd@rand Bell have provided tables (see Pearson's
tablcs) )ﬁhe’peby a P ecalculated from a ¢-fold table may be
used,{b ‘determine an equally improbable tetrachoric coefhi-
clentiof corrclation. Pearson does not recommend this method
‘OB Miterpreting P in case of extreme dichotomies, or in any case
\As being preferable to tetrachoric 7.

Section 77. Muan Souare CoNTINGENCY AND COEFFICIENT
oF CONTINGENCY

We have obtained a measure of probability, P, from the

gquare contingeney x*. We may also interpret the results by

means of a coeflicient of contingency. The most valuable

form is that derived by Pearson which he has called C; and
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which we will here call . We will first nced the mean square
contingency. Designating it by ¢ we have

2
¢ = 35\; (Mean squarc contingency) .[223]
A

The magnitude ¢ as thus defined is identical in the case of a
g-fold table with ¢ of {formula [214]. As here defined 1t 13
obtaincd from a manifold of any number of cells.  As has bagn
pointed out in the case of a 4-fold table, ¢ is not a cogfi (‘“igm,
of correlation of a graduated or continuous \unate \nrir 18

the function
C= 4% _ _ (Coeﬁfn.cicﬁt of
= ‘ 1+ ¢f - ‘ N+ ¥ m{‘{)htingency} ) [22_”

but the latter is comparable with 1t. In facﬁ, if for each vari-
able the catcgories are suceessive values efhabgraduated variate,
and i the population is large and qu"\éz‘1111m})e1‘ of categories
great so that there is not a groupingvérror, and if the correla-
tion surface is normal, then € is’idcntical with the product-
moment cosfficient of correl o,

As a mgf?;;.?&% el D};g}]lp between continuous variates
there are two corrections Which should be applied to C, one due
to number of cells addhthe other a correction for class index.
(Pearson and Hep }I T3, page 207.)

Ifw = numbexx rows and h = the number of columns and
if the frcqqen’ues in ihe categories do not dificr one from
another ig™\gf extremec manncr, the corrected mean square
contmg@}g, &2, 18 given by

'\\ 5 = x2—{x—1)n — 1} (Value of ¢? corrected

o ¢ N for number of cells). |225]

(In case broad categories are used there are wide differcnces in

o’

the measures within a category and these may be differently
grouped for the successive cells of a single category, so that
there is a correction for class index needed (Pearson 1973,
meas., page 130). This correction does not apply to ¢ which
is, in the case of a g-fold, the correlation between points and
may be thought of as a similar sort of a {unction in the caze
of a manifold of a greater number of cells: bul it does apply
to €, the coefficlent of contingency, which aims to measure the
relationship between continuous or graduated variates. Thus
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we will consider the uncorrected € as the correlation between
class means and correct by formula [103] where 7,4 and ., have
the wmeanings defined hy formula [102]. The student must
not confuse x of formulas [192], [103], |226] and [226 4] with
the mean square contingency, x* of formula {224). They are
entirely unrelated. Applying the correction, we have
. C (Cocfiicient of contingcncy cor-
M T bty rocted for clags means) ... . [226]
We must now obtain values {or the corrclation het“ een dhe
variates and the class means, 7. and 7. The prugdmcr
formula may be written in a form similar to formula [ro3}.
N

-

ml = —— _,,__.....,..,..._..,.;’,._._,.[226(;]

T
O'y -

Note that the agsumption of normality imp]iés ‘that the cor-
rective factor 1/{rs0.) i as great for the problem in hand as it
would he were the distribution of the ’Q'\io traits normal. In
other words we assume normalityoply in the problem of
determining the corrective factors arrd not in the determining
of C. Wide divergencies frm‘n hormality would  probably
amount to very little so fax ﬁy%ﬁbmmiﬁswg dpghgr 1s con-
cerned, and as il §s necessary lo make some assumption in
order 1o determine thisdactor we can do no better than assume
normality of distribufion. Doing this we find ox and oy as was
done in Section ¢7. Should we not wish to make the assump-
tion of normaht‘; we may assunie a rectangular distribution
and find the'edrrelation between class means and variates. A
YECI'll'lguli{\dlqtrlbuthﬂ of k units length has a standard devia-
tion ofAAGE 12 and the standard devialion of the means of a
rectmﬂ\lar distnbutwn « units in length divided into « equal

1;1‘@1'&7:115 is Vile — 1)/12. Thus the corrective factor is
\”“s}etermincd from

(Correlation between class means and variates assurning
a roctangular distribution of « equal sub-ranges) ... ..[227]

If « is the number of categories in ihe first variable and \ the
number in the second, the Lotal corrective factor is

I [228)

v(«ur} GTh
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This correction is larger

tion of normality and probably is in general less sound.

STICAL METHOD

than the one based upon the assump-
The

following table is given to show the magnitude of the corrective
factors upon various assumptions and to provide r,. when
certain assumptions are reasonable without entailing the

detailed calenlation.

TADBLE LIII

Value of tys, the Correlation between the Cluss Means and Variafes fof N

Different Groupings A\
e ————— e e e s _|_ —— __._|::_\_"\_':-\-____
A EguaL Sue- | o I o
Numzme op | QUL BARers | mavoonlcos ) SR T | OB 0
TRIETTTLION TRIEUTION FSTRIDUTION r N :.‘;}'Rl HLTTON
z 768 798 g0z, 88 580
3 872 Bo1 BIG Y 842
4 023 028 S66, Q15
5 949 047 LS04 946
6 964 959 A-013 963
8 979 972 AN 4935 979
1o 586 979 SNJ 999 487
L3 993 988 RElels] 0G4,
20 990 IR\ | 975 997
_ = ﬂfﬁl‘a‘l—'y—or -

The wvalues in the last

Ry
coltinn have been derived upon the

assumption that a pargbota would well represent, the frequency

surface of any threel heighboring classes.

of the first and
that the total gange was

In the calculation

gh.golumns of this table it has been assumed

equal to 5.6 standard deviations which

would approximtately be the casc in a normal distribution if
the total poptilation is Too (see prob. 1, Chapter V). Pearson
(1913, igﬁ}“gives a table containing in part similar information
upgihthe assumption that the total range equals 6.0 standard
deviations which is approximately the case if the total popula-
:'{gio'n is 185. The corrective factors given in the 1st, 2d, and

ath columns are nearly

equal to each other if the number of

classes is greater than three, so it makes little difference which
of these three hypotheses is assumed in determining this cor-

rective factor.
leads to quite different
of the table.

The assumption of a rectangular disiribution

results throughout the entire length

‘We have considered two corrections, one the correction of ¢
for number of cells and the second a correction of ¢ for use of

class means instead of

variates in the classes. One further
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important item is the probable exror of the contingency coeffi-
cient. Much study of this point has been made (Blakeman
and Pearson 1906 and Pearson 1915, prob.) and certain of the
methods obtained ave involved. The method here given, de-
rived by Pearson {1915 prob.), is fairly simple, involving the
caleulation of but a single additional constant ¢3  Let the
cell ¥? function he defined by the equation

(dsy)?
Cell ¢* el i S
Cell ¢t function (g [2;.:9}

and let ¢* be the sum of such functions for the entire tzif.%}e?
divided by the popula‘c:on thus \.

or (dss 33 (y* function required in ﬁndmg the
¥ N (e} probable ervor of and 8i*CY. . 230]

Having ¢ and 4% we may obtain the standard Eﬁor of ¢ from
the formula

ap = —;—V ¢ -1 - ¢2) (Stan;laﬁie‘rror of ¢ ..... . [231]
N
Further, having ¢ we obtain p\ 3 »
¢l % tStandard error of the co-
1 (qb+ 1— ¢ 9 :" efficient of mean square
Fr = —=" ?
VN e } W, dﬁpg&ﬂ%raﬁ}y argan’ 1232

We may illustrate the calewlation of ¢, €, 5. and the corrections
to ¢ and € by the {ollopitlg data taken from the army psycho-
logical findings (Yer)es, 1921, page 82 5}

TABLE LIV
o J I Bane N - I
i R"&”‘ I h'i}\f::llbgll)AN BARBER K?J%g;lz BrIcHER
—-—~—--—.—J __J —_— e | — —_ —_
Jio4. | 2%. 273. 450. a70. 1678
\“\f 323.5 | 262.9 321.8 390.9 3789
Tested¥y '-—205 | 261 | — 4638 50.1 — 8.9
Artay [ 26001 2.591 I Y6821 8.935 209
&Ipha —.245 T 5 257 { — .Gg2 1.351 - 008
[ 8s. ’ in. | 102 8. 74, 288
555 | 451 ! 552 67.1 65.1
Tested by 20,5 [— 261 46.8 — 5.1 8.9
Army 15.680 15,104 30.678 52.054 1.217
Buta 8.334 | — 8741 { 33640 |—45.848 | 167
I _
| 379 308 | 377 458 444 1966
T = ua9m Ny =~ 12082
@ = 07374 ¥3 = — 000145
£ = 2621 e = 01861
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The 5 entries in each cell are, in order, as {nllows:

Mg’ The frequency found in the cell

s The theoretical cell frequency

dss The cell divergence

(des)* The cell square contingency
s

(s} X ds—s’ The ccll ¢8 fenction ~
as’ Higs' {

It should he noted that the ¢* used in the caleulation ¢l a\k
not the corrected value. We may, however, with 1r1«13ﬂi\1ﬁ‘u ant.
error consider o to be either the standard error ni.n}m ranw or
the corrected coefficient of centingency. The, T"I‘Ié‘d'l sguare
contingency corrected for too fine grouping, 08 \5 by fermula
[225],

(K — I) (?\ ol I)
o =0t - N ¢
: \
_ g K I
= 0737 o o717t

The garseatadurssiicions. ,ﬁf oontmgenm depends upon the
correlation between class rﬁeam and variates. Lel 7, stand
for this correlation in this.case of the test series and let ry, be
this correlation for the\mcatlon series, It is very difficult Lo
make an assump‘i\@n s to the distribution of the Vd_rhlt(‘w
within the vocafipnal categories. However, assuming “equal
ranges any type ‘of frequency’” we find from Table LIIT that
74y = .040pJer a five category series. The assumption of a
norm :@‘tributioa for the other variable is rcasonable though
we gdhnot expect the most reasonable of assumptions to give
a very reliable corrective factor from a two category distribu-
~ ‘tmn We have

) 3

TABLE LV

NuMBER Tup Cenr \ e MEaN (in (*LASS
Test by Army Alpha 1678 | 83.36 l I" 257
e 22 ‘
Test by Army Beta 288 | 14.64 ‘ ” P 1.507

ox = V833 6(2%;)2 1464 (— I 567)= = 6445 —
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and since ¢,, = 1.00 we have

" Toon = 048
Thus finally
Y
K
Nt 19t 8
C = M 1.7 S
™ raxtie | 6440 X 936 40
P.E. of »C = approximately .0204 as determined from( the
proportion O
2621 . 4240 %

o126 PR of mC >

L
This completes the solution, and for the proBlem’ in hand we
mayv conclude that there is a small correlat{m of .424 between
trades considered and litcracy and tha@)this is established
with a very satisfactory degrce of coat@inty.

The reader should note that the €orrected value of ¢ differs
materially from the raw value. (4% ‘

Section 78, VARTATH Tierssner BIRFRD

The variate differencge’method was first used by Miss F. E.
Cave, in 1go4, ir\g.s%ud)-' of the correlation of herometric
heights, puhlished in the proceedings of the Royal Society of
London, v. 745bp. 407. The object of this study was to get
rid of seasgnzil\change by correlating first differences of readings
as obtajn@ﬁ‘ﬁt two stations. Later, Hooker (1905, Jour. of
the ¥/ Soc., v. 68), Student (19r4), Anderson (1g914),
Beatgice M. Cave and Pearson {1914) and Ritchie-Scott (1915)
h&ve further developed the theory and illustrated its use,

" at{d Persons (1916), (1917} has noted certain of its shortcomings.
There is still much to be done in estabiishing its degree of
applicability to short scries such as are usually available in
material influenced by spurious time and space factors.

If barometric heights constitute the data and a large number
of measures arc available, there is little doubt but that the
method will give the correlation between the readings at two
stations independent of spurious space or time factors; but
if two serles of yearly price indexes, extending over n years,
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where # 1z small, are corrclated by the wvariate difference
mcthod; {a} the probable error of the corrclation obiained is
not definitely known, (b} the number of dillercnces which it
is desirable to use is uncertain, and (¢) the relation hotween
the applicability of the method and the size of i 12 not cstab-
lished. Cave and Pcarson {1914) consider good results we he
obtained by going to fifth or sixth order difficrences wlhegs
dealing with eleven commercial indexes, cach extending ook
28 years, but this point is not indubitably cstablished.{he
problem shortly to be presented to illustrate the mét,i'\:orfi is
equally extensive in time, but the real relationshitbetween
the variables, independent of time, can hardly .bZé'said 1o be
apparent. The trecatment of the following see"ti%ns will Le
the order, (2) notation, and tests of applicability, [1} by com-
parison of standard deviations of succegsive difference serics
and [2] by the stability of the successively obiained corrcla-
tions; and (b} illustration by a problewt.

(@) Given two serics, i, ﬂ:g,";“‘,}ﬁq; and gn, P, ¥e between
whichwthelbrivlibramgergdreortelation, R, and a spurious cor-
relation due to a time or doeation factor such that the two
phenomena together regult m an apparent, ie., an obtained
correlation, of . TheNproblem is to determine K. Student
(1914} has shown &&tﬂ

3?1 =X 4+ M + oty + dt% + cte.
ANVxg = X+ ety Fdth foteer L [233]
N cte,
and 1f\:\
AN =Yy + Bty + 12, + Di3, 4+ ete.
PR N Yz = Yo 4 Bta 4 Ct%, -+ Dty 4+ etc.l ceeoe 234
mJ ete.

in which X, Xs, ete., Yy, Vs, ete., are independent of time or
location, then, if the parabolic cquations in ¢ terminate with
some power %, the correlation rxy is given by the corrclation
between A, and 6y, the two scries of #-th order differcnces,
41 standing for the measures (x; — ), (22 — a3} . ..
(en-1 —xn); A for the measures [(x; — %) — (x2 — x3)],
[(we — %) — (ws — x)], .. [lxg_e — Fa—1) — (Xuoy — x,)]; and
similarly &; for third order diffcrences: A, for fourth order
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differences; etc.; the §'s having comparable meanings in the
case of the g-serics. Cave and Pearson have noted that in
this equation the ratio

_——— = _\._\_2—\_-
4 ML e fz35]

and that, therefore, starting with a series in which measures,
are not independent but influenced by a time factor which
can be expressed, as suggested, by a terminating paraliohic
serieg, taking successive differences and caleulating the s{éhd’li‘d
deviations of the difference series, one should obtam as soon
as sufficient differences have been taken to ehmmate the
spurious time factor, standard deviations bgaa)qng the ratio
indicated. This accordingly constitutes AMESt in a single
series of the number of differences whi.dgf,’re required to eli-
minate a time or space factor. Cave.ga'q’& earson applied this
test to the eleven series with “hich Bhey worked, but did not
succeed in establishing the nuxrgber “of differences necessary to
eliminate the time factor. Thes attribute their failure to the
small period studied, Hou’m%, c?ﬁrah?fﬁ'?arls’ 4s. econonic
data run, a fairly long périod. Some methody —gpartlal cor-
relation, varlate dlﬂfe@ncb, or what not, — to eliminate an
annoving time facter) for data covering such or a shorter
period, is greatly n \seded

The approagh.bf the ratio of successive standard deviations
of the differefice series of the single variable to 4 — z/{m + 1)
is the ﬁ1 4ptest of the possibility of eliminating a time or space
f’lCtOi’\b.‘, dealng with differences.

The'second test les in the stability of successive correlations
b@t\xeen differences, of equal order, of the two series. Thus,
qf Tay % Fam ¥ ¥am, but, very approximately, ras = Tam

= ray, it would be concluded that the time or space factor
had been eliminated by the resort to second differences and that
the correlation then found, 7as was in truth rxy, the desired
correlation between the two traits independent of the spurions
element.

The data in Table LVI, p. 274, kindly Supphed by Mr.
Willis H. Rich, have all the characteristics expected in series to
be treated by this method. That the conclusions will be found
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to be somewhat doubtful points the weakness of the method in
its present statc of developmentt.
TABLE LVI
Chinook Salman — Columbia River

T ; |
PACK 1% [o00™ ! Hareney -

- . T Fey Lanknaris
DATE OF Pack ‘ OF Casie oL I%‘;.\u..m_\.s g 1.'<
[ P ___ *\)
IBg ., . . . . . 205 ’:"\’
18go ., . . . . . ‘ 335 \\\
1891 353 O
1892 | 344
NS
1893 288 277 O 1Ay0
1894 | 351 490N 13g71
18g5 144 135/ 1802
1896 | 370 EN 1893
1897 | 442 :.\\.;21 1891
1893 ! 346 AN oo 1893
1899 286 AN/ 339 1806
1900 ' 294 \NJ 6.59 T8y7
1901 L a3y 21.94 1608
oz . . L . .. o 12,87 1500
www.dbraulibrary Dl'g.j:’fi(? !
1903 T A LD 11.00 TGO
;901 - e .. } = 547 16.04 {13
Qo5 . . . . . 572 24.10 1602
moh L . L, . m:\\ 5T 20.44 1603
1907 . . . .. 2NJ 110 23.50 1904
L\ '
tgo8 L . LN L . 334 9.15 1505
1900 . . NS L 300 17.13 1906
gio . AN - . . || 442 3.10 1907
1578 S ,\“ P fog 16.44 1908
1912 \* Coe e 365 15.43 1909
19}3\\’:' N . 335 12.54 I9I0
My . . . . . 419 13.97 (2) 1911
»\\1;915 e e e e 508 15.4T Igl2
”\;“;1916 511 26.10 1973
9 1917 450 41.58 1914
1918 . 445 44.45 1915
oIg 475 53.24 1910
1920 477 25.03 Q17
56.80 1518
22.87 1910
25.00 (3} 1920
(1) 334 is an estimate based upon the total "]'JB.Ck._f or ;;"hc },—fear. o

(2) 13.97 is an cstimate based on the total hatchery output.:

(3} 25.00 13  sheer cstimate.
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The problem is to ascertain if there is positive corrclation
between the number of fry liberated from the hatcheries and
the run of saulmon later, particularly three years later, when the
It is known that the
salmon returns to the same river in which liberated and that
roughily 8§ per cent {these 8 por cent are small fish and would
be equivalent to some 5 per cent in weight of pack) return toz
spawi onie vear after liberation, 2o per cent (or 15 per cent of
the pack) return in two years, 5o per cent {or so per cartt.of
the pack) return in three years, 2o per cent {or 25 per cant of
the pack]) return in four yvears, and 2 per cent (ot 5@61: cent of
the pack) return in five years, Accordingly if thepd Is positive
correlation hetween number of fry liberated dn& size of pack
independent of time, it should be greatest\wlien correlating
size of pack with number of fry liberatedrgheée years carlier,

The means and squared standard deiations are given in the
first two columns of accompanying/Fable LVIL.

frv arve grown and return to spawn.

TABLESGVII
e ——————— e e —‘m [ _d-bl‘a_]lmr‘y or Eb.i.n
J Farios
p Tt T T T B 5 OF
Mrans | Spma DN T 2 rios”
i’ \ = 4 — ?;E 41
- \\ ) il _ —_—
® 418.18 7,: L.14 ( 071 2.000 486
Ay — 7.00 W 750519 | 1.939 3.000 646
Ay — 2 35 «: > TRI5254 1 GEEn 3333 798
&g N 33,704.94 ) on 3.500 .879
& ;. 38“\‘ 119,100.9T | 3207 3.600 -G08
Az 380,036.35 . .90
Ag Q&‘S 1,204,512.40 | 3:327 3667 ﬁ ad
‘Nl o S - e —_— =

"‘tEhe last column of the table shows the approach of the ra1‘.1'os
N\ of the standard deviations squared to a random situation, ie.,
a situation from which the time or space factor has been ehmi-
nated. There is secn to be some approach to the value

4 — 2/(m 4 1), but the approach is not sufficiently close to
say that this test supports the contention that a resort to
fourth, fifth, or sixth differences frees the data of the spurious

factor.

More promising results are obtained from the “hatchery
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output” data. Keeping the data to the nearest .1 and shilting
the decimal point one place to the right it vields

TABLE LVIIL

Eatios |
Sraxnarn Devia- ; ; | Rawmo on
TIONS SQUARED cr‘m 41 i 2 ‘ RaTios
T AT
— - —_—— —_—— —— —_——— e N —
| A
¥y 13930 17,131.96 480 2,600 NG
6y — B.22 8,231,07 2127 3,000 L‘ Ny
& —1I1.65 17,507.46 2,900 3.333 ™ 850
& 1252 50,770.33 2525 5500 7 ‘| T.007
8 — 22496 178,983.22 3767 2 God. & 1046
& 8 (74,219.57 SN
5 1587 174,210.57 3.856 3663 | 1.032
g —66.64 | 2,599,756.51 JI v/ |

We mdy condude that so {ar as this Le*:t\permns us 1o form a
judgment we will succeed in ehmmiitn} the spurious factor hy
resorting to fourth or hugher ciiﬁef&ﬂ&q

Calculation of the product-mafrmént coefficients of correlation
betwedy dbraubibrifiaenginsdies gives the values recorded in

the following table: N\
ANTABLE LIX
) ~\ fey = .3%02 + .1273
\\ “ram = o003 + 1580
A = 0145 £ 1826
7 FAsE: = — 0238 & 2023
:~1\ J YA, = — .0247 + .2106
(N ¥asg = — 0005 £ .2334
)Y Fad = 0325 t .2503

'I'Pk probable crrors have been calculated by the following
t8rmulas, which are due to Anderson f1914): Let ryv be, as be-
PN .}ore, the correlation between the two variables independent of
’ the time or location factor: let ¢ be the standard error of 7

¢y the standard error of ras; ow the standard error of Fas CEC,
Then,

_I—rxy (Standard errors of variale difference
Ry w correlation cocficients) .. .. .. .. .[236]
- 1 '—rX‘f"J:‘)N—q.

b N-—1

_ -y 5V
Sl TR b
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i7

L= Pxy 23T N — By

Ty = N = 3 100
T — 1y 1135 W T EisR
T XV 1287 IV — G128
Tus = Py \ 290
o — 1- 7y ?'46_1_89_2\7__—2766?{5
» N =75 75876

o L xv (676059 N ~ 4ghste
N - 213444

1 —‘?‘XY 3 0\"\
=y ((\r k)+2(\’-—é—1)'_k+l:| -
Bl —1) P e

™

+2 -k o 55T

N R e
TN~k 3"[(k+x)(k +zJ(?Ia-| )

The N throughout the formulas is the pslgmal population and
nat the reduced number of differenced, “The final correlation,
¥xy, which maintains after elimindtien of the spurious factor,
cnters into all of these formula.é This corrclation is of
course not known, but if ,quccebswe difference corrclations
remain  approximately equa‘f one fr?éjyb EARE-OH%ID constant
value as the value of zxv and determine approximate prob-
able errors. Tor thel problem in hand we see that the first,
sccond, third, {o 1@13’ﬁfth and sixth difference correlations arc
closely equal ti, iro. Accordingly, taking zero as the value of
rxy and usin§~f0rmula f236) we abtain the probable errors
listed. Note” that the standard error of 7y Is given as
(I — 7% '} VN and nmot the wsual value (1 — %) VN.

\s to sav, 7.y, could it be assumed to be a measure of 7x¥,
has tﬁle standard error (x — #?x¢), /AN, but as a measure not

¢ ’di@tmct from the gpace or time factor it has the usual standard

‘./.

€rror.  In our present problem, since Fevi/Tag does 1ot approxi-
mateclv = 1.00 we should not assume it to be a measure of 7xy.

The conclusion which this treatment suggests is that there
is no relation between planting of fry and run of salmon three
vears later, but this is in no sense established, due to the large
probable errors. Ii is of course unfortunate that, with the
very type of data for which large populations cannot he secured,
the probalds errors should be larger than for gtraight correla-
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tions. This is a weakness of the method in the field for which
it would otherwise he most serviceable.

It would be valuable to compare at length results obtained
by the variate diffcrence method with those from a partial
correlation or partial corrclation ratio method. The data in
hand do not warrant too detailed an analysis, but il may hbe
stated that, assuming either a reclilinear or a single e
curvilinear regression line between time and cach of the oMy
two variables, the partial correlation hetween number W)y
liberated and run three veuars later is positive apt’i,}a ightiy
greater than its probable error, Thus, for t}1r~\s’cf‘5(.]ata, the
two methods do not point in the same directionf/»

Calculating variate difference corre]ationm@ﬁicicnts between
number of fry liberated and run two, anf\lagain four, years
Iater vield equally mconclusive resultg&mth those reported.
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CHAPTER XI
MULTIPLE CORRELATICN

Section 79. THE PrROBLEM O\

The {undamental problem of multiple correlation iq\thé
csumation, with minimal error, of one variable knowm g.5ev veral
others, Thus if Xy 18 the dcpcndent variable, ory ‘the tne to
be estimated, and X, X+, X the 111dc;)cndeﬁt variables,
and 3 Xy is the value of the dcpcndent variakleYas estimated
irom the known X, Xo, - - X, vanables, \w\\may write

= £ (X0, Koy 00

and we wul sav that that functlon Ehmihbmakeq
Faulibrary.org.in

E(“_GJ\T Xr) ':’g minbmum ... ...l 2370
12 the hest function. Singe (}'{o - j’u) is an error of cstimate,
thig iz identical with mappting the condition that the sum of
the squares of the {etrers of cstimate shall be a minimum.
Tust as we have founrl that therc arc many methods of measur-
ing correlation, £ there are many ways of measuring multiple
correlation. The five following are important, but not nclu-
sive of all, f‘)Oh‘Si‘u}t‘ methods,

(@) W%en Xy Xy -+ X} s a linear function of the \fariables
we haye the usual multiple correlation problem, and the
mefhod to be used is both the simplest and the most readily

\Ql‘eerpretad

(b} When f is a known, hut non-rectilinear function of the
X's, appropriate transformations as suggested in Section 52
will ordinarily enable the treatnient of this problem by methods
applicable to (&),

The complete problem of simple or multiple correlation
involves, as has been stated, (1) a measure of the strength of

279
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relationship between a dependent variahie and one or more
independent variables, and also {2) an algebraic means of
estimating the dependent variable knowing the independent
variable, or variables. Whereas methods () and (b) preceding
give solutions of both (1) and (2), methods (o), (d) and (¢) fol-
lowing provide a solution of (1) only.

{¢) A multiple and partial correlation ratio method cnaliling
an estimation of the magniludes of the multiple and paridh
corrclations between gradualed variables which arc not rtgk:ic:d
to each other by means of rectilinear regression lines. &4, a

() Multiple and partial contingency melhod accemylishing
the same result as multiple and partial C()I‘T‘E’:lélti()ﬁ‘.‘f‘fttiOF:‘, teandd
particularly applicable to data recorded ina catﬁ;{géﬁml manner.
Tlus method also leads to interpretation in tégis of probabilivy.

(¢} The variate difference correlation m@hod. This meihod
is of serviee when a time or space facto ‘n})t' ghowing rectiliness
relation with the other two variableg hilvolved hides or clouds
the partial relationships hetweethAhc two variables. Tlis
m.ethgudw P&aﬁi%%qiglrglse%_%dj in J;H(:Lprcccd ing section and is very
different from (a), (g) andsfgf. The treatment of the next
five sections is confined tQimethod (z) and covers the 2 or 4
variable problem in Se€tions 8o, 81, 82, the 4, 5, or f-variable
problem in Scctiop{”%, and the many variable problem in
Scection 84, N\

N\

Section SQI."THEORETI(:AL TREATMENT — 3 VARIABLES

A simple three variable problem, go chosen that the interpre-
Lation(s tiot complicated by unequal variabilities of the three
2R will show the conercte and tangible significance of the
Jrtial and multiple correlation coefficients.
£\ . . .
N We shall use the following notation.
/ X = a gross scorc.
¥ =X — M = ascorc as a deviation from the nican.

¢ = o = gx = the standard deviation of cither the «'s
or the X's

x X - M
g=_ = = a standard measure
2 2
T = 1.0

No?
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Symbols with subseript zero as X, xq, ¢q, o, designate the
criterion or dependent variable. Symbols with subscript 1
designate the first independent variable, with subscript 2 the
second independent variable. The following symbols with
superior bars X, %o, Zo, designate gross criterion scores esti-
mated from a knowledge of the independent wvariables, devia-
tion scores estimated {rom such a knowledge, and standard
scores estimated from such a knowledge, respectively, The
slatiztical problem is to delermine the two constants Bove)
and By.y (the significance of the subseripts is explamed la‘ter)
n the equation £ N

3
S = Honest + Foerzr  (Fundamental regrossion equation ccm(iét:tiﬂg
standard measures — 3 variabl@NS L L. [238]

50 that the standard error of estunate ks is\a minimuim.

4
(20 —Z0) (Error of pé}ti’mate or residual of
u stanfand criterion measure} (239]

is the difference between the actual'standard eriterion score and
the criterion standard score estimhated from the independent
variables. Tt s thus an erféi“’ rgdbsagtibannaretie standard

error of estimate is -
Iz {7 S_zu 2 (Stapdard error of estimate of the
ko2 = \'4% - -

’\\ W standard criterion measures) . . (240]

If 2 and 2 arc @Worthless in shedding light upon the value of 2
then B and Bk, the weights appropriate to the #'s, will be
zero, and EnWill equal zero for every individual, In this case
fli-u 12 = 'z“\“; I.0.
’Thr%\s the maximum value that 2 can ever take and means
th {t %he crror of estimate has not been reduced at ail by the
4 ‘uqe of 2, and = over what it would be were shecr random guesses
\reborted to. If 2 can be perfectly estimaied from z and 2
then every (3, — z) cquals zero and ke = .00 This ig the
mimimum value that k can take and corresponds to perfect
cstimation, or zero crrors of estiumate {hroughout, In the
symhbol ko the subscript before the point designates the
variable estimated and the subscripts after the point designate
the variables from which the cstimate has been made. The
problem has been stated to determine the §'s so that % shall be
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a mintmum,

METHOD

The constant kpae 18 the standard deviation of

the errors of estimate when scores arc expressed in lerms of

standard measures.

s meaning is thus eastty grasped wnd

obviously very important for the magnitude of the error in-
volved in estimating onc variable knowing all the others is the
first item of information needed in interpreting the significance

of the relation hetween varables,

It will later be shown that

koo varies directly as oe.e, the standard error of estimateNdl
the xy's, or the Xy's, so that establishing the minimal \.E}ror
condition with reference to the standard measures ’dFaQ Cstab-
lishes it with reference to the gross scores,

< "

The following derivation of the valpes of the,ﬁ s'is brief and

simple, but involves an understanding of caléuMb

For those

unfamiliar with calculus a numerica) illustealion showing the
concrete significance of the constants m\(\dved s given in the

next section.

\\

It is required fo so choose By a.nd Bz that the slandard
error of cstimate shall be a rmmmum that is,

www.dbtglg;&hna,gty m;g;j(gu,_ Bor2tt — Bugas

)2

is to be a minimum. Wifferentiating first with respect to
Bor.z, and second mth\ Lespect Lo Ba.y, gives the two following

equations e
E2

;’»3 (Zu — Bz —

— Borzs — Fesase) (—
Beszs) [— 22)

Z]):O
]

Dividing{éw < 2 N, summing the several parts, and remember-

ing that{
N T xsh
\ N =W
"\tlhat
v = 243t
'T\T— = fuy
that
Z zuzn
S AL
and that
E 7122 _
N = ¥12
we obtain

Yo — So1r — Mg
*oz — Tizfene — Boaa

[

[=3=]

(Normal equations). . .[241]



MULTIPLE CORRELATION 283

Solving simultaneousiy

= Fm T Toafaz
Pors = I — iy (Regression coefficients between standard
o = rou :fagzl_g measures — 3 variables}.. .. ... [242]
1 — raz

This completes the solution of the z-variable regression equa-

tion involving standard measures. We will make the usual 2\

transformations, \
XM ¢\

- AN

and express the result in terms of gross scores, giving, j

E‘.-_}L{n—ﬁxs(zi:_M!)'Fﬁuﬂ(—'—'IE\)

&

which, upon simplification, becomes,
o N
X = gn 20-(: X+ Baza szxz + (Mo - .301-2":2'\"1{}“ Bnza Z—: ﬂrfg) . [2431

Defining bp., beer, and ¢ by the following equations

N/

bore = Bue 0—10 bt@'{‘ = Paz 10‘3 ............... f244]
¢ = My wﬁﬂbw%hmw org.in .. ... [243]

equation [243] may be thtten
Xy = bpe X1+ bag\yg + ¢ {Regression equation involving
¢ '\\ J £ross scures — 3 variables) . j246)
Very simple algeb aic derivation will show that in the case
of u mdependeﬁi, “ariables we have

:'\’.‘; borm..-n = Bnm. ng-l:
x..\‘:‘
¢\\“' Bozga...m = Puza.om :—: .................. f247]
in\%ﬁich Boras - - . m Boz1s. . . u, €te., are defined by formula (264 5]
w\:"; c=M;— bug n - Bngag...nddz — oo
\ — Boaz e e 1_248]
j(‘o = Bps...u X1 borgs. on Xz 4 v -e
D T P [24g]

Equation [246] is ordinarily the most convenient form to use.
The constants o, be.s and ¢ have numerical valucs which do
not change for the entire population, and it only remains to
gubstitute the gross scores, X and X,, to secure an estimate
of the dependent gross score Xy,
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We have determined the value of 3a.2 in terms of total cor-
relation coeflicients ve;, *oe, and ri, and its use in the regression
equation, but have still to discover the preperty which has Ted
to the subscript notation. Lect us find the regression of that
part of 5, which is independent of 2 upon that part of 2 which
is independent of . Since the regression equation conuccting
zo with 2 is O\

40 = ?pgdy
That part of 2, which cannot be estimated from a kno% Tef
of 2z, or that part which is independent of 2, i3 (4[, oL Fada).
This magnitude we will designate by 20, whwh md\‘ L read
“the residual in g after estimation of 20 by ald oﬁ r hat
part of z which is independent of 2.’

se.2 = (o — 7ia2)  (An ereop of cstimate, ie,
& rg}nmal) .......... [239 ]
Obwviously the N residuals, zus canrldt be estimated at all by
means of %, since 2 has already bceﬂ used for all that it avails.
This is merely cquivalent to sa\mg that the regression of 5.
upon weiwedfigutibrarg. OT‘éﬂlm proof is simple:

b = I 5. bt
[N 33*;-. L
Zgpag = X (Zu b J’N.?} sa =2 —tmIsly = Nrge — Nrpp =0

accordingly boane 2 X o. Wemay, however, estimate these resid-
uals by means.of Fariable 1 which is a new source of data. Since
552 has zerghfegression upon =, it of course has zcro regre‘:uion
upon tln'L\p'ert of # which can be estimated by means of %
To est{mate z from z we have 2y = rpm

80 tif'ﬁt

A\ Z (=
\ N Bizes truassy = (=50} (riese) _ 712 T Zwslz _

~$ Z {ryg5,)" Z (r1pze)?

V It is therefore clear that only zua{= % — rpm), that part of
which is independent of 2, is of service in estimating zp.y, that
part of z which is independent of z. The regression of g1

upon 2.z 18
Zzoatig _ T (e — roete) (31 — riemg)
Z 2% T (s — rppze)?
Tl PgeFir — roetp + rorraz

T — 2759 + ript
_ oL — ezt

T = i = 1.2
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We now see the meaning of the notation By.g. It is the regres-
sion of that part of zy which is independent of 2 upon that
part of 5 which is independent of 2. Tor this reason Bora is
called a partial regression coeflicient and, to recapitulate, it
has the two {ollowing Important properties:

(@} Itisthe regression of that part of z which is independent
of = upon that part of 7, which is mdependent of z.

(b} T¢is the weight or multiplying factor of z when % and z
are both used to estimate 2. AN

Of course 8.y is the comparable partial regression co&ﬁ’l‘ment
when variables ; and 2 are mterchanged. We wﬂl apw illus-
trate this by a numerical example,

0
Section 81, THREE-VARIABLE PROBLEMINYUSTRATING
MEANINGS OF Cowsmz(&sf

The first three columns of Tablg BX' constitute the se-
rics to be corrclated and the sub«etguent columns are derived

calculations, ».;

- = e 1 ABA&\%-&E libray e — i ——
2 3 : 2 Fanza za.’g’ y ] rismEz T Borezie | Epas [ N
1.75 r.oo' '7-,|l 1037\ 1.62063 —.0038 1.0638 8667 .7S006  .ogo4
125 .25 1 00 {404 7552/ — 2532 5082 .41 16J ‘3436{ ohy
.00 .00 \4948 .5052(—.2552) 2352 2079 2073 7027

e 1.59| oo .7-,00 0000 15000 E.2221—.4721 12221
25— 75 E OU 9896 — 7396 - .3T03— 2306/ — .1952j— S 7944
250 1258 50 2474|4974 .az7hH| I.I224]  QT45— 4171 6071

= 23 7L 25| .61I8s| 3685 .3T90| 4310 -3512) 0173 — 2673

— .50 “-h@& 00 B000— 5000 0000\ —1.0000— 8148 .3148— 8148

— LFENNGOD— Lon — 4048~ 25520 .2582|— .2552(— .2070/—.0473,— 7027
-1, &)%1 D0 o fxg)?m — 1.@(5)0 .0300 —1.0000(— Bi48—. 1852r — Bi4B

b 2-: or:|—1 75 B650(— 3841 .4466/— .4400/— 3639]-— 02021 —1.2208

\Tr.30| 2. m| 2=; \1237|— 1.6237|—.0038,—~1.9362|—TI. ‘3?’?5]" 0462|-1 4538

Zomghy = 7.6250, ro = 63542
For — Foia
St = 50375 rm= 49479, Bme= ,,Z = 81476
Pos — Tost .
Ezizy = — 30625, g = —.25521, Bea = '—012—_%:? = .jozy2
Z Z1afye = 914030, Fp = Sa.afr 1 Seefe = 81476 51 + 70272 5
Zzie = i1.2I842 I
_ 91doge = 1/1_@@ = 36686
Hnrea = HH:].? = 81476 ool 2 3

Zate = 1.61504
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These series have been so chosen that the mecans equal rero
and the standard deviations equal onc.  We are thus dealing
with standard measures, or #’s and not with x's or X's,
Straightforward calculation gives

. Zme 7625
™= Nioxte 12 63542
rox = 49473 O
fiz = — .23521

N ¢
KO

We can estimate z, by means of % by the followin g’eqﬁati ot

0 = 7o = 40470 Tz A 3

[

These estimated valucs are recorded in the,e@lﬁinn Fonfa. 1He
residuals {75 — rmz), or parts of 5, which AdeMndependent of =,
are recorded in the column .. We Qaﬁ»éstimatc 5 by means
of z by the equation A

3
B1 = 71332 ={ 25521 73
« o

These estimated wvalues are;.’fécorded in column ruez. The
residuats(gbravlibraryrargtRof 5, independent of 2, are recorded
in the column z... ThatiPart of z which is independent of z,
namely zo, may bellsed to estimate rqs. Straightforward
calculation of the zf%ression cquation gives

adl

=
N B0.o8r.e 9.14030
1433 ] = G12= 81476 712

- (3 B
J Xty 11,.21842

g b

3

\ ¥ :
The cgu\stan’c 81476 (= Bu.) is here seen to hc a regression

: coe{lici(éﬁt, being just as real and definite in its meaning as

thog “found in any other two-variable problem. Finally taking
A5 — Boazie) we obtain zoas, the final residuals that are left

O after having utilized both 2 and 2 to the utmost in estimating

2. 'These magnitudes are our final crrors of estimate. Cal-
culating their standard deviation in the usual manner we
obtain

Bz = 30686

The residuals zo. could have been obtained more dircetiy
without the calculation of z.. and z. by the regression cqua-
tion involving the two variables. We have

Zo1z = %y — HoraB1 — PBozaZs
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in which
o1 = ¥ge¥is
Barz = —— —20 o Bry76
I — Fg
e — FouFis
oz = —]': ?’7-'1'»- = .jo272

The more lengthy procedure has been followed for the purpose
of showing the exact significance of the 8 constants and of the
residuats, and not because it is the most practical method fory
purpeses of estimation. If we add the measures in the two
columns 7e2 and Bosag.. or if we use equation R\,
g0 = Jor.ef1 + Boz.ge Y ;'\
we obtain the best estimates of z, which it is possihfé'f:b gecure
from 2z and z, assuming a rectilinear relationship®’ Such esti-
mates are here recorded in column 7.  The edrrelation between
2o and zp is the multiple correlation coeffiefent and will be
designated by the symbol 7o As mudfiplying every term in
a series by a constant, or adding alonistant amount to every
term, does not change the correlatiof with a second variable,
the correlation between zo and g8 identical with that between
oy and ¥ or between X, apr'o’g;ﬂa?_(ujbt-a'ﬁlmxﬁ}tyﬁpéei eorrelation
coefficient is the maximeh® correlation obtainable between
dependent variable apiNa weighted composile of the inde-
pendent variables. ,Cﬁ@é may therefore read ropae as “the cor-
relation between \t@e"variable o and the best weighted linear
combination of Yariables 1 and 2. Straightforward calcuta-
tion of thedddrrelation hetween columns zo and zp yields 7oa
= .9 3028.,j‘1§u£ a much shorter method of caleulation is available.
We haté)ln a two-variable problem
N :

Tz = 0'1'\/1 — yt

_~ Sirive 2, and 7, are simply two variables and since the standard
\ Jdcviation of zy = 1.0, and the standard deviation of the resid-
uals in 2, after estimation by aid of z1 and g is ke.uz we have

By = I.O\/I_—. #2412
from which
four = V1 ke (Value of the multiple correlation
coefficient — 3 variables} ... .[250]
The relation between koge and 71 is the same as that between
Ekw and re of Formula [86 al, section 48, hence ky.sq is a coefh-
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cient of alienation in the casc of three variables.  We now need
a simple procedurc ior the calculalion of ke Siuce fgapp is
the standard deviation of the residuals we have

T
k2 = VE (z¢ — B2z — Buzasa)®

Squaring, swmming, and collecting terms we will find that the
factor (1 — #*5) enters into numeralor and denominales
Wherever this factor occurs we will write &%, Remcmberily

N L

that )
L Zay =¥z =xz,=N )\
and that A\
Teg, = Nrp, Zogte = Ny, Tz = e
we nave R4

Bl = 1 4 8%z + 3501 — 2 Borarorl= Buezivoz
+ 2 Bo1.uBoz a7z

1
= k 2 (I — i — iy — ‘p? ?‘01?‘02?12)
(Cocfficient qf‘a;hn,natlon — 3 variables) . .[251]
The general solution of the cééﬁﬁcient of alienation in the

case Hi 4 uarallesds el ﬁ(;comphqhed by the aid of detcrmi-
nants, and we may here nOtE- this form of solution for the case
of threc variables, If we&%write the major determinant

m\ | I ¥ Foz
\'\\ﬂ- = | ¥o1 I 1 | e [252]
Yoz Tz I

and call the mmor obtained by deleting the first row and the
first COIU{HH Ago, We have
\;\’ Agp =
i Evaluating these determinants we obtain the numerator and
2\ Odenominator respectively of the fraction giving ke so that
N/ we may writc

I ¥12 |

p=kha oo o 28y
712 I ' 2531

Eoqs = v"? {Multiple cocfficient of alicnation as
A the quotient of determinants) ... [{254]
This is here proven for the case of three variables, but we will
later find that the equation holds generally for any number of
variables, If we are concerned only with the value of the
multiple correlation coefficient, and not with the constants of
the regression equation, the simplest way to find it is to first
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determine kg2 and then rore.  If we have the regression coeffi-
clents we may obtain ko.gp and thus reg from it.  We have called
ka2 the multiple alicnation coefficient. It is the measure of
independence of variable xo from variables x; and . We will
define ko 2s the partial alienation coefficient. It is the
measure of independence of x and %, for a constant value of x,.
Thus, by definition, if 7u.s is the partial corrclation between
xo and xp for a constant value of 5, we have
k.2 + t*ie = 1.0 (Rclation between partial CDEH“IC&BDY{?‘

of corrclation and of dllEndLlO‘n) WY [253]
This is the equation for three variables comparables o formula.
{86 a], k2w + 722 = 1.0, found for two variables, ,’We thus find
that whether & has one primary subscript (g Sub}c}ipt oceurting
hefore Lhe point is termed a primary and gmeAfter the point a
secondary subscript}, koaz, or too primagwSubscripts, ko, the
type equation, k* + 72 = 1.0, holds.. &%us far we have found
the total, multiple, and partial reJatienships as follows, respec-
tively, \ o

ki +‘I?\Jw d'bl‘aullbrary org.in
2y, 12 i = T
“knlz+fu1.= 1

The same relation wi:fl be found to hold when » variables are
mvolved, so that \umversally, provided the subscripts are the

sone,
) k4L 2 =1 (General relation between
8 \ Eandr) . . .[256]
We do\n'})t have a k£ with three primary subscrlpts, but kn
Lmd'% { may be shown to be identical. Dealing with 2's we

11:&(: found km = V1 — %y and koq = the standard deviation

OF the arravs of 205, 1.6. kaa = 0a VI — rlg = V1 = 7y,
“since, when dealing with z's the standard deviation o, is equal
to 1. Accordingly
o = Fot. oo [257]
Equations [2z1] and [2354] have expressed ky.p in terms of
the total corrclation coefficicnts. We mayv also evaluate this
multiple alicnation coefficient in terms of other total and partial
coefficients, but will first need to determine a partial coefficient
of correlation. Having shown that fa. is the regression of
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2.2 Upon % and since by parity Buee 18 the regression of zi
upon zy.s, we immediately have, since every condition leading to
ro =Vpby formula |go] is exactly paralleled when dealing
with gz.0's and z1.2's,
ranz = Vinados
{Partial coefficient of correlation in torms of partisl
regression coeffivients —— 3 variables) ... l23%R

The partial coefficient #p 1s identical with rg.e but (uﬁf\om
places first the numerically smaller of the subscripts l;ekprt The

point, Y
T = ¢y = e — rPyg T 2.}‘01?"‘52?’:2
Blyg =1 — Borafioz =~ — — Bakte O
p \
—#Fyy - — 2 ¥ ¥
Blektyg = 1 01 e = rig - UELTST 42\ k"o i
*12 N
. ~\J
that is \\
Basz = kukorz  (Multiple coeffidiegntbf alicnation in terms of
or total and pardal cooflicients of alienation
Roar = kakoesa —3 \dal‘ldf)il?,w) F .. l280]

- www.dbraulibrary or
We may now Outlime¥h e%m% sexpedilious manner of caleulating

all of the constants ordimarily desired in the solution of a
multiple correlation "P(bblem‘ These constants recorded in the
proper order of caldulation are:

the meandh\dh, My, and M,

the staudé’a.r’("l deviations, ag, o1, and &

the Gu’ég ‘correlations, fa1, 7o and ry

the:squares of the total alicnation coefficients k%, %% and

JFb 17

. ';. the 8 regression coefficlents

o Fa — ot _ Yo —Foztaz Taz — ¥o¥as
Bire =- Eha Pro.e = TR Bora = — W,
the square of the partial correlation coefficient

oy = Borz Bro.z
the square of the partial alienation coefficient
Bue =1 — o1
the sguare of the multiple alienation coefficient
By = k202k301_2
the muitiple alienation coefficient, kg.s
the multiple correlation coefficient, .. = V1 — Fpe
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the b regression cocfficients
bora = Bor.z EE, Doz = }3024@
[en) [ib)
the constant ¢
¢ = Mi— boo M, — boa.y M
giving the regression cquation
Xy = boe X; + b Xz + ¢
the standard error ol cstimate, or the standard deviation &\
of the X-arrays from the regression line N
ooz = aa Roas . " '\".\
Excepting the probable errors of the constants (see foivn\mlas

~

[278], [279] and |280]) the solution is complete. N

Section 82. Tuxr Use oF THE ALIGNMENTNEHJ\RT

The calculation of the 8 constants may be edsily accomplished
by the aid of an alignment chart. Tbei%ﬂowing directions
apply to the small chart in the app(%sdix and described in
detail and with explanatory problemiy,in (Kclley, 1gz1, chart),
and also to a large chart deviggds upon the same principle
(Kelley, 1621, align). Ttems \‘Wr and (i) lfhrll‘cairtl-}gl_fqilr}'—\-fariable
problem illustration should\be read after 1he” Heatment of
the » variable problem, Sectlon 83, of this text. The accuracy
of the chart in the apl;:)endix is very slightly less than that
of a 1o4nch slid {1112: while the large chart gives results
of the same degre&f accuracy as a zo-inch slide rule.

The scales #nr“r,, and 7 are graduated according to the
logarithms oi '\numbcrs from 10 to 100, and the product scale
is g0 eradilated as to indicate the products of any two numbers
on scaled’ry; and 7y when connected by a straight lne. Aec-
cordingly all products and quolients, including squares and
%C}ﬂ&re roots, may be obtained. In all these operations the

\”‘Sﬁnples’c way to keep track of the decimal point is to roughly
curry the operation through in one’s head and then place the
point where it belongs. A strip of transparent cellulotd with a
straight line scratched wupon it, or 2 silk thread drawn taut,
constitute scrviceahle straight edges.

Scale 1/k is graduated according to the logarithms of
1/V'1 — ¢ and scale 1/F according to the logarithms of
11 — 2 Scale 1/K? is a continuation of scale 1/k% When
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values on scale 1/K? are wsed, place a stragght edee hrgh
this value and parallel to the base Iine jas cxplained in cxanple
{¢)} and locate a point on scale 17k%  Then continue the cal-
culation using the point so located on scale 1 A% in lew of Lhe
point on scale /R

The following magnitudes are needed mn multiple correlution

work: A
(@) Products, such as 7 A o
] (\H
(&) Quotients, such as - - e\
Ty s N\
(c) Square roots, such ag V/3L2.3621_3 N

d I‘dctors - ==} which «e?'(i‘éér into partial
\/ I r" \J !
- 14 w

coe{’hmcnts of correlation \
. - . ™ o - _.; B
(e) Coefficients ol alicnation, sue\1‘1~?ts ks {= V1 — r'nl
I I
(f) Pactors ;,— ( = —— —) which enter inte regression
- B I 3’ 23
coefficients N

ey wSibnzardi beal- y(mqfhmén"m of alienation, such as &
(=1 — rla)
(k) Partial reg%{sion coeflicients, such as

O Tie — Fialo;
\'\‘)312-3 ( = 12 23) [24—7]

(z} Partial correlation cocfficients, such as
N/ Fio — Fiataes _ _
N, (= o i)
P\ 2123 ( 2 Giz.3881.3 SR |
\(_"ﬁ “Partial regression coefficients mvolwnu four variables
{\ IB].‘Z E ﬁl'i -1.8'3“ |B12~3 — 61{-3‘3-‘1‘2-3
Bizge [ = T
A k 2304 ¥ 24-3
~\/ Since k%4 = 1t — By, and since the calculation
4 which leads to S, ig changed i bhut one simple
respect to obtlain 8. il 13 convenient 1o write:
Fioot — Bra.afae g
Bryny = s 264 af
I — BazaBa.y [
(k} Partial regression coefficienis involving more than four
variables

&

512..1- I T 6&34 Lo uﬁﬁz.q. L
61234 " 1 *-1923‘-1”..n1832.4.un [ 4 ]

The same procedure as in (y) is followed, but in this
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case the caleulation which leads to Bas.y .. .n does
not, by one simple change, lead to B, . . . 1.
Examples:
{a) .2 X .4 Place a straight edge on zo, scale 7, and
upon 4o, scale 7y, and read the product .08, on the
product scale.

Place a straight edge upon 20, product scale, and (

2
(8) y
upon 4o, scale ry, and read the quolient, 5.9 Qn'
scale 7ig. O
(¢) V.25 DPlace a straight edge on 25, product, sc}y}le and
parallel ta the base line of the chart (‘ci:ns ‘can be
done by rotating the straight edge unt{txfhc readings
on scales ri3 and rzy are identical) ahd #éad the square
root, .30, on either scale #13 or ;K}\J
(d) \/?__1_@ Find 60 on scaje & 23\ énd read the answer,
1.25, from the same pomt on scale rs.
(¢) V1 — 608 Place a qtrought edge through 6o, scale
1/k, and 100, pmﬁluﬂﬁl]ﬁ@lﬁb&ﬁ@m@ﬂhe answer,

.80, on scale 7o5,
(f ) ——— F,md 60 on scale 1/% and read the answer,
6 2
I, 36251 \)m the same point on scale fu,
(g) 1 — 602" "Place a straight edge through 6o, scale /4%,
nd 100, product scale, and read the answer, B4,
~\0n scale 73,
h}\ﬁ “—C%X— 80 Find the product of .60 and .80 by
=~ o? _
e ) {(¢). On a separate scratch paper subtract this from
\»\} - 78, obtaining .30. Place a straight edge between
30, scale i3, and 8o, scale 1/&% and read the answer,

.833, on the product scale.

78 — 60X 80 g ISJ: 6_0.8_><2__b (k).

O =iV T B

Tnd ° 78 = 606>§Z Sob (h). Multiply and extract
T -

the square root by (2) and (c), yielding the answer

b235.
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(7) Given: B = .70, fizs = 60; .3;9 4+ = .80; Bug.a = 5400,
. o — o .
Required: Sig.qs = “—— - =2 7%

q Brz.24 i X ‘546(_)

ator as in (k) and the denominator in the swume
manner. Then divide as 1w (#). This gives

TFind the namer-

L2200

- === 30II.
5623 39
If, as is frequently the case, Bo.y and Pay.q are ne: Ir]
equal, k3.4 18 closely given by: e\ \
_ o N\
Plgg = 1 — (‘.53.""_"__‘;_“53.3‘_‘.._) \ \/
= :‘n"

In this case the procedure may be as 'fQiIt::ws':
F0 — 60 X 8o \:\'“}\ !

Pind the numerator, .z2z200, a%}%ﬁeferc On =crateh
paper determine .78, the aNthme,uc average of 8o
and .76. Place a %tla@ht t,dg,e between .75, seale
/B, and .22, scale ?’»1‘,', and read the answer, 5018,
W dhr&llnhbmﬁgiuﬁg I&Ga‘lc This answer is 1 ervor by
.ooof, which is @r‘thc same order of magnitude as Lhe

error attendant 1 pon the use of the large chart.
Asa sampl&ﬁ?oblem in threc variables the following

data a&e\gﬁ*en

{“; TABLE LXI
PN ébl'e of Corvelations, Means ond Standard Deviglions
\’ 4 VARIABLES
¢ \.‘ 1 2 3
.%"' 2 225

»,};\ ' 3 274 404
NS Means 6815 43.60  52.20
'"\; ~/ &'s 10,50 12.24 9.63

Solving

fes = 1366

Bma = 1236

Fizz = 2200

B = 9093

Flz = 3017
Ty = 1001
Z; = .I3060 2y 4 .2200 5
Xy = 3172 X2 + 2300 X3 + 50.52
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As a sample problem in four variables the following
data are given:

TABLE LXIT
VARIABLES
1 2 3 4
2 .225
3 274 404
4 134 60 231 )
Means  68.15 43.60 5220 45.40 O\
a’s 10,50 12.24 .63 14.25 A\
Sulving \
Przas = 1398 75 )
Baras = 1270 . ,,,'\'\'
s = 1991 \/
B2 = 0790 p \\;
B = 0033 2L
P = 3100 ‘.’:}\
oram = .80\
B = .1308 22 - 1000 % 4 0706 5
X, = 1109 Xy + gf’ﬁ braibraryong.on

SR
*

Section 83. Tuxr GENﬁR}LL TREATMENT OF THE #-VARIARLE
\\{’ PropLEM

We will now dttack the general problem. The reader will
need an elemsﬁtéﬁr knowledge of determinants to follow the
discussion. /AWe are given a criterion variable, X‘o. an{?l the
mdependént variables, X, Xz -+, Xa (the population W:l]l be
designdte 'by N, which symbol must not be confus?d with »,
the.fﬁhmber of independent wvariables). Expressing every
":‘{mab}e i terms of standard measures by the transformations

3

it is required to determine the 8 constants in the following
equation in the best it manner.
... [260]

En = Borm... 81 + fors...n B2 Ao o Banern . me1 20

{zs — zy) iz an error of estimate and will be designed by zo.43. - - 4.
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The 8's are to he so determined that the standard error of these
errors of cstimate, Bege...n, shall be a minimum.

I )
Bias...n = K’E 23 2.0

1 p o
= I_\"E (co— Amam..ont — fyaa.one — =~~~ Fawoga gt

Differentiating with respect to the first 8 and setting the deriva-
tive equal to zero, gives O\

2 e \ 0
NE [0 ~ Borm...s21 — Bozas.-.mw Bz — 0 — Poroae..no ZNJ.‘("?%U = 0
N
Summing, cxpressing saquare sums in terms of sfamdard devia-
oY (] f W
tions and product sums in terms of correlatioﬁs.\, vields,

for — Bmw...on — Figfor..on — o0 — Fapfetaz.a =0
it | '\gﬂ 1

. o . . (M g
Differentiating successively with respeéct/to the other 3's gives

. R ’
for — Fafor .o — Seen..on —CT— faBmaaz..ono1 = 0
1 N/
cte. to el
N

w%\fi"dtﬁﬁﬁﬁlﬂ-%fal'yﬂl‘@ﬂﬁmzﬁb-n — oy = Boaroon_1 = 0

\\ g {(Normal equations). . .[261]
This gives # linear equ{tioﬂs from which to determine the zame
number of 3 consta,nt}, The determinantal solution is readily

written. Let thﬁﬁ‘\:ﬁ\iéfjor determinant be A.

3

4 ~.:’~' | 1 Yo toz s Fos !
:"\l | #o1 1 f1z v rm!’
(N b= lrew 2 1 e [ mrnemanaeanenn f262]
o &/ . . 3
\J
AN o -
N\ Fomw  Fin Fzm v I |

./ and let A, be the minor obtained by crossing out the p'th
row and g'th column of the major detcrminant. The p'th
row ig that row having p as one of the subscripts of the #’s
throughout and the gth column is that column having g as one
of the subscripts thronghout, Then

- {- r__)i’ App  {The regression coefficient as the

Bopaz.. (1. . ;
Agy quatient of two determinants). . [263]

The quantity — (~— 1)? is merely & sign factor. The column
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crossed out is the o’th for all the §'s so that g = 0. To illus-
irate in detail we have

Faq fiz i v Fin
Fuz I Fiz Fun
ra j#53 1 rer Yanm
18 Ay Fan  Fie Fan e I t\
198 =, - =T - —_—
Ao T Fig  Fi3 e i .,'\\..\
- o
[# Y] I ¥z et Pam \“}
4
13 -] I et am ,\}‘ ¢
N\
L ¥ 2
7y
L &

Fin  fam  ftin “\\I

\/
\\
tor 1 ¥1a, @'14} Fin
Foz  Faz ?’os \?’m s Fam
g 130&1 Fag - Fam

ww\v‘dbra uhbrary or g in

A
-

~

Fum Fir Fap Tam v 1 [264]

.“\ ’
Bozaz...n = - ‘_‘—"*_-\ A
x ) o

O
\‘w Bz p—y = ——————
N A

A]g\elatalc manipulation (see Kelley, 1921, chart) enables the
Es\pn—,aumg of a partial regression coefficient in terms of partial
\‘egjrcssmn coefficients of one lower order, thus,

_ bhey — Buaffaes _ fuas — fhgaBazg
= =2l O 264 a]
Bizas 1 - ﬁsa 4;3’324 I — Paaffers [264

and 1n general

_ Buacon — Pud.onfiseon . 1264 b]
Bi2s4e..m = T By mBam {264

Note that if the variables are designated by subseripts 1, 2,
3, - instead of as here, by o, 1, 2+ - the sign factor is given
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by — (- 1)*¢ in which g always cquals 1. Probubly the
simplest way to kcep track of the sign is to note that the
denominator determinant is always positive and that the
numerator determinants alternate in sign beginning with plus
for the first 8. Let us define

Hogaro0lo )-..nl

and - (Conjugate g'sh . 12050
Bapte.- Ly trn |
- . . - _ P
as conjugate regression ceefficients.  Then AN
— (= TP FIA py 'S\
5 T PR S R - « W/
Bog1a---¢ App ~\
and W)

Bgprz.. ()0 =

—(—jetea '
e N %\
Since the major determinant is S\emmetncal Apy = Ayy and
the signs of the two are alike; thus t‘ne pdrtnl correlation
coefficient 1s given by the squarc roap P}f ‘the product.

— {— 1} teapd (DL Lermingnial exnrossion

¥ . - . = W
Pzl "App Vi) for the partial coefficie::

www.dbrauli .’ 3 of correlationy. . ... ... . 2066]
The part:'ﬁb Correl]a%rc\{n*; ghat are of most interest and value are
generally those involvigg ™ the criterion and required i the
calculation of the mul€iple alienation coeflicient.
KV A A partial eorrelation cosfiicient
rm.ga,‘.k\¥ Ay VAL ( of the {n — )th ord(cr} _____ [267]
This may be Wntten (Kelley, 1921, chart)

The O\Téi‘ra determined by the number of becondarv subscripts,
thu,g% 2343 18 & partial coefficient of the 4th order, 7q. of the
firet arder and #o of the zero order,

¢\’?'D123 ﬂ=\/’i3mza I . 267 al

~\/ Pt . Awiy 1z (Determinantal expression for
3 2+ P = - . -
\ 4 v’am, . ‘/Em L & partial correlation cool-

_ ficient of the 5 -2 srder). . [268]
The magnitude Aw, 1» indicates the minor obiained by crossing
out the o and 1 row and the 1 and 2 column. Note that the
sign factor is positive. This is clearly the case, since we arc
now really dealing with a major determinant of an order one
lower in which row and column 2z have taken the place of row
and columm 1, row and column 3 the place of row and column
2, ete,
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Continuing
o _ Aprz, 123

0F ke el = — T e———
\/ﬂnu, ngv Ay, 132
etc. to

Aprzom — 1y 1m0
fon = R ! - — _tom

Vs . o ~—-1, uu,‘.n-—1\/ﬁm...,;, 8. IXT
{Partial coefficient of zero order, or a total correlation coefficient). . 26g]

The various minors needed in the solution of this series of
partial coefficients of correlation may be cbtained incidentallyy
in the process of obtaining the first minor if the determinaqi R4
cvaluated in a cerlain manner which, however, may notalways
he the most convenient way for other needs. Hdving the
various partial correlation coefficients we may d{ce’ﬁnine the
partial alienation coefficients by the eguationl® = v1 — 72
These will prove serviceable in obtalning ‘th tultiple corre-
lation cocfficient, but we shall {irst need ,th}es'tablish the value
of an alicnation coefficlent of a certain})rder in terms of an
order one less. In dealing with z @nd z between which the
correlation 18 #p we have fouﬂd"’férmula [257]
B = iz {1 — ?"ply“% 1 {1 — rtu) = Bn

U we deal with magnitudesti, SeAHARTF ¥ 05868} estimation
b za, and z.e residualsfin 7 aller estimation by z between
which the correlatiogmi‘s\ ¥o1.s we have, following the identical
reasoning that led ‘{é\the preceding equation,

EPpoaz =h%a (1 — rlara) = ks k.2 = ks B3p.2
Obviously thd/principle can be applied to residuals of any
order so tljys\i;, in general,

NV Floaz...n = Ehp. s kinm..n
'\'\\“ kgn.]_z.‘.n = k"!u,m,‘.nksog.m...n
ol cte. to
.'\."' BPooan...n = kzg.lz,” n«-lkﬂnyz.lz..‘n——l
PN’ (The # ways of expressing a multiple alienation coefficient of the
\ ’ #-th order, in terms of multiple alienation cocfficients of the
{1-1)th order and of partial alienation evefficients of the {#-1)th
order) . . ........ e 270l

Expressing #%.0 . - . » a8 equal to s . - . » Flozad - - »and con-
tinuing the process for every &, until finally Ko = B, WE have,
taking the square root,

Eoorg.on = Eov.a. . on Bozaate oot Baaase om0 one X kox

{One of the muny ways of expressing a multiple alien.atior{ co-
efficient of the mth order in terms of partial alienation

coefficients of lower order} ., oo o [271]
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Having the multiple alienation coclleient we obtain

Fous...n = V1 = Efzoo o (The multiple correlation cocfiicient). . [z72]
and also

Fp1...n = oo kuan..n (Standard error of estimate) . ..., l27g]
This completes the solution, hut it is somelimes easicr o ahtain
Foaz . . . n DY the dircct evaluation of the major determinant QN
and the minor Age. That we can obtain the multiple vomela-
tion coefficient in this manner will now be shown, Ii z& Snlhe
criterion and = the estimate of it, the correlation bct-\yc:_\r.zﬁ them
is the multiple correlation coefficient, and, if we KI¥_ repre-
gent the standard deviation of the % mcasures:\"xﬁ’ 15 given by
Z 205
Nagw— O
The standard deviation of the z, medgiires is the standard
deviation of the points upon the¥Chression line passing as
closely as possible to the s, mca#m’es Thus, just as in the
case of two variables where ,sr L = gy + ot [formula 87 1o
which vy -&bradibranilorg- teiition of the means of the arravs,
50 herc with (1 -+ 1) variables.

<~ ol =af .. + et o

Deating with z meadiibcs oo = 1 and g0 . .
that, O

Yoz =

v = Fn2 .. ow S0

A\ y
) gitlo =1 — E¥qa.

As we have akeady found that thisig cqudl £0 P4 . . .« jfornula
272] we l‘i}w‘c

ai G ro iz...n  (Standard devialion of cstimated standard scores
is equal to the multiple correlation cocfiicient) [274}
“gn:me Touz. .. 18 of necessity positive. Total and partial
\‘\ “eorrelation coefficients may be positive or negative; multiple

correlation cocfficients can only be positive. Thus con-
tinuing we have:

T —
... = Nz ZaZn

1
“S,TE Zo (Bovese o8 + Boztse.onze + ... - Bowis.. n—120)

= rmBors..n + rwbun..w + ..o+ FonBoiaz. e
I
= A [Fmfon = faphor + ropfy = ... (= 1)%un Aow] -
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Referring to the major determinant, we see that, expanding it
in terms of the clements of the first column, it is given by

A = Ay — rodn + feda —- -+ (— 1)% Fon Ao
Lhus
I A
a1z, . = _Quu {Apg =AY =1 — Su_n.
ar
o - "III _ 48 (Determinantal sojution of the multi- Q)
Fazeen Am ple correlation coefiicient) .. .. ... [275],
and further R\
R oA (Determinantal salution of the multipif.)
a2 ".\ug alienatinn coefficient) ... ... .. 't" o T [276]

As a corollary to the two derivations [forrnulas z{r\ Mand 276)
we have
II A

“'E =Fkoes. .. Bozss, oo X .. P R x..\\::.. N k-l

The preferable niethod for caleulating kaﬁ .. x depends upon
the order and whether the partial aflen'ltlon and correlation
coetiicients are needed in the 90111‘[1011 of the particular problem.

The theoretical soluhonm,ﬁ@ﬁb,amﬁm% f&yopg}wgm is now
complete except for the pI‘Obd hle errors of the constants in-
volred, The standard ewrors of certain constants mav be
immediately written dbwn by analogy with the usual two
variable situations sn‘ﬁpha noting, e.g., that xo.. replaces xy
and x1.; replaces #y, ele.  Thus we have by parity with formula

[108 & 5
O P (Standard error of a partial cocflicient of
(’:ﬁ\ VN N correlation, 3 variables).. .. ... [278]
'\\ g _ B (Standard crror of a multiple coefficient
& f et T N of correlation, 3 variables).......... .[279]
L B)parity with formula [107]
W
\ ’ ane k{u r_ oo (Stapdard err‘or ofab rcgr-?s—
Thas T o1 VN ez VN sion cocficient, — 3 varia-
bles). i e. . [280}

Plainly we may, in the case of # 111dependent variables, deal
with residuals of higher order just as we have with residuals
of firgt and zero order and obtain:

Boim..m (Standard error of a partial coefficient

Trelzs...n NG - of correlation} . ... [281]
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_ E%in...n (Standard error of a multiple coef-

a, = — . . -
LCACIE VN ficient of corrclation) .. ... ... .. .. [282
o0 (Standard error of a regression co-
i = = .
bogm T VN efficient) .. ... ... . ..., [283]

Sectton 84, THE METIIOD 0F SUCCESSIVE APPROXIMATIONS

With more than fve variables either of the preceding methods
is laborious, and 10 meet this situation T have developed andN
herewith present a method of successive approximalionsgALo
the values of the regression coefficients and to the 11}11\31\:*;)10
correlation coefficient. I have not as vet developed Qt-'l::ét':"_hr"ll'l
empirical tests of comvergency. The method :;1{5}_-‘"‘1)8 hest,
presented in connection with a munerical ilh]st;j{@i‘s)h,

If given all the regression coefficients cxfept the fisst, we
may write p \\

Zg = 1% + Bozse - onZs o+ Bovrza.onda +'\ W Boaa. . oe—in . [284]
in which wy is unknown, but all the ‘é’s’: are known. We may
now, ASLCIRING i il Qreg_igpating £be right-hand member, i.c.,
the total right-hand compositedntiusive of w5 by ¢ and the
right-hand composite exclugive of w1 z by {¢ — 1) {Lo be read,
“the composite exclusives of variable 1] we have

’i""@=w1z1 e —1). .28 2
The problem ig ﬁsﬁnrwa simple three wvariable problem, the
variables being ,?oj,:zz and (¢ — 1} the correlations between which
we will desipadie as ro1, rop—1 and rie—yy. Two of these cor-
relations ha\ve te be determined. Both roe—n and r—1 are
correl&ii")}fé between one variable and a weighted sum and are

giver( by formula [149]. Thus we immediately have the regres-
sjgﬁfcoeﬂicient of 2o upon #:
s “'l

1 ol — Fole=13¥1 (e—1) -
4 Wy = — e 28
\ ! k2 1) (28]

and the regression coefficient z upon (¢ — 1) equals
Fnig—1] = ¥uf1ie—1}
Ty e
The weight =1 as thus determined must be identical with
Boras . ..« and the regression coefficient of (¢ — 1) as thus
determined must equal 1.0 else a better fit than the regression
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equation fit has heen cbtained, which we know is impossible.
We thercfore sce that if we know all of the regression coefli-
cients except one, we can determine that one without resorting
1o the evaluation of two lengthy determinants.

"The thought occurred to me that with reasonable weightings.
guesses, or weightings somehow derived from a priori con-
giderations, for a large number of variables no one of which
wag of greater importance than all the rest combined, it was to
be expected that the closeness of estimate of the weighted sunt
of all the variables but one, which I shall call {¢ — 1), would
vary less than the weight guessed for the one. Thu§ i the
cuessed weights are wy, we, we » Wy, and if ¢ is t}ge}gfeighted
sumtl (w4 b wege 4 ws?s 4 cwazse), the calculdtion” of the
regression coefficient of =z upon z, ie., the)c?a.lculation of
Far.o—1 would result in a closer approachMbd Bors - . . » than,
in all likelihood, was 1w, We will call this'ségression coefficient
wn and take it as a second approxighation to Pepes...n A
similar procedure using wy, ws, w4,:.‘: W@y, (Not wn, Wy, We o We)
will result in a second approxigietion wy to the correct weight
for z, ete., for each of tbg;@;}jg;.am;lﬂgﬁwgﬁ then ha've
welglits won, We, Way- - -w,m}'gind may repeat the process ebtain-
ing third approximation“valucs wny, Wes, Wass,- - Wa and
still other approximagions should they be needed.  Just as soon
as the repetition @ﬁ.%he process results in new weights which
are 1dentical wit&t those used in obtaining them we have the
proof that théwegrcession coeflicients have been found, gince as
pointed ottyfollowing formula 286) this is the unique property
of the/dkgrossion coofficients, Therefore if repeating the
procesy’a fourth time should give wun = %, W = W, €0,
\3-‘(’;‘: know that wiig = Borase.. s Wem = Praz.o.om etc., and

<the problem is solved. We will not expect identical agreement,
“but such agreement as is needed for practical purposes, say

within .1 per cent, .o1 per cent, or whatever other 11rT11t 18
sclf-imposed. Presumably the larger the number of .vanz%bles
the more rapidly convergent are the successive approximations,
but I am not able to supply the theoretical proof that the con-
vergence must take place under all circumstances. A secqnd
check upon the genecral approximation to regr§551on equatfon
weighlings may be found in the size of the multiple correlation

QY
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obtained, For convergence to be present this must increasc
for every step.
The following example which has only six variables, and
thercfore constitutes a more severe test than would a problom
‘having a larger number of variables, 1s given. The variables
are: o, the criterion, being a measure of general scholastic
success of school children in two successive elementary schocl
grades (population about 3o0): the remaining variatles ggd
the scorcs made by the children in the five tests com],m\mg
one of the {orms of the National Intelligence tests. 0
(1} A test in arithmetical reasoning A W/
(2} A test in sentence completion N
(3) A test in logical selections of reasons fQI\(,OﬂdUCt
(4) A test in naming synonyms and adsdayms.
(3) A fest in substituting digits {or syhibols.

The correlations between scores arc ¢

AN
TABLE LEWT
_____ WM ibl‘aum‘x%_g__ipiaffufs e
\ | | T
] I T
5_ H_l__ S - | —
1 .4017 | | !
Vari- 2 6003 2332 i
.13 L3R 1986 T747
ables ! égo 2569 ‘4525 2628 |
5 { “$553 | 1064 2139 : 0033 | -29%9
- _—\.__—\__—\_‘_‘\_2__"-\__‘_”_‘_' L T/ e = - T T T T/ T

The afm’ﬁol ¢ will stand for the composite score aceording to
whateidr weightings arc used upon the five tests; the svmbols
(c v—\r) {¢ — 2), ete., stand for the composite scores upon all
ﬁy"c tests, except test one, except test Lwo, ete.  The problem

N\ 5 to make ro: & maximum, Trealing one of the five variables

" as unique and obtaining a composite score on the other four,
gives us a three variable problem, the variables being o, #,
(¢ — ) in which # stands for the unique variable, being in
turn 1, 2, 3, 4, 5, and the regression cquation being

Bo = Bowtemw) 2+ Pote—win e — ) ... ....... [287]

The value of the sccond regression coefficient will ordinarily
be in the neighborhood of 1.00, but it does not enter into our
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present treatment. The first regression coclfcient is the new
welght @y, determined for 2, and is given by

Wan = o = ;—25;“%?‘ te—w) e [288]
Let ¢ stand {or the sum of the products of the correlations of
the independent variables with the criterion into the weights
of ike independent variables, ie.,

5 = wnro b weroz + ey owere bW L. [28q]

Let 5 stand for twice the sum of all product icrms of the sort’

BNy T an, 1.€, S in our present problem is a summatigﬂ\Q}
2 X 1o terms as follows: O
S o= 2 (wrttvry b Wi o woters + W + wetern + wz’wﬁ"z:ic,

+ e - WaTs - Wl 1+ 7-6'4?»05?"45) - N> . - [290}
Tet 2 S, stand for the sum of those terms in S (2 “){ﬁfin rmumber
in our present problem) which involve wy. THUE S is equal to
the sum of the Sy, or in the present problemy’

S=Si+S+S+Sks% .. [290 ]

and finally let Sw? stand for the sivof the squares of the
weights, That is, o\ ¢
Sw? o= it 4 wwﬁkfiﬁ'ﬁi’wﬁ’hb{}m?pn&in eovv. . J2g1d
We readily obtain by formqk—i'é’['lﬁ 3] and [144]

T, = Vw4 8 “QSLaiﬂard deviation of the ¢ composite

WA Vseore) Lo 2e2)
y oS { _.-({?‘eﬁition of criterion with the ¢ composite
B . 1 [z93]
oy = '\f’;S‘gu.ff—f— S —wiy — 2.5, (Standard deviation of the
AW -1 composite score) , . [294]
v {NY — wurgy  (Correlation of the criterion with the c-—u
! ’\”\‘ Tl COTPOSTTE BCOTE). Lot o [z95]
;,"\ _ Su_ {(Correlation of the test treated wniquely
WS HD T gy with tile e~ composite score) ... ......[266]

NS o —
™\ M will be noted that if we have a problem involving one
\dependent variable and # independent variables that there are

#otlerms in s, nin — 1) terms in S, (7 — 1) terms in S, We
now have all the requisite formulas and may proceed with the
calculation.  For opur first series of weights we will take wy = 2,
We = 4, wy =1, wy = 5 and w; = 2, which arc roughly pro-
portional 1o the total correlation coefl cients of the tests with
the criterion, In the accompanying table p stands for the
variable designated in the stub.

N\
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Tabulating the results thus far obtained, we have
TABLE LXVI

| ‘ \u.\«fE‘i!"H'l"-i i
: WHEICHTS Minal I
VARIADLES l Fst Guess APP;,:;;;E\;EI' oy
Iy 2 J 19 | QL0
2 4 ! .33 ! -3240
3 I 03 B LG
4 5 43 4358
—— 1352
Multiple correla- | |
tion resulting 877 \ FOO05 y ~\
—_— - - = = e o T T T T s T T T T T _’A 3 =

The first weights give a multlple correlation of "‘57’; and lead
to the determination of the second apyroximatitl weights.
The second weights give a multiple LOI‘I‘(:‘L{tlf)n Wi “7gooz and
lead to the determination of the third dppro%mmovl weights,
The third welghts differ so sliphtly {rom the second that for
ordinary purposes one would stop the cﬁiéulatiou here, use the
third weights as final and take the mt‘ﬂttplc correlation as equal
to .7ge1 since it will be a trifie ahove 79005, The method
of paelliwtidibiaf jthegwaizhis figre shown invelves but a frac-
tion of the time necessary te\evaluate the determinants nsces-
sary to a solution. Thlws true for three reasons:

(a) Number of opemtiom is much smaller,

() No checkmpz{ im inaceuracies in any of the calculations,
except that for¢the Aast weights derived, necd be made, as a
small error leaﬁhg to a wrong approximate weight will be
corrected inghe next step.

{¢) Paruﬁl regression coefficients Bow.r—w, except for the
last stepl rhere greater accuracy may be desired, may be made
by t‘{x@»md of the alignment chart.

Px Turther device which is serviceable is to compare #p. with
\each of the #y—w values in the same calculation. Should

\ “any one of the 7y, correlations be larger than 7y it indi-
cates that the weight used for the test in question is worse than
would be a weight of zero, Referring to the first of the cal-
culations above, we find that rp, = 4877 and that #ue-z
= .7882. This means that the weight which was assumed for
test 3, namely 1.co,is a worse weight than would be the weight
zero. Thus if the problem js such that only positive weights
have been used as the first approximations, any variables
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which should have negative weights will probably he discovered
11 the first ealeulation by the correlation Yoe—w turning out
trigher than re.

The solulion by determinants of the ahove problem correct
tn seven decimal places has been kindly supplied to me by
Alige Ella Woodyard.

wr = 10412347 W = 43603907
Wy = .32392603 ws = 13466543
Wy = 02748474 Tpagms = .FO00G053

Tt will he seen that the maximum error in the third apprc’»gl\
mation weighls 18 .co1g, which is the errar for ws, This;t:%ulii
prohably be considered a neglipible error, Shou]@~f}9wever,
greater aceuracy be required, a determination offairth order
aporoximation weights will give it.  Actually .sufoﬁ caiculation
gives weighls, no one of which is in error bmitre than .coor.
I have also made a fifth culeulation resplbing in the multiple
correlation 7o = .7900go38 which isiseen to be in error by
00000015, Thus for these data there’ can be no doubt that
rapid convergence actually exis,‘gs.'“One desiring to practice
the method is referred to Y€ ﬁ"es {1g21), where abundant
muitinle corrclation equat‘ifo\{i\"‘;ila lé%'li[;lﬂbﬂﬁ%‘ﬂ{]g\i‘érked out by
the determinantal method™Ns to be found. T have used this
method upon a varieynof problems and have always found
convergence, Mucl\lime will be saved if the original guess
az to the final “:eﬁzhts are excellent, but the method does not
require approximéte accuracy in the original weights. To il-
lustrate thig\iet us work the present probiem, starting with
weights &x, 2, — 2, — 1, which are about as unreasonable

5 it s Sudest fq s i 1ves
as ljc‘;{\posmble to assume. The calculation g

N\ TABLE 1XVII
Y = = —
N ! w . WEIGHTS Y\jlgluﬂt;rs
4 5 EIGHTS SECO HIR!
\ 3 VARIABLEs | FigsT GUESS : J\pmrggum\u{rmx APPROXKIMATION
R ',__ i ;3?28
2 ,| i . g ‘031
2 . .
3 ! — .7 437
4 i 2 et
&5 _ . e=r oo e
Multipde corre- !
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Evidence of convergence is not clearly apparcnt from these
three series of weights, but it of course is apparent, by com-
parison of the third weights with the correet values. The very
poor choice of original weights has increased the nunber of
caleulations necessary to establish convergence, but it Lias had
no other cflect,

A pogsible diffieulty in ihe caleulation of the Suew GO
cfficients in case one of the approximate weights is zero Ay bie

mentioned, In case w, = o, 1Y
Su O " ”
Pupeoqy = - = . R EL LY
Bl Wuthc-—u U \ Y 9 ]
To avoid this indeterminate form we may writgS )
. ¢ $/
P (- @i = ’w.\[g‘-);—}

instead of the preceding, which is gesferally shorter {o use.
As an illustration of 1his situation it.!ig}z_\" Le noted that ay was
chosen equal to o in Table LX\{M‘,}\ Thus & = o and fie~y
= gby formula [296].  Using fotwiula {297] we have

wovrwy diyragliprar § i Ry s _ LT s

Niagl: 2.7465

This is no longer indeterminate. Txcept in this calculation
of #uc~wy MO speciq}@rocedure will be necessary on account of
a zero weight. , Fhgiintroduction of zero weights whers reason-
able leads tg \c;\simpliﬁcation of the numerical work. For
the problem\int hand, if the first estimated weighis had heen
2, 4, @, :,,2‘ fnstead of 2, 4, I, §, 2 it would have simpiified the
first Q@\i@t&]’étion and led to rapid convergence, 1t 13 well Lo csti-
ma;b{a: zero weight whenever in doubt,  The regression weights
g?j}lst determined are of course 8 coefficients, wy = Foroz .+ - -

sty = Bueaz - . a0 €bC, pertaining to the cyuation [260]
S

\‘;

Zy = Bnw-..ond F Feras.omse o4 Bono1z...not Se
Making the substitutions of equations [247] and [24%] immedi-
ately gives the regression equation involving gross SCOTES

Xo = boras..on Xy - bes WeoenXg oo F by at At

The regression ceefficients and the multiple correlation co-

efficient are given by this successive approximation method.
The partial alienation and correlation coeflicients, as well
as the important standard errors, may all be obtained by for-
mulas given earlier in this chapter.



CHAPTER XII
STATISTICAL TREATMENT OF SUNDRY SPECIAL

PROBLEMS
Sectson 85, Startistical CoNsTaNTs DETERMINED FROME M \
MuriLaTeED DISTRIBUTIONS \‘\

If a portion only of a distribution is available it ig ﬁb’ésib]e'
to reconstruct the entire distribution when a reasona{a dssump-
tinn of the form of the entire distribution can ¥ thade. The
principle is applicable to any form, but only in éase the assumed
form 1s normal are the constants enabling, &séady caleulation
avallable 1o tables. Let us assume thai\data for the tail of
a sharply truncated distribution, wHich”is in truth normal,
ara available. The “tdﬂwﬁ»madbbmgmﬁéﬁy BEdess than one-half
ol the total or untruncated dﬂt'rﬂ)unon The distance from
1he stump to the mean of thaft.ml bears a ratio to the standard
deviation of the tail whiclichanges as the point of truncation
changes; conversely, thevvalue of this ratio determines the
rireportion of the tof }\diqtrlbutxon which is represented by the
tail. This is the property utilized by Pearson and Lee (1908},
and by Lee ( I()Tgi} n reconstructing the total distribution from
a sharply Lrt@wtcd portion. Tables facilitating this process
are Lo be fngwd in the references cited.

Th 01(:\}36 other properties, such as the ratio between the
m«;dmn deviation and the mean deviation of the tail measured
twm\t’he point of truncation, which can be utilized to the same

\{utpmo, and it is not at all evident that the error of such
determination is greater than that of ihe Pearson and Lee
determination. The probable errors which establish the relia-
hility of either method are at present unavailable. The ac-
companying Table, LXVIII, gives the ratio of the median
deviation from the stump, to the mean deviation, for successive

percentages of a total normal distribution.
STI
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TARBLE LXVIII

:’ Muntax h | Mennx |
? i T Miax | 4 | ) ]\_\TDT:\ J ?
N Il____ R
01 7363 34 Az o6 |
2 [ 7423 |33 Si16z2 I 68
3 | 7450 | 30 ik Gy |
i | o
4 7508 b 37 B199 70 i Boog <
5 FE4T 38 B218 71 ! RLXEN
& 7571 3 8237 | 72 | -V*’? \
7 7500 40 ) R236 4 73 L xth
g ! 7625 41 B2rh [R5 kukym(;
9 7650 ) 42 Bays ! T3 N R0043
44
N
10 7674 43 1 Baa b e\ oonr
11 ! Fou7 44 8334 " A\NY | Q100
12 PTG i 43 8333 N I e L ]
P N4 _
13 7741 46 8373 \s I’ 79 . QL50
o 762 47 8358 o o .oidn
i5 it 48 Bangy 21 | 220
W W |
16 7803 49 ~»84 3 g2 1 9282
wwiy.dhb auhlf]&?l:y org.in 5¢ gy 2453 53 0284
18 51 “: B4vg | 84 i JO3EF
[ N . |
19 7862 lp &2 B4o3 ! 85 | LG3RD
20 L7881 i $N63 B316 T 9384
21 AL GaLE 8537 87 ‘ 0420
£ N/ [ ||}
22 g020 Y s5 8538 A
23 7983 56, .B38o L 89 | o402
24 : .79§7' 57 | ﬁﬁor { (%) | 93539
f ¢ R )
25 x'\»rgf 8 1 8623 [{ o1 | .03y
26 477995 5o | 8646 [ o2 | .96TO
NN solz | ko 8668 | 93 | 9851
O\
25 sozz | 8601 I o3 | 0604
N | Bose G G2 8"14 ' 95 ) 9738
SE R I | o6, 9785
I I
31 1 .Buly oy 61 8,t’r ioer b o833
32 ! BIoG I 65 . ; [¢1) | G584

9939

Tntermcr Tai ]c I,}C\TIH mth Lho nt1o given b\ the da‘(ct
leads to g, the proportion in the tail, and thus to N, the popula-
tion of the total untruncated distribution, The further steps
in the solution will be obvious {rom the problom discussed in
the next paragraph.
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It not unfrequently happens that the total population is
known, so that the items available are {a) g, the proportion in
the tail, (B) the point of truncation, and (¢) the distribution
of the tail measures. In this case the fitting of an assumed
normal distribution is very simple. Let m = the mean of
the tail measured from the stump; let 12 = the distance from
the mean of the total distribution to the stump; let & = the
u;tmdard deviation of the total distribution: and let x and =

kave the valyes of Table K-W when entered with the arpus

ment g, We then have, from formula {53] O
x«*——l?,orf)=xs ................ “_ij'.fﬁgs}
o 2
§=£—)+ﬂ—£or s=~——f~ ....... ~\.. ... [2a9]
g « o E_ 4

Selving these two equations for ¢ and D conm]é}és the problem.
As an llustration of the use of Table L@&\IU we may calcu-
late, from the data of Table LXIX, the eonstants of the total
ar ado distribution of rs-vear olds, kﬁomng the grade distri-
hution of the portion found in, *the elementary school. The
children represconted rtangs, gqgryulggél LG years of age.
We will azsume that the topal grade dlstribution is normal and
that the elementary schpehportion is a sharply truncated tgll,
though in case the dafylsory school attendance law applies
oniy to the clemenbary school this assumption is undoubtedly
i error, le adingl/ 40 2 larger estimate of the number in the
high school ] an would actually be found there. In the grade
scale usedy “3~<3 means the beginning of tbe third grade, 3.25
the m1d®of the low third, 3.73 the middle of the high third,
ate. 8 ,
" b} TABLE 1.XIX
\ YGrade Distribution of 14- Year Olds Obtained from Cerlain Virginie
Survey Dala

(GRADE  3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 Total
NUMBER
orPupls 1 2 4 7 I3 1l 61 60 82 96 40.3¢ 4lF

The point of truncation is g.0o. Caleulation gives

Mdn measured from. g.00 = — 1.685
M msasured from g.oo = — L.B35
Mdn

Man 918
T 9181
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From Table LXVIII, ¢ = .7975. This proportion iz repre-
sented by 411 pupils, so that the number in the umtruncated or
total distribution is 315 pupils. The standard deviation of
the total distribution s, by formula {29¢[, cqual to 1.521 grades,
and [J, the distance from the stuwmp to the mean of the total
distribution, is found by formula 298] to equal 7.266 grades,
Accordingly the constants of the unlruncated distribution of

fourtcen-year olds are O
Mean grade = 7.734 Vo &
Standard deviation = 1.521 grades \' \\
Population = 313 pupils « \J
Section 86. CORRELATION TJETERMINED FROMw.I\“:I‘L}}JLATED
DISTRIBUTIONS . '\‘

The ability to determine the constants dhintotal disiribution
from a known fraction of it may be turpeflto practical eccount
in decreasing the size of populations Acttssary for an assigned
accuracy. The procedure may b 1lfu9t,rd,r,ed by a provlem,
the data for which hawve been }and’ly suppled by Miss Mar-
ERGaE. &Bl‘@@lﬂ?’al‘y org.in

TABLE LXX

Numbers of Pupils Obtaining NBesipnated Scoves upon o Syimbol-Digtt
it )s!smum f{"‘f

ne Schown. (FRADS
TEST SCORES |— —\%\——h —_— — I e —
N, 4.25 4.75 | £.25 Ji 8.73

/
7
é
~1
wn
[ ]
-

(LIS I VR ]
-

g
=]

]

> N AN
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The problem which we will set is, in outline, to {a) calculate #
from this mutiiated table, (b)) determine R, the correlation to
he expecled in a range of two grades, let us say the fifth and
sixth, (¢) determinc ihe prohable error of R as thus found,
{1} dete.rmmc the probable error of an R of the same size (desig-
naied R it found from a population of the same size in grades
5 and 6, and {¢] by comparing the reliability of B and R’
endeavaor Lo ascertain whether an artificial selection of original
duta will decrease the populations necessary to secure a desirgd
reliability, M

Leiting school grade he the Arst variable, and test scom thc

second, we Hnd 7 = 827, N

If we can determmine /oy, where Iy is the standafd Heviation
of the 3 and 6 grade distribution, and ¢ thatithe 4 and 8
grade distribution, we may use formula [86}'to obtain R.
Assuming thal there are the same number'}c ‘of pupils in each
grade we have the two following dlstnbu. ons:
Grades 42547-\823875
Freguencies f f  fO8f

gand 6 grade ;G rades SR tﬁs?’ﬁl&}%%gtmﬂg 8 = .3125 grades

distribizion | Frequencies f

4and & rrade

ietrilattion | iving %) = 4.0025 grades
distrilattion Eg ng e = ¢ 5

from which the ratio Zuéy = .27735. Having this ratio and
fiz we find by formul:t“}\S() that R = .378. Thus the correla-
tion in a two gr ade\@n we is rather low.

By formula [108 6], & = .37/ /AN, but this is too small a

value, as the; Jigtributions with which we are working are far
from m{:solgu(tlc Estimating the 8's for the school grade and
the test €80fe distributions to be 1.06 and r.g4 respectively
gives Pwformula [1o8 o], o, = 515V N, which is the prefer-
ableWalue in the case of this platykurtic correlation surface.
D the assumption of form of grade distribution can be made

\mth great cortainty, so that we may consider no error to enter
into the ratio /o3 we may obtain the standard error of R
knowing thal 7. Starting with formula [187] and taking loga-
rithmic differentials we have,
dr dk dR 4K

T F TR TK
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Substituting these values for dk and dK, squaring, summing,
dividing by the population, and extracting the square root,
gives

U'r G'R
rkr  REK?
or
_  RE® (Standard error of the correlation coeffi-
TR T O i cient inferred [rom a coeficient abtained, 2\
ina different range) ... L. i
N
Using this formula we find for the data in hand, (N
w AT e \ P
op = 12387 o, = 638/ VN LN

Tiad the correlation been dircclly delermined frgﬁi"ﬁhc 5 ol
6 grade distribution, 1ts value would presuﬂu-g@{ be about the
gsame Ry = .348, but its standard errog@ould Lave heen
different. Estimating the &'s o be 2.2Nnd 3.0, instead of
1.06 and 1.94, as above, the standard eifo} by formula [108 af is

o= BTAIVN L AN D

Choosing such an N for formula ) as io reswt in the same
stm@ag}jl,gﬂmﬁ%\%@&lnhy fofmila (¢} shows that 1.87 N are
necded in the narrow 3 apdNe grade caleulation to obtain an
equally reliable result to thal deduced for these grades by the
4 and 8 grade ca,!culﬂi@n baged on N,

One cannaot generalize and say that, given equal populations,
more relable rqshi}s are always obtained {from the wider vange
determination But this 13 true if correlations are low, in the
narrow range’ and not very high in the wide range ——say
under 4950 the former and not over .yo in the latter. If
entigs\:f?ecdom in choosing the range of talent to be examined
is_present, excelient resulls may be cxpected if a fairly meso-

Jkartic distribution, yielding a correlation between 6o and 7o,

w

“ean he selected, and then cstimating the corrclation {or greater

and Jesser ranges by formula [1806].

Section 87. THE PrROBABLE ErROR OF PERCENTAGE MEASURES
OF OVIERLAPPING

The probable error of the proportion in one distribution
which exceeds or falls short of a certuin percentile in a second
distribution is a function of both distobutions, Let the con-
stants of the first distribution (to the right in the accompany-
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ing Agure) be designated by lower case letters and those of the
second distribution by capitals. Let p = the proportion of
the first distribution falling short of the percentile X, of the

2HD 15T
DISTRIBUTION PrsTAIEUTION

2\,
O
second distribution. A change in p may he producednéjtﬂér
by a change in X, or by a change in the pl'DpDItiOn‘iﬁfthe Brst
distribution below an assigned point. .\ g

*_lr

Lel § = a small change in the proportion $:dve to fluctua-
tion in the second distribution) 7
Let d = a small change in the proporfid‘ﬁ # due to fluctua-
tion in the first distril}ut:io’}l.
Lel A = a small change in the groportion p due o fluctua-
tions in both dispfibutions.
Then A = § + d, and\mm(idéﬁ&’éiﬂ%rﬁ»‘ii%ﬂg Jis the standard
error desired.
LA = X§ 4 TR 3
Stace § and d are fuhdtions of two independent distributions
they are uncorrelaped and 2éd = o, so that

."\’.3 -:r!;ﬁ=oﬂ‘5—]—:72d AU | 1+ ¢

gq 16 the sr\ag}dard deviation of the proportion of measures in
the ﬁrs&\@cribuﬁon below the point X and by formula [43]
aa = Ny n.

i the ordinate of the first distribution per upit base at the
“paltit X is 7 and i the distribution is assumed sufficiently flat at
fis point Lthat a small change to the right in X would pass over
approximatcly the same number of cases as an equal change
to the left, then a small change 77 in X causes a change of D
in the number of cases, 1p, of the first distribution lying below
the point X, Dealing with proportions, p Is affected to the
extent fD/n.  In consequence,

o's=(rf_u
"

N\ ¢
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In this equation f and #» are constants, for we are considering
fluetnation due to variahility in the second distribution, so that
f -
oy = “;1 o {Bee problem 7, Chaptor 4)
op is simply the standard error of a percentile.  We have Ty
formula [42); letling P = the proportion of the scoond distri-
bution determining the point X (2 = 1 - P; ip = the num®\
ber of umts in the class interval in which X leg; [p the 78
quency of this class; and N the population of the &eednd
C N\
distribution:  \J
. _#pNPQ
& D = P 4
fp 7

Making the proper substitutions in [3071] rcsu]‘tﬁ\m

o= (VR

{Square of the standard crror (J.i\’r’*c proportion of a dis-
tribution falling short Jiqp cxeceding an assigned
pereentile of a sosond c;;smbatlmw AU 302!
Note that in this formula the mmtanta in { ] refer to bhe first
dmﬁﬁﬁn@mlmn&jdu@ i tha f] 10 Lhe second distribution.

I the proportion exceedm(r the median of the second distri-
bution is being determired, P = () = }; and il, furtber, th(
second distribulion, :lb yormal, fpfip = 3080 2, i w‘*ud
is the standard de\{}tmn of the second dmtnbuho 1, su that

) S w - P
s\ oty = 157080 3 Ve T

{Squa.rn, of the standard error of the proportion of a Jdis-
..\‘ tribution falling short, of or cxceeding the medign
4 of a sccond and normal distribution) . R [3032]

JE:\ ’\aac both distributions are normal a,nd ha,vc, the same
:prulatlons and standard deviations, Table LXXT when multi-
\"\pl'ied by 1/VN gives the standard errors, in the second columnn,
and the probable crrors, in the third column, for different values

of p.

In illustration of the use of Table LXXI the following prob-
lem is given: In a certain fifth grade only 40 per cent of the
pupils exceed in a reading test o per cent of the fourth grade.
We will assume the same number of pupils, 36, in cach grade.
What are the chances that the truc test ability of the Hith
grade is above that of the fourth grade? Referring to Table
LXXI we find that ihe ssandard error of the proportion, .40, is
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{,689;’"\/3_6 =) .rr3. Thus the difference hetween the ob-
tained proportion and the proportion in case of equally able
clagecs, namely .10 1s (L1o/.1173 =} .87 standard errors. Enter-
ing Table ¥-W with x = .87 we obtain ¢ = .19, or, in other
words, the chances are 19 in 100 that the fifth grade ability is
in truth as great as that of the fourth grade,

TABLE LXXI

“N X THE STANDARD Lk
PuninRT10W LYING BELOW RORS OF THE PROPOR- \
o ABOVE MEeEDlam o TIoNS OF Ox1 DisTRIBU- VN X Tue P. E &\
Srneoxn DISTRINUTHN r108 BELOW, ok AROVE,
THE MEDIAN 17 4 SECOND . s,
— — | . N
001 032 o2
OL 105 \\071
62 153 103
D5 252 JA70
IO .372 \ 251
I5 .46z W 31
20 .532 L& 339
.25 .588 \ 396
.20 B2z NN 426
35 BO6y 449
40 .68§ \ 463
45 _ 474
50 www.qb}?@?llbral'y,org_in 477

If Ior this same prabiém, fourth and fﬁth grade means are
caleulated and Lhe.p?&mblc error of the difference between
means found by f\m\mﬂd [14c] we will finally obtain the result
that there are, S chances in 100 that the fifth grade ability
is in trulh adBreat as that of the fourth grade. Thus slightly
more r]eﬂm}e results may be obtained by finding the differences
betwe means instead of the percentage of overlapping.
Fomﬁ‘d [166] of Section 5 provides the correction for the
er{ﬂr in a measure of overlapping due not as here i size of
\ “Population but to inaccuracy in the instrument of measurement.

- — = —=

Section 88. A CRITERION FOR THE ADDITION Ok ELIMINATION
or BrLemexTs Faving Fixt WEIGHTINGS

In many trade, education, and intelligence tests, and in

combining stock quotations to determine general trends, it is

frequently required, becausc of the necessity {or maintaining

simplicity of procedure, to include an item in a composite at a

given weight, or to reject it in loto, 1.e., DO adjusting of the



N
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weight to the importance of the item is possible. A eriterion
for the inclusion or rejection of an item is needed for the handling
of this problem.

To make the problem specific let us suppose that o questions,
each scored right or wrong, arc being evaluated with reference
to their excellence as a ten-year-old gencral intelligence fost
battery (such, {or example, arc the Binet type of questiposi
The correlations of each of the @ questions with an independent
general intelligence measure and the intercorrelations hddsyeen
the questions constitute the requisite basic datal Hd\-‘iug
these and using the weights that are 1mpoaed CL](lf‘LﬂLLLB corre-
lations exactly as in the row labeled “wy—in’ m{ Table LXITV.
The highest of these corrclations Jocates Lhé\p:e%tmn which
contributes least. This question may beN\discarded and the
process repeated with the (g — 1) 1eﬁﬁt1iuﬁ questions, ete.,
until the number desired for the final bﬂtt,er» arcleft. Ateach
step inn this process a companq@n f the Fire—wl COrrelation
with the 7y correlation shows hov{ much loss, if any, in multiple
correlation results from dl%(“-:]:l‘dlﬂg the question, thus making
a‘t)‘é‘iﬂ%i@é"ﬁ@%@ﬁmﬁimmmn pertinent to the problem.

All correlations shotld be Ly the wugual product-moment
method, even thoug&NJuL two degrees of merit are possible.

For the mtercor\elé’txom formula [214] may be used.

.SGQ&U% 89. Trap Tust CALIBRATION
A pro ed&e of evaluation, or, “‘calibration,” of trade test
questiprd/ based upon the slope of an ogive curve, has been
praeﬁced by the Army Trade Teqt staff, As an illustration
lel\tts suppose questions A, B, C, and D have been correctly

Catswered by varying proporlions of unskilled and skilled arti-
sans as shown in the following Table:

TABLE LXXII
Percentages Answering Correr.tl}'

i T T
| MovicEs AVPRENTICES | JoteweyMER| LEXrERTS

! |
S | e
Cuestion A . . . . 10 i 14 | 18 24
Question B . . . . | 2 i 2 | 51 60
Question C . . . .1 20 62 | %o 73
Question D . . . . i 2 I I I3 54
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T have elsewhere {Kelley, 1916, stmp.}, pointed out, 1w the
case of an ogive curve in which the abscissa is a scale of diff-
culty, and the ordinate per cent correct responses, that un-
correlated questions of the difficulty corresponding to the point
of steepest slope result in more accurate determinations of
abilily than a similar number of questions of a different diffi-
culty. The principle is clearly general, and can be used to
seale a question given subjects of known differences in ability
just as, In reverse, it can be used to determine proficietci
when given scaled questions.  Thus, if ogive curves, the ahstissa
heing Novice-apprentice-journcy-expert and the ordin’gté per
cent eorrect responses, be plotted for each questiquﬁhe‘stcep-
est part of the curve will lie between the twelgroups most
decisively differentiated from each other by thévquestion,

Inspection shows that question A is naisatisfactory either
as an apprentice, journeyman, or expert question; that ques-
tion B is an excellent journeyman guestion; C an excellent
apprentice question; and D a gg@d wexpert question. So far
as determining the trade group With reference to which a
single question will be of mogtwalue the method is ef(cellentr
but it falls short, as wilhevenbraekbed o %rg\rolw’ing intercor-
relatioh.s, of what is tofbe’desired in a met 03 used to sel?ct
a battery of question§ ) & combination of this procedure with
that of the previqu&ction should give good results.

O
Sectzon 904\ THE DETERMINATION OF THE CROSS-OVER VALUE
Y op A CHROMODSOME SECTION *

nithe following treatment certain terms will be used with
meanings which may be made clear by an example: If a fly

“shdwing two mutant characters, black and vestigial, is crossed

to a fly showing neither of these characters, t]’.len in the _beCk
cross progeny the characters will reappear in the om.ngzal
combinations, namely black vestigial or not-black not-\-"estlgial,
in the majority of cases, but small classes of progeny will oceur
that are vecombinations of the original cha'ra.Lcter’st namely,
they are black not-vestigial, or not-black vestigial flies,

#1 am indebted to Dr, Calvin B. Bridges for the biclogical statetnent of this problem.
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To explain the occurrence of these recominnations it is

T

agsumed that crossing-over occurs in the section of the chiromo-
some between the locl at which the genes for these characters
are situated. The gene responsible for the developmoent of
the character black 1s siluated in a rod-like haody called a
chromosome al a definite point which is the Dlack flecus.  Like-
wisc the gene for vestigial 1s situated in that same chromosafad,
the “second™ ai a locus some distance to the right of L?“\t of
black. The sccond chromosome 15 reprosenied iwicg«In efory
cell — by the chromosome from the mother carryving the genes
for black and wvestigial, and by the ulmmubx_nlc [rom the
father ecarrving m these loct the gene lor 11(\1:3111;1{,1{ and the
gene for not—ve%tivial In the productiopef eggs these twa
chromosomes, A and A’ come to lie side Bv side and hamolo-
gous sections are mter(:haﬂged by @dsting-over. Both chro-
mosomes break mn two at a corraﬁﬁonding point and the left
part of A joins to the right parr wof A° and viee-verau.  The
cross-over occurs at randors aldng the chromosome,  When-
ever one occurs between ¢he loci of Black and vestigial, a
bIREW - ﬁ%{a%kbﬁagﬁlo'a&@& wiot-black wvesligial chromosome are
produced and these gy rise to the character recombisnaifons.
However, two ocdudrences of crosging-over may take place
coincidentally. b\est\wcn these loci and not be detected as a
recombination "of the characters. Again, if three cross-overs
take place\Bétween these Joci only simple recombination is
obserxed\ Accordingly, unless the scction 1 so short as fo
prec {38 “double crossing-over, the number of rccombinations
184 Qha}-ﬁ less than the nomber of cross-overs.

S8 The first problem of the student of this subject is to determine
“the number of cross-overs from the number of recombinalions.

This problem offers certain difficuitics, tut (or our present
problem we will assurne it solved by an equation of Lhe type

100 # = 100 (R - 2d]  (The cross-over value of a
chromoseme section). . . [304]

in which R is the propertion of recombinations observed fo
take place, d the proportion of double {plus oceasicnal tripte),
cross-overs, cxpected f{rom previous delerminations in this
general chromosome region. when the proportion of recombina-
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tions is R, and 100 u is the cross-over value of the section
studied as given by the experiment,

The second problem is the determination of the reliability of
the cross-over wvalue determination, This offers genﬁinc
statistical difficultics due to the variability in the ratio d/E
for different Tengths of chromosome and for different gcnefal
regions in the chromosome. 1 offer the following as an cmpiri-
cal formula, which I helieve will not be far from the mark, at

least as loug as uncertainty as to the ratio d/R persists: \
e

1000, = 100 {op + 2 o) '\

{Empirical formmula for the standard errar of the eross-nver vz;l(a,ei’. [305]
N

in which g is defined by the equation o\
\.
_JFL=E )
RENT N
and ¢, by the equation ¢ N
G = AN
o2 = Y= 2\

N in each case being the total nugnb,er" of flies in the experiment.
Having, either by means of €drmula [305] or otherwise, an
estimate of the standard error of a single cross-over value
determination, we coméﬁ%’owt%%"fﬂﬂhrﬁi‘&%ﬁﬂ“which is:

The utilization of seyeral direct and indirect independent
determinations of(the-length of the same chromosome section
to arrive at the’most probable value.

Let 100 g \= #n experimentally determined cross-over value
between lo€irr and 2, and let 100 o = its standard error:
and similesly for #'s and ¢'s with other subscripts.

it &Nﬁhber of loct in order are X1, X, Xa, Xy and if different
expériments have been conducted so that there are separate

~ @Asttrminations of (@) wig, () my, and (c} #zs, the problem then
\\ %s to use these three determinations to arrive at the most
reliable value for the distance between X and X, We will
call this most reliable value #;.  We have two determinations

of the same distance, namely, s and (2 + as5).  The stand-
ard error of #y, I8 o, and since #ye and s are independent
determinations they are uncorrelated and the standard error

of (i + #25) is Voln + % To average these two distances

so as to securc o distance with the minimal standard error we
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must weight each inversely as the square of us staudard error
as proven in the next section, formula [305].  Accurdingly,

e a2 - B

- Gr'"[:i 0-"12‘{"0'22.3

iy = ———————"-
T

o713 o A o

Should therc he a third independent means of determination,
e.g., were independent values of sy and sy avadabile, the 1.11‘0-'\

cedure would be similar, giving O\
28
M, Mg+ R Mg - gy (The hestvulue for aghgs
" o%n e+ ooty gty of otu zpruee wy it -
Ty = — . EN (o
o t Il THE SR en L B Ll
13 a gl gty U oat 1 el e lot, (nl m liTis,
{c) i, pe \3“, .........

Any further nwmber of independent determmauous may be
utilized in the same manner. [t may hafinch thatl the number
of possible means of determination jgy R}} Urmt as to make the
labor of utilizing all of them eh(,eksnve in which case certain
clearly defined loci preferably lget&vee n 3c and 4o units aparg
may be carcfully dctcrminqdjrﬁs’ing all the data and other
pCﬁﬂhﬁr.ﬁm&hﬂﬂaﬁiﬁho@tﬁem{t}fxb them using data belween two
loci already scaled. A

m\
Section 91. THE QKS‘P WEIGHTED AVERAGE OF INDEPENDENT

VARIABLES

To completé }t.he proof of the preceding section it remains
to establishthe theorem that the hest weighted average of #
indepe dent measures of the same magnitude is that obtained
by welghting each inversely as the square of its standard error.

ﬁe will first prove it for two variables, @; and a; having

o \Sta.nddrd errors g1 and ¢z, It is required to so distribute the
\ total weight of 1.00 between a; and . that the standard error,
-, of the weighted average, @, shall be a minimum. Let
the weights be wy and we. We have
@t owe = 1
a= g 4 (T — ) ae
gl = wh et T —w el b 2w (1 — W) oy g P2
in which 7 is equal to zero as ¢, and @, arc by hypothesis
independent measures, so Lhat

a ] .»

ol =whot b ot — 2w ot wh oot
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Differentiating with respect to wy, setting the derivative equal
to zero, and solving for wy and we resuits in

I
M ¥
g I
7z
1 I
—g L+
— ahy Tty
6 =—" . Z\
RS (Best weighted average of two
gh  a%y independent measures). .. . [307]

If a third variable which is independent of the first t\@a Rt
included it cannot change the best relative welghtmgs W the

first two, therefore PR
‘&
BT A \ ?}\ .......... (@)
Wy l_ \
oty x'\\"
must still hold, and by parity A
1 AN\
v g1y ™ (@
W ’J.'::w
\;’Ezs
wiynd bﬂauhbrar_y or g in
- E”:"-_-__ AU (3
~ N 1
s ) ]
Further, the sum}f the weights must equal 1, that is,
(d;

Wy e W= I
By mspect\ u 1t is seen that the weights in the following equa-
tion mp&ﬁ these four conditions:

L I I
“;{\ Y @ty o’z st o % {Best weighted average
N &= 1 of three independent

AN i T
& &

N Having four conditions to meet and but three weights this
It is obvious from the steps invelved that

1, ‘_I___;__
DT U ah TICASHTES} . « o {308}

soluiion is unique.

the proof may be extended to cover any number of variables,
so that in general
! i ! T
_tf\"?;al +Ea?‘ +'u_‘3; a5+ F crfna" (Best average of n
‘T 1 I I . I independent vari-
et A ables). o eeeen [309]
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Section 02, Psycropuvsical METIIODS

The excellent treatment of the statistical vrocesses involved
in the handling of the various psvchophysical methods given in
Brown and Thomson (19z1) makes an exhaustive ircalment
here unnecessary; however, the very important process of
fitting smooth curveg to data collected by the “consiant
method.” or the “method of right and wrong cases,” is (roasd
of in connection with Fechmer's fundamental table of\ che
normal probability integral. Table K W is so mued, fiore
serviceable in this connection, both beeause of theMvpe of
entry which it containg and because of the gfazﬁéf" ACCUTUCY
which it permits, that the process is hcrewithmg@séribed i Jull,

When successive stimull, s, 5y, $3,+ - Sual@¥e each compared
anumber of times, Ny, Ny, Nu.- - - N, witl{& constant stimulus,
k, and the subject 15 required to act i L 6dch case Iy calling the
stimulus greater than or less than {He)constant stimulus, there
results a progression of proportidnd, #, fe, Pac o Pan giving
the proportion of times that eachivstimulog is considered greater
ehin Vb library BdBmpdison, k. 1[ the smallest of the
variable stimnli is nuch smaller than £ and the largest js much
larger, the proportiong&ll run from .00 Lo 1.00 and if piosted
will give an ogive Q’(ix\*c If the smallest and largest stimuli
are not sufficientidifferent from K to lead to proportions of
.00 and 1.00 @t‘ the exircmes, some reasonable assumplion as
to the distrithffion of these tail measures must be made. From
the genegxbﬁature of the ogive curves found in psychological
data obbdined as described, it has been surmised that the
intgg'éi of a normal curve may ordinarily be laken as well
refresenting the distribution of proportions in the tails as well
a8 in the more central portion of the curve.

The problem is, thercfore, to fit a curve of the type

F—x
— 1_ v ']
p= 'Nf_m y ds

to the observed data. The magnitude 5 is that stimulus at
which p equals . It is not an observed value of s, but is to be
determined from all the data; s is any one of the variable
stimuli; & is the standard deviation, in terms of the units of s,
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of the normal distribution of which ¢ is the integral, Accord-
wngly (s — 5)/0 is a deviation from the mean expressed in terms
of the standard deviation, that is, it is comparable to % of
Tabile K-W, and po/N is comparable to z of that table. Assume
that the ogive curve is the integral of the normal distribution
I f5—542
g 0T ’
O‘\I‘E T \
Each proportion, pi, fz, pa, ** Pm, s a fraction of the area undega
this curve and for each such proportion there is a value x, ,{&,‘".\
%3,7 " Xm, which may be obtained from Table K-W. O\

Even if the values of 5 and o have been determined™in the
best possibie manner there will still be discrepancieg between x,
and (5; — §)/o; xpand (s — 5)/e; ete. due to the(Dest fit ogive
not being a perfect fit. The problem may nowh\be restated in
more specific terms, Tt is required to,defetmine 5 and o
(in the parlance of psvchology, 5 is thegtiireshald and ¢ is the
dispersion of the measures giving the :threshold), so that the
sum of the squares of the deviat}ga’s,, [x —{s — 5)/e], shall be
a minimum, N

In the early statemend o) 6. g_otglelrélr l.jy Fechner apd
Maller it was argued thaf/the sum o the s8R of the devia-
tions of the obtained psfirdm calculated #’s should be made a
minimum, but as Wrhad {(1g0g), (1912} and Thoms.on’ (1 919
dir)}, have shown $his is plainly in error and the deviations m
the x's, as indichted above, are the proper ones to treat by the
method of leaktsquares.

For eat;h{.%rop?artion p there is an x which differs frcu.n
(s — 5)fa By a certain amount, and the standard error of this
differende js identical with the standard error of the x, for 5 has
hoty Syror in it, belng a given stimulus. I, therefore, the stan?:

\Qr“d" errors of xp, X, Xs, - X Are obtained,‘we kpqw exactly
what weights to give to the m derivations i arrving at 1.;he
best values of § and ¢, for by the theorem of_t_he preceding
section, independent measures of unequ{il reliability should be
weighted inversely as the squares of their standard errors.

The deviation x is simply a percentile value, and the standard
error of a percentile [43] has been shown to be equal to

=
o ‘ g

o

»
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Accordingly the m residuals, [x; — (53 — 5)/el, [12 ~ (52 = 5)70],
- must he weighted

Fipay oipags’
respectively. Since ¢? is a constant for the entire procedure,
it may be dropped without affecting the relative weightings.
Ny, Ni --- depend upon the particular experiment. [The
remainder is 22°/pg and is the product of the entries in Wie
z/p and z/g columns of Table K-W. Except for the 'mcuofc
N and o these w eights are simply the squares of the, recl procels
of the standard errors of successive IlCIC(‘T)H](h'(‘If(cl normial
distribution. The proportional m'}gmtudes.\\ it pg are
the weights of Urban's Table. The factof&y'4 was chosen
by Urban merely in order to make the ma.;umum Welgi'it I.
We mav consider two cases in appipaty these weightings:
First: When neither ¢ nor 5 is knpvs}n’.' T this case the sum
of the squares of the residuals ()
B ()

ww \».r.db(-g}xli.bifany io}g(inz —a\

iz to he made a mininnmy after each has heen given its ap-

propriate weight, wy, Q‘z <+ 2y, as defined by equations {310].
. 22w (Counstant methiod
'TL‘»;-——t.-'\'}rr - I I [
Pmtdm weight=) . . . ... [310]

The magnitudéb g are readily obtained, being the product of
5/p and Mg of Table K-W. The magnitudes N are the
11umbqr@'\f cases in the successive experiments. By the usual
met }sd of least squarcs, the required values of 1/0 and 5/ are
gwen by the solution of the two following simulianeous equa-

‘¢bions, in which Z indicates a summation of m terms:

o’

wa_.__"‘r-us_{-_ TR s J [3'{1]
(\ ormal CC|_ mf ions for threshold
and dispersinn calonlations]

was_fzwxe_f_izwj:o P 3 &3
¢ o

Second: When the chief concern is wilh the determinalion
of precision of judgment and 5 is known without experimental
determination. Such situations may arise in the derivation
of educational and psvchological scales, such as drawing or
composition scales where § is taken as egual to K. In this
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case equation [311] only is necessary, as 5 = K, a known
quantity, Solving [311] for ¢ we have

7 7TZwe the threshold is known). . . {311 o]

The following problem illustrates the steps involved in the
method, The data are drawn from the educational field to
show the value of psychophysical methods in a much wider
field than that to which they are usually limited, A

A judge is called upon to rank an English composit@oé ‘ag)
better or worse than 4o standard compositions which/are
graded on a certain scale of merit. Ten of these forty have
metit 38, eight have merit 5o, six have merit 6o and 16 have
merit 68. The rankings given by the judge and the calculation
of the threshold and the dispersion are as {olleWws:

- ~’\
T,_\BI XX“I Al
}'4 ]-‘ \..

|\
MNunhiie | PROFOR-

. oF TIMES| TI0N OF gt
Igg;;%gir SampLE IS BETTER' A ﬁr
Criows [No, RANEED | JUbG- T wx s wxs wst
Uszo A } BETTER | MENTS. A e
S| T o bl
Usen | KW worrgulibrary org in
N SO A A
s ! .
ol |- 57|— Bl-114.7) 8313
a8 |10 * o 524401 §5.757|—3.010] 2188 ~114.7) 83
30 8 4 \\go 000000 5003 000 2547 0 12733
0 16 3N 50 .oooooal 3.820) 000, 229.2 0| 13752
68 16| @ B5 | 1150349 0199 7131 4205| abg, 2900
O\ Zo.869 4112(11242] 370.2| 63462
i\ 2w ‘ Swx | Zuw ;was Z st

Thug.the normal equations are:

O -1 % 20.869 = 0
4.112 i11124.2—1—“20 9

1 5
-z = 2 =0.
170.2 063462. + - 1124.2

Their solution gives
o = 19.55 and § = 50.02

We thus conclude that the integral of a mormal distribution

having a mean of s0.02 and 2 standard deviatio:} of 19.55 is
the best fit determination. If the purpose of the investigation

has been to determine the merit of the sample, we conclude

Q"
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that so.02 is the best estimate of its true merit, The error of
this value is unknown, but if the standards of comparison have
been such that proportions, p, not greatly dificrent from .
have resulted, the standard error is probably in the ncighbor-
hood of 1.56/VEN. Tf all the proportions arc very large or
very small, the error will be much larger than this. If ji1s
known ahead of this caleulation that the satnple has a césbain
moertt, let ug say 45, then the calenlation shows that t}{é\i ste-
matic error of the judge 18 5.02 and that his (,hcm\x‘g.\errm iz
represented by a distribution with standard (lgua.tmn 14.55.
Note that systematic error is synonvmous w 1th\}h1’eq}mfr wd
standard error of judgment with the ps}({}{}p}{yblcdl measure

of dispersion. . \\ F
N
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CHAPTER XIIT
INDEX NGMBERS .\j\

Section 93, 'Tue BrarinG 0F PURPOSE aAND MATBRIAL\ UrON
Fory oF Ixbex N

THE discussion in this chapter will he w;tl'\reference to
price ratios and averages of such ratios, as\tliey are found to
vary from time to time. The treatment.deobs not, however,
necessitate that price and time be tHedtwo variables. In
dealing with size of certain organisngs(ih = liquid media, length
and temperature might be the two v’a,riétes. Iilustrations from
other fields will be equally obvidus.

In planning the constructi@ﬁ:bf an index number in the field
of economics three quesﬁ@hﬁr@ﬁ%aﬁ“ﬁﬂ%wg (@) What is the
purpose to he served bfMhe proposed index§ nb} What price
and quantity data '(ga:} be selected or collected to best serve
this purpose? zm&\\(f:') What form of index is the best in the
light of (a) and(lh)?

{a} Though the chief treatment of this chapter 18 with (¢)
it should e~ Borne in mind that differences in (a) and (b) can
conceivably completely change the form of index which is most
%uita,b%‘" In patticular a problem requiring an index, the mean-
ing of which ean be accurately grasped by a lay audience,

mcgmno’s involve geometric and harmonic means; an index
\ “which, for the usc that is to be made of it, must be reversible
no matter what yvear is made the base, cannot be built upon
quotations of commodities differing from year to year; an
index which is required to serve the double purpose of being
equally serviceable whether price relatives or quantity rela-
tives are sought, carmot be asymmetrical with respect to prices
and guantities; an index which 18 designed te picture an
aggregate condition in an industry, country, or other unit,
331
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[

cannot he bagsed upon partial data unless it ncorporales pro-
vision for estimation of emitted material; elc., ete.

Fisher (1021) hoas especially stressed the value of an aggre-
gate index which 18 both a price and a trade index, permitiing
interpretation as to quantities involved ag well as prices paid.
He implics that an “unbiased ” index mecting these conditions,
of which there is more than one, is the index par excellongty,
answering all the essential problems. As to whether thisMs
s0 1s 2 question of cconomics and only sccondarily of Overphe-
matics. Tor this reasan the present treatment strégdes +his
feature less than does Fisher. This does not i111pk3?’-;§. disugree-
ment with Fisher but rather an indisposition’te attempt to
answer a problem which is in the main ecodnie,

The number and nature of the commo{ities entering into &n
index depends upon the degree of acofipaty required and the
particular purpose to be served. Thé}f are consequent to the
form of index used only becausc €&ftain indexes require both
price and quantity data while pﬁﬁers are less exacting,  Ilaving
determined the form of indg® and knowing the purpose. and
ruli\ﬁ’g}f‘)’ﬁ‘mﬁ' St i':’hé index which is a complete survey
of a field the guestiondihchoosing commoditics is, what are the
principles which SI}{JU)d control in drawing a sampling? The
fundamental prii\éip'les of multiple correlation apply -— high
correlation withthe purpose o be served and low intercorrela-
tion. If andol! price index is being constructed from o small
number .d{m‘\fn from a much larger number of quotations, the
quotaddns should be chosen so that (@) cach is as litile cor-
relaged as possible with the other quotations included in the
idex, and (h) each is as highly correlated as possible with the

=\ Other quotations in the field not included in the index. It is

N\

) 3

to he expected that commercial tendencies will conspire to
prevent any quotalion from markedly possessing hoth char-
acteristics, in which case a balance must be struck between
them: (&) is the more important if the number of gquotaticns
in the index is small, say not over six, but (a) is by far the
more important if the number of quotations is large. In fact,
guotations that are excellent for incorporation in an index
number based upon a small number of items may be expected
to be relatively inferior for incorporation in an index based
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upon a large number of items. This brief observation as to
fahe significance of correlation hetween commodity prices is,
in the main, an addendum to, not in opposition to, the points
involved in Mitchell's (1915) very thorough exposition of
the question of what commoditics should be included,

The preceding paragraphs merely touch upon the various
phases of the problem of purpese and selection of materiald
No one source covers this adequately, but the reader will find
a fairly complete treatment of all plases of the problf{rﬁ“in
the following selected list of references: Edgeworth M18¢6)
and (1887, 88, 89, go), Pisher (1g913) and (1941} 3Knibbs
{1012), Mitchell (1915}, Pearson (1910, const.) a@({:gn, ops.),
Walsh (rgor) and (1ge1).

The succeeding treatment of topic {¢) isMaken with some
modification and abridgment from Ke&éj} {zg21, cert.).

3

NN

Section 34, THE MEANING OF z}.P'RiE:E RATIO AND OF A Price
InpRX

The price of a commo@itﬁf tn some one year, pY; (the super-
script designates the gomitnogdity, while the subseript desig-
natfs the vear), din{j&é?%??}%é af)jxlilcé‘ O W& Bme commodity
in a second veaz, % is ph/ph, and is called a price ratio. A
composite of séyeral such ratios purporting to portray a general
relationship detween prices in the two years is a price index,
P/ P, The fundamental concept in this is the ratio or geo-
metric~¢o>éept‘ Indices can be built upon many bases, but
frresective of the method of construction, the uswal inter-
pr{afuation will involve this geometric concept. The lay reader

#will think that Py is a certain proportion of Py, and P: is the

h
3

nverse proportion of Pp. An index which is not reversible
does not, parallel the thought processes inherent in the concept
“price ratio,” and this more elementary concept, whgre r.everst:
bility is the rule, is the one hy means of which “price index
is interpreted. Even writers who are quijte aware that t.he
index they are using is not reversible, use price rattos and price
indices in such a way that it is obvious they expect the same
sort of contcept to be called up in the reader’s m,i,nd; for example,
“phfply = 122, but PP, = 12080 that, etc.
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In so far as the concept P,/ is commonly of a different
nature from ph/ pls, it lics in the fact that 2y and P, are averages,
and Y4 and p% are single measures. Accordingly, to parallel
customary thinking, P/P; should mean a reversible propor-
tion between averages. What an "average” is may not be so
definitely established in the minds of scientific people generally
as is the idea “ratio,' but probably the most common concedi™
is that of arithmetic average or mean. We thercfore dhave
the somewhat anomolots situation of Py/P, callingfg “he
arithmetic concept when dealing with the two scparate ¢lements
involved in 1t, but the geometric concept when, dmhnfr with
the thing entire. Since this mixture of concgfité/secms likely
to persist, the writer proposes as an impartdnt test of the
excellence of an index number the doceﬂeaq with which the
operations involved in it parallel gen 0 thinking tendencies:
fiirst and most mporiani, n’"s’mb@hty of ratie, and second,
arithmetic averages involved in zkc’ RANS,

s

Se\g%\p‘g; é)ﬁ’rau lg%lPROEABLF TRRORS oF VARIOUS INDEXES

That 2 price index héd\a probable error is a fact not always
recognized and nol e'h}lrelv obvious, for it may easily happen
that the price rat‘:q\s are entirely reliable, It may be possihle
to say that the( pnce of colton at a certain time was £'; and at
a second timalp's. If the price quotations are accurate, then
the price "m,tlo Pli/pls is a true measure. The average of
SEVer: “\uch gives P;/Ps, which 13 invariasble. Therefore,
P/ pNas zero probable error as far as being the average of
these particular things, but the very combining of them in-

~ ‘mlves the assumption thal the index has significance beyond

‘the particular data from which it is calculated. The only

exception would be when P, and P, are determined from all

the possible data. As an example, Jet pY be the price of coal

at a certain mine at the first date, $2, the price at a second mine,

,» £ the price at the last muine, and similarly for the po's

Then, since all the sources arc involved, Py, 'F, is the index of

coal prices and has no probable error, except such as might be

due to fanlty quotations and caleulations and could therefore,
by proper care, be made negligible,
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This‘ is not the typical situation. Ordinarily but a few
quotations are worked up into an index and the result taken
as reprfesentatlxre of an industry or a field. We therefore have
quotations which are samplings of the prices in the industiry,
and tl.'te statistical methods for determining the reliability of
‘samphngs apply. The formulas for probable errors given
in succeeding sections are based upon certain assumptions, »
including that of random sampling; bus if 2 § or more per cenb
of the possible quotations are utilized, material error in \t:he
formwlas is introduced, the true probable errors beifigy Mess
than those given by the formulas. It is to be under&ﬁgéa that
by probable error in an index number is meant;}hai which
arises from incompleteness of data. In the foll&v‘ing determi-
nations of probakle errors of index nmbers as'gii-'en by various
formulas, the attempt is to see how clogsly one can approxi-
mate, by a sample, the number whicl;(@@uld be obtained were
all the possible data utilized in detfghining the same sort of
index. The probable error indicates how closely the resuits
from the sample may be expectje?i"to tally with the results from
the whole. Should there pe:a‘fconstant tendency in the form
of index used, systcmagi%ﬂ_}ﬁak;%@.iﬁgrggytgg high or too low a
value, we have a systematic error, which f entirely distinct
and which is not measired by the size of the probable error.*

The reason Wh}\} few quotations can vield an index which is
a close apprqxifpation to a general tendency is that there is a
high corrclafieon between the quotations included and those
not inchu@ed in the index but pertinent to the function being
measufed. If there are two hundred coal mines and quota-
tior,ls'\from a half dozen are taken, an index in close agreement

Augh the true index based upon the two hundred may be ex-
~\‘pected, because of the high correlation hetween quotations at
N\ ' different mines. To say that there is a high correlation is
not equivalent to saying that the prices at the different mﬂ?es
tend to approach the same level, but that they tend to main-

# In the tests of indices suggested in Seetion o7 there will be foun;l iene to tpa effect that
The reason for this is that reversibility of ratin, ar change
ts, is not possible with a ““tuased ™ index.  Fisher
a5 due to form and a second bias due to base
Such a situation would,

an index should have no bias,
of hase, which js included as one o the tests,
{tgz1) shows that an index may possess a b :
value weighting, and that these may exactly neut‘mhze cach other,
statistically, be the same as one not invelving bas.
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tain a uniform difference.

STATISTICAL METHOD

Mine A, near tidewater, may sell

at a certain price, £'. much higher than that, % at mine B,
remote {rom a center of consumplion, without indicaling an

economically abnormal condition in the coal trade.
and other similar measurcs are averaged,

TI _pl _f—.,.
the probable error

of this average 15 not given hy the usua! formula

P, E-me.an =

N\
b
.6"" b

743 VAN A

oA\
due to the heterogeneity of, and to the correlation Jabtveden,

the p's.

Asg an illustration, more exireme than mme gquota-

tions on coal, let us average the following pricesgaS >

Bacon per pound
Bread per pound

L NN

Putatoes per bushel .o SN\vzo
Apples per box . S LAY 1000
xj  \ —

Averare . S 53.00
‘wt'md'lrd cio\'latmn '\ ¢ 4.06
. L. (hy above formuladd Sy . . ¥

Now, prequmablv the probal‘ﬂp i‘;rrbr of no single one of these
quotlatigns ;abaf: LIg:reat as Sdg ,' and the average of them all

will probably ﬁuctué%g t?&%f

There probably is positive

correlation hetwecn thef:c food pI‘lLOb, a rizse in one generally

going with a rise in “mch of the olhers.

These conditions arve

not thase under h{ch the probable error of an average is given

by the usual formula.

For statistical purposes there ix much

to be gamer.f b’v having homogencous uncorrelated material.

We can bcure measures which are nearly,

if not cntirelw,

homog'eq.eous and uncorrclated by dealing with price ratios

Irot pe v 4 £
ms:'t\e.éd of prices,

k. "f«'In ane sense, both prives wnd price tutios are very highly correlated, but these corres

‘Li‘tiunl have quite diffcrent statistical conseguences.
B\ Nproaches P, due fo correlation the price at e B approaches what may be a very 2

As the priee of coal at smine A ap-
1Tera

\ 7 ent value, #; but as the ratio, pi/pls, from the quetations of mine A spproaches, as time
changes, the value p, due to correlation, 1he ratlo of the quotaticns {yom mine B may be

expected to lend towand the same value p.

(The rigorous proot of this statement would be

necessary before the presert treatmest and stetement of probatle crrors can Le considerad

final,

Whatever error 18 involved is of 8 consorvalive nature, as it almost certainiy would

tend to make the obilained probable errors too largey  Although correlatinn between prives

tends ko throw ratios tngether, it tonds to leop prices apart.

If, thetefore, we deal with

raticd. the coffect of correlation has already operaled upon the measurcs tsed, making the
digtribution of ratios more homogenecus, znd as a consequence making the mean more

relinble.

1o ather waords, the standard devislion oF the ratios of prices at dale 1 40 those at

date 2, e, is reduced from what it would e wore thore e cotrelation botween prices, so
that by this vory reduction, the probable errer formula when applied to ratios takes account

of the correlation between prices st two different dales.

Feor a rigorous approach io the

qucetion of probable error of a ratio see Pearson (Turo eonst. znd 1071 ops..
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Accordingly, if the price index showing prices in vear 1
relative to year 2, called 45, is given by the equation

. P
iy = }5: = :;fzg (Inde‘x formula r} j313]
and if the standard deviation of the price ratios is gy, the

probable error of 4y 15 given by

. Fz . {Probable error of X
BB = 6745 VN index formula 13 5140

'\
Ny

Let us consider another kind of index,

iy = % - f:—i’:. (Inde?:“ff(lﬁﬁla 2)..[315]
The complete probable error formula fx “this kind of index
imvolves the correlation between the 1{‘9\.% See Pearson, 1910,
ops.)  The index "N/

e =i;(§;)w (Index formulz 3).(316]

will be more reliable than fﬁ%‘fa@?ﬂ‘%msﬁw, used are
exactly or approximatel proportionate to the va,luefs of t}_le
comnmadities imrolvggit,\ In general, the greater the price ra-ﬁw
the less the congumption and vice versa, so that the. dis.tpbutxon
of the weightedPrice ratios will have a smaller variability than
the distributden of price ratios alone. If w = pgp, the value
of the trapsatlions in year 2, the formula becomes
7N\
\\ ' i = ig:% (Index formula 4). ... -{367)

"

& Ef\l"r'lﬁﬂa 4 is but a type of formula 3. It is undoubtedly_more
SN Aeliable than cither 1 or 2, but there are too many variables
involved for the writer to attempt a calculation of its probable
error based upon the data for two dates only. If, hc.deever,
the commodities are divided into random balves and in ex$
determined from each half, the correlaFion between these suof

indexes may be calculated, anddfromf 111; the probable error

al i : he obtained, as follows:

thietto Ec?xlell'gds: :zn sgmmodities, equally excellent as representa-

3
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tive of the whale field, which are built up into the index . In
order to determine the prabable error of ¢ we may first build
up two indexes, A and B, each based upon a random half of
the commoditics. Caleulation of A and B for a number of
dates will give Lwo serics, the correlation between which wmiay
be found. In doing this it is desirable that the time interval
hetween successive wdexes be sulficient fo insure the relatives
independence of the commodity quotations involved. Jus
as the average of the prices of bread on January 1 of o cextadin
year and on December 30 of the same year will in geﬂe’;‘zél gi\:(:
a truer average yearly price than the averapge of tlgei’prices o1
June 30 and July 1, hecause in the {ormer case feytwo quota-
tions are nearly indepcudent while in the lat-tcr:\chae has prae-
tically but a single quotation, so sub-indexed calculated at
too short intervals of time scarcely cop,&*:t}tﬁtc nevw data, hut
rather repetitions of old data. Wexgth< correlation between
successive quotations known, practieal limits could be set
giving periods shorter than whicky it would nol be worth while
to caldiftedbupnliboxgsorgmigly 0. the standard deviation
of these sub-indexes, and b’i’\;‘n’lg r, the correlation of the sub-
indexes, we may detem}iné the standard crror of the average
of the two sub-indexgg\e., of the total index, 7,  As given by
Kelley {1gz1, cerl'\}:: it is

"’_I“'— r {(Standard c¢rrorof an index in terms of the

\
0y = x P .
T s\‘ 2 standard deviation and correlation of
O sub-dndexes). . ... s [318]

Note,‘s@;t r and ¢ must be obtained from the same series of
subsindexes.
:~\"‘Tf1e practical advantages of reporting two sub-indexes as
\M;W’ell as the total index may well be as great as has been found
to be the case in reporting t{wo comparable measures In the
fields of psychology and education. The probable crror of
any index may be determined if comparable sub-indexes are
caleulated and if the geries of indexes covers a sufficient length
of time to yield a reliable measure of correlation between
sub-indexes. Probably 16 pairs of quarterly sub-indexes would
suffice. Since a means of determining the standard error of
any index is available, we may say that a second important
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measure of the excellence of an index number is fhe size of dts
probable ervor ®

Space will not permit a discussion of the probable errors of
all the proposed types of indexes, but to point out the necessity
of such discussions the writer has made an estimate, after more
or less complete mathematical analysis of the relative size of the
probable errers of the index numbers given in Table LXXIV,
Section gy.

The one that scems the most reliable of all, and that alsp
maost completely meets other conditions except that of paraflalz)y
ing general thinking tendencies, is the weighted georeltic
mean index, in which the weights are roughty propog‘tfgpal to
the reliabilities of the price ratics. This requirethént’as to
weights is practically no limitation at all, as.i«t’\i}) regularly
approximated to by customary weighting NdeVices. Practi-
cally without exception the observation:s@.‘ Mitchell {1grs)
as to what items to include in an inded dnd what weights ’to
give, are statistically equivalent Pe’\weighting price ratios
according to reliability, o\

Section. 06. THE AccUrsexy AND FLEXIBILITY OF THE

WEIGHTED CEOMETIE T AFbeaE 0% in

The weights of the commodities invol\fed in an index may
be changed with muels greater facility in the case of some
indexes than of &thefs. As soon as a cormnot_iltb’ becomes
archaic the prager thing to do is to withdra?v it, anfi with-
drawals and (éntrances are readily aCCU_mPhShed with fthe
geometricqindex. The weighted geometric ruean index_for-

mula

{Index formula 5)... f310]

.‘SK“\’ &/ )
OV L el e )t
O T Nl phye o
b} - a
737 judgs Erom the limited abstract of his study that Fisher “f? ha:;,:?nlc;):mulas give
#Nguriber of different indices from the same material and found t 1 ce me data is net the
\ highly comprrable results.  The uniformity of indices mm]yxng}‘: g blem of ssmpling,
problent of reliability hero attecked, We are concomed wifh the BPRLER S 0L,
As to whether Professor Fisher has also corpared an mdex.l u‘;ntndetemine from the ab-
data with the same jndex as obtained from a lLuzger part § Lanthe roblem in hand. One
stract, but if so it constitutes un experimental apm;'a;:rt?vuujd pfmd between an index
wonld expect that the differences ywhich FProfessor Fisl 2 would be somewhat

: ; n the Temainiog
based upon, fet us suy, § of his data and one based upan B IE I NRe g o be s

larger than implied by the formula bere given, as it 1 the same data throws
fallible standard. A study of the uniformity of indices ‘;‘"‘ﬁé"ﬁr biases, but noue what-
Tight npon the cxistence and the zature of systematic tendencies,

ever spen the ermor of sampling.
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Tor convenietice, and without any loss of generadity, 2 may
be made to cqual v. Thus, letting w = wr 2o, we = 0y D,

ete., and letting p; = PU/p's, ;= phph, el
i=ppipm - g (Indesiomnda seg. 3y«
Note that with this formula the index is reversible and that
there is compleie frecdom in changing the base.  Assuming ag
hefore that there 1 1o corvelation between ratios, (he porchiiNe
. . N ¢
error 1s given by ¢ \A

jzart oty Wiae s

I
YE; = 6745 . — - ) - y
I ‘ 2745 o V ot e ol

{Probable error of the weighied geometric m&wtinlex). [3z0,
L W

R

in which the p's are succcssive price ratigs Gnd the o's their
standard deviations.  As an approximabion, the o's muy L
considered to be equal to each other a 18;}0 equal the standurd
deviation of the distribution of ;_n‘ic(;fr:zktios. In order that ibs
probable error remain smalj, it is ketessary that 1o one of the

ratios wy/ g1, we s, €tc., be exceiitionally large.
www . dbraulibrary org.d LY
@i wipls

[VI=

B £

~

&\

Letting g4 equal the-guantity of the commodity consumed, or
in trade, it woulddieexpected that g4ply would fuctuate much
less than pli, apd whereas there might be danger of p'y becom-
ing extremelfp Stnall or Jarge there is not equal Jikelthood of
¢Luph do; g k0. Accordingly, if muy is approximatcly =g'#%,
then_un{et = ghp'le, 2 magnitude which is not likely to be
CRiLy Sy large.  However, should a commodity change greatly
i1:1:~3'th rclative importance, the weighting of it may easily be
~ (Changed as follows:
) Let it be desired to change ihe weight of the price ratio p
from w; to Wy, which we will say is a smaller weight,  We need
not impose the condition that p =4 For p > 7 we will
search the list of price ratios for (a) a ratio > ¢ which is under-
weighted, or (&) a ratio < { which is overweighted.  Suppose
pz is such a ratio, Ordinarily there arc a number of price
ratios = 1.0, or 4, or some other value which is the moda
value. These may be combined and represented by pf, where
g s this modal value and s the sum of the weights of all the
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ratids having this value p. Letting P stand for the product
of all the terms other than p, ps, and the p terms, we have

i = e gy 5t B
and it is desired to change this to

. =V —_
T = v/plt 1y pl¥ey pS P,
The first index will equal the second in case
{1 wtwets=Wi+ W+ S o {321
and also D
- - - N ’
(2} B pmy ps = Wl pWe p8 Naz2
“or, taking logarithms, N

wilop o1+ welog pe +slog p = Wilog o + Welog pe (6:1“1: p.1323]
Wi is the new weight that has been assignedN(fhis miy he
zero) so that everything involved is known ex¢ept 117 and S,
and the solution of the two equations simulflncously will yield
these, Ordinarily S will differ but shg'}\t‘ly from s, and 1.
will differ from ws in the direction lhnhthh it is desirable it
' should differ. Thus, as a practicabmatter, the weight of any
price ratio, whether equal t*ow\aﬂﬁht‘éu[mﬁ‘hﬂ}t!o&%aﬂngtd without

affecting the index. N
© No other index, as fapras the writer can determine, offers

the extreme ﬂemblhty:m‘\changmg welghts, dropping or adding
new items, here fodnid ™o exist for the geometric mean index,
Since this is so, bhe weights can be made sueh that extreme
ratios are give’ﬁ'. €mall weights or climinated. As a conse-
quence, thes robable error of such a weighted geometric mean
index maw be expected to be smaller than that of auy other

1ndex &eﬂtioned The exceltence of this index seems to the
. wnte: o great as to warrant its use, cven though it mvoives
P | ‘change in the estabiished habits of interpretation of the

\ Jsual reader

Sectwn 97. CRITERIA POR JUDGING OF THE EXCELLENCE OF
_ INDEXES
Two criteria, the paralleling of habitual modes of thinking
and reliability, have been proposed in judging the excellence
of an indes measure. Fisher (191 3) has used eight other
tests, three of them being tests only of ' ‘trade” indexes. It



N
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would scem that these Tutter would be of particular mmoor-
tance onlv in case an hulex ceoses 1o be o sampling and Te-
comes an expression of Lhe sunt total of Lransactions invelved,
Table LXXIV, i part taken from Fisher (o103}, gives scores”™
of the most important index seasurces upon several tests or
(.‘Tit,('.‘.'[‘i{l ()f excellence.

Test 12 Relialility.  In giving scores upen this point theN
writer has freely used his judgment in the case of indexesdor
which no simyde probable error formula s m-‘ailablo:.\' More
or less complete statistical analysis has proceded thig'séoring,
but it is in no sense to be copsidered final,  An G after a
score means that no simpler way for caleulating@he probable
error than by means of the correlation Lefddcn comparable
sub-indexes seems to be available.  As thé\writer judges this
test to be the most important of all, thedebring is 3, 2, 1, and o,
instead of 2z, 1, and o--the larger‘t‘hc score, the higher the
rating. QO

Test z: Parallels habitual medes’of thinking. Bcore 2, 1, o

The SO REURESE Yo iR Fishor.

Test 3: Proportionality % A price index should agree with
the price ratios if thedenall agree with each other.’ Stated

algebraically: O
s pl §>21 _ _ . P s
Gwenﬂﬁt;— -1)2—2 = etc. = i. Required that J_Pi =4 ... [324]

Score of 2 ilfrie for any two vears. Score of 1 if true only
when ye;i\r;} s the basc vear.

Tesby? Entry and withdrawal. A price index should per-
mip:glﬁ entry and withdrawal of price ratios without changing
tHes value of {he index. Tisher uses a less general test: “4A
price index should be unaffected by the withdrawal or entry
of a price rativ agreeing with the index.” The scoring here
follows Fisher, except for formuila 5, which Fisher does not
include n his Iist of 44, and for formulas 14 and 15 which are
here scored higher than by Fisher* Score 3, 2, 1, o.

# Figher scores both of these formulas zerr on the basis of entrance and withdrawat of
iterns.  Ilowever, as shown by Kelley (1921 cert)) a new commoadity, whose price tatio

agrees with the index, may be introduced into index formala 13, without changing its value
provided quantitics are in the ratio,

g abidi — )

% cdls — &)
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Test 5: Change of base. ““The ratios between price indexcs
should be unaffected by reversing or shifting the hase.” Alge-
braically stated:

Let dys = fz—:, ig = ;;:, ete. Required that:.—‘zf = :j—z = ;—)T =iy .[325]
Give score of 2 if true for any two vears, score of 1 if only A,
true when the base year and one other is involved, i.c,, if ogly’
such equations as =% = dsr, 2 = iyy, ctc., hold. PR D

113 tay U

Test 6: Change of unit of measurement, “g‘ﬁg ratios
between various price indexes should be unaffectéd, by chang-
ing any unit of measurement.” Score of z ongnN

Fisher hag a “ Determinateness”™ test which'he describes in
the words, ““ A price index should not be teftdered zero, infinity,
or indeterminate by an individual prigé becoming zero.” This
is buf one phase of reliability agd g thercfore included in
Test 1 above. o\ o

In the formulas listed the g'sistand for quantities of com-
modities consumed or in ,ﬁfﬁﬁ@-%ﬂﬂtﬁbrwwgsjmf the p's,
When weights not exagctiy sequal to the ¢'s are involved, the
gvmbol w is used. IfNs of course assumed that care would
b%z exercised in sclee‘t“ijﬁg these weights. g5 and gy instead of gy
and gq; are used }h\t}lose formulas in which the treatment of
the data for sHe base year is unigue. Test 5 is not completely

met by any' duch formulas.
AR

NV
in whm@ }
™\ - @ =Zpq
2 &
ad b = D
“\ B ) c =Zpig
~\J i = S
\ i= ‘l&g XE‘P'E!' {Index formula 15}
Epan Lpoge
Also, if quantities are in the ratio
gt _Zrem
¢z I

commodity whose price ratio is equal to the index may be introduced into index formulat s,
a

Thg, Sy

. Tt Zpt (Index formula 14}
32 ¥ a

without changing its value.
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TARLE
Seores of Imim‘ Numbers upm«
() f in
Tvre [A | Tvr7a
f
Tests —-);'"; I\
KT
Sanerher, Fallneky
Sowether ..l'}!.k\u",,
) M
N R -8
I Reliability, —Smallness of . B, . 5si PN s
2 Parallels habitual mode of Lhmkmg L /N ‘L
3 Proportionality . . . Lo 2'.«'\ & 2
4 Entry and withdrawal . . . . . . .1 20 2,
5 Change of base o e Nl .0
& Change of ynit of measurement . . . N 2
ANt
Totals e e e e e J5Z» 7.5 8.5
A '
\Y, T
R N TABLE
N Seores of Index Numbers upon
ww w dbraulibrary. ore, s _f_ _ _‘P_ -
o 3ty T
&) (B ot | b an
Tvre IV Tyre IV Tyer IV | Tv P IV Tyee TV
Q {35 00 2o Vi ) gRiee
:"Q‘ II - |I Z o ¥ QOIiU. ] x a
TESTS ¢\ el = o
RN zaw (PP | e
Z P Z o . I Serope
Bradstrest Lowe srIope | Sidgwick
v O Edgewarth a1 Sauerheck
\ ¥ Marshall Walsh ‘ Giffen
— — —
I{\Y 1.5 81 2.5 81 2581 |o25ed NPT
it 2, 2, 1.5 1.5 [ 1.
II .
A3 2 2. I. T. o2,
U84 2 2. 1. I, o2
& Nl 2, 2, 1. I. | .0
v 6 0 2. — 2. 2. | =2
—_— — e e S R
Totals 9.5 2.5 — 9.0 | 9.0 ! 9.0

Type IH: Harmonic average of tatios
Type 1L Geomelric average

Tyre IA: Arithmetic average of ratios
Type T1: Median of ratios

Formulas 7 and o, which are given the highest scores, involve
weights, w, instead of guantities, g. There is great flexibility
in each of these so that if a weight 1s adopted, let us say in the
first instance upon the basis of quantities (if using formula )
or values (if using formula 7} in trade, which tends to become
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LXXIV
Basis of Six Tests of Excellence
retd o (s) ) () _
vE TA i'ype 1M TvrE II Tyes 111 Type ITI
Muran Arso ALsa
m VALUE of TyrE ¥V Tyee V
T N
po P ph L Vﬂ‘]p‘l‘; Weighted TEsTS
2 g1 By i Weighted | (it “
5 3 . BLom.
Palgrave Edgeworth medize ‘/ﬁex\?o;s mean £\
Westergaard
. E 4 \ -
I, 841 2 3. I 3 . 'I\“.
L. I 1. .5 . Q'
5 94
1. 2 2. 2, -3 L. 3
"o vz i 2 3 KN 4
. — I.-- 2. 2. £ 5
2, 2 2. 2, AN 6
6.0 0.0 — 10.0 — 9.5 [ 125,/ | Totals
1
. A
LEXIV—Continued W~
Basts of Six Tests of Excellence A\
(i3) (14) 15y JOS 16 an
T:APE I¥ Tver VI TvFE \"1‘}“ , “‘FY;BV TveE V
L0 A ~auli 3 :
Tyrs IH N z5 'bl‘gf#{m‘gg‘m
Z pods Arith. N\ it
Z tom average o, Z pugs Vg ... TEsTS
- Dfd(gz) ..sfa{}rer)aged T “;N/—_:?—_—-
rope and (I3} . 12} an ; Togls . . .
Sipmick | Sidgwick{ KNS Drodisch | ot
Sauerbeck Dra 155‘{ o Rawson- Nichalson
Giffen Rawson Walsh
2. s 0256 2.58i 2. 84 2. s 1
5 h 5 L5 -5 -5 2
Conr I o B 3
{.:‘;\," I. 1. .a .0 4
’ 4 .0 1. 2, 2. 5
N\ } 2. hil 2. /]
N b3 [ 70 9.0 2.5 4.5 Totals
"N [ A IS RO —
Type IV: Quotient of aggregates
Type Vi Quotients of functions of data of single years
Type VI: Composites of preveding types
gnreasonable, it can be changed without affecting the index

hetween the year when the change is made and the preceding
year. If years from early to late are designated by s, 2, 3, 4
and if a formula-7 index aumber is started at the end of the
first year, using weights proportionate to the values of the
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commodities in trade, and continues until the heginning of
vear 4 before a change in weights 1s desirable, a change can oy
that time be made which will preserve the index da and s
reciprocal 4. The new weighting would probably give an
g2 and an 44, were they to be calculated, which would be slightly
different from those given by the equations:

N\

'.1.42 = ﬁand 3‘41 = Iﬁ A o
Tag 21 2\, \
which would exactly hoid had no change in weights heeiq. Tnade.
This difference will uswally be small, but if an index ig d@mcmdul
permitiing changes in weightings and at the sam t.um: enabling
the use, with exactness, of any vear as base, JMnaVy be made by

the expenditure of a little more labor. O
IR

Section 98, Tue Use or AN\;’QEAR A4S BasE

TFormula 12 (or 13) in whu,h, there are Mo pdrameters, or
flexible wejghtings, yiill.serve .sLs 2 foundation :

Xy 01
N O

Zpge N

Ty = S—oe A
Zpay &

Let Ay = the n-{z}ﬁ:.éf the p's
wir = thedmedn of the ¢i's
Sy =\thé standard deviation of the pi's
si ﬁi«tlle standard deviation of the gi's
\u = the correlation between the plb (represented by
the first subscript) and the ¢:'s (represented by
the second subscript).

™

NS
PN “..'
AN Symbols with other subscripts have comparable meanings,
e.g., f2y = the corrclation hetween the s and the ¢4’s.  Then,

Zpigr = N (Mo 4 725 53)%

. .{326]
N {Mzmg + #oaSy 32)

Z pugs

Conscquently, the numerator and the denomiuator for the
index between any two years may be built up if the means,
standard deviations, and correlations are known. The data
required may be calculated each vear, as the data for the
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year become available, and tabulated i
following: alated i such a table as the

Data for Determining Index with Any Desired Vear as Rase

*pgt £ FOR VEAR INDICATED 1N STUE XD ¢ FOR NUMBER
OF YEARS INDICATED EARLIER {(~) Ok LATER {+}

&

Pt
a1+t

YE:xRs | Mpl Mz | 8

| . | :
+3!| 1 LT J| b af iy

ol
J—sz,—lf) — &= j~-2'—1
I e

+
[
|

R 7
l \
-

]_
i

!

x

1015 }
igIf |
oLy
616
IGI5
014
IYE3
1tz
IOII

¥orowH +X*

TR E T

X s

!
i
|

E[f it is desired to make 1917 the bas&a‘nd to express the
prices in 1919 and 1911 relative to if, then Zpg; is determined
from the magnitudes recorded in thesbompartments in which
there is “+4""; Zpig. from the comipaftments i which there is
“X": and Zpsq; from the compaytments in which there is “*."
. The table as drawn up dees not provide space for all the
possible correlation coeﬂjpfeh‘%.’ Wﬂkf’ﬂ“&i&?ﬂm‘m'gmcould he
taken in choosing the ‘unit's of quantity, the correlation coefli-
cients could be madedo vary from year to year i a very regular
manner, thus enkBUNE interpolation with high accuracy. There
is complete freedom in changing the weights of commoditics,
but it should B¢ noted that a commodity “dropped’’ continues
as one pf\:ze'ro price and zero quantity — in other words, the V
has,_uotbeen decreased by “dropping” the commodity. Tn
¢ Y the weight of a commodity price from w to »’ demands

a Swarrant. Let us say that such warrant is found in the ratio
of the quantities consumed. No less warrant is necessary
luded in the index should

N\ ) when w' is zero. An article once inc
come out only in case it becomes practically obsolescent. No
distortion of any index would result in this case. We may of
cotirse take out a commodity under other conditions without

affecting some one particular index,
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When dealing with a single variable:
. N designates the total population.

I
2

oot B w

W Lo

1o

APPENDIX A
LIST OF IMPORTANT SYMBOLS

. u is used as an exponent or subscript, or as the popti‘l‘:;tion
of a sub-sampling. RO

. X designates a gross score, i,e., 4 score as a,sjé;\iiétion from

zero in the quantity scale being considered.

x designates a2 score as a deviation fxr,c{njche mean.

. £ designates a score as a deviation ffofw an arbitrary origin.

. M designates the arithmetic meah’

- Mdn designates the median, b= Poo).

. Mo designates the rnoii,?.; ‘;}w.w. Aoraulibrs ‘

. ¢ designates the propattion of cases Iying BEIYR-the 100 p
percentile, — te{the left of a dichotomic point in a
frequency palygon.

R designaitéyu\t}{e value of the 100 p percentile.

. qis definedby p + ¢ = 1.

it
2. U0 t{i@?}fgnates the upper quartile (= P.z).
I3. L:Q':'\desigﬂates the lower quartile (= Pus).
14 ”&esignates the quartile deviation, or semi-interquartile
A range (= [U.Q. - LQJ/2).
s 5. D designates the 10-go percentile range {= P - Py
" 16. AD. designates the average deviation, ie., the mean
deviation from the mean,
1y. o designates the standard deviation from the mean of
scores in a distribution.
18, P.E. designates the probable error {= .674489&1)_
1. s designates the standard deviation from some point other

than the mean.
349
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20. % designates a summation of scores of the sort indicated.

21. S designates a summation of summations, or of clenents
other than individual scores.

22, o with a subseript designates the standard crror of the
constani represented by the subsoript.

23. P.IE. with a subscript designates the probable error elghe

constant represented by the subscript. A

24. 7 designates the class interval, or width of base QI aiveu
class in a frequency polygon. R ™

25. ¢ designates the value .of the lower houmﬁrv of a class
interval. Vv

26, v’ designates the value of the uppér Beindary of a class
interval. PN

27. f designates the frequency ip aﬁ]ﬁss interval.

28, F designates the sum of theMrequencies below a given
class interval. o\

29. F' designates the sungd of the frequencies ahove a given
I3 thfbrepdibragyerg in

20. & or § deswnates the difference between the mean and
arb1trar3 Qm}m (= M-Arb, orig. = py).

31, py, Ml \d&ﬂ;ﬁ';t@ the moments from the mean (a)
With(gti‘g application of Sheppard’s corrections if they are
ingphsequential for the problem in hand, or (b} after

z{pplicati(m of Sheppard’s corrections il they are used.

3&?‘1" va,- - - vy designate the moments from the mean before

O\ application of Sheppard’s corrections in problems in

™

N which Sheppard's corrections arc used.

33- ML Mzt tHa OF 1y, ma,- ¥, designatc moments from an
arbitrary origin,
When dealing with the normal distribution:
A normal distribution in which N = 1 and ¢ = 1 will be
referred 1o as a “‘unit nermal distribution.”
In the general normal distribution, x as defined in 4,
o as defined in 17:
34. » designates the ordinate per unit interval (= «N/o [as
defined in 36 and 171).
In: the “unit normal distribution’:
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35. x designates a deviation from the mean
(o 2losdefmedndly
o fas defined in 17] '
36. z designates the ordinate
(- yo [as defined igsﬂld_lﬂ)
N .
p and g as defined in ¢ and 11 (p =fx ade = 3[1 -} N
o

of Sheppard). O\
* - [} { \“

37. Corresponding to a deviation x; we have pi @i, £1) of
corresponding to a proportion 1, We have gu S and 7.,

38. I designates fxz dx (=a/ 2 of Sheppard), W<§:'

0

When dealing with unimodal distribubions: s
39. yo designales the ordinate at tthi-igm (generally at the
mean, the mode or a boundacyy:
40. w is an exponent. I twogxﬁbnents are needed, 1 and
g are used. N
41. a in general designates tmhemd'tﬁlé@ﬂﬁﬁ’jﬂl%tr“g}?g{lgfﬂm odgin
and a finite bfundary. If two boundarwes are finites

a, and a» agevsed.

. \h\ .
When dealingwith pricé indexes:
42. p's dekifnates the price of commodity ¢ at date s.
43. gipdesignates the amount consumed, of in trade, of com-
() fodity ¢ at date 5.
',*'\ If few commodities are involved, subscripts are arabic

,"\’rf" aumbers, and superscripts arc primes.
NV 44 s designates the price of an unspecified commodity at
date s.

45. gs designates the quantit
unspecified commodity at date s.

40, psu designates a price ratio or the ratip of the price at
date s to the price at date # (= %) .

weighted or otherwise, of the prices

¥ consumed, or in trade, of an

47. Psis 2 composite,
of several comniodities at date s.
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48. f.-Zl_m designates a price index or the ratio of @ conijosiie

) . r,
of prices at date s to prices at date o (-— ; ) .

>

49. w designates the weight given to a price, p. when this
weight differs from g.

When dealing with correlated serzes:

o, Symbols as given in 3, 4. 5 Corresponding svimbels Jor
the second serics are Y, 7. {. N\

s1. A second notation utilizes symbols 1, 3. 4, 5. 6, A3,
11, 15, 16, 17, 18 and 19, with subscript 1 :z‘l’é‘gled tu
represent the first variable, and a subscript gradded Lo
represent a second variable. e

52. ¢x = oy, and oy = o2 RN

53. A has the meaning as in 28, with aeference Lo the first
variable, and & this meaning{(gith reference lo ihe
second variable. \ S

54. 7 designates the first variaiil'é expressed as a standard
mé’é%ﬂ‘féjb-"a{@bﬂ?&}ﬁfg:}%‘; designaies the second vari-
able expressed ag A standard measure — ( = %2/02).
See also 36, L

55. * designates Qg‘p’roduct moment correlation coefficiont
between two cries.

56. 7 is also wsed where specially noted, to designate hi-serial
¥, Sh%;{\)ﬁard's cos z m@ correlation, and occastonally
othe} specially designated correlation cocflicients.

57i‘p§(1eiisignates the correlation cocfficient, based upon the

w\" squares of differences in rank.

~ \“38 R designates Spearman’s foot-rule correlation coefficient.
\/ See also 86.

s9. 7; designates the tetrachoric correlation coeflicient.

60. o1 designates the mean standard deviation of the x-
arrays from the regression line, ie., it is the standard
error of estimate of variable 1, knowing variable 2.

b1,

2.1 designates the standard error of estimate of 2, knowing
variable 1.

62. o, designates the mean standard deviation of the x-arrays
from the means of the arrays.
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63. x designates the value of x as estimated from a lmovﬂedge
of ¥ by means of the regression equation.

64. X designates the value of X as estimated from a knowledge
of V by means of the regression equation.

65. 3 and Y have comparable meanings to 63 and 64 inter-
changing the variables.

66, Tn general, a symbol with a superior bar stands for an
estimated value of a variable, or for an average, but
note 33, 81 and 82. N

67. bip designates the regression of the x's upon the »'s, o D
the slope of the regression tine used in estimating\x’s;
knowing 3's. a3

68. by designates the regression of the y's upon the??&'é.

6g. h designates the grouping interval for the st variable
(=1,in 24), and k, the grouping i ‘geijt%l"for the second
variable. o\

vo. x is the first variate when no gréuping is resorted to. 1t
ig not related to %2, of gg.‘,’:l

1.y is the second variate wheR, ZIIDINS is not resorted to.

™ A br o .
Tt ig not related to y88 found in the equationsof certatn

curves. \
2\ . . .
{2 subscript preceding, such as subscrpt

n2. and C w%tg i
s {1 CEOA designate a coefficient, after some correction

has beenmade.

AS . . .
(> as one of the subscripts designates & correlation

73, 7 wi
ie,a correlation corrected for attenu-

Avith a true sCOre,
,(\\éition.
G om0 designates the ¢
~ J ie., the correlation corrected
N case of both variabies.
75. k designates the coefficient of alienation Of the gropor—
tionate improvement in estimate, due to the existence

orrelation between two trué SCOTeS,
for the attenuation 1M

of correlation (= 7). Seealsd 8s.
76. P with two subscripts designates 8 product moment.
8g and 117

Distinguish between this and ¢,
77. d designates & difference between tWO SCOTES.
scores may be rank positions-

These
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v8. myz is the correlation ratio of x upon p, and 4 that of 3
upon x.

79. ¢ is the test for lnearity (= »* — %) Distingash
between this and so.

8o. w represents an arbitrary weight.,  See also gr.

81. #; designales the average inter-correlation between fa

number of independent variables,

82, r. designates the average correlation between a crit.c’vi{)wi
and a number of variables. O

W

83. o used as a subseript designates the eriterion. N

84. I designates the standard deviation of scorééﬁ’rl a secend
range when the standard deviation g $he Hrst range 15
o. Distinguish between this and 28.)

85. K designates the alienation coeﬂig’éﬁ% i a second range,
when the alienation coeffclenb in the first range s 4.
Distinguish between 85, 87.and 88.

86. R desigraigs i sorrslasigh cﬁcﬁc cient in a second range.
when the correlation ‘Coefficient in the first range is 7.
Note also 38, N

87. K?designatestheean of a summation. See formula [2e3].

88. « designates fie™umber of categories in a quantitative
or qualitagive disiribution. M designates the number
of cat€gofies in a sccond quantitative or gqualitative
di§t{'ibution.

80. g i\the greater of two proportions which total 1.0, in a

{\eorrelation table.  See also o,
' Qﬁ;‘a, B, v, & are the proportions in the four cells of a four-
N\ fold correlation table,

or. v and @ with subscripts designate certain tetrachoric
corrclation functions. Distinguish between 25, 26, 8o
and o1.

92. ¢ designates productmoment correlation between two
two-point distributions, This 15 Pearson’s 7, and
also Yule's theoretical value of 7.

93. ¢ designates the mean square contingency,

In the case
of a four-fold only, it equals ¢ of g2 squared.



AFPPENDIX A 353

o4, Q deisignates Yule's coefficient of association. Distin-
guish between 14 and gq.

95. « designates Yule's coefficient of colligation.

96. msy designates the theoretical cell frequency.,

07, #y designates the ohserved cell frequency,

98. ds» designates the cell divergence (= no — ).

90. x* designates the square contingency. See also yo, “\

Too. P designates the probability of a divergence as greatnos

greater than that obtained, arising as a magter ™o

N

chance,
10T. oge designates the standard error of the At difference
correlation coefficient. R4

When dealing with three or more correluted satidhles:

102, Xy.ps..., designates the residual in tjh}t:riterion. OF error
of estimate of the criterion, after regression equation
estimation of it by meagd'6f the other variables

(= % — Zo). N

103. xp designates the value'.(j@ly'qg_ gﬁiﬁgﬂiﬁﬁ,&s estimgted from

the other variables 3% ary.org.in

To = %o/0g; o = ﬁ/{?o; 201 = Faz.n/ 00 €tC.

103, ¥os..., desk fids the multiple correlation coefficient
between,the triterion and the regression equation com-
binatiepef the independent variables.

- ko .;‘lgesignates the multiple allenation coefficient be-

104.

1ob
.t'WzE}m the criterion and the regression equation com-
\&ihation of the independent variables,
qu;'; Go.11...n designates the standard error of estimate of 1‘;he
N criterion, when estimated by means of the regression
\ ) equation.

108. Porgs.s designates the partial correlation coefﬁmen't be-
tween the criterion and variable 1, the other variables

being constant.
i i ; i fficient be-

109. Eoran..n designates the partial aliepation coe :
T e ‘ ble 1, the other variables

tween the criterion and varia
being constant.
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I12.

113.

I14.

STATISTICAL METHOD

. Bor2s...n designates the partial regression of the criterion

upon variable 1, the other varables bemg consiany,
not allowing lor unequal stondard deviaiions of (he
variables.

. Botes...n designates the partial regression of the criternon

upon varighle 1, the olher variables being constant,

taking mto account the standard deviations of the

vartables (= Bupaa.. 00 01). )
A designates the major determinant, QO

Ape designates the determinant oblained by ttﬂu&w ot

the p'th row and the ¢'th column fmm ‘L{L\ major de-
terminant.

w

¢ designates the weighted compositc, O‘R}:U)l{,b generally
shightly different from the rc‘gr\&zun equation com-
posite. \¥;

AN

. # designates the one variable, 'm the ¢ composite which 13

treated In a unigue mcmner,

116. ¢ — w Qe é&?ﬁ‘f‘é&”ﬂh@bf %c‘%a’ﬁbomtu after deduction of the
variable treated umquél;

117. p designates any;@}&e of the variables, other than #, in
the ¢ composific™

118. [} designateg bhe distance from the stump to the mean of
a compkef,e ‘normal distribution, in case of truncation
(= m().o See also 13,

119, 0. ﬂé&gnates the standard deviation of a weighted
Laverage.

3 \ :'
'"\ w4
THE GREEK ALPHABET

A o« Alpha I « Iota P » Rhe

B B Beta K « Kappa Z ¢ Sigma

' v Gamma A A Lamba T » Tau

A 8§ Delta M a Ma T v Upsilon

E ¢ Epsilon N » Nu ¢ ¢ Phi

Z ¢t Zeia = E X3 X x Chi

H % Eta 0 o Omicron v ¥ Pal

6 0 Theta n-5» 2 @ Omega
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280 220 780



‘.' -~

380 STATISTICAL METHOD

.280 220 780
o I z | g 8/ | &b | P2 | P

_28—0_ o 772193 ! 12 2096004 .223- - 1.34588 | .3%abg | 1710600 | 780
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A4I0 | 1340755 .162391 000 1.8043 I7B15 ;'B;S\I()()o [1140]
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420 | I.4035072 | (148660 \689 1.8;,82 e LIGI5G ‘0;3600 G20
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423 | 1439531 % -141355 [ 075 | 1.8874 -15303 | 069375 | .925
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427 53506 | 138662 | .073 | 1.800% 14058 | Lob707T | 027
428 {61056 | .137205 | 072 | 1.9056 J4783 | 066316 [ 928
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433 | 1.493513 | (129807 | 067 | 1.9374 L13013 | .oB2311 933
434 | 1506262 § (128304 | 066 | 1.9140 3757 | 061644 | 034
435 | T.514102 | 126794 | .005 | 1.9507 13361 | 060775 | 935
436 | 1.522036 | 125270 | .004 | 1.O574 13334 | 059904 | 936
I
437 | 1.530068 (123750 ! (063 | 1.9643 .13207 | .o59031 | 937
438 | 1.538190 . 122216 | .062 | 1.9712 13020 | 058156 | .938
439 |1.846433 | .120674 | .061 | 1.9783 2851 ¢ Lo57279 | 930
440 jI.554774 119123 | 060 | T1.9854 | 12673 | 056400 | .940
440 .060 .040

g



STATISTICAL METHOD

440 060 040
I ANCE |
x Fl 9] #e w0 pg | op
440 1.554774_ J19123 oo 19854 B .12673_I .056400_ .040
441 | 1.563224 | .II7364 | 059 | T.0926 1219 .03 Coa1
442 11571787 | 115906 | 058 | 19999 .Izgii ogigég gJ{;
443 [1.380467 [ 114420 | 057 | 2.0074 | .12134 | 033751 913
444 | 1.580268 | 112836 | .056 | 20119 1195 052586 p .-
445 11.508103 | 111242 | 035 | 2.0226 ,II?;S : .oirc}i tﬁé
‘ 446 | 1.607248 | .rog63e | o054 2.0304 TI540 ,031084 ‘g-}}{;
447 | 1616436 | .108027 | .0 2.0382 LIT 307 1
448 _1.625?63 106406 ogg 3.03{63 .z 1;23. g:;;g} 3;,53
449 | 1635234 | 104776 | 051 20544 | 11041 43048599 | 919
450 1‘644854_ JI03136 | .o50 | 20627 10h5“6. .047500_. .gsoﬁ
450 11.654628 | 101486 | .040 2.0'-I_I_ O0S 2 : 3
452 1 1.664363 | .ogo826 ,018 2.0*:797 N ().:é(; gfgc?gg : ri "J_E
453 | 1.674665 | 098157 | 047 2.0884 NP TO300 | 014701 932
454 | 1684941 1 096477 | 046 | 2.000% | 10113 348 o5t |
435 11695308 094787 | 045 2.1??% .oggzg gigﬁti, .-:;'3':'
456 1 1706044 | 093086 | .04y |; 256 | .00737 | 04206} | 936
457 | 1.716886 | .oo1375 | 013\ Y1220 00548 1e oy
458 1727931 | .08g632 pigj 2-1326, togiés giﬂl?é )
459 1739 I9&a\mm8;d,ht)a L kr:hlﬁi_l Y20l@AN | 00168 | 030119
460 11.750686 | 086174 Poge | 20514 | o876 038100
461 [ 1762470 [ ofgiay .ogq_ 21645 8784 | 03747
462 | 1774382 | aB2byg | 038 irda | oseor piethud
463 1-f356.14' 080868 | 037 | 2.1856 | 08308 | 035631
'464 L7ggIT 07007 3 3 01 217
465 | 1 8510n1 ,039225, :g.atj f 1965 08203 034704
465 | 13n50 727 33 | 22077 L0800 033775
) Lw25007 Y .075452 | o3¢ | 22152 O7BIT | 032804
407 M838424 | 073620 | o 33
68 1852180 Dﬁ??‘ .03:; jz:gog .()Z61§ 'U"“’)E
'459 1586206 | ‘o 3 '3 2430 07413 1 0300760
‘x -Ob99T5 | 031 [ 2.2553 | .o7zr3 | .030039
R\ 470 1880754 | 068042 | 030 | 2.268T 07015 | 029100 | 070
AN 471 | 1895698 | o661 5 | : " oa8
Va \% 472 1.9??026 gg_?zlgi 332 3381:—; 00813 Pty ()EL
) 473 | 1926837 | 062332 | ‘027 | 33080 82%3 8352;{; 573
. .02 97
3 474 (1943139 | 06 2 .
f 475 1-9599%1 .osgf}gz 336 23230 06201 1025324 | 974
: 476 |1 29443 | 025 12,3378 03994 | 024375 | 70
1 977368 | 056476 [ 023 | 2.3532 05786 | .o23421 | 570
i 477 1 L iy
i 2.09?233? -gg;ugg 023 | 2.3691 | 05577 | 022471 | 977
479 | 2059590 o3 463 022 | 2,3857 03367 1 021510 | 578
_}ga_ . 050402 | 021 | 24030 05154 | .ozos50 | 070
. 2.0 i
53749 | .048418 | 020 | 2.4209 04041 .oTghoo | o080

020




APPENDIX C 385
480 .020 980
I x l z Py | ! .: F
| g | s/g | 2p | pg | P
480 | 2033730 ‘ 048418 | ozo | 2.4209 0394 1 | .01g600 | .080
481 b.o,_p_s‘ to4b334 | 019 | 21397 ‘ 04725 | 018630 | o8I
482 2.09_6927 044268 | 018 | 2.2503 .04 508 Yoorrert g8z &N\
483 | 2120072 | 042160 1 oI7 | 2.4800 ) .04280 | WOI6FIT ) 083
84 ] 2.T444T1 ‘ 040028 1 016 | 2.35018 04068 | 015744 95,4\ \'
483 1 2.170000 | 037870 1 o015 | 2.5247 03843 | 012773 | 085
486 | z.rg7286 | 035687 | .014 | 2.549:1 ] 03610 | 013804 F394%
487 [ 2226211 ’ 0334751 013 | 2.5750 03302 ' .01283s 087
A58 2.25?12{.}| 2031234 [ 012 | 2.6028 | WOFTHT | .01)856 OR8
48y | z.290370 | 028460 [ .oIT | 2.6327 | 02924 ,',ngs"‘q .nég
s 21
490 | 2330335 ' ozthiz | owm | 2.665 ‘ 026G2 L .onggoo 000
491 | 2.303013 i .024300 | 009 1 2.701 i 02453 \ 008G Ty ,991_
GO2 2408916 | wo2Iv2o ) ool | 2.740 | 210 .007936 902
493 2.457264’ 019487 | oo7 | 2.784 ‘drgoz | .006931 | 003
494 | 2.512144 | 017003 D06 ) 2.834 tw’n;u ,0059()4 9G4
495 [2.575820 | 014460 [ 003 | 2.893 SOLLS3 | 004975 | (993
4ab | 2.652050 | 011817 | 004 29{32 o118y |, oo3o81 | .090
407 (2747781 ’ 00410 | 003 997
408 | 2.878161 | 006340 | 002 < }ylwfww me@[}sb} a’iﬂ&@?}% in 998
409 | 3.090229 | .c03367 000 | 3.367 0337 | 000009 | 909
50
499 (-801 999
N\
“J
::\u'
x“\s.
N\
R\
oy
a \



INDIEX

Boldface is used for references to definitions.

Alienation, cocfficient of, 172
see alse Correlation

Alignment chart of correlation functions,
201-295, tavide back end paper

Ametican Sgciety of Aechanicul Engi-
neers, 42

Anderson, vou, 0., 271, 276

Angell, Frank, 147

Approximalions, crrors in, 164-167

Array, 154, 155

Attenuatlion, zo4-205

Average, moving, 28

Averuges, 44-00

Bur diggram, 38
Bell, Julia, 205

EBest [, 150

Blakeman, Joha, 239, 209 ™
Bluck diagram, 4o N Ny
Boas, Franz, 250 4
Bowley, A. L., 55 imt\

Bravails, A., 1352 N/
Eridges, Calvin B., 321 \\
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Brown, Carl, 226, 211 3
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Canning,
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Categgri?al mensures, graphic representa-
HOAYL, 3743
,.[\wc.]’:ieatru,e B, 271, 272, 273
\Cave, T E., 271
Tentral tendencies, 44—f0
Charlier, C. V. L., 123
Charl of ratios, 22, 23-27
Chart, relative time, ) 20, 18
Churt, time, 16, 17
Charts, summary of rules for construction
of, 42-13
Class index, 11-13, 168169
(Class Intetval, 11, 13
Class limils, 1r, 12

Class mrarn, 168-160

Cobb, Marguret V., 314

Comparable measures, 169-122, 153
percentile method, 118-122 ‘“\

ratio method, rio—cr4 "\

stundard meuwsure rm:thqd* FTH-117
Contingency
\.
A

see Correlation
Cerrelated measuked Munctions of, 1g6—z30
Carrelation, ave{fe inter-, a17—221
Correlaiion |Jt.lk(‘f,n

a mearn g\q.{‘i cell frequency, 173

amBungnd coclliciont of correlation, 174

a nic;a,h and standard devintion, 148

m';y two product movements, 173

o\ toeflicients of correlation, 170

\ | means, 178
Wiy dhveabihrany omg in
standard devialion wnd cocficlent of
cartelation, 198
SUMS OT averilges, 1ofi 2mo
Correlation cocficient, product-moment,
161164
calculation of, 179181
corrociions to, 171
{lorrelation, corrocied for attenwation,
204-205
error in, 208—212
Carrelation, eeet of range upon, z21-230
Cuorrelation, interpretation of, 13g—160
graphic, 153-150
Carrelation, partial and mulliple, 274 310
multiple  alienation coeficient, 288,
209—300
mutiple correlation coefficient, 287
multiple, three variables only, 280—z2035
multiple, # varables, 283, 2y2, 294,
293-310
partial alienalion coetficient, 289
partial correlation coeflicient, 288, 290,
298
by successive approzimations, 302-310
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Correlation surface, normay, 156, 137-158
Correlation sarfaces, 17z
Correlation Lably, 154
Correlation, varinus measures of, 232758
bi-serial eta, 249—253
bi-serial r, 245—240
contingency, 262205
contingency, coefficient. of, 265—271
contingency, corrections Lo coefficlent
of, 2ly--271
contingency, partial, 28e
contingency, multiple, 28¢
eaui-prabable r, 265
four-ipld point surface, 25n-260
.meun square contingency, 265—271
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