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PRET'ACE

Tn recent vears there has been an ext ensive development of modern
alpebraic theories and application of them not only to other divisions
of mathematics bul also to the physieal sciences, the gocial selences,
and statistics. There have been published several excellent treatises
which deal with group theory, muuber theory, matrix algebra, and
formal abstract algebra, either compositely or separately, in an ad-
vanced way. But the elementary expository presentations of matdis
algebra are distinetly Jimited in number. N

This book is intended to give such an exposition. It is g:o\héej\’nnd
jargely with an clementary exposition of the algebro of \weelors and
malrices, that exposition being articulated with the basic eoncepts of
modern algebra in the broad sense, to wit, group L itdegral domain,
field, ring, basis, dimension, and isomorphism. dVhile the student
nsing this text will be privnarily Jearning aboud vactors and matrices,
he will be getting thal knowledge in the setling of modern algehraic
theory. This book, therefore, is suitablgfor use in the first course
of a sequence of eourses devoted to médern algebraic theorics.

There are good l‘ggwgatﬁﬁgﬁ@gljﬁ:[’w g’r_klmﬁmt- beyond Fhe srery basic
coneepts of groups and fields, thatdpart ol “modern higher algebra”
which is of greatest interest il use to the applied acientist — the
physicist, engineer, theorefital chemist, statistician, or psychometri-
cian — ig the algebra of “ectors and matrices. To some extent ihe
sume is true of the sfh@teiit of mathematies who ig mainly inferested in
geomelry or analfsis. Tt is helioved that the applied scientist will
find here in ajsffgle source, in relatively simple, readable language,
the essentialeaiures of matrix algebra which for him constitutes a
power{u dnd widely used tool. '

Tgnéi}ierable use is made of the summation nolation. the index
s}(n(béiism, and transformations, all of which are common in tensor
'ﬂs;coi'y. So this book may well serve as & prerequisite for work in

atrix and tensor caleulus.

A course for applied scientists might omit, the material on permuta-
{ion groups, rings, and groups and matrices (Section 1-3, Section 1-6,
Section 6-9, and Chapter 7). Tf Chapter 7 is omitted, one should
take as a definition that “‘two matrices A and B are similar if B =
P-14P for some nonsingular matrix P.”  1f the book is used by a

T



vi PREFACE
group of students who have had some vector methods in analyiie
geometry, Chapter 2 may be uscd as a reading nssignment .

The mathematical background of the student using this hook i
assumed to be a first course in analytic geometry and an acquain -
anceship with the wsual theorems on determinants as given s
standard eollege algebra bools.

A major portion of the material in this boolk has been used fiQ i
trial lithoprinted edition at Florida State University during i
two years. The author takes this oecasion to EXPIess his,sf}‘:gph_l{:m—
tion to the students who have participated in the use of t'h:;;b mfaterial
and who have aided in climinating & number of “i)llg}‘:“i}‘fl"i;l]l it

TIIQ)‘\‘Lss l.. Wape
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CHAPTER 1
BASIC CONCEPTS

1-1 System of elements. Our first basic notion is that of a
«Jass, collection, aggrogate, or systemn S of undetined objects or entities
a, b, c, ... which we usually call the elements of 8. Sometimes W&
shall gpecify these clements, but they will nsually be any absl rhdt
objects. Such a gystem may contain either a finite or an Anfwite
number of elements. O

Some fnite systems are’ (1) the system of nnn—negqti};’o'integors
Jews than a positive inleger #, {2) all the combinaliond of a given
finite set of n elements taken 7 at a time (r < 1) ah(T {3) the n nth
voots of unity, for a given positive integer 7. Sgmt infinite systems
are: (1) all positive integers, (2) all pl'ime’im}eg’;ers, and (3} all real
numnbers. . AN

X 3
N

1-2 Groups. Consider a system 38,01 clements a, b, ¢, . . ., with

. a rule of combination or operatiath designated so that element a fol-

lowed by element b \i’lﬁéh(ihrggﬂj@rmy aeguignt in the set inclnding &)

determines some clement-,.say'é, uniguely. While we do not usually

ataie the nature of this\bperation, we abstracily ecall ¢ = ab the
product of @ and b, m’ﬁsﬁea}{ of the operation ws muliiplication.

A system is culled a group ¢ with respect to a designated operation
if und only if i ‘sétisﬁes the following four conditions:

(1} The ‘agistém is closed under the operation, that is, if @ and b
Are ekzn@?ﬂé’of G, then ¢ = ab is & unique element of G

(2).{Thc associative law must hold, thal is, if @, b, ¢ are clements of
(r'“thi’en (ab)e = afbe). The notation ebe may therefore be used

'“n-flt.?mut- arabiguity. '
' (3} The set 7 contains a single element ¢, ealled the identity ele-
ment, such that for every element o of G we have ai = o = 4a.

(4) Hach element & of G has a unique inverse 67 giuch that a™'a =
ao—! = 4. These four conditions may be combined compositely in
the following definition.

A group G 15 a gystem of clements which can be combined by a

single-valued operation which is associalive, and with respect 10
1
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which 7 contains an ident ity element and with each element HH -
verse,

Systems satisfying condition (1) are called closed systems.  The
relevancy of speaking of such systems as closed is evidenced by tie
fact that a system satisfying the condition (1) is such thai the reslt
of eombining any two of its elements i3 dtsell an element of e
syatem. O

A systern selected at random may 01""51:1}-’ not be elosed uu;lw\nu};
or may not be a group.  Congider the s¥stem S of the ]u:;sif'i\"(:\fn Cacrs
from 1 to 20 inclusive in connection with the operation ofNordingr-
multiplication.  Note that while 2 - 3 = 6, which lies ind’3 -8 = 2y
which is not in S; 50 this set is not closed.  Let S Bthe set of o
natural numbers 1, 2,3, . . with respect to the opération of ordinary
multiplication. Then condition (1) is satisficd Nt jx, S is closed ;
(2) 1s obviously satisfied; und so is (3), the idgntity clement heing 1:
and if n is any integern - 1 = 1.9 = 71 ;B{Si\'(z\-‘er, (4) s not sutis-
fied; of the clements in the set S only 1088 an inverse in 8.

Let S be the set consisting of all theypositive und negative integers
including zero, and with a&ﬁ}}%&’fﬂﬂﬁw &lgg}rpf lzon}bina?ion. Then
one can readily sec that' § a5 grap, zero being the identity element,
and each element having its awn negative for inverse.

A group is said to be fidide or infinile according as the number of
clements in it is finite oﬁ{ﬁinite. Tf the number of elements in G is
the finite number », t-hé 718 said to be the erder of the finite group €.
The numbers 1, —dy¥ —7 (22 = — 1) constitute a group of order 4, the
operation heing x_jrﬂinary multiplication.

A group {;}’\i’gs'\‘f'a.lled a commutative group if its rule of combination
is commutative, that is, if ab = ba. The numbers 1, —1, 4, and —¢
under orfiitdary multiplication form a commutative finite group; the
negative and positive integers and zero under the operation of addi-
tiehform a commutative infinite group. Noncommutative groups
w{ﬁl éppeemr later, .

It should be clearly realized that the elements of a group are not
necessarily numbers. They may be motions or acts of many sorts.

Consider the rotations of a six-spoke wheel, spokes evenly spacoed,
and one pair of spokes horizontal. Tet the rotations be counter-
clockwise and each such that it leaves the wheel with one pair of
spokes horizontul. Sinee consecutive spokes arc 60 degrees apart,
rotations must be multiples of 60 degrecs, Let the rotations of the
wheel counterclockwise be designated as follows:
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a = rotation of 60 degrees, b = rolation of 120 degrees,
¢ = rotation of 180 degrecs, d = rotation of 240 degrees,
rotation of 300 degrees, ¢ = rotation of 360 degrees.

n

Note that
a+b=¢ atec=d at+d=¢ a+ 1= g, etc

That ig, any two of these ix rotations performed in succession aye,
equivalent to some other rotation of theset.  Further, one can readiiy
verify that the rotations ¢, b, ¢, d, ¢, and 7 satisfy the other conditiens
necessary to form o group, ordinary addition heing the gr'};&ﬁ (Jjﬁel'a-
tion and 7 being the identity element. N

Not only may the elements of a group be other t-hmi‘numhers, but
also the group operatien is not necessarily additiﬁiz} or subtraction
or any of the usual operations in arithmetic or algebra.

AN
EXERCISER \ N\

1. Verify that the following systems f{'}h:rr groups: (a) All real numbers,
the rule of combination being addition. . thy All real numbers except zero, the
rule of combination bel i Sowdltiplication.  (Here unity is the
identity clement, and thﬁiﬁfgﬁ%&ye e%ﬁ%tﬁ}s its récipmcal.) ’ {¢) The
five fifth roots of unity under the operation of ordinary multiplication of
complex numbers, x’“x\ _ _ _

9. Show that the fux{;i\ums R N R S W r), (v — D, iz — 1
farm a group, the opfration being the substitution of the second fanetion for e
in the preceding, ::\rrc~

1-3 qu:gl:hfation groups. As examples of groups which have
group gperations different from the usual arithmetie and slgebraic
operatibng, we now consider permutations. Such groups are of in-
t-c;”eéjt:i'n themselves; moreover, there are distinet advantages in work-
“ing“with clementary mathematical systems with operations different
\mm the familiar ones, for later with veetors and matrices we do just
that.

Lot @y, @z, - . - @n demoie 7 finite distinet letters or abstract ob-
jeets. Lot by, by, . . . by be any srrangement of the same % objeets
which replaces the given arrangement; the operation which effeets
{his rearrangement is called a permutation of the » objects and may

be denoted by the symbol

(al 22 - a'n)’ . .
By b ... b
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This means that each letter in the first vow is replaced by the leirg
directly under it. Any order of the given letters may be used joo-
vided each has under it the proper letter; thus

abc__bac:cab)wt__
(b ¢ a)_(c b a.) '(u. b o)

Hence there are six ways of symbolizing the permutation which .-
places ¢ by b, b by ¢, and ¢ by ¢.  The identity

i (al Gy ... a,‘) ~
4 ¢y ... a, A
is ineluded among the permutations, even though it does not&chahy -
the letters. The number of sytobols in o permutation i§ called -
degree. A permuiation of degree two, differcnt fI'OIn" €% called
transposition.  From college algebra the total numb\é{{'of permut-
tions on n letters qy, as, . . . coxlsnl=1.2.3. {7
For two letters a, b there are two permutations

A\
s f® by ] & (} by

For three letters a, B, ¢ there are six Qe.l'ﬁrtit::ltinns,
cofr b N e b e .f:.': ¢ b o o b oo
" a boof PT wpdbpgediliiar vkt Y A P b

<o b“é"t_ o b oy
T m‘( e " T \e b a
A permutation suel ag"»}

AN T s L, 1 0,
(a) 3 ... oa, az)
</
iz called » f:fircga@,rfpemfumiion or eyele, and for brevity is denoted by
the symbal (M. .. @), This means that each letter is replaced by
the one which follows it. Clearly a cyele may be represented in
severalways, for (g, . . ) = (e84 . . . a,a) = {0204 . . . aue1a0) =
. .M.\:“"?,E.'He evele (2be) may be denoted equivalently hy (bea) and {vab).

Por two letiers the bermutations in eyelical form are 5 and p = (ab).
For threo letters the permutations in eyelical form e 1, p o= {abe),
¢ = {ach), r = {be), & = (ab), t = {acy. A single latter eyele is usu-
ally omitted, with the understanding that such a letter is left un-
changed by the permutation. Thus ¢ ahove is a shortened version
of W){ae). In the two llustrations Just given 7 is used to represent
no change in the letiers under consideration,
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‘The result obtained by applying to i, a3, . . -, On two permutations
suceessively can be aceomphished by applying a single permutation.
The latter permutation is called the product of the first two. Thus
for the products of some permnitations on three letters a, b, ¢, we have

m=(a b c)(u. b c)z(a b c)(b e a.)z(a b C):-i-

b ¢ af\e a b b ca/\e b e a bc !

a b Nebe a b b oo ¢ b o
ps:(b ¢ a)(b a r:)z(b ¢ a)(a. e b):(a £ b)=(bc)=r,
. abca-bc_a.bcbac_abc
hp:(bac)(bca)_(b a c)(c bII)_((: b a.)=(m)=£' N\

The process for forming the product of tiwe permutations May be ;-il‘a{tecl
as [ollovws: rearrange the columns of the seeond permutation un pitvatsirst
counr 3 the same as the secord row of the first pe-r-m-uiaiioq_;lh}? product
iy the permutation whose first row iy the first row of the ji}'s!-"j‘actm’ and
whose second row is the second vow of the second fru:t{n:;\"fha.t is,

a4y da ... Ox (bl s .- b,a) DN AN

(b, by ... b,.) g1 €2 ... Cn dx(ﬁ fa .. (:r,)

- . ~\

Note that the product of permutations a8 ps and sp ubove, may not
Lo commutative. N/

In group theory it is established that any permutation may he

wrilten in a unigue u‘i‘il‘ﬁi‘fe‘fu%ﬁﬂ@Iifﬁi‘@dm@ﬁ*gn.ﬁ;circuhu' permmutations of

which no two have a letter o0 EHMIMON. Thus

(“‘ bedelfyg h) :\@%hdﬁg} and (?; cu é) - (aeed) (B

c hgfacbd
The order im whiglt t:he factor eycles of a given permutation are wntten

i« ymmaterial, giget no two of the eyeles have a common letter.  Thus

\:'}‘Tf' boe ‘; "') — (hed){ac) = (ac) (bed).
O\ ¢ e a i

I.Tg‘.r\e: we understand that by a eyele on less than a total of five letlers,
“Sqeh as {ac) and (bed), we mean the permutation on all five letters in
\\'I‘lich the Jetiers not written down are unchanged.

One may find the produet of cireular permutations direeily. To
find the product (ab){abc) one muy reason a3 follows: in (ab) @ is Te-
placed by b, and in {(abc) b is replaced by ¢; the result is that e 18
replaced by ¢ Turther, in (ah) b 18 replaced by e, and in {ahe) ais
replaced by b; so b remains unchanged. Finally, in (ab) ¢ 1% not

mentioned, while in (abc) ¢ is changed to a. All of these results are
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completely accounted for in (ac). So {ab){abe) = (ac). Note that

a product of cycles having a letter in common, as (ab){abe), may .!w

put in alternate and simpler form, but that o product of eveles with

no letter in common, as (ab){ed), eannot be further simplified.
Conaider the six permutations on three letters,

4 (abe), (ach), (b}, (ab), (ac).
Observe that )
(abe)(ach) = 4, (be)(be) = (ab){ab) = (ac)(ac) = 4, ~

so each element has an inverse. The associative Jaw holds ; 50 d\uaw
the identity law, pi = ip = p, for any element . Finally fihs‘. B -
closed, for o\
(abe)(be) = (ac), (ab)(abe) = (ac), (ac)(ab) =.farh),
(ac)(be) = (abe), ete. RS

N

That the sot is elosed follows alternatively from thi Yact that it con-
tains all possible permutations on the three leptevs.  Hence theso six
permutations on three letters form g noncomratitative group of order
3lor 6. It isshown in group theory thabthe set of all permutalions
on n letters, n!' in number, form g noagammutative group of order »'.
This group is called the symmetric grop on n letters, or the symmetric
group of order n!. www dbraulibrary org.in

We have previously menticned that any permutation ean be
written as the produet of veles no two of which have a letter in
common; further, any, citi}::i}tr permutation ean be written as the
produet of transpositiors, for

(th?f-’lﬁ'- D = (ab)(ac)(ad)(ae) . . . (D),

Therefore, an}yfierinuta.tion ean be expressed as the product of trans-
positions. _Thals {abed) = (ab) (ac)(ad). Note that
N (ab) (ac) = (ac)(be) = (bc)(ab) = (abc)

and &9

~O (ae){ab) = (B)(ea) = (Ba)(be) = (ach),

3
These illustrations evidence that a permutation of
two can be expressed as product of frang
way, using only its own letters,
it is expressible as o produet of an
odd if it is expressible as th
tions.

egree greater than
positions in more than one
A permutation is said to be epen if
even numher of transpositions, ancd
1e produet of an odd number of transposi-
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We have noted that the total set of all permutations on . letters
(9, @3, - + -, @n, 0t} in nuUMber, constitutes the so-called symmetric group
on the 7 letters, of order nl. Tt is established in group theory that
the pumber of even permutations on @i, ¢z, .. -, Ga iz equal to the
number of odd permutations on these same letters.  To Mustrate,
of the six permutations on the letters a, b, ¢ the three odd ones are
{be), {ab}, and {ac); the three cven ones are 7, (abe), and (ach). Now
ihe inverse of an even permutation js cven, and the product of two
even permutations is even. Therefore, it follows that the even per-
mutations on au, @, . . -, @ form a group; it is called the alternating\
group on these letters, and is of order 1nl. Forn = 2 the alterngbing
sroup consists of the identity element alone. Forn =23 th’e\'aTtE}r-
nating group consists of 7, (abe), and {ach). « M

Tf a group G contains a subsct of clements which formsja group
with the same law of combination as @, then H is said{fo be a sub-
proup of G. The symmetrie group of order 6 kas. four subgroups
hesides the identity, namely: _ O

INY
i, {aby; 7, (ac); 4, (bo); and_ K27 (abe), (ach).

The latter, the alternating subgroup of 'tht::’éynunetric group on three
Ietters, is a special kind of subgroup kRiewn as an invariant subgroup.
In order to explain tha\;mmuf;p&,_gi;;éy}yi.%}z riant subgroup we need
{0 know what is meant by the dansform of one element by another.
lecurring to the syrmnetrio«é;rm.lp of order 6, multiply the element
{ab) on the right by (a-bc),a'flzr on the left by {ach), the inverse of (abc).
We obtain {(ach)(ab) (abeh= (be}; here (be) is called the transform of
{ab) by (abc). Trgeneral, if {7'st = 7, We say ¢ trangforms s into r.
Alternately statgdGf a given element of & group is multiplied on the
right by anotierelement and on the left by the inverse of that ele-
ment, the 4s0ll is called the fransform of the given element by that
other elefieént. A subgroup H of G is snid to be an tnvariant subgroup
if evga.(i; Mement of G transforms H into itself. DBy the laiter we do
I rﬁ‘éleéessari]y mean that each clement of the subgroup /7 remains
unehanged, but that each element of the subgroup J is transformed
by any clement of the group (! into an element of the subgroup f7;
that is, the subgroup H as a whole is unchanged. With the concept
of an invariant subgroup now stated, one can prove that the alter-
nating group on n letters is an invariant subgroup of the symmetrie
group on thesc n letters.
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Exgrosrs

1. The product of every clement by every clement of u given ErOHY Y
be arranged in a multiplication table for the group.  ¥Verify in detail tir 1)e
followiny is s multiplication table for the symmetric group on the three Lters
a, b, ¢. Ineach row of the table the comnion multiplier is used on Hie b
of cach of the six clements, and in cach column the common multiplier is d
on the left of each of the elements.

; | | I ‘_‘
’ 7 | fabe) | (ach) ferh) fecy | (b | )
(ab) {be) {ac) i {ach) | (ubey | \
" {ehe) {ach) 7 {nc) (he) by A
{ac) (ab) (be) (ah) i (aeh) 4N
(aeh) 1 (b)) | (he) {ah) ‘ {ae) '\.\_
{be) {ae) {ad) ‘ {aeh) (0de) AR

Thus the results recorded in the second column are Lgi'\l:}‘e interpreted s
{abe}{al) = (bc), {abe)(abe) = (ach),  (abedine) = (6, (el (ach) -
{abe)(be) = (ac). N

2. Bhow in detail that g, {abe), (ach) is un in\;&'gﬁ.rft. subgroup of the sy
metrie group on o, &, ¢, ,\

3. Write in eyvelic form all the Permutagionts of the symmetrie Zrops L
the four lotters t, b, ¢, d, Which of thoselelements constitute the alternating
group of degreo four? o ’ >

4. Construct a mult.iplm-ﬁdblt{t@léhfﬁfﬂr@ﬁ% with the parmutation- /.
(abed), (aey(bed), undd {adeb) agz elg;licklﬁs and show thut this group is a subgrony
of the symmetric group of deg\rec fone.

1-4 Integral domaing'ahd fields, Modern algebra is concernd
with the study of a vatiety of mathemation] systems.  We have eon-
sidered briefly opeNparticulay mathematiceal system, a group, from
the postulatiouﬁl\viuwpoint which staies nitially the basie luws or
conditions tk:;l}?,he elements of the group satisfy.

It is N\éll‘t.o consider some fumiliar mathematical svstems from
this Qag}hla.t'-i()nzl-l point of view. (hpe of the oldest mathematieal
BYSLORS s that of all {he indegers (positive, negative, and zero). For
%frﬂisu’ch integers @, B, and ¢ the follosing formal Taws

omnuiative (o -

are satisfied:
@ Addition Multiplication
1) t+b=5b1g (i) ab = by

Associative laye:

@) a+ b+ ¢ ={a+b) +¢ (22} abe) = {ab)e
Distributive Tnan -

IIr atb L &) = gp + ae.
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The number zero has the property that it leaves unaltered any
hor to which it Is added; we say that zero s an klentity clement
e addition.  The number 1is an identity element for multiphieation.
These observations give us the

Tientilties: IViiy a4+ 0=a (iiy -1 = aforall a

The negutive —a of @ constitutes an
Additive tnperser ¥V a4+ {—a =10
(siite familiar is the cancellot on low for multiplivation:

VI Ifab =10 theneithera = Dorb = 0.

N
oA\

The second pair of these laws renders the use of pm‘em.hp;ég% un-
nocessary for continued sums @ + b — ¢ and for continuegd™products
«be.  Laws J(#) and ¥I hold particular interest for us, lj(zcause the
s thematieal system of matrices to which we shall@ive particular
arrention later will satisfy all of the above laws excapt these two.

““hese formal laws which apply lo the syst'em\\rff all integers also
gpply to other systems; namely, Lo the seliw}‘f\ feal pumbers, to the
«ct of rational numbers, to the set of ult camplex numbers of the form
a = V' —1 {a and b read), and to ()Lh’g,-r'fgef&

A svstem of elements g, b, 6, . svhich is closed under the opera-
. v O wrw dbravlibrary .org.d . .
tiems of addition and multiplicafyen oo SEEh satisfies the formal
fnws just stated for integerssds called an tntegral domain. Notice
thut sueh n system contaimg the distinet elements O (zero) and 1
{unity) which are identi(ﬁ{’elcments for addition and multiplication,
re-neetively. N

An integral demdin is a group with respeet to the operation of
addition, for unélei" that operation the four group properties hold:
{1} the gys ¢ closed under addition; (23 by IT{%) the assoclative
laww for addition holds; (3) the system contains a unique clement )
with théproperty a + 0 = @, 50 7ero is the identity element for addi-
ii(}l‘lﬁ:(;%') ander addition, with zero as the identity element, —a is the
urﬁqﬁe wdditive mverse of a, since ¢ + (—a) = 0. From the prop-
orties of the zero identity element and the additive inverse the con-
collation law for addition follows, for if g+ b=a+c thenb=c
Also, since

a-04+a-a=a0+a =g-a=0+u-a,

we have ¢ - 0 = 0. Similarly, we can prove that 0+ a0 = 0.
We clected above to term the Taw “if @b = 0, then cither ¢ = 0 or
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b =07 the cancellaiion low for multiplication. Often the cancell
tion law for multiplication is stated: if ¢ = 0 and ab = aec, tam
b = ¢. It should be clear that in the presence of the other postip-
lates for an integral domuain either form of the cancellation lasw ir
multiplication follows from the other. Suppose o = 0, and thut
ab = agc. From the latter, ab — ac = atb —¢) = 0. Then by 17
above,b—¢c =0, 0rb = ¢ ~

It should be noted that in some integral domains division B Pt
sible, while in others it is sometimes possible, but not alwayS T
llustrate, in the integral domain of all integers divigion is ngfalwas
possible, that is, if @ and & are integers, the equution ax(x:“{) dooes s
always have integral solutions. But in many integralddbmains Ji i-
5101 15 always possible, as in the integral domains of; T:}ﬁonal numbers,
of real numbers, and of complex numbers, Integral domains of this
latter type we call ficlds. PN

A field F is an integral domain which gonteins for each clemens
¢ 7 0 an inverse element o' satisf ying therelation a—a = 1.

Tarorew 1. Division except by ztre s possible and URIQUe {n any
Sield. :

wwwdbrquﬁﬁf‘ax‘y.org.iﬂ

If a0, we multiply az =} by a7t and get alar = ¢ % or
x = a7, which clearly sati®fies ax = b. It is the only solution, for
or =band ay = b tqgetiﬁer imply oz = ay and, by the canecllation
law, » = y. We cmpﬁm ly write ¢ = 1/a and a6 = b/a.

THEOREM 1], C\l%'ifbtra.ction s possible and unique for all elements in
any ficld, O

Clearlx x\z {(—a}) + b is a solution of the equation o 4+ + = 5.
If there&ere two solutions 2 and Y thena +z =5 o + ¥ = b, und
50 theltwo solutions would be identical.
~ds’a consequoence of these two theorems, we may state that a set S

£wo or more elements {(numbers) is culled a field F if, when p and
7{g 7= 0) arc any elements whatever of S, then

1 Pta p—9q p-g plg
are also elcments of S, _
In testing an integral domain to determine whether it is 5 field, we

Qhould keep in mind simply that a field is an wntegral domain in which
division by a nonzerg element always erigls,

A subfield of a given field F i« a subsct of F which itself is 4 field
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upder the same operations which characterize F. Thus the set of
real numbers is a subfield of the field of complex numbers.

Tt is of intercst to note that a field is & system F of elements such
that: (©) under addition F is a commutative group with 0 as the
iwientity element; (¢2) the elcments of F not zero form under multiphi-
cation another commutative group; (¢i7) addition of clements of ¥is
Jistributive under multiplication.

ExXERCISES A
AN

i. Let ¢/b and e/d be any fwo rations! numbers, g, b, ¢, and ¢ heing
integers.  Combine them as indicated in (1), and thus verify thaty vafional
senmbers Torm a fleld, o A 3

2 let @4 bv —1 and ¢ + dv —1 be any two complex plahbers, a, b, ¢,
sud d being real.  Subject these two ntimbers to the edbmibinations of (1},
andd thereby show that complex numbers constitute a E@ld C.

3. The set of all real numbers of the form a + b\{S, with rational coeffi-
¢ionts g and b, is a field.  Prove this by showingghdt any two sueh numbers
n cowbined in sceordance with (1) yieidix}fﬁumber of the zame form.
s ie-a subficld of the field R of all real .r}pr'nbers, and R iz a subfield of the
field € of all complex numb\gl\fg.w dbra PR

T

ary.org.in

1-5 Scalars. In our 511])seqiiént. consideration of vectors and
matrices we shall often spua’l{ of scalar guantities, or simply scalars.
By a sealar we shall m %'Ka:ﬁ element of some field. Rational num-
hers, real numbers, afd complex numbers are sealars.

The concept (_af‘a.\’ﬁ'eh'i has been devcloped because it facilitates the
specifieation of fedkind of number universe with which we are work-
ing. Subsgenently, when no particular field is specified, the reader
should {hink ol some tamniliar field, as the field C of complex numbers
or the field'R of real numbers.

&}'Y\‘ "unit- nllmb@i'” u g"l\'@s Tise to itS multiple.'-s., fOI'
| Yo
\ 3

From this viewpeint the integers 1,2,3, ... are symbols of “multi-
pliers,” rather than numbers n the reference field. Therc are two
eases: (1) either all the multiples nu # 0, or (2) there is a least n for
which nu = 0. In the latter case the integer n must be a prime
number p. For if n factors in the manner n = fiqit (both n, and »a
Adifferent from 1), then we would have

we= 1w u+u=2y Dy 4w o= Ju,

= Tafalt = Tl Rt = 0.



12 BASIC CONCEPTS [c1tar. 1

Consequently. either ayu or sy would be cqual to 0, which is ineom-
patible with » being the least valuc for which nu = 0. The chavae-
teristic p of the field is the least positive prime integer such ihut
pu = 0. If nuis never zero for positive n, the feld is said to he of
characteristic «. Some writers use “characteristic 0 instead of
“characteristic . 8o a field is ejther of characteristic = or of
charaeleristic p £ . The term “modular feld” is sometimes 1wl
for a field of characteristic p = @, and similarly the term nonmohkr
field is sometimes used for a field of characteristic . ¢ \A

In this book when we speak of “an arbitrary field”” we ghpll mesn
“an arbitrary field of charactoristic o 7 and when. we sggeei’é; of a sealice
we shall mean an element of an arbitrary field of chargcgerist?'c @,

AN

1-6 Rings. Tor the purposes of this bookivis neeessary
the reader be familiar with the basic c-:mc;;gts of groups, integrl
domains, and fields, but not necessarily with the concepl! of ring-.
However, sinee rings constitute one of f(.hé:import-ant ideas of moders
algebra, it appears desirable that we state the properties of a ring.
and contrast rings with integral domains and ficlds. Theveby when
we come to the study, of pag FiggsBrershaliginin 1 position to observo
that matrices of order » withatlements in a given field constitute «
honcommutative ring, and{ater be in u better position to relate th
present material with wodern algebraic theories.

A ring is a systnh\\_}f elements a, b, ¢, . . . which is closed under
the two opcrationd\of addition for which the sum a + b = ¢, and
m‘”-ftiplﬁ'tﬂﬁ?:oﬂ.,fﬁil:":\"hif:h the product ab = ¢, with the additional
propertics: A .

INOT 4 b b
\'\\na.-l— =0+ q.

N\ T a+ (b4 ¢) = (a Wt G albe) = (ab)e.

\ 3T gb +- e) = ab + ac.
IV a40=ag
Vg {(—a) = 0.

Evidently a ring is a o

_ : L eommutative group with respect to addition,
7er0 being the wlentity clement and —@ being the additive inverse

of o, 1f we compare the propert; i i i
‘ ) perties of a ring with those euTE
dormain e pomar g ose of an integral
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For & ring in general Lhe commutative law for multiplication
ab = ba, does not hold. A ring for which ab = be is called a com-
mulative ring.

For a ring in gencral there is no icentity clement of multiplication.
I a ring contains an element 7 such that ai = ¢¢ = a for every ele-
meul in the ring, 7 is called the wnity elemend, and the ring is called a
Fing with wnif element.

For a ring in general the cancellation law for multiplication doed
uol hold.  If there is a nonzero elcment b such that ab = ( or a nory
sor0 clement ¢ such thal ea = 0, then ¢ is said to be a divisor of gc;f}’:
#vidently 0 is always a divisor of zevo excepl for the Lrivial wystem
with 0 ag the only clement. A nonzero divisor of zeroidcilled «
proper divisor of zero. R4

Thus we sce that a commadative ring with a wnitpedentent and with-
oul divisors of zero is an integral domarn. A

A ring is said to be a division 7ing if for E}j@y.\nonzem element a
and arbitrary element b of the ring the equaligh ar = b always has a
colution. Tt can be ghown that a divit’sipﬁd'ing has a unil element,
bias no divisors of zero, and has an invprsé ¥or every nonzero clement.*
ence o commutadive di yivivnrddog dalibifdd .org. in

We conclude our brief considgrmién of integral domains, fields, and
rings with some examples. It should be evident that rings are the
more general systems. Anlptegral domain is a spocialized ring, and
a field is a specialized dntegral domain. Since we have not discussed
number congruencesyand residue classes, at this time we have no
illustration of a rinﬁ &ith & proper divisor of zero; later we shall sce
thut the set oﬁ,@l}équm'e matrices of order n with elements in a field
furnishes an\pxcellent illustration of a ring with unit clement and
with divigows of zero.

AN

V ) Examples of a Ring

(1) All integoers.

(2] All even integers.

(3} All'even integers divisible by the arbitrary prime p.
(4) ATl complex numbers.

* §e N, H. MeCoy, “ Rings and Jdeals,” Corus Mathematical Monograph
No. 8, the Mathematieal Assoviation of America (194%), pp. 19 20,
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CLASSIFICATION OF THID ENAMPLES OF A RING

Commu- With unit With proper Integral il
tative clement, divisor of zero | domain el
-
I Yes Yes No i Vs 5 No
2 Yes No No ! No | Nn N\
3 Yes wNO N ; Noy Nu SN
4+ Yes - Yes No i You %
| é i L E\”l}
O

Tn the illustrations just given of rings, integral domail s;}‘.\md fiels
the operations of addition and multiplication were the, faniiliar aper-
tions by those names. However, it should not be gwnmed that thi-
is necessarily true; the operations of addition alik\mu{fz'pt'z'r.’arf?'a-n fur
these systeros may be abstract and unfamiliar,c};g\eq'a.lions_. as with the
operation of a group. ‘{}"\"

N
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CHAPTER 2

VECTORS OF TWO AND THREE DIMENSIONS

9-1 Vectors in classical elementary physics. Several types of
(uantities appear in physies. Of one clags are certain guantitics,
culied scalars, cach of which is completely described by a imgl%r\
neasure number or magnitude which relates the given quantity 0 a
chosen unit.  Mass, density, temperature, volume, and p,g)'ﬁiﬁﬂtion
ape genlars in this sense. The common ground of all a({ékus is the
field of real numbers, and the physicist's use of the sword sealar gen-
erally corresponds Lo the muthematician’s use of tlLQt» word as an ele-
went of the field of all veal numbers. 4D

Other quantities in physies, such as force‘;'}'-'éocity, and aceelera-
tion, require for their delermination not ‘oily magnitude but also
Jivection. For example, the effect of fl{f?irce on an objeet O depends
not only on the 1nagnit-11de’wﬁ«¢ﬂblﬁmﬁﬁfh5§,a}gg),iﬁn its direetion; this
foree may be represented by an_atrow or di-
racted line segment o = OF g@g 2-1). The
combined effect of two g ¢k forces a =0
and g = 0Q acting simuita sously on O, called
{he resultant or sum ofednd 8, 18 & third force
v, and we write ¥ 2%/1 8. It is found em-
pirically that y.ié;ﬁi)rcsented in direction and o
magnitude }thhe diagonal y = OR of the Fro. 2-1.
completed}imrallelogram with sides a = OF
and g #.0¢. This rule for finding & + B s called the parallelogram

Y

luid

Physical quantities cuich as force, which reqjuire both direction and
magritude for their gpecification, arc commonly referred to as line
veclors or simply wvectors. A linc vector may require information in
addition to magnitude and direction for its complete specification,
such as its point or line of application.

It is noteworthy that the method of obtaining the sum of the line
vectors « and 8 by the paralielogram law does not havea postulational
mathematical basis, but rests upon experimentation in physics. We
ahll see that a line vector in & plane is determined by an ordered

13

Q)
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pair of sealars (henceforth used in the sense of Seetion 1 3). ( ‘]:-;_n-fy
we could define the addition of an ovdered pair of sealars in o viodery
of ways; we shall see that the definition we do give of such addilion
1s reconcilable with the addition of (plane) line vectors. This indi-
cates the method used throughout this book; namely, to vefleet low
abstractions of lower order may he rvelated to experience, and lhow
experience may suggest these lower order abstractions: then in sidi
to reflect how these lower order abstractions or simple m:Lrh(\ng_:sl\i[-u]
systems may suggest more complex mathematical systems; anfl

"[}_«"
to indicate how these rationally conceived and rather complewna hie-
matical systems may be used to explore modern "I'f'l‘i'.Li‘]H!Ill:lli":l].
physics, multiple factor analvsis of psychology, and miltivariode ~-
tistical analysis. It is through relalively complex” mathematicnl
systems that the human mind cxplores quantMativelv “eonceiviad
worlds of reality,” even though such world§’are not amenable 1o
human perception. ~\\

.
A

Fxrcisiy 3
1. Two forees of 50 po_ur'l\lgls EE%:]{I%%U ?f:??gﬁ rb‘ ggsggﬁf.-ivcl_}’ act on an object uf
an angle of 30 degrees. With the ’a}lﬂ of the law’ of cosines of trigonometry,
find the magnitude and dircetion,of the resultant foree.
2. The wind drives a st'.eam{q" ctst with 4 force which woald carry it along
at a speed of 12 miles per hiows! and its propeller is driving it southeast with u
force which would carsy dlong af & speed of 15 miles per hour.  With tie

aid of trigonometry, fingh the distance it will actually travel in an hour, anrd
the direction of it3pdeh.

2-2 Two;n{'u}ensional vectors.  We shall now develop the theory
of vectopNdlong purely algebraic lines: that is, as ordered sets of
ueulars, “‘:hl algebraie tules for the manipulation of such sets. We
shal} ~ié'(te‘that- such a veetor, when of a simple kind, is stsceptible of
itarfiretation as a line veclor, bt it should be kept in mind that
this s un incidental rather than o fundamental feature of the veetor
idea.

To facilitate scientifie investigations of (uantit
we often find it cony
nate systems,

ative: phenomena
enent: to introduce sehemes known as eoordi-
These reference svsioms may be of different kinds,

but in this chapter we lmit ourselves to (right-handed) rectangular
cartesinzn coordinates,

In a significant sense thesa coordinate sys-
tems are extraneous to certain coneents which we consider. {or we
shall sce that (he most important properties of v

ectors are 1hose



DIKRECTION NUMBERS IN TWO-DIMENSIONAL SPAC B 17

whith ave cssentially independent of the reference system used.  In
tii~ chapter, when we speak of the coordinates of a polnt we mean
wnihomogencous rectangular cartestan ecordinates, whereby the posi-
tipt of 4 point in two-dimensional space 13 determined by a pair of
cealars and the position of a point in three-dimensionsl space is de-
termined hy a triplet of sealars.

Ordered pairs of scalars such 33 a = (@, a2, 8= (hy, ba), v =

(v el which obey certain rules of combination ure called vectors

(il {00 Fimensions). The basie operations of vector algebra arc tj{e\

wdtiplication of @ vector o by a scalar &: R\
N

i3 Lo = (kay, kos); &N

a1l the adddtion of two veclors and §8: R4

l‘_.:'I fad + 3 = Lﬂl + bl,- {in + bg).

(learly one may associale with a veeclor ao%%f,, as), defined as
an ordered set of scalars, 2 point having thc‘e't:)@\rdinates (a1, as) with
reforence to the X, A cartesian coordindte® svetem; also one may
aesocinte with this vector o d dire(:t.i(m::ia}f regarding (a1, @z} 48 the
Jdirection numbers of 4 limw@]ﬂbgiﬁﬁéﬁfmryoﬁ% doing the latter we
diseuss in the next section. N

We ordinarily use small G sl letters a, B, . 6, - - - O denote vee-
tors, and small Latin lettels . b, ¢, d, .. - 1O represent sealars. An
exeeption will be the use 9, and 85 Tor the direction angles of « line,

and the use of O = (D) for the null or zero vector.
MX

9-3 Directiogynumbers in two-dimensional space. To make
clear the notion of direction numbers, consider any line L, with a
definite difeetion indicated, ying in the coordinate plane. Let OF
be a lin@j Jrawn through the origin in the same direction as L. The
sngMest’ possible angles, f1 and 8, respectively, which the directed
Jine /P makes with the posilive directions of the X1, and Xa axes are
ealled the divection angles of L; these angles a8 dravwn in Fig. 2-2 are

Xy L L
P

X,
Tra. 2-2.
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considered as positive, whether elockwise or countercloe
cosines of these angles, cos 8, and cos 6., are called the dir
uf L. Hf the direction of L is reversed, the new direct;
and 8 are respeetive

X Pylby, by) plements of 8, and 8,
r Let Pila), a;) un
be two points on F:

bo—a
flanes) Ay, bemez 2-3 we see that wE h

ﬁ],—ﬂl -
NB —
13} Cons fly =/ -
-1 N
- ] and O *
2 X R
I'ws, 2 3, Ntos fly = —
" d
where of s the distance from Py xt:{)s\ru. Rruaring and
Latter relations we get ~~~‘\v
{1} et et .= 1.

That is, the sum of the S.t:il;liil‘“i’.:-l of the direction cosines of |
line is t-{[Li;IWM“‘l-Flblfjhﬂ'hl?f'ﬂ’&%iﬁ‘}:gﬁfhmi(Ier the direeted 1
origine (00, 0) 1o 2,00, as). Then

£33

A
AN 113
3 Cosf = cosfl, = 5

7\ =

\\"" of e

- . " - . . . .
If i St on the enit cirele (o cirele witly center
wiedMlus 1)) then o = Loand the coordinates of 200
\\xii‘l{"ﬂw diveetion cosines of the line OF . We have thus
\;ﬁ\;u‘-’nr—tn—rrm- correspotlenee between the points on ¢he
§\ vl all sets ol lirection eosities, and have prroved that
\

ST e of vead numbiers sz oael of direetion cosines if and onl
xn\‘v ] r} I. . o , . I h
) S Pher sonares s veppad 1o 1,

N/ X )
3 I i T

o divection cosines cos ), cos

then an
nutihers gy, e proportional ey e fhy, i

B ure enlled offy

bersal L This relationship may bae expressed in the for
R ek #, tos
Yot - = — I
LI P ’
whittee ros o= e, o . =

= e Sgeoting, adiling, ang
AN ENTI
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Uherefore, we hoave

i fro
i cos = ros fly - )
Ny R

Uhest relatlons enuble us 1o cealenlude Phe et eosies of o line
whene i =0t of direction nurnliers Tor 11 are Knowi,

[P the definition of direetion numhers of o Lo i1 folbow s it af
. gt e et jon runhers of o dine Losoare Lo, b Wl s any

pread mumnber: thiat s, the divcetinn numbers of o Bne Loare notaiee:
. . . . . . Ay ¢
althongh the direetion co=mes af o diveeted e e e AYRTETDN

inaly, we commonly speak ol o perte of divoefion poepbe v b ltii-}}-m.t'.i
Tine 4.7 bt we speak ol the dirvefion eosines ol fo Flowes ehade -
ab ey, e e heing Fhe direetion peapenli r af B ook o l’fnr,.s-':_r;}m?f.f P
b this we mean that eues vonstitute o pate of dirugrin T rs ol
Che Foe of Jutinite extend determined by £ A L shat al £
s the eoordinntes {dq, ) gl P has the :'rn:uQ{j}mI:-r iy A then
v by — o al o= B Therefore, s n ~precified pair of
diveetion namibers there o hine segnend wAlererin ble deneth arul
diveetion.  From 1he foemulas 3 .-;|3{i“1"}n- detindt e of diveetion
nhers, we }'“\"'W“’W-dbl'aUlibr“al.l:yf“Sf‘g_m

Trirowea b If 12 ey, i) uyr{({’f.‘[h!, boare fro st pronida, the o

R TIN (PR  EA Hie o af dereefienn o i v oof B ddervetod i

s bl IR {..,‘\

We designate lhv\lﬁ‘?x"!m" froee segpenenid determinel Ly the tan
points Filan ) {!,n'l‘l:!’-_:th;. for Doy either 200 o v cifn b
When we \\';11.1011\'1.’{'-?(\[' t the B of inlinite extent eneh £ and
. we speak ‘(’Niﬂ‘!t' (eireobedy Lone 0P Aot ~perioh e af Tlesens
I woe il.‘l\'\f“\;“

'1‘]1'17;'{\4}!-'..\1 1L, The dlivection pomhie s of O whar 1 oas tha poaed

.F‘F{r.':r'r-_-l. eave ey oned e Thatds, the vonrd it s of e puend £ th
m\;rhjf'rf'{hm wopihie es of Hhe Horve sogpenendd i

Thus with o = Ley, fad we Iy cesoeint e point I2owith the eo-
ol es oy, e further, tliese vonT mides s iy b con=tleren ] s
the direetion numbers of 8 B they aletermine direetion with
diveelion cosiies oy . e . where of 1= the distanee from £ 1o oand
= a7 & oak

It 72, and 2.0, are wn directed line segrnents in the plane ot
referenee witl the sqgme Jipeetion nnbers, thens thise segnents have
fhe sune length, and the lineson which the sexments be have the
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considered as positive, whether clockwise or counterclockwise.  The
cosines of these ungles, cos 8, and cos 8, ave called the direction CHSeS
of L. If the direction of £ is reversed, the new divection anulns 4
and 8 are respectively the sup-

X, Py by, bg) plements of ¢, and 8.
d Let Pi(as, ay) and Pu(b,. by
be two points on L. From Pig

ba—a
Pevas) A, 72 93 we see that we have

bi—ay b .’\“\’
- —
(3 08 = - AN
T ) ) oos ! (E' N

%
ol

1 and : ’.‘Z
XJ_ )

1. 2-3. €08ty m\bs_;

where d is the distance from P, to P,. Sqhating and adding ihe
latter relations we get RS

{4) cos® B + cos? B, .=:I

- "... . . - B
That is, the sum of the squares a'juf;;t}ﬁﬁ-aﬁii}"%‘r’- GR costnes of any dirceted
. . Ak al iy J r p . . .

line is equal to 1. T.n‘partmuiar; consider the directed line from the

origin (0, 0) to Py(ay, as). X Fhen

qu.?;‘n?\] = -(ﬂ, cos o = 4z,

\\... d d
If Piisa point Qn:‘g.he unit eirele {a circle with center at the origin
and radius 1}; JHon d = 1, and the coordinates of Py are identienl
with the dirgehion cosines of the line OP,. Weo have thus establishe:!
@ one-lo-ghecorrespondence between the points on the unit eirele
and allstts of direetion cosines, and have proved that an orderod
pair ofieal numbers is a set of direction eosines if and only if the sum
oftheir squares is equal to 1. ‘
\Uf a lne has direction cosines eos f1, cos B,
numhers 7, ne proportional to cos ), .
bers of L. This relationship may

then any two real
cos By ave called direction num-
be cxpressed in the form

(5) cos fly COR fly

= =

1 Tou '

whenee eos 8, — i, COS fy

= no0. Squaring, adding, and using (4),
we get

¢c=1/++vpI {22,



9-5] DIRECTION NTUMBERS IK WO-DIMENSIONAL SPACE 19

Theretore, we have

{E f M cosé e
il s = — 3 Bz = -
+ Vi + nj + Vi + nd

These relalions enable us to caleulate the direction cosines of a line
wheu a sel of direction numbers for it are known. :

Froe the definition of direction numbers of & line it follows that if
jiy. s ave direction numbers of a Tine L, so are kny, Fs, where k 1s any
veul nurnber; that is, the direction numbers of a line I are not uniguey
alihough the divection cosines of u directed line are unique. Acedril
inghy, we commonty speak of @ pair of divection numbers of a ditgetid
line £ bt we speak of the direction costnes of L. Howcve{;.'gg(f gpeak
of #4. ce us being the direction niembers af the directed line séanent P Fs;
be thix we mean that ¢, e constitule & pair of dimctibn\ mumbers of
the e of infinite extent determined by P, P, snd\iufther that if Py
hus the coordinates {(ay, ¢2) and Ps hus the cp,qsz}ihates (h;, by, then
¢ = by — ay and ¢ = by — au ThereforgeJfof a specified pair of
diveetion numnbers there is a line segment wivdeterminable length and
digection. From the formulas (3) gn’d {he definition of direction

nurmabers, we have www.dbraulibrary org.in
Tugorey 1. If Pilay, o) andiPa(by, by) are two distinet points, then
b — @y, bo — a= are the ;nu{lr wf direction numbers of the directed line
segment 1P O

We designate t-he‘f%‘\m:!ed line segmeni determined by the two
points Py, a2) apelhPs (b, by) by either PP or (ay, a2) — (b, o)
When we want 10 véfer io the line of infinite extent through P and
Py we speak‘uf’;hle (dirccted) tine P1Ps.  As a special case of Theorem
T we llat\ig:,§~'

Toumenm 11 The divection numbers of OP, where P ds the potnt

"(\q?l»\flg:}, are @, and as.  Thatis, the coordinates of any point I? are the
Ndérection numbers of the line segment OP.

Thus with a = (ay, @) we may assoclate a point P with the eo-
ordinates ai, ue; further, these eoordinates ai, . may be considered as
the direction numbers of OP: for they determine a dircetion with
direction cosines a,/d, as/d, where d is the distance from O to P, and
2 = ot 4 ai.

i PP, and P;P, are two directed line segments in the plane of
reference with the same divection numbers, then these segments have
the same length, and the lines on which the scgments lie have the
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same dircetion.  If we slide the segment P/, in the plane, wirh its
length and direction unchanged, until P, falls on Pyothen 24wl il
on Py All segments into which PP, may be slid in i his Wiy e ssied
to be equivalent to PP, Consequently fieo dirccted s Gor six ure
equivalend when they have the same dircetion numbers. Clisirdy, with
any vector a = {a), @2) we may associnte an infinite nmiser of
direeted line segments, all with the same length and divection nym-
bers. It is usual to speak of the entire collection of all sueh couia it
directed line segments as the line rector o = (ay, a), anli 1-(1;:;&'»-]‘”11}'
one of themn as a particulur representation of the \'@(?H{l"@ Thus
two directed line segments represent the same pector when gnil vnly hen
they are equivalend, that s, when and only when i?a.cy:hm'r the some
direction numbers, O\

The viewpoint of regarding two direeted ling se;i‘menrs PPy and
P3Py with the sume direction numbers as equigalent should be welrhed
carefully. In adhering Lo this viewpoini_wégre emphasizing (ha e
things of particular concern about the g:ﬁ}ef:tvd segmoent P, are its
length and its direction. o\

It is convenient fo Sbeakof Jil?ﬁtﬁﬁsl%l £OMPonents a, a; of the
veetor a = (a4, @s) as the coordifigtes of the vector. ‘Thus the coorli-
nates of the line vector detéFmined by the points Pilay, ax) andd
Bl bs) ave by — q, by £ax. The coordinates of the line veclor
{0, 0} > (a1, a3} are ’a'l’{m: which are the eoordinates of the poiut
Pi(ﬂll, az)- \ \

The distance P{T»is given by (refor to Fig. 2-3)

@ SOPPY = (01— a0 4 (b~ g

Let (e, e (T &, by — aa). Then {£1. €2} are the pair of direc-
tionn webPes for the divected line segment PPy, and (o4, ¢o) are a pair of
dwf-rec@-éo};; numbers for the line PP,
‘ﬂt\cﬂ&‘f% proportional to (¢, s}, as (
\ﬂ_ﬁnbers for the linc PP, By assigning to % any posilive value we
please, we obtain a partienlar pair of direction numbers of the line
PAPy; any such particular bair is representative of the entire agpre-
gale of pairs of direction numbers of this line, 7f we assign (o £ a

negative value we obtain a pair of direction numbers of the oppositely
direeted line PP,

However, any pair of ordered
ke, kes), s also g pair of dircetion

Exuncians

1. Determine the direction

numbers of the following directed lina e
ments:
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5 Show that the direction numbers of 1 2P, are the negative of the direc-
tion unmbers of PoPy

i1 Show that when the first direction number of f1Py Is zeto, the line
el Pyoand Pyois parallel to the X» axis. Show that when the second
dirartion number of PP s gero, the line through Py and Ps is parallel to
the X axis.

1. Determine the coordinates of the terminal point of the line segment
whipee initinl point is (2, 3) and whose dircetion pumbers are (1.4). .

5 Show that (0,0} — (5, 2) and (—2,2)— (5.9 represent the saugy
verlio. '\\ ’

A, Show that PP and P oI, represent the same vector, thew P};I 2wl
P, veprosent the samme veetor, ) e \ I

< For P2, and Pod, 7y, find: (a) the direction mm}bérs of P
(B wwe pairg of direction numbers for the line PP {:‘.‘j Poes it matler
af those pairs of direction numhers we Usc in defernpning the direction
- of the line PyPs? 4
G. Qheng that the direetion cosines of the ) with direction numbers
{n), 22) arc the seme as the direction cosines of thelline with direetion nuubers

W

(ke o) o
wiarw.d bl:gu.l'j b'r‘al'y_or‘ -8 in

2-4 Line vectors and positian \vectors. We have scen that a
two-limensional vector has Qe distinet aspeets, one of which may
be called its algebraic aspegt ‘atid the other its geometric aspect. In
{he scnse that an :1lgelk§a§ibf'{-'ecmr determines a point, we may rele-
vantly speak of it as@ position pector. In {urn, since a line vector 1s
derermined by twh }i)lri?lts, we may say that o line vector is determined
by Lwo position'\{eétors. The line vector determined by the positicn
veetors a (:(}.-},:ag) and 8 = (b, b2) is denoted by 8 + (—Na=8—a
or sometimes by af, the initial point being « and the terminal point
being, Q, e shall refer to the line of infinite extent determined by
thete’ position vectors as the line af. Thus the direction numbers
of t¥fis line vector are the components of the vector

§=8—a= {bl—ﬂ-l,bz—'ﬂ»ﬁ)-
The length of the line segment from a 10 3 is called the magnitude
(mag.) of the line veetor ag So
(8} magi(f — o) = fhy — ar)? + (bs — as)’.

In seneral the magnitude of a vector o = (a1, @) 18 the positive
siuare root of the sum of the squares of the coordinates of the vector:

that ig,
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mag o =Vai + ol

A Iine vector takes on its simplest form when ohe end point 1= the
origin G{0, 0y, Torif e = (), a2) i 2 position veotor, wud (0, 01 s
the position vector determining the fundamental point of relerence,
the line veetor

{9 Oa=a— 0= (a,a} — (0,0 = (a), ¢2) = a O

Thus O = o; that is, the position veclor o and the line vectoy (i{\ Fawe
the same algebraic form. To avoid ambignity we make the Fonven-
tion that when we -Hg.r«.('z.fc- af thi ree-
tor win a g('omct';'??.m;!{ tng o hare
8(by,bs) i mind the }‘)OS'IY-?,\) nvector e, creepl

when a is 1N regarded ax o« Tine

vector, an{k\ﬁh‘m we shall speal: of it

X, y{ay+,a24b9)

ala,, a0} as the.v{wf()?‘ O,
@onsider the figure (Iig. 2-4)
O - X, d,i:;té'rmincd by O ={0,0), « =

T, 2-4. \a\rww_dbr‘aql‘i}i{'@‘ty@%;g_@\ = (by, by), and let v =
9 :’: Plant by et b)) =+ B

The projection of Qo on the'X, axis is a1 and on the X, axis is as.
Similarly the prf_)ject-ioq"@’{‘ 08 on the X, and X, axes are b, and bs re-
spectively. Tf ay is¢dedwn with the same direction and length as
08, then its proje‘c&ns on the reference axes wre equal to those of
08, namely by and b..  Consequently the projections of O, con-
sidered as the'iine vector obtained by adding Oa and O, are a; + ™
and a, +“Z{9;§"But these arce precisely the components of the vector
obtainec(by the algebruic addition of & = {m1, az} and 8 = (by, be).
In ot]}'(} words, the algebraic addition of vectors defined by (2) s recon-
c@l{{&,’ﬁ:ﬂh the geometric addition of veclors by .

/7N

\‘;

the parallelogram law.

Exgrcises

, 1. Determine the magnitude of v = ¢ + B, where @ = (2,3) and 8 =
5, ). ’ .

2. F"mfl w0 representative segments of the vector o = 3, 4). What is
the magnitude of this vector®

3 Find the line vector af where o = (1,1) and 8 = {3, 2).
this compare with the vector Oy where v = (2, 1)?

4 Tora=(3,4), 8 = (=5,6),y = (5, —2) find algebraically:
By a+5 ) it 28. @) a—g

How does

(dy e+ 3+ ).
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95 Three-dimensional vectors. We assyme familiarity with a
rectangular cartesian coordinate system whereby the position of a
point in ordinary space is determined by its perpendicular distances
from three mutually perpendicular planes. These three perpendicu-
Jar planes intersect three mutually perpendicular lines, the X1 axis,
N, axis, and X; axis.

Ordered triads of sculars as o = (ay, G2, 02}, £ = (b, bz, ba)y ¥ =
{rL, C2 C5)y « - - which obey certain rules of combination are called £
poetors {of three dimensions). The basie operations of the algebra.of

otich vectors are the maultiplicalion of @ veclor a by o scalar &: \ \J)
{10} Ea = (kay, kas, kag); A

and the addition of twe vectors « and B: < D

(11:,' o+ ﬁ = ({1-1 + Ih_. ax + bg, 153 -+ b.,) }

There cxisle a unique veetor 0=(00,00 's@:that for any vec-
tora, o+ 0 =« e iz nny non-null veotor,ove shall denote by —a
ihe veetor (—1ja. Two three-dimensiopal vectors a = (81, @, G3)
and 8 = (by, by, ba) are erual if corpt;spoﬁding seular elements are
squal. The equality of Mﬁ&“ﬁd@kg?yﬁb’tm@hﬁ@ﬁﬁs the satisfving of

three sealar cquations: &1 = b, @i by, a3 = ba

Anpjogous to the procedur.e"with two-dimensional veetors, we may
regard o as a position veciqr determining a point, or as a kne vector of
which Oa s ¢ represcntabion.

Tet e, = (1,0, 0).@En~ (0, 1,0), e = (0. 0, 1) he three unit veetors
{each with maguitfxdéﬁ) : then Ogy, Oez, Oe; are unit line vectors along
the X1, Xo, andh ¥ axes. Note thal

a,\%”zﬁ;l, a2, G-':S) = (alu 0: 0) + (O Az, 0) + (01 0: (1'3);

ar *d

&

4 .\” 3
1{29; "/ @ = {161 + (roen - ases.

The veclors i€y, o€z, Ga€s which appear in (he linear combination (12)
are called the (vector) components of « with respect to the coordinate
gystem Just described, and the sealar coefficients g1, g2, &3 m this lincar
combination are termed the (scalar) coordinates of a with reference 1o
this eoordinate system.

Clonsider the directed line 7. Suppose L does not pass through
the origin; draw 1" parallel to 7, through the origin, as indicated in
Fig. 2-5. The dirceted line I/ makes definite angles 01, #e, with the
positive direction of euch of the Xy, X o, X; uxes. These angles are
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called the direction angles of L' and of /.. Lach of these direetion
angles is between 0 and 180 degrees inelusive.  If the direction of £
is reversed, the new directed
line hus direction angles #,
/ 1, where the Laiter are the <up-
L" plements of 81, fly, By respoct ve-
“ ly. The cosines of the direciof™\

angles, eos 0,, cos O, cos Gagn

Yo x called the direction (:0;‘3{?{??.\111‘
~* theline L. W\
/& Let a = (o), as, s and 3 =
X, (b1, b2, by) be b ’x:’ﬁainls.un thoe
Fis. 2-5. lineL. Complaiable to Scction
2-3, we ha{c
A
(13)  cosd = by E C con gy = 20 b@%.‘h _ b=y

NG d
where d is the distance from « to g; and b
@ = (b1 — w)irHbibybbmdy-rgin— a,)2.
Squaring both sides of each of thietrelations (13} and adding the ve-
sulls, we get 4

“’<
{14} cos‘{f){ cos? By + eos? fy = 1.

Suppose o = (g, @) 18 2 point on I, 3 line through the origin.
Then cos 8, = au{de0s 8 = as/d, cos 9, = a/d, where d is the dis-
tance from O tgapthat is, @2 = o2 + o+ a3 U« = (ay, as ay) is
a point of tlgeilmit- sphere (a sphere with center at the origin and
radius 1),‘%11’::8 = 1, and the coordinates of « are identjeal with the
direction\desines of the line Qa.

”I\f:a\‘:line has direction cosines cos 81, cos By,
nmbers 7y, ns, 7, proportional to cos f,
tion numbers of the line L.
form

(15) costh _ cosfly _ cosd,

008 8;, any three real
cos fs, 608 0; are called direc-
This relation may be expressed in the

e

7 by Ty ’
whence cos 8, = A6, €08 02 = ne, cow #y = nge.  Squaring, adding,
and using (14), we get ¢ = 1 fEVE] 4+ 0+ n2 Therefore, we have

(16) {cos 61, cos Bz, cos 8;) = — :1—— (11, 70, ny).
e 5

+ ni + n3

e
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it (n, ne, my) Is a triad of direction numbers for a line, so also is
{Frey, ke, kong) ; we appropriately speak of a triad of direction numbers
for g line @8, Iowever, as in two dimensions, we speak of (c1, 2 €3)
= {by — 01, b2 — G by — a3} as being the triad of direction wambers
v the dirceted line segment af, where a = (a1, as az) and g =
{by, bs, by).  From relations (13) and the definition of direction num-
irrs, we have

rrzorey 111 If @ = (a1, 63, ay) and B = (by, by bs) are 1wo diss

tinct poinds, then O\
-y=||3—-a':(bl—a-l,b:'—ﬂz_‘bs*a:s) 's:\ .
is the triad of direction numbers for af. )

(Mientimes we shall speak simply of the direciiongo) +line and by
(hiz we shall mean the differcnce in the position Yettors associated
with any two points on the line. Otherwisc sitaxbd'  the dircetion of a
fine is the line vector corresponding to any, .s?)g%hent on that line; the
direction of the line o8 gy = B — o Asd perticular case of Theorem
11T, we have N 3

Tawores [V. The di}”;?}‘:i%ﬁ!E%E}?}%??"E‘@f—@&ill-'he?'e a = (a1, as, a3)

and 0 = (0,0, 0), are (@, asay).  That is, the coordinales of any

poini o are the direction n\u"mbﬂrs of Oa.
+8 3

L\ " EXERCISES

1. Find the direc\‘tﬁbn’ pumbers of the following directed line segments:
(3, HHdy— 8. 7, g); (-4, =3 —6) = (~L -2, 3).

2, ]ﬂ\in(l‘\t.ils;\’ terminal point of the directed line segment whose initial point
s a = (BN —5) and whose direction numbers are (2,4, 7).

3For o = (2,3, 4) and 3=(476 {ind: the direction numbers for ihe
gérpent af; two frinds of direetion numbers for the line af. Does it
mefter which of these triads of direction numbers we use in determining the
divection cosines of the line af?

4. Using the relation (163, show that the direction vosines of the line with
direetion numbers o = (7, P ng) arc the same as the direction cosines of the
line with dircction numbers Lo = (kny, Ene, k).

5 VYora={(3h4,1,8= (=5, 6,20,y = (5, ~2, 1} find algebraically:

a+p at28 8% YHa+ B+ 1)

6. Given that o = aier 4 oz 4 Tu€s and 8 = e T bz + baey, indd @ + 8
and & — 8 in termos of the unit vectors e, €, € and the coordinates of o and B,
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2-6 Laws of vectors. As we «aid in Section | 3, 1In genern! '-.\.'lwu.
we speak of a sealar we mean an clement of an arbitrary ficld ( of
characteristic «); however, the reader will not miss anything escntial
il he thinks of a scalar as a real number, provided he keeps o open
mind toward the possibility of the theory under consideralion li leling
for other fields. We use the sytbol V.(F) to designate 1 syvetem of
n-dimensional vectors with coordinates in the fisl] F ; we oilen hinve
oceasion to speak of V.(C), the vectors over the field C of counplog
-m.lmbem_, and V.(R), the vectors over ihe field R of reul n E{(Z]'.{s.
Vectors of complex numbers, V,(C), play an important role oyl
pure and applicd mathematies ; Lheir grext disadvantagc, p;u'; Wity
in an introductory presentation, lies in the diffienlty of cg'm‘f“i\':in;r b
geometric picture of them. The graphieal piclure of T ¥C) 1s
tinguishable from that of VR,

nfin-
and a graphical pigtiwe of 17,(C: for
7 > 1 seems 10 be inconceivable by the humsan mingdy* For this reasnn
1 1z understood that when we relate the vector pdt tepls of this ahinpier
to a coordinate system wo have in min 1héGBctors with eleraents or
coordinates in the field of real numbers. ()
We now study in C”ﬂ"fid‘\i}fﬁlgll@a&%Bﬂﬁh@r&lgﬁ’-bm of i-}n'ee-d[me_\rz_
sional veetors. Tt should bo clear Bzt jusi as a point in the V.. X,
eoordinate plane may be consideell ag o point « = (ay, g, 01 with
reference (o the Xy, X, Xy sface coordinate system, =0 may Lwo-
dimensional vectors be conghdered as thy
which the third Compo eiit’.@ are zero. Unless stated specifically to
the contrary, the FonBepts and theorems which we now consicder for
three-dimensional ¥eutors hold also for two-dimensional vectors.

In these thegréms on vector algebra we need to bear in mind the
fundamental Ja%3 of scalar algebra, which we considered m Section 1-4
as the cha%@mizing relati

ce~limengional veelors in

ous of an integral dowain. Those laws of
\ ! . . -

sealars whieh we have immeq late use {or we
them liyeertain

/N

O

list here, and we designate

symbols for COTIvinlenee i reference.

Commadatipe Laws

et+b=b4g4 {(SIa) ab = bg (SIH)

Associative Laws
a+ b+ = (4 B) + ¢ (8ITa)

i

albe) = (ab)e (SIID)
Distributipe Law

@+ b = ae 4 e (SITTY

QY
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The properties of a ficld as reflected in these laws, in conjunction
with the definition of a vector in Section 2-3, imply certain relations
gatisficd by vectors. 'T'o some readers these relations may appear as
obvious consequences of the definition of a veelor; others may find
the detailed exhibition of Theorem V instructive.

TrurorrM V. The addifion of two vectors s comarudative!

«a+B8=06+1e
For O\
a+ = (61, ay as) + (b, e bs) AN
= ((].]_ -lr b1, 17 _J‘_ b'),, iy + bd) By (11) A\ -

= (bt an, be + as by + as) By (SImpK
=5+ o By {1"1\1\

in like manner the following theorems may be estihlithed.
Trrorkm V1. The addition of veclors ie uw\ouﬁiwt’
(a+ B +rv=oa+ (BF)-

TrporeM VIL.  flor any scalors v awitth & and ony vectors « and (§:
www.dbrag i?r‘a e
G (b sle = T4 s D ‘(}{1 ?tﬁx? E'fs)a.

™

(#91) rla + B) = (ra) + (?b’)‘ (ir) O = O. () la = a.

2-7 The inner produc,tx,'b?‘two vectors. While lwo sculars may
be multiplied in only o&\\'{'a.y, it is not so with vectors. ‘There arve
three conventional \\;ai-'s of eombining two vectors o and 8 by processes
enlled multiplicaign! One of these results in a sealar, the gecond In
a vector, and tfm “hird in an entity more complex than a vector; the
thivd will mQTBé’considercd until we study matrices in a later chapter.

Tn the'preceding sections we have made 10 mention of lengths of
Iine y-=e;u¢3rs or of angles between line vectors.  These cannot be de-
iGed 1 lerms of the vector operations considered so far, rather they
ard¥expressed in terms of fnmer products of vectors, which we define
helow. " We shull see that an exprossion for 4 length and an angle
entails the square root of the sum of squares. While the operations
of vector addition, of multiplication of a veetor by a scalar, and of
the inner product of two vectors hold for an arbitrary field, when
we take the square root of the sum of squares trouble may arisc.
Therefore, when we deal with the topies of lengths, of angles, and of
normalizing factors of vectors, we assume that we are limiting our-
sclves to vectors whose scalar coordinates ure in the real field.
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By the tnner product (also known as the “dot produet " the ©aaiar
produet,” and the “dircet product™) a- 3 of the two vectors . =
(@, az, @) and § = (b, by, by) with real coordinutes, we menn 1he
sealar quantity

(17) a8 = mby 4+ wbhs - wby

Inner produets have four important properties as expressed in: ihe
following theerems: these are eonsequences of 1he detinition ©17: Wbl
N ¢

the laws of sealar algehra. ¢\
: . O
TurorREM VILL.  The dnncr product of tieo vectors is CaMH i
7°%
*
S
g =3 O\ *
K9
For "

a-B=mb + ads + ah, By

by + buas + by R 0SB
2 \ulll

=3 '\B} (17

In like manner, we may ostablish

fl

Turorem TX.  The product of aéffiﬁar and the inner prodiet of foo
veelors is associative: K& 3] PLaglibyary.org.in

TraeonsM X. The inner protuct of two vectors is distributive with
respect 16 addition: (o HB vy = oy + 8- ¥.

Yor if o = (g, a,, &{*5\‘31’1'{(1 B = (b, by, by), then o + 8 = (a1 + by,
@2 + by, a3 + by). Bonsequently,

(o + 8) - v =2 {ftlf"“f“ bijer + (a2 + ba)es + (o + bajes By (17)
(A + biey 4 6acs + b + aye; + by, DBy (S
j\f: i€ + asty + azey + oy - bats + by, By (8ia)
Y mev gy By {17)
i,EQﬁéREM X1 The inner product af @ non-null (real) vector o and
PSS is posilive: « - a > 0.
Clearly a- o > 0if the coordinates aro real, fore - a = ¢2 + g3 + ol
The magnitude |« of a vector « j

(18

5 the expression

loi =vVa a=vVd +r 2+ &
1 L a'z + a;;,

The magnitude of « ix readily recognized as 1he length of Ow.  Maore
generally the distance ¢ between the points o = (. 0w, ag) and 8 =
(b, b, by) is given by -

(19) =g~ al?

= 01— )2+ (b, - ay)? L by — g0
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Turorem XI1. The cosine of the angle between twe line veclors is
cqual to the {nner prodict of the two veclors, divided by the product of
therr magnitudes.

If o and 8 are any two vectors, then for the triangle with sides
Ou, 08, and af = 8 — a, the trigenometric law of cosines gives

(200 g — al*=lo?+ |67 — 2 la 18, cos 6.
However by (18) and Theorem X, N
?IS_-a'i:!:.(ﬁ—a) - (f—a) X 8 OV
=R f—=28-atea-a \

il
{21) 'I{S'—(x|2= -||8||2——2,5’ . a‘—i--ialle.

Combining (20) and (21) we get

. X.
@ - Bl cos b = a8 o :
AN o
Consequently, Xy & Ga. 26,
o - B AN
22) cos o= — T o)
L ‘a| _’I{?)IM

Tn words, the cosine of ihﬁ\’m}'g@Hq@iﬁé’m&zw&ig;m&ectors O and Of I8’
cual to the Tnner product of o auth$ Wivided by the product of the magni-
{fudex of o and B. Q "
Let « and 8 be the (h]"(.‘{(?‘f?@lls of two lines, and recall that eos §0°=0.
Then from (22), we h%Qe"'
TeroreM X lII.f.:.The necessary and suffictent condition for fwo lines
te he per;r)(f?'aq.’-é{.:}ufar is that the inmer product of their directions shall
be zero. S
,\Ew‘ FEXELCISES
"\ . . . .
l.&:{%ve that (o + 81 -1y ~ fo=a-y TE S8y T BB
;'Zif’\"erif}' that e - =0, 8 -6 =0 & -& ™= 0.
'\ W Verify thut e - &0 = e eo=1la &= 1.

1. Usiug the resulis of Exs. 2 and 3, take the mmer product of bt sicles
of the \-'ect.o;.' equatlon @ == (e T € L rges with e ea €3 in turn, and show
that ey = v - €, 0y = 8y Gy =& gy Therchy show that wo may write
auy veetor e in ihe form

= (e -gle - la cedes L o - €6

7. Tind the angle hetween {he lines Oa aud OF, where a = (6,3, —2)
and 8 = (3, 5 —8).

. @how that the lines with ditections « = (—H, —3, =2 and 3=
{—2, 6, —3) are perpendicular.
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7. Bhow that the trisngle with vertices o = (7,3, 1), § = {1, 0,430, and
¥ = (4, 5, —2} is a right isosceles triangle.

& A unit vector i¢ u vector whose magnitude is one. DPrave that it «
and 3 are unit vectors, then @ - § = cos @, where 6 is the angle betweey Oa
and Of.

9. Using the results of Txs. 4 und &, show that any unit veetor o oy he
written in the form @ = ¢ cos &) 3+ € o8 fa + & cos &, where 8y, f, i, ure
the direction angles of O, AMternately, & = (coz 8, rog B, cox a:).

10. Using Lx. 8, derive the formula for cos (g —b) Teteand 3 be it
vectors in the X, Xy plane and making angles & and b with the pesit v ¥
axis. Then « = (cos ¢, &na) and B = (cos b, sinb).  VUsing the [oktils
cosfl = a8, wo et cos (e — B) = cosarosh +sinasind. Cogiph e
ease of gencrality of this formuls by veetor methods with the, firetedlurs of
establishing the generality of it by the conventional methods in‘bvi\,r__ron[mw{. ry.

11. What s the magnitude of v = o + 8, where 314, 5, 6) il
8=1(2,37) Find the divection cosines of Ox. :,\\,‘

2-8 Rotation of axes. Invariants. Tot Oe,\, Oe, O and O,
O, O¢, be two rectangular cartesian coordinate systems, S and &',
with a common origin, e, e, € aned €1, gé;é;‘f;. being unit vectors. Di-
note the ungle between O, and-@¢bsubibrarFhess.in

' ' by
€6 = cosflyr, e €] =“oph Ba1. ey

= €03 By,
LY ’ . ¥ &
(23) €10 € = 08, e gl oS by, 66 = cos Dya,
¢ N
€1 - €3 = (04 013, €8 & = CUR 92:;_, £y - e; = L0O& 313

Note that 8y, 1, 85, are he direetion anglos of Qe relative to the
S eoordinate system, cted; and 011, b1a, By are the direction angles
of O« relative to the®™ coordinate systory, ete.  Since there are six
lines Involved, tHEre are twelve relations on their direction ecosines,

six relations frgindthe sum of the squares of the dircetion cosines being
equal to ond, and

six from the cosine of the augle between two per-
peudicul;{r Jines heing zere.

Tetthe coordinates of & relative to the old coordinate system
be uiNd:, a; and the coordin:

ates of this veetor relative to the new co-
ordinate system & he ay, ah, o, Clearly the sum of the projections of
Ou on cither set of coordinate axes must be the same; therefore

(24} &= 6] + Gaer + g
.l

(25 o = e - gl 1+ frhes.
If we tuke the inner product of hoth sid

es of the vector equation (23)
by €, €, & respectively, we obtuin (as

in Ex. 4 of Section 2- 7)
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€1 = f€y e < aler - e + albe - €5,

o ' ' ¢ 7
6 € o = Gieg - @ T Gges - € T Uger £,
! r ’ ’ ¢
€- 0 = (€ € T aéy - € + dneg - &;

a, = o cosfi + acos e+ al cos o,
Ly 4y = 0 cos By + af 0o o -+ aj €08 By,
as = o c0s O + 63 cos s T ah 008 Osa.

Uis of interest to note that the relations (26), and equivalently 27y,

e obtained by direct use of veclor algebra, without resort to geOrA

setrie figures.  Only in casc one desires a geometric picture ot .m:“.
erpretation of the gealar product of Two vectors such as e - € Qs‘tﬁe
osine of the angle between two unit vectors does one ngx‘;ﬂ”t‘ﬁ in-
rodice geometry. R4

‘The yveclor « has magnilude la| given by laf =@ @ + @& in
he S coordinate system and the vector « has theyhagnitude &'l
Aven by ja'l* = (aD)? + (05)® + (af)? in the "Q}ordinate systern.
Bv using the relations on the direction cosir}(;s':cﬁ the coordinate axes

snd (27) it can be shown that s

(28] a? + ab + e Qj&;}%{m]{{@;iréaéf
Therefore the magnitude of & vector e scalar invariant under the rota-
Hon of rectangnlar eariesian coopdinate ares.
More generally, let O
\ N/ \
o = {1€1 +~ _XQ + g€z = a;fq na G'Eég + aéé

) S

und
N I ¥ L rr
B :‘bley\‘]— haes + Dagz = bier + bien + By
in terms of their coordinates in the S and i

he two veeto s;'éig’pressed
\n to the relations (27) for {he lrans-

referonce syEtems. Corresponding
formatioqtel the a’s, we have equations a8
'\
& B, = bl cos i + bh cos fie + by cos fig

Procecding for a - § a8 we diil

for 1he {ransformation of the b
above for o - a, we can show that
(29\1 a.1b1 —+ {Igbq + a-:ibr} = a;bi + a;bf& -+ a;bi

That iz, the tnner product of two vectors 45 gn tneeriend wnder the rola-

tion of rectangular partesian coordinate ares.
Since distances and angles are expressible mn terms of inner prod-
uets and magnitudes. it follows that these coneepts are likewise in-

variant under rotation of axes.

N\
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7. Bhow that the triangle with vertices o = {7, Jo4h 8= (L, 8 and
v = 4,5, —2) is a right isosceles triangle.

8. A unit voetor is a4 vector whose muagnitude is one.  Prove that i o
and 8 are unit veetors, then @ + § = cos 8, where 8 is the angle betwern O
and 0.

9. Using the results of Txs. 4 and 8, show that any unit vector o mav be
wriften in the form a = € cos 8, + e eos 8y - € cos 0y, where 8, 0., ¢

dyoare

the direction angles of Qa, Alternately, & = (cos f1, cos 8y, rox ). N\
10, Using Ex. 8, derive the formula for cos (@ — b} Let o and 3 by Qm't
vectors in the XiX: plane and making angles @ and b with the o X,

axis. Then o« = (cos n,sina) and 8 = feos by sin b}, Using I'{hé.?u-“n'-l[lél
eosfl = 8, we get cos{a — b) = cosacosh + sing sin b, e the
ease of generality of this formula by vector methods with Shes procedur of
establishing the gencrality of it by the conventional 111ethgds\ﬁ trigonumey.

11, What is the magnitude of 4 < a + 3, whiwd\e = (1, 5,6) and
8 =12,3,7? Tind the direction vosines of Oy. x,\\,‘

2-8 Rotation of axes. Invariants. BetyOe, Oe, Oe, and Ocl,
O¢, O¢} be two rectangular cartesian cdopdinate systems, § and 5.
with & eommon origin, e, e, ¢ and PR A being unit vectors. -
notc the angle between Qeyandb@ujlibray-ovgHay

€€ = osfy, e - e
(23 1€ = CO8 By, ¢
cos By,

NS

£, \ ! .
N 08 B, e €] = Cog 31,
A

b2

= cos B, &6 = 008 By,

/4

It

!
€1 " &

iy

G;'; = COs 023} €3 * éﬁ:, = {08 933.
. N\ . .

Note that 1, 84, Snlﬁ}e the direction angles
S eoordinate systemJete,; and B, o,
of Oe; relative tofite S’ coordinate syst
Hnes inv

of O¢ relative to the
f12 are the direction angles
em, ete. Since there are six
olved,?ﬂiere are twelve relations on their direction cosinos,
six relationdfPom the sum of the squares of the direction cosines being
equal todohe, and six from the cosine of the angle between two per-
pengljgulﬁr lines heing zero.

~Lel’ the coordinates of « rolative to the old coordinate system S
bevai, oy, ay snd the coordinates of this vector relative to the new co-
ordinale system & be af, a2, a5, Clearly the sum of the projections of
Oa on cither set of coordinaie axes must be the same; therefore

(24) & = e + ogs + i€
and

(25) e, + atel 1+ hes.
If we tuke the inner product of hoth
¥ €1, e, € respeetively, we obtain

&

I

sides of the veelor equation (23)
(as in Ex. 4 of Section 2-7
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e = diey - & + azec - e, + ale - 6,

(26 € - oo € + ahes - €h 4 hes - &,
6o = dles € + abes - & T ahes &

&
I
2
T

aq = ¢} cos by + abcos fiz + af cos 01,
(27 1, = a cos oy + b cos b + ah cos B,
ag = a cos Oy + @z €08 B + ah cos By

Tt is of interest to note that the relations (26}, and equivalently ( 2N
are ohiained by direct use of vector algebra, withont resort tosgeo-
merie figures,  Only in case one desires a geumelric pit:tm‘o\'o\lﬁm—
terpratation of the scalar product of two vectors such as e Was the
eusine of the ungle between two unit. veetors does ongt nced to in-
trogduee geometry. ' R4

The voetor « has magnitude Je given by |aliSal + of + o in
Qe S coordinate system and the vector o hasylthe magnitude |e|
givert by o' = (al)? + () + {@f)? in tk{s Y eoordinate system.
By using the relations on the direction posines of the coordinate axes

and (277 it ean be shown that A
(28 af - advyraibrdiia g i ()

Therefore the magnitude of @ vedtor 1s a scalar invariant wnder the rola-
tion of reclangular cartesimpecbordinate Qres.
More generally, let e
r £t r !
o= qlfl\f’ fpes + Gges = 616 T 0262 T Gaks

and O
)3\1:5\5161 + boex + Dyes = ble + bies +- A

he two veafors expressed in terms of their coordinates in the S and S
1‘<‘fm-cne.é§:§;ten1s. Clorresponding Lo the relations {27) for the trans-
fm'lp\ziﬁ’nn of the o'z, we have euations as
@ 2 b, = b} cos 6y + bh cos b + bi cos f1s
for the transformation of the b, Proceeding for «- § as we dicd
above for @ - a, we can show that

B 5 ¢ e f f1.r

29) aiby - by + anby = aibi -+ asby + aibs.

‘That is, the inner prodvet of two vectors 18 an invariant wnder the rota-
tion of reclangular cartesian coordinate ares.

Since distances and angles ate expressible in terms of inner prod-

ets and magnitudes, it follows that these concepts are likewise in-

variant under rotation of axes.
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Exercises

L. Proceeding as in Section 2-8, obtain the formulas
iy
153

af ooz 0y -k al cos B . o= eos @ — alsinf
or .
0 cos B +  cos O @ = alsin 0 + af cox §

t

for the rotation of axes in two-dimensional analytios,

2. Using the result of Ex, 1, show that if a = (o m) and 3l b
then e - 8 = aby + wobs iz an invariant under the rotation of axes, Sl
show that ey — @b is an invariant under such rotation. O\

3. Obtain the inverse of equations (27) by multiplying sealarly, g
(24) by €, €}, €f (hy this we mean to form the indieated inner profiets ol
thercby obtain sealar relations).  Interpret the resulting coelfitrents ol iy,
&, in terms of direetion cosines, 7,

0

v 2-9 The vector product of twe vectors. |:f

a = {0, ay, g5) and 8 = (b, BadBs) be two veenes

such that co # 8, that iszif% and B are direetion

veetors they represent differeént directions. Thron wh

o g O draw O and Og; thede lines determine a plane.

y Draw Oy L to thiy plane, where v = (¢, ¢0. 0235

here 0a‘,"@‘ﬁ,—d.ﬁﬁ'&‘%%}‘ﬁ‘fg'?:ﬁ?m.etl s0 us to form u

right-handed«{¥iple as indicated in Fig. 2-7. Bince

Fie o7 O~ isl perpéhdicular to O and to 03, we have, re-
Spe(!t-l*triﬂy:\,

K, - }\; @1+ ases + aaly = 0.»
and C

\5‘ Ty = bier +F buey + byey = 0
Solving these Ao homogeneous o

O '
30) @N@w=kﬂ%“ﬂ
by by

quations for ¢y, cy, ey, we get *

Uy agl
or Prbe
AN

@.\); o Y = k(agba - G':;;b:}, (1.3?)1 - G'flb,']_, a-lbg — a-gbd-
The initial condition of the
k from being zero. Algo

L15 T/ #%
b by

problem prohibits all of the coefficients of

Y=+ + = B 4 g o aiHbE 4 B + b3)

— (ash; + aby G-3b3)2]

_ L = la® |ﬁ;2 — |a[2 1812 cont Gl
* Here wo are uging the familiar seq

b
g d | = ad — be.

¥

oud order determinant eXPression
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D
{32 |2 = k2 al® (8! sin® 6,
wheve 8 is the smaller angle from Oa to O8.

“ince the magnitudes of e, 8, ¥ and the angle # arc invariants under
rolation of uxes, it follows that & is also invariant. Lo specify
uniquely the vector v, we take kB = 1in {31); the vector 80 obtained
i eulled the vector product of and 8. The vector product of & and
4 1s denoted by o X £, and 8o QO

' ' . g
o fla _ !!'I-J_ l‘.l;;| I'(I-] (IQ|) '.\..\
ibf! b:s"} ‘bl b_slj by b QO

. N\
¢

33 axX 8= (
o A\
(31) «XB= (n2bs — azha, @by — aiby, by — a“i’-bl{;' '

O .“. )

(35) a X @ = (:'1.253 — a;gbg)él + ((13!31 - (I]Qak‘q,:'}— (aqbg — G.gbljé,q.
From (32) we see that the magnitudepiy = « X 8 js given by
(36) o X Bl = joi y BP0 6.

This magnitude of the \egi‘og\,mgfl&mﬂgfag}p&d f may ‘t.)e interpl‘nied as
the area of the parallelogram with® Qa and O for adjacent sides and
g the smaller angic bct-weep..thém.

Recalling that a deterfinant of the second order changes itz sign
if its rows are interc aﬁg«é'd, we have directly from (33}

TapoReM XIV( The vector product of two vectors 15 NOL cormmuta-

tive; for « % fs —8 X e

Also frp;@}elémentary determinant theory and (33), or otherwise
by usinQ(Sé), we can establish

TrIiIORBM XV. Forany scalar k and any veclors e, B, and v,

Vo
@ 2 () (ko) X B =kla X f) =@ X (kB).

N () aX B4 =aXBtaXy
(ii5) (ko) X @ = O = (0,0,0).
TopoReM X VL. If laBy! denotes the determinant of threc three-
dimensional veclors, as

@ e 0’-3!
lafyl = (br b2 B | then |aBy] = a- (BXv) =8- (v X a)
er e =~ {aXB)-

Jf we solve equation (36) for sin 8, we get
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lx .
(37) sin g = 22X ﬁ

| - |8

Tor emphasis and reference, we record this vesult as

Turonny XVIL  The sine of the angle between fwo threc-dimensional
line vectors 4s equal fo the magnitude of the veclor prodact of (e se
vectors, duvided by the product of their magnitudes. AL
From the definition of the magniiude of 4 v ector, Theoreimn XV 08
and Theorem XVII, thero follows )

Tiusorem XVIIT.  The necessary and sufficient mnrfmrm‘ﬂn fumn.

lene vectors Oa and OF to be parallel ix for « and 8 (o fig 1)} o portivid,
thal is, e = kB. M\

Vhile the relation of this theorem to Theor (Yl 15{\ M1 is of intere =t
(‘iedll» the conlent of Theorem XVIIT ig not, u(‘\\,l‘m we have in et
considered it in conneelion with diree tion nu&kﬁel

X
“‘

Exegne l"\E‘w \v/

1. Using the definition of th? ¢Lon mdm‘r bwo vectors as given by
for muLm (33), prove that ¢ w.dbrg Iﬂj 0?%

e>=he‘ e». EJ251}E‘§X(—§—E' 6 X e =1}
e-;)(e\=()es><es—0 "'
2. Using the reslis n Ex. W &xpand the product ee X 3 = (e + ave: +
X, ¢ \Ga} X (hier + buey + byes) and obtain r3o"
\\ " €1 £ €3
€l A\ 3. Showthata X 8 = |y a0 ay -
B N by b
\\’B:"‘ L Let o= {a, 00, 0) and g = {by, 62, 0)
A\ be two unit vectors in the X 1, Xz plane and
A o let A and B be the angles they male with (he
‘. AL axis, as shown in Fig, 2-8, Ther o —
) e X1 oo d — esin 4 and 8 = ¢ cos B+ e sin B,
"\; . :,' Tee sin (4 + Bley, = o X 8 to derive the [or-
\ T - mulafor sin (4 4 B),
Fic, 9-%, 5. Use the definition of the vector proi-

uet of two vectors as given by (33} and ele-

mentary determinant theory to prove that

(axa)-(yxa)=‘“"" ‘*'5‘-
B-v B4
Note that as a special eyse of this resylt
@X8) - (axg = o @ “'ﬁl-
'S as 5
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Aare particularly, for two-dimensional vectors o = (&, ug) and 3 = (by, s},
the latter becomes
1
I - Bl = ja-a C,!l'S , where afl = @ ™
| ' \a-ﬁ .de| =57 s by
k. Obzerve that for two two-dimensions) vectors the formula (37) be-

laf, .
@ -
- 1] A
Shew s a consequence of this relation that the condition for parallelism, As
expiessed in Theorem XVIII, holds [or two-dimensional vectors as:{v’wl} ag
. . . A\
for thres-dimensional vectors. \"}

%
L 3

- Ghow that if & = (@, e und 3 = (b, b.}, then a §

! 2 N N
[ty —r .‘:'-_\8, f-l(k‘- + 52]3| = R + 82331, St + Sgbg| N2 .S&\&)' ° | @ G
| . f} | b b
N\

CopitE

gin f =

hay -+ B, Lo + by | s |
(Safe — sefu) el

Ny, e, 8, v, 0are three-dimensional vectorsy g))fﬁve that

(g T 8a3) X (try A-tad) = s y) ‘-i—s_.iz(%%'é‘}ars-gh{ﬁ Ky)+ sat=(3 X6,
{Tse Theorem XV{i5).} R\ e

0. As a special cage of Twiw%,_%hi}}gfﬁ?ﬁpm.y_m. g.n

(s + 5:) X (b B AB) = (s — seh)la X B)-
10, Prove that if «, 5, v é].l‘{thll‘,e—dinl(‘,ﬂ;-‘.iﬂﬂ:ﬂ vectors, then

{-‘f;ﬂ' -+ ‘*'_J,B + 33"{) = (ﬁ{l’,{?\""& -+ f:;’}":‘ = (.-'*':{-3 - -93i2}(|6 Pt 'Y}
Q \ - (83!-1 — 8113}{'}’ K ﬁ!) + (Slﬁ"z — S:!tl)(a * d)-

[

P

L)

e W

O /
AN/

LD
A\



CHAPTIR 3

VECTOR METHODS IN GEOMETRY; LINEAR DEPENDENCE

OF VECTORS QY

3-1 Vector relations independent of the origin. Suppose a i,
@y, -+« Ot AlE pogition vectors with respect to some coordingls uvs-
tem with origin O = (0, 0, 0), and counsider the linear relation
(1) by + Faaty 4 Fyay + - - - + boa, = O, "{‘.‘
where the &’s are scalar coefficients. Lot of, of, Al |, a, b corre-
sponding position veetors with respeet 1o a new ;{:Qigill € whose pos-
tion vector relative to (3 is £ Then ¢*¢
(2) aw=eart+§ w=a+tE . NNow = af, + £

Substitufing from (2) in (1) we get R\ .
(3) k]_ai + k;g(l’; + kﬂaé + T \‘qzk{rra%}‘;?'iik?qﬁz:y—ﬁzﬁn . + krrt) E = {) .

Tf the relation (1} is to be true far vectors independent of the orisin,

that is, if we arc to have M{’

(v bl + & -f&ifv'}ksa; + - kel = O,
then from (3) the condition

(5) :.l?i";}:i;i'cg—i—ka-}...._f_;fmzo

must be satigf@gi‘\,""l‘he condition (3) is therefore necessary; it should
be elear thﬁ{(ii«' Is also sufficient. 8o we have establishod
THEOI'{J:_M I.

The mecessary and sufficient condition that « linear
rel@tioh connect
\&¥

Thy any nurmber aof position veelors shall be tndependent
\ } o 5 of the origin 4s that the olgebraic
sum of the scalar cocflicienis of the
vectors be zevo.

g

3-2 Vector equation of g line.
Consider the problem of finding

0 S the cquation of the line (Fig. 3-1)
B through the given point « =

{o, a2, ay) and having the direr

tion of the given line vector g =
(bl. bg, bd} Tet the

vartable vector p = (2, zo, x3) he any point on the
36
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line. Then the line vector a — p is paraliel to 8, and so by Theorem
XVTET of Chapter 2, for some sealar variable s which fakes on all
values between plus and minus infinity, we have

{8 p— a = sf or p = a -+ 3.

Ax a spocial case of (6) we have for the equation of the line through
the arigin O = (0,0, 0) paralle] to the line vactor B, '
(7 p = 8. N\

o find the vector equation of the Tine passing through the(fixéd
poinls o and B we observe that the line has for its divectiop g — o
&a cither by Theorem XVTIT of Chapter 2, or as an appl‘lcal}j()h of (6],
e have for the desired equation e \ ¢

? { ?
{5 p— = (8 — o) or p = (1 < ‘i)a\—]- s8.
This cquation may be pul in the form AN
{97 p=1(1— Sl — ‘-ﬁ‘ﬁ\o

#pom swhich it is seen that the sum of {lre’ coefficients of the vectors i3

gero, s it should be. Fap9) d%‘}’%ﬁ’ﬁ%{%}thc eondition that the posi-

fion vectors p, @, and f be colliear, & p%}%&ﬂp independent of the
origin.  This leads us to 4 N
Tisouem 11, The peressary and sufficient condition for three points
i ihrve-dimensiontl space to be collinear is that there ex1st & Lincar
velation on etk position vectors in which the algebroic swm of the
scalar coeffidichts is equal fo 2670
We h:-i\;gzih;t proved that it is a necessary condition.  The condi-
tion is \@r sufficient; for assuming that a1, o, &3 satisty the relation
(10.}\’?.:"‘\"1&1 “+ ks + kyas = ¢ such that by 4+ kot ko= 0,
"W may make the coefficient. of a unity by dividing by k1 (o= Q),
gelting
kg - }13 _
a5 e 4+ e = 0.
kL ky

Under the appropriate transformation of the eoefficients this may he

put in the form (9), chowing that a1 15 8 point on the line ceas.

3-3 The point p which divides the segment of in a given ratio.
Tet the ratio of the length of the gogment from a to o and that of the
segment from p to 8 be equal to r/s. Then
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« v stp—a} =1(8 — p),
# whence
_sat 78
(1 o=
0 tig, 3 2.

it 1y noteworthy that equations
(6. (71, (8. (U, and {11) hold for two- and three-dimensional vectors,

IIXERCIAES

.\’

. [se Theorem T to show that the property expressed by (11) is mt;l‘ GInat
{‘11t ut tlue origin. o

‘

. Obtain o (8) the corresponling sealar equations for 'n..A "fm.! e
b .‘%. {int: Fquate (1!]1('-[J[][i[11[l“ sealar coordinates. '\

S0 Ohtain from (8), (7, und (11} the corresponding Sellak equations Tor
wo 2and w =4

- P the position veetor dividing the sewment [}};i‘f o =036, 7ol
,")' = I‘\, 0, 13 In the ratio 203 \‘
) ¢ 3

34 Vector equation of a plane Jh‘(’ (‘{111‘1‘(101'1 of the phine

Pl the fised point o and paan I’L t(o“l’f‘?@”iﬁrh{ﬂf{l@gﬁﬂhﬁﬁgﬁqtm~.
O and O s

.
_™3

(12) P A fv—i-\ﬁ’ -+ by,

where s and oare ser !.1 i \“tth\)ll' assiming all values between plus
and tminus infinity :T\‘m:c 11 any variable point on the plue,
p - ocixn the plangddetermined by g and 5; therefore p — e eun be
resolve] into :ump[ﬂ)l’"]h pavadiel to 3 and v; trom this it follows That
pooeom s R ] (12 190 modifieation of this relation.  As n

sprecial rase i M2y we have thal the equation of the plane through
1he r:rwm\nf prerndlel 1o 3 wnd y is

RN ™ = 83 4y
\

Wwiind the veetor ernation of the plane wsing through the fixed

A~ g and oy we e et the plane i parallel 1o 3 — o and
- e Socfrom (12 we bonve
il n 7w —;— .\'f'.f — rrj + !(“;’ -—_ U{J

(1l

[ TS (1 — 5 =ty = w3 bty — =10,

Provhis euarion thee =im of the seqlar ooe thident = of

_ Cthe veetors ., 3,
v ottnl e e,

Avalowins 1o Theorem 1 we have
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o ) slp — ) = ¢(@ — p),
A whence
e+ fb'
(11) g = ¥ + ¥
0 Fia. 3-2.

It is noteworthy that equatinns
{6), (7}, (8), (9), and (11) hold for two- and three-dimensional vectirs.

[XERCISES £ :\~
L. Use Theorem I to show that the property expressed by (11} is indephet-
ent of the origin, A\
2. Obtain from (%) the corresponding sealar equations for, 1q~?= Pl o
%= 3. Hint: Equate corresponding sealar coordinates. o\
3. Obtain from (6), (7), and (i1} the corresponding godler aquations for
n=2andn=3. AL
4. Tind the position vector dividing the segmer quﬁ_‘mg e = (3,0, Tl
8 = (8,9, 13} in the ratio 2:3. )

X
N\ W

3—4 Vector equation of a plane, Ehe cquation of the phine
through the fixed point o ::‘.‘1’1‘3‘1:’)1?%11@*&}'%}%%'?1‘1'&?{15% valent line vectors
03 and O~ is ‘j:';" '

(123 pqé a + 88 + #v,

where s and t are sealar yasiables assuming all values hetween phis
and minus infinity. E“ch\since p 18 any variable point on the plane,
p — o g in the plage’détermined by 8 and v; therefore p — o can he
resolved into compdnénts parallel to 8 and +; from Uhis it follows hut
p—a =88+ xt',:?}"aind (12) is a modifieation of this relation. As a
special eas b:ﬁ? (12) we have that the equation of the plune through
the 01'igirp1‘3?ﬂd parallel to § and + is

(13) AY p =3B+ ty.

"\
NI find the vector equation of the plane passing through the fixed

points «, 8, and v we nole that the plane Is parallel to 8 — « und
¥ — a 3o from (12), we have

(14) p=ats(8 - a)+ iy — o)
o
{(15) (1——8—3)&—{—86—}—@—,020.

In this equation the sum of the sealar coefficients of the ve

] ctors w, 5,
v.und o is zero. Analogous Lo Theovem 11, we have

N
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TavoreM 111, The necessary and sufficient condition for four potnis
in threc-spuce to be coplanar is that there exist a linear velotion on
their position veclors in which the algebroic sum of the scalar coefficients
iz equel o zero.

A symetrical form of cquation (15) may be obtained by assum-
ng a lincar relation on the vectors o, 8, v, pof ihe form

(16} e + k‘gB + k-g"}’ -+ kq,ﬁ = {} where k] -+ fay + ks + by = R )
Elininsting ks, we get

(17 kalp — o) 4 kalp — 8) + Balp = 1) = 0. R
T4 derive the cquation of the plane through « and peggenﬂicular
to 08, we recognize that for any variable point pin the plape..‘p — als
perperiicular to the direetion 8. So by Theorem Xlﬂbf Chapter 2
the desired equation is 4
(18) (p— ) B=0. O
¢ \ gt

FxERCIEES §

)

1. Write the sealar form of (ﬁ&h‘ﬂﬂlﬁ@ﬁﬁmt@%@g]rnﬁg), (14}, and (18},
Knowing thut for the plane n = 3. (& 3

2. For n = 2 equation (18) jshe equation of 8 straight line. Obtain
the sealar form of this, and r coneile the latter with the normal form of the
equatinn of a straight line as%cs}nmntionaﬂy given in texts on plane analytics.

3. [l the equa.t.iun\lb; 3) of the sphere with center at a and radius
equal 1o k. )

1. Give both 'ﬂfé' voctor and the scalar form of the equation of Ex. 3
forn = 2. N

5. GivewdWetor proof of the theorem that the diagonals of & parallelo-
¥l blsq?:%;{iah other. [Tint: Let o, B, vy, 8 be the vertices and let p Le the
point ;}f:"intcrsectiou of the diagonals; use Theorem 11 to write four linear

explesgions for p.
L8

N 3-5 Linear dependence of vectors. We hate previously spoken
of two vectors o« and 8 as heing proportional if @ = kB, for some
sealar k. Sometimes it is more convenient to say equivalently that
o and 8 are pmpm"r..ional if for some sealars s1 and s. we have

(19) qo + 528 = O

Thix iz merely a symme‘rric-ml form of & = k8.
We now consider linear dependence, which may be regarded a8 2
generalization of the concept of proportionality. T irst, & word about
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linear dependence of sealars. The n scalars ky, ko, . .., &, 511 wnid
to be linearly dependent with respect to a field F if n sealar mombers
of the field F sy, ss, . . ., s, not all zero, exist such (hat

(20) stk + mke + - -+ sk, = O

If no sealars in the field F exist such ihat the condition (20) ix sutis-
fied, then the scalars &y, ko, . . ., &, are said to be Wricteely Dreele pronedi g
with respect to that field. To say whether given scalurs are lincindy
independent or Hnearly dependent with respeet to o ficld F\:& 1%
necessary to specify the field. To illustrate, consider thembmTers
By = 1 ks =V§;they are linearly independent refative t()i}(}f\'r':l!'r-: il
field but they are linearly dependent relative to the I'valtj.ﬁf‘](l, herai=e
$1= 2, 8 =—V2 and the given k's will salisfy {ZU})C Simileeiv, 1
and 7 (1 =\/ri) are linearly independent reldwivg (o the raiions]
field or the real field, but ave linearly depench?J.Qxfelati\'v to the com-
plex field. R4

A vectlor a s said to belong to a field KBS and only if, all {1 =ealir
coordinates or elements belong to the icld F.  In particular, if all of
the scalar coordinates Of\\ﬁdﬁ{ﬁ?ﬁ-tﬁﬁgd&ﬁifh‘pmﬁg;my complex mmbers,
We 8a¥ « is a complex vector; if all gf the sealar coordinates of a are renl
numbers, wo call « a real vector'™ v The set of al] n-dimensionul veetors
wilh elements in a given ighdMF is cullod a veetor space ¥V (F). In
ordinary solid analytie gédmetry we give emphasis (o the study of
Vo(R). A\

The vectors ay dodes, . . -, @ in o field F are said 1o e Hnearly
dependent (in EWNEn scalars s1, 82, 85, .. ., 0, in the field F, not all
zero, exist sughythat

o

(213 \.x"’ Sy + 200 +F 8y + - - - F Sy, = (),

If no0eh sealars exist, the vectors are said to he tnearly tndepcndent
(_injE}. Linear dependence and linear independence arve husicaily
bmf)_el‘ties of sets of: veetors; howey
seriplive lerms to vectors themselves, as well ug to sets of veetors; we
may speak of “a set. of lincarly independent veetors” or of © a lineasly
ndependent et of vectors,” )

In {21} at least one of the s is dlif ferent from zero.
#r; then we can solve this relation for c;, and write
(22)

er it is usual to apply these de-

Buppose it 13

ar = koo + kscy + - - - FomCtie

T'hen we say o i3 4 bnear combination of aw, ay, . . . . Qg
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Tyusores 1V.  Two two-dimensional (position) wectors are linearly
e pendent if and only if they are coltinedr with the origin.

Theorem 1V is simply a restatement of Theorem XVIIT of Chap-
try 2, with applicability of the latter to {wo-dimensgional veclors. As
proviously stated (sce Tix. 6, Soetion 2 4), that thenrem applies alike
{6 two- and three-dimensional vectors.. Theorem TV may be stated
perhiaps more emphatically by saying that O = (0, 0) lies on the line
throueh the points & = {ay, az) and 8 = (b1, b2) when two sealar muls®
tiphers r and & can be found so that O\

233 ra + 38 = 0. \“\

\When no linear combination of the voctors @ and 815 the zeroyvector,
thev are linearly independent . \\

Yynronys V. Any three fpo-dimenstongl veclQhg wre linearly de-

pendend. 7 N

‘f'o prove this we note first that if all Lhref_yo}ﬂiu points are collinear
with the origin, Lhey are Tincarly. depeprﬂgﬁ%, by Theorem [V. On
the other hand, let the "'e%%%rk&iﬁfmﬁéég&i’i?gf' ﬁ in (by, by) and v =
(£, 72), and assume that some tw® thoth, &V a and 3, are not
coliinear with the origin. T henJoBl = 0, and 1t 1 sufficient to show
that we can find r and suc}\b"chat.

(24 AJy = ra + s,
N\
or N \ \
- ., [Cl = Tl —+ sy
2 3
(23) \\ Les = 702 + sba.
Sulving (‘ZQT@‘ r and s, we gel
{ ln3! 'y |
e \ L e n
9 al g g = T
S\ "7 a8l bl

~O
Goprequently, we have
(27) wply = 8l o+ !B
and the theorem 38 proved. B _ ‘
[t is sometimes preferable to state Theorem 3 equivalently in the
form of
Taroney VI. Any plane pector 18 a linear combination of tiwo
linearly independent plane vectors, thut 18

{28) v = ta + 85,
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where o and § are two given linearly independent voctors and + and s
arc sealar multipliers.

Sinee every plane vector is a lincar combination of any two linendy
independent plane vectors, it is customary Lo say that any twa linearly
independent plane vectors form a basis for all veetors in the pline.
While any two lincarly independent two-dimensional veetors forny
such a busls, it is usually particularly convenient to take s suel Dists
the unit vectors

N
(29 e = (1,0 and e = (0, 1), N\
NS ¢
for as we have noted before, any vector a = (ay, 2a) is wiven o= a
linear combination of these unit vectors by RGO
(30] - & = & “+— fla€o. ..,\\

As we ohserved in Chapter 2 and alko in conneclion with {(7) abuore,
there docs not exist a single pair of linearly iI’l{'l}%U‘Il(lE‘.Ilt veelors on s
line through the origin, for every vector on~the line is the product of
any nonzero vector on the line by a scalahgy " That i3, the muxlmum
number of linearly independent vectels on a line is one, and ux we
have just seen, the maxiﬁl’ﬁfﬁ’-ﬂﬁiﬁl{:{{lbﬂ?ﬁ’n%ﬁglﬂpimlcpendent voeetors
in a plane is two. As we shallyed later, this maximum number of
linearly independent vectors.which characterizes o given space is
called the dimension of thm&s’;pacc.

N

Turorem VII.  Twethree-dimensional vectore gre tinearly dependrd
when and only whehthey are collinear with the origIn.

Theorem \-""{I 'i's\mm'el}-' a regiatement of Theoremn XVIII of ¢ Taap-
ler 2 in ihg{@}minology of linear dependenee. This theorem R
that O = ¥0:0, 0) lies on the line through the points o = (ay, o, ;)

and § =8 by, by) when two sealar multiplicrs r and s ean be fuund
50 thds” '

w) . ra + &3 = ().

When no linear combination of the vectors o and B is the zovo vector,
they are lincarly independent.
].H]'_‘.OREM VIUI. Three three-dimensional vectors arve Iinearly de-
pendent when and only when they are voplonar with the OFHYN.
For we see from equation (13) that Y 15 & linear combination of e
and 8 of the form v =

re + 58 when and only when ~ 1% in the plane
determined by the origin, e, and g. ) Y
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From Theorem VIII and elementary determinant theory there
follpws immediately

Tneorey IX. A necessory eondition for three potnis a, 5, and v v
he coplanar with the origin is that laBy) = 0.

TiuronyM X. Any four three-dimensiongl veclors ore tinearly de-
pendent.

The proof of Theerem X is snalogous to that fer Theorem VA
Cearly, i all four of the points are coplanar with the origiy, they arh,
linearly dependent. Considering the general case, It the veclgre
o = (o, o, ), B = (br ba by, ¥ = (e, Oz, €3}y and 8 = (s 45
Assume that some three of these (position) vectors, say @ ﬁ,‘eﬁ}d ¥, are
ot coplanar with the origing ihen lagy! = 0. Ttis 5uﬁ3§i@nt 1o show

.

that we can nd scalars s1, 52 8 such that

(323 § = s + $off + 85y \
o ) ¢
&
J(?1 = iz -+ Sgbl "':uﬁh
(331 |y = sz + S2bp S0
L. = suzent.sm T SiCs
| ds <t dstta Y org in
Solving (33} for sy, 82, 85 WO got (ON
P 53y A | celiy! |5 ]
34 e i (Lilai
SN Byl ey
4 A 4 . . -
aril consequently the ligear combination (32) may be writlen
ST : :’ = H ol - as’
(33) g = 1887, o T by B |exB8) ¥,
4 N\ .\ ’:
aml the theorgm s proved.

ltis squﬁimzs Jesirable to emphasize the last theorem in the form
of &N\

'l}i\.ﬁp’m:-.\i X1, Any spacevector i5 6 linear combination of any three

mLaarly independent space vectors.

Sinee every ordinary thyee-space veetor 13 a linear combination of
any three linearly independent space vectors, we say that any threc
Jincarly independent space voctors form a basgis for all vectors in that
space. 1t is particularly convenient to take #s 4 husis for the space
veetors the unit vectors

(36\) €1 — (1| 0: U)' €2 = (0' 1_1 0)! €5 = (0, 0: 1)'

for we saw in Section 2-5 {hat any vector & = (@, Qg ¢3) i85 glven a8
a linear combination of these unit vectors by
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(37) a = dier + Bos + Qe

Theorem XTI emphasizes that the maximum number of Gy in-
dependent vectors in ordinavy three-space is three; that i proosely
why we term 1t “three-space.”

Exrroises
1. Determine which of the following pairs of vectors wre tinearly GrpoaddN
ent; in case a pair is linearly dependent, give values of the senlor multind s
and s which relate the dependent veetors in the manner of relation (2850

@ «=(,-2 @ a=(,-2 \O
B =1{-34). 8= (3 6). N
(i) o = (1, —2,3) () @= (1, =2,3), 0
B = (4, —8,12). B = (=5, 10(T)
2. Tor what values of k will the following \rect.m'sQa hncarly depensent?
@) o= (2,7) () « = 8%)
B=(32k+ 1), BBk + 1,9,

3. Determine which of the following t-ri’ads’ ol vectors arc lin carly depond-
ent; in CasC Lriad i3 hneﬁ.l'l};,%}t‘aldﬁm}gji,:é}qsﬂl_hﬁ%_ﬁ'ﬁ the scalar multiplicr s #
and s which relate the dependent vectegin the manner of equation (24).

L B

@) a=(49 N @) a=(3 0
8= —5{1&) B=1{-50)
7= @3N, v =(9 0.

(i) o =(8,2, 0) {ir) « = (0,0, 3)
#5002, -1 B =(0,4,0)

SO =21 ¥ =(%0,0).

4, Find sca-la{xiaﬁl!;ipliers 7, & and ¢ which enable ug to write the vector
d=1{1,—1 faz)x‘s.a linear combination of o = (3, 2 1), B=(—4, -3, 1),
and vy = Q}\ y 1) i the form § = ree 4 58 4 tay. '

%
™
™



CHAPTTR 4
VECTORS OF n DIMENSIONS

4-1 Fundamental definitions and axioms. Ordered n-tuples of
sonturs in a field Fyas a = (@1, G2, -+ @), 8 = (bybe, ... R
O (-TW T Y I which obey certain rules of combination ave
eulled zectors of n dimensions. The basic operations of the @Lg‘fv}ﬁ'a,
of such vectors are the multiplication of @ vector « by & scala;r;}«ftw

7 N}
(1 ba = (kay, kas, - - ., k@) .:\ :

/N

arni the addition of bwo veclors o and 3,
(2 ok B = (a4 by ast b, . oo, GOSHD):

For any positive integer n and any ﬁel_(_l’__F‘,_’_:’r._l\l_e__sgt of all the n-tuples
of sculars of F which obey the laws of combination (1) and (2) is called
the rector space Va(F) over Wﬁ&b}{'ﬁl}}ﬁ@%ﬁo\\gimm vefer to such a
veelor space us & limear vector sgaee,’’ others as a “linear space.”

From {2) it follows that there ta unique null vector 0= 0,0,...,0)
with the property that for afiy vector «,

(3} WG¥o=0+a=a

for all . Also A0
8] 0.« ,=\ip\fbr all e, and B0 =0foralk.

Here, as eviously for two- and three-dimensional vectors, care
should e taken to avoid confusing the null vector O and the gero

™
N

scalarth % Two vectors a@ = (@, 85 - s a) and g = (b, bey - - = b
w®eyual if corresponding coalar elements are equal.  The equality of
k)"such vectors implies the salisfying of n scalar equations.

If & ci_s'f,m}-' non-null vector, we ghall denote by —e the vector
(—1)e. LVFom this convention and the definition of 0, it follows that

6 a+ (Do =0

Relative to the operation of addition of vectors as defined by (2}, the
sel of vectors V,(F). constitute @ group with the null vector () as the
identity elementl of the group and (— 1)« as the group inverse of any

veetor e,
45
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4-2 Algebraic properties of vectors. The above definition of
n-dimensional veelors, with the properties of o fleld as ~1red in
Seetion 2-6, implics certain relations satisfied hy veetors.

Turorem 1. The addition of vectors is commentative: o SN I

Tor we have

a—+ 3= {o1+ by, az + be, ...y ttp + b)) By (2. N\
= ta,bst+ag ..., b+ a,) By (STa). .
So \‘“\
a+ 8=854 a « \\

Similarly, we may establish the following two theoremg &
. -y . . . 4 '\ /
Turorim 11 The addition of rectors i assoctaligrs
a4+ 8 ++v= a-l—(ﬁ—i-’r)\-‘
. A .
Turorum LI For any scalars r and s arid ny coctors o and 3

@ @+ sl = ra + s, (77} r{za) :=‘.(r.s)a.
(@1) rla 4+ 8) = (ra) + r8). (il ea = 0. (1) 1 o=
www.dbraylibrary org.in

4-3 Vector subspaces. Uniontand intersection of vector spaces.
A subset of the vectors of V(W hich is closed with respect to the
two baste operations of vectde algebra (the multiplication of o vector
by a scalar and the additiGn bf two veetors) is called a vector subspace
of V.(F), and iz desighated by JV.(F). Otherwise stated, .V is
veetor subspace of ¥ i « and 3 are veetors of 1V and if every linear
combination ra A58 s also a veetor of |V, 7 and s heing scalars of the
underlying ﬁe,}!i;F. In general, we write |1 ST, meaning that the
vector subgBakE 1V may or may not contain all the veetors of V., Tf
not every’%utor of Visin ¥V, then 1¥is » proper vector subspace of T,
and welwrite ;¥ TV, The analogy with previously considered con-
\cupt;’s,,?af subgroups and subfields should be apparent. Somc writers
réfer 1o 4 vector subspace as a linear manifold.

A husic observation is that if a vee
it also contains ¢ — o = (), Therctore, if veetor subspaces are inter-
preted as lines, planes, ete., we must consider only those
etc., which pass through the origin; as
vector alone is a subspace of any vector space. Veetors of the form
(a1, ax, 0) constitute a subspace, the X, X, plane of ordinary three-
space; those of the form (a,, a., 0, «s) vconstitute 5 rubspace of V4 (F).

IV and BV are veetor subspaccs of ¥, we define their union

for subspace contains & vector w,

lines, planes,
a degenerate cave the null
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.V w3V to be the set of all vectors e + g where e isin ;V and 818

in =¥,

Tuvoren IV,  The union |V s 2V of any two subspaces of ¢ vector
pace V is itself a vector subspace of V.

fror if v1 and . are any two veetors of ¥ oV, thenyr = en + 3,
pa = g S By, Where ax and as are in ¥, and By and Bs arc in o¥.
Then for any Lwo scalars v and & of the underlying field, we have
poy A sy = (raq + sas) + (rBy + sBz). Sinee ¥ iz a vector spacey
sy 4 sas is in 4V, and sinee o ¥ is a vector space, rB1 + 8B: 18 in@l{.
Therefove, 7y1 + vz I8 in YRR NS ©

it ,7 and ;V are vector subspaces of V, we define their ;.En-’}e?’seci-im
to be the set V> .V of those vectors which are in b(;tl}?lV"and 2V
Feasoning as for Theorem IV, we may prove AN\

fruoreM V. The intersection of any two b"i.{-bb‘QaC{’-s of a vector space
Vv is tself a subspace of V. £

T.ot us illastrate undon and intersection of':x-‘cctor subspaces in ordi-
nary threc-space. Recall the familiar gnitiectors e = (1,0,0}), 2 =
0. 1,0, & = (0,0, 1), and"létﬂ’;(lbta:’gﬂéBl-aﬂy%)-é)_mthe pre-space ke
That is, O8N

lI‘r = Ui'.'l; 0: 0): 21;‘ . '(0: '!“2} 0)1 3-['? = (O: 0: 1‘:5);

these one-spaces are respei:'t:i}ely_' the X1, Xs, Xyaxes. Then VsV
is the X X. plane; ’ﬁ\u v is the XX, plane; V¥V ois the
VX1 plane; 1V 4wl .,V is 1he entire space; Fo~Vis 0=
{0, 0,0}, the origiﬁt  Any two-space {plane through the origin} either
cuineides m’d\l}l" « sV or intersects it in a one-space (line through

the Origiuk\'/
2 &

4—% S{pap_e_ of n dimensions. We are accustomed to assoclatc a
yOTREAN iwo-dimensional space with & two-dimensional vector, and a
Lk)“iflt in three-dimensional space with a three-dimensional vector.
We ordinarily think of a space of {70 dimensions as a geomelric space,
that ig, a2 a scb of points. But in a broader sense by & space of two
dimensions is meant any set of objects which may be put in a one-
to-one correspondence with the totality of veclors of two dimensions
(pairs of scalars); and a space of three dimensions is any sct of ohjects
which may be put in a onc-to-one correspondence with the totality
of vertors of Lhree dimensions (iriads of sealars), -

By a spuace of n dimensions we Mmean oy sef of objects which may be
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put in a one-to-one correspondence with the vectors of Vo(F). We do
fine a point in this n-space to be a vector a = {aj, ao, ..., @,). With
two such points a = (a1, a2, . .., @) and 8 = {by, bo, . . ., b,). we may
associate the direction numbers of the line segment, 8 — o = (b, — u,
bz =y ..., b,; - G‘-n)-

For three-space the “points” may be the points of ordinare per-
ceptual space, but they arc not necessarily so. For four-spiee the
poiuts may be ihe events of space-time as depicted in the theosy ub
relativity, For any value of # the points may be members of J4i-
tistical set. Tt should be clearly rvealized that the nmlheriirs?u"lm'l
makes no attempt to visualize & world of four or greater dilneriong;
he does not elaim to see worlds which ordinary men c;mhm’ see. IR
15 only that the mathematician finds that certain PERIONS il von-
cepts are discussed mosi readily with an algebpdicvsetting and in
terms adapted from geometry. A\

One should draw the distinetion bet\\fnen"\"perceptual” or visual-
izable spaces and “conceptual” or logicallyeonceived spaces.  idi-
nary two-space is a pereeptual space, in that we can draw o figrre 1o
represent an enlity of thal,rasthonmtieglomprid.  Ordinary thrce-
space is usually thought of as a pereehtual space, although a eonfigu-
ration in it of moderate cotnp]gxitjf' may not be altogether percepiil.
A space of n dimensions whefih > 3, somelimes ealled a hyperspace,
is not, as a whole, perceptial, though one may take the viewpoint
that a certain section ofpertion of it js perceptual; this is in the same
sense that we may (Visunlize an cntire plane section of a surface,
although we mapaot simultaneously visualize the entire surface.

The ideas mentioned above are not new by any meanz, {for Dr
C.J. Ke}’ﬁ?ﬁ'his Mathematical Philosophy ( 1922}, in Tecture XV1
on Hypgr’.@.pc ces, says: “The concept of hyperspace, though it is a
modc;'nj Notion, is not strietly new; it goes back three or four senera-
tiuuié and is now, among enlichtencd mathematicians, as classie and
orthodox as the ordinary multiplication. Though only a chort while
ago it was vegarded by mathematicians of the eonservative and reae-
tionary type with a good deal of suspicion as being, if not crazy, at
least a bit (ueer, over romantic, and unsound, it is now constanlly
employed as o great convenieuce by math
even by physicists ( '
apology.”  Keyser,
hyperspace into 1hre
some detail.

etnaticiansg cverywhere und
say in the kinetic theory of gasos) quite without
among other things, analyzes the eoncept of
) ¢ related meanings, and discusses these three in
However, the attitude which we have taken here that
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erspace 1s o point-space of 7t dimensions, with the understanding
:he points may be objects of different kinds, may be interpreteil
<0 u= to inclwde all three.  This is in tull accordance with Cauchy’s
idea o+ oxpressed in his Mémoire sur les liews analyfigues (1847), i
which he savs “We shall cull a set of n variables an analylic
poiut ...

in o hebl Foare said to be binearly dependent in that field if m scalars,
N

¢ 4-5 Linear dependence. of vectors. The veetors e, o, « - o0 O

Sy, v s o o, S 0 B, moU all zero, exist such that AN
_ AN
(U,- Sk + Sanxs 4 ¥y -+ + Spttn, = 0. « \/

O thi other hund, if no such scalars exist, the vectors arégaid to be
Pudependent (in Elo Tor n-dimensional voglol the cyua-
i« equivalent to then scalar cquations \/

D
tlokn (54

¥

$1611 + Su@z1 T S + o Srr;@’u{\": 0,
g1ty + Satlze 4 Slhyz + - - e = 0,

v

. o/ o i
S1l1n + daltan + s34 T ™ + Salme = Y,
www dbrfiglibrary.org.in
e -. g o rpf L ATe
where oy = (@, G, &, - - .-O‘-m)fw'f at 18, l? v et of veetors are

lines1v dependent, thetr correspdnding scalar coordinales are linearly
dependent. o
I eere cez, gy - - 5 _q}!&_g;_g(j;_‘}\}_( :

(7 ko, 4&}‘2&2 + by + - + Fntte .
a linear combinality of these ve__c_fc_t}rs_.__\_‘:_h_e___E"{;;___l_}__c_i_l_';g_i_n F.
Y THLOREM V’I\:  The set of oll linear combinations of any sel of vectors
g oed f!i}%i[iﬂ.i’.‘-é’. V is a vector subspace of V.
Fill‘fiﬁl} the definitions of the two bagic operations (1) and {2) there
I”Lllllc:i‘i\\;'t’rfc relations:
80 (ks - o o - - - + Fac) + (bler + Ko o R
— (ky + kDo + (e T Fliaa 4- -+ e T IRAT

]
(@) E(hka + keas + 500 L Rotm) = (ke + (k'Te)ors A - -
: R T
Of fundamaontal importance is
Msizores V1L The sd of noneero vecors e, oz« -« am 0 @ vector
space V are linearly dependent if and anly if sume one of these vecturs

w, 7% a linear combination of the preceding ones.
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Suppose a; s a linear combination of the preceding vectors and
we have
;= sy + Sacxsy + IR S T AR TR

This is equivalent to
s1e + Sper + s + (—Dag = 0,

which has at least one nonzero coefficicnt. Hence Lhe vectors ure iJe-
pendent.  On the other hand, suppose the vectors are dependehfy

then we have O\
Q"

(IOJ e+ Baoey - 0 A S, = O, S

N

In (10) there is at least one scalar coefficient differenty Triom EEC0;
let < be the last subscript for which s; 5 0. We may 4toh sclve {1y
for a;, getting e, as a lincar combination of the:ptepeding veetors,
except when 7 = 1. However, this exception welld requirc i}t
sie; = 0, with sy #£ 0, and such a condition wgkl’ﬂ?[hecessitamte = i,
but the latter is contrary to the hypotheb‘isﬁl}afthe given vectors nri
NONZETQ. )

~A consequence of Theorem VII is ¢hat a sct of vectors is linearl
dependent if and only if it contains 'z;.ﬁslna]lé”f“ém')%g 'ac')JI'l '?‘ééi&?@ﬂi}u
gencrate the same veelor subsp‘aé'(;’,' To make that clear let us con-
sider more generally the coqqepﬁ of bases.

* 4-8 Bases. A basis of W vector space Va(F) is a sct of linearly
independent vectors suel that every vector in V.(F) is a linear com-
hination of the vec}ui:;-; in the basis. A linear combination like (71 1
suid to be sperpddby the vectors ey, a, . . .| a, aied the veetors
any an, L a,,,.x.n(wéair_l to span or generate the vector subspace formed
by the limefily*Combination (7). As some illustyations in ordinarv
three-spade the space spanned by a single veotor o = (e, cra, ey} 1:3
the S(Ptj(fﬁ all sealar multiples ko geometvically this is the line (hro ugh
‘rh,e\hﬁgin and the point e Similarly, the subspace spanned by two
nanéollinear vectors a = (ay, as, as) and 8 = (b, b, by) 1% a linear
combination p = re + s8, which geometrically is the plane deter-
mined by the origin and the points « and 8. The same veclor space
may be spanned by many different sets of vectors, and even by sets
which contain different n ers of veclors, Thus the vectors -

er = (1, and &= (01
span the same space ag do

o= (3 2, 8= {—3, 2 N v = (7‘ ).
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Buppose a, Is a linear combination of the preeeding veel o and

we have
ap = S100 + Saeen 4 00 4 8.
This is equivalent to
ey + Spee 4 -0 - s+ (= Dag = 0,

which has at least one nonzero coefficient,  Henee the vectors o e~
pendent.  On the other hand, suppose the vectors are depuenien N
then we have O\
(10) S10e1 + Sares 4 - - - ok S0, = O O

In (10) there is at least one scalar coefficient diﬂ'erunt &om 2OTO
let ¢ be the last subscript for which g, 2 0. We may tHéw solve (10
for a;, gelting a; as a linear combination of the prededing vect ors,
except when i = 1. However, this exception would require t
100 = 0, with s # 0, and such a condition would fiecessitaic a; =~ ).
but the latter is contrary to the hypothesis ghdt he given vectors ure
nonzero, O

~A consequence of Theorem VII is that s sot of vectors is linearly
dependent if and only if it“b‘?’)}‘fﬁ?ﬁg%Eblﬁaaﬁyéf?g%&eL of vectors which
generate the same vector subspasel To make that elear let us con-
sider more generally the concept of bases.

* 4-6 Bases. A basis ofi:f;,t\vect.or space V,.(F) is a sct of lineutly
independent vectors such that every vector in V(F) is a linear com-
bination of the vectofs)in the basis. A liuear comabination like (7} is
gald to be spanm;d} By the vectors @01, Oy . . ., &, ald the vectors
oy @y, - -y oo ATRAID tO span or generaie the veetor subspace formed
by the linedf Ytmbination (7). As some fllustrations in ordinuty
thr&-spfg;ﬂ% he space spanned by & single veetor « = (a,, oy, g} 15
the set.dfall sealar multiplos ka: geometrically this is the line through
thw{rj?;in and the point «. Similarly, the subspace spanned by two
nongbllinear veetors o = {ay, ¢z, a3) and B = (by, bo. by) is a linear
combination p = ra + 8, which geometrically is the plane deter-
mined by the origin and the points @ and 8. The same vector spuce
may be spanned by many different, sets of vectors, and even by sets
which contain different numbers of vectors, Thus the vectors
e = {1, and e = (0, 1)
span the same spuce as do

=052, 8=(-3,2) and y= (7 8.
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Howe ver, clenrly e and e are linearly independent, while o, 5, and y
are tnenrly dependent.  Two sels of vectors which span the same

sproe are said to be linearly equivalent.
I may be justructive to give the alternate but equivalent defini-

tion i o basis: a set of veetors ooy e, - -y O which span the vector
spewee V. and which are lincarly independent eonstitute a basis for ¥.

1t ~thould now be clear that we may delete from a set of vectors_
any T Voetor whicl b & Tmear cotabination of the preceding ones{h
id ihe remaining veetors will ‘span the same subspuce; To illys
Lre. the veetors e = 13,2, ,0), B = (—4, ZEL0y = (2 '].\'1‘,{}),
and & =1, —1, 6, 0) donol span the whole of ¥s(R) because they all
Tie it s 1 4(R), which is a subspact of V,{R}). The givendyeglors are
connzcted (soe 1ix. 4, Seclion 3-5) by the relation 8 "j-'—\ei"—i- 23 4+ 3v.
S0 . 3. v spun the same subspace of Ve us do e, 830

Croosly the wnit veetors ¢ = (L0, -, O =0L....0),
ce.=(0,0,...,1)are linearly Iingie{pt?ngg}, and also any vector
o= fan an ..., 8 of Va(E) 'is expressible)ds n linear combinalion

of them in the manner o = e + g%l - T Cnban Therefore
{hese unit vectors form a b%@{pa é}l.:’a(‘]@br.a%};&_%gl]pl)el of veetors in
a besie of ¥, is equal to the ditiegdion 7 oL ¥

Ti .V and »V denote subspates of V.. then the dimension of

WV s T s at least as grea@s the grealer of the dimenstons of ¥ and
oV, und at mosl as greab ay'the sum of their dimensions. Lot @(:V)
denote the dimeusion\o}thc veetor subspace ¥V of ¥. Then it is u
faer that

DT AT = AV V) FAGT o).

7\~
N
1._~<D’é&%ermine which of the following pairs of vectors are linearly depend-
@‘: 10 case a pair is linearly dependent, give calues of the sealar multipliers 7

EXERCISES

ail s which relate the vectors o the manner ra + 83 = 0.
(i) o= (3: 0,- 2’: _])r Il3 = (_']-r 2: 5: 3) .
(@) o= (—13 53, 8= —8, —20, —12).

9. Determine which of the following triads of vectors are linearly Flefpend—
ent: in cage a triad is linearly dependent, give values of the sealar coeflictents £
and s which relate the dependent vectors in the manner y = re + 8.

0 a=@l -2 ~1), #=(@ L3 7= (
i a=(l2 L3, Bp=0-2L-U 7 (
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3. Prove that any fve fowr-dimensional veetors are linearly s et
Obtain generad results, anulogous to those in the proof of Theoren: N o
Chapter 3.

4, Find scalars s, 8, &, % which enable us to write the vector oo =
(2, 13, 15, 4) as a linear combination of o = (4, 2, &, 6), @y = {3, - 1. 1.2},

az = {5, —1, =06, —3), and a. = (—1, 3, 1, —3) in the forn

W = Sy¥y + S - Mz + Sy,

<4-T The inner product of two vectors, The reader is 1'(\11-.L1~<INI

of the statement of Section 2-7 that 1n owr congideralion of di::::’.}.uﬁf.’.

of angle, and of normalizing factors, wo restriet ourselyes o el

vectors., By the inner product o - 8 of the two \'ecl'tn‘ﬁ'jeg ="{1.. oo,
eu)and § = (b, by, .. ., b}, we mean the sca.lap«}u\:illtit_v

(1) a-B=aiby+ ashy 4 -+ - + Gy ’

Ag eonsequences of this definition and pmp(;(txk;s of the underlving
fieldl, we readily cstablish four mportanigharacteristies of inner
products as expressed in the following faurtheorems.

Treorem VI The ?,‘?{Wé?‘-%#H%@:P'fé”&%"&-?fom T8 COMMILONT

a-f=5-a ' O

For 2z -

w- B = aib -}:i&?}g +-- 4 ab, By (11)

blat\f\bgﬂ-z + - = b By (SIB)
= e By (11)

Similarly, one ma¥prove the following:

N

THEOREM TX The product of a scolar and the inner product of tiro
vectors {ﬁ@?ﬁocmtive: Fa-8) = (ko) - 2.

TIﬁ{ﬁ}‘EM X, The dnner product of e vectors is distributive with
respect to addition: (« + 8) -v = a-v + § - v.

}HEOREM XL The inner product of a nonzero (real) nector a and
teelf 45 posttive! « - o > ().

. Tr——
The magnitude |a| of a vector « is the expression
(12) lal =Va o = V(@) + (@ + - F (@)

The distance d between thoe points « = (a1, as, . . ., ay) and 8 =
(1, b, ..., by) is given by '

@ =18 — o= (b — a) + (b — an)? + - -« 4+ (b, — a,)t
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We iofine the cosine of the angle between the directions O and Of
to boe given by

(13 cw9=i%%T

1t cun he proved that cos § so defined satisfics the relation —1 = cos g

= 1. Twovectors o and 8 are defined Lo be orthogonal (perpendicular)

ita-3=0 Ina real field {to which woe are limiting owselves in the

prosent consideration) the only vestor which is orthogonal to itself is

the null vector. In the complex field this 1s not true; to ilustrat®y,
the complex veetor (L, ©) is orthogonal to itzelf. The conditiorr

«- 3 = 0 for the orthogonulity of two vectors is symmetricy i is

orthogonal to B, B 1s orthogonal Lo o. This follows as a'.njihm‘iudi::u,e

comsecence of the commutativity of the inner prodagha\”

& voector @ = (@, @ - - @) is suld to be normaliabd if its magui-
tude, |al, is 1; thal 13, i (@) + (@) + - < AN = 1. Livery
voctor a # 0 possesses a n ormalizing  factor, L.duth that ka is normal-
ized, namely k& = 1/—}-\/’(&1)2 4+ (ug)t + C A (@) The unit vec-
mmﬂ=aﬂwumy@=mmnwmp“,%=mquwn
are normalized, mutually ﬁ‘éVﬁb’ﬁ'ﬁfcﬁﬁQﬁ"Wlor}@inrly independent.
Thev constitute a noraeal orthogai‘aﬁﬁ basis for Vo(R). In general,
nonzero orlthogonal vectors args lineurly independent.

v4-8 Abstract vector ~s@c§g We have presented the algebra of
vecrors ag the algebra oﬁz-tuples (my, A2, -+ s an) of n scalars in some
field. Tt scems dnfsi\t‘fi.bie that we discuss briefly some ahstract aspecis
of vectors. ,\

One mightrapproach vectors from a broader axiomatic viewpoint.
We could defifie a vector space ¥ over a ficld F to be a set of elements,
called r.ycﬁ;rs, gatisfying the following axioms.

{1 (Tp every pair of veetors « and B in V there is associated a
\-’é&tér v, called the sum faasndB y=at 8 guch that:

(#) addition of vectors is commutative, & + 8 = 8+ o

(57} addition of vectors is associative, e + (8 + ¥ = (o + 8+

(437) there exisis a unique veetor such that 0 + a = O for any
ain V;

() to every veetor @ in V there corresponds a unifue veeior —a
with the property o -+ (—a) = O.

T'o say that the vectors of V satisfy these axioms is equivalent to
saving that Visa commutative group under addition.
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- . +

TI. Any vector e 1in ¥ and any scalar s in F determine a veetor 4o
in 7, and for all @ and 8 in ¥ and all sealars r and s in F the following
relations hold:

(0 (r + 8la = ra + so;  (i1) (s} = (rsda;

() rla+8) = () +G83); @) 0-a=0; @1 «=a

Note that in defining veetors to be n-tuples of sealars subject to
the laws of combination spectfied in (1) and (2) of Section 4-1, phe
postulates I(z), (75}, (7)), (¢0) and 11(Z), (52), (230), (2v), (») werc esthl-
lished as logical conscquences of the definition we took and ni\I he
propertics of the underlying field. That is, the set V,(F) of p-tuplos
satisfies the above formal axioms of ztb%tm(,t spaces; the pomt WO HLC
making now Is that entities other than these n-tuples also gatisfy tho
axioms I and II.  One illustraticn of an abstract xe}ior space ks {he
set ¥ of all polynomials, with eomplex cuefﬁvwntb, . a real variable .
As a second, consider the functions f(a) \\hm( domain is any set S
whatever {as a plane region), with a ﬁe]d\F as range, o that f{
assigns to each « © 8 a value of f(x) @FY Such s set of functions
form a vector space in E!&f\rthbr‘ambbar y.;;,gr gand the sealar & mul-
tiplied by f, ' = &f, are the functamm c]eﬁneg[ for each * © 8 by the
relations _\

hix) = f(x) + ggﬂc)" and  B(2) = k().
In the theory of abstl;z@t‘.t,\rector gpaces it is eustomary to say that a
finite veetor space ¥V k\\e? timension n i it contains » linearly inde-
pendent elements hile every set of 7 4+ 1 clements is lincar 1y de-

pendent. Tn buzh theory it is proved that every {general) findte vector
sparce of dzmm@wn 7 can be pu! in o oneto-one correspondence (78

tsomorph; i(’) “With a veclor space V, (F) of n-tuples of numbers in F.*

*8oeaC. C. Macduffee, “Vectors and Matrices” Carus Mathematical
Mo nogmph'i' The \thhc[mtual Association of »’mema 1943, pp. 181-182,

\ 3



CHAPTER 5

ELEMENTARY PROPERTIES OF MATRICES

5-1 The concept of a matrix. We have been studying vectors,
which were defined to be one-way ordered sets of sealars which oléy
certain rules of operations. Our next step in the development™of
mltiple algebra is the study of two-way ordered scts of scalars Sswhose

clerents are arranged in a square as ; O
- ; g1 o R
L A =la = [ " 1::’»

a1 a2 “‘\\'
or in a rectangle as \¥;
. bir bz b))
(‘d_.: B = [bjg = [601 bgo '5'2-5\

: P\

Sets of mn scalars arranged in rectadgidar arrays with m rows and
# columng and which UW' cﬁ?raﬂlb}a‘%le“ %f combination are called
matrices.  Let ay; designate the becﬂaa elomént in the ith row and the
4th column, frequently ealled (he (t itk element, of the matrix 4 with

m rows and # columns; theu Mmay be written

~\ a4y g1z ... i

e £ "’ “ o0 .. 1
(3] ANl = | e ?“
".: ~'~ [ ) L1203 ] 1290

N

In the {1, j)t,h\’wrm @i, © is called the row inder and j is called the
colurmn i dz’:)‘ A matrix with m rows and n columnns is called a matriz
of ordern, by n. If m = = the matrix is a square matriz of order n.
Thus the mairix of (1) above is a square mutrix of order 2; that of (2}
l&w’i}\ndl rix of order 2 by 3.

\ AWe shall commonly use capilal letlers in italic type Lo represent
matrices, and small italic letters fo represent the scalar elements of
the matrices. Capital letters in bold face type are used, as herelo-
fore, to represent an underlying field or ring.

5-2 Addition of matrices. The now [amiliar operations with
vectors may be used to suggest ways of defining oper ations with
matrices.  Heeall from plane anslytics that there are many ways of

mapping or transforming a plane upon itsell so that cach point a =
A
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{21, 23) of the plane is carried into a new point 8 = {y1, ¥2), the coorii-
nates of the new point 8 being related to those of the old point a b
lincar homogeneous [unctions as

[T 1~:_§

(1 ) Y1 = Qud + Galts

with transformation matriz A = ]:
Y2 = o1k 1 douka

tha) {hay

For example, a countercelockwise rotation about the origin is expresad
by

. O\
¥ = & cosf 4 assin g
Y2 = — & sinf + x5 cos L)\
with transformation matrix X O
4= cos 8, sin d R ™~
T L —sing  cosd '\\
Let another point v = (2, 22) be related to « in thevmanner
o 21 = by 4+ brz;re [:bu Bial
; . ith transfo [ B = -
(5 22 = Doz, 4 bygr, Vithtrans rmatio J\I‘Q\tux b, bgg_!

Denote the sum of 8 and ¥ by A; that(Qw » = (wy, we) = (yy + 2.
¥: + 22}, Then we haverww. dbraulgl:ffary org.in

(ﬁ} = (an -+ bn)‘xl + (&1’ + 512}12
’ Uy = ((11_1 + b-&]_,jiﬁ + ({In) - b)n)xo

with transformation matruc\

+ bm thia 4= 512
C. A\[a[[ ‘ .
:\ a2+ By, 0a + by
We are thus led to‘the idea of defining the sum of two matrices A and
Blobea matrXC such thal an element in € is the sum of the corre-
sponding ekm{‘nts of A and B.

Ano‘rhr:r\ wey of approaching addition of matrices is to consider
the mgtﬁces A and B above as ovdered scts of row vectors:

'"\\;". _ | ir | | a _ b b &
N\ 4 _["121 azu]_[az} B_-I:bﬂ 5;::]_[532:].

Then
an + by, Qi + blz] |:le|
A+ B = ; = = ("
+ [(1-31 + bar,  atas + bay Yo ¢
In general, the sim of two matrices of the same order A = [a]} and
B = [b]¥ is the uniquely determined matrix ¢ — [e]# such that

i

(7%) ci=0;+by G=12... m@G=102 )
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<3

or equivalently

(777 Yi= a;+ 8; (1=1,2,...,m)
That i3, fo add twoe matrices add corresponding elements or, equivalently,
adid corresponding veclors.

Sinee any scalar element {(or vector) in a matric sum is the alge-
braic sum of corresponding sealars (or vectors), it follows from the
comnmutalive and associative laws of addition for scalars {or veetofEh
that eorresponding laws hold for the addition of matrices. Thus ve

have N

N\
TuroroM 1. The addition of matrices 18 commutativeX I+ B =
H4+ 4. ' A\
Turorey I, The addition of matrices is associgte: (4 + B) + ¢
= A 4+ (B+ (). : y
Exyrciss 5 x’,\\"

L =2 Yaas =1 7] Qs - [3 1
S RPN R & S R I
2 For ™y )

! yw: dbraff{%@.fg’rary.org. s o 3

T=[4 5 6| yand  U=14 1 65
TOX 8 ’ T 8 8

finrd T 4 L) _ "\

% Cive a detailled proof of Theorem I for 4 = [2]3 and B = [b}§ based
uport §7) the addition of 0 Jars; (1) the addition of vectors. An economical
way Lo prove (1) s o éhow that the (Z, /)th element in (4 4 B} iscqual to the
{1, jith element in 'g\Bf + 4). Thus

the {4, m\&i}ﬁ;ment in{A + B) = a;; + by By (79)
\J = b, + ay By (8la)
the (4, j)th element in (B + A4).

O
Ohsp‘r\ijc’ that this form of proof is applicable to matriees of any order.

“NMGive a proof of Theorem 1T for 4 = [al, 5 = (B3, and & = [¢f} based
k{on {1) the addition of scalars; (1) the addition of vectors.

5-3 Muitiplication of a matrix by a scalar. Returning to equa-
tion (4) of the preceding seciion. if we multiply 8 = (¥1, 2} by the
sealar kb, we get the elements of k8 = (ki ky2) subjected to the trans-
formation

(8]

Eyr = kayixy + kaasks
kyn = kanay -+ kagprs

with fransformation matrix
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_ k-(i“_ }E{I-1-g:|
B = [ka;g] :’\"(.'.22
The form of the matrix B suggests that we define the product of 2
matrix 4 = [aly by & scalar & to be the matrix B = [B]? such that in

element of B is the product of the corresponding element of A by &
That is, if B = kA, then

(97} bi; = ko, O\
or, equivalently, using vectors, O\
(992) B = ke O

in geneval, to multiply o matriz by a scalor, mdfs ply mch \coff.
rlement of the matrie by that scalar, or ecquivalently mu?fapfy each vt
of the matriz by the sealar rrmkzpfw

From the definition of the multiplication of a mzml\ by a seuing
and the basic laws for the combination of sefluts, for any scalars -
and s and any matrices 4 and B, it followgthat

Tieorey ITT. +4 = Ar.

Tacorry IV, 74 ‘f"\éxﬁw—dkﬁf‘ad;}rﬁ}'di y.0Fg.in

TuEontMm V. (rg)d = :(LA)

Trworem VI. r(d + B r A + rB.

o\
The behaviar of maluu;-»,as expressed in Theorems T1I, TV, V. und
VI may be 5ummrmze i

Tarorexw V11 _Lum combinalions of madrices with scalar corffi-
cients obey the Iaws of ordinary sealar algebre.

Thus = m{‘\of the laws of ordinary sealar algebra hold for matrices
but otherp No not, as we shall see.  Significantly, those which do not
hokd f()l’s[ncttl"li es are the commutative law and the eancellation law
iol,”\l,h‘c multiplication of matrices. If every law and theorem of
‘-:Nk'?l algebra would hold for matrices, there would be no reason for
the existence of the theory of matiix algebra.

From Theorem TV it should ba clear that we are justified in writing
A for A + 4+ 4 + . A, and 34 for 74 — 44

Wemay write A 4+ (—1)B as 4 — B we say that B is subtracted
from A.

Fxprerses

1. Culculate 22 — 8, R and 8 being the numerical matrices of Ex. |

Seetion 5-2,
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2 Uetermine U — T, where [7 and T are the matrices of Ex. 2, Bec-

il &
3. Verify in detail Theorems IT1, TV, and V for the matrix 4 = |el3.
4, Prove Theorem VI for the matrices A = [o§f and B = [b)}.

5-4 Equality of matrices. The null matrix, Two matrices are
snidt to be equal if they arc of the same order and have their corre-
spending sealar elements (or vectors) equal. So if A = L] an,d\
B = b} arc equal, then \

. N ¢
(13"}'}'} gy = b'ij ¢\
NS ©
or « \/
(. 1 U-’J 4 o= ﬁ;\ X & - .":

The equality of two matrices of ord('r m by n 1mplif€§<’bv the above
defiririon of equality, the satisfying of mn siedad equations. To
Alusirale, the single matrix equation [af = blt:l‘i equivalent to the
six mewlar equations ¢ \.
thyy = b}l, 1 = b]? 13 = bl'!; [£2:3] ;‘bflg {Ign = b2‘.’.- day = b?;{-
Fueh of the matrie relations in Theorgm I . ... VI for A = [alf, B =
[ and € = [e]? is eq‘ﬁwﬂlﬂﬁfﬂ%ﬁ*‘(&hﬁ'ﬁumtlons involving a,
b, and ¢y, where 7 and j arex (,onstant for each particular sealar
eﬂu‘lT'lOll ~

A matrix having ev er{y&lemont zoro is called a null matriz, and is
written O = [0} dor“the definition of ( and the definition of
eqmllm,' of matricgs, it follows that 4 = Band 4 — B=0 (4, B,
and € cach of om{{t‘r m by ») mean the same thing, aach clement ay;
01 A being al to the corre sponding element by; of B. Clearly

+ 0= A\and 4-0=

5-5 R\w matrices and column matrices, A matrix 4 = [af;

w 1th,\n, ‘lements arranged in a single row Is ca]l(\d a row matriz, and
\ﬁkwnte
(M) (]l = (a5, Gz . . - @)
A matrix A4 = [2]® with m elements arranged in a single eolumn is
called a column matriz, and we wilte

iy

it

(12) lafr = | ° =f_ai,a2,...,'a.m}.

L
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Vidnson- toctlanhing of woneoriy dDo= agl as an ordered e
e b,
R
il A where o= (g oL ),
7
LR

vy think of b o ancandersd w1 of oo colgmn Vielors,

1. A

e L D T T T I whoete L% PR £ U ¥ E P
; ; 1

<{‘§Il
Camd o as thee grlc eolamin veetor of A (s h:1\'in;f,<{ Vol

W aften refier to o as the b row vietor of {f having tly
i

1. o * ’“>
\>\
5-6 Multiplication of matrices of the secon \o\; er. Lt 1l
T te P ’:\
[ NN N TR NN &/
\"‘\\ -
ERRRTY oo . } DAY 2 LR
il witlotennsforroat o™t ric 1 .
Ea L LY N/ LRI |
. ™! .
wioeh dran-torn- 'r;:.wwfw,dbnauiﬁ‘ﬂﬂ‘y.-mﬁg,-lﬂrnlln\\' the dinear
R
trani-lonmeatinn &N
RN
| d A fr —]
. ! H - - . I |
i1 with P med ion nut rix f3 .
- e [ . L\ b'_'l "J'.:'_l
whieh tranaforme 5 gg'\ Aintoe g i The eoanhine] e
sl ot theews s nanSorfaat™in- oltaine] L substitaiing from 115:
D ]
to i e tw\*}
i I '{”’.:""}! s b ciah ez,
AR N,/ .
TR ¢ gt Y e SERTTI TN
p (, . : S
with oty \J
/\\I’ oo asfes g e Ry
= T B TN U |
.Q\a e
\.</\{w’ Lo o B et et ton w hieh maps= ¥ direet]ly intn
e N s e o s o e Fi Il Yormy of € sugersts thal we
T B T T B RUTR TN I LI PN O A4 That s,

- \ [r T Y f..
| IR B ,..___]VF... .ir__:|
o o fe o b o kL
Lt A k- e
Nt "
b a b
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If row vectors arc used I writing the above transformations:. we
bave correspondingly

(20" o =34’
and
21" 8= vE,

the transpose of a column veetor being a row veefor.  We thus P
that it is natural and convenient Lo use wrprimed small Greek lefads
as oy 3, v, . . . Lo represent column vectors in conneetion with mgf Mees,
and relatedly 1o use primed small Greek letters as o, [N T
represent row vectors; subsequently we shall adhere Lo this Jirae e
Integrating this convention and the notation of Seciion}i =3, we shall
designate the ik row of the matrir A = [ali by af and ¥he jth eoloom
Of A by <78 \/
We now utilize the convention just made as\Ih the use of prived
and unprimed vectors Lo give an alternate o&r’n}Jf the typical clenent
ij = aaby; + adly
of the matrix product € = 4B. Lete) _
www,dbrauil:b‘l‘-ar Jorg.in
a = ',(!'1-\'1'» i

be the 4tk row vector in the matiix 4 of the product (17), and let

8= by, by
be the gih column vecto\h"i;he mutrix B of this product. We define
the inner product of the row vector o' and the column vector 8 to he

o« BEan, As) b1y, bos} = anby; + Lisby;.
Henee the twlbal element ¢;; of the product € = AB as defined by
17} may Dedsritten
17) ng
e ti; = a'f = (a’l'l:r a?'2){b1i: bﬂ:’}-
NS } . . .

‘Thigwresult gives us a hasis for saying that the (7,7) element of the
vraduct of A and B is the inner product of the ith row vector of A and
the jth column vector of B.

Exercises
L. Verify that if B — [2 9] and § = l:f "3], then
1 3 T2

g - (2,941, 71, 2,9)55,2}]= 65 287
(4, 311,71, (4, 3)(5,2} 25 28
Find SR and note that SR = KS.



57 MULTIPLICATION OF MATRICES IN GENERAL 63
v 4| we mean the usual deferinant of A:

dn s
Aoy o

= rlp1fhax — (paflsy.

4] =

Rhee that |RS) = |SR| = | S - |RL.
& Tegt the associative law fQR}"f = Q{RS) for the matrix @ = [1 _q

atd the matrices B and 8 of Fx, 1 above. ~N
4, Find BA when B = [8]} #nd A = [al3, and observe that in g?neml
Aft o« BA. Show, however, that |AB] = |B4| =141 18, A

, 10 0o N
smr=| lo-=] ] A=k s C
4 01 4] 0 0 and A = [, show that A ‘

@) IA = AT = A, (@) 04 = 4G = O
. \\

5. Using the definitions given by cquations (17)\amd {18), and the con-
vention at the end of Section 5-6 above for M= o, ] = [al3 and
F o= By, B = (b3, show that AB = [A8, .46 “21‘6 prove this, note that
13, = byay + bnog and A8 = bpay + beap“Thus the jth column in AB
ix Bty + Byo = APy or the jth colurnn jng .fiB is 4 linear combination of the
erdnmns of 4, the coefficients in this lmear ‘combination being the cl(‘ment‘«
of the jth column of B, YWY dbraulib Drary.org.in

fi. In the manner of Ex. 5, fm thp same matriees show that AB =

[5,; . and consequently fhat t-ht‘- ith row in 4B = afB. Observe tbat
LY

thi= ith row in AB muay kﬁs&hften auf, + @Bh; thus the ith row in AB s a
Niear combination of tlkq ywi of B, the coefficients in this linear combination
bmn“ the elements,of 1 he 7th row of A
. For A = [alfprove that [kd| =
5. Using th’z\nﬁaul of Tix. 5 above antl that of Bg. T of Section 2-9, prove
tlat 1f - 1\1?1]" and B = [5]% then 'AB) = 14]-|B|.

#

b= 7 Mul‘aphcatmn of matrices in general. The multiplication
of 'IDHT'I‘lCE“\ differs in fwo important respects from scalar muliiplica-
\Non and from the multiplication of & matrix by a sealar: (1) roatrix
multiplication is In gener al not commutative; and (2) two matrices
¢an be multiplied only when they satisfy a certuin condition, namely
when the number of columns in the first matrix A is equal o the
nmber of rows in the second matrix B of the product AB.  Matriees
which salisfy the latter condition are said to be conformable. 1If 4
is an m by n matrix and Bisan n by & mutrix, the product A8 is an
m by k matrix.
The product AB of any two conformable matrices
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HEARL S
23S T T- R §
A= [a]m — | By 22 L.,
= [g|F = i
a1 flgn N Qi
and ~
b]l b]'_g [ blf.-
B - {b]? - bQJ b:_,._, P [‘)2,{-
_bnt bnlz bm’:
is defined to be the matrix O\
o 1z O T :..\: o
N/
 fa — | ta Loy N ALY g ™
€ =flp = | o o TP
| Con Crz [P ok 2 ¢ {:“
1 which - \
(23) Ci; = a.flb]j Jr ﬂ.igbg‘; - s + .._‘-,_‘b‘_i_i-_
. . i 0\ W .
Here 7 takes the range 1,2, ..., m, and j thefehige 1.2 ... k. 11 is
& » My J h . . _
sometimes convenient to represent this pécict in the form a2 i? =

™

[e]¥.  We refer to the product AR as t}ii}»;’}?'em:ciizfplica.[‘.-io-n- af 130y 1,
and the product BA as \';,}%\S\.}’SE@M{BPLW%?E of Bby A, Lel

o = (@3 .. an)
be the ¢th row vector in the I»I’Eltl:iy:\' A and let

}33\:—;'}\{613', b?i‘; LR bﬂa"}
be the 5tk column f.!ecgrj>\}1 the matrix B. The dnner product of the
raw vector o and thégblumn vector 8 iz defined to be
A</
Pfkgu.r (i, ey, . . . y G by, bajy . .., byl
i'\"i. = by 4 aeby; 4 - - - + Qb

Conm_aqpmhﬁ-f, the typical clement ey of the product AB as defined
by (233edn be writien

N\

N i = a8 = (an, e, . . y @i {B1g, bayy L Bk

In words, this proeess of multiplication of matrices may be defined
as follows: lo obtain the (¢, )th element in the product AB, select the
whrow of 4 and the jih column of B and take the inner product of these
iwo vectors.

Exiretses

1 2 3 5 2 3
T=1|4 5 ¢ and =14 4 6/
i858 0 & 8§

I, For



57 MULTIPLICATION OF MATRICES IN CENERAL 65

Grei #° and T and note that 7€) = T, Show, however, that [T =
i[“‘! = Tl

i F or
2 3
4= [4 2 _1] anil B = |:—3 [Jj|,
3 =7 1 1 3
fingt .18, TIs it possible to form the produet B4, where 4 and B have these
valucs? I so, find B ~
3, Determine the product of the matrices (3, —2, 13 and 2, 5, 61.
. Vind the product of the matrices {2, 5, 6} and (3, —2, 1). ,\‘\
Por A = [afl, B=1b1,C = |eli: N
":: Determine AB, and note that the product of a square, mzftrm and a
an matrix is o column niatrix; "G
{711 Determine (4, and note that the product of arow n@tn\ and 2 square
weatriy is # row matrix,
740) Determine C'B, and note that the produc\ ob'a row matrix and a

eolun matrix is o scalar
{i5) Determine BC, and note that the pmdﬁet of a column matrix and a
row malriv 38 o matrix with 11]{Jp01t10]1dl 10\?\5 dl’ld proportional columns,

6. Prove that

2 hogre .dbra l:lli:_E’J:'l‘ﬂI'y Jorg.in
ey, 01k b flul= a5 byt et + 2yz + 220 + 2hry.

P

g f ¢
7. Show that AR = [443\./16 .., AB4, and consequently that the jih
cofumn in AB = A;ﬁ; Xote that we may write this jth column in AB as
B 4 Bayoes + - -+ 3 by thus the jth ecluran in AB iz a linear combina-

tiow of the {olumm ol A aned the eoefficients of this lnear combination are
thie elements of phe £iAh column of B, (See Ix. 3, Beetion 5-6 for hints ag how
o fill in the details.)

A Fr v“\ﬂu’( the ith row in 4 B iz a linear combination of the rows of B,
aadd the &deficients in this linear combination ure the elements of the tth row
of A (,set—‘- %%, 6, Scetion 5-6).

(g Yor -1_ = [af, prove that [k4] = &= 4

\ )10, Using the result of Fx. 7 above and that uf LEx. 10, Section 2-9, prove

that if A = [a]3 and B = [bJ§, then [48] = - |B|. Ilint; Write AB =
(Buces + bagces + bances, by + bao -+ bacey, bm):; 4 Bogar -+ bysas], and use
'Byd| = (B X ¥) - &

11. Using the result of Ex. 7 above, prove that if A = [a]% aud 8 = B},
then |AB] = |4| - |B].

19, Tt should be realized that when we defined the “inner produet” of
the *row veetor” of = {a1, g} and the “eolumn veetor” § = 1hy, Byl w
actually were giving a rule for the eonstruetion of a scalar from two p‘iT‘tl( u-
lar kinds of matrices. Note carcfully that o8 = Sa’, for
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a'f = {ay, az) iby, bal = {m, a.)l:z:] = b1 + aabs,

, b b, e
e I R il
Show, however, that «'3 = 3o

hitk

5-8 Commutative matrix products. The matrices 4 = [ :
B = [bf arc conformable for the produet [a]Z[B]2; they arc con
able for the product [Blfle] only if m = & 8o for 4 = [rr"
B = [b]5 we may form both produets AR and BA. In Ex. 2
tion 37 we saw that [al3[b)2 = [c]3, while [BJ[al} = {dJ3. GLe iy, 1
2 by 2 matrix [¢]} cannot equal a 3 by 3 matrix [}, * Sp\e\ ' g
the products AB and BA both exist for 4 = [a]7 ah(P B =
necessary bul not sufficient condition for AB and\BH to be equ-l i
that m = n. If AB = BA, the product of the Wiatrices 4 and 3 i
said to be commudative.  Tn order for $wo malrides to be conunisin
they must be both conformable and squaresy HJ{H‘\'U the priiet of
square matrices of the same oyder 1s not cnmmutatlve excepl I vary
special cases. In F‘\ 3, Section 56y we saw that 4B 5= K1 fur
A =[afand B Bl an%bggﬂ?ﬁfaﬁf%?rg in

Tm = [ng m *v&ﬂd [( ]m - [b]m m

wi have v

Cij = (ttqy, Gagy - - am}{bl,,, bg‘r. e bl
22 b{{‘*‘ az2b> e = a't‘.mbvﬂj'_v
(b,l b, .o i bl Loy, sy, . L s G}
74 b'él(h; + bﬂ.a’; BRI & Um;am

From these v&ws we see in general that ¢i; = dy;, and [e]? = [d]

HoweyeryHere are some speeiad products of malrices which wre
commutagive.  Thus for

s 2 -1 =2
1\—{ . 1] and B = ]: E ']’ AR =RB4 = _18[1 " |
N\ i —i 4. '_i

) 3

%teilmt the laticr relation may he written AR = BA — k[1]3, where

= = i 2 - 1 U .
} il = |Bj, and [1 = J:O }.:I

I

ExErcisig
1, For

2 5 3 -3 1 7
Ad=13 1 2 and B = l:—]_ -1 5i|
121 5 1 —-13
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chow that AB = BA = E[1}3. Determine the relation of the sealar & to the
deterniuant of 4.
2. For A = [al, B = [b}3, € = [¢13, prove that A(B + () = AB + AC.

5-9 Nuil matrices. The division Jaw. A matrix bhaving every
one of its scalar elements zero is called a zero matric or a nll matrix
and is represented by O or [0]F.  The relations

04 = A0 =0 £\
are true for a zero matrix of any order and a conformal matn'{ A .
Towt if AR = O, it does not necessarily follow thal either A s Az a

mull matrix. In other words, the cancellation law of muiﬁ'phmrwn
(it #y = 0, then either & or y raust be zc ro) does not hald foz mafrices.

Yor example, “
3 3] \
[1321‘[ 3 U_S,O]
2 3 1 5) =3 1|70 0
—2 AN
and
a b b &[0 o
A i) dbﬁaulcb]aa Y0 [ in)

arve two produets of matrie xt»'bmnu the null matrix without cither
{uetor in one of the produal®being the null matrx,

However, the cancel]@’t\m jaw of multiplieation does hold for cer-
{ain matrices; it \\111\{11\p10\ ed later that if B = 0 and if A% =0,
then 4 = 0. O\

5-10 The Summatlon convention. A most useful convention in
mathematie pqrtlcuhrl\' in dealing with products of matrices, 1s the
\?rmmata\q’{’(mmﬂiwn the appedrdnee of an index birice T @ single term
e a(i_:e that a summation is to be made over the range of the index re-

Qf&m, Thus
N
N/ abifori=1,284
means
1
2 ab; = b + tsbe 4+ - - ¢ 4 @b
i=1
agriforj =12 ...,n
means
"
2- fpty = @py¥y St Qpaky £ + T,
1

j_
b for bk =1,2,...,7n
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means
L
z b = oubi + bz + - - I dabi.
£l

In order to apply the convention, one must have given the rauge
of values of the repeated index, or this range must be implied by 1he
context. Therepeated index is called a dummy indez; the significunce
of this appellation is that the particular letter used for ihe repes Feph
or dummy index is immaterial. That is, agry and agr, stand foy, rhe
same thing, assuming of course that the repeated index in each -
ston will take the same range. An index that is not dumni{yyér re-
peated is called a free ndez; no summation is implied iryé'qlune{-.‘rir_wu
with a free index. Suppose the range of all indiees in Ayt w1, 2,3,
By the summation convention this cxpression stands‘i‘o?‘

anr + ae: + & ig's, \
in which the free index ¢ is free to take QK&R}' one of the viines
1,2,3. Bo ajz; stands for }

euty + G1ate + QT @aTy + Qers N0, @airy + agers + on
Using the summation \%Hn”{fggﬂaptﬂfﬁﬁlﬂg Yoy 3fth clement in € = 4B,
orin{c]f = [al?{b]z which is gi Ve.;l:'ili detailed expanded form by (23),
may be wriften Ve
’i*?ﬂa';f = @inby;,
with the indices ¢ and }'\f’ﬂl’ing the ranges stipulated in Section 5-7
and % taking the rangel, 2, .. . n.
&
~'.\'“' Exxrerses
1. T¢ eac&'@féx in air; has the range of values 1, 2, 3, what does this

expressiongfepresent in expanded form comparable to that of the sbove
iHust-ra-{giuiﬂ,‘.’

2. {Tf duch index has the range 1, 2, 3, 4, write out in detail what a;z
répregents.

¥

5-11 The distributive laws for multiplication of matrices. We
propose to show that matrices satisfy distributive laws correspond-
ing to those for sealars:

atb +c) = ab + ae and (a2 + b)c = ac + be.

. \_Ve may prove that A(B + () = AB 4 AC by showing that the
(2, 7)th element of the matrix on the loft is equal to the (7, {)th ele-
ment of the matrix on the right. Let 4 = lalZ, B = bz, C = [e}

B
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Let 5o he the (4, §)th element of A(E 4+ C) and y,, the (Z, 7)th element
of 18+ AC. Then
wg; = @plbey + u) = aabn; + aacr; = ¥y
We liave proved
TieoreMm VIII(E)., A(B A+ C) = AB + AC.
Similarly, we may prove
TuroneM VIII(). (4 + B = AC + BC. R
‘these two theorems may be combined jnto R N,
Tamgorkm VIIL.  Multiplication of matrices 1s d?.'si-rz'bu;'iv’z?"'?;t;ith re-
spect to addition.

5-12 The associative law for multiplication of m\tnces Just as
seadav multliplication satisfies the associative law albe) = (ab}c, 80
dt;{x matric mulliplication sahbf\r the asédeiative law A(BC) =

AB)C. Let A = lalp, B = [Bl, C= [dirand let z;; bo the @ jth
T{ ment of (45)C and y.; the (2, F)th élamhent of A(BC). Then

Tij ﬂ@wlﬂﬁfw@ﬁk@bfg}m_ Y
We have proved . :

TuroreMm IX.  The prodiet éf three matrices A, B, € is assooiative.

From Theorem IX there:i.%[lnws

Tupouem X. Lheproduct of any number of matrices A, A
L. AL s asaomafw( that is, in such @ product the far'mr s may be
aro pcd n ,Qny manner provided the sequence is not changed.

5-13 a}kers of matrices. If A is a square matrix of order n,

then th¢ eontinued produect 444 . . A to p factors 18 written A”.
By I\h(, ‘nssoviative law of multlphcatmn
\()4)“ ATAs = Aeg7r = AT

anl

(25) (A7) = (A7) = A"

From (24) we have
Turorey XI. Positive tntegral powers of a square matrix are per-
mntable.

Tt is customary to interpret A°® to mean I, the wnit matriz de-
seribed in the next section. From (24) and (29) we see that In the
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multiplication of powers of matrices, the usual index laws of seular
algebra hold for positive integral and zero indjces.

Exrreizm:

LoBord=[ % lfind 4% and verify that 4% — A 4%

2. Why is 42 — B* 5« (4 — BY(A + B) for matrices 4 and £, in genzil?
3. Expand (4 + B)(4 4 B}). Note that the expanded form b
terms, and not three, as has the expuvsion of the correspending c.\'])'r;\l?.:@n

in sealars. PR
4. Expand (4 + B4, W W
5. 1t N
0100 2
A_lo0o o0 O
000 1
00 0] AW
show that R
D010 0 ON® 1
2 0001 . Qsd%0 o
42 = S B , At =0
0 0 0.0, dbraulfffFarly ot g.th
000 0 b 000
5-14 Diagonal, scalar, and(tnit matrices. Tn a square matrix
of order n, ’:\m’\
\\ ’ A di ... Oy,
ALy = |0 G2 ... Gu |
& S
o \ 7 @r1 Gyxz ... (L2
The elementg of the type a., wherei = 1,2, . . . , n, are said Lo lie in

the principal diagonal of the matrix. A square matrix in which all
the elefients are zero except those along the principal diagonal is
C&ue\(h%}/diagonal matriz,  Such a matrix has the property that a;; = 6,
i %4, and is of the form

di; 0 .. 0
D= 0 dee ... 0
0 0 ... du

A diagonal matrix for which the diagonal clements are oqual is
called a scalar snairiz. A sealar matrix for which the diagonal ele-
ments are all unity iz called the wngt matriz, and is represented by
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10 ... D‘I
A
o0 ... 1
From the definition of the multiplication of a matrix by a scalar it

foliows that a scalar matrix with each diagonal element equal to &
rary he written K = E[1)2. To indicate that [a % 1% 1 unit matrix of
(mi(" n. we would write [a]? = [1])%, and similarly to indicate that [a™
i 2 sealar matrix of order n, we would write {a]} = k1] O\

The propertics of diagonal matrices, and in particular of Sealar
and unit matrices, sre quite important in matrix algehra, a.n?l we how
censider some of Lthem. PR

UHEOREM X11.  Premudtiplication DA of @ squan,\ma!m:r A wnth a
sugorsal matriz D multiplies each row of A by “the corresponding
diagonal elewment tn D, 72\
Yol dyr denote the element of D in the 1’(“{1\nm and the ith column.
Then if 2, be the (7, /ith element of thgptoduut DA, we have

iy (0: O: o H}WWW!CIBHE(WW)/ org. o+ - - - :am} - d“ai."‘
Henes AN
[1173'1, Tigy o o0y By e v \J’ﬂ"m] = a’,;,-[aﬂ, Tioy v o« 3 Bijy o v -y {I-‘-,.‘].
“ . . ,i”‘x . =
Thus the theorem is L{Q\*{id. To illustrate,
du O 0 a2 Qs dyan dndr dudn
0 die O | @r ez Qo3 | = Aty dafye  daotley |-
0 0\ gyl 0n1 G G dottsn  duatlsz daatias

A almllar\gmof gives us

TH}”ORL\I XIII. Postmultiplication AD of a square matriz A with
ma”@mgrmal matriz D multiplics cach cobumn of A by the rorresponding
\ diagonal element in D.  (In Theorem XII and in related theorems
when we speak of the product DA it is to be understood that D
and A are conformable for multiplication.)

From Theorems XIT and XIIT and the definition of a scalar matrix,
we have

Tukores XIV. Premultiplication or postmultiplication. of a square
malriz A with o scalar matriz K multiplies each of the elements of A
by the constant diagonal element in K.
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Thus

T Q12 gy 0O ¢ k(I-ll ka-lg ?s:a13
azn e Qa0 kb O =|kan kds ;\"-am '
@31 @ @0 O & kazy  Bege kﬂ-aa.J

As a direct consequence of Theorem XIV, we have

TreEckRmM XV. Any square mairiz (s commulative with « s.-r:fai'.ar\
malrix.
And by direct multiplication or as a speeial case of Theorg\ﬁi‘&‘",

we have  \

Tmeonem XVI.  Premultiplication or poszmultzfplifa-tio}:i}f  sgrave
matriz A by the unit matriz I leaves the matriz A drialicred. Al =
I = A. \/

Also there readily follows ' AN

TneoreM XVII. ™ =], ~N

'The properties of T expressed by the Jast two theorems justifies s
being called the it magg\’xw d%l‘l E}Eﬁ{_%i_lg(\)% Rg‘%ﬁt.loln \\:hlch‘repr(.g:q(':;:}is
A by [a.], writers often use [5;j ?wrjf?he unit matrix; in this notation

the properties of the unit matrisimay be symbolized by suying that

5‘_‘4\& 0, when t < 3
AJ= 1, when ¢ = .
A\

5-15 Corresponqence between scalars and scalar matrices. If
KEC bl and R, = kT
are two scal;vﬁjn}a;tﬁces of the same order n, then
Ka§"152 = U+ k)] and KK, = Edefil

are the kcalar matrices corresponding 1o the scalurs by + %, and ko

hivefore there exists a one-to-one correspondence between scalars
and scalar matrices with respect to the operations of addition and
multiplication; we say that scalars and sealar matrices are “aimply
isomorphie” with respect to these operations. Because of this eome-
spondence, as long a8 we are concerned with matrices of a given order,
each scalar matrix may be represented by its corresponding sealar.

i3
For example, let 4 = [2 1}. We may replace the equation

A? — 24 — B[11 = [0)2 by A? 24 — 5 =0,
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£-16 Summary of the laws of matrices. We have seen that
square matrices of order # obey the following laws:
A+ B =B+ A4, A+ BFC=(A+DB) 4+,
A(B 4+ C) = AB + AC, (B+ )4 = BA 4 CA,
Al =14 =4, A{BC) = (AB)C.

These are the laws of sealar algebra, except for the omission of the
conrmutative law of multiplication and the cancellation law of mals
tipfiralion.  That 18, the main points of dlffelen{,(, between scalars o
&)
a1l {z and matrices 4 and B aro:
'+ While for scalars ab = ba, this commutative law ¢f ~mu1t1ph-
c;a_.t.icm does not hold for matrices, for 4B ## BA in gener ils
(i1 While for scalars the relation ab = 0 implies dhat a or b is
zera, the malris equation A8 = O does not neceesurily imply that
eirhor 4 or B is the null matrix. \
o
ExErRT3ES ‘~~x\ e
. Verify that the A specified in %ectio&f ;5')’-’ 5 does satisly the equation
given al the end of that set hon
2. Bhow that if &y, k2 arc Ieal ar comﬁﬁﬁqcl HuPEBeR and A is a square matrix

of urder n, then *c
A* = (b + k) ACK flkJ = {4 — LI — ki),
where T ig the unit matrix t:l order 7.

2T B = r4 + sI, how that AB = BA.
4. Given that “:'::

VY -1 1 -1 1
-3 2 -1 0
s A4=1_5 1 o ol
\~~' 10 00

show thg&\A" =

¥ Q‘rmc th‘mt
.\ J

0 e —=bHJa® ab ar
|:-c 0 alla B be| =104
b —a 0_lLae be ¢
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The (7, ;3th element of (4 B)’

the (7, 2)th element of (4B)

(jth row of 4){7th column of R)

(s, Gins - - W) (B0, B2y« ooy Bt

(blf] b'!'i_n R bﬂi){ai"l! iz, v v oy ai"'l}

(ith row of BM{jth column of A’}

i

Il

Tt 1~ of eourse understood in this and other theorems that the matrieGs,
inveived are eonformable for the indicated products. N

oA
”"u oreM 111, The transpose of the product of any numbes Sf -
S L8 {’QE{GE to the pma’uci of their fransposes in rc’w’r@ order:
-_.Jﬁ =G A ..,‘

Theorem 1T is an obvious generalization of ihemém II.
Tivonkem IV, The transpose af the pth powed nf the matriz A is
cinal to the plh power of the transpose of ALYy = (A7)
Tap AN = 4747 Ao pfau‘:lors ,:‘:(a A ... Atopfactors)’ =
(e "o
4-3 Symmetric and 'S éixgrauy"mrﬁgflrfé Biffhtrices. When trans-

iion leaves a glven matrix u’nchauged that matrix 1s said to be
otide; that is, A is symgnetric ifd = A" Tnthe index notalion,

o a hog
i = a8 symme[\&ﬁ&,"t:’hen a; = ;o Thematrixd = [k b [
g f r

I~ “_\"LITLPTTIL &
i 1’ fhen Ar = (497, But (4"} = (A7)} by Theorem TV,
'l,wwim"(\ %}\R L (A7), so A? iz symmelric if A4 is symiefric.
Clearly &k Amit matrix 7 is symmetrie.  Also kA I8 symmetric if
Al wymmetmc Further, if 4 and B are symmetric, then
(,L ?3 BY =A' L B =A+ 8, or the sum aof two symmetric
\Qimces is symmetric. These facts establish
Turoney V. Jf A is symmetric, so is any polynomial in A with
sealar coefficients.
Trroney VI The product of any matriz A and ils lranspose Al is
symmetric.
Yorit P = A4’ then P' = (447 = VA = AA'. SoP =P
Tneorky VIIE). The sum of any mairix and its transpose A’ is

symarnetric,
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If S=444" then '=(A+ 47 =AY+ 4=+ 4"
Hence 8§ = §

If_transposition changes the sign of ull the elements of 5 siven
matrix, that matrix is said to be shew sypmonetric. I A = [a; ] is ~ew

symmetrie, then a5 = — a5 The malrix
0 a b
A=|—-a 0 ¢ Q)
b —-c 0 N

¢\
is skew symmetric. For a matrix 4 to be symmetric or kkmx\ %R
metrie it must necessarily be square. As we have noted, li A =
iz gkew symmetrie, then a;; = —ay; in partioular for § 7, al = -
therefore ¢;; = 0. That is, a skew symmetrie matnh}lu‘ecﬂr ily has
zero elements in its principal disgonal,

Similar to Theorem VII(E), we have x.\\.‘

- Turorem VII(i). The difference of any~%airz’x amd T8 franspoe:
18 skew symmetric. H

Note that the skew ::ymm(.,taqgl{;uimgg[{ Brgthird order given abons
has 1 + 2 = 3 independent scalar élemients, namely, those Iving above
the principal disgonal. By a sntml'al reasoning we conclude that the
number of independent btalm{‘elements in the general skew symmetiie
matrix of order n s )

z+2+3}---+(-n.-1) = In(n — 1).

\</
\J EXERCISES

1. Form 1e}mduct AAd'of A = (g1, as, a5) and A* = fa, @y, @3). From
the appeara'h of 447 and the dehmtmn of a symwetric matrix. does it follow
that thig! yroduct is o symmetric matrix?  This product is a matrix of what
or(ie.x"ﬂ N

Q. JWind the produet A’A of the matrices given in Tix. 1. Ts this product
symmetric? Tt is of what order?  ©

3. Form the sum of the matrix A = {a} and its transpoze 4. From the
appearance of this sum and the definition of a symmetric matrls, does it
follow that 4 + A’ is symmetric?

4. The general matrix of order n has #? arbitrary scalar elements. We
have seen that the g,eneml skew symmaetric matrix of order n has 2 Tnin - 1)
indeperxlent sealar elements.  Combine these results to show that the reneral

symmetrie matrix of order » has In{n + 1) independent scular elements.

5. Using Theorems VIT{{) and VII(#) prove that ev ery matrix A can be
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] uniguely as the sum of & symmetric and a skew symmetrie matrix,

that iz,
4= 34 40 + 34 - A7),

62 Minors and cofactors. Lot us consider the matrix of order
3 b}' 3,

Tos @i dng lany @ an

4= : fine  flaa  flag |, and its determinant ‘Al = | oy tan oy
%__f!-:u flys s ‘ a1 dax Gan A
2 AN

The delerming rleloting the 7th row and-the fth
eolwmn i mllul ‘Lhe minor of tho (‘lt‘lnLIl[ dy, and we Iepleaeht this
minor by Ay thus :

r 4 ¢ "
. . N P 2 : Wolftay
My, the minor of an, s l s M1y, the minor of.mg\, 18 .
b sz sy 4 o fhyy

o circumstances we prefer to work not V&}l minors, but with
oxprezsions related to them, called cof&ctn i lhc cofactor of the
elemnont a;; in 4| 13 designated by A4 zmgl 13 defined by

Ay = (— 1yl

, www . dbra qule‘ar‘¥
I'hai ix, ihe eofactor of an e]em('nt ay 18 he tainor of a:; with a sign,

“+ or -, prefised. To 1llustth>,..

In =

1z iy
Fgn lyn

Au. the eofactor of &, is (—1)*+ = —Mun.

3

’\me that we may (‘)})&I‘l(] |4|, the determinant of the third order,
by uny row, gP‘rhIl@, J.espu'tl\ ely for the expansions by the first, sec-
011d 411(1 third r{)\x
A= g 11\*|~ al.Alg + apdy |4 = andan + @0 9 + @223d o,

\.\\ |A] = asids + @zl + gy g3

T hese edan r\ b combined into the single relation
({2\3 ‘Al = aklligl + aped o + ardn h=7=1273}
Similarty, r the first, second, and third column re-
specti \-'c. 1 _} ,we llave
|A| =gyl + a4 !1314‘131, |A| = aqpdn + asodsn + agpd 33,
|4] = awsdys + azdas + @331 g5
These may be combined into the single relation
(2 1Al = qedy + agidoe + Gaidae 0=k =172 3).
The relation (1) pertaining to the expansion of |4 by rows and the

€ /
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relation (2) for the expansion of |4, by columns may be expres:e in
the following words:

A determinant of the third order Is equal {o the sum of the prod s
oblained by multiplying the elements of any row (or column) by the cor
responding cofactors of these elemends.

- On the contrary, note that

an G Q| Qa1 3z dyy N\
dn A @z = 0, and @21 Uar g | =0, o |
oA
a1 dzz Gag ‘ | a1 az flag N\ N
since each is a determinant with two rows equal. Trom e zero

‘0

determinants we have, respectively, \
anAn + andin + andy = 0, and audy + amfh\:}- azzd i = O,

These two relations may be written togother as

(3) leA.‘.l + (152/1;2 + aﬁ,ﬁA = =0 (h == ’?’ 3 j‘ 1)

In like manner we may establish PN

(4) s 131 + a}:QA P + a}?144 i —’0 (h = I 3 J = 2)_

(5) andj + aud w&ﬁb!aﬂ%l Erye YGF &N, 2,7 = 3).

Still more compactly we may comhme J; (4}, and (3) in the single
relation ¥

(6) s+ 0 hz\;z + assdm =0 (h=j).

It should be elear that 'r\he free indices 2 and § each take the pormissible:
range of values 1, z /3 except for the restrietion A 3£ § spocifically
designated. [f fur‘th(‘r we shonld use the summation conveniion ex-
plained in He(:‘lﬁsu 510, we may write the velation (6] as tpdsm = O
h == 4. x’

The rel\honx {1) and (6) may be corabined in the form

AN “=0when h =
PN and 1+ aped i+ a.?¢3f1_{.’{ { - 7 .
) .= Al when h = §;

or

L, "'1

im
Here the indictal range is of eourse 1, 2, 3.

Anulogous to the procedure for estahllshmg (6), expanding appro-
priately chosen determinants by colurns, we may establish

(8) Tl + Gl + Gl = 0 (i = k).

The relation symbolized by (6) for rows and (8) for columns may be
stated in words as follows:
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The algebraic sum of the products oblained by mulliplying the elements
of the Lid row (or column) of a third order determinant by the cofactors of
the corvesponding clemenis of the jth row (or column), where b # j, 15 zero.

Awnlngous to the manner of combining (1) and (6) into (7), the
relations (2} and (8) may be written compositely as

= 0vwhen # £,
{9 @i e 4 eeed o -+ osd ges . .
_ L= |4 whenz = F,
or '
ami—é-mk = J"l 5'{1’.:- P
A\
- . . + N\ 3
Next. consider a square matrix A of order #, and itz delermi-
pant |1 : \
- . N
l iy Gz .. 0-1«:| T iz 2N
A = If U2y Qe ~. Ol ogpd Al = Eﬂ-m t‘l-.z%.’\-\'- - flan|
[L_anl pz  + .. Oan ia;ﬁ\.:a!’!2 PP/ 2 !|
Proceerling as above for the determinant of.f{lé.\rhird order, we may
estaliish the following results: A/

A determinand of the nth order is equal Yo' the sum of the products ob-
tnned by wmulliplying tizm%mdﬂﬁa@{iﬁﬁa&ywégﬁcolumn) by the corre-
sponsivng cofactors of these elemenisihat Ts,

10y 14 = wady + aed e o St omdn h=7=12,...,0),
(11} _-1 = CL“;AH; -+ (12;'[1 %k"?k £ - + flm':ink {’L =kE= 1_, 2, Py ﬂ)

The algebraic sum of ’b@s;}}?odmﬁs obtained by noliiplying the elements
of the: ik row (or cobuftn) of a determinant of the nik order by the cofactors
of the co?-?-gzspond{né%{E}nems of the jih raw (or column), where b 7% J, is
26r0; tn symboln

(12} ,\\%:‘1‘;1 + a-hzfiﬂ S i amA-in =0 (h ?éj):
13)  Ndudw + eda 0+ Gl =0 (i # k).

*

,Ihigiié]z-Lt-icns {10) and (12) may be combined mto

} = 0 when k # j,
(% andp + ewedpe + -0 a’*"‘A""{ = 4| when b = §;

or

ﬁkmAg'm = |fl| 5,&;.
Similarly, the relations (11) and (13) may be written compositely as
.. r =0 when 7 # k,
(10) i 4 a‘ziA‘zk + - + aﬂ"A“k i = |A| when ¢ = k’

or

ami-A-mk = 4‘1! Gt
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It is of course understood that any index appearing in conneeticn with
a determinant of the nth order has the runge 1, 2, . . ., .

64 The adjoint and inverse of a square matrix of order three.
We know that the inverse, or reciprocal, of a scular a is defined if
a # (, and satisfies the relation

—1 — _—I_= i
aa e =1 A

In a similar manner there is associated with a square matriz ANf
1A' = 0, 2 unique matrix, written A7 by analogy to the in vetien! o
scalar, and satisfying the relation O

L ¥
-

AAU= A4 = ], N

I being the unit matrix of the same order as 4. 'mj\g’

For a square matrix 4 of the third order the hinescalar equuiions
represented by (7} are together equivslent tox.tée;single matrix equa-
tion (&

an ez i |[An Adn A\ 100

(16) Gg1 Gaz Qs || A1z Ag {1;32. ‘= 1AI|0 1 0O
Qa1 Qg2 g sdbébedibegdorgin [0 0 1

We introduce the concept of the &&jo{ﬁ.t of @ matriz A, represented by
A, and defined by )

-Ii’l,\-;_i'w sz Ay Asm An

(i7) . A= [A"iil = 5‘1‘331 122 Agg | =141 As As
) ONLA s Age Ay A A A
A/

AN A=A

or
Note that i indices 7 and j are interchanged in A.; as compared with
A ; thedidydint of A is the transpose of the matriz of the cofactors of 4.
Their,;\a'fé have from (16) and (17)

Q%g Ad = AL

Dividing equation (18) by |4, we obtain A/|A| = 7, when |4' = 0.
The matrix %| Is called the énverse of A, and we denote it by A7,
that is, b -

4
(19) At = T

4]

Then we have

(20) A =T



f-4] THE ADJOINT AND INVERSE OF A SQUARE MATRIX 81

“imilarly, for the matrix A of the third order the nine scalar coua-
tious vepresented by (9) are together equivalent to the single matrix
equtlion

11 Qa1 03-31_1 Ay An An 140
21) Gio ap iy || A2 As Awsi =4[O0 1 0
1y s Ude Ag Ay Ay 001

or
Ay = 4|1

Taking the transpose of both sides of the last equalion and ouéin'g

Theorem 11, we have O

(22) A4 = AL
Dividing both sides of this equation by [A[(|4] # O}NM using (19),
we get v

(23 A74 =T N

1 ihe determinant of & square matrix A,,N [, does not vanish, the
matrixz 4 is said to be nonsingular; if.'|i4.{’ vanishes, 4 is said to be
singuior.  We have ft‘thfmtaJﬁgéép?(%;sg At of » wonsingular
square matrix A of order 3 exib:t«;scé‘m.l 18 commutative with A, the
product being the unit matrix™f s ‘thus
@4 Adi0= a4 -1

If we use the index nh{é{’i’f;n in which 4 = [a¢] and let A-! = [a,],
then tbe relation cofnparable to (24) I3

(257 O 7 lasllas] = [nalla] = Bl
or :~\":,
(2;3{.-1'} '\'\\w Qe = Bl = 8453

the i}lxij't:flf the relations (23) is a matrix equation; the seeond is, for a

desigtiated pair of values of ¢ and j, one of the nine scalar equations

in¥olved. In (25) the range of each index i 1, 2, 3, since here n = 3.
Note that the adjoint of A exists whether 4 is singular or non-

singular. If 4 4s singular so that ‘A| = 0, then

(26) - AZ =44 =0

To caleulate the inverse of a square matrix of order 3 it mav he
convenient for the novice to procoed as follows: first, construet the
matrix whose elements arc the cofactors of the elements of 4; this
we term the eofacior matriz of A and denote it by Co 4. Secondly,

N
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construet A, the adjoint of A, by taking the transpose of Co 4: ikat
is, 4 = (Co A). Thirdly, caleulate I4j, and multiply 4 hy !, A,
and thereby construet A-L the jnverse of A. To summarize,

J '
27) T
- //To illustrate, if
2 5 3 -3 -1 37 O
A=13 1 2 then Cod = 1 1 1O
121 705 —18
-3 1 7 3\
A=i-1 -1 5| Al =4 p\0
5 1 —13 A
Therefore
-3
=1

:.'-: \

’f’
: L
4 3 1 N &ﬁ
Recall that |A] may be obtained by m;ﬂi:i’plying any row (or eoluman)
in A by the correspnndingmukbrégtiﬁh&um@l)glm’rhe malrix of the o=
favtors of the cleraents of A. fx% *check on the value of A Just o
tained, we may verify by duect mu]hphm‘rmn that 44 1=A4""4 =1,

&
(\J Dxzrcrses _
LIt A= Ej fﬁ phen Co 4 = ¢~ aa 1-[ ¢ 71

In this manner,£ox. ~1 = [3 _2] find I and A7, Check vour result by

showing tlﬁ\“}le relation {24} is satisfed.

2. (‘{m'ﬁbme the scalar equations 8z -+ 4y =7, & — 2y = 0 into the
elng[e'ma,trl\ equation [‘3 h_ijl: ] [q] Solve the latter equation for
thq mlumn veetor L, ¥} by premultiplying hoth sides of this equation by
the matrix 47 found in Ex. 1 ahove,

3. Combine the scalar cquations 5r — 2y = 10, 3z 4+ ¢ = 17 into =

single matrix equation as in Ex. 2, and solve the latter for the column vector
ir, ¥y} by plemultlpivmg both sides of this equation by the inversc of the

coefficient matriz - ; :|

H

4. For the matrix A = I:S 2], show direetly that: (i) 14 = A4];

(1) adjoint of the adjoint of 4 = A; (3%) the determinant of the nverse of A
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is equal to the reciprocal of the determinant of A, that is, A7 = 1,74]
Do thlx vwo ways, first by taking the determinant of

1 d —=b
A= [ :[
|4 L—e ad

and wsing the faet that k4] = k54" (see Ex. 7, Beetion 5-0); and secondly by
taking the deterniinant of both skles of 447 =7 and using the fact that

LB - A B ~
500
11 L\
. =|:1 2 :{I, e
L4 9
what is A7 N

W For A = @l and B = [B1§, show that (48}~ = BAMT Do this two
v, first by using the expression for the inverse of endh\Dtrix as that glven
‘. 407 and thus lorming the products and iny@aps indicated in o divect
s ; secondly, [orm the product (8 “A.‘l}i{l.Q,;aud recall that multipli-
cutioin of matrices 1s assoviative. 9,

7. {“ombine the sealar equations @ -+ 22 Whri = 6,1 -F 220 4 3 = 14,
w4 dpy - Qpp = 36 into @;\}&g 111;5%19?' '%{&l;_uggirgn‘ a8 in‘]ix. 2,. and sollve tlie
fatter for the column vector {i, .arg,,;tfs,é{}y prcn%d{llp]ymg thix equation by
the inverse of the cocfficlent matrig @vhich you have found in Fx, 5).

5. In the nanner of Ix, 5M30]vé Dog rdataa=2 0+ e+ oay =4
Br, — Aps 4+ 2wy == 6 for thganknown vector.

1 For A = [0l talgdhe’determinant of both sides of A4 = 4|7, and
using AR = |4] - iB!,‘s:;:\t\\-' that |4 =142

10, Tor A = [plipteke the deterninant of both zdes of A4 = T and
show that 472 044

1l For ASNaE and B = [0} show that (4B)~ = B24-L Jiinf:
Proceed as‘iththe second part of Ex. 6.

O\

67&71;]13 adjoint and inverse of a square matrix of order n. For
'ﬁ?«;mﬁtﬁx A = |a]? the n? sealar equations (14) are together equiva-
led to the single matrix cquation

My Bz ... e Ay Aa . Az
(28) {1a) oo PN lag _’112 .-*1"22 . ' . —"]-'u?

a1 Baz .- Gan Aln A'}n e Ann
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We define the adjoint of the matrix A, designated by A {oceasionully
by ad] A), by the equation

.‘1[1 q-[c» P ‘:ﬂ{vl,i ‘411 .’121 P __'i-_,.1-l
@ A= (dg = A e Tl o e A
—'Inl g'n2 - Erm .’1 1n flzn P flm;J
or N N\
A=A

Noh, that the indices © and j are interchanged in A as c'ompagrr?‘ T h
4is the adjoint of A is the transpose of the cofactor matriz uf M A

(mdmgh we have A4 = |A|7. Dividing this equ.:xtloﬁ By 14 e
get i ' m\\

(30) aig=1 (A0 0).

The matrix _ xf\\”

31) AT % x\\

iz called the ineerse of »1 The tnpe I’g;’ro a matric A 1s equal fa the
adjoint of A (transpose af “the t’q}%&gw matri ofl:l) divided by the -

terminant of A. From (30) and. (’31), we have
(32) —1 f\‘ =

In like manner, for\ [a, the n* sealar equations (15} are to-
geihér nquivalent Lo th e'single matrix equation

@11 flzg ,"\.:;;'“' a1 [ A 11 A 12« v :’11,;
(33) [ a,x-y_\’,,;_ A | I TR P
a‘li\\§aéﬂ e ‘.’4_ nl v")l ni e A g
R\ 10 ... 0
."\‘V" — o 1 ... 0 . At Fr 14l
~O A or 474y =1|4| L.

N 00 ... 1
Taking the transpose of both sides of the last equation and using
Theorem TI, we have

A4 = |A|I and henee 4—

T - I ;.4.' ¢ 0 1
ar

(34) A-14 =T,

"Therefore the inverse A~ of a nonsingular square matrix 4 of order n
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exists and is eommutative with A, this produet being the unit matrix
af order n; that is,

(35) AA1= A4 = L.

Equation (25} has the same form for a square matrix of order » as for
a susre matrix of order 3, the range of each index now being 1, 2,

A
Tueorkm VIIL. If A is a nonsingular square matrix, there 1s.only
ane matric which when maultipticd by A gives the unit mutrz{t‘ and
that s A s..'

To plm ¢ Theorem VILL, let B be any matrix such, Jchat AB = T,
Sinee (4] = 0, A7 exigts, and "‘\‘

Al = AL = A{AB) = (4- '1;3_112_

and simitarly if BA = I, then A=l = B. Tb\‘w E"su]t': may he alter-
nately stated in PN

Turorkm 1X. The mwssary and*éjcﬂiment condition for bwo non-
eingular square matrices A anﬁ g‘fﬁ;ﬂa&’ ShEMEs of each other iz that
AR or BA be the identity mat?‘m

"Tuking the determinanty “ofsboth sides of (34) and using the fact
that the determinant of £he" produst of two matrices Is equal to the
pmdu(t of the detvrn\ﬁan‘rb of the two matrices {Appendix Ty, we
got - 4| = I| »&inee [I' = 1, we have proved

THEOREM :“:J.'hz, determinant of the inverse of a matriz A s the
reciprocapafithe determinant of 4.
Fromfl‘l'léorem IX and the fact that a matrix and its inverse are
commﬁfhti\-'e there follows
\’Fu soREM X1, Jf the product of lwo square muatrices of the same order
25 the ddentity matriz, that product i commulaiive.
Morce generally, we have
Treorem XII1. If the product of two squave matrices of the same
order is the non-null sealar matriz K = k[1];, then the product is
compmutative.
To prove the latter theorem, suppose wo have

(36) AR =kI, k=0.
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Then (k7A)B = I. Consequently, by Theorem XTI, B(E™ 4) = I
From these relations it follows thut Bd = kI = AB. Toillustrate, if

i F R P
B P P

However, if the product of two square matrices of the same giy m" 15
the null matrix, the produet is not necessarily commuta’h‘h To
iMustrate "

3 [ )

Yet if one of the matrices is 1he z~dj0int ’of the other, then the product

is commutative. Thus
WL dbraul,[ﬁl ary org.in

[s oL &3]0 )
<57 ML -0

From this we 8881 that the matrix B for which AB = (0 (4 singulur}
not unique. ;

we know that

but

and

*¥I'HEO EI'?I\ XTI, The inverse of the product of two nomr'mp;?m
egun‘r&na!nca: 15 the prodict of their dnverses in reverse oder
(4,}:})—1 = B4,

’\\‘f( want to prove that (ABV(BTATY) = T. Now (ARBB A1 =

AB)B1A = 4 (BB9A7 = (ADAY = A4~ = I, and the theo-

rem is established.

H

Tuxorem XTIV,  The tnverse of the transpose of a nonstngulor square
malrir A 45 cqual lo the transpose of the inverse of A (A7 = (A4

This theorem follows from Theorem VIII and the fact that
(A—%WA' =T = [.

TurorrM XV, If the matric 4 is nonsingular, the equation AB = 0
necesstlates that I8 = O,
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Fnee A is nonsingular, it has an inverse A7, and A7'4 = I. This
relstion combined with AR = O gives A48 = () but A48 =
iF = B;so B = 0. Bumilarly, we may prove

Turorem XVI.  If the matriz B is nonsingular, the equation AB=0

sraplies 4 = O.

The last two theorems may be combined into the “cancellation law

of pwltiplication for matrices”: PN
aporim XVIL If AB = 0, then either A = O, or B =8, <r
Loth A and B are singular matrices. N N

N/

-6 Solution of n linear nonhomogeneous equations in nanknowns.
Cramer’s rule. The system of n nonhomogencous liizear equations
@131 + 1l 4o T = NS
G + Gz - 0 0 Genla :\E:z

(37?:' . K.\
Ar1T1 + Guoz + - +4- (I,Lz,;'r?\i" b,
or \Y
11 12 - b
aw WU dbl:aul,}%iaar g b
Rnl Gau o "' bu
may be written K
(3%) .-Q'\’z‘":ﬁ ar ar; = by,

where 4 is the squére coejfﬁc{ent'mat-rix of order n, and § and g are the
eolumn \'ecl-m;&*&;‘; fry, &gy o - s z.) and 8 = by, by .o bal. As
previously in{ﬁcﬁted in kx. 2, 3, 7, and 8 of Section (-4, if A is non-
singular ({0} = 0), we may premultiply both sides of (38) by A1
and théreby solve for the unknown vector 8; for A714s = A7,
Is =118, and so we got
Gy 5= A8,

Let Ff; be the matrix oblained from A by replacing the sth eolumn
by 8. The solution (39) may be written in the forme

(o = L (i, D,

Tet [y, 2o, .+, Zal DEA solution of (38). Then we have

(ID gk, = bi

Multiplying equation (41) by the cofactors Ay, Auy, ..o, Agy of the
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elements @1, oy, - - -, @ o the first celumn of the ecoethrient
matrix A and adding the results, we get

) LH |
5!:1| Ty =bhidn + by + - -+ + bad oy, or rr = "’il
If we usc as multipliers the cofactors A, Auy, . .., Au of Lhe ale-
ments in the second column of the cocfhcient matrix, we got
' O\
|_’1| Xa = b1A12 Js_ bQ.-"i'_’? —‘I— et + bnAnE: ar Ffa = _1\
ey
If we use as multipliers the eofactors Ay, Aoy, .. ., Apsof the E;:}&l‘m’i'.‘.t.s
in the 7th eolumn of the coefficient matrix, we gel ~) N
AN M
|4[ xi= by 4 bedor $ - - - H bad g Or i !I -l_
A\ [

We thus sec that if |47 # 0, our assumed solution ¢uh he nothing oiher
than that given by (40). That this is a solupidn’can be verific:i Ly
direct substitution. L™

The rule given by (40) for writing dgwn’the solution of # liner
nonhomogeneous equations in »n unkgowns, whose coefficient iy
is nonsingular, is knownw\@ﬂdm&u{igﬁraﬁy-org-m

6-7 Negative powers of matrices. General index laws for
matrices. We have alrecadgNifsed 47 to stand for 444 ... 4 1o
p factors, and have stated(n Section 5-13 the index laws for matrices
when the indices arc ph&\ﬂi\f{a integers or zero.

We have seen that the inverse A1 of the matrix 4 exists provided
A is nonsingularN\9f 4 is nonsingular ('A| # () we may define higher
negative integr@ Powers of A as powers of the inverse of 4:

'\\,,.' A= = (A,

2 &

s\ e i . -2
W]’.lerf_‘{??}’ls a positive integer.  To illustrate, if 4 = I: 1 } then

-2 -2
i X w

\.\; 4—1=_1|:_2 2] 4—2___1_ 8 =2
: 6L 2 1) 7 T asL-2 5]
P i]:—QO 117
216 14 1
Tt follows that the laws of exponents for matrices
Arde = Asdr = 4 T+£ and (As)r = A™ = (‘_47‘)3

hold for negative integral indices, as well as for positive integral and
gero indiees, provided A is nonsingular,
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&-# Orthogonal matrices. Clearly, the familiar sealar relations
for representing the rotation of eartesian coordinate axes OX; and
(2X 5 ihrough an angle ¢ (see Hx. 1, Section 2-8 for derivation)

1 = 1 cos @+ xa2sind

Yy = — x, 80 & 4 Tz CO8 B,
muy be put in the matrix form ~
T _ cos & sin 7, i s ror1E A
I_yz] - |:_ «iné  cos 8:"::172] or ly]l - [m]2[$]1, .’\“'\
a
whero \.

cosf «in 8] &N

—sin # cos# e

M = [ml = I:
Ngw M| =1 and # = M'; consequently M =M = M. Simi-
larty. the formulas for the rotation in three-diménsional geometry of
the cartesian coordinate axes OX,, OX,, ()3\1'5}0 new positions OV,

0Y . OV, in matrix form (see Section 2—8) Jare

KA M1l WMaa Myz
Al el I
Ha | = | My Ha2 ?’—'%23

Uz gy Hae Trag

ai;y,q;'l,q,in [y]

-
[
)
£
)
—

For thie matrix {m]} the el ents of each row arc the direction cosines
of ane of the new coopdifiate axes relative to the old axes, so that the
sum of the squares.of the elements of each row is 1. Smce the coor-
dinaie axes are mut{;al]y perpendicular, the inner product of any row
veetor of this nghtFix by any other row vector of it is zero.  Moreover,
the elementsaf “each column are the direction cosines of one of the
old (:oorgﬁkia,\r';é' axes relative to the new system, so that the properties
just .st;.a.t‘e\d for rows hold also for columns.  Frouv: these facts and the
prqurﬁ'es of direction cosines of line vectors, the reader ean verify
dirgetly that |M| =1 and M7 = M = M' where M = [m]i. Al
krn&t-ely, one may note that MM’ = I, from which we get M~ = W ‘.
Thus associated with a rotation of ccordinate axes in two or three
dimensions there is a matrix M with the property that M= = M".
A square matrix A4 with the property that its inverse is equal Lo its
transpose is called an orthogonal matriz. An “orthogonal atrix s
ricessarily nonsiglar”"" 77T T

- Since |4’] = |A| and {47Y = 1/]4] for any nonsingular square ma-
trix A, it follows that if A is orthogonal, then |42 = 1. We have
proved
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THEOREM XVILI, The determinant of any orthogonal mafrir is
+1 0r —-1.

The two types of orthogonal matrices arc distinguished from earh
other by the values of their detorminants. Those with determinunts
+1 are called proper; those with determinants — 1 arc called improger.

Trarorem X1X. The product of fwo orthogonal matrives vs r'jrff?.r.ig-,\
onal.

rmquAf=1am188h=LthmaABuunu:ABBur=;uy§$}
CTuronpyd XX, The inwerse of an orthogonal matrix z'g‘;-i;{f:‘ingmmi.

We want to show that i A'A =1, then (A~ d5D=7. Now
(A=) AL = (A4 = 4472 =T, and the thed¥en is proved.

A neeessary and sufficient condition for a SOUYH matrix A to he
orthogonal is for the product of 4 and its trasfghose 4’ to be the it
matrix: N

S 3}
Q"

(42) A4' =1\
Forn = 2 this matrix eohditidh" Sﬁ%ﬁ%ﬁ?ﬁf%@'ﬂitten

[G-n alz—lEa-il:'f121il . [] 0]
2531 @31{ [F AR T 0 1 !

Ly - . ¢S ..
which 18 equivalent todt\lw'scalal' conditions
(44} (G-11)2 + (U-lz)g:: 1, (ﬂ-m)2 -+ (t’.c’-::'z,)‘2 =1, ausn + ¢zt = (.

Note that the sm@k\xr produet of the first row in A and the first columin
in 4° 3-'ielfls.~{h’} first of these conditions; the sealar product of the
socond m\Nn ‘A and the second eolumn in A’ yields the second condi-
tion; ln‘ix}ever, cither the sealar product of the first row in A and the
sg(ifni@,' volumn in A’ or that of the second row in 4 and the first col-

1 m A’ yields the third sealar condifion.

The matrix condition A’A = T is cquivalent to the matrix condi-
tion AA" = I just considered, and yvields equivalent sealar conditions.

Since the gencral square matrix of order 2 has 22 = 4 independent
sealur elements, when 4 is orthogonal this number 4 iz reduced by
the number of the independent scalar conditions on these clements
as o consequence of the matrix belng orthogonal, namely by 3, sinec
in {44} we have 3 independent scalar conditions. Hence there 18
only one arbitrary scalar element in an orthogonal square matrix of
order 2.

(13)
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3 a similar argument we can show that the matrix condition
A4’ = I for the square matirix of order 3 to be orthogonal yields
& independent sealar conditions, 3 of these being conditions for the
roves in 4 to be normalized vectors, and 3 conditions for any two of
the three rows in A4 Lo be orthogonal. The general square malrix
of order 3 has 32 = 9O independent scalar clements; therefore the
vencral orthogonal square matlrix of order 3 has 3 independent scular
elements. N\

For the square matrix A = [o]f to be orthogonal, the pratrix
condition {42} 1s equivalent to the scalar conditions ) \' )
(45” Qi o = 5” (‘.‘z‘ by
The sealar conditions (45) mean that the sum of thefytares of the
clements of each row vector of 4 is 1, which gives n"gbﬁlar conditions,
and that the inner product of any two differen{Mow vectors of Ais
zora, which gives (Cs = nln — 1) smla.tl:"c(}?ditions. Allogether
ihere are then in(n + 1) scalar conditiqnhx\dﬁ A = [a]f for it 1o be
orthogonal. Since 4 = [afi has #* indbpendent scalar elements, it
{ollows that there are in(n — 1) indépendent scalar elements in the

general orthogoral m ::lﬁ'ﬁ\’\fjfll%??f&ig{ar y.org.in

Turorem XXI. The prodtet of two proper or of twae improper

orthogonal matrices is @ {»;‘oper orthogonal matriz.

In Theorem XIX \\Q showed that if 4 and B are orthogonal ma-
trices of the same ou(.ﬁ} tLen their product 45 is likewise orthogonal.
Also |AB! = !4 3Bl; il A and 5 are proper orthogonal matrices,
each has deteralinant cqual to +1, and consequently 453 is cqual to
+1. A am{fl}r statement holds if A and B are both improper, ench
having d\;\t(erminant equal to —1.

='L‘}fﬁn{mi XXIT. The inverse of a proper (tmpropery orthogonal
rmu'a?r is a proper (Emproper) orthogonal matriz.

3

{Since |47 = 1/147, 147 and Al must he of the same sign; from
this fact and Theorem XX there follows Theorem XXITL

s Turonem XXIIL  If the rows or columns of an orthogonal matriz
are permuted, the resulting matric i3 still orthogonal.

Tet o), ab, . . . , @ be the rows in the orthogonal matrix A ; then
an, @, . . ., ot are the columns in A7 = A= The condition for 4
to be orthogonal, 44’ =1, 18 equivalent to requiring of - o = 1,
and of + @; = O for i # j. 1f the rows of A are subjected to a given
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permutation, the eolumns of A" ure s'uhjectecl to the same pervoifo-
tion. Suppose the permutation takes 1,2, ..., » mto g, 2, v e
Consider the product
[
am
f
X

[ Gy + - X )

: J A
! 7N, ¢
apr- ¢\

Since o, - @, = 1 and of, - o, = 0, ete,, the matrix must helort g
onul, and the theorem is proved. N

"
\

Exurcises \/

1. Solve cach of the following systems of eqmti’o;teuby Cramer’s mitle:

(i) #tome— 2+ 4= L, () a3 + dws — vy = B,
—x e+ Bag 4 20y = 2, >\ — 2u + 8= 0,
2 -—lz+).rs—3$1=—3 »" M 2y — By + 2y = 1,
2 — oy — My dlg'auLLle‘aryxpl-g By + w4 oxyo= 10

. Calewlate the inverse of the foﬁcb.ﬂnrr matrices A (if it exists) and clenk
your 1e==ults by showing that A.:t <=1

11 gr\ 0 2 0 —1 1
.| -2 1\%1 -2 ~ -1 1 1 0}
@y 2 t3 1 @1y 9 11
LT 1t 6 1 —2 3
3. For W
\,.‘3 l:k 0 0}
A\ A=]0 m D
..}.\ 00 =n
showethat

Q ) 00 Lk 00
\ At=10 m* 0 At=10 t/m 0 .
0o 0 = 0 0 1in

4. If the general orthogonsl matrix of order n is fo be expressed in terms
of some other type of matrix, it must be 2 matrix thas has nin — 1) nele-
pendent scalar clements.  Such is the skew symmetric matrix of order %, a3
noted in Seetion 6-2.  To construet the general orthogonal matrix of order 2,
eonsider the general skew symmetric matrix of order 2,

s=[ 03
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Constract the matrix

M=(-8I+8"

_ 1 [1 - 3 —2a
T1+el 2, —at+1
and show that It is orthogonal,

Note that the determinant of the orthogonal matrix M just given v +1;
s0 it is not the general orthogonal matrix of order 2. But by modilying it
with o numerical factor we can construet from it the general orthogonal
matrix of order 2. In general, the orthogonal matrix M of order nnith deteriic

nund 11 according as p 65 even or odd is given by
N

M= JiI — S+, <Oy

where J is the dingonel matriz with p negative Vs and n — p pr)srm?r 1's for
diogonal clemends, { being the unit malris of order n, and S, I&r general skew
syrtnetric matriz of order n. '\; 7

s, Using the general skew symmetric matrix of orden 3} ks given near the
endd of Section 6-2, show as in Ex. 4 that

oV
M= (I — ST 4+ 87 ¢ $
142 — gt — B —-2{(&"{7\?)0), 2fac — b)
= k\: 2(a — b, 1 — (1'3-{3 B — —2{e + ab) j|
e - 2 R a2
2Heg \T w z:lbra ubhl‘a?'gf c-rg{g:I E:1)'1 P od f
“]\H]‘ = 1/ @+ A The Yesult in this exercise may be thought

fmdmg o set of rational vales of direction cosines of three mutuaily
pen wndu «ular lines in bp'u=e\~ B is difficult to solve the latter problem by

any otlier mesns.
5. By direct multlph@fmn and use of trigonometrie fornwlas, show that

the product of two proper orthogonal matrices of the form
'C\. - u I:w-\ —‘-.mﬁj
’\ sin # cozf
iz 4 pr ops \grf,hngonal matrix of the same form, and that the inverse of Mis

likewi (R s “proper orthogonal matrix of the same form as M. Do these
nmtrnce-, form a group under matrix ruultiplication?

NP Verify that .
N/ 1 =2 2
Ll 2 1 2

3 o 2

1 =11
A:[z —1 0l
1 0 0

show that 47 = 424 = 442 =[1]

iz an orthogonal matrix.
8 (3iven that
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9. Tf A = [a]} has all of its elements in the field R of real numbers, znd
A4A" = 0, prove that 4 = 0.

6-9 Matrices and rings. Il we compare the laws for mafrices of
Scetion 5- 16 with the postulates for an integral domain, which weve
stated in Section 1-4, we sec that the commulative law for vaahi-
plication (b = ba) and the cancellation law for multiplication i
ab = O then cither ¢ = 0 or b = 0) are missing. Hence squagd™
matrices of order n with clements in & field ¥ do not form an intepgal
domain. Neither do such matrices form a fleld, for to do so th E‘\f\?r)
properties just mentioned would he required, and in additiotvarery
matrix exeept zero would require an inverse. We ha\'e'%éé‘h in thes
chapter that that is not true, but on comparison ('mei:@e?laWL\\'s which
these matrices satisfy and the properties of a ring Sghich are state:d
in 8Bection 1-6, we sce that the matrices do fom,kim ring. Moreover,
they constitute & ring with unit clement, for {1¥— A=A, There-
fore, wo have O

TueoreM XXIV. The sef of all §qu£1r‘é matrices af order n with
elements in o fild F dawe dbugulsifanmét ghimen!.  This ring hns
divisors of zero (zero being thedull matrix); for instance

[1 0 0“30]’_ [0 0]_ o
Uoogdtid ool

Most of the existing\l‘é&%y of matrices is concerned with matrices
with elements in a gigon field or in an integral domain.  Bul some of
the more advanéedtheory of matrices deals with matrices with ele-
ments in an arhitfary commutative ring R with unit element. In
such theony @) shown that the st of all square matrices of order n

with clem@hts in a ring R themselves constitute & ring R,.*

) . o
Adce N, 11, McCoy, “Rings and Ideals,” Chapter 8.
}



CHAPTER 7

GROUPS, MATRICES, AND TRANSFORMATIONS

7-1 Groups of matrices. Consider the et S of all nonsingylan,
squere matrices of order nowith elements in a given field.  Clearly the
sol is closed under the operation of matrix multiplication, lenJf A
and B are clements of 8, then € = 41 is also an element, o’iz\S. ’ By
Theorem IX of Chapter 5 the associative law holds. The'sef’contains
a sinple identity element, the unit matrix 7, such thator every ele-
meni A of Swe have AT = TA = A, Since the sep S‘i}l\nnited to non- .
sineular square matrices, every element A of Shds a unigue inverse
At such that A4 = AA2 =1. Thus i;-];g&féur eonditions for a
group are satisfied, and we have proved ~\"

A

Taxonem 1. Al nonsingular squqriu:inatrices of order n with ele-

incrds 10 a field F fogpe g H@m%ﬁﬁﬁpg}%rj fp matriz multiplication.

The group of all nonsingulan éf]ila.re matrices of order n may have
suhgroups. Thus a subgronp of the group of all nonsingular square
malrices of order 2 is (xt}D’& group operation of course being matrix
multiplication) \\ -

1 0JOr—? 0] 1 0} [—1 o
oNGg L o —1f Lo —1f L ¢
Another sylsggzl\'c;up of all nonsingular square matrices of order 2 is
the sel ‘o%aﬂ orthogonal matrices of order 2.
A 'ni'at.rix ig said to be complex if its elements are complex scalars
andyeal if its clements are real scalars. As a particularization of
“Theorem T we have
Taroren 11, Al nonsingular square malrices of order n with ele-
ments in the complez field C form a group.

Tarorky 111. Al nonsingular real square matrices of ovder w form
a growp, which is @ subgroup of the group of the nonsingular square
complex matrices of that order.

In Theorems XIX and XX of Chapter 6 we showed that the prod-

uet of two orthogonal matrices of order 2 1s un orthogonal matvix of
93
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the same order, and the inverse of an orthogenal matrix is an orthog-
onal matrix. From these facts and Theorem I1I there follows

TaroreMm IV. Al (real) orthogonal matrices of order n form o
group, this being a subgroup of the group of all nonsingular real
sqrare matrices of order n.

Exere1ses A
1. Prove that the set of all nonsingular diagonal matrices of order + grits
a commmutative group with respect to matrix multiplication. )
2. Bhow that the set of all sealar matrices of order a forms o gwup with
respect to matrix multiplication. £

7-2 Simple isomorphism of groups. Let af-—m&a}" represellt i
one-to-vne correspondence of a set 8 to a set 87 babhais we moean that
every element & in S has one and only one corr (\;;;poﬂdom a8, and
every element a4’ in 8’ is the correspondent Jbue and ouly one ele-
ment in 8. Two groups G and ¢ are said to' be semply isomorphic if
there is a onc-te-one correspondence botiveen their elements which
preserves group multiplication ——a’ and be—w ¥,
then ab ——s o %}’ ) RAGY 8B L}ﬁfﬂﬁaﬂ’y Ollfgq‘

The two permutation groups I . (ab), (ed), (ab)(ed); I, (ab)led).
{ac)(bd), (ad)(bec) are simplydsemorphic, and this simple isomorphism
may be signified by the ¢drrespondence 7 —— I’ (ab) —— {(ab)(cd},
{ed} «— (ac) (bd), (ab¥ed) {ad)ye—s(be).

The six matrices

R (e B S W it

Hure slmp%@ommphu' with the elements of th(‘ gymmetric group o
three L‘_,tt(‘rb
AY L (@), (ah), (a0, (@), (o)

Tn\t}{é given order, so that like produets always correspond.

7-3 Matric representation of groups. As far as abstract prop-
crtics are concerned, such as subgroups of various kinds and & multi-
plication table, two simply isomorphic groups are identical. If the
elements of u group are just symbels which have no interpretation
except as elements of the group, the group is called an abstract group.
If the clements of a group are quantities or operations of a speeial
kind, such as matrices or permutations, the group is called a special
group, and the special group is said to form a representation of 1he
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simply isomorphie abstract group or of any sinply isomorphie special
gronp. I particular, the representation of an abstract group or of
a given spoeelal group by a group of matrices is called & malric represen-
{ativn of the group. It is convenient to let M(si), M{sz), . .., M(sn)
designate the matrices which form a matric representation of a group
of oriier m with elements sy, 82, .+ +, 8- 1 we can associate with each
glement «; of the group @, which has the elements 8y, o, . .., &, 2
square matrix M (s;) of order » such that - N
{1 MsoM(s) = M{sis)) O\

for every 5, & in G, then the matrices M{s), M(s2), . . ., M‘E.;m) COn-
stitite a matric representation of order n of the group G;,}i-'é’."t‘%omctimes
speak of this as an n-dimensional matric representalpQ of the group.
A set of matrices with the property (1) relativetdg group G neces-
gariiy forms a group. N

v

7-4 Linear transformations. Let o =;{u:\, Ta, . .., L) bean arbi-
trary vector of an n-dimensional vect@rspace V. (F). Suppose the
scalar coordinstes of « are relgted tgﬁthe coordinates of another vector

e

- . _ Fauiiprary org.l :
G = {F, s . . .. &) by moans ofithe scalat telations
i = @it :]"(1'1723'2 + - -+ GiaTa,
(2 Ty = azz‘ﬂil’—f— @yaty F= - 0 oF B2,
: ¢ . . .

E, &?”n'lxl + Onalz + e + GrnLie

Ff.qu}\.-a]enﬂy we.m"a_\_-" say that the vector a i related to the vector &
by the transforthition
’\u

W

-Q dp 2z ... Q| d1
(3)  « Fet| _ | @ @2 ... fo2a || T2 or = Aa.
o { ’\: ’ jn .1 nz .- Asin R
\¥
- 3 . e . . .
\E‘e say that the transformation (2) or (3) 18 a linear fransformation
in the n scalars z1, o, « - - , T The Matrix equation (3) may be in-

terpreted as defining a transformation T conveniently signified by*

(4) «—Ta = &

*In this seetion we depart from our usual practice of reserving the use of
capital letters in bold face type to represent an underlying field or ring, for
here we find it convenient to represent transfarmations somewhat abstractly
by such bold face type.
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which carries the veetor o into the vector &  The matrix 4 of (3]
sometimes called the presenting matrez of the ncar transtormation (4],
The linear transtormation T has two imporiant properties:
(7} The linear transformation of re 1s cffected by
65 A(rey = v{da).
That is, the transform Tra of the product of the secalar » and the
vector a is equal to 7T, and the lalter is » times the transform ol ¢
{#) Consider the sum o« + 3. The linear transformation v *Qb
suim s given by £\
(1 Ala + 8) = da + A8

The relation () savs that the lincar transform of the @@ of 1wo vee-

tors 1s the sum of their hoear (ransforms. Thes€ besulls may be
expressed by saying that the linear tranafomlaiun T ha= e proy
erties 40

(7 Tra = +Ta, “.‘

(8) T{a + £) = To7I6;

or, compositely written, ‘ﬂ’i}%%ébﬁ?‘{]}.ﬁbﬁaﬂrmﬂm T has the properts
{497 Tire =+ s3] = 7To + sT3.

Conversely, it can he show {hat the property (97 of a linewr trans-
formation T implies that €hig transforreation is of the form (3.
The lincar ’rl'msimr\\}tlon (3) may bo interpreted as effecting =
transition from ong npnhumuoenf‘ous coordinate svatm « 10 mmliu:‘]
sich coordinate dwétem &; that iz, the veelor coordinates o and & of
the same pomf\m two eoordinate systems are linked hy the trans-
formation 3’ = do. Another interpretation of the transformation
T is thatdr deseribes a renaming of the vectors with respeet 1o a fixed
{*(Jordiﬁa’{'e svstem, or that it is a lincar transtormation of the vectlor
‘Et‘eﬂll‘rf) itself; such o translormation is lermed a Lnear mapping of
tlt\p “ector space on itself, and we call the linear veelor spuce itself the
CUTTIET SPICE.
The product of two lnear trangformations

(10) T:a=Ax and U:a = Ba

is defined to he their successive applications UT; that 15, as in group
theory, fivst apply T and then apply T.

\F

Trrorem Y. The product of two linear fransformations is a lonear
transformation.
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By definition, a product transformation UT effects the trans-
forinstion
a — {UT)e = U[Tq],

whenes

UT[ra + s8]

U[T{ro + s8)] = U[Tra + Tsp]
U[Tra] + U[Ts4],

or
UTlre -+ s8] = UTra + UTsg = #[(UT)a] + {[(UT)8].
Therefore the product UT has the characteristic propert.y’(g)\'m} 4
linear transformation. L N
it follows that the product transformation UT may b répresenterd

N

by . RS /
{11} UT:G = B{da) or o= BAx
We tlien have \\

TacoreMm VI.  Jf we pass from the coorda%ie vector e to the coordi-
nate vector & by o linear transformatib)T with matriz A, and from
he coordinale . i o canrdindte veclor & ¥l r finear
th coo:dm@c ?Jecw?‘h\,\p{#%\Q‘Cfﬁgacnﬁ(fgé’gﬁgkl}éefﬁw a by GﬂOt}W?" linew
transformation U with matrix B3 bhen the hnear transformation UT
with matriz BA will transforsie directly into a.

T'he linear transformatigl: @ = A« which tukes the veetor « into
the vector & is said to be kepersible if there exists a related transforma-
tion T-1:a = A~'@ whieh takes & into ¢. The transformation T is
called the ineerse b P. The combined effect of a transformation T
followed by its/nvérse T-7 of u vector « is to leave that veelor w-
changed. \:\"

Pl'oce@b\ld\hg as in the proof of Theorem V, we may establish

THE():REM VIL. The tnverse of o lnear transformation 4s ¢ linear

mﬁrr’z.‘;i.s’form.azfsfan.

N\ f t should now be elear that all reversible linear transformations of
an n-climensional vector space into itself have the properties that the
praduct of two such transformations is a linear transformation, and
that the inverse of a Lnear transformation is also a linear transforma-
tion; moreover, we have seen that there exists an identily element
T-'T, and it should be apparent that the associative luw holds.  These
facts establish

Turorew VILL. The sef of all reversible lincar transformations Ty,

Ty, . . . of an n-dimensional vector space inlo itself form a group, the
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group operalion being the sequential performance of two transforma-
tions as T, T,.

Further we have obscrved the existence of a one-to-one earvesponl-
ence of the group of all reversible lincar transformations Tq, Ta. ...
of an n-dimensional veelor space into itself and the group of all non-
singular square matrices of order n, 4y, As, . . ., sueh that if

T;—— 4; and T;e—— 4, then T, T;e—— Auid \

N
We have then oA
NS ©

Tasortm TX. The group of all reversible lincar fransfox Faaiions

of an n-dimensional vector space V (F) inio tdself is s’z??bp‘l_,r RO

with the group of all nonsengulor square matrices OJSQM(’? 7 with ole-

ments i the ficld F.

Tt is worthy of emphasis that when we spealkvof the existence of a
simple isomorphism betwecn linear transfo:r:ﬁqétions and matrices, we
have reference to linear transformations™f’a vector space into itself;
that is, the coordinate system iz fixedy . For if we pass from one ro-
ordinate system Lo anotlier . ﬂhé%&ﬁﬁ!’aﬁmeﬂiﬁt&lﬁnsformafion INAY G-

rospond to several matrices, and one matrix may correspond £0 many
linear transformations,

The group of all rev eraikiie linear transformations in the n-dimen-
sional vector space V%, ('\C) is called the general linear group und 1s
usually denoted by &L }‘n Beeause of the simple isomorphism of
linear transformatisms and re]ated groups of matrices, the same sym-
bols and tem;ini:)l\ogy are sometimes used for lincar transformation
groups and xmgfric groups; subsequently we shall adhere to that cus-
tom. Botkdhe special terminology of linear transformations and that
of mafcmceQ contribute to this common terminology. For example,
we a-,lmll gpoak of “lincar groups of matrices’; and we shall call a

eversible linear transformation a “nonsingular transformation,” its
presenting matrix being nonsingular.  Accordingly, we vefer to the
group of all » by n nonsingular matrices with complex clements as the
general linear group of order n, and denote this group of matrices by
GL{n, C).

We noted in Theorem IIT that sll nonsingular real square matriecs
of order n form a group; this group is ealled the real linear grovp of
order n, and is commonly designated by RL(»). From Theorem IV
we know that all (veal} orthogonal matrices form a subgroup of EF.(n};
this 1s termed the real orthogonal group O(n).
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7-5 Cogredient and contragredient vectors. Sometimes when a
given vector « transforms by a linear transformation with matrix A,
another veetor transforms by a linear transformation with matrix
(A=, We now study such situations. Let the column vector «
undergo the nonsingular linear transformation

(12) a = Aa.
Introduce the row vector £ = (uy, o, + . . , ta} and consider the effegty
of the transformation {12} on the preduct :
. A\
(13} Fa= (M, s, oo o, Uah iy, Toy o, L} A\
= w1 + T T - T Ul g >

Tu thix eonneelion recall that near the end of Seetion S—G.vae“é,grc{:d to
use unprimed Greek letters to represent column vecto}:\:.‘ Also, recall
that -1’ means the transpose of the matrix 4, and aMis the row vector
which is the transpose of the eolumn vector ¢ s\ Ender the influence
of the transformation (12) the product (15)}5\ transformed as follows:

(14) o = Az N¥%
If we denote the product on E?Eu lght gide of equation (14) by £a,

then £ = FA. Takingwﬁl\?’s TAI ot Tt sides of the latter, wo
get £ = A'E. Solving the last e?q’ua;tion by premultiplying both sides
by the inverse of the transpgse of 4, we get

(15) O = (AE

We thus sce that if th}}-‘ector a of the form or product (13) is trans-
formoed by the mapti A, then the vector £ whose transpose appears
in the form (13, 3% iransformed by the transpose of the inverse of A
if the produyel &'« remains unchanged. In general, two n-dimensional
veetors :-.»\\icﬁllecl contragredient if, when one is subjected to a non-
Singulai;.\ Yinear transformation, the other is subjected to the truns-
fg{fl}fz};{i'(:;n which has for its matrix the transpose of the inverse of

\Omatrix of the first transformation.

The product or form (i3} may be interpreted in different ways.
If we interpret the u’s as parametric cocfficients in a linear form in the
variables #'s, we have

Toronem X. The coefficients of a lincar form transform contra-

gredicnily to the variables in that for. . §

However, it is not neeessary to consider the w's of (13) as parametrie
constants and the #'s as variables. When the 2's do not all vanish,
the equation
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(16} Fa=0 or wpEy + ey + - A der, =

for constunt u's, defines a hyperplane, that s, an {(n — 1) mbspace
in the veetor space ¥V, A veetor o lies i the hyperplane it its ele-
ments satisfy the equation (16). On the other hand, if the £ are
interpreted asg constants, iU is appropriate and usual to consules the
#'s as the sealar coordinates of a vector §in a second n-duncnsionsl
veotor space, the dual space of V., which we represent by V5. Dualite
of vector spaces is o reciprocal relationship; a change of eoordinaths
in one of two dual spaces is automatically eonnected with the dumdya-
arcdient change of ihe coordinates in the other space. Tix '«m\ph's o
contragredient. variables abound in analytic projectiydSgeormetry
where homogeneous coordinates are commonly used. , :

When two vectors & = [y, 24, . .., 2.} und 3 =“’I§,r1_. [T T
arce related to the vectors & = [£, &y, . . . x'n}\fj = i Fay e - B
by the same lincar transformations AN

«=dAda  and ;3‘%:\;13_,
the two veetors e and @ (or equally well &and 8} are suil to be cogre-
dient veotors.  The coomﬁmdbmitﬁmﬁ}f.dmjmoillts a = {m, T 0
and 8 = {yu y2, ¥:] In ordinary 3+space furnish an illustration of
cogredient vectors.

7-6 Similar matrices, Matric transformations. The same linear
transformation T ma}\@e Tepresented by different matrices, the par-
ticular matric reprogéutation depending on the choice of coordinates.
Thus for n = 2xthétransformation

x{&‘gm F28 [3:1] B [3 2][31]
\:'1;2'= 2%, + 3%, ) T2 3 a

15 repreéénted by the matrix

~O _]_[3 2]
\3 N a 3

but relative to the coordinates y, = 7y 4+ 74, y2 = 2, — 3 the same

transformation is effected by

v = 30 " FooTgd  Theh 5 0

e — 3}'2 or I:y»] = [0 1]1:_'1?0]; is rc[)rcsent.(j-d B = |:0 J-
) B B by the matrix

In genersl, two # by 7 matrices are called similar if they represcnt the

garmae linear transformation of a veetor space V.(F) relative to differ-

ent bases,
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I =ection £ 6 we saw that the unit vectors

o= 11,0,0,...,0}, e=1{0,1,0...,0]
o=10,00,...,1]

congtitute a basis in which the sealar coordinates of the vector o =
{20, 2y, iy, - - ., 4} are the coefficients in the lincar expression of the
vector in terms of the basis:
= T, - ~”\
(].J',.' = €| + €alla + L + ey = ”’JX}
o U 2
A\
PR - ( S\
FE'=en e - )y 3 = (21,250, Tafe (N

L 3

wherea

. g < N :“ . .
Let the sealar coordinates @y, 7o, . . ., @ of the vector gsbe subjected
to the fransformalion w7

(18) X — AX, where 4 =[ain"

If wo substitute from (18) in (17), we get « =E}§1X Renaming the
right side of the relation by F'X, that isetting B'X = E’AX, thea
E' = F'A. Taking the transpose of .,tane’ latter relation, we have
B = A'H; solving this j‘(\?ﬂvfr’;acﬁbﬁaﬂhﬁgﬁ@y.org.in

(19 E=JaE.

The transformation matrix L35’ of equation (19} is the inverse of
the transpose (or equ::tllyg‘t‘-lg\: transpose of the inverse) of the trans-
formation matrix A c.)["\@\?_pﬁition {18).

It should be recoghized that E is a square matrix of order # with
the ¢'s for eolumnals So (19) is not the transformation of o vector, us
we have boensageustomed to use that term, but the transformation
of 1 matring ;\‘I'Iet us broaden our definition of contrugredicnce of the
preceding;'\seét-ion to sav that if a vector 8 is transformed in the
m:-m:r}g.'r:'

(«{)} ~ 8 = 4@ with 4 as transformation matris,

and a matrix (¢ is transformed in the manner

(21) O = (44—1)@ with (A1) as transformation matrix,

then the matriz transformation (21) is contragredient to the vector trans-
formation (20). From this convention and the faets of the preceding
paragraph there follows

Tunoney X1. The iransformation of the coordinales of a wector
space V, s contragredient to the transformation of the bases for V..
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From Theorem X1 we see that a change of basis in an #-limen-
sional vector space V. with nonsingular matrix I* as (note the trans-
position of the matrie entities)

(22) E=FPr o E=PE

induces the transformation

(23) X = p1X or X =PFPX A
on the coordinates of a vector of V. Let O\
(24) Y = AX O

be a transformation of the coordinates X = {a), 110 .{ .."; .l of a
voator of V, when the fized basis of V, is B [elme\ . ea]e Let
us determine the form of the coordinate tr‘msfunn&hrm (24) when
the basis is changed from B = [e), e, - - -, erj,bQ,E’ [€, €5, . « ., €]

by (22). In the old eoordinate transform ién (?{!}, relative tu the
basis B, we must replace X by PX and Y by PY. These subsiiiu-
tions in (24) El\e & W

25) = AP dbfab’leb‘“ S arpon g 5

Hence a change of basis of V. \\’1111 matrix P of the transformarion {22)
replaces the mairix A of ﬂg transformation (24) by

(26) \'\‘~~’ B = PAP.

This proves

>\ & . o
TuroreMm XII» Twe n by n malrices A and B are similar if awl

only if Br<f P AP for some nonsingular matriz P.

Tt i3 A0W evident that in order Lo study those propertics of linear
trm}sg(:)fhmtions of a veetor space ¥, into itself whieh do not depend
tinthe basis of ¥, over a given ficld F, we need only to study those
%mf)erties of related sguare matrices which are invariant under the
matric transformation B = P~I4P, that is, properties of similar
matrices.

YWhen B = PAP, B is called the transgform of A by P under the
simelarity transformation. Some properties of the matrix 4 are un-
changed when it is transformed by the matrix P, and if the transform
B is simpler than the original matrix 4, we may advantageously
study B rather than A. Certain very simple forms of matrices are
called canonical forms, and an important problem ig to determine such
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forms for a given matrix, and to find & matrix P which will transform
w i riv A to a given canonical form,
Tizowes LI Similar matrices have the same delermianant.
Clearly, if B = PTAP, then
B = 'PTAP| = [P - A Pl = |P- - |P| - 4]

I 1 . .
— P g = |
| Po]dl =4 \{\

www.dbra ulé'\}ir‘g\:r)';.org.in
&
o\

Q
&S
O

o°
/\\ ’
\3\\;\
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“YCHAPTER 8§

THE CHARACTERISTIC EQUATION OF A MATRIx

~8~1 The characteristic matrix of a given matrix. Asoriut(d
with every square matrix of order » there is the matrix (4 A M),
where A is & variable scalar and I is the unit matrix of ordey.s ,‘c“.-ma-ri
the characteristic matriz of A.  This matrix 1s obtained hy wabirser-
ing A from each element of the leading diagonal of A ; thusfoy 4 = el

A =N = 4381 0.12:! N 1 0-| _ |:(1“ — )\'"‘:\’\’ s ‘j|_
oy flag 0 1J oy ) s —

-8-2 The characteristic function of a matrix. The determiuant
of the characteristic matrix of 4, 4 — JNs called the characlerodic
determingnt of A ; when this determindnh is expanded in powers ut
—X we obtain a secalar \I’J\Q{la’ja%miaiiglf‘ de JTC I the sealar A,

Akl J ary OrE B
() fO) = (=1 — pa? £phe™ — ph* 4 - - A (= Lrpa

This sealar polynomial f(M ;",A — M| s called the charactericiae
Sunction of the matrix _»ﬂ...\‘From (1), £(0) = (=17 (= 1)"ps, und =0
fl0y = p, for n even Qd& Trom fiA) = 'A — A, we huve (01} =
iA|. Therefore, pa="14i. To illusirate, for n =2, f(A} = ¥ -
(@11 + a)N + f}l\’lﬁu’ﬁ — Qyailay.

"\\" LEXERCIZES

1. Sh&’@‘”‘ A = fa8 that OO = (— DA — g2 L g\ — psl, where pi
is the glgn of the elements of the principal lagonal ol A, ps is the sum ol the
twoergwed principal minors of 4, and ps = |4}
“N\2Show for A = falf that fIA) = (— 14N — paN® + o — pd s
wHere 7 is the sum of the clements of the prineipal diagonal of A, . is the
sum of the two rowed prineipal minors, p; is the sum of the three rowed prin-
cipal minorg, and p; = 14

It iz a fact * that in general the coefficient gy of the characteristic fupction
FON) iz the sum of the f-rowed principal minors of the matris A. Recall that
in u square mafriz of order #, 4 = |a]%, the clements of the type ay, where

*Bee A, K. Mitehel, “A note on the characteriztic detorminant of a
matrix,” American Mathemotical Menthly, 38 (1931}, pp. 286-383; or C. E.
Cullie, Matrices und Determinoids, 111, pp. 307-308.

106
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2 ..., n, arc sald to lic in the principal diogenal of the natriv. A
sined froni |4] by the deletion of the ith row and the ith column
i cullad an (n — L)th rowed principal minor; & minor obtained by the dele-
tion of the ith and jth rows and the sth and jth columns is called an (n — 2)th
rowed prineipal minor; and generully the tuinor formed by the deletion of
the 4ith, ith, ..., 4th rows and the same colummns is called an {n — rith
rowed prineipal minor of A, These principal minors of 4 are situated sym-

metrioully with respect to the principal diagonal of A. In particular, the

clemerts of the prineipal diagomal arc Lwoswed principal minors, their cds
. . N . . N
are (1 — 1)th rowed prineipal niinors, and |4 itself is the one n-tgwed

prielpel ninor. O
L N

facto

§-3 The characteristic equation of a matrix, The, Spolynomial
equution of degrec n in the incdeterminate scalar obt@}'{léﬁl by setting
the characteristic function of the matrix 4 = [aldvequal to zero,
|4 — adi = 0, or using the expanded form (1) ‘aagl’{lividiug by (—1)7,

(2} A — p])\:.—l + 1{)2)\93—2 . }Jg?\"‘"‘ + ';'}cF’(-—T)“Pn =0,

is enftad the characterisiic equation of, e matrix 4. The n roors
AL s ..., A of the (;hm\aﬂg}]ﬁ-@@@l{é?&i%‘lé}frp malrix 4 are called
the viheracteristic rools of the matgis .  To illustrate, for the square
matiis of the second order with'a = {3, =2} and 5§ = 1—2,2] as
colivmn veetors, the charag(eristic equation is X — TA 4+ 6 = 0, und
the characteristic roots Qf,rhe given matrix are Ay = 1, % = 0.

Turorey [ Simslar matrices have ihe same characteristic funetion
avidd Lhe some q}f\dmicierzfsmfc eqriation,

R eeall il}a@}i"ami B are gimilar if B = PP, Then

AP az| = |PAP — M| = [PTAP — APTIT
D _P(A — ADP| = 4 — ML

4 ~\' ¢
Vevidve shown that the characteristic funetion of two similar matrices
ar¥f equal ; it follows that they have the same characteristic equations
and the same characteristic roots.  As un immediate conscquence of

Theorem [, we have

Is

“Tarorem II. The coeffictents of the characteristic equation of
matriz A are tnvarignts under any similarity trangformalion of that
matrer.

As an llustration of Theorem IT, for 4 = [aff und B = BE, B =
P-4 P, we have

N\
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A — (a'll + 6-22)7\ 4 @112 — Graftar
=N- {b” + 522)7\ + bllbzz - f,ilgbgl.

Since this relation holds for every value of the indeterminate A, we
have
@iiflay — G12021 = bibey — biobny and @i+ tay = b i by,

The first of these two relations is simply a verifieation of the fnet Hht
l4]| = |B|, which was proved generally in Theorem XITT of the Mt
chapter. But the secoud relation is new. The sum of the Eﬁ:@nl:-ﬂ_l
elements of any square matrix is ealled its frace, and is widtten r 4.
Similarly, we see from Theorem IT and Ex. 1 of -Sec-tipﬂ"&—? that the
square matrix of order 3, A = [¢ff, has threc invafignis urder the
similarity transformation, its trace = p,, the sum"‘}f the two-rowed
principal minors = g, and its determinant. =_p

Of the % invariant coefficients of the chaﬁktcri&;tic equation of a
matrix A = [a]; under a similarity tramgfo}?ﬁa.tion, tr A and 4} we
commonly given special attention. Wehave previously emphasized

the Invariance of ‘4| in this connectidr. We now give like cmphasis
. > ! g 1
totr A in www.dbraulibrary org.in

Tororem 11T, The traces of Similar matrices are equal,

The concept of the trace’ of a maitrix is of fundamental importance
in the theory of groug{épi'esenta.t-ions by matrices.
o\ Exercrses
&
Find the chatapteristic equations and the characteristic roots of cach of
the followingdddtrices.

QT L YR [1 0 ﬁ]

" LRNO T Lvy 1 3|10 ~2 0

AN 6 0 62
\ X Corresponding to the scalar equation 3 — Ta + 6 = 0, the character-
istic equation of the numerical matrix A given immediately preceding Theo-
rem I, there is the matrie polynomial cquation X? — 7X + 67 = 0, wherc
I and O are the unit matrix and the zero mafrix, respectively, with order
equal to that of 4. Show that the matrix 4 in question satislies the lutter
equation,

3. Bhow thut the matrix 4 = (g} satisfies the matrix polynomial equation
F(X) = X* — (un + 0w)X + (anam — apae)d = O, T and O heing ihe
second order unit and oull matrices.

6. From Fx. 5 we have that sny second order square matrix 4 satisfies
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the refution A2 — (an + ow)d + (@0t — paa)d = 0. Bolving the latter
relation for 1, and then multlpivmg by A7, we obtain (4| = 0)

Al=—— — {an + tsz) T,
IA '
which i a formula for A= in terme of 4 and the coeflicients of the charae-
teri<tic funetion of 4. Using thig formula, caleulate the inverse of each of
the iotowing matrices. In each case verify the correctness of your résgls
by shiwing that A4 = [, A
oA

LT3 4] i a=[7 1] N\

wa=[3 3 aa=[] ] S
8-4 The Cayley-Hamilton Theorem. In Ex. 6o the: last scetion

we saw Lhat 1f f{A) is the matrix polynomial gottesponding to tho

charseieristie function fi)) of the matrix A = i, then F(4A) =

Thi ix o special instance of one of the IQ')\} famous theorems (Ji

matrix algebra, N

NS

Tre Caviey-Tlaminrox THEOREMY Fu

3 70 = (=1 2 pairaBRe et 4y~ 1y
be the characteristic function :3fa square matriz A of order n. Then
the matric polynomial egz{aiirm-

@ FX) = X —py .—t’lq_ P X — X4 (=D = 0
is satisfied by X EyA.

The C-ayley-’ffamilton Theorem was proved for n = 2 and » = 3
by Cayley ul{I838; he also stated the theorem in the general case
with the.bdmiment that he thought it unnecessary to undertake a
prooi gf\le. Flamilton’s share in the title of the theorem s based on
the fa¢t that he had established a comparable result for quaterniong
j 'l“\I‘.S'-’_')SL, Muny proofs of the theorem for the gencral case appear in
the literature on mairix algebra.  One lorm of such proof depends on
the adjoint of the matrix (A — A}, and that we now give.

%L—’“l et B denote the adjoint of the characteristic matrix {4 — N).
‘*mw the clements of (4 — M) are at most of the first degree in X,
their cofactors in 'A — AJ| are at most of degree (n — 1)inx. Hence
a typical element by of the adjoint matrix B ean be written as

by = ko + B+ -0 + koot

where the coeffcients ku, ku, - . - , ka1 are polynomial funetions of the
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elements a;; of 4. Consequently the mairix B itsell can be wiitten
as the matrix polynomial
B = ﬁ;dj(A. — AI) = B(‘. + Blk + s 4 B,t._l)\?'\_l.
Here the B/s are matrices whose elements are polynomials in the
(L,'_.I,',.‘:‘;. _
In Section 6-5 we saw that for any malrix ¢

N\
C-adjC=1C|-T. A o
ITence ¢\
A=NDB =4 -N-T=f01 O
gince ‘,Q}‘
JO) = 14 = M. ok

Substituting in this relation the above p(_}]ynomiaf:exprcssi(m for B
and the expanded expression (3) for f(A), we ﬁs\t;

(A = AD(Ba+ B + BAZ + - - + B, X4 B, )
= (=1 = g™ pah ™ - A D) p i — (=g

This is an identity which is truce li(__)ﬂa:{'a?l'l values of A, Equating corre-
Imaull N

sponding cocfficients of” %\é"po\-vgujs Q,I‘Kﬁgigllq o, AL AT we obtaln
—B._; = (31", (since IB,_, = B,_y)
——Bn,—2 + 1'11{,.__1\%—"(“—1\)”})1],
—B, i+ A B“_{E}z (—1)“})21,
—Bi WA = (= 1)(—1p=p, 1,
—'3’3@”}'{1'448, = (—1I)"{=1)*"p, I,
' ::\’,,: A.B(] = (—*1)7‘("1)'?}3“[.
If we prg{é&ﬁply these matric relations by A®, Av1, A2, . .,
a1, tq;kp%ct-ively, we got
O —A"B, = (— 1A,
\\, " —AMIB, .+ A, =~ (—Lyp A,
_‘4 n—EBn_ﬁ + A ru—T__[g‘”_3 — (—I}“’pg:’l"_z,

42,

I

Ii

—AB, 4+ AR, = (=~ 1) (—1)"2p, .42,
—Bod 4 AB, = (— 1) (—1)p, A,
ABy = (=1 {—1U)rp,J.

Un addition of these matric equalities, the terms on the lefl annul
one another.  We then have
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(—-I,.la" — 11')144n_1 —+ pgfi’l_? + LR —!- (—'1)“_1;0?1_]_.-‘1
. + (=Lmpad] = 0,
ot sirajsly,
A= At L pdr T -+ (D + (= 1)pad = 0,
and the Cavley-Hamilton Theorem 1s proved.  Note that this proof
puts no restriction on the matrix 4 (4 may be \mU'uLch oI nan-

singizlnr), and no 1e‘~tllctlun on the chq,ractenshc roots of A {(lhesd\
roote may he distinet, or some ray be repeatedy). a\
The Cayley- IIdIIllltOﬂ Theorem is often stated in the chl)bu‘\ ﬁl.‘tl;d

and e iL form, “ A matrix satisfics its own characteristic e.quatlog_l
Such o sialement makes sense only If we keep in mind the corre-
sponcdencn beltween scalars and sealar matrices discugiéd in Section
5 15. ii is usual to refer to cither the scalar polyfohiial f(\) given
by {3: o the matrix polynomial F{X) given by (§)as the charnetor-
istic funetion of the matrix A, the context rcﬂect“mg to whieh reference
18 beirg made. AN

Sinen we ean factorize f(0) in terms of th(’ chalacten&‘rlc rools kg in
the mianner

) W W, dbraullbrar&org .in
FO = (=10 — AR — (= A,

it foltvws that ) N

Fl4d) = (4 —2\,'\1)(31 —xD o {A = ADD,
where the order of th i{ia‘gric factors is immaterinl. Therefore hy
the Cayley-HuamiltopXTheorém the product of the » matrices 4 — X
is the null matrixg },ﬂ’though it does not follow that any one of the
matrices A — &}’ 1~, the null matrix. Two illustrate, for the matrix
Q" 1 -6 2
\ A=1—-6 10 -1}

RN 2 —4 6
e \Haracteristic equation is N — 273 4 180x — 324 = 0, with

3, 07 and 18 for roots. Then

5

(6 A% — 27474 1804 — 3241 = 0,
(i
{7 (4 —30)(A — 6D(A — 181) = O.

The relation (7) displayed in detail is
8 —6 Z 5 —6 9anr—-7 —6 2

® | -6 7 —4-6 4 —4)j-6 -8 —4]=0
2 —1 3 2 —1 0 L 2 —4 —12
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Let 4 be a square matrix of order » with elements in a given ficld F.
The successive powers I, 4, 42 A% ..., A*may or may not be ncarly
independent; that depends, for one thing, on the value of 4. If s i3
the smallest integer for which the powers 7,4, 4% ..., 4" we
linearly dependent, then there is an equation

W MEX) =X+ X" X4 et o] = !f')‘

with coefficients in F which is satisfied by the matrix 4, This ¢rhin-
tion is called the mnimum equation of A, the integer w13 cylledythe
index of 4, and the function M(X) is r:'s,llcd the mandmum Jandtin
the matrix A. The index of a sealar matrix is 1; every, gnajur :
the null matrix has an index. The Cayvley-HamiltofXNFheoren: tolls
us that m < n. That is, as a consequence of thE“tSa\-}'ley—H.s.amih o
Theorem, we have '

)
TuroreM IV.  Any positive énfegral pow ot of the square wmairiv A
of order n for p = n is lincarly expresstbld in ferms of the wied matriz
of order 0 and the first (n — 1) powers.df A.

To llustrate, for the mmﬁh‘iﬁ&tliﬁﬂ?iﬁxog&%h by equation (3}, from
equation (6} we may obtain 4&‘ in“tevms of lower powers of A and f;
mu]tlplvmg the expression ;|u=st Teferred to by A, we obtain a like ex-
pression for A4, and so AN ‘Further, since any pmlti\ e Integral power
of 4 18 expressible ing Q’m% of I and the firel (n — 1) powers of A, =0
is any rational mtegr\l‘ funetion of A.

For a given matrix A the minimum function M(X) is unigue up
to a nongero scél?n factor. We have seen that the Cayley-TTamilion
Theorem telig™us that the index m = n, and clearly when m = #,
M(X) =§U'(X) that is, when m = n the minimum funection differs
from ‘ﬁhr- characterigtic function only by a scalar multiplier. We
af o) to ehoose the constant scalar %k, g0 that the coefficient of the
11ghest degree term 18 1. Thus for the numerical matrix A given by
(&) above, we see from (6) that the minimum function M (X} is given
by M{X) = X3 — 27X? + 180X — 3247. 8o for this matrix 4 the
index m iz 3.

A matrix 4 for which m < n is called derogalory. For such a
matrix 1t is proved in advanced matrix theory* that the minimum
function is a factor of the characteristic function of 4, that is,

* See H. W. Turnbull and A. C. Attken, An Fatroduction fo the Theory of
Canonical Mairices, Bluckie and Son, London {1932), pp. 46-48,
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F(Ni = M{X)G(X). Torthis reason the minimum function of a ma-
triv .1 s sometimes ealled the reduced characieristie function of 4; the
modifior ©reduced ” is interpreted to inelude the possibility that F{X)
and (XY ave identical.

Further, it is established In matrix theory that a matrix A is
derogatory {m < n) only when the characteristic function of 4 is not
a product of distinet irreducible factors.*  That is, for the matrix A4,
to be derogatory, the characteristic equation of 4 must have multi\ple

root=. Lo illustrate derogatory matrices, consider the matrix o8N
AN

7 4 —4
(10} 4= 4 -8 -1
-4 —1 -8

N

with the charaeteristie equation
{11; FOO =N 4 02 — 8Ix - 7202 0.

The chuaracteristic roots are —9, —9, 9; apd ’n}ﬁée the Cayley-Hamil-
ton Theorem tells us that A + 94! — 813%™ 7297 = 0. Dut since
O has a double root, the matrix d\ may be derogatory with a
minirritm equation of de‘éﬁ'}&%@éﬁ‘f@hﬁ%ﬁ’&ﬁ‘l@ hat such is the ease
is readily and explicitly verified, for

w6 4 —4-2 4 —4
(12) (4 +onA —oneP 4 1 -1 4 —-17 —1|=0.
&

-4 -1 1j.—4 -1 -17
So for this matrix 4 \the minimum function is not the characteristie
function F(X) =¥ + 9X? — 81X — 7291, but the reduced charac-
teristic fl.lnc’g.iqr:l,\M (X) = X* — 817, and the index of 4 is 2. From
(12), 4* —8W = 0, I = 4%/81; 50 A~ = 4/8L.

"ﬂe Layley-Hamilton Theorem holds for a square matrix A of
ordep~g \whether or not A is singular. Tf 4 is nonsingular then
|47%0, and A" exists. In these circurastances we have the follow-
ing*$ymbolic statcment of the Cayley-Hamilton Theorem:

(13) A4» — pA™?t 4 podn? — psAm® o (—1ypd =0,
and the consequent solution for 7,

(1) T = —L (4r— pdripadn s (D]
(_1)1:?)» )

*See C. . MacDuffee, Vectors and Matrices, The Mathematical Associa-
tion of America (1943), p. T9.
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Multiplving both sides of equation (14) by A7, we see that the meorerse
of the matrix A ean be computed by the formula
1

15) A==

(At — pAv + pad s 4
4 (= 1yia, T

This velation leads us to

- ,

TrEOREM V. Any negative integral power of the nonsingular w7 R

malriz of order n is linearly expressible in lerms of the wnil ghgtns
2

and the first (n — 1) powers of A. O

To llustrate, for the numerical matrix A glven bx {}) T Erie
obtain from ()

T = ghgA? — 2742 4 1804], A1 = 51447 ;_}> TA 4 1807
A7 = el - 277 + 15043}

Tsing the second of these relations, 477 ma&be expressed in teyms of
rositive integral powers of A. "‘ »

Clearly, if a matrix 4 is dmogatory‘ Yits minimum funetion s«
gimpler medium than bhe,nﬂlrtlmamiﬁﬁlf&l(y Bmetion for expressing posi-
tive integral powers, A~ and nepative integral power in terms « of the
first (m — 1) powers of 4. N7

~4

AN
LY DxERrcIsk:
M

Find the charactohighc equation and the characteristic Toots of enchi of
the [ollowing matn 1t'e~ “and give in an explicit display form anadogous 1o {8}
or {12} the Lelatx:d. produet which equals the null matrix.,  Compute the -
verse of the g\n matrix (if it exizte) with the aid of its winimums Funetion.

DN 74 —1 Lol
LIy 11 2.[ 4 7 =1/ .11 0 OJ-
;\':'1 3 =1 —4 —4 4 1 00

e\
N If
. 00
B = 0 )\2 0 y
00 A

where M, Az As, are the characteristic roots of the matrix A1 = le]i, preve
that B also satisfies the characieristie cquation of 4.

8-5 The characteristic equation and rotation of coordinate axes.
Consider the eentral conie whose equation iy

(16} 5t — dryrs + 200y = 6.
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or

e 50—,
(L (1, ‘11]:_;; Ln:.:v] = G,

reforred to OX1 and OX, as axes.  Recall from plane analyties that
{0 climinate the produet term @hxa from alz)? + bxizs + clg)t = d,
we rorsie the coordinate sxes through an angle 8 where lan 20 =

b/l — 1. For cquation {1G), tan 26 = — % so=sin § = 2/v'3, cos B
=1/, and the desired rotation which is expressed generally by
. 2N

(18) l’:rl] _ [eos g —mj 8] {1] N N

T 2in cos 0| T» D
in 1hi= oase s "'( Ny
(195 [’?’1] . -[7 [] —2:":-’[:71 ] . M:\;f

Iy A5 2 1] & \/
Substiiuting from (19) in (17), we get PN

www.dblrau
iy & —)‘r_ “
20 (% I'JLO.::*[J
O ’a
\
(21} .{:‘}\f'_flf + (/E’)_2 =1
T LN\ 1

The effect of the ,miteftion (19) on the equalion (17) with symmetrie
\ S

O 5 —27. .
cooficient mafpy’d = [ ) ,)] iz to transform the latter to a new

_2
:"\s¢ - — .
Torm o \\f.%c-"rf the symmetric cocficient matrix

) (1 o}
NS B = .
~\\./ RUEY)
) 3
1-“1\‘1 dingonal matriz, and this diagonal matrix B has 1tz diagonal cle-
ments cqgual to the characteristic roots of the matrix 4. Note that
A and B are similar, for B = RTAR, where B s the orthogonal
matrix of the rotation (193; so |4' = |Bl and tr A = tr B
The process by which s given matrix is put in diagonal form is
important, not only in pure but also in applicd mathematics. In
Chapter 11 we discuss some applications of this procediure.
Let R represent the orthogonal matyix of the general rolation of
the plane, given by (18), and subject the central conic
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(22) (a, x-g)[a“ “'12][‘;1] =1 o adda=1 (1= 47

a1 iz

to this rotation. Substituting from (18} in (22), we obtain

. _ oot P G @i ff Fin P
(23) (F1, To)y ) =1,
Pre Ten |l @ay Qoo Far FaallEe

or
&R'4Ra = 1, Q)
where R =+ <J3. The result is to transform the symmetric f--:}f'*?:{u nt
matrix A ¢ (22) in the manner B = RIAR; so A und B ged\-intiiltar
matrices. Therefore, under any rotation f, the wymmetrw h"um\ A
and its transform B have the samc chalacterlh‘ru‘ (q{mmn sl the
game characteristic roots. The significant poing ig {that in order to
eliminate the product term from (22), R mustsbena specially chusen
orthogonal matrix so that B = R AR iz in d\i@gonal form.
Expreses] O
1. Writa each of the following cquatmnq fn the form o’da = k, conpar-

able to (22}, where A is a@ym@m&mﬁ}gﬂyorgu;fn subject it to thc HLTTO-
priate rotation of the type (18} tos eliminate the zy torm of the given enuu-
tion, that iz, diagonalize the cosfhitient matrix of the given form. In euch
problem ﬁnd the characteristidvroots of the symmetric coefficient mairix in
the given squation, and a]{;tv\t»ho&e of the diagonal matrix in the teansior: wed
equation, and verify thﬁ\t\thcy are the same.

(7) 25 + Ydxy + 25y% = 288, () 27 — 2day — Bt = L

(5id) ay = %" (fr) 2% ~ 2oy + 47 = 12
2. Verify that the equation 327 — Sry + 32 — b2 = — 5 may be writfen
in the for\Q"\"

N 3 —4 0=
~N {x, 4, 2) |:—-'1- 3 ﬂ:u:yi| =—b5.
N® 0 0 —oldlz
\'Eﬁfcct the rotation
i 1 1 -1 0 F
e 1 I
z 0 0 v2llz

an the piven equation. Ts the coefficient matrix of the transformed equation
dingonal? How do its characteristie roots compare with those of the coefli-
cient matrix of the given equation? What kind of surface does the given
equation represent? )

3. Write the eguation of the surface 10322 4 125y + 662* — 48zy —
12zz — 60yz — 204 in the form o’da = 204, where o = 1l y, 2} and 4 Ea
symmetric matrix. Subject the coordinate axes to the rotation
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T | 2 6 -3
=213 2 GJ[?
z Lo -5 —2dl:

using mztiix algebra, and determine the equation into which o’da = 204 is
transforied.  Compare the eharacteristic roots of 4 and those of the new
coefficieint matrix.

*"8-6 The characteristic vectors of a matrix. Let 4 = [af be.& \
suare matrix of order n with the n distznef characteristic rnqﬁ
A kg N A We know that [d — ML A= 1,2, .. a2
gingular lna‘r:m, sinec cach of the characteristic roots Apt ,h!{b been
found =1ubject to the condition that 4 —wnf =0, Smce [4 — A
giiar, we can find (Appendix 2) for e ach chara(\(\rlbhu root A,

(h ﬁ:m #ow) a column veetor

B = (bad = fbus, bun - -l

sueh it Qg
@4) [4 — NI} {bal = O3
ar \

www, dhbr aul}bf’al y.org.in
(23) Aﬂm} = Mofbal.

N iz esxential that we clearly. reilize that there is an equation of the
type (241, and equiv alently\fz o), for cach characteristic root M,; thus

ffovh =1, [4 —\3\1}.']1 al =0, or  Albn) = Mfbal;

for b = 2, M 2dibal =0,  or  Albz} = Aibsl;

(26} Hor h=3QMA — Ml bl =0, ot Afbi) = Mfbal;
Lfor . \i,’ A =]} =0, or  Afbu} = haibial.

The 7y \ec’rorﬂ {ba!, R = 1,2,...,n are linearly independent.
Forif Th@»} were linearly dopendent necould find sealars &1, ks, ... ks

nol, aII‘yelo such that

l‘ﬂf}){) kibaj + ka{d a} + Eafbu) + - -+ kelbal = 0.
Now suppose that ¥'s did exist so that (27) werce true; premultiply
bothsidos of (27) by (A — R} - (4 = MDA = ). (4 — A1),
and we would have
@) (A =D =MD (A = NDRba] = O,
"\'hE!T‘C hCI'E‘. h is sumaned fTU??’E- 1ton. Rut 1n virtue of the last (n — 1)
enuations of the set (26), the relation (28} hecomes

(29} (4 — nD)A —N) oo (4 = NDMalba) =0
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Thus for the numerical matrix 4 given above, we might have well
chosen for the modal matrix

_ m O p I ¢ I'f'sn 0 0 m 0 0
B=12m n p[=[2 1 10 » 0{=1[10 = 0]
2m n 2p 2 1 2j0 @& p 0 0 5]

But the transform of 4 by B is the sume as the tr ansform of 4 by B;
this we leave for the reader to verify. O
p \:\'
{ '\

For each of the following muatrices A find the character Estify VEctoes and
construct the modal matrix B, such that B—'AB isa (hfwormLmatL‘L\ Lastly,
find this diagonal form of A as we have indicated ahove.{ \ )

2 —2 3 1 \
La={t 1 1l 2o4=]1 0 o)
1 3 —1 100
\

8-T The characteristic vectors of a sjfmmetnc matrix. Diagonal-

ization of symmetric matrices. The gﬂnmdmc matrix
www .dbraulibrary .org.in
N ,’ z)’ -_—
4 =4 w9 9

N - E

Exencrses

has
cba\mteua‘rlc root Ay = 1
with (,ormspondmg \\

chafa,ctelmtic vector {by, b} = {1, 2§,
and ::3 ’
“\"\ characteristic root A, = 6
with {'orl%pondmg
',\f:' characteristic voctor {bu, bu} = {—2, 1}.
{Pﬁ)m these values we have JAY

=]l —2 AR
and l:z 1:| l‘Q‘J/

I 1 2 2 =271 —=2 1 0
—1; z — .
BB =3 [—2 ][ }[ ] [0 6]

Note that the characteristic vectors of the gymmetric matrix A
are orthogonal. That is no coincidence; in more advaneced books on
matrix algebra it is shown that in general any fwo characteristic vectors

Il
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of @ real symmetric malric belonging to different characteristic roots of
that matrx are orthogonal.™ By normalizing each vector of the modal
matrix 7Y belonging to the symmetric matrix 4 we construct an or-
thogotet modal matrix for A. If the charucteristic roots of the
symmelrvic matrix A are distinet, and if their order is specified, the
orthogonal modal matrix B belonging to the symmetric malrix 4 is
unique except that the signs of the elements of any column may Ha
reversed; if the characteristic roots of A are not distinet, then Bag oot
uniue. For the numerical symmetric matrix 4 given al thé }Je\gin-
niny of this seetion, 1/ V5 is a normalizing factor for e;:t-éh of the
characteristic vectors of 4, and the unique orthogonal #ogal matrix
for 4 {unigue except for the choice of the signs of theglgments of each
. - 11 -2 )
column) is B = 75 |:2 J-

Symmelric matrices occur quite often in‘gpplied problems which
lead to multivariate algebra, and usuall( it such problems it is imn-
portait. to know how to diagonalize s’ucﬁ matrices. To make the
procedure elear, we 009%;@;&%}5;&l{gggfzb(i!(ljll;%t:{%tiOHS-

Assoviated with the quadric surface

%

w6 27«

(r, ¥, z)x“.gﬁ 10 —4ly)=18
\\ 2 —4 6|z
is the symmetri c coefficient matrix
~O n -6 2
OV A={—-6 10 -%|

Q 2 —4 6
Theprocess of subjecting the symmetric coefficient matrix 4 to a
tl?ﬁ;ifz.u'ity transformation so that the transform of 4 is diagonal will
effeet o transformation of the surface to its principal axes. 'The
matrix A has 3, 6, and 18 for characteristic voots and ${1, 2, 2§,
32,1, —2}, and 1{2, —2, 1} as corresponding orthogenal normalized
charucteristic vectors. Constructing the orthogonal modal matrix
B with these characteristic vectors as eolumn vectors, we find that

*Hee . C. MacDuffee, Veclors and Matrices, p. 170; R. A, Frazer, Ww.J.
Duneun, and A. R. Collar, Elementary Matrices and Some Applicatiens Lo
Dynamics and D3 [Terential Equations, p. 77.
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B'A B is the diagonal matrix with 3, 6, and 18 as diagonal elenonts.
Therefore, under a rotation with B as transformation matiix the
given quadric surface is transformed into 3%° + 652 + 187¢ = 18,

If two of the characteristic roots of the symmetric coefficient matrix
A associated with a quadrie surface are equal, the orthogonal mutrix
for transforming A into diagonal form is not unigque but can be con-
strueted. N\

Consider the gquadrie surfuce

O\
Dt o 292 L 227 — By 4 2oz — 2z = 4, 0
or & M
2 -1 e N
(x,y, 2} —1 2 —1(y|=4 or o =4

1 -1 2Lz

The coefficient matrix A has characteristic roatsh = 1, Ao = 1. and
Ay = 4. Corresponding to the characteris 'é-:}oot Ay = 4 there Is the
normalized characteristic vector {blgkb’z’&yﬁ} = 1/v3 {1, —1, 1.
Corresponding to each of the double ({ilzzu‘h-(:tt!1‘is’r.ic rootg A = k. = 1,
we have the equa‘tionswww.dbl‘auLiﬁItéli:y,org,in
" ‘ N 1 -1 17 b
[“1 - I}{bﬂ} = O, ,,Oi'" -1 1 =1 ba| =10
A I -1 1 b
'i""’\ B

\\I\ ) by — b+ ba =0,
N —byy +bay — by = 0,

~\ b11—b21+531=0-

These thre '%Mlm‘ equations in the by's are equivalent; otherwise
stated, thewows of the matrix [A — [] are linearly connccted by two
indepgr;t’i}nt relations, ithat is, [A — 1] is of nullity 2. We muay
chooge Tor {biy, by, by} and {bus, bes, bse} any two vectors subject to
the“¢onditions that they are orthogonal and that they satisfy the
above equations. We chooso -

or

{bas, ba, baa] = % (0,1, 1)

(Brs, Bgy Bua} = =

I
S

and
{2r 1: "_1}:

in making these choices we sclect two normalized vectors which are
orthogonal to cach other and each orthogonal to the characteristic
vector {by, basy, bz} = 1/V3 {1, —1, 1} determined ahove.
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Then
0 2L 0 L
Ve V3 V2 V2
1 1 —1 2 1 -1
Be|—F2 —f/ —= Bl=|— —F/= —=
V2 ve V3| Ve Ve Ve[
1o-1 1 a1t
| v2 Ve V3 | vV3 V3 V3 2\
and . : .
1 0 ¢ ( \“"\.
B4B =10 1 0} O
0 0 4 (“}Q
TUnder & rotation of axes with B as t.ransformat-iogqiﬂ;ﬁrix the given
quadiie form becomes A

By =4 20
Note that in this case the orthogonal mafqiic B is not uniquely de-
termined, and the quadric is a surface divrevolution.

2 N

TR Y
www.dkﬁﬁm@ﬁﬁyorg,in

Write cach of the following e&iﬁﬁiirms in the form a'dea =%, where
a = lr y zl, A is a numericak sﬂﬁhmetric matrix, and k is a scalar. Using
the 1method of this seetion, find an orthogonal matrix B such that B4 B i
dingonal, and thereby trassiorm the surface to its principal axes.

1. Tx? — 8y — 83{—}-%‘; — 8rz — 2yz = —Y.

2. 2xy 4+ 20z L 2y2= 4

3. For the symfaétric matrix

\\ 9 3 -7 9
N\ e -6 0 6
A\ A=l 7 0 —8 =2
g 6 —2 O

»)

e,

{Il in 01‘thogo-nal matrix B such that B2A4B is a diagonal matrix.



CHAPTER 9

RANK OF A MATRIX

9-1 Relations connecting the rows and columns of a singuar
matrix. It is instructive to compare certain algebraic situgtlehs

in which a nonsingular matrix, say \ O
. 7o\
1 2 2 W
4=]2 1 =2 O3
— #%¢ »
2 -2 1 R

oceurs, and like situations in which singular mé}}iées oceur.  Note
that the vector @ = {0, 0, 0}, where &« = {xlg.%}m}, is the only sole-
tion of the matrix equation R
1 2":’}2 i
Aa = 0, or 2 A =2lz:] =0,
woww. dbr (ﬂ}ﬁl:é[?‘y,orgli £y
or of the scalar equations O '

[y Pry + 205 = 0,
{: &l\\-l— Te— 2y =10,
(424 — 20+ @ =0
Otherwise stated, the only relation connecting the rows and the
columns of 4 1re’\,'
for the rows %

’g;b'tl, 2,2) +0(2,1, -2 +0@2, -2, 1) = 0,
A\

or
,,{f{‘ (]{auj -+ U{ﬂ-:f:' + Ofay:) = 0,
~fbrthe columns :
}
4 0{1,2,2} +0{2,1, -2} + 0{2, -2, 11 = O,
o1

Oi‘aﬂ} + 0{0‘-;“3} + O{Chg} = (),

* Here, and clsewhere in this chapter, we find it convenient to represent
the rth row vector «f of the matrix 4 = [g]* hy
dr = {ae) = {2, Gro - .., sl

and the ath column vector a, of 4 = [o? by

— i [ R
ey = }a!'zi - g'r-!v!..e: a-?.s, .
124

oy it
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tecall irom Section 4-5 that the vectors ay, s, a5, . . ., an are said
10 be linearly dependent only if we can find scalars ky, ke, by, -+ ., by,
not all ziro, such that

ey + k-gozz + kgag +--- 4+ km,am =40,

4o the wactors of the nonsingular matrix 4 are linearly independent.
Of u lifferent nwture is the situation for the singular matrix

0 -1 1 .
B=|4 -1 -—-1¢ e
1+ =2 0 ¢\ ©

« \/

A gingle relation conneets the rows (or the colurans) of “B.’"":For TOWS
the relation iz “\\
10, =1,1) 4+ 14, =1, =13 — 1(4, -2 0y = 0,

%

0r o \
(bn) + (\b‘2i> — (b3i) .ﬁg’

When we speak of a single linear relgti’o}; ‘Connecting the rows of B,
we mean that any other }}ne&];'gg& itg(rig);:mg}negting the rows is obtain-
~ . ) ; ORI .
able {rom this onc by mtﬁtlp vingat throaull by 4 constant scalar.
For exawmple, if we multiply th&uabove relation through by 2 we get
205, - 2(hesy — 2(by) = @ \ywhich is not independent of the first

relativa. 1or columns ’tiht;\'elution is
160, 4, 4} - 0P—1, =1, =2} +2{1, =1,0} = G,

ar

;‘}’; ]-{bﬂ} + 2ibe} + 2{?7,-3} = 0.
Frowm the la:-:%‘re]ation we see that the equation Ba = O has the par-
tieulay sg&ﬁan a={1,2, 2} and the general solution ke = {k, 2k, 2k,
where % an arbitrary scalar constant. The rows and the columns
fJﬁ\t’-}fg\;;s'illglllar matrix B are linearly dependent.
AN Furiher, consider the matrix

1 -1 1
2 2 2

Observe that the equation

r
Ca = 0, or i_— —1je| =0,

or ithe scalar equations
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[ Ty — 2+ 13 =0,
‘i —rita+ =0,
{23’.‘1 — 2.1'-2 -'I- 2.’1‘,‘.1 = 0,

can be satisfied by the two particular solutions ey = {0, 1, 1} and
ap = {2,1, —1}; the most general solution is &« = kiey + ko, whorno
#1 and ks are arbitrary scalars.  Tn this ease the rows (or the columns;
of C are connected by two linearly independent relations.  For (he
rows (cu) = —{ci) and {e3) = 2(e1y); for the columms [eo! = Aldy ]
and {e;} = {ca}. This mairix ¢ has only onc linearly indahehident
row and only one linearly independent eolumn; we say theNows snd
the columns are proporticnal. Such s matrix is (:xppé:éé‘rble as the
product of a column veector and a row vector; heg’cf\év = {1, —i, 2!
(1, —1,1). O

Our work up to this point has been almos{ eéntirely with square
matrices or matrices of order n by n, and/Wwith row and eoluinn
vectors or matrices of order n hy 1 and lb\j . In this chapter we
shall deal considerably with reciangulon hatrices or matrices of order
m by n, as

w dbra%iﬁrﬁiiy,org,iﬁl

F=15 81" 4 -2

I\ —4 11 —19
Just as for a square mzm,t:"i')h the rows (and eolumns) of a rectanguiar
matrix may be linesicly ihdependent or linearly dependent. [n
particular, the rows 0f the numerical matrix F just given are lincarly

dependent, for 34
.\ 3(f1e) = Z(f.z) - (fm)
N\
‘,\\" Expneises

Deterpiine whether the rows of cach of the following matrices wre con-
nect€d Dy none, one, or two linear] ¥ independent relations.  If such relations

&{is‘t-,"give thern.
1 g 1 1 -1 1—|!
2.1 2 24 311 —1 2 =17
3 -5 3 1 0 1 J

2 -2 3
1. [1 1 1:|‘
1 il

9-2 Submatrices. Minors of a mairix. The rectangular matrix
F of the preceding section has no unigue determinant assoeinted with
it as a function of all its scalar eloments, us does & square matrix.
However, by striking from F certain rows and columns, we may asso-
ciate with 7" a number of other matrices, called submatrices of F , BOmMe

e
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of wirich may be square and have determinants. By striking from
Fin bun the first, second, third, and fourth columns, we get four
submuatriees; note that the determinant of exch of these square sub-
matzices of the thivd order is zero.  If we strike from # the third row
and the last Lwo columns, we get the square submatrix

3 2
5 1]’ Q

with its determinant equal to —7. O\
Cousider the matrix A with m rows and n columns (ool order
N
m by 5 \

211 fl1m g
(1) A=[afr= G212z Q23

QBmt  Gmy Qs

Constitet the matrix B of order s by ¢, by sél?cting & rows and ¢ eol-
umns from A, where s < m and ¢ < njWevall B an s by ¢ submatriz
of 4. If s < m and t < n, the elements in the remaining m — s

rows and n — § Cf)lu%é‘,ﬁﬁ}aﬂﬁbﬁééyo?%m (n ~ & submatrix C

$

of 4; we call B and € complemerfary submatrices. Related to the
matrix 4 = [a]? are the complententary submatrices

@ (N oz Qs Qs
n 12{ ,\ ard 1
R4z 44 Qg

{11 .
likewise \ <
79N day  Goz @21 U2
{ {&11] and Qua gz Qre  flag
D ys  Qag  Qaa G4p

~E

are cf_)m[%fhént-ary matrices. In particular, every clement of a
matria ,j is a one-rowed and one-columned square submatrix of A.
Mh'i\"é(nne circumstances it will be desirable to regard a given matriy
Ay Faﬁing made up of cortain of its subroatrices, particularly when 4
has a number of zero or unit elements symmetrieally placed, or has
some other special property. Thus, using the indicial symbolism of
the preceding paragraph, we may write

{2) A4 = [4,] G=1,...,87=1....8,

where it is now understood that the symbols 4 ;; themselves represent
rectangular matrices. We assume that for any fixed ¢ the matrices
As, Ay, ..., As all have the same number of rows, and for any
fixed & ihe matrices Ay, Aum, ..., A have the same number of
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columns, By this scheme we accomplish a paridtioning of A by whar
amounts to drawing lines parallel to the rows and columns of 4 and
between them, and representing the submatrices so formed by 1.,
Our main use of such partitioning will be where we shall regard A
as a 2 by 2 matrix

N . 1 :'lu A
(d) ‘.1 - [_"12]_ 512‘2:|‘

whose elements 4,1, Ao, A2y, A0 ave themselves rectangular mudrige \‘

Suppose two matrices of the same order to be partitioned in o iy
responding way. Then the submatrices oceupying CULLE‘-[JQULJJI;;.,
positions will be of the same mdm and may be added in th@‘ rentilar
manner. Thus )

3 0|3 4
0 '3|l +10
120y 2 3

Concerning the multiplication® of t\\o l)ariltlom‘d matrices, for
every partitioning line between columns of the matrix on the left
there must be a partl’rlomn{g“hn(‘ between the corresponding rows 0?
the matrix on the right : if%his condition is satisfied, the two matrice
are said to be corbformably partitioned.  To illustrate, lot

,\au G2 i3 Gix Qs
N B Gl ey e O35

w&p | T o A ] ) 4 1,
A EQTG = | Qg1 daz O3z Oy @ = | e
%.5 : 3 fhue Uas Asy A
Qa1 Oz Gay Qag Oy
I
]

- L2051 dza dy

O 35
am{\ 7
bll b12 E)13 i bl-‘i bli':

_bal 552 bEft I bé-l b55
Then
AB = I:A 1B+ ApBay, A,LB. + :112822] _[Cun Cu
AnBu + 4422321: An By, + Aa:Bas N I:C-zl Casf

where ' = AR,
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4

Tri zeneral, let A and B be {wo conformably partitioned matrices
with their submatrices denoted respectively by Ay and By, where {
denmies the order of oceurrence in row groups and 7 such order in
eohtan groups.  Also let the produet € = 4B have the same row
partitioning as 4 and the same column partitioning as B. If Cy is
the (z, 7ith submatrix of € then it can be proved that

('-I:) Ci‘f = .r‘i g'kB,!'-_j‘.

Im this respeet the multiplication of submatrices is like the qn(\ﬁﬁa?y
mullipiication of matrices. In fact, the ordinary multiplication of
two matrices 4 and B may be considercd as the multiplitgtion of
coertain submatrices of A, the rows of A, and certain sul{m'atrices of 5,
the enhumns of B. As another illustration, we give N

Q"

N

O
5;1:&, rg.in
1 : = }4.

LS ]

2 —578
—3 813
“Let B be a square subé}attrix of A, of order k; the determinant of B

we call a k-rowed miphof 4. Thus

A\ “ a a2 iz s

"\'\ u 2 , tas  Oz3  (zs
Y Go1 ey

’\\“ 1 ? (177 / T TP

are g 271‘6’;1\9('1 minor and a 3-rowed minor, respectively, of A = [ali.

Wh;’?{ we have been ealling the minor (Section 6-3) of a designated
E‘-lém(}nt of a square matrix 4 of order n is more generally t-et:med an
(# — 1)-rowed minor. The elements of 2 matrix 4 L‘.OI’lStltll.lte 1-
rowed minors.  Also, for a square matrix 4 of order # there is only
one n-rowed determinant assoeiated with 4, and this is what we have
been calling the determinant of the square matrix A. .

If M, and M, are complementary squarc submatrices of the ma-
trix A, then | M, and | M| arc complementary minors of A4; elth?r ig
the complem'ent. of the other. The a.lgeb-m.?.'fi complement of. a.mmor'
My of A is equal to its complementary TRinor | M 5| mult_lph‘t:d by
that power of — 1 whose exponent js equal to the sum of the indices of
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the rows and columns of 4 used in the formation of the miner 3.
To relate these general ideas with those of Sections 6-3 amd 3-2,
wo note the following. The one-rowed principal minors of a s juanre
matrix are the elements of its principal diagonal; the complement of a
single element is its minor; the algebraic complement of a singie ¢le-
ment is its eofaetor. For the matrix 4 = [g]} the algebraic com-

plements ol N\
d Qe 1y 1y
and »
a1 Cag 51 Bag Qr
. : N
are, respectively, W
~\
sy oy and (_ 1) [EESRE Qay G;-’.gi_ 3
Q45 lay fhyz WQI’W
EXBRCTSES v/

1. Write out all the square submatrices of the ”x‘ﬁbi'-‘ 4 and their atgola
¥
comuplements, where W

N\W

11 1
12 3h

1'1 = K R t
s, dl 11‘au1115r§}:y,¥3(r}' .in
L SGBSL0 T 20

2. For the matrix 4 of Ex. t, find the algebraic sitm of the product
tained by multiplying each of&he 2-rowed minors of 4 that can be o
from the first two columns gj'f}\A and their respective algebraic compie:
Show that the sum so obtgined is cqual to 14).

3. For the matrix @\of Fx, 1, find the algebraie sum of the preditets ob-
tained by multiplyigeach of the 2-rowed minors of 4 that ean be formet
from the first andithird rows of A and their respective algebraic complomes:ls.
Show that thesh so obtained is equal to A

4. Show\ vt if

‘..\“:' A= flay __C_&Q_—:_:_Q____Q_ _ Au 0O ]
a\ £ N L/ PR/ TP Aa Aa t
\ / Gy flaw : [-SEN 01
then 'iAII = !Aul. : Azgi.
5 If
. the i I
= an  fa Ga F | :jl__!_ix_
B3 Gy sz T3 3ok

prove that

02 = A 4+ o’ Acx]

What is the order of a8 OF #a?
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9-3 Laplace’s development of a determinant. In Ex. 2 of the
preceditg soction we saw that. for a particular numerical matrix the
algebrzic sum of the products obtained by multiplying each of tbe
9rowed minors of A4 that can be formed from the first two columns
of A und their respective algebraic complements iz equal to |Al.
Verify that the same is true for the general square matrix of order 4;
that is, <how that

. '\
Gy fF o Oy (1g

N
: : { |
o, Az bay o dzs  Qas dp Oiz | | g \os !
- - " - | y 0\ ~
| s g | flay ez ez (E44 an @Gz | (W Ca
151 Qaq N
" 1 | /e |
Yan are gy Cog - Doy Ay gz Uag
+ . S |
N PR AL gy O34 | @af\taz | | Qe Gas
Lan e GERNS T Oyl 2| O 014!‘
Dy fan sy Qa0 faz | Qaz  2g

This expansion is a particular instaneeafan interesting theorem due
to Lapluace:

LarLacE's TI]EOHE\;I\TW":?‘ o a&;ﬂ:? o dFminant of a matriz A is
equal to the algebraic sum ‘(}f'i:‘ic products obtained by multtplying
cach of the k-rowed mindrs that can be formed from any k rows {or
Loeolumns) of A by fj{e’fr\algebmic complements.

Thig theorcm da,téﬁrom 1772, and is given in Laplace's (Fhirres,
VITI, pp. 305488 Proofs are commonly given in complete treatises
on cdeterminafts? in particular see T. Muir and W. H. Metzler, 4
Treative Qz(';}‘lié Theory of Determinants, Longmans {1933}, pp-
80-88. O\

Thé mumber of different k-rowed minors that eun be formed from
k se{ééied rows {or i sclected columns) is the numhber of sets of k
ﬁﬁfigs that can be formed out of n (7 being the order of the given
square matrix 4}, and therefore is equal to

n!
L = A_‘(n_—T"
For n = 4 and k = 2 the number of Laplace expansions of 'A) using
two columns (or using two rows) is 6. _

For any matrix A, the Laplace expansion of |4 | by l-rowed minors
ig the corilmonp}ace ‘and usual expansion of i4] by some one row or
some one columan.
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Exegrcisus
L. For A = {g]j, write out the six Laplace expansions of A by 2orowal
minors. '
2. Give the Laplace expansion of A| for 4 = [l by S-rowed minors
from the first ithree rows of A.
3. Using a Laplace expansion, show that

la & ¢ d| £\
e f g h | = e b |7 k| ®
00 ;7 &1 le 7l'|t ‘O
007 m | \“\
4. Using 2-rowed minors from the first two rows, c~hm‘. t‘mg
] a b o d '\\
le 7 g h..=|a b le d] 'a et {h dl | ayd: |h I
20 b ¢ d e F.oog bl e g |f hkfe h.‘lf gl
e f gk ‘ O

5. By means of a Luplace expansion LIthl"" 2 \w. red minors from the At
two columns, show that

N/

0 www d%raul{bl’ary org.in
—a
—b —d = (af — be + ed)2.

-t —€ :“f "U |

94 The concept of rﬁﬁ!? We have scen that a matrix A4 wih
m rows and n columnb\wi order m by =) has detertinants or k-rowed
minors of all ordergfrom 1 (the elements of A (hemsels: os) to the
smaller of the twgSintegers m and » inclusive. Tt ix often of impor-
tance to Qpcmi}i thc order of the highest order nounvanishing deter-
minant ofarbwed minor of a given matrix,

A m&t\ has rank » if and only if it has at least one r-rowed minor
W hl(,}k g8 not zero while all minors. of order greater than r are zero.

abds, the rank # of & matrix of order m by # is the order of & non-

sthdular minor of A of maximum order,

I 4 1s & matrix of order m by =, then its rank r satisfies the in-
equalities r < n,r < . Tt follows from the definition of rank that
if the rank of 4 is r,; then every minor of A of order greater than r
will be zero. If the rank of a mafrix.is zcro, all of its elements are
ZET0.

- If 4 is u nonsingular square matrix of ordor #, then rank of 4 =
r=n. If 41isasingular square matriy, then r < n, The quantity
n — ris called the nullity of the square matrix 4. If A 18 a rectangu-
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lar nuivix of order m by n there are two nullities, & row-nullity m — r
and o cofumn nudlity n — r.

Vo give the following iHlustrations of rank and nullity. Of the
matrices in Section 9-1, A has rank 3 and nullity 0; 5 has rank 2 and
nullity & — 2 = 1; € has rank 1 and nullity 3 — 1 = 2; ¥ has rank 2,
ollity 3 — 2 = 1, and column-nullity 4 —2=2. A row or

Ty -is
coliny: veetor with at least one nonzero efement has rank 1; the upit
mairiy of order n has rank # and nullity 0; the matrix of order m bine
in which every element is unity has rank 1, row-nullity m — Ayénd
colun-nullity n — 1. I " s\

ExErcises & N
{3tve the rank and pullity (or nullities) of each of thg‘{QH(’)wing matrices.
_ 1 2 3 1 2 3 i
i. 4 = l: R 2. B = [ p . _6];
4 5 6 . —2 4 7.

I -3 2 Qg
2.0 =]-3 9 —6|

2 -0 4 . W

)

¢-5 Rank and 1ine\'£}“ﬁéiﬂaé~ﬁﬂ¥§£§l: Y Mg Wlnstrations of the pre-
coding section, with the workjdf Seetion 3-1, point up the followmg
fucés pertaining to the numerical matrices of Section 9—.] :

(i} The square matrimyl is of order 3 and rank 3; its three rows
and three cohumns aké\ifearly independent.

{11 The squareMmatrix B is of order 3 and rank 2; it has two linearly
independent rex@and two linearly independent eolumns.

{rer) 'l’he’{‘\(tiu'are matrix C is of order 3 and rank 1; it has only one
lincarly independent. row and one lincarly independent column.

(72) (RDe reetangular matrix F s of order 3 by 4 and has rank 2;
it hag i".lim.\.a.r]y indcpendent rows and 2 linearly independent columuns.
Ei"&;zlhl{\-'e previously given the one linear combination of its three rows:

Yi(\f; 3 = 2(fa) — (fa). Of the four columns of F. only two are
lineariy independent ; two independent linear combinations conneeling
the columng of F are

G fut—17{fn}—7{fu}=0  and =2 fol+{falt+ {fu)=0.

"The maximum number of linearly independent rows in a rectangu-
lar matrix B is called jts row rank, and the maximum number of
Jinearly independent columns in B is called its colum?f rank. To con-
trast these with the rank of the preceding section, which we related to

an r-rowed determinant of B, we call the latter the determinant rank
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of B. The above examples furnish illustrations of the equality of
row rank, column rank, and determinant ranlk of the given matviees,
That these ranks are in general equal we prove helow in Theorery X
However, before proceeding with this theorem we relate cevtain as
pects of linear dependence of veectors with matrix algebra.
Recall from Section 4-5 that the condilion for the veetors o «
» G t0 be linearly dependent is that m scalars sy, ..
the undeﬂymg field, not all zero, exist such that

5) H16xy + Haf¥a —L EE -I— Emlp, = O

If the &'s are n-dimensional vectors, the vector equation (0\ RSP
lent to the n scalar equations

N
2 AN
.'\ N

ny

\
[ §1211 + Sattay 4 - - -+ Sulln = ﬂ"‘\
(G) Jﬁﬂ'l-m + Za@as + - - - = m;.fimz R 0

T . - . 4 s

| $1¢t1n + 82002, + - - - + sg,éaiq,}xz Y
These sealar equations are eguivalent to ‘th’e matrix eguation

@i G-, el brary org.in

o e Gzoeoo Gwd SBRZ 00 or Ay =0,

(25T [12:P EE ] (I“m':’:“ S.:n
where 4 is the matrix qﬁ“\-?hich the veetors a; = {au, @, 0., 0:00)
i=12...,m, are the'columns, and the vector v = {81, 85, . . ., %
Is not. the null vectar), These observations lead us to

IHEOREM 1.¢ }f certain column vectors a; = lau, @i, .+« . Fin ),
=1,2 ‘\,\, m, are linearly dependent, then the kamoaemou\ sratar
equaf,w NB) represented by Ay = O, where the column veclors a; are
the Qohcmns of the matriz A, have a nontrivial solution v = ().
" (Jf nterest to us next is

\ Aueorem I1. If the columns of @ square matriz A are linearly de-
pendent then |A| = 0.

Suppoge the condition for linear dependence is given by (6), with
8 # 0. Then we can solve equations (G) for ag, g, . . ., ¢ and
obtain the ith column of A as a lincur combination of the other
columns; this linear combination will furnish an operation on the fth
columns of A which will replace all elements of that column by zeros
without altering the value of A hence |4 = 0. To illustrate, sup-
pose that the columns of the square matrix A of order 3 satisfy the
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fincar relation eoli + 3 eol: — 2 eol; = O, then the aperation of re-
placing .}1, by " ooll -+ 3 CO]Q -2 (,01; applied to 4 will glve all zero
clement = 0.

By 5 similar ar g,ument-, Wwe can (,s,tabhbh

Turorum ITL If the rows of @ square matriz A are lincarly de-
pridend, then || = 0. L

Toeowves IV, Jf m and n are positive entegers such that m < o,
ared i m n-dimensional column vectors «; = {ag, g, . . ., @ { M=
L2, are binearly dependent, then r < m, r bemg {hm'aﬂﬁ of
the ,»wm't A with the m vectors oy as columns. R, "‘:

To prove Theorem IV we note that the condltum\fch such linear
dependenee may be represented by (5), (6), or (7)8NNWscems desirahle
that we fix our attention on (6),  Suppose th o= m. Then by a
rearranyoment, if necessary, of the equatmﬁ§ 3), ar equivalently of
the rows of A, we can partition the rearrﬁu@ed matrix {eall it B) so
that it+ submatrix B\, with the first m vows of B, is nonsingular, with
the remaining n — m rwmﬁb&wnmﬁﬁymﬂg ianother submatrix B,.
From the d( slgﬂnated rearrang(‘d paﬁ(,m of (B) we have, relative to

the spee N
E‘z’l] " =0, {\so that Bry=0 —and By =0
= O
S :'\'":

\‘
Under th(*\upposmgn that » = m, the bquare matrix By of order m
by m (e by r) is nonsingular, and so B¢! exists. Premultiplying

Bl;};\ "\(J by Br!, we get

A% Br'By=0, o Iy=0,
where [ is the unit matrix of order m by m. The relation Iy = O, or
Lo ... 09s

? Lo 0fsi_p requires that ¥ = sy, 8, ..., 8a} = 0,

which is contrary to the hypothesis that the rows of 4 be linearly de-
Pendent. Tlence r < m, and the theorem 13 proved.
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EXERCISES

LI oy = 2,2, 0} and ap = 10,2, —1}, find the veetor ay sueh that
oy = 20y — an. Find the rank of the matrix with ¢, e, and a; az colymns,
and thus verify Theorem IV.

2 Iy = {32 —1,5) and as = {5, 1,4, —2!, find the vector a; such
that 3oy — 200 + a; = U.  Find the rank of the matrix with o, oo, ind s
as columns, and thus verify Fheorem IV, N\

Turorem V. If m and n are positive indegers such that i m ’<\ el
f the rank r of the matriz A is less than m, where A is the Gatric e rf?x

the m n-dimensional veclors o; = {ad @iz, . - - DS «j 7= 12,
, e, a8 colummns, then these m n-dimensional u*{fo; 5 ure Err‘wxfj
dependem ~\

To prove Theorem V it is conveniont todet/the rows and the col-
umns of A be rearranged so that there iglasquare nonsingnlar snb-
matrix of order 7 as the leading square swbwtatriz, that is, a nonsingulur
submatrix of rank 7 is in the upper: left‘hand corner.  Designurc the
rearranged form of Awbyw dbraulibrery.org.in

511 b . ber bpr ... bl
bl'} h{i;. e bf‘ﬂ b})2 R bm?
A . . . . .
8 B = I;\x.s% e b by o B |
Nog boy oo Ben b .. B
.’1\"3_3—”1-\ bQu EC bru b;m - br-’m_
PDenote thﬁ’ m eclumn vectors 8i, 8y, ..., 80 Bp .. e of the
ma_‘rrl\'é\bv
ﬁ]* {bhE 82 = lbm} . ,Sr = lb,,} B;, = {bpi}? ey .Sf?i = }b'rn

\n each of which ¢ takes the value 1, , n. We want to prove
that the column vectors {bi:}, (bal, .. !bn} ot .o, dbwet, are
linearly dependent. To do this we w ant to shon lhv existence of
sealars s1, 82, ..., &5, . . ., Sm (noi all zero) such that

@ sufbi} +se{baid + - o 8 {bi] F s lBai) + oo A slbt = O
(5 = 1!2: R PR .:'.I'?-If'.

In particular the first p columns of B are linearly dependent if there
exist scalars s, 5, . . ., 8, (not all zero) such that
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|( sl 4 seber 4 - - - 4 8B+ spbpr = 0,
s1hia + Sabas + ¢ - - 4 8bee + $pbpe = 0,

(13 sibre + sabaw + - - - 50y + spbxn‘ =0,
! "ﬁ'lbl;a —|— Sgbzf, + e + Srbrr: + Spbpp = 0!

atbin + 82l + - - - 4 80 + Spbyn = Q.

Let us fix our attention on a particular submatrix of B, designated by, C

b b ... ba bpl .\Z\'
b2 522 e brz bp-z \\
(11) Bo=| - - - - | p=r+t A7
blr bﬂr L] b'rr bpr ‘",T 3
blp bzp e brr bmu ..,j\‘\’

This sqiiare matrix B, is of course singular, since %8,¥is an (r + 1)-
rowed minor of B, a matrix of rank r. Let BupBay, . - ., By Bop
denote 1he: cofactors of the last row, that is, thedofactors of the pth =
(r + Lth row of |B,|. Note that this makedy 8, = 0, since the lead-
ing souare submatrix of order r is nou'%iligular. Tixpansion of |8,
by the last row gives  www.dbrauliBrary org.in
“2\] :BT, = blpBlp + bEng2psH¥""' " "f_ brﬂBrP + bPPBPP'
Lot 24
S

(13) {i‘fl] B2y v 0 vy r,'\b’}: = {Blp; Bepy ooy Bv'p,- Bm:}-
With this notation, agthusing the fact that [B,| = 0, the relation {12)
becomos 5
(1_1) "k\zlmj‘f— Szbzp —{_ et + Srbr?J + Siﬂb?ﬂ = 0
Thus the ptherélation in the set (10) has been established. ‘ '

Similadly, if ¢ is any integer such that 1 <4 <=, and if B, is
defined\By replacing the last row of B, by b, .b:»s,- R bp‘ir
thén V7 is singular since By is zero; for if 1 <2 <7, then |B| is
zero becanse it has two rows alike; and if r + 1 < ¢ < & then |B; 1s
2ero because it is an (r 4 1)-rowed minor of a matrix of rank r.
Also, for each value of i( = 1, 2, . . ., ) the mmors of the elements
of the last row of B; are equal respectively to
{15) §1= B s = Bap .. ;8 = By 85 = By
ae defined above. Therefore for these same values of s1, 82, . . -, 8, 5p
It 15 true that

(16) sibus & 8ibos 4+ o F b 8bor = 0
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for i = 1,2,...,n But the relations {16) are precisely the condi-
tions (10) for the lincar dependence of the p vectors {61}, {ba:], . .
{boi}, {bpit of B.
matrix form
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A |

The scalar eonditions (16) may be expressed in the

_bll 521 brl bm_ 81_
b12 b22 brz bpz o
Qa7 by ba bee bl - 1=0. O
bp Do L I O
_blu b?n bru b}m_ _81.2_ % \’\
Clearly, if the condition (17) is satisfied, so also is ‘ 3
L
(18) By =0, )
where AN
Y= {81! 82:‘ sy Sp SJ’: STHJ! s S.m} 2 .{{QJ:’S?! b Sr, sﬂ U}

That is, if rank B = r < m, then the(m dimenswna] vector with its
first {r + 1) elements a% the cofactor of the elements in the (» -+ 1)th
row of |B,| and zeros” HitHRr waﬁllofg—ml) elements saiisfies the
equation By = 0. Thus lhpm;i.m ¥V is proved.

Az an illustration of Theofém Vletm=4,n=6r=2
the relation (,orrespondmg\to (18) is

Then

;¥ 1\bn| Bt b.”“’_ izl gsl 0
) ; iz 32
bz ba ba by it ; 0
- 1 Oy
{19) B-y\:- Wb bu bas b I P 0|
& bu 1124 1)3_.1 b_“ ib ; 0
'§“. 1}15 ?)35 bsa b% ;bll bm_ 0
\ : s bas bay b i 1:) 28 J 0

"\
'L'f\{}'éf the elements in By are zero, cither becanse they are expansions
\)f the determinant of the leading square submatrix of order {r -+ 1),
which is singular, or because they are expansions of (2 + 1)-rowed
rainors of B taken from the first 2 rows and some later row of B.
All sueh minors are zero, since the rank of B isr = 2.

Clearly, the vector which we constructed as the solution of (18) in
general and (19) in particular is not usually unique. For any column
after the rth could have been moved into the position of the (+ + 1)th
column, thereby producing in general a different leading square sub-
matrix of order (v 4+ 1), and consequently different eofactors as the
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clements of v: thus in (19) the column {bs:}, might just as well play
the role of the clements of {bs} in the vector 7.
From Theorems IV and V there follows

Trrosiyn V1. The necessary and sufficient condition for the homo-
genee s coyualions

anr) + angs + - - + Gmitw = 0,

Gipty T @z + - ¢ + Qi = O .

. . . . O\

Uiy + Bondz - A Gt = 0 N

in the m unknowns with coeficient matriz A of order n byl m <
to hoee o solution ,\{r. . o

o = {;1:1, Ty o o oy xm} . ."’} .
different from the nall vector is that the rank > {;{ W satisfy the condi-

Hon r < . ..\;’

In Theorem II we proved that if the cc}lu’rﬁns of a square matrix A
are linearly dependent, then | L| — 0. v\t that time we were not pre-

paved {0 assert its converse\':"t‘}u -ay%ﬁbaﬁ%‘" HiEE4Rd we do so 1n

TueoreEMm VII. Jf 4 is ¢ é‘:g'iz'a.re matric of order n and [A] =0,

then the columns of A a?;e@nearly depéndent. _ '

Sinee |47 = 0, we l4 S\\iv%hat r < n, 7 being the rank of A. So by
Theorera VI the colanris of 4 must be linearly dependent, and the
theorem is provedi u

THwonsM YA, If A 45 u square malric of order n and |A] =0,

then the\(oz\m of A are binearly dependent.

Theerém V111 follows since the rows of A are the columns of A, and
f"fj{n ﬂ'\é‘fact that if (47 = 0, so also ig |4l = 9, sil}(fe A] = 'I,f‘l’l..
AN s convenient to combine Theorems VII and VIII together In

Turorey IX. The vanishing of the determinant of o square Malriz

is a necessary and sufficient condition for the linear dependence of

s rows and columns.

We ure now preparcd to dispose of the very important

Tugorem X.  If the determinant rank of the rectangular matrix B 1s
r, then the marimum number of Linearly independent rows or columns
in B is r; that is, the determinant rank, row rank, gnd column rank

of @ matriz are equal.
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Sinee B is a rectangular matrix of rank r, il has 2 nonsinpular
square submalrix 4 of order r.  Consequently the columns (or rows)
of B which contain A are linearly independent. On the other hand,
any (r + 1) columns {or rows) of B are linearly dependent; [or if they
were not they would contain some nonsingular square %ubm 1.1 nx of
order » + 1, which is contrary to the hypothesis that the ray Lof B
ber. So the theorem is established. |

We saw in Bection 3-5 that any three 2-dimensional vecior® are
lincarly dependent and that any four 3-dimensional vebters ave
Hinearly dependent; alse in Ex. 3 of Section 4-6 woe praved that any
five 4-dimensional vectors arc linearly dependent. WoWre now in a
position to prove the eorrespondingly general t-heO{eih, naanely,

TueoreM X1, If m and n are postiive tniggees such that i = n,
then m n-dimenstonal vectors are linearly d&psmknz

To prove Theorem XI, suppose the g"me;n “m n-dimensional vectors
to be column vectors of a matrix 4 xaed adjoin m — o rows with
zero elements to make a larger matrix'® of order m by m

W W, dbl‘athTH‘ org.in

E heing the submatrix ofB\constituled of the m — » rows with zcro
scalar elements. T hQﬂ”izﬂ = 0, and by Theorem 1X the columns of
B are linewrly clepeh@aﬁt. Therefore the columns of A4 are linearly
dependent, and theytheorem is established.

Tuarorem X1V Let B = [4, 8] be @ matriz of order n by (n + 1),
with the Wonsingular square submatriz A of order n. Then 8. the
{n -*-\1)1\}1 colunen af B, s either the null vector or is Unearly dependend
o ﬁre n columns of A in the manner § = A3,

X “31nce the rank of B is n, its (n -+ 1) columns are linearly dependent
\b¥ Theorem X. Thelcf(ne, by Theorem [ there exists a non-null
veclor ¥ such that

20) By=0, o (46~
where
(21) ¥o={x, Ty .o, 2y — 11 = {8, — 11, say.
Combining (20) and (21}, we get
. &
22) el b ]=0 o a-s-o

and finally
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(23) 45 = 8.

Since A i= nonsingular, equation (23) has a unique vector solution

3 = A8, und the latter is the desired relation of linear dependence

of the (1 -+ 1) columns of K. :
As u consequence of Theorem XII, we have

Turorin XTTT.  Any non-null n-dimensional column vector is ex-
pressilil as a linear combination of the cohumns of a nonsingular
squar. mairiz A of order n. O\
e
A similar argument gives us O
Treonat XIV.  Any non-null n-dimensional row vector 8 egpressi-
ble ax o lincar combination of the rows of o nonsingular Sghdre malriy
A of erder n. ’\
Reealting the concept of a basis for a vector spate, considered in
Section -1-(, we may state as a consequence O - {He Tast two Lheorems,

Treonem XV.  The vectors of a nonsingulay square mairix of order n
constitute @ basis in terms of which gu arbitrary vector of the same
order and fype (row or wohwnibraatifmiiyeerpepressed.

LXERCISES

In each of the following ege?s:ises show that the rank » of the matrix A
with the m given vectors & cofumns is less than m. Find » of the vectors
on which ench of the remgining = — ¥ vectors is lineatrly dependent.  Repre-
semi esch such depep.(\iﬁh‘cé as an eglation.

Loan = (1, 3,8024), m={0,21 -1}, a=I=
2o = 3@%0, e={—%-3L 0}, = {31,

s = ANZ1, 6,01

B oa S\b—1,2,5,3), o= {4 —8 —20, ~12}.

PR

§lf}"I.*Zlementary transformations of a matrix. The concept of the
T'&J}i of 4 malrix is a most important one, but if we were forced to
find the (determinant) rank of a matrix dircetly by means of the def-
inition of such rank, the task in most cases would be quite onerous.
Fortunately the determination of the rank of a matri% A is fucilitated
by the following elementary transformations of & matrix:

{(7) The interchange of two rows, or of two columns.

(i) The addition to a row of a scalar multiple of another row, or
the addition to a column of a scalar multiple of another column.

(z7) The multiplication of & row or a column by a honzero sealar.

1,1,0,2}
] J‘! }!
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A matrix which iz obtained from the unit matrix I by an elementary
transformation is called an dementary fransformotion watric.  Cop-
responding to cach of the elementary transformulions of & given
natrix, there is an clementary transformation matrix; for these wo
use the speeial distinguishing symbols explained below,

Type (5). The interchange of fwe rows, or of two columens. et
£ be the matrix obtained by interchanging the ith and jih Towg of
the unit matrix I of grder . The effcet of multiplying : \hven
matrix A on the left by Ej, giving Eupd, Is fo ?:?’?.-if!?‘r_’!}?.f!.ﬂ5'}'1{5\1‘-.?'1(? ith
and jth rows of A, and the cffect of multiplying A4 on {Re*riaht by
Fp, giving AL(“) is to interchange the 4th and Jtlw phurnne of 4.
To illustrate, for n = 3,

4 ’\

. . K
1 0 O an o 213 dig e @13
0 01 oy Qs oz | = G-Q W (laz  daa |
0 1 O4lan aw o b Auy 0a

Type (i7). The addition io a row of.a séﬂar mulliple of anctfer row,
or the addition to a column of @ scalag multiple of another column.  Tet
T1 i be the matrix obtaings: Emrﬁrtgﬂg whitimatrix I of order » Ly the
introduction of the scalar £ indhe #th row and the jth columy, where
t # . The effect of nullﬁlplylng, a given matrix A on the foft hy
I (3, giving IFipd, is totatd to the elements of the ith row of 1.k
times the elements of (he'jth row of 4. The effect of mulliplying A
on the right by Hf‘\\'ieldmg Al g, is o add to the elements aof the jth
column of A, h tifeds the elements of the ith cobumn af 4. For example,
when 7 = 3, 3¢/

]- 0 ;.hll 1z Q13 ey, ) . (11::, [20F]
g1 U2z Gy | = 21, thaa, s

day s C Qag [ 29 =+ ?iflgl. I3z + }L{I-gg. tlaz = fr?-(i';‘:i

~UType (735). The multiplication of arow or a column by ¢ scalar.  Let
Krw) stand for the malrix obtained from the identity matrix £ hy
replacing the unit element in the 7th row and 7th column by k. The
effeet of muhiplying 4 on the left by K, giving K5, is to multiply
each element in the ith row of 4 by &; and the operation of multiphy-
ng A on the right by Ky, giving AK , mudtiplies each olement in
the ith column of A by k. To illustrate,

11 s C-'rl:{—l 1 0 0 11 k(L]g [LEF]
(o) @yp. azaJ 0 F Gi=|an Fawp s
a3i____ G2 s |0 O 1 Ayy kogs  ag



9-7] EQUIVALENT MATRICES ' 143

The matrices designated above by Eip, Hip, and K, and de-
fined as 11e results of elementary transformations on the unit matrix 7,
are called clementary transformation matrices of types (3), (#4), and
(717), respecrively. '

The vuvious elementary transformations of a matrix A which wo
have just described are all of the form

(29y P =B, where [l =0  and Q. =0,

N
with P el @ in sore cases being the unit matrix . In conncefioh
with (245 we also have O

(25) . |PAl 19l = | B N

The clerentary rules for simplifying determinants 'm?:my‘ be related
to exam ;s of matrix multiplieation just as (25) iddeldted to (24).
e . N

9-7 Equivalent matrices. Two matrices A dnd B, each of order
m by a, wre said to be equivalent if and onlwif’d ean be ehanged to £
by a finite: number of elementary transfgrrhations of the kind specified
in Seetion: 9-8.  This defmitiohringgfharyvwith the observation made
above i gonnection with equation}:foi’), leads directly to

Tarcary XVI. Anm byt wmatriz A is equivalent to @ matriz B of
the same order if and (gn@ if B = PAQ for suitable nonsingular
square wuitrices P a-nd\&'bf orders m dnd n respectively.

In the ahove discfigdion of equivalence it is undérstood that the
elements of P, AXJand therefore B, all belong fo the same ficld,
I is sometimedJednvenicnt to symbolize the relation of equivalence
between A whd B by 4 ~ B. We consider briefly some important
chavactorigies of the equivalence relation,

. (1), Fh& property of equivalence is reflexive, for by taking P and @
f-’-c’t{i:;t;(ﬂ)e the unit matrix 7, we get JAI = A; that is, 4is equivalent
to ihetlf. )

(2) The property of equivalence is symmetric: if 4 Is equivalent
to B, then B isequivalent to A. Forif B = PAQ, then 4 = P1BGQ,
sinee P and ¢ are nongingular. _

(3) The property of equivalence is transitive: if 4 is cquwa_lcnt to
B and B is equivalent to €, then A is equivalent to C. Forif B =
PAQ and ¢ = RBS, then ¢ = (RP)A(QS) with (RP) and (@8} non-
singular, '

Tuzorey XVIL. Eguivalent matrices have the same rank.
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To prove this theorcm, we reason as follows.  Clearly, under any
permutation of rows or columns of a matrix A the miinors of A4 will
receive at most a change of sign, but not of numerical value; so an
elementary transformation of Type (7] will not nullify a norvanishing
minor of 4 or give a vanishing minor of 4 a nonzeru value. A
similar statement applies to the multiplication of a row or a4 column
of 4 by a nonzero scalur, or an elementary operation of Ly o).
Therefore, clementury transformations of Types () wd (¢ will
leave the rank r of a matrix 4 unchanged. We now cghsider the
effect of an elementary transformation of Type (Z7) on f.htz?:mk rof 4.
Let B be a matrix obtained from A by an elementags§yinsformation
of the second type. Any determinant |K, of m‘;lf\n: (r"+ 1} belong-
ing to B either i3 a determinunt of 4 [the \-'.‘-J.Ill('_‘.‘:})f n cdeterminant is
not changed if to the elements of any row ddcolnmu) wre added a
constant multiple of the corresponding e]em}r‘lts of any oiher row (or
column)], or it is of the form K| = if W7 N, where M oand N are
square (7 + 1) by (r + 1} submatri®e®’of A [if one of Lhe rows (or
columng) of a determinant consists of binomial elements, the de-
terminant may be e‘ﬂi‘r‘é&’é@ﬁaﬁr&u&?@%‘ﬁﬁf &ftwo determinzns|.  Since
M| and [N are (r + 1)-rowed determinants of A, and .1 is of rank r,
it follows that |K| = 0. ~Consequently the rank of .4 cunnot be in-
creased by an elemengdyy transformation of Tvpe (ii}. The rank of
B eannot be loss ¢ a{ir ; for if it were, an elementary transtormation
of Type (d2), which changes B into A, would entail an increase 1
rank; this weshdve just seen is impossible. Therefore the rank of B
ig 7, und thé :tkeorem i proved,

As a{L{Hﬁstrative exercise, verify that

\\ 2 1 -5 -3 17
.'j,.; jl = 1 2 U 1 3
‘\ 3 2 —24 _9og _—2
’ 61 -1 4 4]
[0 0 0 0 ()
~ |1 2 0 1 3 s APy — e — s — T4
32 —24 —20 —v
[6 1 -1 4 1]
- 0 0 0 0 .
~ 0 0 0 B F
23 42 —24 —-—20 3 Gl Ny — 4y
| 2 -7 —1 4 —8 gy — 05 — B0y
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In the above notation, by 1 — 3ry — r2 — vy — ry we mean that the
first. row of the given matrix is veplaced by the indicated linear com-
bination of the four rows, and similarly for the eolumns,  Obviously,
the laslt muairix has a nonzero third order determinant; so the rank of
A =3
ExgercIses

1. Explain the nature of each of the following elementary t-rzmsformatiun'
mabrices; that ig, explain the effect of multiplying a given matrix A = [off
on the leis by each of the given matrices, and also on the right by the gived

matrix. ™\
L ohoo I 0 0 1 0 r— Wk ™
P=lo 1ol g=lo1 k| 2=j0 1 0 %
a0 1 0 0 1 0 0 l'\\

2. lor {he matrices of Bx. 1 show that

v h o \
PQR = |:0 1 k:|- \\
0 0 1dess

Prove in general that any matrix with units along the principal diagonal and
sl elemenits zero on one side of t put dilé_tgfﬂiﬁl can be expressed as a product
. ) woww dhrayliBrary org.in
of elementary transformation matrices, T8
With the aid of elementary trangfermations, find the rank r of each of the
following meatrices. If the rank mof the given watrix is less than a, m being
the numtier of columns in the&iven matrix, find » of the colun vestors on
which each of the rerrmi‘i%’ Aot — r vectors is linearly dependent.  Lxhibit
each such dependence ag amvéquation.
-1 2 _g»+h
, "¢/
3 =4 {3 2
5 418 -1
0 \3 14 =13

4—3\1 —5 5 17 &2 1L 8 25
o210 -1 -t 3 0+ 10
MW h 31 -1 -1 5 72 LY
N-rro0 o3 2 4177

51 2 =1 0 2 53 7

9-8 System of homogeneous linear equations. We now consider
it detail n number of aspects of the system of the m homogeneous

linear equations in # unknowns,
[i‘lui’] + Gk 4. + 0¥ = U‘
(Zb) ia:elifi + dse®s + - -+ az?ﬂx’n = ‘0!

afﬂlﬂ/‘l‘"‘ﬂ'ﬂﬂxﬂ .é_ e + Amnin = 0'
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ar
211 g . {I-]n_l X
[ L 2T PRI Ta l
‘2.1 .2" fn A = O,
Om1  Qwp .. avjm_J s
or
-
(27) Ad =0, ~

where A is the coefficient matrix of order m by n (with srodws and
n columns), and 6 = |z, &3, . . ., 2.} Is an indeterminate{ector.

Note carefully that the roles of % and # here are I'n'[ﬁl"(t?.lil.n;_l,‘(’.{f] with
respect to the roles of these indices in Section 95 ; ipan ioular, com-
pare equations (26) of this seetion and (6) and Q’F} of Section 9-4.
This apparent inconsistent use of the indjeial s¥htbolism can perhaps
be justified by the following observations. In any consideration of
an indeterminate vector, or of a set of syPR“vectors, it is convenient
and often desirable to represent the dimension of that vector or of
that set of vectors by the letter n.  In&éction 9-3, as a nutaral conse-
quence of the matrix Interpretutiefy {7) of the dependence rolation {3)
or {6}, 1t was c(eré-iifféﬁﬁui“ﬁ%ﬂ%l?é'%ﬁﬂxmn veetors of 1he related
ratrix ag #~dimcensional. Bul'in (26) emphasis is being given to the
indeterminate column veclor § = oy, @y ..o, 2. ), whese dimension
we profer to l'eprescnp,h;{r 7; this choice necessitates thut « also be the
number of cqumlﬁ’\fnfthc cocfficient matrix 4, leaving = to denote
the number of rgwshof A.

As u meangyf adapting the principal results of Section 9-3 to the
prescnt ingﬁf{iﬁl symbolism, we restale Theorem VI in the form of

TX(;MM XVIIL A system of m homogeneous lincar equations in
ngwernowns has a solution different from the zero pector if and only

~hihe rank v of the coeflicient matriz A ¢ loss than the number n af
L) unknowns.

\‘;

It is cvident that the equations (26) arve satisfied by 5 = {0.0,
-+ 0}, This solution we call the fripial solution, and any solution
different from it we call a nontrivial solution.

Suppose m = n, and A is a square matrix. For there to be a non-
trivial solution & such that 46 = O the columns of A must be linearly
dependent.  However, by Theorem IT, if the columns of & squate
matrix 4 are linearly dependent, then |4_ = 0. We have proved

Purorem XIX. A4 system of n homogencous linear equations in 1
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unknie s has o nontrivial solution if and only if the determinani of
the coriliciont matriz 18 zero.

In case there are more scalar variables than there are scalar equa-
tlons in {26, n > m. Then r 1s at most equal to m, and s0 r < =,
There: folows

Treowew XX A system of m < n homogencous equaltions in n

wnkhowns always has a nontrivial solidion. O\
e

Our next project is to study the nontrivial solution of '{r:?.\<’n
homogencous equations and the nontrivial solution of = \=~ﬁ homao-
geneavls conations for which » < n.  As we remarked jfidgonhection
with Theorem V), such solution is not in general uniqu?s\ Before in-
vestigatitig 1he arbitrariness of the solution we shiil\éonsider the re-
duetion of 1 matrix to an equivalent form. ‘x:\\.‘

“B-9 The reduction of a matrix to eqqiya’l&xt form. In equation
(30} of Hection 80 we had an excellent Wlidstration of the reduction

of a given matrix 4 to dl@g\mzdggﬁzplbr’;l:gr&bfg gimilarity transforma-
tion &0

(28) B-4C
on the mutrix A is a speciab Pvpe of the equivalent transformation
(20) B = r4Q.

In Bection 8-6 we {:ﬂﬁ'ﬁd that a similarity equivalent t.ransfnrma?i(m
On & miadrx o .{educcs A to the diagonal form. W'e. oW COII,':;l(-lt‘l-
another cquigalent transformation which reduces a given matrix A
1o a desirgble Torm.,

Let thé ¥ by n matrix A of equations (26) and (27) be of rank r.
B}-;,,{skéﬁi(Entary'v transformations we may bring a nonsingular square
Slﬂ{nﬁlirix of order » in the upper left-hand corner, Therefore, there
exist nonsinguiar square matvices 22 and @ of orders m and n such that

A 11 A1z
PAQ = [‘421 A22:|

. . . S 4-1 .
is of rank . Since A is nonsingular, it has an nverse Ant. This
makes possible further reduetions by means of multiplying partitioned
matrices. For

I OTAn Al [An LR ]
0 I:—AnAﬁl 14 dn Aﬂ‘[o A = Andildn
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The matrix
Az:’_ — Aard ﬁ_]A 12

1% a null matrix. For i it had a nonzero element 2. then the sub-
matrix consisting of 4, and bordered by the row and column con-
taining & would be nonsingular and of rank (# + 1;.  Buf that ig
impossible, since the rank » of the matrix A is invariant under ecp{iva-
lent transformations. We have proved \

Tumorew XXI. A rectangular matriz A of rank v cosg %ui\?:educed

by equivalent transformations o . O
A Ap “(M.‘:
G 07 RS

where A1 is a nonsingulor square malriz af\rark r.

For subsequent refercnee it is dtasirzybit\\fbr us to note that the
partitioned multiplication (30) Is, as g-apnsequence of the discussion
immediately preceding Theorem XXW4n equivalent transformation
of the form \ 7

.dhrauljb: [:y,org‘in -
Au Alfw 111 A‘iﬁ‘fj i U
31) P = ches - -
B, [4 As OgN0 [ Where P [-Aglm i
From (31) we get, zsinn?“.e\“i'“j is nonsingular,
92 € \@h’: :'112] - 1 1’1_11 iz
(32} ,&21 % i I
Similarly, cotisider the equivalent transformation
[ I ’;'\0 Al]’. ‘4.12 I ‘_,{'11_11.(412
—AdGE T Ae Amlo ]
O

...\":' 0 '1'122 - _'121_’1_1114‘1 12 - 0 ()..!

since the matrix A, — A2 A7 51 a nuil matrix for the same reason
given above. We then have

THrorkM XXII. A rectangular matriz A of rank r can be reduced
by equivalent transformations fo the Jorm

[.‘1 11 O

0 of

where Avy s @ nonsingular square matriz of rank r.
Note further that
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[AH_O An' O] _[4. O
0 olo 1] 1o of
where the submatrix I, is the unit matrix of order r. - We have proved

Trrounes XXIEH. A reclangulor matriz of rank r can be reduced
by etpuivilent ransformations to the form

I O] O\
0 0 A
oA

where I, 73 the unil mafrix of order v; that s, there exist nommg‘aiar
matrices P oand Q such that for A = [alf, A\

IJ- O Yok & 4
£aQ = [0 o]' o)

This tx called the canondcal form of a matriz :md(r equavalent trans-
formalions. \\

To illusirate the procedure, suppose thatvive wanl to find some
matrices # and € such that PAQ is dlag@nﬁl, where

www, dhp ll& ry.org.in
*}.

Lot us interchange the ﬁlst a@s{ second rows of 4. By Section $-6

01
this may be effected bw p.(mnultlpl\ ing 4 by Fuy = [l 0]
Thus »

;\,' 0121_[1 0}
o\(l‘?}A_l{}lo"_gl
In the ld‘rte}an’trm lot us replace the first column by the first column

minugs tmc:e\the soeond column. This is equivalent to postmultiphi-
Latlon b’v wn elementary transformation matrix of Type (#), Section
A\

1 0
Q—G\thf‘ transformation malrix being Moy = |:_2 1]' Tinally,

0 172 1T 1 0]
EBuwdlion =[] o7 ol-2 1
1 0 1 0 _|:1 0}
=[2 if-2 1] Lo 1
80 4 P and a Q such that PAQ is diagonal are
1 0

P[0 e e=[L i)
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9-10 Solution of a system of homogeneous linear &3uations,
Theorem XXT gives us a basis for diseussing the arbitiuriness of the
solution of the homogeneous equations (26). We assume that the
equalions and the unknowns have been rearranged so thot 1he lead-
ing square submatrix 44y is of order + and nonsingular. T'hai is, we
assume that we may write (27) in the form

(33) du ‘1“][5i| -0,

Aan Ay 5 O\
where & has been partitioned into its first r and last % <) elements,
Combining (32) and (33), we got (J}"

Ay AT O

r—1 11 12 1 — o~ A
S P AR
Premultiplying both sides of (34) by P wergot
\N
- Ay AR
33) (o TP
Then A

www.dbl‘auljﬁréfzy,org,in

Andy + Apsy = Oj,':.'v or Ay = — 41385,

~

Consequently, L
(36) A
This form of the Selution for §; shows that the last {n — 7} elements of
¢ (the clement®of 8.) can be assigned arbitrarily, and when this is
done the fixdt » elements of § (the elements of é1) are uniguely deter-
mined, dofice the number of linearly independent vectors of the
type ?N\&ﬁinot exceed n — v, We have proved

51 =—d iullfl 1202.

:"\TﬁEOI{-Eihi XXIV. If the cocflicient matriz A of (26) 1z of ronk
\'"\; i < n, 0 betng the number of unknowns, and if the cobumns of A
corresponding lo a designated r unknowns constituie o mabriz of rank
7y then the remaining n — r unknowns can be arbitrarily assigned.
These assigned n — r unknowons are paramelers i terms of which
the other v unknowns can be Hnearly and wniguely exprossed.
As an illustration, congider the cruations

[9:1+:rz~ I3+I4=0;
(3?} 4‘.’51 — T + 2&,"3 — &y =0,
3$1+ .'.CQ+$,1 = U,
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or

N

2y
. e | 1 1 .
Here vo: 1= 2, and [d4) = ‘ ] Sl=—2=20 A4 is now-
I -
sngular. Lot A o
L1 -1 <O
Al T 7 -1 1 : {;}\ o
In this e i solution (36) becomes N
o | IT=1 =17 -1 11 ] 11 \ﬁ][a]
.\ . _ s _ 1 ~ )
o [ a0 Tl Al -l
or \
X, =— é.’b‘;, Xy = j;’bs - 1;-1“:\\"

Thus the
solvahile
there a.

o conybiong (37) in the {owr wiikhowns o1, &y, 3, 75 ate
ferme of 7y and s From Thewem XXIV we know that
. . »3
P liearly indeRendsts SR or g in
p. ,""' I
o (L @y, @l anil™ o = fef, @5, 2, 4l
of (37), viivdd o fundamental 8hof sobutions of these cquations, with
s thal any othersgelition of them is a Hoear combination
s XY
of the Hoiv inf_Ie])emIfx{\é’élutmns.
Take . = 1, 2, —Oyand we get rom (38) as oue solution of (37)
\ 1 3
:‘.\’) ar={—z 5L 0.
ool agl® —2, @y = 1, with the relations (38), gives as . sce-
. Y -
onl soluisepamf(37)
R\ as = {1, —4, =2, 1}

AP Y

Note\?b\,ﬁ the choleea of x4 and z. were made so that o and az.aLl'e
lin},@‘nf}.— Luiependent vectors.  Therefore the veetors e :-mr"l oy ,]11;\;13
stipulated] arve fwo linearly independent solutions of couation (37].
Any other solution 8 of (37) is o linear combination of these veelors, as

§ = 1oy Sa0m,

where s, and s, are sealars to which values may be nssigned arbi-
trasily.
ExERCISES

Find nonsingular matrices P and @ such that PAG s dingonal for the

matrix 4 in caclh of Exercises 1 aml 2.
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32
1= ]:i L]‘

3. For the given matrix

A=

1
2
—n

verily that an equivalent transformation

I8 7AQ = I, where I = [1]# and

| R

2
£

s

. . . . . T &
4. Bhow that if 6 iz a solution of equation (23N i s ix oo

sealar, then =5 75 also a solullon of 127

n

3. Bhow that if ap and e are goluiions 01'.(1:};1}.11—”1 (20
are arbitravy sealars, then sien + e 12 alsd™ solution of 271
6. For each of the following sets of cqll}-}}.fons, lind the rank; o
cient matrix, If » < %, [ind g set IJF{:Q < 7 linearly indenenden: .

A MATRIX AT, O
2 -l =g
A =] -3 0 R
| 3 10
—1 0
3 =2
(} 1 N\
that will put 4 in 4{ t\. frarm
¢
{\
12 \
1o R
2 5 '”\'\"\,"

Clbrary
p

f o and s

3

L

the voefli-

like those in the illustruted lorerhRESE yieEgin

@ 21— Tae — By =0V (41)

3o+ Sx — 2z 0,
'1'1?1 - 2;2‘,‘;1 “-.fﬁ;;\= 0

7

(166 20 + BR T2y = 0, (i) w —

D= 2y =0,
:?1‘ ti:}t.ﬁ'_’ + »5.«2"3 =
:os;s.;
9-171

Doy — 1 x5 — g
1 b @ — s iy 0,

4z + e — a4+ 3y =00

2.’2’21 -
AL T R
SI| - h";

&
ution of a system of nonhomogeneous linear equations.

Thcﬂx\";‘\mm ol m noshomogencous linear equations in # unknowns
&

( (1181 + Epado -

A,‘_|.-

2171 = oy + - - -

BTy Cypn 4+ -

13Ty = b]

+ @uir, = by

_i' Ll = bm
or
’—all 15 Q1 || 1 b
a1 Qag Goy || Fo| .| Ba
_ A1 iz Xinn o bm
or
(40} As =8,
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may b - ived in a manner similar to the system of homogenecus

linear - +lions considered in the preceding two sections.  As there,
we age: - {hat the equations and the unknowns have been arranged
sotha: . leading souare.submatrix A is of order r and nonsingulur.
Then @ may be written in the form

A 11 A 12 51 _ .61]
{#1) [;’1 ! 22][52] B [8.’ .
where <o vector § has been partitioned into its first r and last #,< 7

eleme- - wnd @ has heen partitioned into ite first r and last ;?{'z,‘-ﬁ:\r
elemez -~ Trom (31) and (41} there foilows the relation W

N A A 12:":51] [ﬁl] I:'Yl} PPN )
2 = = L BAV., 270
(12) [ 0 0 La) = e T Lyt TS
-+ left member of equation (42) consists oka eblumn of » non-

gery o5 ents followed by e — r zeros. (ﬁloqﬂqéﬁmntly that equation
can iz sobved for & if and only if vz ig & pli}l‘{ftzctor. Referring to
eound o (31) we see that O

o T BT bt ]Eﬁ&ilg[ B }
{13) i_'}'z:l = PI:IBJ— \’L;‘-lgl,ilafl;@:‘fl i | CALADE A e

»

Nolz ihat 81 is left unchanged \ipon premultiplication of 8, B} by
this wntrix P, Ty = Q,t{iluat-ion (42) can be writlen

(4+4) o 4 A = By
or
(45) N 5, = — AtA b + AR'B

e \ud
1y = O% 'nla':.éolution (45) iz possible, equations (39) are suid fo be
c:fh'qsa's;tc-rai&';%% ~e # 0 und equallons (39) have no solution, those equa-
ilong atetsaid to be nconsistent.
AThe condition for consistency, vz = (), may be expressed ecuiva-
lﬁ«xtiy using the concept of rank. L[ we compare the partitioned

mafrices .
. 4 A _ Ap A 7|
(1) [ O“ C;{I anl l: 0 0 Tz]'

we see that they have the same rank if and oply if v = O Pre-
multiplying cach of the matrices (10) by P which operalion docs
not alter rzink, we have the eondition that A and |4, ;5‘] hnq\'e the i me
rank. The matris [A, 8l is ealled the au gmended mutrix O the system

of equations (39). We have proved

N\
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TrrorEM XXV. The m nonhomogeneous linear equotives in -
kaomwns (39) are consisteat and solvable in termes of o — r po
if and only if the rank of the augmended malrix |4, 3] i ewi
rank v of A.

o illustrate, consider the cquations

‘li— Aa ; Ay ‘I‘ 2.?'.1 B
Pl — a |- 3us — fhay — 9,

AT 4+ dry + 8ay = 12, ’\:\'

li
=

(47)

| oy — 2oy + 20y 4 Ly = 6 \g\
« N/
or ~\
111 e sHIPANR
2 —1 3 6 9 LA™
=1 NN
3000 ¢ Rile| |l
1 -2 2 14y \I)
Here rank A = rank [A, 8] i 2, and ;1‘\11\.!'1.&.\' a nonsingulay = o 2
submatrix QY
1
Au= B 1] eﬂﬂbﬂwlm{‘@& Yeor gy — [_;

The equations (17} are ('f-f.']f'l’S‘JST(?I]T._, and the general salution {130 0 153
cuse hecomoes ~

]_ \‘x —1}1 Jg]__. -1 =17t
g ‘-",‘ \—.) 114 6 Lf4 JL--2 l_th.._'

oT .‘\)

(18) i:r \”1'“-— Ty — Bry) =4, wp= Jlry =200 — ©

Thus & Tour equations (47) in the four unknowna oo e
solatable in terms of 75, @y By Theoren XXV there ur
, \gﬁependom sohulions,

/ o = ;’?‘1, Xa, &y, ’14} ElTl[l ko = {3: :i‘;_ J'; ’!1'

of (47}, ealled a fundamenial st of sobutions of those equnlions, with
the property that any other solution of them s a linear comlinniion
of the linearly independent solonfions,
Tuke @3 = 0, 25 = 1, and we gel Trom (18) as one soluiion of %y
ey = ;%' _} U' 1]
Takez; = 1, 14 = 0, and we get from (48) as w second solution of (17

we = |, —4, L 0%,
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Tt -l be evident that the values of o, and 24 were chosen so that
o i oo ave linearly independent vectors,  Therefore aq and as are
Sasnrly mdependent solutions of the equations (47).  Any other
5 of (17) 15 a linear combination of these two veetors, as

8= S + Sndes,

whi = vy o g are arbilrary sealars,
’ O\

Exrreoses O\ *
LKERCIRLES f'\“\

. N\
stome of erquations are ponsdstent or
- " . Y
ent, [ 0 — ¢ lincag§swde pendeat

“icrmine whether the following s
e dntenl L the squations are eonsd

ver o aobntions us in the illustrated exereise just given, : N
Dr— a4 Beg e 1, 2. 23 — 3ra + L *;T} r—3=10
e - 20— &3 == b ey — CWNT 2o — i,
D — e — Ay =14, 3 — .'t‘-_‘-ﬁ:_'.\!}!.’:{ — e -1 =0,
100 — Brg — Gay = —10. 3r —oaeNt wp — 7 — 4 =0
% 3

2% Congruent matrices. A .«:_p’upfa'lf instance of the cquivalent
wingiion I3 = PwlAQui.;‘;'IEfﬁhl}}{iﬁ@é"ymégm--s.‘fv':‘mat'zfrm
| VAP,
I heing the transpose of & Sueh tranformation plays a basie role
i copneelion with Sj,f;r;\l‘tl;\,‘r.ric bilinear fornis and quasiratic forns,
wl ATC (?.onei(lfzred\'\?}s’f.r"'w next chapter.  If for bwo wiven mntrices
A and B there exiehy a nonsingular matrix 22 so thar (H) 1s salisfied,
we v that A a.kirl;ff are congruent matriees.

E"l'f!]}f:q‘:-].‘r(,‘i‘.‘.i'tf}) giving a prool of Theorent XX VT below, whicel is
w13 }12\,(5:tjl'lgL'1.ieIll transtormations of matrices, lol uz re-examine

o
dol
1

he cleggtaitary transformations of a malriy which were considered in

]
Fy
3
Sceridnd0-0.  Recall that By denotes the matrix obluined from the
R atrix I of order o by interchanging the ith and jth rows without

: o s Fy R Tharia {3
\Nte.rmg the remaining 7 — 2 rows.  Thus from

L 00
I=|10 1 0
|6 0 1
we derive
"1 0 0'1
Eoy = |0 01
| 0 1 O_i

by inferchanging the second and thivd rows of 4. Note that



156 RANK OF A MATRIX ERRERE (R

1 00
Efzg) =00 1|= E(EJ‘]);
01 0

so for # = 3 the transformalion
EonA By = EgydEqn

is congruent. More generally, Ef; = Fp, and so 2\
) - T
EundEqy = FipAL o &
oA\
Tom
1 T M 1 oy - . : % -‘-’]/ PRI |
EonAlpn Interehanges the 7th and jth rows swd theVal, 0 ik
. o) : &N
eolumns of A, We have proved AN

# § '\.n
Turores XXVI.  The elementary trangform nsé}'?ﬁ?
(50) E A AL

of o matriz A which results in fhe ‘5".5?3‘?{@&?'??.(’()1{8 thdereharg. o
susne vows and columns of A 45 a corlgludnt tronsformat o,

Recall that H ., sighifies the rnu.‘gfi;v‘&;h[-ainml from the nnit
1 of order n by ithe MWHQ%&%?JFH@‘M%W in the jth roy
column (¢ = j) withoul changing the other elemcnts of
matrix, Thus "~}

LT 007
dpf=10 1 0
\ |0 A 14
Observe that _ o™
:\\’) "1 0 07
(31) i»\::\'\% H{%z) — 0 1 k — H('),:i)‘
\“; |3 0 1]
S0 J‘.{\
NN H oo AH ey = Hig A1 o,

e

™\ :
Ngjeongruent.  In general, Hi, = Hy.  Consequently
y _ !
HindHup = HipA T 5,
which effects the transformation of 4 symbolized by
frowj-srowj 4 hrow i
Loeol§ — col § = kool 4,
is a congrucnt transformation.  We have established
Trvowss XXVIL The danentary transformation

(52) Hi i,
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w
It

e mabriz A aehich dncreases the elements of the §th row of 2| by

- iimes the corresponding elements of the ith row, and at the same
e inereases the elements of the jth column of A by b Emes e corre-

wnding elements of the ith cobwnn, s o congruent transformation.

Lo b Now I A position to prove

. -' . Ty . .
g:-?:“' Pononed XXVIHL A symanetric molriz A = [ofp of vark v conh
Claeed By @ congrient fr fmsjm malion {0 ¢ dicgonal matrir {rf #ip

e mmfd__
('1?11 0 L. D
ﬂ l‘fgg 0
(3% YAP = )
[ PAr 00 d,
0 0 0

N
Toprove this important theorem we reagow as Tollows:
If every a; is zero, the rank of 3Ns zero, and the theoren is

L 4 "

I gy =0 I)m\.mxummmuhbﬁaryfoﬂg then ay can be brought
= louding position by an ck‘mentan transformation of the type

(3. Toillustrate,

0 s “,‘(s(n thyy  tlaz Gy
Eun | az ¢ 3\"(1>J Fap = |0 s an| Eusy
ﬂ.':j] N Tz g [ERT I -  EF
nx o ay oy oy
A/
’\’ > = | {1y 0 oy |
i..\, gy Qa1 fhay

) T‘f\ll aq = Obut some ¢ # 0 lor { < j, an clementary trans-
lum*@tﬁm of the type (51),

\ " TOW ¢ — row { -+ rewj; coli—ceoli4- colj
Mitces the element 2a;; in the position ¢y Then by (i7) auhove it can
be brought to the leading position of @ For example, for 2 = 1in
(31), we have (am = an = 0)

1 U 0_r ais [1 O 0O

£ ’1.!} = ¥n ({n ( 0
<L i ) 1 3

U 0 IJ sy e 0 1

o)

1
1
0, 1, fhg ]- 00
(I-g]_—f—{i;n, fhaa,  {luy 0 1 i[
1

{1, Gy, 0 0

—
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0, ity + g, i1
=i thzr + Ay g Loy, ag
Ly, fh, U
Ti should be realized that the transitive properiv IR R
tablished for cquivalent transformations also holids foe oo oot
transformations. For i A= PAP and C = R0, 0 . 1 =

el INGho

QPAP) = RAR, whore B = PO, Therefore the
several congruent transfornutions made sbove on the
is expressible ts sowe couzrient froslominrion;
! _Br
I P !
ad) AP =0 — |7 REPSTAC R,
{54} i 5 Bul TN

y -

. . T ?
Heve 8 = (o, oo ..o, b, Since the wiven im\"h e
the matrix on the vig ht of (34) s also syuunogn

= (P/APY = PLUE NPT

Next consider the congroent ‘rl‘zmslgn'r}m-tmn

(33 1 0 ':3?11 U! —|f—] '—?’14. 4
i -8yt 1] 8 {1 { bp orgin
[bu ﬁw ™3 a_r%( LI

O =88 Bal i Lf’J_

Thus all elements of 1he ”ﬁr;af rey ot the fired colinwnn o

zero exeeph the fnm.s }1(‘ provecd stmiloely witly fhe ol
order n — 1, By, —\,u 713 il v elemenis are fsolaled o e Lo
onal with ay —_0)\7 oy, oor vlse » o= w0 Al of (e
translormatignamay he eombined into one, indicaied by |

The ma;f\‘x on he right of equation (33) 15 ecalled
Jorm o f\l,,,,«mmmm{' wedria iendor congrucenl fromes forail f .
all of"(}fe {ransformations whicl we made on the elemer = of
C Lk“&'fh(, vechuetion (53} were rational, 1hatl reduetion is o
?sgmﬂwn of as the rationad rodiction ol o symmetrie matris mnier son-

_\;;1 mient transformations.
To Mustrate, let us find a matrix P suek (hat PP 3= diugold,

2 - [ & g
where 1 = [l U:l mmee this s already iu the form 2 = L ;. J

0

1l

of (54) above, we see from (53 that

LT -E

] - H
Ho P 0 1
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Exkromsss

Find a nonsingular matrix P such that P’AP is diagonal for ecach sym-
metric matrix A given below.

cas[t I} s asl)

3
2
2 1 07 0 2 3 2 1 8
E;..‘4=102-4.A=240-5.A=1—39- O
0 20 30 1 8 0 2
\..

f.. Prove that if a symmetriec matrix has rank 1, then the Plemg@s of its

lead,v.v diagonal cannot all be zero.
. Prove that all the elements of & symmetric matrix oﬁ{ank 1 can be

e\;pl essed in terms of the elements of it leading (ha.gonal N

. Prove that no skew symnetric matrix can have 1,

4. By considering the effect of interchanging IQQand columns, prove
that she determinant of & skew symmetric matmxxdfmdd order is zero.

L, Prove that the rank of a skew symmct;m\natrlx is always even.

> N4
»

2 N

™|
www.dbraulilrary org.in
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&

L Y
N

3
<

&
S
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R\
.'\
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CHAPTER 10
MATRICES AND ALGEBRAIC FORMS

10-1 Linear forms. Invariants. Lot A = [a;] = [a]2 be n matox
with elements in some field F, and let & = {2;} be a veetor irhNn-
determinate sealar ecoordinates in the same filld F. An exm?\wlun

such as ' O

(1) @y = @t ealr o0 F Gl
K7,
for a fixed value of ¢, is called a Hnear form in tlra\?él'ial')]es £, In
this chapler we make frequent use of the sumiWiation conveniion,
and the reader should review the explan%ﬁom@f%h&l convention given
in Section 5-10.
If we are dealing with only one or tum l~moa] forms, it is conmvenicut

to represent them by ol

W dbrauhbl ary org.in
(2) f=ax apd T og=be

From the rule for the addlticm of vectors we have a fundanionial
property of linear formg:{ ™

¢ 8J
\\f + g = (a; + bzxs

More often \xe:are interested in a system of n linear forms in n
varigbles.  Suelysl’system is representerd by (1) if we let ¢ take suvoes
sively the \;@t\es 1,2, ..., n ludetail such a system is

W

.{\ anky 4 apxy + 0 0 4 G,

(3) ~:'."' Azt +F Bagwrs 4 - - -+ dpar,,
N

\ } 11+ Qoo + - - v 4 T

The matrix A = [a;;] = lal? is associated with the system (3) ol n
linear fortas in % variables; we say A is the matriz of the system.

Suppose that the system (3) is subjected to the lincar trans-
formation

(—L) €T, = t;'jf;
or
() [z]t = e,

160
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with matiix 7 = [, Change indices in (4) so that the transforma-
tion amprars as .
(1) r; = tpdp

Substituting from (6) in (1}, we got

(7) bty = Aok, s8Y.

From (7} and the procedure for multiplying matrices, we see that O
(8) da = aidin, Oy
or X O

() la); = falilils

- &7,
where .1 = [ag] = [@l is the matrix of the system of t-hg\n linear forms
in the » varisbles &, We have proved O )
Treorrm I A Knear transformation uzfgﬁa,\fﬁatrix T replaces a
sysiem. of n linear forms tn n variables mtﬁ Mhe matric A by o system
with the matriz AT, « W

hie determinant of t‘ﬁi’k"ﬁ%&%@kﬁﬁa@g@m@f lincar forms is calied
the climinant of the gystem. 'lhup|A] = |aiyi is ‘.nhe eliminant of Fhe
svstem (1), Taking the determinant of both sides of the relation
(9], we get ,i"’;\
(10 XN = [A]- |7

N

The eliminant. | 4] bne of an important class of mathematical objects
N

called fneariants,)
A function @f the coeflicients of a form or of a system of. forms
in the #’s 'h\&‘a"ld to be « relative ingariand i, whatever the matnx T of
the t.r}_}_,{ﬁ_;foj'mat-ion (3}, the same function of the coefficients of the
r(_;ﬁu}gﬁig forms in the #'s 1s equal to the original fuuf:tion of Fhe coeffi-
fents multiplied by a certain power of the determinant [17. If the
notation for the forms is that of (3) above, and Laun, . -+, @) TCPIE
sents » function of the coefficients of the forms, then I{t, - - . @)
is an invariant if
(an Iy oo s G = [ TPIan, ooy @)

The power w of the determinant of T in (11) is called the weight of

the invariant.
If either |77 = 1orw = 0, then |T]= = 1, and

(12) I(&lh ey &ml) = I(O‘.]_]., et a""’*)'
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In such ease we say that T is an absolute snvariani. Thus an alwsolute
invariant is an invariant under a transformation for which (7 es 1,
or it is an invariant of weight zero.

From (10) and the definition of a relative invariant, we havs.

Traeorem I The climinant of a system of n Uacar forms inon
variables is a relative invariant of weight 1. A~
From Theorem XIX of Section 9-8, we have O\
€ N\
‘Tuzorem ITT.  The vanishing of the eliminant of the alear forins
Galt + Qi + -+ anz, (=1, 2, ‘“.:.";"‘n}

18 the necessary ond sufficient condition for zhe'n%r.}?;a-i?ﬁwe.s’

L+ Qrads + - 0 g, = 0 (3\,—_- 1,2,...,%)

~
IH

. .. i
to have a solution other than the rivial onge, = ... =1z, =

% 3
The entities which we have just ¢818d ineariants could b omore
descriptively termed algebrade 3;'?2%;(1-?‘?::6[?!-38). to contrast them with
arithmetic invariant¥ Wﬁﬁ%}ilﬁﬁﬂéﬁ’ﬁ?ﬁyajﬁlﬁif& and mtegral invarianis.
Of the latter we use only avithmetic invariants. A number associated
with a form or a system of forms in the s which is unchanged when
the variables are subjecked to all the transformations of « speeified
set is an arithmetic Tﬁéafr:iant. Tixamples of arithmetic tnrarinnts are
the following: the number of real points at which a straight line cuts
a curve, and thexdegree of a curve with respeet Lo linear transforma-
tions of its \%ﬁiﬁbles in its equation.
< 10—2\Bi]‘ﬁi831' forms. An cxpression such as
O
PR m T
(1" F=2 2 asy,
a\" i=13=1
\w}hich is a polynomial in the m + n scalar variables
PLEL o Tm; YUY -, YUn
with each of its terms of the first degree in the z's and also in the ¥’s,
is called a bilinear form. '
Form = 2 and n = 3 the general bilinear form is

2 3 :
(14) ¢ =2 2 Tl = QU+ Gutys + G124y - anTay

1=1 j=1
+ anriy: + QT
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or

K5l
(15) 0= (n, xz)[au Q12 0113] y2 | = o’ A8,
3

@21 oz dag

Relative +o (14} and (15) we say the given bilincar form g has the
madriz foslors

?j1

14 & &1y

o = (-7:1_- 3‘?)’ A = [ 1 12 lz:l’ and |3 = @
g1 ez 2 y1 \“\

Recall our agreement near the end of Section 546 that we, uﬂuId use
unprimed small Greek lettersas e, 8, v . . . torepresent om'-ro?'umn -
frices, aned relatedly to use primed smal] Greek letters aﬁB’ Y. 10
represcni one-row matrices.  Analopous to the mdtlie factorization
(35}, the general bilinear form (13) has the maxtl{qjacturlzatlon

1 qu\ Ves G [
s 8 ... G a |,
16) = o'Af = (eras, ... an)f O (B oo O Y
TR

[T dbraul bary. frg.in - - Gwn LY
Clearly, {0 every bilinear form J‘ike (1'3) there eorresponds a matrix
A = [a, and conversely to@very such matrix there corresponds a
DlllIlEcit" form;thereis s oneaﬁs-one correspondence between such forms

and marrices. A = [d risaaid to be the matriz of the bilinear form
(13), dlui the rank of j i called the rank of the form. Supposc thut

the voetors "\’3
(x:{.ry\.rg,”.,xm} and ﬁ=i?)’1:y2,----:yﬂ}

of the bi!inéar form

i "

S S
N i=lj=1

a-fs;:;‘ﬁgliected {0 the scparate nonsingular linear transformations

(18) wo=pudi Gi=12- ™

or

(19) a = Pa,

and

(20) o= aui; Gi=12- , 1)

or

{21) g = QB

N\
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Note carefully that to effect the transtormation (19) on (17) we hive
first to take the transpose of both sides of (19).  Deoing this, we o
(22) Cod =g

since the transpose of the product of two matrices Is the prodicr of
their transposes in reverse order. Substituting from (21) and {22
in (17), we see that ( 17} is transformed into the bilinear form A

(23) j = -IPF‘_.i QB = &""{B: 5ay. A\ ¢
oA\
We have proved S N
TuroreM IV.  If in the bilinegr Sorm (17) with f:aa._'t-ri;zizlwu;f: suhio

. . - . . N Y -
the 's to a linear transformation with matrixz P and e of's to a liv or
transformation with matrir €, we oblain a newbulinear Forne siid

matrix -
(24) | d=pPag, oY

where P’ is the transposc of P, x\ -

Recall from Section 9-7 that, if f:}j‘é}“{h&h‘i(‘:(tﬁ 4 and B satisfy i
relation www dbrauliBrary org.in
(23) BP0,

then A and B are said to bE eguivalent matrices, and ako that e -
lent matriecs have the gtme rank. These observations lead ys (o

THroREM V, i':h>>a-nk of the bilincar form (17) is an arithmetsc
thvariant ?m'ﬁf;.n};casﬁmcé to nonsingular linear transformations af the
z's and 'y, NS /

Two bi!iﬂiéal' forms are said to be equivalent Jorms i their matrices
are L.‘(Ilzj\ ent. 8o equivalent bilinear Jorms have the sume rank.
FromySheorera XXITT of Chapter 9 and Theorom IV above there
followh

N\ Tuzorew V1. The bilinear form (17) of rank r can be redveed by
nonsingular inear transformations of the variables as (18) and (20
to the normal form

(26) i+ Eaye + -0 Loy,

We sce that the reduction of the bilinear form ( 17) to its normal
form (26) is essentially that of the reduction of the matrix 4 = [a]?
of the bhilinear form to its canonical form under aquivalent trans

formations.
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ExERCISES

Find the matrix 4 associated with each of the following bilinear forms,
Redure euch bilinear form to the normal form (26) by finding nonsingular
matrices £ and € such that PAQ is diagonal,

Lo 2 - e + 290

2. 3xs. + 2owye + 4o + ooy,

30 2ruyy — dayr — Oz — 3wan + 3reyz + xap + Szsyy + 193513,

10-3 Symmetric bilinear forms. The bilincar form Oy
@7 J = ey, = o4 \

in the tvo sets of » sealar variables
\.

w' = (fl'1, Faye o :-:rn) and rS = {yl: ygr":;:'\' ,?'&j

is ealled a symmmetric bilinear form if the matrix 4= )a]? of the bilinear
form is svinmetric.  Observe that a symmet;r;(é b\llinear forin remaing
unchange! if the #’s and the y's are interplfagiged.  Since each index
In (27) hax the same range, we dispens’ezw’-'ibh the summation symhols
z Z which appear in t.lwgw%hi@gt&i@fom ifd3}, and use the swn-
Ination convention, it being undi‘iﬁs‘[-ood that each repeated index
takes the range 1, 2, ..., ne M a particular value of # is under
consitlersition, it will be specﬁcd. .

Suppewe that the 2 é\m} the y’s of the symmetric bilinear form
(26) are subjected tojthe same linear transformation:

(28) NG =g o a=Ca
(29 '\\w: yo=eciy;  or 3= Ca

Then .fr\t;‘aj;' Theorem IV, or directly, we have
m~\.7 . . i B
\'Q{:r;omzn VII. Ifin a symmstric bilinear form au2af; wath. maf.?.z:c
A wwe subject the ©'s and the y's to the same inear t:‘an(‘sformaiz{m with
matrir (, we oblain a new symmetvic bilinear form with matriz

(30 i=AC. _
If we take the {ranspose of both sides of the matrie cquation (30),

Wi Obrain

(31) (AY = (C7AC) = C'A'(CTY = C'AC = 4,

fnce 4 is symmetric. ' We have proved
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TueorEM YTIL  The symometric bilinear Jorm a;iey; remaing sym-
metrie if we subject the ='s and the y's to the same Lincar trensfurng-
tion.
Reeall from Section 9-12 that if two matrices A and B satisfv (1o
relation
(32) B =PAP,
then 4 and R are congrucnt malrices, a special inslance of oequitahert
. N + N . o
matrices with the same rank, Theratfore by Theorem XXDLIT o
Chapter 0, wo have O
TruorREM IX.  The symmetric bilincar Jorm aiaaf OF rank v con
be reduced by cogredient nonsingular linear trm{iﬁo’mnatim;-s i th
normal form

(33} ELTIH T+ AzLalrs £+ - - - +'%\:§§yr.

104 Quadratic forms. 1fina symmeg\ié bilinear form a0+ =
a’Af weset o = B, we get o quadratie fgrin-
(34) wels Tofladighrary2odenin
The matrix 4 = [a)? is the zri“iﬁ?*z‘x of the quadratic form, and the
determinant of A is callod cha discriminant of the quadratic form.
TFrom Theorem VIT abbwe, or directly, we have
e\ . . .
TacoreMm X, If KM quadratic form auxe; with matriz A we sub-
Jjeet the 2's to theiuear transformation with, malrix C, we obtain o wew
quadratic forp(yth motriz
(35) N 4 =¢Ac.
7\
These\Q)lltuw the result
A N
Takohrm XTI, The rank of a gquadrotic form is an arithmetic
Arvariant under o nonsingular linear transformation af its varrables.
N\ Taking the determinant of both sides of (33), we get
Ml =i e =g
sinee |[CY] = [, We have proved
' THEOREM XIT. The diseriminant of o quadratic form iy a velative
meariant of weight 2 with respect to a general nonsingular lnear
transformation of its variables.

I the linear transformation of the variables
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Ti = ;X or = Ca
is an oriliogonal transformation, then |CJ2 = 1, and we have

Favonwm XU The diseriminant of a quadratic form s an ab-
sofute Lnvariant under an arthogonal transformation, of by variables,

From Theorem X above and Theorem XXVIII of Chapter 9, we
have \

"ﬁj-i(_’)!iEM XIV. A quadratic form of rank r can be reduced by 'a

nonsingular lnear transformation (o the normal Jorm O
(36) awxt + arry + - - - + aut (‘.}"
It shoul be clear that the reduction of a quadratic formd8o its normal
form (30} Ix essentially the reduction of the symmetiic matrix 4 = [a2
of the guadratic form to its canomical form ut{ler congruent trans-
formations. D

In Seetion 9-7, we stated that when wesdeal with the equivalent
trausforination PAQ = B we assume thatall of the elements of P, 4,
Q. and thevefore of B, belon% to the, si@ne field F. The same under-
standing applies to the \?fc\')\'n\érl%ﬁaﬁkr%fféf&%ﬁtﬂn P'4P = B. like-
wise, & similar understanding apphies when we speak of the equivalence
of forms.  Thus we could myre lengthily state the equivalence of two
hilinear {orms us followsw&}bilincar form f in the variables 24, . . .,
Tui ¥ - - ., . with cokfficiénts in a field F is equivalent to the bilinear
form f if and only if\bécomes f when the z's are subjected to a non-
singulus linear (.-1‘1})Q'ééérmation with matrix P and .thu 's are subjected
toan emingula{ linear transformation with matrix @, the elements of
£ and Q being’in the same field F. In an analogous manner, we
could say '@fﬁ two quadratic forms f and f are equivalent in a,.ﬁeld F
if and f_:fil;' if 1t ix possible to pass from f to f by means of a nonsmguvlar
lill?aj"‘l;i'&.n sformation on the 2's, the coefficients of this T.ransfor.matlon
lfﬁir\ﬁg"in the field F. 1In this respect equivalence of quadra?.lc {and
S¥mmetric bilinear) forms is more restrictive than the eqUI\f@jICHG_G
of the matrices. For two quadratie forms (or t.wo symmetric bi-
lincar forms) are equivalent if and only if their n.:la-trlceﬁ are (:(mgruf:nt.

In line with our general understanding that in a p&['ticulz'll' setting,
problem, or theorem with which we are working, some given arbi-
trary field of sealar elements is assumed, we have not staled over and
over “for a given field F.” Ilowever, since we shall next (E(?IlSIdGI' n
quadratic form in the particular complex and real ﬁfalds, it seems
desirable to restate Theorem XIV in the more craphatic form

N\
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Turorem XIV, A quadratic Jorm in n variables and of rani r
(r < n), with eoefficients in o guwen field F, can be reduced by a nun-
singuiar inear transformation with coe ficients in F fo the normal form

(37) it + awd 4 - - -+ o,
where the a's are nonzero elemnents in T,

[n gencral, some of the coefficients in (37} are positive and SR
negative.  When the underlying field is the field C of all cordpkes
numbers, we may let #= (@)%, and thereby transform (372

. ,, ; . NS ¢
(38) A+HB 4+ L2 «\

N

20 we have \

- Tueorem XV. A4 gquadratic form of rank v with cOefficients in i
Jield C of complex mumbers can be reduced by onsingidar e
transformation to the normal form \\

$

7

d+8+ - B\

FxerReges”

_ Tind the symmetrie nm\‘;’r?kqﬁijﬁ@w{fﬁyi?ﬁﬁ'f:rﬁ(:h_ of the following quadi-
ratic forms.  Reduce each quadmﬁ’({fm‘m to the normal form (37} by fil-
ing a nonsingular matrix I such that P AL is diagonal.

10202 4 ay m(
2, 228 — 4yt 4 22 + 2\313;,{1{— 1lxz 4 18y2.

-10-5 Real quadfatic forms. If all the cocflcients ay; of the quad-
ratic form a«;-xgx;\a.l-é in the field R of all real numbetrs, we cull it a
real quadratigform.  Also, a nonsingular lincar transformation is said
to be real if 8l the elements of it matrix are in the field R of all real
pumberg™\s we noted al the end of Beetion 912, only rational
operations are involved in the reduction of & symmetrie matrix to its
canGnical form under congruent transformations.  Consequently,
ouly rational operations are entailed in the reduction of a quadralic
form of rank r to the normal form (37). Since rational operations
performed on real nurbers produce real numbers, we have

THEOREM XVI. A real guadratic Jorm in n variables and of rank »
(r < n) can be reduced by @ real nonsingular lnear transformation
to the normal form

(39) i + a§ + - -+ a2,

where the &’s are nonzero regl consiants,
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An examination of the reduction of a symmetric matrix to its
canonicai form under congruent transformations (Section 9-12) shows
that there sre many different ways of effecting that reduction. For
example. i step {777) of that reduction there is considerahle choice us
to which noenzero ay; is seleeted to become the first nenzero clement
by Conscquently the values of the ¢'s in the normal form (39) may
be different tor different reductions. Tt ig noteworthy that the signg
of the coefficients, apart from the order in which thev ocecur, do net
depend on ihe particular reduction used.  We give without pr{)c{ N

Toeowest XVIL*  If o veal quadratic form of rank r gs.};’e&wfed
to the normal form
(40} aut; + aar -+ ﬂﬁl’?:

then the vwmbers p of positive terms and v — p of wegative terms will
be the seoie no matler whal real singular tr{eﬂs\fa}matifms are used.

? { ?
A\

This it portant theorem was discovered dndependently by Sylvester
and Jacobi; it is commonly called Sylvester’s law of inertin of quad-
ratic forms. By Sylvest-é‘r"‘%“’lsz@"étﬂiﬁﬁﬁat!i% -therénis associated with a
real quadiatic form under real nonéjh’gular linear transformations the
arithmetie invariant p, in-addition'to arithmetic invariant r, th_c ra.n'k
of the quadratic forms. Sgfmdtimes a third arithmetie invariant s
wsed, namely the diffee nQ}s,hf)etween the number of positive and the
number of negative tm'&; this is called the signaiure s of the quad-
ratie form: \

Os=p-0—p=2p—1

from which &

(41) § : g1

™

3

1\;|-[—

W"jh\d slight adaptation of the proof for Theorem XV above we
cathgst ablish

Tarorem XVILL, A real quadratic form of rank v and s1g

can be reduced by o real nonsingular linear fransformetion

nalure §
to the

normal form

(42) 1‘?+r§+---+x3—ri+1*"'—ﬂfs
where p = Lir + 3.

*See H. W, Twrpbull and A. C. Aitken, 47 Friroduction to the Theory of

Canonicat Matrices, p. 99.
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When the normal form (42) of a quadratic has no negative terma
and has maximum rank z, so that p = n, the quadratic is said to he
positive definite. When p = 0 and r = n, the canonical form h.J,
only negative terms and is said to be negative defindte.  When p =
r < n, the quadratic form is called non- mgaézw definite of vank r.

An important theovemn in matrix theory * is

“Frzormy XIX. If A is a real symmetric malriz, there (:czut:\u
“real orthogonal matriz P such that P'AP isa duagonal matrig bkhu‘-.f
diagonal elements are the charucteristic rools of 4. N\

N/

PAP = syl P\
From this Theorem and Theorem X ahove there ffoloun N~

Turorky XX. Iff = ayour;is a real quadratie foma there exisfa o
- real orihogonal transformation that rm’m,c,af iQ Uae eanvricol form

Alxl_ + )\Z-C.! + +%&Ym

where Ay Nsy .., Ay are the rhamri‘r’mmo roats of the symmmetric

malrix A of the quar}mzu Jorm. 4§

www dbrauliBrary .org.in
In Su'hon 87 we have In Ifmt amade use of thig thmrem anid the

procedure based upon it. Th Hlustrated examples in that section
amply illustrate Theorem XX. 1t is notew orthy thal there are any
number of matrices \\hwh\oduce # symmetric matrix 4 to diagonul
form, and (onquuont{k a quadratic form Lo the algebraie sum of
squares, but for a vexl symmetric matrix there iy essentially only one
real orthogonal\aftix which cffects that reduction, and that i the
modal matrix Qf“.?l

* Fo; pﬂ(\o‘f’sec C. C. MacDuffee, Vectors and Matrices, p. 170.

At )

\‘;




CHAPTER 11
SOME APPLICATIONS OF MATRIX ALGEBRA

The purpose of this chapter is to indieate briefly some of the more
elementary spplications of those phases of matrix algebra considerédy,
in the preceding six chapters.  Inherent in such an attempt ag-this
is the protiem of student unfamiliarity with technical (:mu:ept-é “and
terminolugy attendant to any particular application. We.fslié’ll nat
endeavor ro explain specialized technical terms in thé brief space
available, but we shall choose simple applications inshich the num-
ber of technical terms s held to a minimum, and yelate each applica-
tion to one or more references from which &d}innal information
may be vhtained.  For more complete infprrfiastmn on the references
given soec the Bibliography at the end of the’book.

11-1 Pinding the solufion o¥ 5 Tiear donhBiibgeneous equations

In n unknowns. We saw in Sectibfy 6-6 that the equations

1 = b,
v {m’\auzj '
or e

AN
@) As = B,

where A4 i the noﬁéﬁﬂgu]ar coefficient matrix of order n, 8 = {24, T3,
Ca s 8= ..{;l;l\,"bg, .., bu}, have their vector solution & given by

[3) \ 5= A8

Whﬂl{iﬂ'@ theoretical solution (3) is simply obtained, the numerieal

calegrion of A—! by direct elementary means for a large.valug of n
{p ’ . Fortunately, there is available

#
2 &

is a pfoblem of enormous magnitude.
2 body of theory and procedures for redu a
ties. The center of (his special theory is the formula (13) for
veloped in Section 8-4, namely,*

—_—

cing these apparent difficul-
A~ de-

of this theory sce M, D. Bingham, _“A
vorse Matrix,” Journal of the American
0-534, and H. Hotelling, “Some New
Mathematical Statistics, 14 {1943},

X *For interesting presentations
New Method for Obtaining the Inver
Statistical A ssoctation, 36 (1941}, pp. 53
Methods in Matrix Caleulation,” Annals of
Bp. 1-34,

171



172 SOME APPLICATIONS OF MATRIX ALGEBRA [rmar, 11

1

W A==,

[4_1 n—! __ ;D1~4 n—2 + p2‘4n—3 + P
+ (=L,

To compute A~ by (4) one has to know the values of the coellcicnts
P1, P2, - vy Pa1, Po i the charaeteristie function of 4.
We have become acquainted with the trace ¢y = o + a2 + - - -

L]

+ tp.of thematrix A = [a]?.  Let sy, sy, . . ., 8, be scalars defined@y

(5)° sp=tr(d), sa=tr{dd), ..., s =tr(dn; O,

S : A\
that is, 5 1s the trace of the kth power of the given matrivd.  The
sealars py, P, . - ., pe can be computed successively by dlie\recurrence
formulas: \\

(8) PrL= 8, = %(}Urh — 53), Py = %(pz& = P18y + 63)

sy P T ?_1] Ipﬂ—l - ?)1!4{2\’3&\20_:._ et + (_1}“_!'-\‘:’!-:-
_ ‘..~\"

We gee then that the inverse matrix @5%¥can be calenlated Ly tiw

following steps: o\

(i) Compute the fist/ AbrauliBAFRETA K2 | | | AL of 4 snd
the diagonal clements of A#; 4 \

(Z7) Caleulate the scalaps s1; 89, . - ., 8, by use of (3);

(7z2) Deterraine gy, pf_:,,\ -, Pn by use of (6);

(##) Tinally, C-‘ilt':ll\«'i'\t‘e' A=t by substituting the values of the ¢'s in
(4). \,

In properly eguipped computing centers punched ecard methods
are uszed to cqim’ﬂa_’gc the powers of 4, and the rost of the calenlations
for finding ATy use of (4) van be made with caleuluting muchines.

If |AJ5=+0, but the n equations are still consistent with rank of
4= :':,’."lt-heir findeterminate solution” is given by the formula

(07;; "\ . : 8 = -—;’11_11.-"1 1282 + A-I[IIJBM

difvéloped in Scetion 9-11.  Again, the main werk in obtaining the
solution in a given numerical case rests primarily on the ealeulation
of the inverse of the matrix 4.y that is, the determination of the in-
verse of the leading square submatrix of 4 whose rank is r. Hence
the procedure outlined above for the ealculation of the inverse of a
matrix is applicable and useful.

The recent development of modern high-speed electronic com-
puters, which are capable of multiplying large matrices in a fow min-
utes and which make it humanly possible to ealeulate the inverse of
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a marrix of large order, has brought about a renewed interest in
numerical procedures in connection with matrix algebra. For a dis-
enssion of such problems see the paper by John von Neumann and
H. H. Goldstine, “Numerical inverting of matrices of high order,”
Bulletin of the American Mathematical Society, 53 (1947), pp. 1021-
1094,

11~-2 Finding the solution of m linear homogeneous equations
in o unknowns. Section 9-10 gives an organized theoretical ‘pro-
codure for the solution of a system of m linear homogeneous 'e('}u\at-ions
in # unknowns. After the rank r of the coefficient matriteld is de-
termined and the equations are rearranged so that the]é&ding sruare
submatrix, Ay, of 4 is of rank r = rank of 4, thé"‘:,\indetclmina-tc
solution™ of

w\/
®) ayr; =0, or  Ab <-?3
g given by the formula : N\

" & = — Ardyss,
( ’ wwx&.dbl‘auljlgraf}y,%rg,in

which we developed in Section 930.° Other than the relatively casy
multiplication of matrices by veetors, the main work involved in this
solution is the caleuiation ofthe inverse of the submatrix Ay Clearly
the procedure oullined ud the preceding section may be helpful.
Brstems of homoge\\ﬂous Jinear equations appear rather infre-
quently in conventisnal college algebra, and eonsequently the student
often has the feghhe that such systems of equations have no place in
applied math&nitics. Duf that is not se; problems.in mechanics
and ele(:t-;‘i({t}ii'cuit theory often lead to such systems; .TT. Sohon
in Chapter™d (Dimensional Analysis) of his book Engineering Mothe-
mut?.';:.a;gi{-es some interesting applications of matrix algebra to‘applmd
I{'ﬁ“rsa;feir]s which lead to systems of linear homogeneous equations.

11-8 Determination of principal axes of inertia. Professor F. 1.
1-‘1111'rla.ghan on page 340 of his baok Analytic Geometry,® in speaking
of the process of diagonalizing a square matrix 4 of the.second order,
8ays, “The process by which A: is diagonalized, that is, ]‘Q(.hl(.lcd. to
a disgonal matrix, merely by changing the r'ef.crence fra.me3 is im-
bortunt not only for the present application but in many a‘tpp.hcat ions
to engineering and physies. When you ¢ome to study principal axcs

* Prentice-IIall Ine., 1946.
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of inertia in engineering, and normal vibrations in physics, you will
have to understand it thoroughly, It also oceupics a dominant prosi-
tion in wave mechanies and quantum theory.”

Let @1, 2, @ be the coordinates of any purticle m of & given muss 3
relative to the 0X,, 0X,, OX, coordinate axes, and lot &y, ks, ke be
the direction cosines of the line I for which the moment of inertin

of the muss M is 7. In analylical mechanies it is shown that Q
(10) .;‘r = '-2 + b;{Q —I— (Jk? — 2 dko!ﬂg —_ 2(’;\'33;[1 — 2f;lf}_k2, ,'\:\
where a, b, and ¢ are the moments of inertia of M for the X, X o tind X,

axes, and d, ¢, and f are the produets of inertia for the X_»X1 X, YI andd
XX, coordmate planes. Let an arbitrary length OP ="p ho laid off
on the line L. Then # = pky, 72 = = pks, x5 = pk«, substiiutine
these values in (10), we get

: A
(11} ax? + bri 4+ cxf — 2 drar, — 28331.’32\’7—\ rize = 2l

Equation (11) iz the equation of a apathic surface, provided p is
chosen for the different lines through the drigin so that o7 is L.Ul'}btc_tit*

That is, if on every hn(wt\hm&gﬁmh&mgm@ length OP = o = /v I,
is laid off, then the point P will 1.1(, on the quadrie smiace

12) oa? + bat + crs — 2 d;rgx;; — 2eryry — 2z, = B2

As moments of inertiag a& inherently positive quantities, the radius
vectors of the surfuce (\ES) are all real, and that surface is an ellipsaid:
it is called the ellipSeid of <nertia, its principal axes are called ihe
principal azes of Gnertia, and the moments of inertia for these axes
are called thogp&mm pal moments of inerfda. It should be elear that
the problr\a ‘afdetermination of the prineipal axes of inertis is identi-
cal to the)problem of diagonalizing the coefficient matrix of the
quadriesform (12), which procedure we considered in Section 8-7,
an.d a?gam in Chupter 10. Tn this connection see Frazer, Duncan,
and’ Collar’s Elementary Matrices, page 257.

- 11-4 Matrices in statistics. Matrices whose sealar elements are
sums of pmduvtb {or correlations) oecur frequently in statistics, and
workers in multivariate statistical analysis have made significant
contributions to both the theory and the applications of matrix alge-
bra. Many of these contributions are concerned with special methods
for ealeulating the inverse of a matrix, and for finding the charae-
teristic vectors of a matrix. The intcrested reader will find a con-
siderable number of roferences as to the use of matrices in statistics



11 6] MATRIX AND TENSOR CALCULUS 175

in the articles by Professor Harold Hotelling, “Some New Methods in
Muairix Caleulation,” Annals of Mathematical Stalistics, 14 (March
19431, pp. 1-34; and “ Practical Problems of Matrix Caleulation,”
Proceedings of the Berkeley Symposium on Mathematical Statisties and
Probalility, University of California Press (1949), pp. 275-203.

11-5 Matrix algebra in multiple factor analysis. ‘Ihe branch off
psyehometries called multiple factor analysis is concerncd mainly
with three problems: (1) the determination of the smallest nmi}h;\.r
of indipendent abilities that must be postulated in order to Aegount
for & wiven table of intercorrelations; (2) the determination of Lhow
muck cach independent ability is represented by each tzést; and (3)
the seiiing up of regression equations by means of wh'g}h an individ-
ual’s wnount of any primary ability can he estimabed from scores on
tests that depend upon that ability. Ko, \d

Thiz theory of multiple factor analysisjs\mathematical in nature,
and its chief mathematical tool is matyx flgebra. Typical of the
probleus concerned with matrix algebgh in such theory is the factori-
zatlon of the synmmctl'ie"h‘i’:ﬂl'i]i@‘ﬁ?f‘fgcﬂﬁ%'ﬁtﬂﬁﬁsm

Tig S ... T
R = Fau ST ... T,

)
BN L
a5 treated by Profemb’r' L. L. Thurstone in Chapters I and 11 of his
book, The 1-':ectog's :bf’fli' ind. Also, in multiple factor analysis c.'onsirl-
erable attentidmyis given to the problem of diagonalizing matn(:es of
norrelutior;&if}); a treatment of this problem see Chapter XX of an-
othoer bgo‘k\by Professor Thurstone, Multiple Factor Analysis. .I'or
addi’qiqp:éj references in this connection see the books on multiple
f@-ajﬁnalysis listed in the Bibliography.

11-6 Matrix and tensor calculus. Our work in this brief book
has been limited to the algebra of matrices. Many importan!t prob-
lems in cngineering and physical science which are .solved with the
aid of matrix theory use not only the algebr of matrices but also the
eolealus of matricesu‘ Basic in this connection is the book by F.I‘azcr,
Dunecun, and Collar, and the articles in the Philosoph-if".al Magazine by
Duneun and Collar; all of these are listed in the Bibliography.

Closely related to matrix caleulus is the subjeet of tensor calculus.
A recent book which relates elementary matrix algebra as presentoed
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in the present hook with the more sophisticated discipline of {vmsor
analysis of networks is Matriz Analysis of Electric Nefworks by P. Le
Corbeiller, Harvard University Press {1950).

Tensors of the second order play a particularly important 10l in
numercus applications. Such a tensor 18 a matrix which by
specified law of lransformation when the variable coordinates undergo
a given transformetion. In the matrix of a quadratic form wa e
an instance of that type of tensor. If we interpret the varinbley o
of the quadratic form ez, (Section 10-4) as the coord'ip.\ifi\m,} of a
reference system, then the congruent transformation indieed nn the
matrix 4 of the quadratic form, whon the x-'ariablc"(;fiifr:din:'!.1r-—«: are
subjected to a lnear transformation, is a tensor @ransforisiion.
Rence the matrix 4 under the stated circumstafees is o tensor. In
general, o tensor of the second order is a matrin Bt is restricred with
respect to a coordinate reference system. 7BOr a clear prosentation
of the relation of matrix and tensor algepw sce H. Jeffreys snd B. 8.
Jeffreys, Meihods of Mathemotical Phpsics, Cambridge TUniversity
Press (1950}, Chapters 3 and 4. R\ 3

The algebra of ma‘t’ﬁ‘i’c\&d%ﬁ%{f—i‘%ﬁ%g BEBHE same time an slgebra

N

for tensors of the second ordemy For tensors of the second o as
for matrices in general, thesproperties of symmetry, skew svinmelry,
and diagonalization are<bi“basic significance. Typicul of work in
applicd science whi(:iksiises tonsory as the medium of expression, and
which is based lapgely upon. matrix algebra (especially the Cavley-
Hamilton T‘he91~\t§fn'}, is a paper by W. Prager, “Strain hardening
under combited stresses,” Journal of Applied Physics, 16 {1643),
pp. 837-840.0
O

al
&

e
~
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APPENDIX

ArrEXDIX 1. The delerminant of the product of two square matrices

t5 vpual bo the product of their determinanis: [AB| = |A| - R|.

[ ¥xercise 8, page 63, Excreise 10, page 65, and Excreise, 1
page 63, we have indicated how this thcorem may he proved bithe

use ol appropriate identities of vector algebra.  Such proof @Ay not’

appeal to some readers.  Many other proofs appear in tl\ml@tera‘ture
on mnirix algebra. AD
A proof commonly given makes use of Lapla(:c’s.du}[?lnpm(!nt of
detersninant, considered in Section 9-3. Thus, ¥ox'Square matrices
of the 1hird order, NG
A = [al} and BA b3,
it foltuws from Laplace’s development thatthe determinant
I an w»gky.dbﬁéﬁljﬁrﬂfy,o%g,jrg
@y ar Qa0
@y o3 A 00 0
-1 @ 0 bu b by
0 ’{"‘—?1 0 b b buo
| ONT0 —1 bu ba bal

Is equal to |4] - iB!’,:and also is equal (o €] where € = 48, [See
J. AL L Olmgtead, Sobid Anelytic Geomelry, New York (1947),
pp. 211-212 144" _ .

Anothorbebof of this theorem makes use of elementary transforma-
tions of thatrices (see G Birkhoff and 8. MacLane, A S-u-‘rvr’y of M adpr-r%
"159f’flégt;,~'i1[). 288 289), and still another uses the (:1a§31ca] m_thod of
1-’@.‘i<;3rs"trass (see C. C. MaeDuffee, Veelors and Matrices, p. 58).

AppexDIX 2. If the columns of @ square matrie 4 are ltnearly de-
pendent, then 14| = 0; and conversely, f the deterrn.?.-na-rzt of a syuare
matriz is zero, then the columns of that square malnx are lineorly de-
Pendent. _ . .

We use this theorem in Section 8-6, but do not prove it until we
get to Section 9—5 (Theorem IT and Theorem VII). However, the

Sect i -5 is i erial from a
relative order of Rection 86 and Sectlon 910 is immaterial Ilf?
Tt is gimply a matter of taste and convenience

logical viewpoint.

that the given order is followed.
177
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Abstract vector spaces, 53
Adjeinr of a matrix, 80, 83
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Assoviative law for multiplication of
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Axes of inertia, 173

Basix of a vector space, 50
Bilinear form, 162

rani of, 163

syrunetrie, 165

Canceilntion luw for addition, 9

Cancellation law for multiplication, 9

Cayles-Hamilton Theorem, 1080
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Chararteristle equation’df a matrix,
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Characteristie fuy\étjon of a matrix,
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Charactefistic roots of a matrix, 107

Charafldnstic veetors of a matrix,
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Classieal canonical form of a matrix,
119

Cocfficient matrix, 87

Cofactor matrix, 81

Cofiactor of an element in a deter-
minsnt, 77

-ogredient veetors, 101

Components of a veetor in three-
dimensional space, 23

Commutative matrix products, 64

Congruent, matrices, 135

151

ww w . dbra ul,; Fagy oLk

Contragredient, vectors, 101
Coordinates, of 4 two-dimensionals
vector, 20
of a three-dimensional veetorn 2:3\
Correspondence between sealareNaiid
sealar matrices, 72 g
Cosine of the angles hetwéshhewo line
veetors, in  thyéedimensional
N
space, 29 P\
in n-dimensionahdplice, 53
Cramer’s 1‘ule_,~§8~
Cyele, 4 .\*\ g

Derogatory matrix, 112

Dimensicn of a vector space, 51
Iifeé.tion‘m]%lcs of a line, in two-
dital spaece, 17

" :':' in three-dimensional space, 24

Dircetion cosines of a line, in two-
dimensional space, 18
in three-dimensional space, 24
Direction numbers of a line of
indefinite extent, in two-dimen-
sional space, 18
in three-dimensional space, 24
Direction numbers of a line segment,
in two-dimensional space, 19
i three-dimensional space, 25
Dual veetor space, 102

Elementury transformations of a
matrix, 141

Fliminant of a system of linear forms,
161

Equality of vectors, 45

Equivalent matrices, 143

Field, 10
arbitrary, 11
of characteristic o, 11
Form, bilinear, 162
linear, 101, 160
quadratic, 166
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General linear group of order #, 100
Group, 1

alternating, 7

commutative, 2

general linear, 100

permutation, 3

regl linear, 100 )
- real orthogonal, 100

symmetrie, 6

Index, dummy, 68
free, 65
Index of a matrix, 112
Iuner product, of a row vector and
4 column vector, 62, 64
of two n-dimensional vectors, 52
of two three-dimensional vectors,
23
Integral domain, 9
Intersection of vector subspaces, 46
Invariant, absolute, 161
algebrale, 161
arithmetic, 161 .
relative, 161 N\
Inverse of a matrix, 80, 8¢ 0"

o\
+8J
K-rowed minor of a mAQigi,’ 129

LaPlace’s developmenit of a deter-
minant, 130
Laws of seal 1{5}?6
Laws of fettors in three-dimensional
spalten2?
Jincgtombinations of mutriecs, 53
Lifelyr combination of vectors, 40, 49
Linear dependence of vectors, 40, 49
}inea.r form, 101, 160
Linear transformation, 97
inverse of, 99
produet of two, 98
reversible, 99
Line wvector, in
gpace, 21
1 three-dimensional space, 23

twao-dimensional

Magnitude of a veetor, In two
dimensional space, 22

INDEX

in three-dimensional space, 28
in n~dimensional space, 52
Matrices, equality of, 59
negative powers of, 88
powerg of, 69
similar, 102
summary of laws of, 73
Matrices In multiple factor analpiis,
175
Matrices and rings, 94 O\
. 2 P { "\
Matrices in statistics, 1748
Mutrices and tensor calewlis, 175
Matric representaticp ol groups, 94
Matrix, addition of 6
adjoint of, 80, 83"
coeflicienty K7/
cofactor, 81
colum,m',%{!
colynin index, 55
n:;orinebt of, 53

\ derogatory, 112

www.dbra uLLﬁ I‘éfbﬁ.‘lﬁ‘ﬁ' iy 70

inverse of, 80, 84
multiplication by a scalar, 57
nonsingular, 81
null, 67
orthogonal, 89
order of, 55
principal diagonal of, 70
rank of, 132
rectangular, 126
row, 59
scalar, 70
singular, 81
skew symmetric, 76
synimetric, 75
transpose of, 61, 74
unit, 70
Aindmum eguation of a matrix, 112
Minimuam function of a matrix, 112
Minor of an element in a deter-
minant, 77
Modal matrix of a given matrix, 119
Alultiplication of matrices, in gen-
eral, 63
of the second order, 60
Maltiplieation of & veetor by a sealar,
in two-dimenszional space, 17
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In three~dtimensional space, 23
in n-dfimensional space, 45

Nonsingular matrix, 81
Novemalized vector, 53
Null veetor, 45

Nullity of a matrix, 132

Cotl

wnnal matrix, 39
proper, 90

proner, 90

Partitioning of a matrix, 128
Perruttation, circular, 4
g, H

zi-tions} product of two, 5
s, In two-dimensional

itz tiiree- (11111(—'11‘-!1{)[1&1 space, 23
Powers of matrices, 69

Prodact of two partitioned matrlres, )
\_] “ ’
Quadratic form, 166 x\’

resi, 168 )
signature of, 169 \\ )
Runk of a matrix, 132\
Rank, row, 133 A"
coluwn, 133 £
fetorminang, 333
Real linear, ‘g{%mp 100
Real orthdgonal group, 100
RPeta.ngul.xr matrices, 126
H@g i charscteristic function of
d matrix, 113
Relations connecting the eolumns of
a matrix, 124
Relations connecting the rows of &
matrix, 124
Ring, 12
Rotation of axes, in two-dimensional
space, 32, 80
in three-dimensional space, 30, 89

Sealar, 11 )
Bine of the angle between two line

183

veetors, in  two-dirmensional
space, 5o
in three-dimensional space, 34
Singular matrix, 81
Slmilar matrices, 102
Simple isomorphism of groups, 86
Skew symmetrie matrix, 76
Bpace of » dimensiong, 17
Solution, of a system of homogenegus
linear equations, 146, 150 2\N
of a system of nonhonmgc\wouc;
lincar equations, 1524 .
of » linear nonhomowenpuus cqua-
tions in » unkm{ as, 87
Subfield, 10 9
Subgroup, 7
invariant, I\,
Submatrices, (V26
complérhentary, 127
Sumnfation convention, 67
qvl\betCI‘ s law of inertia for guad-

woww dbrauli bra rg(mrfq)gmﬂ 169

“33 mmetrie matrix, 75

- Systern of elements, 1

System, closed, 2

Trace of a matrix, 108

Transform of a matrix A by a
matrix P, 104

Transformation, similarity, 104

Transpose of a matrix, 74

Transposition, 4

Tuion of vector subspaces, 46
Tnit wvectors, in two-dimensional
space, 42
in three-dimensional space, 23, 43

Vector equation, of a line, 36
of a plane, 38
Vector product of two three-dimen-
gional vectors, 33
Vector relations independent of the
origin, 36
Vector space over a field, 43
Vector subspaces, 46
Vectorz, of n dimensions, 45
two-dimensionsl, 16
three-dimensional, 23



ANSWERS TO EXLERCISES

Chapter 2
Huetion 2-1 A
. ¢\
1. Muag = 126-. :5\ /
Direction = 11.5° approx. from the 80-1b foree. (O
%25~ miles. ) <”’§
25.1% approx, south of eaat. &{}
=noron 2-3 \V
L (5,3); (10, 13; (3, 3). 7. @
4. (8, T (!))'\'(4124 1 (L %)
N}
Secrron 2-4 O
foMagy = V149, dbraulgbl’al\qy dip fr 2. 10).
2. Mag a = 5. o&° {by (—7, 16).
3 a8 = (2, 1). N\ (e} (8 —2).
{d) (1, 4.
BuerTion 2-5 ﬁ\
1.(h, 3, 1); (3, 3, 9. \ 2. {3, 8 2.

. (2, 4, 2); othersiee (4, 8, 4); (6, 12, 6); ete. _
a+ 8= (2 m,3) a4+ 28 =(-7.183); 8 —v=(—10,%1};
o + 8, a‘} =(1.%4)
6. o + dr_\ t + ble + (s + bajes + (2 + byles]:
e —,@n’ [(m — b)e + (a2 — ba)es + (s — Dadeal.
SFL'TLQF{ 2\ 7
A _
<§»& are ('os—_ = 45° 1L |yl =250,
. . £ b3 13
direction ¢oz = ( i — )

[y QIR

VR0 V250 v 260

Chapter 3
Buorow 3-3
— M _ h—a
e — du bz - (12

2 Forpm=27° s forn = 3,0 — o = i — a),
s — (T — aa),

Ty~ a1y = by — as}.

n

185
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SECTION 3-5

I. (&) Dependent:r =3, 5= 1. 2. () k=-2
(#) Independent. (i) For no value of k.
(#i) Dependent; r = 4, 8 =—1.
{(##) Independent. .

3. (i) Dependent;r ==2,s=—3. 4. r=1,5s=2,1{=3.
(%) Dependent;r =—2, 5 =—3. A
(#22) Dependent; r = 2, & = =1, \

{iv) Indcpendent. e «\
."\\ “
Chapter 4 O
SECTION 4-6 N
L. () Independent. 2. (7) Indepehdent.
(i) Dependent; r = 4, s = 1. 3] .Dep'g'i;hent.; =28 = 1.

3. Let the five four-dimensional vectors be densted by o, 3, v. & e und
assume that «, 8, v, 6 are linearly independant. Then we want to fnd
scalars s, &, ss, & such that € = s 88+ 87y + 8. The dusired

results are D AV
|eByd |ceery] A [dvBed| |xByel
8 = , 8 = TR y  8po= ot
* |ceyél iuwx{ﬂ@b(ﬁauh‘?ﬁmr})aﬁnﬂm * | B3y8)
4. & = ]., &2 = 2, 8y =—1, 54 ,?:3:'

*

:m‘\»\ Chapter &

£\

RecTioN 5-2 \\\V SECTION 5-3
] {,?’.:; 4 5:‘ 1. 2R — 8 = [3 13]-
2T+ U8B 9 12| 1 6
:.\; 714 16 17 3 0 (37
A& 2 =T = [0 -1 UJ-
AN\ 0 0 —)

SE(tfrgqﬁ;.\i—G
s‘.\’:t _ 29 94 _ .
~D s - [22 Zo) 1SRl =90 = IRg).
n 2 4 2
] N o= S = .
2. QRS = 5 82]" QES) [155 82]
SECTION 37

ab 34 39 P '_ _
1. T = |: 86 76 gg]_ ITU =0 = tUT];

137 118 141 ] T =05 U] =—64

35 46 5T
P =162 7% 90/

95 118 141
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- C 7 17 1
: [y 7.
2an =0 i) Ba- [‘12 =6 ;3:]

19 —33

3.2, 476 —4 2
15 —10 5]—
18 —12 6

SoeTIoN 5-10

Lo iy + aubde 4 Gigtids + Gy + aotors + amtat; + antex ’\:‘\’
+ utats + Gagrasn "{ “

N\

2. ankr + anze + aass + ayxy, A \
BTy + @z 4 dpry + LI ZPOEN x'\’ 3
il + dagfy 4 A + Gt & 44
Q141 =k Gugls + B30 4 Gaada. \\:\,
o S
NIOTION 5-13 . \/

“" J

3424 4B+ BA 4 B
1oAY 4 AR 4 zliBzw#kuaiﬂ@Bﬁfﬁ-o&‘g-&nBJ{ 4+ B+ 4 ABA®
+ AB4 4- B*AB + BA*R —l-“BJIB»i + ABAB - BAB® 4+ AR:A,

K
¢ &<\J
. \\ Chapter 8
RROTION G-4 \:,
- —2N &4 L 1[-2 —4
LA-[307] 4 [ 74
\NY
2. {;,,\Qx:’ {5, —2}. 3. {z,y} = 4, 5}
A\ 6 —5 1 N :
5.3,_1=;[_6 S ] 7. 1, 8 7 = {1, 2, 3]
\/'\ Z 2 —‘3 1 8- {xl} xﬂ: .Eq} = {_HZJ 0} 6#-
RrerioN 6-8
L6 (4 g g 0,%), G5 (2 =21, 3).

-4 1 -2 4
-5 1 -1 3,
15 -2 3 -7
-1 0 0 1
{#) [4] = 0; 80 4 is singular and has no inverse.

2. () A=
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Chapter 8
SecTioN 8-3
1.1, —1. 2.2, -2 3. 10, -2, -5
o4 1 [2 4:| " _ 1 [—1 i
1t = - . 41 = — = i
6 @A =5l —3 (i) 4 8L 2 5l
SECTION 8~4
1 —4 T =5
L Characteristic roots are 1, 8, =2, 4= — 2} 2 -5 K'n N
2 -0 o
8 __j: ‘I ’QQ“ .n
2. 41 = 26 —4 § 1| Charaeteristic roots arg. W3,12.
: 4 4 11 N &
3. Characteristic roots are 2, 0, —1, \\ 4
A~ does not exist, for [A] = 0. '\},
Secrion 8-5 \{'
1. {2y 1632 4 9 = 144 4 (m) It — = 24
{it) —1hx 4 107 = 1, n Bgs’ (i) 7 = B.
2 —F 4 TP — 53 =5 lalf‘a;m TP e 4 32 =
N
SecTioN 56 ~

/s

—1 1 -—ll']
1. The characteristie, mé@} arc1, 3, —2;and B = |: 11 __|
11 14

2, The cluwactcr’iﬁsﬁi{} roots are 2,0, —1.

2/
SEcTION §-T OO

1. The c*hnxée eristic roots are 9, B, =9,
2. Tllf{\hgl‘ﬂicterlstm roots are 2, —1, —1.
=N
\‘:>
</ Chapter 9
SecTion 9-1
1. None. 2. Nomne, 3o =2r 4+ r.

BreTTON 9-4

1.v=2. 2 r 3. r =1,

I
=

BRCTION 9-5
1, a; = (4,2 1], rank 4 = 2,
2, a3 = {1, —4,11, —19], rank 4

I
ha



ANSWERS 189

SBuorion 9-6

1. Rank 4 = 2; a3 = —~ay + 2. 3. Rank 4 = 1; & = —4qny.

2 Rank 4 = 3; ey = oy + 200 + 3.
SwerioN 0-7

3. Rank 4 = 2, 4. Rank 4 = 3. 5. Rank 4 = 2
SECTION 9-9

6. (¥) Bincer = n = 3, there s ho nontrivial snlutlon

{ti)Rank 4 = 3. For 2 ——1 —1
A_u = ]. :L”}
4

Sectron 9-11
1. Wank 4 = rank {4, 8] = 2.

s [1 {1 []- m—@]

2. Rank A = rank [4, 8] = 3. 4 \V
2 -3 1 S T -9
Fordu={1 2 —1 J;g =2 =20 e —2f 1|
3 wuy.dbra ]‘[b orgin_ou ‘ 0
SECTION 10-2 3 ~3x

4 = 21 Forghe reduction see the illustration at the end of
<Lt ol ,S}}mn 9-9.

m a1 —g
—3 0 3|
“\ L 1 314
S@oTroN lOQt
[2 1 4
2 4]
" z . = -3 9|
1%\ E K 2.4=|1 -3 q]

. | 4 H 2
\"5
NN

<”>»/

2. 4 = [ 3. A
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