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PREFACE

T T3 NOT NECESSARY TO BE A WATCI-MAKER TO BE

able to iell the thme. Nor 15 1t necessary o sindy the foundationg

of arithmetic in ovder to carry out the caleulations required
everyday life, in seience, or in mathematics. This book, howeygh, s
intended for those whose aim s to understand arvithmetic vathen tian
to put it te a practical use. ~ >y

The systematic part of the book is the second parfsand consists
of Chapters A-K. It is complete m itself, and presedts u detailed
construction of the number-systern, starling {rem\Peano’s axioms.
Chapters A-G conprise a development of the ra "oi%%l nwinper-system,
and the detail is dchbcra-t-elyf‘“{f‘é'rfi‘bfl ﬁ[; gy %x&Efa op, no matter how
trivial, being justified by a reference to €e %]1601‘0-3’1 or lemma used.
Tn Chapters H-K, first the theory of pg){vei‘s of ratiomal numbers and
then the real and eomplex 11111ubcr~5:§%jﬁ13ms are developad, Hers the
reforences are not quite so painstaliihg, the ordinary *“ laws of arith-
mietie  fur rational numbers bewgireely used, as well as such familiar
abbreviations as 2 -} y - z40h(x Ly} 2.

In oxder to keep the gk of the second part of the hook within
bounds, explanatory m\ﬁéi‘ has been cut to & minimumm; bk the first
part of the hook condidts of explanatory ehaptors (1--X1) whose funetion
is to explan and Cemment on the axioms and definitions, and to make
the {reatmentshtle second part digestible. The thoughiful non-
mathematicghyeader who wants to Imow something abont the number-
systom of Wtedern roathematics without going decply into the details
could. jirolitably read these chapters with pechaps a glance at the
de-{i{.ii%ions and the statements of the theorems in the systematic part.
Pui/the reader for whom the book is primarily intended 13 the stwdent
of mathematics, e should read both parts, and probably the best
order to take them In Is as follows: I, T1, A, [TL, IV, V, B, Vi, ¢, D,
E,F, G, VI, VI, H 1. J, IX, K, X, X1

The exercises are to help the reader to confirny that he has assimi-
Jated the ideas and to give him practice in asing the coneeis introduced,
rather than to test his technigue and indusiry, Tn geneval, solulions
to the exercises should be striet; there is no point m peoving that
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vi PREFACE

2 4 2 = 4 unless this is properly done. But sowe illustrative exeroisos
may be solved more frecly. These are marked with asterisks,

A certain amount of pure algebra is Introdueed, pattly for economy
(the algebraic theorems betng applied two or more times), partly to
bring out the analogy between different parts of the arithractical
system, and partly to illustrate one use of abstract mathematics, The
systematic chapters are for the moat part alternately arithmetical and
algebraic; the following chart shows their interdependence.
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CHAPTER 1
Counting

1. Numbers are vaed for counting; that is to say, for comparing th?
fmany-fold-ness * of groups of objects. If we want to know whather

thore are more states in the United States than counties in{ Bngland,
the abvious thing to do is to count first the stafes and thejl Lhe Encrf1=§h
countirs,  Dub l[le most chvions process is not in faghy “$he simplest.
We can see at a giance that there are more dots m\{ ........ ] than
i |...]. Some animals can distinguish betwednNgtoups of different
sizes {e.g. between a group of three men gomé Q&th a hut, and & group
of two of them coming out again), but theze\w no evidence that they
can count, W d.braullbrary org.in

The difference between counting and ‘comparison without counting
is brought out clearly if we imaginga primitive tribe whose language
eontains no numbers above 20,8 The tribesmen can then distingnish
between proups of 17 and of I8 bw;' counting, but net between groups
of 23 and of 75. By t]_LL (\mparlson method, on the other hand, the
23 and the 75 are fur pigpe easily distinguished than are the 17 and
the 18, Comparison Ns not, however, depend on merely locking at
the two groups. Ahe’erude method ean he refined.

2. Let us, i‘n’ﬁﬂinp that a master of ceremonies wants fo know
whethoer ﬂuma ire more men or more women at a dance, and thal he
uses the \nnpmaun method, not just by glancing at the dancers hut
by as) mm everyone to tale a partner. lf there are men left over when
d”. Meédwomen are partmr@d then there are more men than wonen,

nd Vice versa; if there is no one left over, then the sexes ave proscnt
in"equal strength. This process, simple thengh it s, is important
modern mathematics. 1 shall use the word mar{}mm to Jdescribe the
p‘u'mrr of the members of 1wo gets,® and I shall call two sets matchable
if they can be paived against cach other with no members Ieft over.

*We use the word sel rather than group, becausc growp has a special meaning

in mathematics, whereas o is used quite gencrally, This is the reverse of ordinary
nsagre, where, for sxample, a set of cigar otte vards is a special group of cigarette cards:

it containg JLl‘:t e eard of each soet.

3



4 THE NUMBER-SYSTEM 1.3

Ore set is of smaller size than another il und only il it is matelizhle
with a set consisting of some members of the second set. bt is not
matchable with the second set [1self.

8 A peasant farmer will perhaps be able to tell infallilly «lien
one cow is more valuable than another. A more sophisticated rerchant
will not be eontent with this; he will want their values in ferms of
money. In other words, he wants a standard scale -the seale of money-
values—instead of mere comparisons. We ean construct a seade for
our sizes-of-sets,

Cousider [.1. [, [... 1 [....], and so on. If 5 set isddtchable
with the set of dots in [.], we say that the number of mafibers of the
set is ome. If it is matehable with the set of dots in [~d, the numier
Is two. Similarly for three, four, and higher numlgmjs: We have now
practically reached the stage of counting: countimdNs siuply re placing
the rather clumsy standard set by signs.  ThaltMck is 1o wse 5 set of
signs arranged tn @ fized order. Let us suppeset hut we uge the familinr
signa 1, 2, 3, 4, ete. Then for our standrdd sets we take, not sets of
dots, bus scts of these signs, in the fized order

Wijw dpraghibrityargpn and so on.

When we match 2 sct of objects against one of the standard sots,
we do not need to rememberihe whole standard set: it i enough to
know whieh is the last ngtber in it. Now at last we are really count-
mg. We have used thé Yot that the set of standard sots s matchable
with the set of nunber-sions, and have replaced each standard set ny
the nuniber-sign With which it is paired. The matching can be illus-
trated thus: 380

N {11 paims with 1
\\ {1,2] pairs with 2
N\ (1, 2, 3] pairs with 3
.\'j . and so on,
\M‘ ” 'Usually, watchings are written in the form
{ 1] «—= 1
1,2} «—= 3

or by a genera) formnla such as (L2, . 0] <> n,
1 and 2 are the wmatey of {1] and of [1, 2} respectively,

4 .I want to emphasize that all we need for counting is a set_of
s1gns 1 2 fixed order going on for ever. (Clearly the set must not ever



I, 5 COUNTING 5

come to an enl: if it did we should not be able to count sots larger
than b set of available signs.} The signg may be words;
one, two, three, four, . .,
or
efus, zwei, drei, ..,
or syrmhols:
1, 2,3 4,5 6,7,89 10, ...

LT
o et e ate. N
oA
and 80 o, e\

Thot in cur fumiliar system—tlie decimal gystom—we havé’aouly a
small snuber of simple signs (1 to 9 and 0), using confponnd signs
(10, 110, 100, ...} for bigger numbers, is only aNghatter of con-
venieace of writing.  Caleulation with these signs—the* process laaght
at schuni 7o+ avithmetic "—is really the study of “tﬂ}p decimal netation
rather than the study of sumbers. o\

5. The reasouing in pa,ragra-phwgﬁf%?}%gﬂ'}}igfa{ﬁé%%ﬁrh close con-
nection hejwreen counting and coprparisdmvithout counting—so close
that the reader may think that T amSnkking too much fuss about the
difference. Bnt there is a reason, «Ehe process of pairing standard scts
with number-sions arranged inddeder works only for finite numbers.
Notoely does the p:-miring‘praf:ess break down for infinite numbers,
but it can be shown thak$ha two ways of looking at numbers give
two dilferent systems gharithmetic (known as cardinal and ordined).*

6.~ Iufinite ” m@ximilar words) are sometimes used in ordinary
CONVOTsotion 1o .t~11&f11 “ very great ', and sometimes as synonvrs for
“unliniited ’X_\:":f\f)};unrﬂcss”, ete,  In certain other conlexts their
meaning is ~}*;1hlie and mysterious,t But in mathematics they atve used
n ]'ﬁpg'f\ez-fff}:-' definite sense, Quite simply, a set which has so many
elergetinA it the process of counting them one by one wonld never
coreNf an end 1s satd to be dwfinile, or to have an infinite number of
{or an mfinity of, or snfinitely many) clements. To avoid confusion
with the popular uses of the word, mathematicians often replace the
Serm 4 ffnete by the less fumiliar word trangfindte. An account of trans-

. B Thix is not the same as the yrammation! asage of the turm?_" cardinal ¥ and
Tonlinal 7. ta eraniaT, the ordinal numbers are © first, second, third, .. .7 ‘

T e exampla, * OF all the acts, daneing is perbaps the one niost attuncd to the
Minite, having its essence in nature itsell,” Gopal and Dadachanji, Indien Dancing,

Bo13



] THE NUMBER-SYSTEM 1.7

finite nurabers will be found in J. E. Littlewood's The Elements of the
Theory of Real Functions.

% Wa have had to introduee the concept of * set ™, ant s coneept
is 1 fact a very jmportant one i modern mathemnties His cven
more fundamental than < pumber , 7 spite of the fact that wmbers
are nsually considered ’ro bo what muathematies is about.

The eoncepta of * set ” and ™ property ™ ave biderchangeabi anas

much a3 we could use oﬁhvr concept in place of the other mavuy tovat-
ment of the subject. A given property P, for exiuple, doetersiing o
corresponding set: namely the set of things whick have the PO 1 P
And a set P determines a corresporling property: the e rI s uf
belonging to P. Finally, if P corresponds to P in this wgasihon ob-
viously P corresponds to F. However, the Hl“ﬂ]t‘]llll.it‘]r]n prefers to
work mth sets, which seem to be a litile more de fy&{m and sseneble
to calevlation. For example, it s quite clear ddfet two sets are the
same: they are the same 1f they consist of the sime elernents: in
other words, if every member of each belg m, 1o the other. Tt i not
guite so clear when properties are the sdfid” As Bertrund Russell sivs
in his Ingroduction te ’llfzr‘fﬁeﬁzl(gﬁz Jg/m,lp\opfay p- 120 Men miay be
defined as Tm‘rlwr‘lqqubmed% or a8 gdfional annmals, or (more correctly)
by the traits by which Swift delifiphtes the Yahoos 7. Does this nean
that the property of being asf@atherless biped s the same as that of
being a rational animal ? Again, does the phrase “ odd prime number '
denote the same propeyiids © prime number g éI‘BRt(‘I‘ than 277 * Odd 7
is cerlainty not thesame as “ greater than 27, We ight agive to
consider fwo prr:perhe‘s to he LQU:L]. if and only if they defiue the samo
set; but this ,1\ “precizely equivalent 0 working with sets instead of
properiies, .\
".lfh f:"}ii".-upt of set s so important that there is a special notation
for it wlte expression o = 4 denotes that ¢ belongs to the set 4. Usually
amall Telters will denote LlPILCIl'E‘:, large letiers, sets, :
Wﬂl alweys denote “ belongs o

\

The symbol €



CHAPTHR 1T
Whole Numbers

1. If 2 and y are any two whole numbers, then @ + 3 =y +
Tn wny given case we are able to verify this. Tor example, if we work
ont 3 -1 3 we gel the angwer 8, 1f we work out 3 - 5 we get tbc‘\'sﬁ’me
angwor, DBut we caunot prove the gencral statement “ il w anfy are
anyv rwo numbers, then z =y =y + 2 7 like this, because We canmot
“work out ' 2 |-y Nor can we prove it by lesting all passible palrs
of winle numbers, beeause thers are an infinite numbepiof them. And
most people, when they try to prove the statemient, find it exira-
ordinarily ditficnli; not because it is too complighted but becanse it is
too simple. To prove a complicated fact wesh the simpler facts at our
dizposal.  These simpler facts xﬁll“ﬁ‘é(ﬁ‘ﬁ:ﬂf‘]&&i@ﬁ‘é&i&fﬁ)%d from still
sitnpler facts. And so on. Fventually % ‘iust get down fo the simplest
facis of ull from which evcryt-h_ing..a’[ag{ﬂ"ts. These basic facts are callad
azioms. The first thing to do, thedy is to find a suitable set of axioms
for an arithmetic of whole nuhbers.* In order to know the simplest
properties of whole n'umbqf’s,\&vc must know what a whole number is,
that is, we must considennot only axioms but also defmitions. We
shall first define whold humber, addeion, and smultiplication. Subtraction
and division are; gty so fundamentsal, spd we may leave them until
later. N
2. We ;fa\i\":.\iﬁ’(lhapter I that the whole numbers are a set of symbols
arcangeddndorder: 1, 2, 3, ..., for example. This statement is not
quite, Q{;ﬁﬁite enough for our purpose. Other things can be arranged
V\P\( r;te_—-Thls siwply means that from all the facts at our @isposaul wo cheose &
few Yo form a foundation for our svstem—and all that is required of them is that

theyv should suffiec for this, Lo, that the whole system s.hnu__ld be deducible from thera.
Fr b5, of course, a practical advantage if they are fairly simple, and again it is con-
vement if thoy ave sclf-evident, bul neither of these propertics 1s nowadays regarded
as egsential, thoush Euclid required his axioms ta be sclf-evident. Usually there are
any number of possible choices. Ta take u simplclex'a-mgle, the laws of arithmetie
(P 19) could be taken as the axioms of & certain arithmetical system. I we were to
replace the law (¢ — yhez = w2 1 gz by the Jaw aly boa) ooy toEE wWe should
uet 2 slightly different but equally sood set of axioms for the same systern—the same
Bevanse clearly either law van be deduced from the other, using the commutative law

for muliiplication.

Q"



8 THE NUMBER-SYSTEM .2

in order: for mstance, {ractions van be arranged m asconding order of
magnitude. But this is a different sort of order, heeause between any
two fractions we can fif in others; for ex'ample, v b R b are imoaseenid-
ing order. But between 4 and L we ean insert 3% and so on. No Traction,
m faet, has a next-in-order. This kind of order is of no wse for connting.
aving counted up to, say, 5, we must know that the next nonher
8 6. Indeed, learning to count consists precisely of leurning which
number comes next after which, Thus we take ay a Jflmulu.munil.l
property of whole numbers not just the fact that they are in oy,
but the fact that each has an unmediate suecessor. Au Urrlm;@@ Wit of
this kind i3 called a succession. {The successor of a whole mlm}u o
of course, the number obtained by adding 1 o it; but we («umm e five
it like this, because we have not yvet defined mhhlmn A

We can now say exactly w hat we mean by w hL)‘L‘\DU]rl}JL‘T_% they
ate the ** descendunts ”* of the first one, 1n othet words, tliey consist
of 1, thie successor of 1, the successor of the ginggessor of 1, und so oi;
and only of these. 21 is not a whole num et we camnot reach it 3%
startiyr from 1 and teav elling along thg mmln of sucressors, For Lhe
same reason, infimitw. dbmﬂlbﬁﬂhﬁl@ﬁ&ﬂﬁ&bcr

This fact is expressed by the Fu}l(m'mg two statements:

i,

( ) 145 & whole nanber; cmd.¢ it 0z a whole wumber, so 75 1ts suceesor,
) If @ set of objects comtgins 1 and contains the successor of cuch of
ite members, t{&m‘ i contning all the whole members.

() states that uvery&}cc-.essor of the successor of . . . the successor of 1
15 & whole number( %&) that these are a/l the whole numbers,

As we writhhé numbers down in order, each one must he dilferent
from the om,-'msxhbcady written. The set
§ 1,234,567, 3,

.\

\mulfd *be useless, because 4 would have to follow 3, and the chain
tqom 3 to 7 would repeat itself over and over agaln. Quch a sysfem
would be a finite one, containing the numbers 1, 2,3,4,5 6, and 7
only., The difficulty arises because 2 and 7 have the same succes;,ur 3.
We can overcome it by taking as an axiom:

No two different numbers have the seme SUCCESSOT,

This axiom is not quite enough:

it does not prevent the suceession
from going back 10 1: e

L2,3,4,351,23

(G 983



i, 3 WHOLE NUMBERS 9

We can preveat this most simply by saying:
There 48 o wwnber whose surcessor 13 1,

We now have enough axioms for the whole of arithmetic. How do
we know this? Therc is only one test: fo deduce the whole of arith-
metic from the axioms. This s done in Chapters A-K.

8. Tn clementary algebra a technique known as proof by wnduction

is nsed. Ag an example, lot us prove the formula
14-2234 ... Fn=4u(n+1) N
A\

with its help, Wimst, we shall abbreviate the formula we are to'pr\(fve.
It is  stabement Involving the symbol n; let us denote it\hy F(n).
Then T(3), for example, denotes the formula 1H4-2 43 —=6; and
T{n + 1) denotes &

1424 ...+ (a1 :%-(-n'Tn@}é)

We want to prove that the formula Fin) holdsdoall whele numbers .
Let us try o prove it step by step 0V Cfb}' L, F(2), T(3) and s0
on, After a litfc}le. we find gnat it-Ts%ﬁu;ﬁﬁ@abﬁég%-ﬁgf(iﬁ%viiui giep 1m
proving any given step. For examp}qiﬂ' proving T(6) (having proved
T(5), namely that 1--2 3 =485 -=15) we simply add 6 fo
1.-24+3-+4+5 which W;c“].%r’low to be 15, instead of adding
together 1,2, 3,1, 3, and 6, Ju other words, we let T(3) induce T(6).
The principle of inductioh i3 simply this process stated i a wmore
general way. We pro‘v& wat T(n) mduees Tin - 1) as follows.

If T(n) is true, ‘t-h‘en 1-228+ .. Fnt+&+1)

AN
.t\:“' = dw(n+ 1)+ n -~ 1)
This we e')\s@}%oe to be equal to t{n + 1}{n--2), and so we have
Fi(n -+ 1)\ “This one formula ensures that (1) induces T(2), T(2Z)
indieed T (3), T(3) induces T4}, and so on. We mercly have to see that
IHY true, and it follows that T(2) is frue, then that T(3) 18 true,
theh that T(4) is trie, and so on.

Qo muech for clementaty algebra. In the present treatment we have
not defined addition, but we can use the idea of successor instead, Let
us mse & dash to denote a suogessor: 7 1§ the suecessor of 7. The principle
of induction then becomes < 1f a statement T 1) is true and if P(r) is
true whenever Tl#) is true, then T(n) is true for every whole number 57,

We can prove the principle [rom our axioms as follows. Let M be

the set of all whole numbers for which T(n) is true. Then 1 belongs
2 (c:953)



10 THE NUMBER-SYSTFM IL, 4

to M, because (1) is trus. Also, M contains the snecossor of euch nt
its members, becuuse if » belongs to 3 then T(r) is true, whicl impiios
that (') is true and therefore that # belongs to JF. Therefure, hy
axiom (b), M contains all the wholo numbers, that is, T(a} is true or
every whole number .

4. Induction ean be used for definitions as easily us for proofs. In
elementary algebra the sign n! (pronounced “ factorial # 7Y stands Tor
the product 1 x 2% 3 x .., x (r—1) X n. » ean be any whele
number from 1 upwards. But this formula is not o suatisfactory dwdhi-
tion, The three dots are not part of mathematival sign-langua&en e
formula does indeed suggest what is meant, but is not i enanal
for & logical development. We can get rid of the dotsuhiowever, by
defining #! as follows: e \

L
M U=1 %)
{(ii} al=(n — 1) X nif 5 is 5 whole number greater than 1

Thus (i) defmes 1! When 1t is delined, (i eknes 20 When 26 s oo
fined, (ii) defines 3! and o on. That “ahd 50 on " is the crix of the
matter, lnductio@@j&@ﬁa@mltﬁ,mghﬁlg an honest phrase of ¢ and
80 on 7, o

In elementary algehra inductim is used for convenience; in onur
treatment of whole numbers e shall use t out of sheer necessity.
Axiom (b) is in effect an indhetive definition of * 4]l whole numhers 2,
and o it is not sutprisilgg}hat If we want to say anything about * ull
whole ambers ” we Stiall'scarcely be able to avoid using the principles
of induction, O\

Let us considet; addition, HFow do we add 310 4% We count ont
the firss threr\:\yhole numnhers, and then the next four; thus arriving
at 7T &
§\ 123 i

&

o C:
Lo

7
3 4

al
e

~ By this simple process—which s that used by a child eounfing
ont his fingers—we can define addition by means of successors, To
add 1, take the suceossor, To add 2, take the SUCCessOT

and so on.  We therefore make the following incuct,
addition :

of the successor,
ive definition of
{(1) T+1=2% foralls

i o4y =(z4 yY  for all z and i

’I"'hus, f.or' each 2, & = 1 is defined to be @ by (i}, 2=1’ and so by
(), & + 2 is defined to be (- 1y, that is, o, Then - 3 g ,a:”:
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and s0 on. This is not quite as simple as it seems, however. In de-
fining x + 4 we use the definition of z - 3; this uses the definition
of @ 4- 2, which uses the definition of % -+ 1. Thns in defining z 4- 4
we need to use the definitions of # + y for all values of ¢ yuptod. We
can write out all the numbers (1, 2, and 3) up to 4 aud reach the con-
clusion # - 4 = 2", But we cannot do this for z + y in general; we
have no concept © all whole numbers up to 7’ yet. Nor can we write
down an # with y dashes unless y is some given number. All we have
at our disposal is axiom (). We need something like this: “a - Iix
delined by (i) and (i) for all &; and if x + y is defined by (1) ap\d(n)
for all «, then s0 is v + 3" ”. This statement itself will notdgs the
sentence x4y is defined by (i) and {ii) for all &7 dosas nut make
complete sense, because (ii) involves ¢, Ti is, in fact, not, ‘abvious how
to prove that the definition is valid, but a proof is pup‘slble and one
will he found in Chapter A, Theorem 3, p. 51. /

Similar arguments apply to multiplication, ) Multiplicat-ion is
essentially repeated addition. * Three fourg s 4 1 4 +— 4. Thus,
having multiplied m by », to multiply mMlyy - 1 we need only add
an extra m. This gives ug the YMMw%%ﬁhiﬁél?‘é’i‘ﬁml 1pheat10n.

{(a] :cl*-x
&) Y=y Lo

From these fwo definitioms,and our axioms we can now dev elop
the complete theory of whel@\numbers In particular we can prove the
laws of arithmetic, oné®[™which—z -I- i == i - x—has alveady been
mentioned. This 1s dbne in Chapter A, pp. H1-458.

A system of wiibers with operations such as addition and multi-
plication in whicl caleulations can be carried ont is an arithmetic,
Thus in Chaptér A we develop the arithmetie of wlhole numbers. We
shall make\ nie slight alferation in our treatmment thore: we shall start
from O ingtead of from 1, because it is convenient to count 0 as a whole
nu,gpber From now on we shall assume all the results of this arith-

}1’1«;1,1(,

5. Note.—Readers who are used to induetion in elemontary alpebra may have
to be careful about one point. One form of the principle runs “ If 1) ig irue,
and if we can prove i) by assuming that P2 is true whenever & is less than
r; then Fin) is true for all whole numbers 8 7. But we cannot vse this form of
the principle yob, becanse our axioms say nothing about the concepl of * less
than . The inductive dolinitions in Ad (p. 51) and AD (p. 54} are proved to be
valid v Jihout the use of the orderwelation; but she indietive definition of pows:
in HZ (p. 21) comes alter the definition of this concept, and so the second form
of the principle can be used.
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The Laws of Arithmetic ~

1. One often has to add more ihan Bwo muniers T':s*_fr:-.."lﬂ’\"i 16
evaluate 3 -4 4+ 7 for example, What is meant, by this 4 LACIEANT
defined 2 -} ¢, but not » + ¥+ 2 Nodoubt we could ri%ﬁf}}j T R
and 2 - ¢ -+ 2 -}, and so on, in a similar timughonr‘ugrc I".i!:']l}l].‘i';'[l"[[
way, but fortunately there is no nced. We can adda3N64 and thie il
the result to 7. We could have added 3 to the ®&&Mt of adiding -t 10 i
And anyone confronted with the formuls 3 Jask A T will probubly il
together two of the nurabers and then add thie thicd to the result. +h n:_'_?r]l
he will probably do if g0 quickly that he¥ldes not see the two Trrabe
steps.  Thus we hm*&:.abrmlidbnaf'mfu@@é)rcﬁsicm_ like 2“9 =20 the
expressions {z -- i} + z and » AT 2) will do fustead. but-- ,-:_ud\
this is the important point—onbiHecause they are equal. Several of
the more important facts Y Ly Fz=c- (7 -1 =} nud
Y =y 2 are singled dut for special atfention and called T
of arithmetic. They are @hown in the table.

_— — T — — —_—
1 R :,‘ Adiition Multiplicaiion l
— 3 |- _ _— |

Commu’ca-ti,v'&:& T y=p-lg Day = g
Arsocia it fow T4 +2=n w2 | (xyye- wef 2] ‘
Cancellw i law Ife+y =g 2.1hen =z Ifry = z2andz = (i
R\ then y .= ¢ ‘
D{stj‘fbutive law (T -z =wz 4y
'\:‘\:eut.rality of 0¥ andl | 04 ¢ —, la =2 [

* Bome writecs com: as a whola number, others do gar, If Wwe dn nat, then no whale nurmber 3=
peutral fer addition, and the Proviso that x = Qin e cancellation by af mult{plicutiog s UnBCoessry,
In the first part of the Book wo shall sormees i i i
different purpmses. tn the systemaric PRIt hall, of course, be svsternztic; thore 1the
wiole nummbers wili delinitely melydy o, - :

These are all proved, when g, ¥, and z are w
These laws are important, and
earrying out; caleulations. It s

hole hmmbers, in Chapter A.
ot only because they are useful for
possible to prove many of the ingerest-
» Without referring back
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to the axioms. Snch formule as (¢ 4-y) 2= {z + ¥+ and
(2 -y i-(z4w) — (x4 2) - (y - u) follow strasight from the
commnutative and associative laws for addition.

As a slightly harder example, let us prove from the laws of arith-
tietic only that -z == 0.

Yo 4 O = (y |- 0)-z by the distributive law

= g by the neutrality of § for addition
=yx+ 0 by the neatrality of 0 for addition.
Therafore Oz =0 by the cancellstion law for additiong
¢\

2. We can now look af our system from anotlier point of ow, It
consists of (i) a set of elements, naniely the numbers 0, 1,238, ., and
{i1) a set of operations, namely additien and multiplicafdyn. ~ And we
could 1n fact have defined the arithinetic of whole nc@tbers to be the
sat {0, 1, 2, ... } with the operations of addition and maultiplieation
oheying the laws of arithmetic, instead of defining it in terms of the
axioms. We have now entered the realm of ufadém algebra.

An algebraic system consists of g, Wﬁﬂ[*é‘ﬂ%fﬁ%?; %}Elll a sct of opera-
tions obeving certain laws. An opersgion can bé formally defined as
fellows: it i3 4 rale whereby to ea(:h:%ir&cred * pair of elements of the
set there corresponds a third ele\ri‘i'ént; of the set. (The third clement
corvesponding to the ordered..pzi’:ir {z, i) is &+ » i the operation is
addition, z -y if the operation is wultiplication.) According to the
particular laws obevedg so\we get different types of algebraic system.,

Algebraie systema,s,mx abstract: the elements may he any objects
whatever, and the alsebraist is luterested only in the structure of the
system ag given Dy the operations. An algebraic system can be con-
structed qﬁiﬁs{;r}zidily by taking any set of elements, writing out a
double-entiyMable, and filling in the cells arbitrarily. We can define
an opergtion * from the table by letting # xy be the entry m row »
coluiniy. Making such a table for each operation, we have an algebraie
s¥stait, The diagram depicts a system with three elements and one

operation.

* A pair i3 ordered if it matters which of the two objects is considered first.
“ Ordered 7 eorsesponds to © respectively ¥, Thus (m, 7y 1& a different urc{fcreai Pt
from {n, m), unless m = a. Bot © mand =7 is the same pair as “ 2 and m ™.
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For example, b+ @ — b, and a + b = ¢, Thus this particular operitlon
does not obey the commutative law {which is thav o #y - g bl
The reader may like to consider the other laws of arithiaetic.”

More oftens we do not confine our attention to a single systen: but
consider & whole class of systems defined in the {ollowing waiv: we
specify the nnmuber of operations and certam laws which the operations
are to obey. Systems satisfying o particolar defintion are given the
appropriate name (group, field, ete.) and the Taws which fornt part of
the defintion are often called axioms with the appropriate i,
Thus laws (D-(iv) below could he teferred to colleelively as tl h-.\fu-ms'-
group ULIOms. N\

To sec whether s given system belongs to a given clasg™E svwirms
we have simply to check that it has the right nungy of operaiions
and that the axioms are oheved. R4

3. The simplest algebraic systemns are those 3ubh only oue aperation,
Bometimes this 13 written as addition or g \muhiplimtirm-— i eTs
matter of notation.t Two types of algehyale System are worth defining:

first, a hemigroup. A EPgllig]’l'(_)}gl is aoaet-i%f tlements with ene operation,
+, obeying the fSIGWHEY EwS Y L&

(i) (@xy)*z==zxypkd forevery z. y, and z.
@) mry=y*rx 3" for every « and .
() If oxy = a%2 then ¢ = 2.

(iv) There ig o\éﬁ’elemcnt- e such that e x e == ¢,

The whole ;}11mbers (including 0) with the operation of addition
form a hemigioup, 0 playing the part of e, 8o do the whole numhers
(without Q)’with the operation of multiplication, 1 playing the part
of e. Thewhole munbers including 0 do not form s hemigroup under

muliplieation: the third law is not satisfied, becanse 0+ 1:-0-2
althgrgh 1 # 2,

o The gecond tmportant iype of algebraic system is the commuiarive

\\ ‘g‘roui[?. z'L‘ colrljmutat-ive group is & set of clements with one operstion
obeying (1)-{iit} and also

(v} Given any a and b there is a 2 such that g+ z = b.

t"(lfj*bt}}:tb =akxbec hk(bxblw bra~h
put obey the associative law. o is a right-neatral ‘e]pn

0 t e | right-néatrs ment [axa ==
but ﬂ;?;; is no lei:t--nt:ntm-.l element. The left- and right-ou-mel(lat-ion ]a.w:ir;'cb:m;)?ﬂ‘-ﬁ]-
e L “In:: o‘gtmra-t;g_n I wrl_tten a5 addition the alpebra is termed adidifive. The Imw\; nge
t}[L(? wgn ; \.fe 0 aéf I_d-mn wlil, of course, be nsed. For example, o - h. will'bu ?«11&1

st of o and & even when + 20TtE v nETnw & cadic

and not addition in the usuiaﬂ Mnipre&nts 4n abstract operation idichvely writtes

Therufore the operation drcs
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Neither of the hemigroups mentioned above is a commutative
group: there is no whole number # for which & - 1 — 0, and there js
no whole number @ for which 2.z == 1. But, to anticipate the intro-
duction of negative numbers and fractions, two important commutative
groups are (i} the mtegers (l.c. the positive ® and negative whole
numbers) under addition, and (i1} the positive non-zero fractions tnder
mulbtiplication, (Fhe solution of @ + @ = b is b — g, which is an nteger
it @ und & are; the solution of @& = 6 is bia, which is a positive non-
zoro fraction if ¢ and b are.) .

Although algebra can be usefully applied to arithmetic, its apphica

tion is by no means confined to number-systems. A delightfullf(siiple
example of a commutative group whose elements are not ngrrﬁbers has
heen deseribed by Prolessor M. H. A. Newman: the elepfieuts‘are two
actlons—crossing the roud and not crossing the road, ‘l"hg- product of
w0 aetions is the action which has the same resulfMas‘performing one
action und then the other, If we denote the actions'by s and ¢ respee-
tively, we get sxs—={1xt=1¢ and s+l =ths=s (For example,
crossing the road and then erossing it agaidN\Drings the pedestrian back
to the same side and so is cquN’l’iTé(n‘%l?f@%h}%"%fdsQﬁﬁgi%he road; ie.
s*s—t) Itis easy to verify thas the relevant axioms are obeyed.

4. Ome consequence of the fag'cf,’tha.t an ahstract algebraist Is in-
terested only in the structure of\g system is that two systems are con-
sidered equivalent if one can\De derived from the other by a change
of notation. Suppose, fdpeXample, that we construet a system having
three elements f, g, % dmd ‘one operation, -, given by the table

S gk

O Sif kg
AN\ glg J h
‘\ h|lkh g |

This €an be derived from the systew defined in § 2 by writing f
y kg .. N 5. . ’ .

plivelol @, 4 in place of b, ¢ in place of ¢, and « in place of . In other
words, we have a matching

b—>»h

€ g

* The word  positive ” Is nsed by different writers in slightly different ways: it

can either include or sxclide zero, Tshall use it in the admittedly less eommaon uu—-lqswe
sense——the number 0 is both positive and negative. (Tn the otler sense, 6 s n_u-lthcr
positive nor negstive.) The proposed usage ayrees with that in N, Bourhuki’s Eléments
de. Alafhémutique, Hermanr, Paris, bt disagrers with traditionsl usage. The traditional
term oorresponding to Bourbaki’s ** positive *» ig the rather clumsy ** non-negative .
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between the two sets of elements, and a matching

* £——3 0o
between the operations. And, finally, when we appdv 1l g
to the table for cne operation, we gel the table for the wlivr dor
example, the ¢ In tho top row of the first table nubieates thii o+ o e
Applying the matehings, this equation beconves f 4 o b o g
in the first matching, which means that @ « & < - f b Al i sl
we see that a matching is equivalent to & clunge ol notating A My
when the following is true: \ N/
. \v/
£ <> yand y <-> v always inply 2 &« - R J

<

Often the same sign 1s used for both operationg OM the ~ivi |
a matching with this property is called & s-imona@@htun, T be o im
bas several operations, we shall want the mgatdhing to have 1o ror-
responding property for each of themn. If WS, it is ealled sinsdv an
woinorplism.  Two systems between wln\h there ix an fsomen biam
are wsonwrphic.  For exawmple, the sy Eal whese elements are 1 oand
—1 and whase Ol%(}ﬁhrak‘ﬂ%rﬁk@ﬁ}mam multiplication; the svsiem
whose elements are 0 and 1 aftd whose ouly oporation is wwl:livion
moduls 2;% the system given, ftgy the following table:

Lk,

R

and Professon Néwman’s © crossing the road group are all isomorphic
to one zmoﬂ\en,

dx b monln 2 simply mesns crdinary additien followed by U (ll}Lh Vion ot
talking temainder whon the sum is divided by 2. For ex ampe, 1+ 13
ia eﬂpa.l to 1. The relevant facts for our example are that

S

.”\:w' 1 +0=1fr1+1=1 \ , .
\‘ 0+0 =] +1:=0!mnjufn__

stefuts 2



CHAPTER IV

¥ractions

1. The whole nurmbers are adequate for connting the change &hsn
shopping and for similar everyday caleulations. But for othef ghleu-
lsilons they are inadequate: we want perhaps to W(‘wh ‘parfq of a
round or to measure fractions of a foot. What number 43 Juituble for
measiring the weight of half of a five-pound cake? Ji»{?\ln the number
at }}t}'l'll‘db in the hall-cake, we mmst have 2+ —BNBut there is no
whole number for which this is true. The e:q@.t‘mn ax =b is not

always solvable, We must therefore invent oktve numbers——fractions
—to make thiz cquation ‘uolvablwyvigﬂﬁ%&j@gg;; f;,\ org.in

Without going into the logical delepmcnt of mathematics, every

schoolboy learns about fractions, Hes knmw for example, that

(@) () =),
and that {a/b) + ((:\,,"d} == {a-d 4 &¢}{(b-d)

It i¢ worth while pag (ﬁg’to consider how he Jmows these facts.

“ Out a cake into . eqnal parts and take ¢ of them. You now have
¢ dths of the cake, repu%emed by the fraction ¢/d. Divide this into &
eqjual parts snd fake ¢ of them. You now have a bths of ¢ dths of the
cake, represem& by the expression (a/b){c/d). The obvious way to

take the seduhd step is to divide egch of the dths into b equal parts and
take a of) thgm The tctal number of small parts is then a-¢, and each
15 8 (Jb*&’)th of the cake. You thorefore have a-c (b-d)ths of the cale,

<t1\ o (@B) - (cid) == {eee){(bd).”  Ap argument ltke this is some-
ties given as a proof of the formila. Tt is in fact nothing of the sort.

It is & statement not about numbers but about weights of picces of
cake. Numbers are used for other things besides weights—lengths, for
example—and no amount of argument about weights will prove that
half of half an Inch is 2 quarter of an ineh.

How then, ean we prove our formule? We must first decide what
we mean by addition and multiplication of fractions. When we have

defined these concepts, we can hope to prove our formule [rom the
17
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defimitions: and before we do this, we nowst define frerfin, Mo shall
assume all the properties of whole nunhers, and trom ther dleline o1
deduce the properties of fractions. In other words: starting fvom the
arithmetic of whole nummbers, we shall construet an arithowtie ot
fractions. Then arguments like the one given abuve, whiclsare nit
proofs of anything ahout fractions, become verifivatuis that fhe
arithroetic of {ractions s suitable for dealiug with weislds, nisures,
and so on. A

The qaestion whether a given problemi can be dealt with by Wrat-
ever arithmetic we have at our disposal is an inporiant @iy The
answer to the question “If o bun eosts Td. honv muh {27 buns
cost?” i 25 3., provided that the arithinetic of \\'itni’(z, natitdiers 13
applicable. If the baler sells 13 for 1s. (as many do}ht arirhn:etic B
not applicable; and the answoris 25, 1d. In pr;u:ti{;-é’e.\\s:‘. P QLT COTLuHL
sense in deciding whether to apply the usual ari fnetic, It costs 13,
to go from cne bus-stop to the next-but-%grqx\ﬂnw nured does §1 st
to go from one stop to the next?” Theangwer is not Jd. —the bus-fare
arithmetic is quite different from ordhm.i-y apir.june{ic,* and o oone
who has t-raveﬂevgl\ﬁ}lé%&m’lﬁ:%ﬁy%ﬂé.ﬂlhink of applying it. Tt nught
amuse the reader next time hesravels by bus to work out feorm 1he
fare-table just what the arithmietic of bus fares is.

R The details will begitapler (and the example just us informative)
if we starf from the ’;;e"o@\-zem whole mumbers and construct the non-
zero fractions; andghis is what we shall do.

We want to (hake the equation e ==b solvable by introdueing
extra numbexsiwhich we are going to call fractions, and we want the
laws of artglmietic to be tine for fhem. We shall find that this con-
dition\n::ﬂ’be a sufficient guide.

EIN . it follows from the cancellation law that the equation epnnot
hawe ‘more than one solution, for ¥ p and ¢ are solutions, then

M:!}*jﬂ =b=ay¢ and so, by the cancellation law, p =q. The solution
NJof e =10 depends on a and b; we shall therefore denate it hv
symbol imvolving a and &, namely hy bjo. h

Sometimes two different squations have the same solution; 2 = 12
and 32 = 18 have both the sclution # = 6, for example, Just when
does ‘this happen? Buppose that @z == b and e = d have the same
solution, ¢ =% Then ak =4 and ck=d. Therefore (Ig.‘k)l-d. =
b{e-k).  Therefore, i the commutative and associative laws 3,1'9.. to
hold, we must have (adjk == {breyk. Theu the cancellation law

¥ The answer, in Londom in 1951, was 13d.
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tells us that ed = b2, Suppose, on the other hand, that a, b, ¢, and d
are numbers sach that ad = be. Let £ he a solution of gz =20,
Then g-k =4 Therefore (@kh)c =06 = ad. Therefore by the
associative law, e-(k¢)==ad. Then, by the cancellation and
conimutative laws, ek = d, and s0 £ 8 & solution of ¢x =d. To say
that % iz & solution of @z = & is the same thing as saying that t = b/a.
Therefore we have proved thet if the laws of arithmetic are to hold,
wo must have equality between fractions as follows:
bie = dfc if and only if a-d = b A
xS
Now we can start on our definition: A fraction is sometiing re-
presented by a symbol of the form «fb where ¢ and b are, a.ijy whole
mmbers.* afb and ¢/d are equal if and only if ad == bee,
Let us consider addition. How raust we define m’bl\-l— {eid) if the
laws of arithmetic are to be trae? 1f the distributiyeNiw is true, then

(r(afp) + /) = (dp @) ¢ GOy (c/d)

Tl 1lie associative and commutative laws are trut, this is equal to
WW W dgauﬁbl ary.org.in
(]

4y d{b-{a,d) )+5(

Now, by defmition, /b i3 the soluiloh of bo=a: that is, b (u/b) = a.
bnmlarly, d-(cjd) = ¢. Therefgre(I) is equal to d'a + &ro. There-
fore (a-;"b) + (¢/d} is the %0{1131011 of (bd)x==da-+ be; that is
{a/b)y + {e/d) s {da 4 bg) (?1(?)

Thl‘: then, must be o dpﬁmtion Similarly we can show that our
definition of {¢/b) cjd) wist be {a-¢)/(hd).

Notice that thésedefinitions do in fact define the sum and product
of fractions ad/¥fractions. For example, d-a+bc is a {non-zero)
whole numbeg'ulf a, b, ¢, and d are. And bd Is a (non-zero) whole
number i\ and d are. Therefore (da - be)fb-d) 8 a (non-zero}
hachom Slmﬂarl_) for the produet.

\3 }So far we have been arguing backwards—the definitions must be
like this if we are to get the properfies we want. Now we must argue
forwards: we mush make the above definitions aud {rom them prove
the properties, including all the laws of arithmetic for fractions. The
detaile of this will be found in the systematic chapters. But first there
are onc or two difficulties to be overcome.

A careful logically-minded reader may complain, “It is all very
well to say ‘ the objects we are going to deal with are reprosented by

* ltemember that we arc not counting { as a whole numboer.
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symbols of the form a/6° bt what are the objects?  And kow s
we know that there are any objects representable in the way vl
describet” The objeetion is valid. Tt is easy to run into tronhie in
mathematies by blilhely asswwing the existence of obiscls which we
want to exist. This partientar objection. however, can be et By de-
fining the objects, though they are rather abstract and wnlike what
we usually imagine fractions to be. (That is why we have sepirnied
out the definition in this way.) \

We pointed out ealicr (Chapter I, § 1) thut i an inve gt fom
such as the one we are engaged on, we must start from st of
basic axioms and definitions, and build our mathematiesalpon thens,
We have now reached a point where we must consides Y:’ﬁl‘{}ﬁ]“}-’ just
what our basic concepts shall be. This book is whdt some of {he
simplest things in mathematics, the whole numberdl Ehur basic comer s
must be something simpler still, Tuse the word ¥%) wipler ¥ in a technical
senge; the reader may not find the simplef/Boncepts easier or more
natural. Our basic concepts must in facthe logically prior to mathe-
matics; they must be logical and lingfstic comncepts,

Such concepls a%wfhg?é‘aﬁgllfgféw%r)g‘ﬁle terms “and 7, “or 77,
“not ", “implics ” (or some syfloliym or paraphrase), and “ siate-
ment ”. The reader will be in fmvdoubt about the mcaning and usage
of these (though it may besag well to emphasize that in mathematics
“xoory” alvays meanse &% or y or both 7, never “ & or 4 but not
hoth ). Another f (k'i(neht-a] concept is that of * set " and the terms
that go with it: “Peontains 7, * belongs to ', * member 7, and so0 on.

It way be eo.‘r\i’ntenient- for the reader to consider * relation 7 wnd
“ funetion * a§ ¥wo other basic words, though they can in fact be
defined injq'x'r\ns of ““set .

£ N’o\v let us return to the definition of fraction .  Assumaing
thga.\ex’l’st-cnce of whole numbeors, there is no doubt of the existence of
Syrabols like m/n, each obtained by writing a whole number, a stroke,

\md then another whole number, They will not, however, do for frac-
tions because the symbol 142, for nstance, is different from the symbol
2{4, whereas we want these two fractions to he equal. ‘

Let us consider all those ordeced bairs (m, n) of whole numbers
which have the property that # == 2m. We take this set of ordered
pairs as one of our ohjects, and call it the {raction 1/2. Similarly, if
(@, #) is any ordered pair of whole numbers, we define the fraction xiy
to be the set of all ardered paits (m, n) for which My == nz. Thus
a fraction is a set of ordered paira of whole numbers.
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Ve let ns prove that 1/2 = 2/4. To prove that two sets of objects
are idetical ¥ we have to show that every object in the first sef 13 In
the seeond and vice versa.

Tl congition for (i, %) to be in the fraction 1/2 is # = 2-m. The
condition for {(m, ) to be in the fraction 2/4 is 20 = d-m. It is one
of ibe properties of the arithmetic of whole numbers that # = 2w if
anit only it 2o = d-m. Therefore an ordered pair is in oue fraction
i end onlv if it i in the other, and so the two fractions are equal. In
this way we can show, in gencral, that a/b and efd are equal if and only.
it md == bre. This is precisely What we wanted. O\

5 In evervday langusge we use fractions and whole p&ﬁﬁbcf&
togetlier: when we agk for @ three-halfpermy stamp we aremiing the
fraciion 3,2; when we ask for & penny-hallpenny stamp, iye Bre using
the mixed number 13, Therefore it would be an adva@tage to have
the whole nimbers ineluded in ovr arithmetic of Hadtions. But, on
our definition, fractions are quite different from :\}\Horfe numbers: they
are sots of pairs of whole numbers, Imc-kﬂy;\:héi\?m’er, our fractions
inelude something just as good: na-nmky,c@%aﬂﬁﬁm}ly_&fg@h? form /1.
We might call these the © whole Irac-t-i‘gzmé;”.

Then we sav that they are “ jusbias good ™ bhere are two things
we might mean: according to Whi?‘-*&héf‘ we take the axiomatic or the
slgebraic viewpomt. Axicmatieally, we mean sitnply that they obey
the axioms of the arithme't-ée:of whole nymbers. We take 1/1 1'_0?: our
starting-polnt and dcﬁni;\t‘hé‘ successor of 21 to be 3/ 1,.\\-'I1ere #’ 1z the
successor of x. The gRioms are {then guite casy to verify.

Algebraically, we svant to show that the whole [ractions fom} a
%}ﬁ’mm which is'iéeﬁwrphic o the whele numbers. The mulfiplicatiot
tables for t-}Ker"gNut’o gystems ate:

G928 ¢ 111 21 31 4. ..

|
|

O T s+ [ e 4l
\ \™ olo 4 6 8 23-’] :Q_II."_] 4.'1 6}-"1 8{” 1
3.8 6 9 12 3181 61 91 1201

We can turn the fizst into the second by writing #/1 in place of x every-
where. Thus the matching @ «—> /1 18 & multiplication-isoniorphism,

We shall usc the idea of jsomorphism over and over Agan i the
same way. We shall be continually enlarging our number-systei. We
write o ++ B. We shall sometimes nsc the

* Tf two sots A and I are identieal, we te . v :
This i@ convonient beecanse cortain LVpes

word “equal © instead of wentical 7. T : r ¥
of nmbors are sets, and identity of these sets is analogous to equality of whole numbers.
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shall not want to lose sight of the simpler systoms we started fron:, so
we shall pick out every time part of the new system which is isomorphic
to the old. Thus none of our work is lost: all the results we prove
about earlier systems will be truc for certain parts of cach later one.
A system which is isomorphic to part of another is said to be embedded
in the larger system. We shall geo that the process of defining the
number-system, onee the whole numbers are defined, consists of a
serices of ebeddings. The whole numbers ave embedded in the mtegers;
the integers, in the rational numbers; the rational numbers, m\the
real numbers; and the real numbers, in the complex nuniber;f{}(

O
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CHAPTER V

Negative Numbers

Q"

1. In ordinary lile, we are satisfied with whole numbers and frae-
tions.  But in quite simple mathematics these prove insullicigds, "Co-
ordinate geometry would be very clumsy if we adopted the geegraphers’
system and wrote codrdinates as 4° North and 5° East, 42 Xborth and
5 West, instead of (4, ), (4, —5), and soon. Ifa purg{gi&'thema.tician
worked in a bank, ke would probably not refer togxedit balances and
debit balances: he would simply refer to balances, ‘ahd reprosent debit
bulances by negative numbers. This is in fac £he way in which nega-
five numbers most naturally arise. If £5 idGvithdrawn from a halance
of £3, the result is a debit balanc\'é'\E\f’ﬁf?f}f}%ﬁ%ﬁﬁﬂﬁtﬂ%tic of whole
numbars, 5§ cannot be subtracted tfrom’3% “We therefore construct new
numbers which will permit this, t-hajsﬁig", we make the equation ¢ 4+ 2 = b

NS

always solvable.

2. We procecd i the sga,ns@ way as when we constructed numbers
to solve gz =5 If 'e'\‘s‘tfi,rt from the whole numibers, we get the
integers; if we start { ro‘ét-he fractions, we get the positive and negative
fractions, usnally cadled rational numbers.

The solution & iz — b depends on g and b: denote it by & — a.
Then a + gbi;\i:a =0

Eow shallre define eqnality ? - Assume that the laws of arifthmetic
hold andf that h~a=d —o¢. Then bte=aL(b—a)tec=
a4 ({@yte) e=a+d Conversely, if &#+c¢=a4d, then
a&tw—a) te=b+c=a-Ld and so (b—a) +p=d. There
fore ¢ L (th—a)=4d; that Is, b —a=d —a Therefore we want
b— aand d — ¢ to be cqual if and only if b +e=a+d.

Hovw shall we define addition? If the assoclative and commutative
laws are true,

(a4 L(b—a) - (@—c)=(at(b—a)++@—0)

and this is equal to b + d, by the definition of & — g and d —e. There-
fore, again by definition, (6 —a) + (d—ec) is (&4 d)—(a+o).

23
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Similarly we can prove that the product (A - a)(d - ¢} can arle e
(@ + bd) — (bre - ad).

Finally, we can make o — & satisfy onr desired condivions Tor
equality, hby defining it to be the sot of all ordered pairs (i, i) for
which @ 4~ 7 == 4 -] g,

3. A close analogy between this process anc the one doseribod i
Chapter 1V is now clear, First, let us notice that oup presenil objeet
—to solve 2 + & = h—can he attamed without ATy miention of S -
plication (though we cannot define multiplication of our nepdodijects
without using multiplication of the rumbers we start fronye Somila rly,
fractions can be defined, and multiplieation of fractions udn, without

refercnce to addition. Let us consider the two procediredside Ly side.

We start from & system in which 4
N oty=y+o | 2y = yaNNY
() @+ y) br=ud(yrz | ()2 A5 (y2)
() e+ g =2 —+ #, theng = 2 | L 24 =2, then w = 2
(iv) 040 =0 BT
Fietz=5b 18 oEbralatilnaryoORAD 5 s ot always
solvable Q 7 »* solvable

*

and creato a system in which (D), (i), and (iv) arve still true and {he
equation in (v) is alwaysssolvable, and which containg a subsvaten
180Morphic to the systepidrom which we started. Our procedure is to
make the deﬁn.it-ion\< o

(@) o~ bis theyes of (i, #) | afbis the set of (m, n) for which
fovgliChe 4-n =4 Ly, . an == han
B) (a-AM (c—d) is [ (@b} (c/d) is (a-¢)/(b-d)
\:@F;'- ¢} —(b+-d) .

Th{}}ifferenoe is merely one of notation. TI¢ we replace sums by
preducts, the statements in the fivst colwmn hecome the corresponding
\?:tatements i the second. The two procedures are, in fact, both special

"ases of the following: f we start, { rom & hemigroup H (whose operation
we shall denote by ) and define new objects ¢ | b and an operation *
on them by

@) a|bis the set of {2, ) for which ¢ + 5 — bxm
B) (@|8)%(c|d)is (@*e)| (hxd)

then the resulting system is a commutative group and containg g hemi.
Eroup *-1somorphic to H, The hemigroup #7 ig emnbedded in the group.
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4, In the svstematic developmoent we shall not do the same work
wice, bub shall devote Chapter B to embedding a hemigroup i a
somrautative gronp, In Chapter € we shall apply this to she whole
nuribers as au additive hemigroup, and shall be able to write down the
ailditive propurties of the integers straight away, We complete the
asitimetic of integers by defining multiplication as in Chapter IV,
Ly Chapter & we apply Chapter B again, this time to the non-zero
Imtegers (which are a multiplicative hemigroup), and so can write
down all the multiplicative properties, We coruplete the arithmetif
of ratiomal numbers by defining addition.® O\

8 This is a good ecxample of the technique of abstract{tgathe-
matick. Wor thousands of years mathematicians have exarnined the

N\

. L= . Lo - S 2o .
properties of certain things which are susceptible te)guantitative

gation: numbers, for example, (arithmetic.aud “analysis) or
space (geometry and trigonometry). The more caréfil treatments have
starfied {rom axioms, which are simply a few fyhdhmental properties
fxomn which all the others can be shown to féllew. Abstract mathe-
matics has its axioms too, but they wrdHbekelranyierg Mifferent way:
trer are part of the definitions of theﬂsﬁstéms fuvolved. (1)-{iv) are
the axicms of a hemigronp. They regémble the classical axioms in that
#1l the properties of the system wndapdiseussion follow from them, They
differ in that the question of thw being true or false does not arise.
Every theorem in abstract alffebra is of the form, “ If a system obeys
such-and-sueh axioms, thef it has such-and-such properties . If the
system did not chey t-bc%,xioms, then the theorem would still be true,
bt 1he eonclusion gowld not be asserted.

Now if we haybg };ystem for which certain axicms are trize, we can
then assert. all t-I}} conclusions deduced by abstract reasoning from these
axioms, [ N-‘h’oie numbers form a hemigroup (as in fact they do) we
aan say th:ﬁ the conchusion of any theoren: proved about hemigroups
is trngfor the arithmetic of whole numbers. The system for which the
axfOny of the abstract systermn arc true is then a realization or model
of {ife abstract system. An abstract algebraie system has been likened
to an clectric vacuum-cleaner which can be plugged in at many con-
venient points. We plug the hemigroup in at two pomts: Chapter €
and Chapter E.

* Tt is worlh neticing that part (iv) of 1be definiticn of a hemigronp is not strictly
necessary—the procedure can be carricd out starting from a hemigroup without a
neutral element. 1 we had not ineluded (0 in our whole numbers we should hawe had

such 8 hemigroap to start from in Chapter €. In this case, the details are a Hitle more
liresome, as the reader who completes exercise Bd will discover.

3 (G 963)



CHAPTER VI

Fields
Q"

1. One of the most important abstract algebraie systems W the
field, This 15 a systemn which 18 doubly » group in the {ollgwuly way:
first, it 15 & commnutative group under an operation \ylij:c\-h wiz shall
denote by 4 and eall addition.® We shall denote thgwmaiital eloment
of thix group by 0 and call it zere. Second, the pébgero eloments of
the systern forin & commartative gronp under a segond operation, whit‘['\
we call multiplication. Winally, the distributivdIa® holds: =y -
ay 4wz, The distributive law s the on}}g\one which hivelves }w I
addition and mulliplication. Withous it 1\1(-' two groups are codxistent
but uncodrdinated,  They gishaiinpiry: ﬂ)rg imakes their union fertile.

2. In 3 ficld we can define sgbi waction and division: b — n is ibe
o for which ¢ + 2 =5, and is_ dnimorl for every @ and b; dfe is the y Tur
which ey == d, and 15 defingg fc:r every  and evory non-zevo ¢, We can
define subtraction and digision in systerns which are not fields: if
gud b are whole numheh b-—a 1s the whole number z for which
a +—x =50 [exig L\g{ qud onky if & i3 greater than a. Such a definiiton
would not he ednvdnient from an aleebraist’s view purnt too many
qta‘romen’rb vrould have to he thﬁpd by such provisos as “if it
exiats’

quht&t{tmmn and division are derived from addition and multiph-
catm\roqppctwelv 1t is therefore to be expected that itheir chief
pmpm heb will be easily deducible [rom those of the primary operations.

(Aftan example, let us prove the distributive law of mult:pht,ahnn and
\ ) Subtraction, namely that z{y — 2) = zy — @z

By definition, ¥ — 2 is the number 4 for which 2
the distributive law of multiplication and addition,

Y =2z -+ u) =z + ou

That is, wo == ey —~ oz, Therefore g(y — 2) = oy ~ 22

—u=y DBy

* When the elements of our system ave numbers of one sart or another this addition
will in fact o the uswnd addition az wnderstoed in arithmetic, The same applics to
mwwiltiplication. PBuv it genoral the elements of an sahstracy jiold can be any sort of
objects, and the operations any sort of eombinations which satis{y the ficld-axioms.

26
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m,

The reader may, 6s an exercise, like to prove the distributive law
of divisiun and addition, namely,

(@ )iz == (@) + @)

s holds, of course, for every @, every y, and every non-zero z.

The wse of the notation § — a—the same notation as we used for
ernbodding an additive hemigroup m a group —is deliberate. The rwo
eoncepts are analogons. The difference 13 that in the present case
L —  is an element of the system we are considering, but in the
former case it is something specially crcated in order to solve the
quation @ + ¢ =5, {In fact, it solves the equation (g — 0) JE
b— 0. Buta—0andb — 0 ecorrespond to ¢ and & m the enfBadding
isonsorphism.) “

3. A field can justly be deseribed as an algebraic syftpm n which
addition, multiplicution, subtraction, and division Gditybe carried out.
The simpiest example of a field is perlaps the anlfhmetic of rational
pmnbers.  This has, however, an importaut aded] 10nal property: s
clements are cither posilive ot ne&zﬁ-ive&bg ‘f}lcfm{ﬁhich has this property
is called an ordered field. More precisely, a “cm%i%(@( A8 a field certain

of whose clements have a property Knewn as being positive, satisfymg

*

the following laws; o
(1) If @ is not positive, themz is.

(11) Tt @ and —e ave bot W positive, then & = 0.

(iii} If ¢ and b aze positive, then so are @ —— b and ab,
{This definition treatg (hax positive. See footnote, p. 15.}

Clearly the r:s{c-i;saﬁéx.] pumbers form an ordered field under this
definition. (}1'%1@(1 fields are investigated in Chapter F, and rational
numhers -rgj‘i}‘ﬂﬂ-‘ed o form an ordered field in Chapter G.

The .Qox-ép‘i:s of © greater ” and “less * gan he defined in terms of
“ posigise’”. Like © positive 7, these words have two scnses, an ex-
clusive one and an neclusive one. & is strictly less than b (written as
N E)} it b — g is positive in the exclustye sepse; & is less than or equal
fv b (written as ¢ =< ¥} L b--@ i positive in the inclusive seuse.

Fither sense is very cusily defined m terms of the other. We can
define the fiest in terms of the second by defining “ e < &7 to mean
“aahoandas b we o dafine the second in terms of the first
by defining ¢ = b to mean “ e bora—=>0" In the development,
onlv one of these two 1s really necessary, the gther baing merely a con-
venionce, Having chosen an melusive definition of positive, we choose

the inelusive less than.
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An alternative treatment would have been o define an orlered
field directly m terms of less than, An ovdered field is then a ffedd with
a relation < between ifs elemeuts obeying tHe laws:

(o) Tf ¢ and & ave any elements of the field, then a7 bwr & - o,
(b Ma=Iband b =g, then o = L.
(c} lfO <L a and O ’6 then © <l a = b und 0 =5 ab.

We could then define 5 to be positive i 0 =

The reader may ke, a3 an exercise, to deduee (1), {i1), and (iii_‘f@!m
this definition and {a), (5), and (). <\>\’

One more coneept which con be defined m an orderedy ‘mg\l(l SRR
of absolute value (or npnericel value if the slements are liuu“rlvl a)
ahsolute value, | & |, of a pomm element » is sim pja\}s e abs
value of a nerfa’rwe clement y is —. This conee )’r.iNfoG oueh s
the Iollo“mfr chapters. \\ p
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CIHAPTER VIL

Irrational Numbers

1, The field of rational numbers is a powerful tool. We ean ca.rry\

;
out all four epovations of arithmetic in i, and all the laws of ﬁ\t‘i‘gh-
 are Lrae for it, But aritlometie is not an end in itself, ape\when
we trv to apply it, we find that the rational pumbers are nat Fhough.
Wo cannot, for exaniple, solve the equation a2 = 2; the gmnicnt Greaks
Jenew fhat theee is no ratiopal nomber whose square’ is 2. Butb
suel n nnmber is required for geometry: the vatieo’ of the length
agonul of a square to that of ils side is 3 nipiber whose square

4

of o ¢
=92, Ths

, then, sets us a problem: to conséﬁ@t nnmbers which shall
he salutions of such equations s ;?:‘f’wz'dg."f‘&ﬂ s ire called real

niinhers (not because they are any Imore real than the numbers we
have met so far, hut hecause they(ats' in one sense more real than
numbers we shall meet later). We %an try the technigme which we
asedl before. Just as we constniebed numbers like a/b to solve ba=—a,
60 vee can nov constrnet nutithirs of the form {/e. Rut now we cannot
satisfactorily define ade i{ion and multiphoation: 4/2 -+ /8 carnob
really be defined to be\anything except /2 -+ 4/3. The best we can
do in this wav is te take as our system the set of all expressions which
can be micde bqu'.}\ é.ppl}-’i_ng the four operations of arithmetic to num-
bers of the f{.\l‘{_ll /6. Tt 1s now very difficult to say whcn.two numbers
are equal and practically impossible to say which of two 1s Tjhe greater,
The whgle system i3 cambrous and complicated. And it is not-_ good
e.nrmg_}]ﬁ{ * we cannot in this way construct 2 number which will re-
,"r"'éséfn.t 1Le tatio of the length of the civenmfcrence of a circle to 1bs
raffius. The problem i3 in fact o diffienlt one, nuch deeper than those

~ational numbers. It was probably the

we solved in constructing the _
discovery that there was no rational square 1008 of 2 which accounted

for the Greek neglect of arithmetic and concentration on geometry.
9. Fortunately there is an indivect way of solving the prob!em.
T ke field of rational mumbers we cal set up the {amiliar dcgmal
system. In this system each cational number is represented by either
a terminating oT & TCCUITING decimal. But it is easy to think of decimals
29
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which neitlber terminaie nor recurs GHOLODISUGIMAINT | L ey
ample. It is natural 4o suppose that these represent nunihers of somo
sort,  And there is a strong hint that our nhsshg roofs e Bl
them, for a weihod of fruding square roots is doscribed i text hiooky
of artthmetic. Tf wo apply this method to o number which has no
rational square-root we 48t & nen-recureing non-terndnadinge deeimgl
frew it If we try to find the fquare oot of 2, for cxample, we vt
L414 .. and we ean go on finding extra digits for ax long as we e,

Now we could define our SYStemi to consist of all decimsle. L \\mu]cfl
be tricky but not impossible to define addition and sl fon,
We have, except Jor details, solved our problern. But 1 sl ion
Is an ariificial one becanso It makes our mumbersy

ySECMY appenr to
depend in some fimdamenta) way apon the nuniber 3 0e hose of e
decimal system, We cun avoud this ineleganee it KA Wok a little more
closely at a typical non-termmating decimal., \

When we say that V2=1414 “:e"\}n'eau that there is a
succession of rational ntubers, namehe NI 14, 747, 1414, ...
whick get as close as we Like fo 2. ]O%C;“{fﬂf}]_in Tof 4/2; 144 s within
‘of 42; 1414 ff-’fﬁ’ﬁ"md%fuof A ;)i:su.uﬁ 50 0. Thus 4/2 [s eaughi. in
& trap, and we can reduce the fI’t’.{&:;Ph;}’ mside the trap 1o as little as
we like by going far euough alghitd the succossion In vther words, il
b I8 any positive non-zero number (no maiter how amall) e can find o
number in the success.ionm@ich Is within & of 42,

This is, however, no# Quite enough. A succession like

L& T4, 9, 141, 10, 1414, 17, . .

wonld have th INPEAperty, but would not be much good as an APPTOXI-
mation to 4/, 20 We therefore Tequire a slightly Stronger proporty: we
want t}lt’\?@t‘assion 20t merely to come elose t0 /2 bui to remain
close to A2 Tet us say that the suecession approximates to 4/2 7o
wiilapsthe stardard b (where b is positive and non-zero) if thare is o
owfiher m the suecession such thsat all lager nwrnbers in the snecession
‘sqet' WIthin & of /2. Then OUL susecssion il represent 4/2 i it iy
within all standards of approximation of 2
any pusitive non-zervo b, all the terms b
b of /2. The arguinent stili applies

n other words, if, given
eyond a certain one are within
If any other nyumber replaces 4/2,
The successions of rational numbers wh iel represent g given number
are those whose members tome and roraain arbitrarly cose to {he
given number. And if thejr members are arbiteatily elose to the same
number, then they are arbitrarily cloge to sach other, It turng out that
the converse also is true: i the members of 4 SUCCEssion are arbitrarily
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close to one anodlier in shis way (Le, if, ¢rven any positive non-zero b,
there is o member such that any twe later members are within b of
enell other) then the succession represents a nomber. Such a suc-
cossion 1s called a Cauchy sequence. Our way is now clear. We have
anly to state the conditions under which two Catclly sequences are
cquivadent (Le. represent the same number), and to define a real
number as a seb of equivalent Cauchy sequences of rational numbers.

3. The only properties of rational numbers which we requite in
framing our definitions are those which are common to all ordered
fields. We therefore do not restrict ont definitions to the ordered(fteid
of tational nuoibers but define a Cauchy number to he & set of equyalent
Canchy sequences of efcments of un ordered field. by

The ot of Canchy numbers can be proved to be 3n~1:}_rdéred field
iF e dofdne addifion, multiplication, and posiive T thédbvious ways.
1 shall call it & Cuuchy field. I6 contams an ordereflfisld isomorphic to
the ordercd field we started with. This consistg‘.'{n,fact of the numhers
which contain Cauchy scquences of the forrg.’\’l'

S 3
a, a,,ww}w@;lb,ral;{library,org,jn

CW
(Le. all the elements equal), which p@ make correspond to the element
a of the original field, This situghion is apalegous o the onc we have
met several times already, and in ‘the usual way we caq now consider
the original field to be ert}be{lded in its Cancby field.

4, The Canehy ﬁelﬂ\fsf’the field of rational numbers is the field of
rea] numbers. The Aements which correspond to rational nmnhers
in the isomorphisiﬁ’ “ jentioned above might be called rationdl renl
nambers, bu{'.,pgeépt when we want to stress the fact that they are
only isomofphic to, and not identical with, the rational numbers we
started ffom, we shall abbreviate the phrase to rafions numbers. The
cmbegﬂ’;’ﬂg of the rational numbers in the real nurbers by this ise-
provphism leads to the idea of & limit. Let us denote by & the rational
teud number corresponding to the rational number @, Suppose that
one ol the Cauchy sequences which mske up the real number 2 in
(y, thy @y, ... Lhen a is obviousty telated in some way to the
secession &y, fyy gy, v v o of rational real nuwbers. The relation is, M
fact, that the successlon approximates to a within every standard.
When this 15 so we say that a is she lLimit of @, 8y, gy - .- - MO8
gencrally, if ¥y, ¥o; ¥ar « - - is smy suceession of real nunbers and if
there is a real numnber 1 to which the succcssion approximates within
every stapdard, then we say that 1is the Limit of the succession.



32 THE NUMBER-SYSTEM V1L, 5

5. When we extended the arithmetic of whole nmbers W order 1o
be able to solve the equation a -+ » = b for all whole numbers ¢ and 4,
we found that we could solve the equation for il elements ¢ and &
i the new system, not merely for those which correspond to elomionts 1o
the old system. If this had not been so we should have wanted to malce
a similar extension to the new system, and so ad dnfinituin. We have
an analogous situation here: if we try to extend the Cauchy (ield by
applying the same process again, the new field Is isoworphic to the
old. In other words, the Cauchy ficld containg the limits of all i3

Cauchy sequences. A fleld wich this property is called complofe. A
£ \
6. An important idea connectad with limits s that of r‘m*mnmt\

The taitive idea of & continuous function f of ong ’."mqu
simply that f{x) should not seddenly change by large ZTIIl(}U_[ltb \yhtﬂn
% changes by small amounts. For example, the fmmt},oh f delined by
the following equations N4

XJ.u o \ngcigraul}ﬂnraryl{oz?ﬂ*h

fizg) =g(4—=x §

Lmd 80 0N &

18 discontinuous. (The functioms riser in elementary dynamics. f{:;:_i

is the upward velociby at timex “of & ball dropped from a height 1gon
to a honizontal surface.) i»«’\

When x is just les§fhan 1, f(x) is just greater than —g. and can
be made as near to Ag ds we like bv taking x near enough to 1. When
X is Just greatex thm 1, f{x) ia just less than --g, and can be made as
near as we itk LO this by taking x near enough to 1. Therelore il =
changes by a &mall amount from just less thau 1 to just greater than
1—aud v@\oan make thizs amount as small ag we hl\e—f x) chang.s
practlcajlv from —g o g fix), in fact, makes a dizeontinuous fhancre
of amount 2g where x — 1.

VX discontinmous E'unﬂtxon defined by 2 single forraula is nsually
rather complicated, but u reader with the necessary teshnique will
recognize that if we pub ¢(x) equal to the limit of the suseession

(ie. define ¢ by the formula $(x) -= Kkm (x* — 1)/(x* 1. 1)) then ¢ is
discentinuous where x = 1. o '

A function f ig continuous at x = a if it does nop suddenly change
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as x chwnges from value to valne near a. This means that if a,, a,
2., . .. 15 any snceession of values of x whose limit 18 a, then the sue-

f(al)e ,,‘f(ag): f{:ag) e

st e flad [y its limit. We take this, then, as our definition of
concinnious function.  An imporvtant property of a confinuons funetion
Fhiell we can prove immediately s that if f(x) is equal to a [or some
T of % and to b for some othar value, then it must talke all values
weon @ i b as x varies from one valae to the other. This propcri;y‘"\
gair o nsed to prove that, if » i3 a positive 100-78T0 integer. eyery
pasitive number & has an nth root: hecauss we can Show thz}t'\%\f"li's
o contiens [unction of x, and can be wade o range frgr;g“f}; to a
valte greater thap d. Thercfore for some value of x it st be equal
{0 d. This valne is the ath root of 4. \..s'\'\’“
£

s

% The field of real numbers has one important\froperty which
uot all Canchy fields have; thisis deduced fromeproperty of rational
mimbers which not all ordezred fields have, .a,i\d"i-s called drchimedes
pyiom: given any element a of e pgghpetlibr aryiatRgar » such that
27w a. (It occnrs as lomma G8 and theg‘rgrﬁ’:f 2.
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CHAPTELR VIIL

Powers
O\
1. The symbols 2%, %%, x*, are used as abbrev intions for o X, 45 2=

\
((x-x)x}x, and so on, m elementary algebira, and obey thﬁS ?’im'lm
index laws: W W

%
a

gHgR o yEh . £ "‘:
XMy o (X'Sl')m M'\‘\:
(xm)n —= g \V

Qur definition of 2" ran be extended to covei\ neﬂatn'e‘ numbers % by
the usual methods. First, assume thap th\re s a definition and that
the index laws ho1d§wmﬂd5\£b ‘%’ﬁﬁé%gi _e]p nition must be.  Second,
state this delinition and proeeed to, build up the theory from it.
If the index laws are to holdyswe must have
ghx" = g e Thersfore 2 == 1
Then -

A\ ;
g ™yt == x0H— 2% = 1, Therefore x7 == 1/x"
Y

Thus the first index\a.w 18 enough to determine how we must define
x* for negative (fitégers.
The deﬁ&l‘rmn is given (for positive and negative infegers together)
m Chapten®, and the ndex laws and other propertics are deduced.
2, (Now let us consider fractions, The third index law leads us to
req e
7

,,,\ {xm’q}q = glpiera - g
) 4

Therefore x#/¢ is the gth root of x*. This definition is made, and the
corresponding theury developed, in Chapter J.

Finally we counsider all real nurchers. Any real nuumber u cun be
considered as the limit of a Cauchy sequence w,, w,, u,, , . . of rational
vumbers, And we can prove that the snccession x¥, xve, %, .18
a Canchy sequeucs. Th s natursl to define x¢ fo be the limit of this
suecossion.  Notice that we are not using our former teehnique; the
three index laws, invelving only products and sams, give ws no way

34
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of getting frow rational to irrational numbers. The reason for this
is that the extension of the nunber-system from rational numbers to
real numbers is different In kind from the previous extensions: we
are embedding o field in a larger field; not embedding a * partial
field 7 in a fleld.
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CHAPTER IX
N
Complex Numbers X
¢\
1. We have created numbers which will solve a largeSgirivty ol
equations, but by no means all. A sinple equation 'wjil}‘no soliution
m the field of real numhers s 2 - 1 = g, '.j~: ’

A grandard pices of elementary algebra is the gelatfon of muadratic
equations: sometimes they have two real solsfions, someiimes nob.
We can prove as follows that if x2 11— Adsd solution, then every
quadratic equation has a solution, Let bedHe solution of x2 - 1 = 4

. that is, suppose that, wﬁriﬁfd}:n%h?i‘br%%ﬁgf‘iﬁxg +bx+e=01Is anv
quadratie cquation, wo caAn tewrite it a3

A 3

¥ 2ha g =0
where g = ¢fa and h = {b/a.~This can be rewritten as

(i) (REPBR L g2

7

If h? — gis pOSit-ive,\Qen 1b has a square root, and —h 4/ (h? — ¢
is a solution of thé:;:quation {and a0 1s the nunber —h — /(B2 — g)
obtained by talting the other square root of B2 — g. HH—=is
not positive/fhtn g — b i, and therefore has a square root.  Put

j S —h\{}{[/{g — B, This s a solution of (i} because, if we sub-
Q

stitutedthe lefi-hand side becomes
RN Tv{eg—B)pP g —1w2
\\;“ =g — k¥ Lg—p?

= (g — (2 + 1)
= (g — %0
={
What is more surprising (and more diffieult to prove) is that if our

field contains the real numbers and = manaber i such that £ 4- 1 .- 0,
then it contains u solution of any equaiion of the form

b Fexi 4@z .. L kxv =0
A
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2. 1ot us adopt the usual technique of assuming that a number
st i exists, and seeing what properties our field wnust have. A
LUt eontain the sum and product of any two clements. There-
“ i cotitains L and if x and ¥ are any real nurnbers, it mast contaln

x - iy
On tlie other hand, the set of all numbers of the form x4 t¥
wlors 2 snd v are real oumbers, 2 -= —1, and the laws of arithinetie
are cheved, does contain the sum and product of all its elements:
(i) (a + ih) 4 (e -4 i@) = (2} ¢ ({4 19) \
= (a4 o) (b | &) O\
7'\ ”
a--eand b4 d arve rea] nmnbers, and so (a—+e) + i(ho4) 18 a
aumber of the form x - BY. ~‘
(iif} m+rwm+rmﬂae+rwd+bm#ﬁ%d
= (a-c - rd) = H@T be)
O

| T e e EE . N .".\"

which again is of the form x 4-17. L

We can go fuvther, and p.rox@‘ﬁhad{iﬂ*&gHdaira?fyt‘z]i‘gmmbers of the
form x - iy is o field, Therefore, I we can find a valid definition
of i, the set wilt be the (eld that xygréquire.

4. The [act that the I'equh;{?@_"o nmmbers are of the form x - iy—
sl exprossion iuvelving twdNeeal nambers— suggests that, as before,
we should consider se-t’&‘"t;\f ordered pairs.  Under what gonditions
should wo have a £ i\b\Ec -id?

If atibv= c.;{--:i'ﬂ_. then (a —— ) =1(d —b) and o

AN/ . ”
) (a — ¢ —-{d— by

— (& — DY

We Lekh a positive quantity equal to a negative quantity, and so
botiNthust be zero. Then a -0 and b— & Therefore a - i'd and
‘(i\—Tr}d are squal if and only if they are the same. This means that
we necd not aomsider sets of ordered pairs of real numbers; the ordered
pairs thewnselves will do. We define & complex number, then, 1o be
an ordered pair of real numwbers. Fquatious (i) and (iii) show us how
we must define addition and wnltiplication:

(3 b) + (e, ) = (a e d)
(a, B)-(e, @) 7= (& — bd, ad - be)

From these definitions we can now prove that the set of ordered pairs is
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a field, by verifying the axioms. To verify, for example, the assoclative
law of addition we see that
(2. 0) + (e, &) + (e, ) = ((a +- &, b + &) - (e, £)
by definition of addition

={ate)t+e®m+d- D
by definition of addition

=(@—(cd-e. b+ (d+ 1) O
by the associative law of addition for real numbers O\
— (@b (e e d 41 O

=@ b +ed-(ef) N

Some of the other verifications are long, but they are léfmight-for\mrd.

As usual, our new field contains a field isomerphie to the field with
which we started, namely the sei of complc< tumbers of the form
(%, 0). These way be called real comples g hibers.

Fivally, our complex field has the usl}.al completeness property.
Not nly can we MKW dﬁl@”[‘&ﬁ%}%ﬁ‘%‘i eo..5-kx*= 0 when
a, ..., karereal numbers; we ca-n'a.}s'a #olve it when they arc com plex
unmbers, Therefore a second extansion ulong the same lines wonld
give us nothing new. N

The field of complex nn [{rbc.ié 13 not an ordered field —in any ordared
fleld ¥ ~1-=90 is ungoliable (hecause x? is posicive, whereas - 1 is
strictly negative, and a(f WO cannot have x? = —1),

4. The extension, to the complex numbers brings the present
development of thé lumber-system to an end. The reader will probably
wonder W.hei;l\ér. this is the last extension which can be made. Tt is not.
There iy, for“example, the quaternion syetem, which is most simply
descril}s a8 the set of elements of the form x by o-iz | kw
wherex! y, z, and w are real mimbers, and i, 3, and k are analogous
to(the i of the complex nwmber ficld. {(In fact, % =2 k2= .1,

D= —ji=k fk=—ki—=1i ki=—ik—i) Wo paid a price
for the extension to complex numbers: the price was the order-
relation. We pay another price for the extension to quaternions:
the commutative law of multiplication must be given up, though all
the other ficld-axioms hold,

There is a seuse in which the various extensions of the number-
system reach their peak in the ordered field of real numbers, After
that we have to make concessions if we are to exterd the system any

further.  Theze is probably a connection between this fact and the
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fack that 1he real number-system is the last system which appeals to
common sehre. No one doubts the existence and usefulness of negative,
fractions|. and irrational numbers; but, though the usefulness of
complex wwmlers is unquestioned, it ds only too easy for the non-
mathemativian to deubt their existence: 1F is © obvious 7’ that -1
has no sire root. A strict development, congtructing the complex
pumbers ws (¥iirs of real numbers, makes their existence logically certain,
it even so theze is still 3 context in which they seen less  real 7 than
real nwnbers. This context is eodrdinate geometry.

In elsmentary geometry, a Carlesian codrdinate system can be set; .
up i whiel the codrdmates of a pont are two real numbers By
alpebraic 1cthods we can solve such geometrical problems as\fibding
the mterseetion of o straight line and a cirele. A

For exanple, the line x = a cufs the eircle =% + "_g{s’:'rg in the
points whose codidinates are the solutions of thesth&wo equations,
namely (a. 4/(r — a?)}. The poits have real codudinates if and only
it a = p, e if and enly if the lme does cat the oc’ig}]e. 1f the line does
not eut the circle, their points of ivetereatbionlilbraep epgpstn—they are
upeginavy. In this way we have an in‘t-e.rprét:«ition of complex numbers
as eodrd nates of imaginary points. F{:E:i;his veagon pon-real eomplex
numbers were onee called ™ imagiﬁéiﬁr » op «impossible 7. These
wordss are 1o longer used, but thets i% & relic of them in the description
of & nuwnber x — iy for whichf®>: 0 as a * pure imaginary .

The [uct that, in one jnkgrpretation, complex numbers correspond
to imaginary objects ganmdt, of course, wake the complex numbers
themselves any less peal{using the word © real 7 here in its everyday
BENZE, 0% 11 the Lec}}lﬁcal scns_c)_ 4/{—1) is Just as real as 1 itself. The
reality of the pfber 1 is, however, not rmatheniatical problem. It
must be lef@@fthc philosophers.

&
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CITAPTER X

Verification of the Axioms
Q.

1. In Chapter 1 we discussed the use of numbers for c;ou:rt@-ing. aned
in Chapter IT we showed how the common-sense propertics of Pediting
led us to postulate three axioms, On these axicms we bagcethe whole
ol arithmetic: the details are given in Chapters A-KE. o0d the reasons
for the definitions adopted are explained in Chaptews TN, Nuw that
weo have the complete system belore us, lot ws WOhfider more efo
what iz meant by a number, and verify that nulers do indead sat
the axioms, AN

It may be as “Lﬂwt\g5B}Uﬁﬁ%ﬁ]f§9§%}g%®etﬂ can stand on Hs own
as an abstract mathemabion structiued;\but withont some sueh eon-
stderation as that proposed tlere willhe 1o eomnection betywecn ahstract
arithmetic and arithmetic as used\BY a grocer or a phyainist, This i3
what E. Landau {in Grundlaglp ‘der Analysis) means whon he SN
that “one ™ is simply a ward of the Fuglish langiage (or rather, that
“ein” is siraply a word<of the German langnage): he refraius from
forging the link betwen/the * one ™ of common.-sense arithmetic and
the 1 which formsypadt of his abstract system.®

¥ There is & wof@sibtle disadvantage to the purely whetrach approach, Ruppose
that we took the'sgthbol |L..] for the abstract 1. and defined the succosaor of any
element fo be/gdelement with one more dot. Then we shonld gel a perfectly self-

vonsistent grithmetic, whose elements are (IR S S N 1 ete., and in which
addition sudmultiplication are commutalive, associative, ete., but in which o] =
fo.o.] isdemal to [L...] and oot 1o [P | This arithmetio iz tsomorphic to the
fa,mi]iu,'r.’arithmetie of whole nwnbers, but by the toisleading matching
s ) Do [.]
"’\‘.. 2 e f....]
4 o,

instead of by the natural matching
L {.]
e
et

L2

In fact, by the very nature of the axioms, awything tsomorphic to the arithmetic
uf whole numbers iz honnd to eatisfy them, and if we want our svatem to be practically
recogiizable as {nol. merely abslractly cquivalent to) the familiar arithmetie, then we
need something besides 1he prrrely abstract axiomatio da clopment, The purely abstract
methods cat prove atatcments like -2y 1.0 - {2 -+ 1%, bnt not statements
like ** I you and 1 are here, then two persens are here 'y the wider methods can prove
both sorta of statement.

40
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g, \What o we mean by a number? We have scen that a sef con-
taing three objecls if and only it it is matchable with the dots in [. . .],
L.o. with the little black spots which you are actually looking at now.
Tn other words, the number thee is something common to all sefs
matehsble with this one.  We might, then, define a number to be
sorething common to all sets matchable with a given set. We miglt,
ahtly daring, define the number of members of a set S as “that
whick is cormen to all sets matehable with § 7. A thonghtful reader,
Lowever, will wunt to examine this phrase more closely. Just whai(
iz comrnon to all these sets? Various answers have been given. Jor
exaniple, we could take the set of ail sels matchable with the gaa@\"z}
But 1he words © seb of all sets . . .77 are dangerons, as is shownMy the
famous Russcll paradox,* and hefore we can use them ke ynust he
sure tlat the logic which underlies our thought is so Oln faet, we
must investigate elementary logic in the way thad #he “present hook
invesiigntes elementary arithmetic—and logic préstmts a far deeper
probicin. One investigation is contained in the/Pyincipia Mathematicn
of Russell and Whitehead and e_x"pMﬁ\il@@%ﬁhﬂ@l@@ﬁ@‘ﬂdﬂdém H]
Matheniotical Philosophy. N >

Let us suppose, however, that we afewcontent to leave this problem
to the ngicians, and to assume tha.t,t-ﬁéré i3 snwne property (even though
we do not kmow preeizely wha.t}fqumon to a sct of matchable sefs.
This gives us a definition of bber in gereral. We now want to define
gpecilie numbers: the num‘bg\r 1, for example. 1t conld be defined as
the number of dots in [*\m fact, it was so defined in Chapter I This
is rather like defining & yard in terms of & certain metal bar keptin a
cortain safe plach It is quite practicable, but doses not seermn satis-
factory for sughjan abstraet concept as 2 number. We want a de-
finition in t ~1tfl}s: ol pure logic, not in terms of certain marks on a certain
piece of pdper.

3¢4What do we moan when we say that a set contains just one
H@l‘b’ér, or that there is just one element with a given proporty? We

* The sebt of all leaspoons docs ot sontain itself as a memb_ur, hecauge it ia m_)t-lﬂ.
teaspoon. And this is the normal situation, But certain exncptlonu-i sefs may contain
themelves ax tnembers: the set of all objects of thewght, for example, of {rather abvi-
onsly} the set. of all sets. Wo ask: what about the set of all sets which are not memibers
of themselves? Ta it o member of itgelf or not? . : .

Suppose first thet it is a member of itgelf. Decanse ts members are sk which
are nuf members of hemseties, this means that it is not a member of ‘I‘bﬂclf, contradicting
the supposition, “which must therefore he wrong. The sel, then. s not a member of
ilaelf. . ;

We are naw in a difficulty. because the fact that it is not % moember of itacl, Le.
i nut one of {liose sets which are not members of themsclves, implies that it is & member
of itzelf. And this we have just shown to be untruc.

4
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say, for example, that there is just one number x with the proparty
2e =3, How do we prove this? We sghow first that the numbor 3
has the desired property, by proving that 2-3 — 8. This proves that
there is at least one number with the property. Thew we show that if
2x — 3, it follows that & =2, so that 3 is the only solution + the
equation. This shows that there is ai most one number with e pro-
perty. Ina similar way, we ean make a formal definition of the number
1 as follows: ~\

Definition: A set S is said to be a wnst sef if it has a m.er.x;hag- and
if it is impossible for both z and g to be memboers of{Samless
% == g, The number 1 is the number of mermbers of a WAl set.

™ )
In a formal development wo should, of course, havesgdssHon thut all
unit sets are matchable with each other before wié\wrote the secomd
sentence, ’

¢. Similarly, we can define 2 as the nu.ml:gs}”f)f memhers of anyv set
7" which has the following properties: Zdhag members = and y such
that z # y; and ifehdehzaul PPK PRI er 2 — 2 or 2 — 5. And so
on. In this way we can define any apecific number, though the defi-
nivlon of one million along these, fifles would be cumbrous. Bub our
tumediate aim is only to shoi that common-sense numbers satisty
our formal axioms, and to do this we need only define 0 and suecessor.

Definition: The set which has no member is the mull st

Befinition: The Iuiﬁbér of members of the null set is 0.

Definition: Thawnumber 7 i3 a successor of the munber # if it is
the numbe®df members of g set T satisfying the following con-
ditions; {there is a set S with 2 members, and an element & whicl
belong€to I' but not to S évery member of § belongs to T;
A L3z belongs to T, then either 2 - z or z Lelongs to S.

‘33-"'@' shall now prove that any such 7' is matchable with any other
.alj{;l’: set I%. Suppose that T is as above, and that 7% contains %
Nand the members of a sef S with

_ # members, and a0 on, as above.
Beeouse 8 and 8% have the

same nnuber of members, there is o match-
ing between them., Wo can define g matching between T and 7% Iy
leiting cach member of § correspond o its mate in the matching
between S and 8%, and z correspond fo 2%,

Tt now follows that if m and m* are successors of n, then m = m¥*,
because they are the numbers of merubers of matchable sets. In other

words, # has Just one successor. T fact, m is not mercly & successor,
but the successor, of #.



X3 VERIFICATION OF THE AXIOMS 43

[Z we now define the set of all whole numbers to be the least set
which contains 0 and which contalns the successor of every member,
then it ts not hard to prove that axioms Ala, b, and e are satisfied.

5. To complete the connection between these numbers and the
pumber-gystem in the formal development, we have to show that
addifion and multiplication agree with commen sense: that is, that
& sel with »e members and a et with » members (all different from the
mermbers of the first set) have between them m - n membors, and that
m sety with n members eash (all different) have between them s
menibers. To do this we first prove that i S is matchable with 8% gnd)
T with T and il S and T have no common member, and 8% and\T”
have no eommon member, then the set which consists of theomcmbers
of 8 together with those of 7' 18 matchable with the set v»lu.th conaists
of ﬂle members of 8% together with those of I, We can now define
the * suin w0 of m and = to be the number of Weinbers of a set
which iz made up of a set of m members and a %t\b[ 7 members with
no member in common. (No matter, ‘\\"h]&él seﬂfgn\mm mcmber.a and which
set ol g (different) members are chosen, Ti8,8¢ts e %e’r by putting
them together are all matchable and so deEIlb the same number w1 #.)
It dollows easily that m &0~ m and., 1 we denote the sucecssor of
x by &', that m & n’ — (m @ »)'. Theh, by note ASa (which says that
a,du:imn 18 U_T_uquel\«' defined bv. these two equations), we seo that

sadddition 1s the same as Jx &ddﬂ:wn A similar avgument holds for

#3%

msltlphm tLon, A\

8. We niust be caréil about one point. Our definition of number
makes considerablinGse of matehings, and a natural definition of
sigtching would f‘m:t %ome’rhmg like this: it is a correspondenece in
which each mduber of a given set corresponds to exactly one member
of a.nother.‘s\.t. This will not do. We have defined one in terms of
el ;sa}zq Swe carmot also define muiching ln terms of one. But it 1s
not }mul to give an mr]epcndent definition: .

POII¢’-p()ndom # - 7¥ 15 a motcfung if, whenever » =y, 1t
fol]ows that #* — y*, and, whenever a* = y¥, it follows that # = y.

A ﬁmc{ foi is vather similar to a matchbing. A function f of one
variable is in fact a correspendence @ > f(z) in which i @ ==y then
f@) = fy). (Comparced with o matehing, it simply Jacks the Lon(htlon
that if Fix _.--f[g,r_] then z =) Some texthooks adwmit muli-valued
functions: notice that this definition cxcludes them. (The fwo-valued
square-root function s exchuded, for example, becawse 4 =4 b1.1t
2 # --2, although 2 = 4/4 and —2 -= /4. Multi-valued functions, in
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fact, play havoe with the logical axiom that things equal to tha swme
thing are oqual to one another. 2 = 4/¢ = -21} In this bools, funciion
will always mean single-valued function. Two functions [ ond ¢ are
sald to be equal if f(z) Is equal to g{z) for every o for which eitler i
defined.

An operation 6 i similarly a correspondence

(& ) -~ Bz, y)
'e
{between ordered pairs of elements and elements) for which A w*
and g — y* implies Gz, y} — Hz*, y¥). Two oporations 0 m\xd are
said to be equal it 8(x, y) = ¢z, ¥} for all ordered pairs {1?,:\'5{)})1'0.1"’ whieh
either i, 4) or d(z, 4) is defined. ,Q}‘ ’

A function of fwo varisbles is the same t-hig_gj\ﬁ; an operation
{unless multi-valued functions are allowed—operasdony are never mulri-
valued); the difference is only that operatio?{"{\’\ié commonly used In
algebra, * function  in snalysis. b
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CHAPTER XI
Alternative Treatments

1. The present treatment is by no means the only possible onc./
fow of the more obvious alternatives ought to be mentioned. <\

Fizst, the considerations we have taken last (in Chapter X)*dould
be tuken first: numbers could have been dofined in terms offgcls. The
axioms of Chapter A (and Chapter TT) would then hayé &ppesred as
theorems, Some of the proofs wonld remain the samdeNput others (for
exaiuple, the commutative law of addition) could\be'proved directly.

{

2. Next, the new types of numberdraldibiaeyhseifntrodneed in
a Aifferent oreer. 1f we had applied the cibedding theory of Chapter B
to the mmltiplieative hemigroup of non-zer whole numbers we should
Liwve arrived at the positive non-zerg Iational nmmbers.  An additive
application of the embedding t-heoi"j"fo this would then give us the
complete rational number-system.™ Or we could develop the positive
real numbers [rom the positivérational numbers and introduce negative
mnimbers last of all. Thig J’\§~1:he order which B. Landau adopts in his
Grundivgen der Anolysis; Yt corresponids more closely to the historical
order, for negative apiwbers were not thought of until long after frac-
tions were familia:f mathematical elements. The reasons for adopting
the non-historiesd, brder are: (1) to have available a different treatnent
from Landalyy“classical one, (ii) to separate the algebraie technique
{introdu(;t'j}:m of fractions and negafive numbers) from the analytical
teﬂhﬁqﬁé'&-lw use of Cauchy sequences or some similar infinite process},
aR f\i? b5 possible, and (iif) to define the system of Integers, a system which
18 one of some importance n higher mathematics (m the Theory of
Numbers) and which does not appear in the other treatment, Further,
the introduction of the fractions then furnishes a good exampls of the
algebraic process of embedding an integral domain in a field. (An
intogral domain is an important algebralc system: 1% I3 an afldil'.i\re
cornmutative group with a second operation written as muoltiphication,
obeying the commutative, associative, and digtributive laws, and the law
that if 2y = 0 then either = or ¥ is 0. In his Infroduction to Abstract

15
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Algebra, C. C. MacDuffee exploits this treatment by developing the
system of intsgers in some detail,

3. There are many ways of introducing the real numbers once the
rationsls have been construcled. Perhaps the best is the use of Dede-
kind sections. This method is described in G. H. Hardy’s Pure Mathe-
#glics and K. Landauw’s Grundlagen der Analysis, and the existenen of
these two well-known freatments was onc of the reasons for not WsLiLr
the method here. Another way—hinted at in Chapter VII—is byskhe
use of infmite decimals, and this (or rather u similar tresthatnt
using radix fractions to the base 2 instead of 10) is probably b8 best
really elementary method, O

The process of embedding could alse have been captied” out differ-
ently. We constructed the system N of whole nupdBers and from it
deduced the system 7 ol integers, containing a sub%t\: N (namely the
positive Integers) isomorphic to ¥, We then broteeded to ignore ¥
and to let the positive integers play the pasthél the whole numbers.
The alternative is to inchrde & in a new agsfem, which we could do as
follows. Lot J comié%‘ﬁfvtﬁgrsﬁ%‘}%{ﬁg%f BRtbzather with those clemonts
of I which are not in N'. Tf u is an glegtens of &, et ' be the element
of N which corresponds to it jl;:fj:hé isumorphism between the two.
We defiue operations and relaiione m J as follows:

¢-l-yisapin [if wel and yel
xr L y’i,‘s'zzs' +yifzeN and yef
9w -y if xeN and ye N
provided that mesg, @’ + 5. 2’ — ¢ are in J. Tt any of them is not
in J, then it gnst be in A, and wo take in its place the corresponding
element of Hy"
Multiplieation is defined similarly:
Hae 1, then 2 is positive in J if and only if it is positive in I.
:.§¥f.'& e N, then # is positive in J if aud only if & iy positive in JJ,

\

) 4. We could have adopted a completely different way of developing
the whole numbers from Peano’s axioms. We chose to deal with addition
and multiplication first. If we had then wanted to deal with the order-
relation, wo conld have done so by defining “z = ¢ > to mean “there
s 2 zsuch that 2 =y + 2. The alternative is to deal with the order-
relation first. The definitions of addition and multiplication would
then be stupler to justify, becanse we use the modifted form of the
principle of induction mentioned in IT 5. This treatment will be found
in R. Dedekind’s Was sind und was sollen. die Zahlen?

/2N
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5. All these treatments start from Peano’s axioms for the whaole
pummbers—and no betfer axioms for the whole nnmbers have ever
been devised.  But instead of starting there and constructing the
il . ratlonaly, and so on, step by step, we could have started
with axioms for the integers, and buailt up our aystem from ther
{this course iz adopted by Birkhoff and MacLane in 4 Survey of
Muderse Aigebray; or we could have started from the rationa
good common-sense starling point, which is impheitly nsed by & H.
Hardy, who, in Pure Mathematics, assumes a knowledge ol the pro-\
perties of {he rational numbers, although ke does not explicitly sgate
any axioms, We could even give an axiom-system for the real nwz'fbe,?s
(it would ba simply the axiom-system for a complete Archimédean
orclered ficli) leaving only the complex numbers to be COIE%rli‘qtefl.

—a

6. Finally, if we had had sufficient algebraic techyique’at onr dis-
posul, we could have defined the complex numbersit@ bt the elements
of the root field of the eqoation & --1 =0 oyeryrhe rational field,
This method is deseribed in A. A. Albert’s Mogbor Higher Algelira.*

www.dbra‘ulibrary,or%:lin ]

* Thix docs not reguire any propertieg of the OL‘dB‘P-]‘nl\&tLUil. owotrer, we shall
want 1o introduce the notion of absolule m?.?;,{; gnt’the fickl of cemplex numbers.
We cannot do ¢his direetly beeanse the compléSimbers are not ordered, But the
real numburs are, We therefore define a fuhetion v of the complex number (%, ¥)
by puttir ik, v = Vgt + ¥ This fition has the basie properiies of an absolute
value, namaly vz = 0, v(z) - 0 only if w540, 0, vzw} - v(z)-v{w). and

vz 3 = viz} + wix)

N . .
1 a fnnetion ie a seluation, Malbations arve of two kinds, one eorrcsponding to the

of arithmetic, the o&@t corresponding to p-adic numbers, which are ontside
GUr preasht 2cope, A
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CHAPTER A
Whole Numbers

1. Definitions (of succession, successor, and whole number):

. . - . & N
suceession is a sct N of elements such that for each  of N therods %
unique element of ¥, which we denote by ', with the following-pro-
pertics: LH
, . "§.¢0
a. Tfx' — g thene = 9. o)

b. There ig an clement of ¥, which we denote byw@)»Such that, for

v/

every x of N, 2" # O

9.\
; . . . ww.dbraulibriryorg.i o
. 1f M is a set which contains ~ndbER Plebitalhl ¥ whenever it

wontains », then M contains every elemenh ot N,

TR Y

2" 18 the suceessor of & AN
V’Q. v

A succession in which adr]itig}";‘ﬁnd multiplication are suitably
defined (L.e. have the properties desoribed in 3 and 9, below) is a succes-
G . |
sion ol sehole wunbers. NS

Notation: In (jhaptcr.é\k; ¢, E, and &, suall italic letters denote
whole numboers.

&
2. Theorem»:\*}b‘"é: £ 0, then there is o y such that ¥ = y.
£ } . .

Proaf: E\QS”M consist of 0 and of all z for which therc 15 such a .
Then 0 (}J} It € M, then o’ € M, because &’ = #'. Therefore, by
le, ¢ chntains every whole number, and so the theorem is true.

! '”c;te: 1b states that O is 8 DOL-SUCCERSOT) 2 that it is the only
ON-SUCCESIOT.

3. Theorem: There is just one aperaiion f such that, for every « and ¥,

) Bz, 0) ==
and
(11) 6(3": y’) :___ U(CC, ?f)"

al
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T
In
Lo

Progf: 1 § exists, let ¢ be an operation such that

{i1i) P, 6) = = dor every
and
{iv) Pz, y) = dlz, yY  for every x and .

Let M be the set of y for W}Ilbh Pz, y) = Bz, y) for every 2. Then
0 € M, because ¢(m, 0) = = == fz, 0) for every r, by (i) and (1),

Wy e, then gz, y') =z, 4y by (iv) A
= Bx, ¥ bacause gy & M '
=6z, ') by (ii). R

Therelore y' € M. Therefore, by 1e, M contains all v&holo numbmq
and so ¢(z, y) = iz, y) for every = and 5; that is, ‘&hew s at wnst
one operation satisfying (1) and (ii). Tt remains o \ptow, that tlicre
is at lezs! one. \%

Let M be the set of x for which there is, foreach g, a whole nunher
Xz, y) such that (i) and (ii) are true. If W u\]&

w, lib
() 5(8 bl au i ralc% gI‘: 1}1: "
then 60, 0y = 0 h‘v (v
Therefore (i) is true when @ =- {L Ami
{, P b
B0, y )\ y y {v)

=60, by (v)

Therefore (i) s true V?h}‘u # == 0, Therefore 0 ¢ 3.
Hzel, let ()

(vi) \“\U(z’, ¥ = 0z, Y for every y.
Oz, ) is\dé:ﬁﬂed, beecause z & M.) Then
O B, 0) =6z, 0) by (vi)
o =7 by (i)

N\
‘b\wausc z2€ M. Therelore (i) is true when z —= 2”. And
0, ) =Bz Y by (vi)
=0z, y)" by (i}, becanse 2 & M
= (2", yY’ by (vi).
Therefore (1) is true when = 2/, and 80 2" € M.

Theredore, by 1e, ¥ contains every whole number, and so (i) and (i1)
are true for every 2 and 4.
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We niy now talk about the operation for which (1) and (ii) are
true; (v) and (vi) are also true for it
Definition {of sum of whole numbers): The number 8(x, y) Just

defined ix the sum of z and ¥, and will be written as = +y. (i), (11),
(v}, and (v1) become

a. g+ 0=r=0-+=x

and

b. 4y =@y =21y N\
4. Theorem: (z 4 y) — =z =z -+ (y + 2) for every =, y, and %3 < \ \

Proof: Let M be the st of 2 for which (g +9) 2= + (‘g’—l— z
for every » and w.

4

(€49 +0=2"y by 3a~.~~}"

— 4 (y+0) bygan”
My d N y Z \"
Therefore (b = 37, dbrali b@
RELATTA LTSN allhd. ly in

Tze M, then (54312 —((«v + 1 +2 Vga

{(x .6 J - z))  because z € M
== 13»;—]‘" (YJ’ — ) va 3b
ﬂ:}g —]— (y - 2’y bY 3b.

Therelore »” = 3 and so, b(\lc, the thecrem s true.

5. Theorem: z + J X?W,-— x for every © and §.
Progf: Let M by }h'{_ aeb of z for which @ +y =y + = for every 3.
x'\” =y 0 by 3a.
Therefore O\Q}J
I E‘h then

O Wy @ty by
Q == (y + @)’ becanse x € M

e y _:' .2'}! b}' Sb
Therefore «' € M and so, by 1¢, the theorem is true.
6. Theorem: [fy + =2+ % then y = 2.

Progf: Yict M be the st of @ for which this is true for every y and 2.
0eM, by 3a.
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Ttz e M, and if there is 2 y and a z such that

y+ao —zLta
then (¥ +x) =(:L &) byab
Therefore yt+te=z+4zx by la.
Therefore ¥ =2z because x € M.

Therefore «" € M; and so, by le, the theorem is true.

7. Theorem: If x + y =0, then s =y — 0. N\
Progf: If y # 0, then there is & « such that y — o', by 2. Lhen
t4+y=o -+ = {x-—u by 8D \ \\,
# () by lb N

Therefore i cannot not he 0. Then 2 4- 0 = 0, a:r-d\gb x =0, by 2a.

8. Theorem: Ifx and y ave any whole rmme,-'S t?zen either & —=u + y
Jor some w, or y = v |- z for some 2.

Proof: Tet M be't Yo SR PR W%%h this is true for overy y.
Then 0 € M, because, by 8a, y =y ~+ %, and we La,kc ¥ for the . 1f
& M, then either (i) 2 = u —|— y‘br‘"(n ¥y—=v—xand v £ 0 or (iii)
sz—mmandft}—o N

In ecase (1), 2" = (w - Q)“*‘* u =y, by 3hb.

In case {ii), v = o' fo(ﬁome #,by 2. Theny=w |-o=u--2,
by 3%.

In case (i10), \Q\—i— #—w by 8a. Then 0' Ly =0 4+ 2=y,
by 8z and 3b, ¢

In cach Lase\then either 2" —u — yory = » - &' for some u or .
Therefore m"&ﬂf and so, by 10, ﬂ_lt theoren is ‘rrue

%
W

&
.\XOrem: There is just one operation § such that, for every x and #
()N Bz, 0) =0
“hé'ld;
\(ii) Hz, y') = Mz, y) -+ .
Progf: If 6 exists, let ¢ be an operation such that

(iii) Sz, 0) == 0 for every »

and

(1v) Hr, ¥y =dle, y) 2 for every 2 and y,

Let M be the set of y for which ¢z, 1) = 0O(z, y) for every =z,
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0@ d, beeause @l 0) = 0 by (1ii)
= Bz, 1) by {i).

If y € M, then ¢, ) = ¢z y) 2 by (iv)
= f{x,y) +x  beeausc y € M
== 8z, ¥') by (ii).

Therefore i/ = M. Therefore, by e, ${z, y) = 0(%, y) for every x and y;

that is, {heve 1s ab most one operation satisfying (1) and (ii). It remains

to prove that there is at least one. ¢
Tt A7 he the set of « for which there is, for each y, a Whole nunber]

Bz, i) such thut (i} and (i1) are true. \\\~\
It we les \ M
(v) 60, y) = 0 for every ¥ A\
then 6(0, 0) = 0. N
©.9 0
Therefore (i) is true when @ = 0. And RN

8(0 y’) - 0 W\\!w_dbrah}"i&(gi-y_org_in
—60,5) Qv
= B(0, ) 10, +by 3a.
Therefore (ii) is true when # = Oggi:}%crefore 0e M.
lize M, let Y
. '\
(vi) 0", ¥) :;;\“fl\(*z, y) +y foreveryy.
£ \ 4
(8(z, %) is defined bec‘aﬂi\;}z e M.) Then
0, B B(z, 0) + 0 by (¥])

DT =040 by (i), because z € M
.\i”; =0 by 3a.
o0 ,
Thereif\affz‘ (i) is true when & = 2. And

O ot y) =86 4) by (+1)

g = (Blz, ) + 2+ by (i), because z € M

0 ) byd
=6z, y) + (' +2) by

f ) by 3b
— () +yy 7 bY4
== 2", 4} + z' by {vi}).

i P LR ¥
Ilerefore (1) is true when & =2/, and so 2z’ = M.
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Thezcfore, by e, M contains every whole number, and so (i) and (1)
are true for every « and z.

We may now talk about #he opezation 4 for whicl (i) and (i) ave
true; (v) and (vi) are also true for it.

Definition (of product of whole numbers): The number fi{e, ¥)
just defined is the product of z and y, and will be written as z- i (1), (i),
{(v), and (vi) become

a. #lt = 0 = bz for every = N\
and O
b. 2y = oy + @ and o'y = zy - y for owrvxcmfi‘y\
Nole: zy + « is short for (v J) -k =, not for a-( - .%)
10. Theorem: 'z -~ w for every m, \ ¢
Proof: 0w =0x+z by 9y /
W W E['br%ﬁlﬁﬁ“l AT obg\ﬂa
=% by 3a.

),,

11. Theorem: If zy = (), zke{a‘}a}fi‘eea z="00ry=0

P?‘oof If oy — 0 and y # @ “then y — u’ for some w, by 8. Then
=y = ou = gu + @ bg 9b. Therefore = = 0, by 7.

12. Theorem: % @q z) =2y + &z for every m, y, and 2.
Progf: Let JJ bé the set of 2 for which o{y -+ 2) == z-y + 22 for
every o and ()
A0 w0 =ey by 80
‘ ,§~' =2y 40 by 3a
Qv’f;\ =zy+ 20 by 9a.
Th@éfore 0e M.
\Ij. z e M, then

wly +2) = oy -+ 2 by 3b
=y -+ 2) by 9b
=@yt a4z hecauseze M
—xJ—(xz—}-;r:) by 4
= gy - s by 9b.

Therefore 2’ € M; and so, by 1le, the theorem is true.
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18, Theorem: {wybz = z{yz) for every w, y, aad o
Proof: Let M be the set of 2 for which (wy)z = x(y-2) for every
x and .
(230 = 0 = 20 = 2(y0) by 9a.
Therefore 0 € 3.
2o, then
()2’ = (wy)z - 2y by 9b

w= go{42) -|- 2y -~ becauseze M O
== {3z -+ Y} by 12 O
- . AN
= a(3?) by 9hb. ’ \>
Therefore 2° € M; and so, by le, the theorem is frue. x'\«
s>
~\

14, Theorem: w-y = yx for every & and . S
Proof: Let M be the set of z for wh ich 2y ;y} for every .
Oy == wﬂvw,H})M’b}x;&.org.in
Tlierctore 0 = M. 1':,3
Tz e M, then N\
&'y =y +y OBy 9
=z P8 because z € M
= gzl > by gb.

(\J .
Therefore " e M and ?%Q‘,\by 1e, the theorem is true.
7N

15. Theorem::~(:§;;%—“y)-z == g2 + yz for every @, y, ond 2.
Proof: \’?\“(':r + gz =z + Yy by 14

,x"' =2z |- 2y by 12
N\ .
N = gz -+ Yy by 14.
i”\.’;

@?’I‘heorem: If oz =uwyand x # 0, thenz =1y.
Proof; We have either y =u f-zor2 =2 +y, by &
Suppose first that y = » +- 2. Then it w2 == gy we have
0wz =27 by 2a
=y
== z{u +2)
=z | T2 by 2.

(G963}
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Thetefore aru = 0, by 6. Therefore, if 2 £ 0, we have u = ¢, by 11
Theny =042—2, bx 8a. The proof is sinuilar if, mstend of i == - 2.
we have s =9 —|— .

17. Lemma {to €21): ac+bd=ad \be, if and only if a = b
orc=d.

Progf:

1. Buppose that a-c 4+ bd = ad + be. By 8, either @ = u -1 Ez\ox
b=v+ta K \

: L)\
(1) @ =Y —I"‘ 113 '“:\ ™ 3
then (w + bye L bd —(u - Bpd L b AN
' 4 ‘.§

Therefore (uc + be) + bd == (u-d -|- bd) -| - be ,':33}-"15.
Thorelore (we + bd) - be = (wd 4 bd) + be XY™ by 4 and 5,

Therefore we + bd = wd - bd O by 8
Therefore we = ud g by 6,
Therefore ww w . gbra@libray HHB\M by 186.

If w=-0, then a =1 R N by 8a and (I).

WA 3

Stmilatly, we prove that it & — y}%&fﬁ, then @ = b or ¢ = d.
II. Tf{ & =&, then N\

ac L@i—_!)r - ad
\\\' =ad-+bc  bys,

Andl[c_dthcnc;'c—l—bd = a-d 4 be
.‘\/
18, Lemnr{}t{(’to(}lﬁ} If a4 q—b—h—pcmdc A s=d 4+ r, then
achr(kr (s + g7} = (@d - be) - (pr 4 ).
I’mo By 8, either p=wu 4 g org—=1yp - -

A o) p=t-tq
n at+g=brLyp
=b+ (u+q)
=0b+u+g by
Therefore =51 u by 6
Now e -+ us = wiec 4 5) by 12
== u-{d + #) becange ¢ 4~ s =d 4 ¢

{1 = twd + ur by 12.
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Then {ae + bd) - (ps - gr)
= (b - ube - bd) 4 (v + ghs + ¢7)
— ((bo + we) — bd) + ((ws + ') +-¢r) by 15
= (we+uws) -+ {(bed-bd)-| (g5 +gr) bhydands
(wd - wr) £ ((Be+bd) + (gs + g7} by (1)
= ((bd +uwd) +be) =~ ({wr +gr)-gs) bvdandb
= {(b + wpd + bc) = ((u + ¢ + ¢'5) by 15
— {ad + be) - (pr + ¢-5). N
The proof is similar if, instead of p = u + g, we have ¢ = v + g\’

\\ o
“/

-
&

EXERCISES A v

\ 4

-

Prove that 07 - 0" = 0" —= 07", O
Kfs)

- Prove that, for every =, & %,g,,, dbrauhbu\ﬁy.org.in

. Prove that if y = = 4 q,thonx—(}

Prove that if & ==y + u and y -—-«,r =, then T =1y

Prove that if # 4+ u = y and Jw]— %=z, then either 4 = 0or v = 0.
6. Prove that if X 15 o set offw h(;le numberg, there is a number z in X
such that, given any ¥, m , 4 =& + u for some .

7. Prove that if & is nc}‘t\\é] and @ is any whole number, then there are
whole nnmbers glapd r and a non-zere whole number s such that

"'\} (i) g =hg 7
and x\ (n) b=r-s
B, W ‘n]@.&)t the theorems 2-16 remain true if, instead of obeying
axidiis la, b, and ¢, the succession obeys only (i) 1a and le. (i) 1b
'"ﬂhﬁ le, (iti) 1le* Which theorems become necessarily false if la s
NJalse but 1b and Ie are true; which if 1b is false bot 1a and le are
true ?

_Hnmw

e



CHAPTER B
Hemigroups and Groups N\

W
. . AND
1. Definition (of Aemigroup and dyad): A hemigronp is alset’ S of
elenients and an operation on 8 with the following propertig:
' 4 ‘~§

\ Y
& * 3 =y x  for every x and y of 8; K7,

a. y
b. (xy)xz=2m%*(y+2) for every z, ¥, and z of\b‘;\\'
e. Hasy=zxy, then z =z \ N4
and ) ::\\.,

d. There is an elementpfSrsuriptbag aigin= c.

For any ordered pair (a, b) of eIe-;‘g.gﬁ‘tf:s of the hemigroup S, denote
by ! b the set of all ordered paivs @) for which = % b — it ¥ . Then
albisa dyed of S and «. N

L 8 Y
N
e

Notafion: In B1-15, smdall ijaalic- letters will be used for elements
of S, and Groek lotters ‘f{ir,\dyads.

Note: The s’ﬁm;-cn&t d does not preelude there being clements
other than ¢ satifwing the couation x %2 — a. However, it is not
hard fo prove dhit if a, b, ¢, and d arve true, then e iz the only such
elerent, * \'\“

AL
E.Q'Z\f‘\q}?xtion: @ {y xz) and (zxgy) 2 will be weitten as z % i k2
(sci&\‘ﬂﬁjﬁ

\\’ Theorem:

a. :.'-';*y*z::c*z*y:y*m*ZZy*z*x:z*;a;*rz:zz*x*y
and '

b. (m*y)*(z*w}:(;c*z)*(y*w).

Proof: By 1a and 1b.

*Hint: T /% f = f, consider fH{fxe) and Fx {4 eh
a0
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3. Theorem: The ordered pair (p, q) is in the dyad p | q and . no
ather dyad.
Proof: (p, q) € p| g by definition 1, because p x g = ¢ * p, by la.
Ii{p, ¢) calb, then
{i) pEb==g%a
by definition 1.
Now if {x, y) € @ | b, then

(i1 zxb=yx*xq O
by definition 1. O\
Therelore TRGRE == RP KD by (1) ‘;;\; )
=z*b*p by 2 &N
=y kg kP by (i) >
=y rkpra by 2 o)
Therefore @4 g =y =p, by 1le; and so, by daf;Q\L’non s eply

Thus we have proved that Pverxmgfggﬁmﬁy%@hgcmcm of p|q.

Now if (z, ) € p| ¢, then

“0

(iii) THG=Y XD of by definition 1.
Then m*b»kp—-,c*pzkh by 2
=7y % o by {i)
%\J*]J * 12 by (iii)
Niyxarp  by2

\\
Therefore, by e, 2 kb= * .
Thercfore, by deﬁmtmn 1, {z y)calb

Therefore evg\y\lcmcnt of p|gisanelementofa|b; andsop|g=alb.

4. Tm\rem alb=c|dif and only if axd =bxc.

P?*)of By 8, a|b~c|dif and only if (s, b) ¢ | d.
B{ definition 1, this is so if and only if @ *d == b x¢.

5. Lemma (to definition 8): ff {11y,

b)) and (a,, by) are in the same

dyad, and (g1, ) and (gy, ko) are in the same dyad; then {ay * gy, by * Iy)
and (a, * g, 0y * ko) are w0 the same dyad,

Proof: (ug, by) € ay| by, by 3;
the same dyad, thcn
® oy * by

and so, if {uy, b)) and {a,, b) are in

= by *
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by definition 1. Siwmilariy

(11} Gy * by = By % g

Then (o xgy) * (b, hrg) == (et % By % (g, * 1y} by 2
=l * ay) x (R = g,) by (1) and (1i)
= {by 1)) # {1y % g,,) by 2,

Therefore (@, * gy, b, % hy) € (@, * g} | {5y * &) by definition 1.
But (g % gy, By % By} € (g % ga) | (D, + by by 3. £\
Therefore these arc in the same dvad. Ko

6. Definition (of * applied to dyads): &9 is the dya‘diu;:}:ntaining
all (@ *g, b x ) wherc (g, by cé&aud (g, hye . N

Note: That there is a dyad which contains t-her.g(qtﬂffoﬂows from 8.
What we have done is to define an operation gh\dyads hased on the
operation *, and we have used the same sigi, Vv, to denote the new
operation. We shall always use the same, &1 for the operation on
dyads as for the heraigrangbepekibriany f%ﬁ}ﬂvhich it is deduced. (In
Chapters ¢ and E we shall meet hemigfoups whose operations are
addition and multiplication.) o

N
<

P (g #s).

Proof: (pxr, gxs)e {72 ] (g *5), by 8. Bub (p.g)ep|g and
{r, s} e+]s, by 3. Therefore (p * 7) | (7+5) coutains an element of the
form {« + g, b x ) wh ald, by ep | and (g, h) e r | 5. Therefore, by &,
it contains them all\ Therefore, by definition 8, it is p} ¢+ s,

7. Theorem: pf g*7| s :(.p'*

8. Theorep&’}fzf g=1{r*p)|(r*q).

Proof: p\%ér*q =g «rEp by 2.
Theref(.m-:-xw (P @y er*plireq) by definition 1.
Theﬁr\gféﬁ"e pla=0«p)|(rxg) by 8.

/AN

\‘:9'." Theorem: & x5 = 7 « £,
Proof: Let & be a | band 5 be ¢ | 4. Then
§*¥n==al|bxc|d
={axc){(bxd) hy?7
= (cxa)|d=b) by 1a
=cldxajb by %
=nx*{.
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10. Theorem (& ##) # & = £+ {57 % ).
Proof: Let Ebea [ bynpbecid, and {beglf Then

(Eaxmyxl={a|bxc|dixg|f
.((a*c)](b*d))*ﬂf by 7
~(exexg)| (bxdxf) by 7andnotation 2
—a|bxllexg)|dxfh)  by?
=qgl|bxicldxg|f) by %
=Lx{n*i) N\

11. Theorem: T%e correspondence x| e <— x befween d’yadi\of tf.r,e
Jorm x| ¢ and S is a w-isomorphism.

Proaf: z|e —y| eif and only if xxe =exy, by 4 T]leS 18 so if
and only if #z — g, by la and Ie. Therefore the qarr‘&mondenm Is &

matchiog,
z| 6*y| ¢= 'E*WJMC{Elau mej%or .in
—@x)]e oty id

A

Therefore the correspondence is a + 1::()m0:phl=;m

L N
”}

12. Definition {of #); s ¢| e.'.:&'

a\ ¢

13. Theorem: x|y = p@aad only if £ = y.

Proof: »ly=e] P\i\dnd only if zxe—=y=xe, by 4 This is so

if and only J_f B =y b\ lc.
&
14, Theorer}{;~"s * & = &, forevery &
“\‘0

P-roof:,{ﬁeifé' bob|e Thensx§=—=elexb|c
R\ =(exb)|{exc) by?
o w2 be by 8
Q )

15. Theorem: For each dyad « there is a dyad & such that o % % —= €.
Maoreover, of w is a| b, then b| a is such a dyad.
DProof: a|b*bla—a*b| (b *a) by 7
cz*b]w*b by la
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16. Definition (of commutative group): A commutotive group is a
set /" and an operation * on it with the following properties.

8. [Exp)xl—Fx (n*2) forevery £ i, and & of I

b. Exn=nxf for every & and gof I

e. There is a 2 of [ such that & % §=¢forevery fof I

d. For each 5 of I"there is a 7ol I"such that 5«7 = e,
Note: From b and 4 we have

. For cach 4 of " thero is a 7 of I'such that x5 = 4, N\

Natation: Tn 16 21 small Greek letters will denote elemgr’gﬁs\bf a
comumtative group. /7 will denote the set of elements of(the sroup
and * the operation of the group. (.,}S

17. Theorem: If o and 8 are elements of T, E-Fe.e-r{'ié"a & for which
ook =2 a-nd-ifoe*??:oc*&,?fké-:w;:&. A®)

Proof: By 16d thereis a % such that o Z =y Let Ebe g % 8, Then
¥ &) £

#

ok E = (ax3) 3 .”\;1163
wwwi:l}:g‘ygibrary,or:g,‘jp
=4 o\ by 18e,

On the other hand, if o % 5 = o * §§’4Jc’ﬁe-n

by 16e
by 18e
by 18a
by 16a
£ by 16e
' £ by 16e.
18. Z‘@\O;em: If e % & = then ¢ = if akx =g then x = 7,
B(f;exj;: Edt==yx & by 18b
Q —
==¢gx*§ by 16¢
=fxe by 16b.
Therefors t=¢ by 17.
And CkK = £ o= o % 5 by 16d.
Therefors K=g by 17.

Note: We may now talk about the element & for which 16¢ is true,
and the element 7 for which 164 is true,
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18. Theorem: n=1
Proof: fen=¢ by 18e.
Therelurs =7 hy 18.
24, Thesrem: f=2=
Proaf: exg=2¢ by 18ec.
Therefore e=¢& by 18.
O\
1. Theorem: &+ % = £ % 7. \\}
N\
Preof: (Exn)#(Ex) —=(Ex Eyx(nq) by 16a ngd“ir
=c ke by 1{311< 3
=c lg}f..%{)‘h’.
Therelore Exf=¢&xy by-1s.
AN\

www . dbrauli rary.org.in ]
99, Theorem: The set of dyads defined W pnd the operation defined
tn B form o commulative group. Nl
Progf: 18a, b, ¢, and d follow frqﬁjﬁh, 9, 14, and 15 respectively:

s ik

¢
N\
1%, \Vhic%\of the [ollowing are hemigroups and which are commutative
g{éﬁpé under the given operations?
(i) The whole numbers greater than 1 {(addition). .
(it) The whole pumbers i, 9, ...m (zxy is the remaindsr on
dividing the ordinary sum = + ¥ by m).
(iii) The whole numbers 1, 2, ... m— 1 (% % y is the remainder on
dividing the product -y by m).
(iv) The integers (zxy = + ¥ — 'Y}
{(v) The integers other than 1 (mxy=2+3— ).
(vi) The whole numbers not less than k (@ ¥y =2 + ¥ — k).

EXERCISES B
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R. flz)is 1z, and ¢(z) is 1 — = The operation * is defined as follows:
if f and ¢ are any functions, then § + ¢ is the Function y for which

ylx) = H(z)) for every

(For example, (f# g)(z) = f(gle)) = F(1 — &) = 11 — 2).]
Prove that with this operation the clements f, 9. f*g. [ =f, g ],
and g * f+ ¢ form a nen-commtative group: that is, 16a, ¢, and e
are satisfied, but not 16h, I\

3. Prove that if a hemigroup S happens also to be a group (under the
same operation), and if we form a group of dyads from ifiedhen’ this
group 1s isonorphic to S. A

z“}
[ 3.
4. P'rove that a hemigroup with a finite number of elefienits'is a group.
’ :

o\
5. (1) Prove that (y+ )|y = (z#2) |2 NS,

(1) Prove that, for each ¢ of S, (@ * z) | @ <<% is an isomorphisin.

(i) Prove that if we have a syaterm 7 Ldlz\%hich 1a, b, and ¢ are
tre but not-mhgpath[hm@?mygg}:ﬁ\l B still remain true if we
restate 11 in the form theré\Js an isomorphism between
certain dyads and the elementsidf 7' 7.

6. Bhow how to prove 17, 18, 1g8#nd 20 without using 16b and using
162 in place of 16d. Prgvén this way a theorem as nearly like

21 a3 you can. i\
p '\’\}
‘\
79 N/
¢
I
X"\.“
.%“'
R\
u\‘:;
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Integers
1. Theorem: The set of whole numbers, with the operation of additigh,©
w8 @ heniigrouwp. o\
Proof: Bla, b, ¢, and d follow from A3, 4, 6, and 3z, witht):’p]aying
the part of e (O
I &

Definition (of integer): The dyads of the whole ninpwers and addi-

tion arve fnteyers. PN

Netation: [n Chapter € (as & 28 PR URISEY, B8Rk lotters will
denote integers. Roman letters (as in A} ¢ill"denote whole nambers,
We shall, when our hemigroup is the hemigroup of whole numbers,
write 2 — y nstead of ©]y, —= ing,jmg:’.{‘of &, & + n instead of &+,
and o instead of g7 that 18, 0 = GEML
Applying the results of Cha\;“{ber B to the integers, we have immedi-

ately:

9
2 p—g=r—3s f:fm only if prs=q+" avd p—g=o0if
and only if p =g _ O by B4 and 13.

PN

8. (p— g et =+n -+ 5) by B?.

4-?9f€§é~\(f+p)m(r+q) by B8.

5. ﬂt%"‘@-;angm, with the operation of addiion, form a commulative
g-rr:\u'-p\; 7 by B22.

6. &t y=n+t ¢ by BY.

L=+ 01+0 by B10.

8. For any o and B, thore is o & such that o -+ &={; and of
gl —o & then y=1£& by B17.

9. The correspondence © — 0 <> @ between integers of the formz — O

and the whole numbers is an addition-isomorphism by Bl1l.
a7
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C.

14

15 EGg=phf=t¢ hy BY and 14,
1L £t (8 =0 by B15.
12, —fr—y =y —x by Bis.
18, — (£ = ¢ by B19,
14. —o=p by B24.
X A
15, (&)= —E {—n) by B2l.
)
16. Lemma (to definition ¢17): If O
(i)d d—b=p—y ,\n;
277 &
" .\:"\.\
{11) c—d=vr—g \V/
then AN

(iii) {we + bd) — (wd — be) = (prs l?\a — {prs

www dhraulibrary orgisy

Progf: If (i) is true, then g -|- §=b5"p
If (ii) is true, then ¢ - a»;_; g+ r

| X
Then (@¢ + #d) + {prs + ) %(@a’ + by - (pr 4
en (ili) is frue - \\ %

17, Definition fef.product of integers): £ is

+ )
by €2,
by C2.

%)

by A18.

by 02.

farc -1 bid{:—;’(a-d ~+ bc), where ¢ — 6= ¢ and ¢ — d — %

Note: 3/}((316, this integer is the same no matter which @, b, ¢
and d arg shosen, as long as ¢ — b — fand ¢ —d ==y,

r\i"S\J Theorem: &n =k,
"Progf: Tet £ he a — b and nhee—d,

Then  &n=(aec+ bd) — (ad + #¢) by definition €17
=lea+db) —(eb+da) by Aldand 5
= g by definition ¢17.

18. Theorem: (&n)-& = & ).
Progf: Let Ebe o — b, #bee—d, and { he g —f
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Then {&#pd
= ({we |- bd) — (@d - bed){g — O by definition €17
— (fwe + bdyg + (@d + b)) — (@ + bdyf -+ (wd + boyg)
by definition €17
= ((worg + (dyg) = (@dyf + (o)
— (({are):f + (bdYf) + ((awd)g - (bcpg)) by AlS
= ({(eg) -+ al@f)) + (Blef) + @)
— (@lef) + wldg) + (rlog) + b by AL Band 18

= (@(eg + df) + blef + dgh) — (@lef + dg) + blog +df) N
by A1z ()

— (o — by(leg + &F) — (of + dg)) by deﬁnij;f&ﬁ oy
= &{{c — dilg — ) by defguiﬁon 017
= &y 0). ol

20. Theorem: &{n + &) =&y 4 &g \\;

Progf: Let & be a — b, 5 be ¢ wedy dbdallibfiry frg.in
Then &y =+ 1) = (a— by{le — ) + (g )
=(a - b){lc+g) —@FTf) byes
= (wlc+ g) + @SN 1) — @@+ 1)+ ble+ )
W\ by definition €17

= ({ac + ag) -+ (bd + b(n _’&((a-‘d +af)

<~ e +bg), O by Al2
= ((we - 1) + (g F b — (@d +be)
+ (af ~ b'(i')f by Adand
= (o + b wd + b)) + (@g +5f)
—\éﬁ‘f—i- b)) by €3 3
={a T{M'(ﬂ —dy+{a— by — 1) by definition C17
— g &

1. Theorem: &5 = o if and only tf E =0 orp =0
Proof: Let & be a — band i be ¢ —d. Then
5 == (0 — brle — d) y
= (@¢ + bd) — (ad + bre) by definition C17.
This is cqual to o if and onlty If a¢ + bd = gd -~ bc, by (.‘.2.. ‘
But this is true if and ouly il a = b or ¢ = d, by Al7; that is, if and
only if § = a or = 0, by C2.
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28, Theorem: [f & = Snand n # o, then &£ =1,

Prooft (& = (=Q)m = &n - (D by C18 and 20
— -f'?;f + (_ :)3;,
={{+(--{)n by C18 and 20
= oy by €11
=o0 by C€21.
But : B ¥ o
Therefore FL(—I)=-0 by C21. O
= (=D by C1L O
Therefore E=¢ hy €8 and CS"( -

23. Theorem: I'he correspondence & — 0 «— be&ue&n Tntegers
of the form x — 0 and the whole wumbers is a muh‘zphm(&m TSOmorphism.
Proof: (& — 0)ly ~ 0) = (&g + 0-0) — (-0 4-0)
Y, by definition C1%
=gy — 0 '\s by A%a and 3a.
Note: We have Se¥ividbggutibrarys Egrﬂ&spondence is an addition-
isemorphism. o\ o7

24, Definition (of positive mtewe’tj An integer of the form ©» — 0
i3 positive, SN\

Note: the positive Infeg drdare thus the integers which correspond
te the whole numbers T{Xlsomorphlfim €23.

25. Definition (of q} o' is 0" — 0.
Note: o and Q‘\'f«i,r'é' positive, by definition 24,

f

286, Theorgm o5 =&
I"roof h&c‘r fhex —y. Then

"5 = (07— Op{x ~ y) by definition 025
N — (0 Oy) — (0"y - 0z) by definition €17
=z —y by Al10, 9a, and 3a
e &

87. Thecrem: Either & or —& i3 positive.
Progf: Tet & bea — b By A8, eithera = u + bor b=u 1 g for
some .

e =wu-d-b then & =a—h—=y— 0, by €2, A5, and ASa, and
20 18 pobltue by definition €24,
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Wh —ute then £ =a —b:—0—u, by €2, A5, and A3a.
Thorelove - & == - 0. by 012, which is positive, by definition €24,

98, Theorem: (— &pn—= —(&n) = &{—n).
Proof: Tet § bea —band 9 be e —d. Then
{— 5y = (b — a}{e — d) by €12

= {lre + ad) — (brd 5 a¢} by definition €17

- ({(bd o) — (be |ed)) by C12
— —({are = bd) — (ad + be)) by BB O
— —({a ~ b){e — 4)) by definition €17 p ,\:\"
{1 = — (&) O
Then f{—p) = (—n)r& by C18 s
=—(g&) by ) R4
- —(&m) by€s 3O
29. Theorem: (—&){—n) = &7 ,:ﬁ\\';
Proof: (=& (—nm = "‘@\fwﬁﬁ'GU[kﬁ?‘}%s.or'g.ill

— (g, (b e28
== &7 o8V by c13.

30. Theorem: If & and y are po;?g}‘egt?e, then so are £ + 1 and &n.
Proof: By 024, & and % gorrespond to whole numbers, o and b,
say, in lsomorphism €23. Fhent &9 and & 4 5 corzespond to a,-lf ‘f‘md
a + b, which are whole mfﬁq\)ers‘ Therelore &5 and & - # are positive.
31. Theorem: { f&cynfﬂ —& are both positive, then § = 6.
Proof: IF 5'@11'.3;”—:‘5 are positive, then & = — 0 and —&=y—0,
by definition g2a”
. ’§

Then .w\ —Ei=0—x by €12
that 'sz"\:f; y—0=0—2z
Thérethre yLo=040 byc2

== by A3a.
Therefore r= by A7
Thercefore E=0—N===0 by notation CL.

32, Lemma (to G6): [f £f =1y, B # o, and j and y are posilive,
then & is positive,
Proof: Tf & is not positive, then —£ is posifive, by €87.
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Then —y = —(&F)
={—&r8 hy 028
which is positive by €80,
Therefore y =0, by 081; ie. &5 ==o0.
Therefore £ = o, by €21 and becanse § # o,

But o is positive, by note 025. Therelore £ eannot nof be positive.

33. Lemma (to G8): If 8 is positive and not equal to o, and if 4 G3
positive, then o f3 -|- (—a) 15 positive. A\ ¢

P;oof Let f==b—0 and s =a—0. Then 6 = 0. Wam °f0“e
b=w'for some u, by A2. Tet d=u—0; ¢ will then be p()mTIV
by C24.

‘¥

Then ah=auw =au-ra by &9‘&
Thersfore cx-ﬁ = x-qb + by €3 and €9.
Therefore off + (—a) = (f) + o) —|—— —x)
Tl '%}\ 0\'07’
WW\;JI&UI ralyorgl by 011
== g “,’:l by C10
which is Rqsiiiﬁve by €30.

N

o\
\'\“EXEROISES ¢

L. Prove that o ' %= 0", where 0" = 0" — 0,

2. Prove that o”; Wy,

3. Prove thab\’i;ﬁ we define £* 1o be & + (—0o’), then the set of mtpgers
& for W@h —& i3 positive form & succession if we take £ as the
succgsser of & Prove that addition of clemenfs of this succession,
dcﬁued a8 In A3, is the same as addition of the elements considered
a8 Thtegers, but that the two definitions of multiplication are different.

4. Prove that the correspondence ¢ — 2 < & Letween wutegers of

the form 0 — # and whole numbers is an addition- 1somorph15m but
not a multiplication-isomorphism.

[ 3

. Prove that if o is an integer, therc is an integer § such that o + £
1s positive.

6. Prove that if § # o and « is any integer, there is 2 ¥ such that
£y -+ (—a) 18 positive.



CHAPTER D

Fields

N

1. Definition (of field): A fleld consists of a set F and two opéTa’
tions on it (which we shall denote by 4 and <) with the iqﬂt&*ﬁmg

proparties: PR
. N
a. (24 y) —z=ua4+ (y } %) for every z, y, and z of €\~
b orty=ytu for every = and y of )
g. There is a o of ¥ such that o -+ 2 = & for everiD of F.
d. For each a of # thereis a —a of F é%tautlbﬁl'é?y or(g 4
e, [(wyyz =z foreverye, 1 , and %8(
f. zy=yuw " for every o and gy .
g, There is a ¢ of F such that ¢x = 3: far every ¢ of F; and © £ o.
k. For each g, other than o, oiF there is a a— of F such that

(g = i,

ko oaly +2)=wy o2, foi\}me:n z, 9, and z of F.
Notation: In D, smﬁ} italic letters will denote elements of a
field &, O

&
2. TheoremiNPhe set ¥ and the operation + form a commnutative
pL
group. \J
N\
P.Joof \Blﬁa b, ¢, and d follow from Dla, b, ¢, and d.
’“ixfwﬂ from B17, 18, 19, 20, and 21 we have:

a..\f or any ¢ and # there 8 a @ such that ¢ +a¢ =5b; and if
a-tz=uqa-ty thenz=1y

b. Ilfz 4 a=aqa thenz =0
e. e x=—0,thenz = —a.
d. —(—z) ==

8, -0 ==qg.

f.

—(z +y) =~ + (—y)
L]

73 (G D63)
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)

8. Theorem: w0 = o o for every i of I,

FProof: 0 40 =20 by D1b and e
= {0 - o) by Dle
== B0 - @0 by D1k,
Therefore 0 == &0 by D2a.
Then B0 —0x by D1¢,

Q]
4. Theorem: [f oy = o, thenz =o0or y = 0.

\
Proof: Ity # o, we have w = 2+ by D1f and g

=z{yy-) by Dih ‘::{
=(@y)}y~ by Dlepn
\o
= oy AN
=0 by Ij:}
N
5. Theorem: chw&pdmfamhbmmim}@»m} K of erments other than
o of F form a commulative group.

7
. M
™ \

Proof: Tf w and y are in K»l‘ﬁéu neither is equal to o, and so
vy # 0, by D4. Therefors z- ?{*{‘-‘»ﬁl K. 11sin K, by Dlg.

Then Dle, £, g, and h jmply that K and - have properties Bléa,
b, ¢, and d. O

~\
Then from B18, m\\‘so and 21 we have:

a. Ifx:a—aanrla;é o, then & = 4.

If g = 5 111@:1 z=ga". (Note: we automatically have ¢ # o, by
D3 and Bl.g)

e (&
d o ;§
r%. }w‘(gig) =y
8. Theorem: [f a # o, then
(1) Az = b
if and orly if © = a—b,
Proof: M b # o, this follows from D5 and B17,

If & — o, then (i) is true if and only if # — o, by D3 and 4,
and, in this ease, ¢b = o, by Ds.
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7. Theorem: (x-bylz =2 | yz foreveryz, o, and 2 of F.
Proof (6 + 4z =2z -+ by D1f

=¥ +— 2y by D1k

=mz 4y by DI1f.
8. Theorem: &{ 1w} = (—aby = —{xy) for cvary z and y of F.
Eroofs  wy o=y =y + (—y) by Dik

S by Did N\
—0 by D3, S
Therefore #-{—y) = —(z-y) by D2e. O

Then, using DIf, (—a)y —= y{—x) = —(ya) = —(@yh N

Froof: (—a){-—y= —{(—‘5)'&’) (D8
\‘J)\ D3
=y www dbl aull H}Yﬁ‘aﬁ in

KXERCISES D
1. Prove that the get co }‘mtr of the elements @ and & with the 'r'ulefs
o0

a+a=~h="5b-—= a\\a l- b—b—~@—b aq =ab="hbe=a,
and bb = b s aﬁ&ld

2. Construet a ﬁr‘?ff with ]11%‘5 three elements.

3%, Bhow dm;\there are ﬁles with the {ollowing property:
\ \§ i4+t+i+... =0
Pm’»“P that, in each such field, the smallest number of #'s which
im to zero must be prime. Prove that o field which does not have
“this property contains & set of clements isomorphic to the integers.

4, Prove Dib from the other axioms in DI,



CHAI'TER E
Rational Numbers ~

1. Theorem: The set of non-zero inlegers, with the opemizrm of
maltiplication, is o hemigroup. ¢

'\l

Proof: Bla, b, e, and d follow from €18, 19, 22, aﬁd 26, with o’
playing the part of e, \\

Notation: We shall, when our hemwtoup is tho emigroup of non-
zero integers, writc dyads in the form o/3, s shall write ¥ instead

of ¢ for the element o”o I x = a;yﬁ, W s@&th write x~ for §/a (see
315) wiw'sr dbraulibrari/ o g,l ’

/
. M

Definitions: ’ﬁ

a. (of 0): @ 1s the set of ordc1'c(}~p:é:{irs {0, =) for all non-zero integers c.
(of 0ja): ofa is @ for eacl Bon-zero integer «.
(of rational number): &N\tional number is either a dyad off or
the element 8., 8

4. {of 0-x and x0 })‘x = 20 = @ for every rational number x.

Note: 601 g t’i&l‘bb defined, but is 8 under each dPﬁmMOﬂ 50 that
there ia no mrqnm{,‘rency

Nofazj}mwBold italic letters will denote rational numbers,

\
&‘Theorem If B# 0 and 63 o, then wjf = {8 if and only if
{ﬁ fy.

Proof. This follows from B4 1f o % 0 and » # 0. If o =0, then
a8 =0, by €21, and «/f =0, by Elb. But /8 =0 if and only if
y =0, by Elb; and £y =0 if and only if 3 = o, by €21

The proof is similar if v = 4,

8. Theorem: If f# # o and § # o, then ( 2! By(p]8) = (e y)/(F-8).

Proof: This follows from BY if « # 0 and y # o.
76
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' a =0, then (x/f)(y/0) = 0(y/8) by E1b
== by Eld
= 0j(5) by ELb

= {oy}{(£9) by c21.
Shmtlerly if y = 0.

4. Theorem: If y + o and o # o, then §y = (e Df{a-y).

Proof: This follows from B8 if 5 # 0. If f =0, then N
Giy=2 by Eln P t\:\‘
= of{ay) by Elb O
= {a )/ {%v) by €21. <‘.'}§
6. Theorem: X'y — ¥V X. \:"‘:\'\

Proof: This [ollows from B9 if x# @ and K;‘é 0 from Eid if

x=8ory=0
WW W dbraul]h\ary org.in

6. Theorem: (x-y¥)Z = x- (¥ &) .
Proof: This follows from B10 if X% 0, y # 0, and z # 0; from

X N

Eldilx=0ory—0orz=0 \%

N/

e

7. Theorem: I-x=x _{\
+$ 3
Proof: This follows ﬁ'e\iﬂ\ﬁltl if x £ 0; from Bldif x = 0.

8. Theorem: Ifx#'ﬂ, then x°x- —=1.
Proof, This(f%}]ﬁws from B15.

w4

N
9. Lenigha (to definition B10): If f # o, < # 0, 6 # o, and o # o
and i"\ >

)\ «fff = afx
and.
(i1} /8 = pl,
then
(iii) (b + g8 = (7o 4 p)ixo.

Praof: By E2, (i) and (ii) are frue if and only if
(iv) g == o and o= dp.
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Fhen (w8 4 Sl (w0} o= {2 0) (o) F (Fy)(ea) by €18 and 20
~Awe)(§o) -+ (per(fe) by C18 and 19

= (Fa)(do) + (dpy(Fx) by {iv)
— {B)(wa) + (3:6)(xp) by C18 and 18

B0
= {(p){ma + «p) by €20.
By €21, x¢ 5 0 and 50 # o. Therefore (iii) is true, by B2,

10. Definition {of susm of rational numbers): x |- yig{ad |-g-y) G+,
where off — x and /6 = y.

Nate: That this is the same no matter which o, 5, v, LQfT O wre
chosen, as long as «/F = x and /8 == y, follows from Ef.Na and 5
are integers, and £ and & are integers not equal to 0. Therdfove x4 + I:';’-y
is an integer, and 8 18 an integer not equal to o, h§021 Therefore
the sum of two rational numbers is a rational nuMber.

11, Lemma (o various theorems): If fi # ’Q‘ then
VT LR B
Proof: (a/f) - (¢/B) = (e + ,)) p"ﬁ by definition E10
({5’ % 2}} Wi by €18 and 20
= (e V)8 by E4.

12. Theorem: x | ¥ :—\y 4 x
Progf: Let x be mg@émzi ¥ be +/4.
Then X+ ¥y £Yowd - fy)ifd by definition E10
S (bat pies by c18
D =rp+ g by o8
N = (y/8) + («/p) by definition E1¢
O
A\ =¥+ x
o®
”'\:13. Theerem: (x -- y) + 2=x+ (y - 2).
Proof: Let x be «f/3, ¥ be v/6, and z be 0/, Then
(X4 g) - 2 =={{ad 5 §)/58) + (8]D) by definition E10
= ({wd + Syl L (56)0)/(80) by deflinltion E10
= ({8:0) - frlyL + 66){B(&L) by C18, 19, and 20

= («/B) + (L + &-0){6-0) by definition E10
= (/) 4 ({(7{8) + (Bi)) by dafinition E10
=X (y+ 2
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14. Theorem: For euch a there is ¢ X for which a +—x = {.

Proof: 1fais oc!ﬁ. let x be {—=x)/f. Then

a-— x=/(x-+{—2))p by E11
= q,-'lﬁ by 011
=0 by definition Blb.

15. Theorem: § + x —= X.

Proof: Let xbe a/ff. 8 =03 by definition Elb.

Then ¢+ x=1{oL+w)ff byEL Oy
— /8 by €10 O
= X . :"}g

R

18, Theorem: x(y — 2) = X'y + X'Z.

Proof: Let x be @/ ﬁ ¥ be +/4, and z be /C, {Ilhon
x(y + 2) = (/1 ((¢ + &8y dbr GUUb\‘d\l}’ dedefinition E10

( YC—r59H3(5") O by E3
={f (L - & 0))), ERGRRY) hy E4
= ({ay){5-C) —|— S} (@B (8)(8-5) by C18,18, and 20
= (xy/f0) 5 (B by definition E10
== (a} ) (v/8) -+ {2dB) (B/0) by E3

= Xy + ;Kz\i‘.}

17. Theorem: I‘he t’O??‘E,Q;DOHde??-"e tlo' < & between rational num-
bers of the form b/(}s and the indegers is a multiplication- and addition-
Esomorphism. \

Proof Bw, Bll the correspondence is a matching between rational
numbu& va the form £fo’ where & # o and integers ofh(,r than 0. There

15, }}v d,ef nition E1, only one number of the form ofo’; and this curres-
pohgds to o. Therefore the complete Lmre%pondence s a matching,

By B1l and Eld, it is a maltiplication-isomorphism.
(£l0") = (nfo’) = (£ - p)iv" by E1L
Therefore the correspondence is an addition-isomorphism.

Definition (of snfegral rTational number): A rational number s
integral if it corresponds to an integer In this somorphism; thab is,
if it is of the form £fo'.
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18. Theorem: @ #= I.

Proof: 0 == ofo’, by defimtion Elb ol I 270 oo wotation EL
Therefore they correspund to o and o' reepertin v o =omorphism
E17. These correspond to b and 0 in wonnrpls oo G250 0 200 by
Alb, Therefore o # o, and 50 @ # I

19. Theorem: The st of rational puiate o w07 e Lperalions
-t and - form a field.
Progf: Dla-k [ollow from E13, 12, 15, 14, 6. 5. 5 .+ 18, 8 aifd 16

respectively. Ko

Note: We have now proved that all the veanii o 532 ) € R {Tuc for
rational nunbers, :u}"
Further, if 8 :£ o, then K2,
w7 .
—(a' ) = (—=)'p he D2e ol ool of EM4
and if also o # », then :.\\.;
wiitbrautibrary m'g-lr}-;}it 5 . Do,

»

20. Lemma (to G2): If 5 2 o, H,lf:}l”{' 3 I B

Proof: (o (=) = T T €29 OIS
Therefore (—a)f =W —12) by E2,
K

' EXERCISES E

1. Prove that ji.?cﬁs any tational number, 1hore o rarional number
y such that'y + (y + y) = x.
- PI‘UV?"('LH’G there is no rational nuniher x [or wiih xx-=2
3%, ];,,150%3‘&1&'5 if # and Jare POSItIVe non-zero i1 deesers v b o conumon
fﬁu or, there is 2 rational number x for whicl, xx oz il ouly
~ it there are rational numl
NS zz-=plo.
4. T i'-“_mlet S(”t_ of all ordered pairs of vational wepbeers, Mibition and
multiplication are defined iy 7 by the rolx:
@J%Hm&=m+ab&m
(@, b)(c, d) == (ac + 2(b-d). ad ' bc).
Prove that T is a field and ih
between certain o
Prove that 7 con

- — PR
wers §oatul oz o which yyp = %0 and

at {x. 0} - - x i~ :n {suniorphism
161.11011‘53 of 7' and the rational nuabers.
tams an eloment $lor whivlh =5 (2, 0)-



CHAPTER F
Ordered Fields

1. Definition {of ordered field): An ordered field is a ficld some of\
whose elernents form a set P with the following properties. A
8. If « is any clement of the field, then either z ¢ P or — € 22 \"\\ >
ifhothse Pand —z c P, thenz = 0.

¢

. HeePandyeP thenz+yePandaycl. ,,\‘.
Notation: In Chapter F, small italic lefters will dértete elements

of an ordered field. (o and « will be, as in Lhaptur\D, elements such

ihat ¢ 4~ ¢ = and ¢z = x for all
W dbrauhbl{r} org.in

2. Theorem: o = P,

Froof oePor —6eP ik;by Fla.
But 0= —u ‘:":;g by D2e,

8. Theorem: zxcF. ’,};"““
Proof: Ttz e P, then zreeP by Fle
HagP ﬂ)en —zeP by Fla.
Then e é\\(\—x} {(—=} by D8
) CeP by Fle.

4, Theorem;sfrg\}l’ and —i¢ P,

Proof: 1= by Dlg
‘\\ epP by F3.

It nowe %—j e P, we should have ¢ =0, by Flb. But this is not so,
bg .

5. Theorem: If 2P and x # o, then #— e P.

Proof: Ifw ¢ P, then —o— P by Fla.

Therciore —t = —(Fz7) b¥ Dlh
= e —27) by D8

e P by Fle

which is not so, by F4.
81
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6. Definition (of =): If ¢ + (—y) e P, then 2 >= w.

7. Thecrem: v = o 1f and only if zc P,
Proof: By definition F§, x = o if and oaly if

T - (—o} P
But zi-(—o)=2z-4+ 0 by D2e
=z by D1b and e,
N
8. Theorem: Either x 2= yor y = A\
Proof: Either (I) s ~ (—y) e P or (H) —(z+(—ye P\‘b» Fla.
(D) implies x > ¢, by definition F6. ,‘,}‘
Now —(@ + (=) = —z + (~(—y)) by DA
&/
=~z 4y hy¢DRd
=y |- %'Dlb,
yi- (=) \j
Therefore (I} implies Sy = E by .b‘f@%‘g%(}% EQ
9. Theorem: z = 7. A\ L
Proof: T+ {(—x)=0n \v:‘:l‘); D1d
e P\ by F2.
Therefore :.5\% a: by definition Feé.
10. Theorem: lfm\%kg aned ¥ 2=z, then & =
Proof: f » ‘>.~‘3"~’.' then = + (- elP by definition F6,
Tf y2=% then y + (—) e P by definition F8.
There{ore, bi'\i?‘lc e+ {—M+y+i—HeP
.\\" {x —|— (- (—y))) + (—2) by Bla and b
= (#+ 0) + (—2) by D1d
i:\ =1z 4+ {—2) by D1b and e.
“Ehfersfore x>z by definition F6,
Notanion: We shall write © >y 22 7 in place of
zZyand gy >z,
11. Theorem: If z =z, and y, = y,, then By ¥ Ty g
Proof: Tt 2, 2 2y, then o) — (—a,) e P by deflnition F6.

Ly = g, then gy -+ {—g) e P by definition F8.
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Therelore  {my = (=)} + (‘h - ( el by Ple

= ( v ) e (s 1 () by Dlaand b
={m + )+~ fz - 4)) by D2f.
Tharelore 2, 4y, = 1, —|— ts by definition F8.

12. Lemma {to F18): If y € P and if w; 2= u,, then ayy = tyy.

Drovf: xS {—x) el by F6.
Therefore (), -+ (—z))yc P by Fle O
=2y + (—(z2y)) by D7 and 8. KoY
Therefore P 2 By by definition F6. ' \“}\ ”

\
Q

13. Theorem: If », and g, are @n P, and o n, > .%@mi Yy = Y
liek LYy 2 Bty

Proof: Yy 2 Ty by F12\,
= ¥ Byww . dbr ath}'b&ﬁy org.in
F ity hFF12
= ®y'ifp By Dif.
Therefore Tyl 2 Bylfo ‘.'};"‘ by F10.

14. Theorem: If xzel, g(eP zE 0, yF o, and x>y, then
¥,

FProoft Ifx =y, the\h\\«v—{— ) € P, by definition Fé. 3~ and z—
are in P, by Fh. »,

Therefore ( fx ,ﬁ (—y—eP by Flc
Lprw + (—y))'y" by Dlk
AN (i (— —)--1,!)' - by Dif, 1h, and 8
.\ = gy~ - {—& ) lyy) by DY and Dle
) =y 4 {—z7) by Dlg, h, and f.
T}\&Peforo - by definition F6.
15. Definition (of | {): {I[i|| ; _iji;i

16. Notes: If —z c P, then, by Fla and b, eithor z =0 or z¢ P;
m either case, | 2] = —=.
Whatever 2 is, | z| =| —x| € P.
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17, Theorem: | o ‘ J] = ;’ X3y |

Proof: By definition F15, | & || 5] is either sy, (- o), (— x)y,
or (—a)y(—y). Tlu rel'um by I)S and 9, | w | w| s cither » J; ot —{2 ).
Thcreiorc b}

J

yll =1y
P by Flc allfl note F][.() TL(T‘E‘LOLL Leityll =iy

by dehmtmn Fi5.

18. Theorem: If 2 # o, then | o | == | o |-, O

Progf: el e | o @z | by F17 Oy

-} by D1h O
S by F4 und\(T(“ﬁlIle_i Fi5.

Thercfore |z~ | =a [~ by ]2:52\\.

19. Theorem: | x| > x. ,\

Proof: Itz e P then | 2l =0 -y.ouph B\ def{imition F15

=x O bv F9.
H z ¢ P, then | z] — 7::;’“ by delinition F15
and —i e;l*‘“ by Fla.
Then —& -+ (Tw)\&ép by Fle
that is ) Q,\}x = by definition ¥6.
N

20. Theorem:'"{}l}{ +lyi =z +y).

Progf: |z} >&: and |y | =y by F19.
Therefore:..\’?]é1 +ly|=oy by F11.
Again AN 0]+ |y| =| =2 +| —y] by uoto ¥16

i"\‘?{‘ = = |~ (—y) as above
Q@ = —(z - y) hy D2f.
\‘But- o+ gl is either o 4 g or —{z 5+ ) by definition Fi5.

Thercfore |z] + | g| > |z 4 y].

21. Theorem: The equations
(1) 0% =on
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define an element o™ of an ordered field for each whole number . The
set of all elements 1 s dsomorphic to the set of «ll whole numbers.

Proof: Let M be the sct of all whele mumhers & for which =% is
defined. 0eM by (i), and if x= ¥ then ' e M by (). Thercfore
every whole number is in M by Ale.

0*e P, by (1) and ¥F2, If o” =P, then (z')* € P by (i), F4, and
Fie. Therefore, by Ale, every ¥ ¢ P.

() ==o, then s 4+ 2° =0, b (ii} and so #* = —d, by D2e{\
which 1s impossible because every «* € £ whereas, by F4, —ig /"
Thereiore, for every o, (2} # o, )

Now let N be the set of all y for which #* =4~ only 1f~~:z; = 1.
If « = 0, then » =« for some u by A2 and so ™ == (4/)* ;é 9y There-
fore 0= N, If ye N, suppose that »* = = (y'}". 'an { 3 0 and so
x £ 0, beeause 0 N, Then 5 = o' for some # hy &8 "Then, by (i),
P =) =@ =) =4+ ThereloreNd™ = y*, by D2a,
and so # = i, because yEL\ Thﬂn & =u Thoroior@ e N
and so, by Ale, overy 7 is In @&W\\rwﬁﬁ?ﬁﬁt& m.g_ml[ and only if
=y, and s0 z+— 2" is a matehing. ¢

Let £ be the set of y for which (.;: ~1— y =z* 4 y* for every .

0 e L, because (x# — 0)* &Y by A3a
e ",l" AN by D1b and ¢
AN (e by (1)
It ye L, then )
(z -+ 47 ¥\((x + y)y by A8h
O=i+ (z Ly by (i)
NY =~ (J‘ ¥y Dbecawse ye L

¢ -l
"\"\ = ;;;" i) byDlaandb

N — 2 | () by (ii).
Thcrchfé j’eL and so, by Ale, every y is in L. Therefore
{m —‘fA\r/}" =a* 4y for ev er‘, # and Y Similatly, weing A9 in place
of A8, we prove that (zy)* = @™ ¢” for every @ and y. Therefore
Z<— 27 ia an lsomorphism.

Definstion (of infeger of an ordered field): The elements z* and
—az* are the tniegers of the ordered feld.

22. Lemma (to F28): 1 - ¢ +# o,
Proof: 11410, thendi = —i, by D2. But{c P and —i¢ P,
by F4.
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23, Notation: By D6 and F22, tkLere 15, given b, just one o for
which (¢ + ¢ = b, We denote it by 35, Then
Wt+ih=r—u
=iz 442 by Dlg
= (i 4+ i) by D1k aud £
=h,
24. Theorem: /f b £ o, then §b # o. If also be P, then 3h e i
Proof: b= (i +4)-3h, and ¢ | i # o, by F22. Therefore «b\_.—_ o 1if
£ \

and only if 35 = o, by D8 and 4, A\ N

Now suppose that b 5 oand b= P, AN
T# $¢D then —1b =P by Fla.
Then —b e — (3 + 4B = — 16 + (i by Dat
cP \4 by Fle.

%

This is impossible by F1b, and so 1h e £, ('O
www_dbl'aulibr‘al'y_qr‘é_jl
N
&N

EXERCISES F
1. Prove that if x 2=y, t{én — i =ik
& 3
2. Prove that it o >\D\> yand x £ o, then y # o and ¢~ %= 2.
3. Prove that if‘t,f..‘f::‘P then+ 4+ a # o
N/

4, Prove t-hxastiif‘we define 2" to be # =~ 4, and 7 to be the least sel which
contawms o and containg " whenever it containg x, then I Is a sue-
t':esa‘}%’." Prove also that addition and mnltiplication defined fur this
%LQ}QSSiUII as in A3 and 9 are the same as addition and multiplication

i"\:ﬁthe ordered ficld, Are the results still teue if we take our elements
\’ from a flcld which is not ordered ?

5. Show how to make the field 7' of example B4 an ordered ficld.



CHAPTER @
The Order-Relation for Rational Numbers .

1. Definition {of positive rational number): Tf « and § are,fosi-
five and # is not o, then aff Is positive. 'S\

'\t

Note: o and o are positive, by note €25. 0= oo’ anﬂ 1 =o'/t
Therefore @ and I are positive. ¢*4

2. Theorem: Euther x or —X is positive. O
.t\ 4
Proof: Let x be /8. By C2ywitkibraufibrapysopesitive, and cither
J or —§ is positive. g is not o, by definifign/Ele.
It « and 8 are positive, then .xfﬁ 13 pomwe, by definition G1.

If —o and f are posttive, then —‘x ={—«)/f by El19
. x‘vhn,h is positive, by definition G1.

Il ¢ and —f are positive,{?hgn --x={(—a)f by E1S

\‘¢ =af(—f) by E20
\ \ . which i positive, by definition G1.
If —o and —ﬁ a@:é& pObltl\ e, then x={—a)/( —5), by E20 and D2d

AN which poaltwc by definition G1.
&

3. TheQ%fn': If x and —x are hoth positive, then x == 0.

quf Ii x is positive, then x = «{8 where « and § are positive,

h\"&gﬁﬁlﬁlon Gl. Then
—x—(-—2)/f by E10.

If —x is positive, then —x —= /3
where y and 8 are positive and ¢ iz non-zero, by definition G1. Therefore
By ={—u)é by E2
= —{«d) hy C28.

By and w8 are positive, by €30.
a7
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Therefora o0d and —e 6 are both positive.
Therefore o-§ = o, by €81.

Therefore o« = 0, by €21 and becanse § #
Therefore  x = ¢/ = 0, by definiiion Elb,

4, Theorera: I x und y ure positive, then so are X - y and x5,

Proof: Tel x be «ff and ¥ be /5 where 2, f, v, and & are ponidive
(definition G1). M
xS

Then x4 y == (a8 + fr)/fd by definition E10 (%
which Is positive, by €30 and th‘fm.wlﬁ‘lk oL
And Xy = wy/fd by E3
which is positive, by €80 and &?mit.j_on 1.
A
5. Theorem: T'%e rational nunbers form ii@ trdered ficld.

Proof: Let F be Y R, ntﬁjﬁ)or‘a and P the set of positive
rational numbers. Then Fla,, b, and’&[ollu\\ fromn G2, 8, and 4.

Note: We may now apply}’ﬂﬁ the definitions and theorems of
Chapter F to the rational nugibers, Yor example, if x and y are rational
numbers, we write x = y\l and only if x 4 (—¥) = positive.

6. Theorem: Amntegral rational number is positive if and only if
it corvesponds g q positive indeger in isomorplism E17,

Proof: An\mtefrrul rational number X 18 of the form &', hy de-
finition E{’Z, and corresponds to £. o is postiive, by €25. Thelef ore if
& an\wc s0 is X, by duﬁmhon Gl.

nthe other hund, if x is positive, then, by definition 61, it is

'm:\m’I to «/f for some 1;0:,1hve a and g, ﬁ # 0, by Ele. Then

\5-;3’ = o"a, by B2, which is positive, hy €80. Thereflore & is positive,
by €82

7. From now on, we shall have no more to do with whole numbers
or integers, but shall use in their place the positive integral rational
]:Lumbers and the mntegral raticnal numbers respectively, We can, with
this understanding, now abbreviate the phrase °integral mtmnal
mimber  to “integer . Similarly, we shall refer to the integers of an
ordered field (F21) simply as ** integers ’
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8. Lemuma (to H8 and J2): If k 15 any rotiongl wumber, there is an
enleger 11 such that u = k.

Drogf: Ii K is positive, let & be u/8, where 2 and § are positive
{definition G1). Let n be the mteger afo’.
Then a+{—k)={(wf+ o{—a))jof by EL0and 19
— (@ + (—a)f by €26.

But of -+ {(—u) s pO“;ltlT’C by €38, and £ is positive. .
ihcroforo B+ (—k) is positive, by definition &1, and so n = = Ry

by definition F6. e )\’
fi k is not positive, let i be any positive integer. Then » 240> k,
by F7 and 8. (‘.}‘.
K&
EXERCISER & O
PN

1. Prove that if p is a rational nerabenieg @%W%@%ﬁ and § such
that 3 = ¢ and p = o/f. . O

. Prove that if p and g are r&tional ﬁiimbers there are integers «, 5,

and v such {hat p ~= «fy and q._—

3. Prove that il p and ¢ are rational numbm% and p=q but p # ¢,
then there s a 1*1’51011&{ aumber ¥ such that pz=z > g and
PFr#+gq. \i.

4. Trove that if x g rational number, there are positive rational
numbers y a,n('ié' such that x == y + (—2).

8. Prove thag ﬂ\M’ is a non-null set of positive integers, then there is
an Ll(’]ﬂﬁkt % in M such that me > k whonever e = M.

6. Provel thaf if x is o non-integral rational namber, then ﬂww is one
anﬂ\ohlv one integral rational pumber psuchthat p+ 1 = x> p.

r\vae that if p and g ave positive integers, then ¢ == p if and only
if there is a positive integer r such that p -+ ¥ = g.

(5]

7 [z 963)



CHAPTER H
Exponentiation A

1. Notation: In HZ-8, smull italic letters other than 74 ’j’.,\':“ will
denote clements of a fleld #; in H10-13 they will de Mote f]}men‘rs of
an ordered field. We shall write AN

X —y for &"‘"(_y) A ...,\"\’
and zfy for oy~ \¢

z — y is defined fappl} @bi@dlsbﬁétg; orl‘ghﬁrﬂf&c we may look on — asg
an operation; we call it subdraction. »f J &'\defined for all # and all non-
zero i of F. [is often looked on as ant Qpercmtmn named divesion, with
the proviso that devision by zero ‘LS’?wi possible.  Theorems mvolving
these two operations can he prov'ed straight feom their definitions and
the properties of addition and‘!mﬁtlpllcatmn For example:

(x \‘3) (y—2)=—=2—2z

Proof- (a:—J) f\\fg{—z =&+ (—y)) =y + (—=)
e+ (=) £y + (-2) by Dla
.U}f =z (((-y) + 9 + (—=) by Dla
* = - {0+ (—2)) by D1d and b
x \’ e — by Dle.
Uther ‘m\,h formule are
~\ 3 B x ()
\\;" @ —9) +—w) =@+2)— (gt w

If w0 and v £ 0, then wju + gl = (z + wy) .

A .list- of 27 such theorews, with proofs, will be found in B. Landau’s
Grundiagen der Analysis, p.101. The reader will readily think of
atherg for himself.

Besides the abbreviations © — y and zfy defined above, we shali
from this point on use

O
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w-by—z for (z—y) +2 (compare B2)
#-y-~~2z for {(z+y)—z
zyz for (wy)z

and so on: in fact, we shall use the familiar notation of elementary
aloehra.  We shall no longer painstakingly refer to the laws of arith-
metis each time one 13 used. Our notution even conceals some of these
lawa: @ -y - 2z will be used freely for z + (y =+ 2), thus concealing

the associative law of addition.

If the field is an ordered ficld we shall write 2 2> 0 instead of z ¢ P LN

{using F7) and shall call the elernents of P positive. We shall “tr;'\te\.

Z =y to mean :..\' K

w=y but o # 9y ;‘"'

We shall also use » < ¥ for y > a, and # Ly for y > @ Mmm many
theorems well kmown in elementary algebra may bes pro\md straight
from the definitlons, for example:

j » > J /\\!W\arﬁéjgraﬁbl‘iry org. in
We shall use the matching between positive infegers and whaole
nurmbers to enable us to give proofs by mdm‘tlon {(that is, using Ale)

for the positive integers. oY

Weo shall use .,he familiar summatlon notation, namely that
! -1 n
2w, == wy, and Mo, = Yy 5- T (Tncsc two equations constitute
=1 i=1 Tl N

an inductive definition 0\%&6;’.)

2. Theorem: Tfae;r‘é.-’iﬁ:a Function «®, defined for all non-zero x and all
infegers p, such ﬁuQ
a2t =10
h. .'IT?H']- —.{(:}\:L',

™
’o

Rl ,»\~ 3

€. V;":'P = (z7)2.
Proof: (iiven , we shall define a funetion g for w hich g{n, m) 1s
defined whenever (0 <X n <2 m, and

(1) gl m.-} =1,
agte
(i1} gt -1 1, m) == g{n, myx whenever O =T <Zm— 1.

First, put g0, 0) = 1. Then, if m =0, (i) and (ii} are true. Thus if
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M ig the set of all m for which such a funetion can be defined, then
0c H.
If me M, then g{n, ) 1s defined whenover
Put gin, m 4 1) = g{n, w) whenever O =00 =7m, and  put
gim -+ 1, - 1} — gln, w)w. Then glin, m = 1) 15 defined whenover
O <n < m—+ 1.

Nowg(h, m — 1) =g(0,m)=1. And if 0 =n < m — 1, theu

il ‘n\
Thus m -1 € M and so, by induction, every positive integer Leldiigs
to M. RAY,
Now put O
{111) z? e gl{p, p) whenmever p =0 ON
and ¢O
%

{iv) € = (x7y? whenever p 0N

Then «* s defined for every integer p; undie’'is satizfied whenaver

=0 Puadting \fy’\_\rwi_ﬂb:@&ﬁ%r%y%r é’;}n.ﬁx;), we have [r7)P = u?
whenever p < 0; le. ¢ is satisficd whenever p < 0. And finally

““““

2 == ¢(0, 0) == 1; therefore a j8satisfied,
Ii p =0, then 2% = g{p ™, p - 1) = g(p, p) 2 =z There-
fore b Is satisfied if p 0.,

It p <0, then a1 (=} 7le~  hye
’\'\"}: {z7)y® by b, beeanse —p— 1 20
O = by e.
Therefore :xP+1::%\;ép<x. Therefore b is satisfied for every integer p.
Deﬁnit:i.@;}o"f integral power): #? i3 the p™ power of 2.
3. Tevrem: 17 — 1.
JPioof: 19=1, by H2. 1f1? =1, then 1741 — [#] = 1.1 = 1.
iﬁﬁfefm‘e; hy .indu.ction: I# =1 whenever » 20, If 03> p, then
P (1) =12 = 1.
4, Theorem: z#y* — (a-y)%.
FProgf; oy = 11 =1 = (z-y)0.
If a?y* — (xy)® then
LIl — ahyy < (P oy = (g

Therefore, by induction, a3 = (x-4)? whenever p =0,



i3 EXPONENTIATION 93

i 0= p, then oy =

)

Ty {yy? by H2e

ma (Ty )P because —p > 0
= ({ey) )
= (zyp by H2e.
&. Theorem: r~? — (¥%)~,
Drogf: Pz = (m)? by Hé N\
] 1;:! A
=1 by H3. R\,
Therelore (x?)y = () = o ~\ >
A 3
6. Theorem: z%P-27 = x?+7. N "\' o
\V
Proof: Let M be the set of ¢ for which S S for all p.
o ze] = zP = 2 and so 0 € M, .‘2\
1f g € M, then gPaetl = gra®3™" db‘fﬁ*‘ iplpry-org-in
) \ htause ge M

— q,p+q+1 “'\ a“b}- H2h.

S

Theldore g+1eM and 50, hy induction, za% = @?** whenever
q =0, “\
If 0 > g, then 27+y( {&‘ = gfteg-t by Hj

\ = gPti—t because —q = 0
e = x*,
/J
Therelore 2 x‘{\i_ \3‘+

&
7, Th@iﬁ- ()2 = 22,
P, fé{t?ﬁ Let M be the set of ¢ for which this is true for all p.
(% )&“"1 = 2% = z#0. Therefore 0 € M.
[ g M, then (ar)itt = (z?}%a? by H2b
== pP TP hecause g € M
— ol by HE.

Therefore ¢ - 1 & M and so, by induction, (##)7 = «#7 whenever ¢ > 0.

If 0= ¢, then (z®)? = ({2?)7)~2 by H2c
= {z7)¢ by HE
ez e because —g == 0.
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8. Definition (of 0%): Ty is & non-zero positive infeser, then N7 =0,
I follows that if p and g are non-zero positive mtegers, then 0214 <0(#0;
0Paf = ((-)7; 2202 = (0, 000 = 0900, ayud (119)2 == e,

In other words, the previeus resulls are true whenever they have a
meaning.

9. Lemma (to J18): If b e iy positive non-zero rutionedd nannber,

there is an wnteger p such that b = 29, ."\

Proof: Let M be the set of inteural rational nunlbeh q fol \\’1‘bh
there s a p such that 27 = qg. 0c i, beeanse 1= 0, dﬁ'lf\l it
beeanse 21 3= 1, \

-\
NN
S )

Iigedand g =1, let 2" > ¢, Then o\
S T ETIEr o

Therefore g 4- I =M, and ag, by induction, Q(dmn*a,mx all positive
integral rational numbers. (¥

Now, by G8, thét¥y ¥ gtﬁ‘@éﬁ?ﬁ’@uﬁ@‘ﬁzm ational r such ’rhz*f r "?r Bt
By the above result, there is a p such ’rhﬂt B zr. Thenbh zrt>2 7

NS
\

19. Theorem: If p is o poaeine non-zero integer and z Ty = 0,
then a¥ = y» = 0,

Proof ot =t 20, ’\

It & =y 20, then 9\\1 =gy =yt and gl =gy = L
Therefore, bv indy Ji;mon 9:’3 :‘» Jf' =0 for every positive non-zero
integer p. e \

x'\.v

11. The{wem' Fa>0y>20,p20, and a? =y, then x — 4.

Pm@j ). U p = 0, we cannot have z = y, becanse then 2? = 32, by
I-IJ\G \,a:nd 80 27 # y7.  Similarly, we cannot have y > z. Therelore
S\_e

(I1). 1f0 = p, then (z 2y = a¢ = ¥ = (y Py,

Therefore 72 = y=#. Therefore, by (I), = = y-, and so & = 4.

12. Theorem: If x> 1 and p = ¢, then 2P = a7,

Proof: wl=w =1 a1, then ol = gmp = 1-1 = 1. There-
fore, by induction. «* = 1 for every positive non-zero mteger », In
particular, x#=2 = 1. Therefore 4? = 300z == 1-27 — z2,
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13, Definition (of the phlaﬂe “for i lerge .. ) T S(p)is a
ghatement aboul an wbeger p, then S{p) s trae for all large p i there
Is it # such that §(p) s true whenever p 2 n. Similarly T(p, ) is true
fm cei"f' Jerge P aqd g if there is a » such that T(p, g) is true whenever
e oand g 3 oa.

Yemma ({to many theorems in Chapter I): If S{p) is frue for all
large 3 and of T(p) is true for all large p, then S(p) - and - T(p) o5 true
Jor all farge g If S(p, g) ds true for oll lorge p ond ¢ end of Tip, ¢) is
true for all lurge p and q, then S(p, q) - and - Tp, g} is true for ol large
paad g, L\

JD;"fJQf Let 5(p) be true whenever p 2 m and T(p) be true Selien-
ever p 2= %, Let [ be the greater of m and n. Then &{(p) and ‘T{p are
hotly trie whenever p = /E, that is, for all large p thé/statement
S(p) - and - T(p) 18 true. Similarly for S(p, q) - and X Fp, g).

D
wwwdbraulﬂgra)*&:org.in
TXERCISES H()Y

1. Prove that if @ # 0 there is an elemgji}t & such that a-22 +— 2z + b
- 0 if and only if there is an elegd®nt y such that y* = 2* — @b,

2. Prove that if p is an integer and 0> g, then P 2= () = afr ]
(unless = p = 0). o)

3. 1’10\ e that if 14 J‘a?\(] and p is a positive inbeger, then
(L Ay =14 p)'a. .

4. Prove that if xi§ » mtlonal number other than @, I, or —I, and kis
any rational m;.\ﬂncr then there s an integer p such that x* = k.

B ¢ 15 an ui‘te\rer and t > 2, Prove that if @ is an integer and & > 0,
then thrﬂfw are integers ¥ ... &, for which ¢ >z, =0, 5, >0 and

;\— Z 2,475 and that if also a = ‘;'y,,'ﬁi’ where the g, are infegers,
n= [] F=2l]
=y, 3 0, and g, = 0: then m = a, sud z, =y, for each p.

6. Prove that it is impossible to define 07 for all p in such a way that
H2a and b are true for all .
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Cauchy Numbers
N\
1. Notation: A succession (see A1) has 2 tuember which is ot a
successor, by Alb: we shall write it with s suilix 1, its sucrw@q} with
a sullix 2, and s0 on, We shall write the suceession whoeyhembers
are Ty, s, . . . 4d {x} H we have to consider a Se(.‘-f’ﬂh}‘r}kl(i(.’(:ﬁ.‘s‘]('ﬂ] we
shall use another letter; e.g. we may denote it by { yFand its clewnents
by %, %5, . .. We shall use Z, w, #, P, g, 1, 8, and .bfp\iflenote integers.

2. Definition (of Cauchy seqience): A suuedssion {z} of clemeuts
of an ordered field is & Cauchy sequence i, ‘gﬁ;}zwh positive non-zero b,
b 2|z, —z,] fomalivldbgaUﬁhmi')q-?s‘&afEI:L ).

3. Definition (of Cauchy number) 11 {#} is a Cauchy sequence,
the Ceuchy number x is the set efall Cauchy sequences {#} with the
following property: N

For cach positive non-zeze B, 6 2> b2, — 2, | for all large p.

Note: by ¥23, thi ~~1}n\plies that, for cach positive now-zero b,
3> o, — g, | for a{ atge p.

4. Theorem: 742 Cauchy sequence {x} is in the Cauchy number 2
and i no othepNSauchy number.

Proof I{‘f%\m positive and non-zero, then

N/

O bl}>O=|xp—-'j,fforeveryp.
leg@fbre {#}ex by definition I3.

Tf\;{“:é} €y, let {u} be any clement of x and {a:} be any element of y.
By note 18,

e

(1) %"52!%_’”
for all large p;

(i) 36>z, —u,|
for all large p; and .

(iii) 0= |y, —~ v, |

for all large p.
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By W13, applied twice, (i), (ii), and (iii) ate all true for all large p.
Thew, for all large p,

Z | @~y | +ys — 7| by (i) and (i)
= |y ety | by F20.

Therclore {u} € ¥, by definition IS.

Also by, — 2, + | yp — vy by (i) and (iii}
=z — ol |y — o by F16 A L
= |z, — v, by F20. ()
O
Theretfore { ¢} £ %, by definition I3. “~

We have proved that every element of x is an element of 3 and
every element of y is an element of x. Therslore x w‘y, ‘and so % is
the enly Cauchy number containing {z}. v/

N

5. Lemma (to definition I6): J}f\{,ag}jgaglmiyk 3y, then {u + v}
and {x — y} are Cauchy sequences and are, &ofk wn the same Couchy
number.

Y

*a3
A Y

Note: {z 2y} denotes, of courgelithe succession whose p* member
is 2, + o N\

>3

Proof: Tt b > 0, then, b}\&eﬁm’cmn 12 {and lemma H13),
T3:'}|?s\n\—:.~:q| and 162 |y, — ¥,

for alt large p and Q‘xThen
¥ |n by —nl by
\\ = | (2, + 7)) = (& T ¥ |-
Themtqr;\{a; -+ y}1is a Cauehy sequence, by definition I2. Similarly

{ vt is a bauchy sequence.
1«11 {ulex a,nd{v} € y, then, by definition I3,

1) > | @, — | and 33|y, — ]
for all large p. Then
b 32| (@, + o) — [t 1) |-

Therefore, by definition I3, {-u 4 -v} is in the Cauchy number which,
by 14, contains {x + ¥ .

N
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6. Definition {of suse of Caue hy nunbers): x by is fhe Cuuchy
number which eontaing fu—+ -} whenever {u} € x ani fz} ¥.

Note: That there is such a Cancly number way proved tn IS,

7. Lemma (to I9): {z +(y +-2z)}ex |- (y-| 2
and {(&—,—J)J—’-‘} E{x ¥ Fea

Proof: By definition I8, {2 -y |- e x - w where w iy the

Cauchy number containing {y+ z} 111(‘11 W=y + 2, by definilion
I8 again. <\

Similarly for the other. A s..>\ )
&
8, Theorem: x -~y -~y 1 g, m'\.iz"
N
Progf: Let{z} e x and {ytey. \i
Then {y-+a}—=lx+4,y h ,:'.\\;
www.dbeagibrgry. 0113})‘&‘1&3&&1’(1011 18.
But +x}eytx bv,dp{'mlhon 18.
Therefore FlFy=—7%}Fzx a by 14.

s
N ‘

9. Theorem: (x + ) -{- z—"x}—l—(y—{ z),
Progf: Tet {z} e %, {g,:}k v and{z}ea
Then {2\}*9{ ) Lo} = {:r 2)}
(Y -+ z) by I7,
Rut {{5‘ + y) -+ 2} EExFy)+z by
Theretore D7 +3)+2  wxt+(y+z bym

10.4 'I,'h‘eorem If @, = a for every p, then {2} s a Cauchy sequence.

'\Pﬁoof If & is positive and non- Zero, then
b>0=]w, —u,| whenever p==landg =1
Therefore {x} is a Cauchy sequence, by definition I2.

Notation: We denote this Cauc-hy sequence by [a),

11. Definition (of 0): 0 iz the Canchy number containing [0}
(which is a Cauchy sequence by 110},
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1% Theorem: 0 | x — x.
LProof: Let{z}cx Then{z}={0 4z} c0+ x, by definition I6.
Therelore x - 0 1 x, by 14,
12. Thecrem: [f{x}is a Cauchy sequence, so is { —a}.

Frooft 1t b is positive and non-zero, then, by definition 12,

b= |a, —a,| foralllarge pand ¢ A\
= —x — {— . A .
|~ — (2
Therelore { —z} is a Canchy sequence, by definition I2. O

l “‘
14, Theorem: If a is any Cauchy number there 15 ax such that
&
a--x =0 " m\

D,go}‘ Tet {a}caand x be the Cauchy nm_r{der con‘mmmg {—a},
which is a Canchy sequence by ¥18. Then 72

(0] = {a +{—a)} EWWW dbra%}%gﬁiﬂﬁllm
Therefore 0=a+tx o\ by 4.

A ”"
L

15. Lemma (to I16 and J2): If{fr} is o Cauchy sequence, there 18 a
positive non-zero k such that ]i( 2w, | for ol large p.

Proof: By definitions ,Iﬁ\md H13 there is a » such that

12 xy —\c\q] whenever p > # and q > #.
Therefore 1= E,r; €, whenever p =
AW
Then N A+ ixnl = |z, Tn’
O =z by F20.
’\\. J k) ]

[‘hm } W | 2, | is the degired %.

\3 Lemma (to definition I17): If {u}cx and {v}ey, then {uv}
aawf {2y } are Cauchy sequences and are both in the same Couchy number.

Proof: By I15 there is a positive non-zero & such that
(i) k>
fov all large ¢, and there is a positive non-zero, f such that
(i) f=li ¥

for all large p.



106 THE NUMBER-SYSTEAM [, 17

If b is positive and non-zero then, by definition I2 and lemias H13,

(ii1) fr=lm, — x|
and
() 1 1y, — g
for all large p and ¢. Theu, for all large p and 4,
3=y |2~ 2, by {11} and (iit)
N
= | Cp'ln — e P |
and I N I E by (i) and (iv) AN
N\
= | w, Y, — w7y, | - W\
Therefore b=y, — o0y, by F20. “’( N
Therefore {5} 1s a Cauchy sequence, by definition L‘i’\ ’
Similarly, so is {22} ’
By I15 there is a positive non-zero & suc}}:t;-i}mt
= 2\
) W W dbl'auli%r‘gl'lr%?‘é 'm }
for all large p. 2
By definition 13 and becanze {u },: x‘a,nﬂ {?ﬂ ey,
(vi) 1o 30, — |
and N
(vi1) 3 7!"1 = |y, — vy for all large p.
Then \% s [ #ot | @y —u, ] Dby (i) and (vi)
.“:.,,.’ = I Tp'¥p — Yo'ty |
and NOT Wl lm—u| by (v) ad il
x\ = [ Ypthy — Uyt ! .
Therefore\\ b= | 2y, — e, |

W\
Thcref ore, by definition I3, {u v}isin the Cauchy number which, by I4,
@‘La&‘ns {:c y}
17. Definition (of product of Caunchy numbers): xyis the Cauchy

nuraher which eoptains {% v} whenever {u}exand {v}ey.

Note: That there is snch a Cauchy number was proved in I16.

18. Lemma (fo 120): {2(y2)} € x(y-z) and {{zyye}e (xy)
Progf: By definition 117, {#(y2)} & xw where w is the (aur‘hv

number containing {sz}. Then w -=y-z by definition 117 again.
Similarly for the other,
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18. Theorem: x'y = y'x.
Progf: Let{z}czxand {y}ey.

Then {irz}={ey}
E X'y by definition 117,
But {ya} e yx by definition 17,
Therefore Xy == yX by I4.
20. Theorem: (xy)z — x{yz}. N\
Drooft Let { } € x, {yj =53 and{ }e Z. ",f\:\"
Then {(ey)2) :{ w(yz)} O
x(yz) by 118, (“f’g
Bus {{zy) z} (xy)z by I18. >
Thercfore {(xy)z = x(y2) by 4. .30

21. Lemma {to 124, 81, and 83): If {z }aa @ Bauchy sequence and
X # 0, then elther (1) there is a kb w,fk kr.u: 2ok > 0 for all lurge p
o . W A BT ﬁf ;yot}g
or (i1} there s a T sach that —i, =k o= bfam ull farge
Proogf: 1F b = 0, there 1s, by deﬁ_mtmns 12 and H13, a » such that

{11} W=, — x| whenm o p > 0 and ¢ > .
JE (i) is false, there is a r such, that

{iv) 1h, ;%\mr and 7> n.

Ti (i) is false, there ig A% such that

(v) '../—b > —z, and s=n

Therefore, if (i %Ql.d 11 are {alst, and ¢ = n,
by (iii) and because r = x.

e, —
Thpﬂ ’ixb = | T _'Tr’ T Ty bF (l‘v)

.’z"' Xp — Ty -'— Ly
'\ "' —
=7,

SIJJU]&-I‘I}‘: b=la,—w,| —z by (iif) and (v)

X, — Wy — Ly

= —&p
But | x| is either @, or —z,. Therefore
b>|w,|=|2,—0] whepever 9 = %

Therefore x = ¢, by defmitions 111 and I3. "Thercfore if g # 0, cither
(1) or (i) must be true.
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22. Definition (of 1): 1 s tle Cauchy number containing 1],
(which 1 & Cauchy sequence by I10). Clearly 1 2 0.

23. Theorem: 1-x -- x.
Proof: Let {x} e x Then
{e} = {12}
€ 1% Dby definitions I17 and 122 )
Therciore x=1x% hyI4. . \
)

24. Lemma (to I38): If {x} 5 @ Cuuchy sequence wnd \x)\_ 0. there

is & Cauchy sequence { &} such that N
() §—x (O
and A,

{i1) £, # 0, for every PN

Proof: By 121, 3hetm, sk &.ﬁ.yft_m}g{{h\!: such that |a,i=k=0

whenever p 2> 5. Tet &, be 7, when A2 # and % otherwise,
- . - ’5'0
(1) If p > » and b is positive andenoh-zero, then

&Y
ZJ ~, O
= WG
Y

& — ).
Therefore x = &by 14 and definition I3.
(1) ™ p > », then i{x&“'} k. But k= 0. Therefore £, : =, # 0.
25, Lemma f(f:‘%"f%): If{z} is @ Cauchy sequence and x # 0. then
{71 1is a Canchy sequence.
Nop{{zfx‘(} 1s defined in 124,
{jﬁ;%f By I21, there 1s a £ such that

~
"‘(}V |€,] = k=0
' 4
for all large p. But &, # 0, by 124. Therefore
(i) B =@,

for all large p, by (1), F14, snd F18.
If & == 0, then, by definition 12,
(i) bt | £, - 4,

for 4l targe p and . Then
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A

T, - T8 by (1) and (i)
P, —E, by F17.

Thorefore. by definition 12, {# 1} is a Cauchy sequence,

€6. Theorem: [f a # O, there is a x for which ax = 1.
L'roof: Let {a} € u, {@} be as in 124, and x be the Cauchy number

eontaining {d 2}, which is a Cauchy sequence by I25. 2\
Then [1]={dd 1} AV
€ ax hy definition 117 \ N
= ax b_}? 124, A et
But 11e1 by definition 122, .~,‘: ™
Thorafora ax =1 by I4. ‘ ,\\
27. Theorem: x-(y -}- 2) —= X'y + x'z, ‘,\\;
P'?'Gof: Let {;r;} £ X, {y} ¥ %%{al}lrr‘:aﬁilb}a;y_org_in
Then {zly + 2} —{oy +oz} OF
€ Xy + x-2,. 8% " by definitions I8 and I17.
But {efy L 2)} e =y —|—.'z’):" ) by definitions I17 and I8.
Therefore x(y + 2 =x¥ Rz by 14.
Q)

28. Theorem: The Oau@} nernhers form a feeld,

Proof: Dlak fo!ToW}rom I9, 8 12, 14, 20, 19, 23, 26, and 27
respectively, oY

¢

--x iy the/Chachy number containing { —z} where {#} e x, by I14.

X1 istfid Canchy number containing {#-2} where {z} € x, by I26

¢ JdgWand ois 0.

Dﬁﬁflﬁion (of Cauchy fieldy: This field is the Cauehy field of the
oxdelod field from which the elements of the Canchy sequences are
talken.

29, Definition (of positive Cauchy number): A Cauchy number 13
positive if it contains & Cauchy sequence {} snch that x, = 0 for all
lurgo .

30. Theorem: 0 is posilive.

Proof: 0 contains [0], and 0 = 0.
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31. Lemma (to I32, 38, and 39): If x is positive and nowsero and
{a}ex, then there is @ k such that z, = k> 0 Jor all lurge p.

Proof: 1f x is positive then there is a {y} in x such Lhat
{’) .:"f: H 0

for all large p, by definition I129.
If there is o & such that

(ii) —r, =k O
for all large p; then, by definition I8, \\
N
ék ;:2 l :I‘)'rra - :‘Cfﬂl ‘:ﬁ it
Y, — &y ) * )
=k by (Q-aud (ii).

Therefore 0 > 1k, which is impessible, by (i) Thercfore there can
be no k& for which —z, = &£ = 0 for all | rgie\;r; ; and so, by 121, there
is a k such that @z Hbraylibraly angdny,

32. Theorem: If x and -—x are, hotl; positive, then x = 0.

Proof: If x and —x ate p}@sviﬁve and non-zero, let {x} = x. Then
{—=x}e —x. Therefore, by 181, there is & & such that «, > & = 0 for
all large p, and a A sugh that —z, > % > 0 for all large p. Then

0 = —ux, |+ z, = k& +{A) which is impossible because & = 0 and & > 0.
Therefore % is naf NOR-zeT0.

38. Theopem: If x 45 any Cauchy nwmber, then either x or —% =
postiive. (N .
~E
Prgaf’ 1f x is not positive, then x % 0, by 130. Let{s}e x. Then,
by,,Igl, either (1) o, > 0 for all large p or (11} —z, 2> 0 for all large p.
. g('i{:‘is false if ¥ i3 not positive, by definition 129. Therelore (i1) is true,
Q Vihd s0 —x 1s positive.

34, Theerem: [f x and ¥ are positive, so are x 4 y and ©¥.

Proof: Let {z}ex, {y}ey, and {z} and {y} have property I29.
Then { -y} and {z-y} have property 129 by Fle. Therefore x + ¥
gnd Ty are positive, by definition 129,

35, Theorem: The Cauchy numbers form an ordered field.

Proof: Let P be tho set of positive Cauchy numbers, Then Fla
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b, and ¢ follow from 133, 82, and 34. We may now apply all the theorems
and defimitions of F to the Cauchy numbers, In particular, we may
define | = | and the relation x >y, We can then define Cauchy sequences
of Cauvchy numbers,

36. Notation: i is the Canchy number containing [#], (which was

defined in 110,
N

37. Theorem: The correspondence N
AN
&~ N \"
is an isoinorphism between Cauchy numbers of the form & am{,ztﬁ?q elements
of the original field. 2 ’

Frogf: If & = §, then [«] and [y] are in the sanie"(}‘\auchy number,
by B36. If o £y let |2 —y| =& Then bis }@it-ive and non-zero.

Therefore so is 45. Ky
: www dbraulibrary .org.in

Thereiore h =z —y] by defigiition I3
— b' ’:" N/
Therefore 0>1b whieh is impossible.

TN

Thesetore 7 cannot be different £k 1.
Therefore the corresponde@c\é\is a matching.
[z gg‘éw’(x L™ by I36.
eyl e 843 by definition I6.

Therefore Ly == F 7
Similurly, by-{88 and definition I17,
& fey)” =7

Therpfire the matching is an isomorphism.

\’kojje: It follows, of course, that —% = (—x)"; () ={1;
and so on.

38. Theorem: & is positive if and only if © is positive.

Proof: Tf & is zero, then, because [¢] €&, x =0, If £ is positive
and non-zero, then # = 0 by I31. d

On the other hand, if % is positive then [z] has property I29 and so

% is positive.
] (G 063)
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Note: It follows of course that & 2= 7 1 wred ondy 6 0 7 40 that
1&]=|z| : and so on.

Definition {of order-isomorphism): An womorphism 2« -~y be-
tween two ordered fields 1s an erder-isomorplazm if = 1s positive whenever
% 1& positive and y 1s positive whenever 2 13 positive.

39. Lemma (1o 140 and 41): If x =y, there is a 7 sueh thai g 23 2y,

Prooft Let {w}exand {y}cy Then {r —ylcx y, which s
positive and non-zero; and so, by I81, there 1s u positive r.rm’*/\L,m b

such that N

(1) Ey — 'i-f'p :} 2E} ,‘:" >
ki N

for all large p. By definition I2, b = |y, — v, | for Qﬁ:’imge g and ¢,
Then N
(i) ——b O

o — ¥ \\,

Let z =y, + b, Wheredéria f‘%ﬁ‘}ér}/h&t (lll_l a\u? ii) are true whenever
g = land ¢ > 1. Then, whenever'p = f

w4

,o

%—ZZ(-’E-D—%} ’(.fy_'rf:}_b

> 2b— hey ‘“?) by (1) and (i1)
= 0 “::;
Therefore x — 2 s p031t1& L\“\ld 80 X 22
Also z— %\\_ h— iy b
” = —b--b bv (i)
P ¥/ - 0

$

Therefore i\i\ ¥ s positive, and s0 3 = .

,l

40.\ ‘Lemma to 141 and 42): If{ }ex and if b0, then b =1 &, — x|
}%‘ ai‘”arge P

N/ Proof: By 189, there is a ¢ such that b > ¢ d > b, By definition I2,
(i) 9= | z, —w,] forall large p and 4.
Now § — (#, — x} containz the suceession whose g** member is
g - {w, — ), and, by (1), g—tz, —«,) =0 for all large p and q.
Theretore, by definition 128, § — (%, — x) == 0 for all large p.
Bimilarly §—{x--2,) = 0forall large p.

Therefore § 2 { &, — x| for all large p. But b > 4.
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41, Lemma ((o ¥42): [ f{x}isa Caehy sequence of Cauchy numbers,
there 3 a Cauchy seguence {2} with the following property:

f b= 0 then b= | x, — &l for all large p.

#ve0f: If there is a Cauchy number z such that %, == 7 for all large p,
let {ct ez, Then if b= 0

b= [I z—2Z,| forall large o, by 140

:pr—gpj. a

O\
r . . ‘B
Tf vhere i no such %, we can define a succession { y} as pr.Lows:
(1) ¥, Is x5 (i) if v, s defined as Xpy; then g, is the first x,afrer x,
. . . ol
for which x, £ y,,. Clearly {¥}is a Cauchy sequence if {x} 183
Therelore if b is positive and non-zero LV

b>|5, — 9, forall lage p}
AN

By 189 there i, for each P, & 2z, such that ¢*{
www,dbraul'ﬁ éry.ol‘g-iﬂ
X ! Yo — ¥py I = 2"{: ""f’x-n'
Then b ¥y — Vou | 4%, -5, for all large p.

3
*

42. We have cxtended an Q;'L.{rz’réd field by the use of Cauchy
sequences. It is natural to grender what happens when we try to
extend the Canchy field by{%]%x‘ same process. Let us call the numbers
we gut In this way supef-€avchy-numbors. The answer is that we get
nothing essentially ngw; the field of super-Canchy-numbers 15 order-
1somorphic to the field"of Canchy numbers.

Proof: By 189\3n0d 38 the matching

" ."\QO
N £ < x
13 an rg]{il’éi”—is@lnorphisnl between super-Cauchy-numbers of the {form
% amd\lle Canchy numbers.
#t A" be any snper-Cauchy-number, Let {x}e X.

Let {Z} be as in 141, Then {é’} e X, by definition I3. Let g‘be the
Cauchy number which contains {2} Then, by I40 and definition 13,
{z] € X. Therctore 2 — X. Therefore CVery super—Cauchyrnumber is
of the forn %, and so the matehing is between the field of all super-
Cauch ¥-numbers and the field of Cauchy numbers,
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EXERCISES 1

1. Prove, straight from definitions 12 and 8, that if n-=v and {7} s
a Cauchy sequence, then {w} and {vw} are Cauchy sequences in
the same Cauchy number. Ience give an alternative proof of 116.

2. A succession {:r} of eloments of an ordererd fickd has the property™
(%) that if b is positive and non-zero, then b = | 2, | for all large
Prove that {=} is a Cauchy sequence, and that if {y}is a Cghely
sequence then {a+y} has the property («). Prove that {x"\zf
the property (z) if and only if {y} has the property (c'xkx

+has
'4 &> ;-

3. Prove that if {n,}is a succession of distinet whol afimtbers (that s,
n, % n, f p # q) if b, =a,, for every p, and 'E\f‘fa} is a Cauchy
sequence, then { b }1s & Cauchy sequence 1 th g, safne Canchy nuniber,
z - .11 5 o S ( {’ 3 - Lo 1o -
4. Prove that if zu%,w\‘_jgﬁfiaiﬁﬁg}a{%ylwg%@ ‘I}?‘Opt-l‘t} that if x is c:.E]“\_"
element of the field then there 15 an igtefer » (see F21) such that

# >, then so has its Cauchy f‘lel(l.‘”:}‘

N N
&
al
N\
.»{
m\
\.'\\}

N,

k4 »

Vo 4

A\
\
y N
PG 4
" v/
O
\,,¢
p
RN
i&‘\’%



CHAPTER 7

Real Numbers

1. Definition (of real namber): A real nigmber is an element of tho
Cauchy field (I128) of the field of rational numbers. Tt follows\that
the real munbers form an ordered field and that it contains™a field
order-isomarphic to the field of rational nwmbers, by 185,875 and 38.
The elements of this field (that is, elements of the forfa &, where & is
arational numbor) will be called rational real numberte b2 is an integral
rational number, then & will be called an integral el number. When
there is no particular reason to emphasize tifg existence of the iso-
morphisin (i.e, the fact that & oﬂlf%tﬂbé'sfﬂilﬂ?&'%yaﬂ'&qiﬁot tdentical
with @), we shall ahbreviate these terms to ational number and integer
respeciively, AN

<N
3

Notalivi: We shall use {, m, gr,:ji;,; g, 7, 8, and ¢ for integers; other
Roman Jetters for rational I}uh‘tbém, and bold-face Istters for ?eal
numbers which ave not nece@arﬂy rational; Le. just as we abbreviate
rational veal number to rafeonal number, so we abbreviate £ to  (and
0 to 0, N

N\
L >

2. Theorem: I{\x:» any veal number, there is an integral real number
A such ihot & Pt o

.'\‘0 . I
Proof: AnChapter I, take the field to be the ﬁeld.of. rational
numbers 8 }hen in I15 the k is rafional, beeause every 2, Is.

Thergford for any Cauchy sequence {«} of rational numbers there is a
PESIEIVE 110 yero rational number 4 such that k& — =z, > 0 for all
largé p. Let.  be thie real number containing [%] {md x the re?: number
containing {#}. Then } — x contains the succession whose p clement
8% — 2, and so i positive, by definition 129; that is, £ > x.
By 68, tlere is an integral rational » such that » > k.

Then

X,

3. Definition (of Fmaty: TIf, for each positive non-zero b,

b = ] X, — af for all large p,
109
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then a is the fomet of {x}. This is written as
Hm{x}-=a
Note: Clearly lim [y} =y. And clearly a succession cannot have

more than one limit,

4, Theorem: A succession of real numbers has a Wmit of und only of
# 28 o Cauchy sequence, &N\

Proof: Let{x}be a Cauchy sequence and let {2} be as in 141, ¢ =§ru1
it b iz positive and non-zero, N

\l

(1} %b :} | Xp — ’;E';f

s
4 N

for all large . Let 2 be the real number contatning, {4;:}\ “Then. hy 140,
(i) SR LN
for all large p. Then b = x, - z| for all Iarke p.

] ) \yww.dbl‘aullbral organ Yy
Therefore, by definition J2, z = hm{x}g >\

»
{ N

On the other hand, if {=}is a succeswm and lim {x} —a, and if b is
positive and non-zero, then j'::
== | x, - al forall large p, by definition I8,
Then b } | 2, — a L\L | x, —al forall large p and ¢
=%, \‘x .
Therefore {x} is ?,\C}a,uchy sequence,

x'\n’
5. Theorews: If{x} and {y} are Couchy sequences, then
\{\ lim{x}+lm{y}=lim{x + v}
NN Hm { x x}-—lim{y}=lim{z — v}
@M li_m{x}-lim{y} = lim{x-y}.
Progf: By definitions J8 and 13, lim {x} = a if and only if {x} € 4.

Let hm{x;= a and lim{y} = ¢, using J4. By definition I6, & + &
containg {x -+ y} and 80 a ¢ = llm{x - y} that 1s,

lim{x}+ lim{y}=lim{x + y}

The proof of the second equation is similar, The third equation lollows
similarly {rom definition 117,
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6. Theorem: If a, b, for all large 1, then lim{a} > lim{p}.

Frooft a, — b, is positive for all large p. Therefore the Canchy
number confaining {a -— b} is positive, by definition 129. In order-
isemorphism 142, this Cavnchy number corresponds to lim{a — pi,
whicl is equal to lim {a}—1im {b}, by J5. Therefore lim{a} = lim{b).

“. Definition (of consinuous): The function #§ is continuous if
fos evory Cauchy sequence { X} of real numbers, {8(x)} Is a Cauchy

seqlience, and lim{ﬁ(x}}: flim { x}). O\
an . . . N ot
ote: Heve {6(x)} denotes, of course, the succession whoke pt

eloraent is O(x,). N

: R ,
8. Theorem: [f § and & are continuous, then s¥gre the functions
o, 0. wid = defined by O
) o \\d
& o) =, 24 a6 43

4
¢ & .
Brary,org,ln

. d(x) = (x) — P&}
and N\
c. (%) — '?‘(',3"1"&(3)
Proof: allim{x}) = B(Iim“{i’}:};'al“ $(lim{x})
Q = Lim {6(x)} + lim { $(x}}
becanse 0 and ¢ are continaous,
TR O () 1 gm] by
\x = lim {o(x)}

%

Aud by I {8(‘}5— H(x)} is a Canchy sequence. Therefore o iy con-
tinuous, &@\mrld\ for the others.
Q

"ijéﬁuigign (of polymomial): The function = defined by

N

%
N

\.

8 4 polynomial,

"
a{x) = Ya xP
=it

10. Theorem: Ewery polynoniul is continuous.

Note: We shall use  the function x ~ a3 an abbreviation for . the
function ¢ defined by dx) = =7, ““ the funetion a ” for © the function x
defivied by «(x) = a ", and so o
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Progf: Clearly x is continuouns, 1II %7 is continuons, then so is
x™+1, by J8c. Therefore, by nduction on #, ° 15 contimaous for all
positive non-zero inbegers r. Clearly a, is continuous. Therefore, by
I8¢, a, x™ i3 contmuous.

n fn+1
Therefore if Y'a,x? is continuous, so is 2a, x?, by J8a.
p=0 p=0

Therefore, by induction on #, svery polynomial is COMEINUOTS,

11, Theorem: If {x}and {y} are Cauchy sequences of real Aambind>
then. lim {2} = lim {v} if and only i, for each posilive non-w#{0yh,
b 3| x, — ¥, | for ol targe p. N\
Proof: Tm{x}=1lim{y} il and only if lun {x}-- Jmfy} =0,
which iz true if and only if lim{x — y}== 0, by I5. ThéAlieorem now
follows from defimition J3. N\

12. Theorem: If # is continuous, i by 7 gagf 8ib)) =0, and if
0 = Hay), then there %5'»?w‘?cr"’ﬁf'ghffié‘ﬁaflig’)o@,?n‘f@fb [

Note: Less formelly, this theorem cofuld” be stated as © [f a con-
tinuous function is positive at one polniignd negative at another, then
it is zero somewhers hetween then ¥ ’

Proof: We shall define h{dt‘l}:ﬁfvul}-’ snevesstons {a} and {b} with
the following properties: (103 0{a,); (ii) f(by) =0, (i} 8y, & 8,5
(iv) b, 2> b,.y; and (y) &y a, = 217%(b; —2) for all p. Cleasly
a; and b, have these propertics as far as they apply. Suppose that
8, ...3, and b . LB have been defined and have these proporties
as [ar as they apply. Put a,, and b, equal to a, and Ha, L b,)
respectively if/p{(a, + by)) = 0; but to 1{a, + b,) and b, if not.

(e
Clearly O%G(’aqﬂ), B(b, 1} =0, 8., = 8, and by = by 4.
Also ]?el-;;“‘ fgpy = sy — ) = 2t by — ay).
Thgréfioi'c 8,4 and b,,, have the desired properties.
ﬁy ‘(iii) and {iv), a, = a, and b, > b, whenever p > ¢.

b, = a, for every p, by (v) and because by = a,. Therefore if p =¥
and q =7, we have b, = h, = 2, =a, and b, > b, > a, >a, Then
{¥i) b, —a, > | a, —a,] whenever p =y and ¢ 27
If d is positive and non-zero, there is, using H9, a # for which

@ = 3(by — a))
=bh,—a by (V).
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Therckore, by (vi). d = [a, — a, | whenever p > r and ¢ > r.
Theretore{ & }s a Cauchy sequence. Similarly, {b}is a Cauchy sequence.
Moreuver, d = b, — a, whenever p = ¢

:lhv_a‘ii|‘

Therefore ]im{ a}-=1im {b} = ¢, say, by JiL

Therefore lim {O{_ a}) — {{e) = lim (ﬂ{b}}, hecause @ is continuous. But,
from (i) and (i) and I6, we sce that 0 2 lim #({a}) and Lim (6{b}) > 0. £\
Therelure 0{e) = 1), - O\

o

13. Theorem: {fd =0 and r is a positive non-zero infeger, ‘ﬂke}é'is @
¢ forwhick ¢ =dand ¢ = 0. AN 3
. - . &
Proof: I x =10, then 0 7 —d == 3" — 4. \
Hx—=1dthen x=(+dMl+d
:’\ w
=1,

www . dbra uliﬁg‘ar‘y org.in
Therefors x° — @ 3 0. Thereflore, by 710 apd 12, there is a ¢ for which

¢ —d—0und 1 +dzze = R

14. Definition (of root): If »ls a positive non-zero integer and
d =0, the »® yoot of @ 1s the .}@sitive real number e for which ¢ =d.

Note: 'Phat thero is oubeand anly one such number ¢ follows from
T18 and H11,

Nuletion: The; «@root of d is written &
Clearly /0 —. 99371 =1, and /d =&
\V

15. The;g}\er;l: If plg=rs, g0, s> 0, and d>0; then
‘\U/’dy L ,}'f?’ﬂ?. : ;
:..\'\, .

N\ . 5 R— frgryes — qo7.
| \{j*’ﬂf{f-' (s — (({'r,_.ﬂp}q).q = (17)* = qxh X Sllml&ﬂ};' (}"E )i’dr d
But T8 == g, because })(1} = rf."'s, Therefore, h}’ H11, ‘\/d =¥

ver of a positive real nurnber): H

1 . g - 1 .
6. Definition {of rational por then 7 is

£ 18 rational and 4 is positive and z and d are not both zero,
'8 where 2 - pig, pand g are integers, and ¢ > 0.
r : - 5 ! i ! 3
Note: Bach rational number = is cqua} to some ;;q lec)ht]‘il;
desired properties, Morcover, f & = pig =18 P >0, and & >0,
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AP = A, by J15, and so the number defined as 4+ 18 the same no
matter which g and ¢ are chosen, prov ided that 2 = pig. Timally, if
x = pil, then 47 = /e == 47, and so this definition s computible

with the previous one.

17. Theorem: x*y* =[xy x =0, vy =1, and w s ralloaot and
RON-2E7D.

Proof: Let u be pig and g = 0. Then N
(xty*)? = (452 ) O\
= {¥x¥)(s7gP) by H3 N\ 7
/X : 'S
= xbg? O
I’N"
= (xy) by HE | ON
. W
= (\?J(X yJ.p)Q_ ’ \\“s}\
Thereforse xeyh == V(XY by &Y
= xy) D

£
W

www_dbl:_al{lgty)m_'y_org_im”}\
18. Theorem: If x == O and if ulgwnd v ave rulional and son-zero,
then (TH)F = g%, AN

Prooft Let w be plp il.-na.':% be rfs, where g 20 and v 0.
(29737 == (/) = @ — ()t =
Therclore (x#)* = W@ A= 27718 = 3*%,

N\

19. Theoremi..,ff?x 20 and if wand v are rationgl and pon-zero,

then x*x" = 2%/
) \s.t , "

Proof :Lét u be pfg and v be rjs, where ¢ = 0 and s3> 0. Then

% — ;D\, “and v = grigs. Therelore

z..\’.:::’ ®MegT — (Xp-as)l.-'u-s.{xq-T}l_ﬁq-s b}' J1R
\r'\)‘,, = (xv-s.xq-r}lm-s b\__.- I
4 — (xw-s-%q-r}wa-s }JV H6
— xlp-atariies b;.- Ji8
— WY, ’

20. Lemma (to J21 and 333): {f =y =0 gnd g0, then 5= ylid,

Proof: 1 ylv = xV% then y --- (yliu)e

i
= (xliay by H16
X.
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21. Theorem: [f = 1, #f u > v, and if u and v arve rational, then
x* = %Y,
Proof: Let w be pfy and » be rfs, where 4 > 0 and s > 0. Then
s = gor. Therefore x#% = 377, by H18.
Therefore x4 = xpsius = govins — g by 320.
Note: Tt [ollows that if 1 = y > 0, then y? = yv, by applying the
theorem to y1.

N
22. Lemma (to J23 and 26): If d >0 und r 45 & positive infeger,
- ' 2 AN
then @7 221 — r(@ — 1). AN
Progf: & 31+ (@ —~ 1).
N
Ifa 21 r(d—1), then K7, N
A\ N
4+l = ard A\S)

= (1 +r(’a—1)m+a—@

=1-0 + J@bran}l)lﬁtﬂr@mglf
,,1+( LIS

Therefore, by induetion, the lernma 1s»true.

™

23. Lemma (to J24): /fa »iﬂnd b == 0, then there is an infeger r
such that b = al” — 1 and ,w 0."

Proof: By J2, there i3 :cm\'nt-eger r such that

(i) s \t} 1)/b == 0.
N—Ow O, ’&. — (al.-"'r)r ;; 1 _I_ -r-(a‘*” _ 1) b_Y Joo.
Therefore \\ T {a—1)jr el — L

Then, by \\. b (e — )jr =al" — 1.

24, ‘Le}uma to definition J25): If {u} and {v} are Cauchy sequences
of 4 mtibna! mmbers, if lim{u} = llm{ 3 f a0, and if 3, = a*v and
Y}\—\ a's, (hen {x} and { y } are Cauchy sequences and lim {x} == lim{y}.

Proof that {x} s @ Cauchy sequence:

Case I, a > 1. By I35, there is a % such that £ > wu, for all large ¢.
Then a* = are, Therefore, for all large p and g,

ab(aro v — 1) =2 | a%s — 8% | — | X, — %, |
If bis positive and non-zero so is ba ¥ thercfore there 1y, by J28, a r

guch that » = 0 and ba™® = abr — L.
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Now 1fr = |, —u, | for all large p and -
Then b Z= ak(atr — 1) = af(ats v — 1) T | x, - x, [
Theretore {x} is a Cauchy sequence.
Case If, 8 - 1, Then {x}-=[1], which is o Cauchy sequenee by 110,
Case [T, 1> a2 0. Thena ! 1. 7l = {an) 1w (a1

Thercfore, by case [, {x1}is a Canchy sequence. x1 2 n,

Therefore, by 125, {x} 1 a Cauchy sequence. O
Similarly, {v}isa Cauchy sequence. L\
Proof that lim {x} = lim {y}: O

Case I, 3 =1, By I15, there is a % such it kg apsl o=,
for all large p. Then .\’.\}
aF(ave—vol 1y [ & — avs ] = [ mavy, .
It b is positive and non-zero, there is, by ¥23, @\}%u(:h that
b_a_;c T a]_l,r.r _ 1 ..\ W

.dbraulibrary crg.in\,J
Brra W\'ﬁ; %‘a Mg, — v, forAl lazge p.
Then b == aic.{alfr -*-—slj:“

L 3

= a*(a el L 1)

=%, >y,|
Therefore lim {x} = lim {y}gby J11.
Case IT, @ = 1, {x‘}\¥~{.}r} ={1], and so lim{x}= lim{y}=1.

N\

Case TIT 1 ~ 35220, Then g1~ 1, Therelore, by vase I,

3

\;:,\ © lim{x) = lim {1,

}‘ﬁm{x} = lim[1] = lim{y—l}-lim {y}, by I5.
]im{x}: ]im{y}.

But lim {)Kl
Thereforg{\
”gﬁ'.“\;.i}eﬁnition (of power of a positive real number): If x > 0 and
v ’:im{u}, then x¥ ig H.m{x”}. Note: by J24, {x“} 15 a Cuuchy
sequence and therefore hag g limit; and this limit is mdependent, of
the particular {u} chosen, as long as Iim{u}=y Ifyis rational,
then x¥ is already defined. But under the new definition,
¥~ lim{x*} where {u}=1Iy]
=lim [2"] where 57 is as previously defined
== x¥ a8 previously defined,

Finally, we define 07 to be 0 for eVery non-zero y.
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26. Theorem: If {x} and {v} are Cauchy sequences, if every v, is
rrm'mzfz.-’_, if every x, > 0, ¢ lim {x} == a =0, and #f him { L} ==y, then
lm{x*}~ a*.

Notes: {xv} denotes here, of course, the succession whose p™
member is x,%».  The theorem could be stated less formally as * x7
is = continuous function of xand of yif x > 0",

Proof; By I15 and J2, there is a positive non-zero infeger s suelp N
that s = », and § > —uv, {or every p. Therefore there Is a k such gha\t.
k 7 at| for every p, and k is positive and non-zero. A

¢ f is positive and non-zero, then so is af. Theny hEGanse
a — lim {x}, af =] x, — a| for all large p; that is, £ 3 h) where
h is x,/a — 1. Thus, if b Ix positive and n011~zer??,~ﬂ1%.>n 1> h],
ibi(ks) = | hi, 1/2:s > | h|, and bk > h| foratl large p.

i

1 0 == hand », > 0, then ‘x:‘\\';

0= (l-+h)»—1=(1+ h)ﬁw—-dbran{lﬁz;lf}lfbﬁﬁ)ﬂgln
>z &h o\ ‘i’}} J22, with I + hior d
LY S

1f 0= & and 0> »,, then
{1+ hy =1 :—’P,\:hl by J22 with 1 + h for d

S 2:5m) hecause (1— 2 sh)(14sk) ZL

Therefore (1 — 29@1}"2 {1+ k)™=
Therefore \\éb,k = —2sh

£ )
S A
,v&.\ (1 -+ hyr—1
:‘.\‘. _
"'\: w4 =0

N\

If h =0 and 0> v, then

Then 0 (1-+h)»—1
(14071
= —3bik by (i}-

gt e sh— %kt L
* Proof: 1 --2-sh. Therefore - +h = 2-¢h% Therefore 3 — sh 2.aht =
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It h =0 and », = 0, then
1bik = 9%k

= (1 —hyFr—1 {this 15 readily proved he
rruluetion on 5}*

=(l—hn»—1 byJel
=),
Therefore, in all four cases, N
B 2 (L e — 1 &
= | (x,fays — 1. Ke)
Therefore b = b a% | /k > | x50 — at» |. . '\‘

But 3b > | a%» — a"| for all large p, because a® _lml‘fa b
Therefore b = | x,% — a¥| for all large 9. [herohare lim {x¢} == a.

Corollary: Put x¥» in the place of x,, 4 hore x 2= 0 and {#} is a
Cauchy sequence Q}wﬂ@ﬁﬁﬂﬁﬂ[lmmdgenrg‘ﬂ{ﬁ hm{u,}_u ’l‘mn 11

place of & we have x% and the fheorenhb('mmbb
lim {( x*‘) }—‘

s,.

27, Theorem If x = Ot‘l\l{d ¥ > 0, then x¢ y“ = (xy)", (2" = ¥
and x"x¥ = xo*+v,

Proof: Tet u be; Isp}{u} and v be lim {+}. Then
g alﬂm{x"}h_m{y !

“\x:\_ lim { xi-y+} by I3
%w’ = hm{(x-y}“} by J17
?‘\ = (x¥)".
Anrﬁk\:’ (%)Y = lim{(x")“} by corollary J26
\/ = lim { g%} by 718
= g"" because lim {uw} = wv.
And 2'x® = lim {xv Flim { x”}
= lim { x*x} by T5
== lim { xvtv} by J19

—x beeause lim {u + vh=—u-Lv.

*Assume that 2%h (1 + B} — 1 + § and multiply by | + h. Tt soon follows
that 2410 (1 - P - 1 4 b,
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28. Notation: [x] denotes the integer p for which p+ 1 > 2 = p,
{"I'his notation should not be confused with notation 110.)
Cirarly [x] 18 defined for all real numbers x; and x > (2] >x — 1.
Theorem: If { is an integer, ¢ =2, and 1 > x = 0, then there s a
suceession {1 }of infegers such that t = v, 2= 0 for every p, and lim {e}=x,
I

wheir €, 18 2t ™ A

=1

Proof: Let v, be [x#?] — #[x-*-!]. Then each r, is an integar)y
_.v 4 .\ o~

i
Cp — ZT([X ;_m]ll.-'g_m _ |_X'i"'“_1:|l,-'rim"1) —_ [L’.'f-p];’t”. A \o/
=1 N
Therelore x—¢, 2 x- P =10 ,\ &
Aud ¢y — X 2 (%P — )ity — x= —R \/
Therelore |, — x| PN

T/ b == 0, there is a positive g such that 2¢ 2 h“}} i)x H9 and J2.
Then b Z» 279 3 (¢, because ¢ %ﬁ.‘“'ﬂhﬂ?@?ﬂ*‘%ﬁbver P =g
Therefore lim {c} = x, by definition J&3"

B T Ty S |
and t==x —M il — 1) >y

Therefore é\> ry = 0.

Note: 1 ¢ is ten, they the succession {c} eorresponds to an infinite
decimal, because its{@? clement 18
Or 10 A 7102 4 L - 7,107
..\‘0

that is, Or{}g . 7, i the usual decimal notation. Tts limit is, there-
fore, whagyls nsually meant by the infinite decimal O-ryrory. ... The
thconciﬁi'i'n this case becomes © Every number between 0 and 1 can be
CXfRe;‘S:%d a¢ an infinite decimal 7', Tt follows that every real numbgir
can be so represcuted, beeanse X = [x] - r, where 1_“; r>=0. [x]is
he usual decimal representation, by ... %y,
integer between ¢ and 9 inclusive. r can be
expressed in the form Gryrprs . . - and then x 1 Mg« - Tyl

Tt is obvious that cach infinite decimal s the limit of a Ca.l}chy
numbers. Therefore the real numbers are precisely

an integer, and so bas t
say, where each # 13 an

sequence of rational

the infinite decimals.
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EXERCISES J

. Let F be the set of ali expresstons of 1he Jorm Ple)/Q), vhere
P and € are polynomials with non-zero leading  cocilieients,
together with 0. Addition an mmltiplication are defined as in
clementary algebra. Prove that & is a fiel and that i wedofing
{axn -+ bzl e (g);,-{ﬁrm b geml +... ,{r) to b'(;.\"}%mh' e
if and only if a+f is positive, then £ is an ordered field, WJuive thag
theorem T2 is not true for # {that is, if £ is an t'z[emeil‘f?wﬁf F, thore
18 not always an mteger 7 such that » = . '..f'\‘

2°{>
- . . .. W
- ks an upper bound of 5 set M if & == whenever e M. Prove

that it M is & set of real numbers which Lasa upper hound, then
there is an upper bound I with the propaiey’ that il £ is any upper
bound, then & =1, &

. P oand Q ir\gwnﬁ [pnﬂbf-m;% af g;rgﬁl:,ﬁﬁmbm“s .such fhat e:_-{(lfh real

number is in"erther # or ¢, o Ieal'number is in both, and it pelP
anid g € ¢) then p > q. l’t'qyje:‘;tﬁztt- there is a real number 1 with
the property that 4 e P B>k and 2 €Q i k> 2. Prove that
this is not true if we veplace * real 7 by “rational * throughout.
Note: this is De(feé:gﬁ@@ theorem,

"s'l
The deetmal {eMgve Note 7 28) is said to terminate if e, — 0 for
all large p. Phove that two different non-terminating decimals
must represitt two unequal numbers; that two different torminat-
ing decipadis’must represent two mequal nunbers; and that each
NOL-ZeF0, terminating decimal represents the same number as just
ong\u‘Sﬁtermina.ﬁng decimal fe.g, 0-5 = 0- 19].

S

o
“\‘o

™

~\J
) 4



CHAPTER K

Complex Numbers
N

1. Definition (of complex number): A complez number is an grderad
pair of real numbers, sums and products being defined by the agations:

@b+ d)=@+ed+d N
and AR
{a, b}(¢, d) = {a-e — bd, ad b-.a)j\"

Note: The ordered pair {a, b) is equal to {h\c (;rdered pair (¢, @)
it and only if a=cand b=4d. O

www_dbl'aul'i't}ral'y_org_in

2. Theorem: 1The complex numbers fordy a field.

Proof: Dla, b, ¢, d. ¢ 1, &, azgd:?k can be verified immediately
from definitions K1 and the prefierties of real numbers, i we take
{0, 0) for o, (L, 0) for ¢, and {—ay*—b) for —(a, b).

To verify D1h, we haveliest to show that if {a, b) # (0, 0), then
a2 + B2 # 0. In facs, a%“a}d b2 are positive, by Fa. If a*+ p¥ ==,
then —a? == b% and 96.is positive. Therefore a® =0, and so 8 = (.
Then b =0, contddicting the condition (a, b} # (0. 0). Therefore
a? - b? cannot )helzero, and 8o we can put (&, b)~ = (a°c, —b-c), where
e =1/(a®+ ,Jﬁl.w‘lt is then easy to verify Dlh.

P

3. Deflnition (of §): 1 s (0, 1) Note that i is not the complex
nuraben, blaying the part of the ¢ defined in D1. This, as mentioned i
K2{ 15 the complex number (1, 0).

AV £ — (00— 1-1, 0-1 - 1:0) = (=1, 0) = —(1. 0)
(a, b) = (a, 0) + (0, b) = {1, 0) + (0, L)(b, 0}

4, Theorem: (%, () < X1s an isomorphism belween complex numbers
of the form (x, 0) and the field of real numbers.
Proof: The correspondence is clearly a matching.

(X! 0) _|— (y [I) — (X "]I— ¥. 0}
(x, 0}y, 0) = (x5 — 0-0, x0 + 03} = (x5, 0-0)

11 (G aad)
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5. We call complex numbers of the form (x, 0) real. If wo g
the distinction between a real complex number and the real numbor
corresponding to it in isumorphism K4, it will follow from K3 that
each complex number iz of the form x - iy, where x and ¥ are roal
numbers and i# = —1.  Moreover the definitions of multiplication an.
addition are what would be obtained by wribing {a. b} as a -— b &l
o on, and multiplying out as though i were a real rumbear, wnel 1
replacing i2 by —7 wherever it ocours. It follows that every colenligdvn
with complex numbers can be carried out by this process, gfdnti.
We ¢an now treat the complex numbers from the usnal tyheiitary
point of view. N
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KEY TO THE EXERCISES

In general these are skeleton solutions and hints, from which thel

full solutions should be easy to deduce. SO\
: 0\ .0

A \

10" 207 — (07 + O) = (0" + 0Y) = ((0"))" = 0"", b§734 and b.
0"0" == "0’ +4- 0" by 9a S
=0"L-0" by14and 10
=" {ulready proved). Ky NY

2. Let M be the sct of = for Whﬂﬂhdbﬂéuﬁblk}ymg(}lﬁ M. lashows
that if & # &', then ° # #”. Then l’czc:milpletcs the proof.
3. 0 y=2-+y by 3a Then .7:3—— 0 by 6.
4, y=I(y-+u) +v=y+ (wk"), by & Then u+v="0by 10
and exercise 3. 24
Then w=10,by 7., , i:\\
X\ T ] ,
z-Futov)=-Pul-tv=y+ov==2 =x+ 0, by 4, 3a
and 8b. Then ua = 0. 1f v 0, then v = w’ by 2; and then
{1 + ) = u@—iﬁ;’: #+5=0, Then u -} w=0and sou=20.

wmr

6. Let N\i})};'the get of all whole numbers p with the following
propertf Nif y ¢ X, then there is a « such that y==p +u. Now
m' W= m - u # m, by 8b, excrcise 3, and 2. Thercfore if
m&.X, m' ¢ N, Thus pot every whole number 18 in . Kow elearly

£ N; therefore there must be a @ such that z € N and 2 ¢ &,

We shall show that this is the z required. Since » € N it has the

property stated. It remains to show that ze X. 2’ ¢ N; therefore

there is a m in X such that for no v can we have m = " 4~ . Since

m e X, however, m = z + w {or some w, If w # 0, then w=129

for some v, and 30 m=x -b ¥ = #' + v which we have just seen
not to be so. Therefore @ = me X.

7. Let X be the set. of all whole numbers ¢ for which v =a + i

for some non-zero {; such numbers clearly exist, e.g. 2’ 1s one. By
123
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exereise 6, there is a z in X such that if ¥ € X then y = w -~ for
some . Clearly & # 0, and so 2 = ¢’ for some 9. By 8 we cun now
prove that ¢ = ¢ + » for some r, and so {1) 18 trus,

If (ii) is ot true, then ¢ - b +wbv 8, Then ¢ = beg -+ (b4 w)
= b¢" - w, which is not so, beeausc 7 e X.

8. 2,3, 4,5, 8, 9,10, 12, 13, 14, and 15 are true in all CHRSRY, G5
only le is required in their proof. )

In case (i), 6 and 16 are also trie, 1b not being required. %l

11 meay be true oe false if 1b is fulse. E.g.in the system {0, (4%, 7

with 0" = 0, 1a and 1e are true and 13 is false. 0" = WASSW, andd
0 7 is false. 070" =0, and so 11 is {ulse. But in the §¥stem Ju}
with ¢/ = 0, 7 and 11 are clearly true, although 108 Tilse (and 1a
and 1c are true). R4

In case (if), 7 and 11 are true, 1a not hefay, required for their
proofs. If 1a is false, then u' = o where @ v, Then w4 ==
v+ 0, but w # ». That is, 6 is [ulse. ’\ ’

The generwhfe:@dhratlibiaEer &ﬁ“ysh%b 1b and e are true wad
lais lalse is oy, oy, 2, .. .. 7, Y10 g SN 5 y; where ¥ =y, Dencte
by * the addition which 8 definc®in this sequence. Then y, % it
tarns out to be ¢, where § = 28 27 modulo 5. 1f we choose 7 con-
gruent to —» modulo s, then I}"}Iyi =ipwhere b =y — 9 = 4 — 7,
Then, using 10, 0%y, = Ofg,, and so 16 is false,

)
N\ B
1. (i) A hemigroyp\ekcept for the existence of e.
(i) A group\©
{1i) *is no\t\aﬁ oporation unless m is prime. In this case we have 2
groug./
{iv}) ‘},*} == 1 for every x. Therefore ¢ fails.
(}f.)\'l"f'm ¥y ==1then (x — 1}y — 1) = 0. Thus *is an operation
"\ on the given set, a, b, and ¢ are easily proved, and 0 %0« 0,
A which proves d. Therefore we have a hemigroup. 3.1 a—4=0
is not solvable for ¢. Therefore the hemigroup is not a group.
(v} A hemigronp: % plays the part of e. (k- 1) % x =% is not
solvable for z: i would require =% — 1. "Therefore the
hemigroup is not a group.

2 I u, v, and w are any three functions,
({2 % v) % wlz) = (u * o)(w(x)) = u(e(w(z))).
By similar reasoning, this equals (u * (v * w))(z), and so * is asso-
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cutive. (f# f }w) = 1/(1/#) = z, Therefore f » f plays the part of ¢.
Lo 1s casily verified that the product of any two of the six given
clements is one or other of the six: and that f, g, f+ fand g« f x ¢
are their own inverses, and that f*g and g x f are inverses of one
ancther.

3. Hal|bisanydrad,leta=bxz Thenag|b=bxz|brxe=z]e
Therefore the isomorphism z{e < Is between the set of all
dvads of H and the set A itscld, Q

1. I g, ...a, are the elements of H, then @ x g, » othe BTE
elements of IT and, by 1e, no two are the same, Thus ‘rhev wre the
# elements of H, in some order. Thus if ¢, is any clemcn‘f of H
there is an a; of H such that a, * U == = gy—and this s tme for each &;.
That is, the equation 2 x g = b is always aolvable\ “Similarly for

Q%@ ==h.
g, (i) (yxa)vz={e*xx)*xy by 2, \\“

(i) The mapping is one-to-oR&, by bfhé' {éﬁh%@lé’ﬁl%ﬂnlaw
{@axx|a)*( a*y{aj_.aaa(bc*y | a.

(ii1) 2-16 do not require 1d. The mmorphlqm in the restated 11 is
{ii), which 1s, by (i), lnd(‘pcn&{,n‘b of . Also ¢ | @ is independent
of @, and 8o can play the‘pm'r of &, 13 is clearly still true, and
14-16 follow from 1t «17—22 follow from 16.

6. {77 * (7 = 1)) { f?}*n)*(ﬂ*ﬂ =7 This gves us d.

Then % % ¢ = 7 * ;‘;\; = g x 9 = x. This is symmetric with e.

17 does notuge, ¢ and, by symmetry with it, £ % « = fis solvable
for &, and?]{ocv—f*mon_lyﬁ np==~&

18: ﬁ'm{-‘z&thens—sby 17; and if a x x = £ then k1 = &
by 17; 's}:d by symmetry with these, if £ ¢ = & then ¢ = ¢, and if
n:*oev-—s, then » = &.
¢ 19 and 20 do not use b,

\ The theorem corresponding to 21 is Exp=7*

¢
1. o Fo ={0 —0) - (0 —0)=(0-0"+0-0) — (00 + 0:0) =

9. If 0"—0=0 —0, then 0" —~0=0 =0, whence 0' +-0" =
0’ 4 0, whence 0’ = 0, contradicting A2,
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3. Alax if BX = 5 then £ 4 (=)= 0 a2 - .

Alb~: o plavs the part ol 0, bogose if £ o f—"y - 2o then
-—£ is not positive.

Ale*: it N coutaing o and contains E2whinever o comeing &
then it contains 0 — 0 and containe 0 - Fowhenvver 0 oeontaing
F-— 2, whenee it contains, by Ale, every 0 - .

ABaX i3 £+ 0 = & and ASH* is Sy (S e Thise are
clearly satisfied and they wrapiely define adilitio, \

ABD~ hinplies 0%0X = ¢, whish mmphies (o) LN 0,
which is false, because o' #= -—o', which can he Proved ns i{ij\:-.”-f-i.«-rf 3.

4, The correspondence is clearly one-lo-one, and (’3’5
O—=2) FO—yp =0 -z =—y. D

(0= O30 -- 0% = (0" - 0) # (0 — 0") b v — 07 == 1, ns

bofore. \
A I & s positive, put 5 = o: otherwize ‘}iht 3=-

If —a i:sw}\;::?giQﬁyé\full)ll?g‘a;}gzs-1nj § :;léﬂ.-, them put 2 — 2 i 5 s
positive, y == —u if B is not pt)si'i;i:i@}” and use 033,

s’~.‘
%
E XY
e

o)

o 3

& D
PAN

e, . . ) .
L, la, b, &, £, andt Edre casily verified. 1e, d, g, and h are fruc if
O = @, —f = Ut == b, 2 ==, and b- = 5,

[

10, 1, 22 5adih addition ard multiphication module 3.

3, [n t-lge\’ﬁ}zld of exercise 1, § 44 — 4.
Let{“{‘r';denote the sumn of m ’s. Clear] YO = paiand #7490 =
'p+°i,};\{f pg 15 the smallest w for which "= g, then ¢ = o, and
o but v — C Fp—

4 o

\V If w0 for QVery non-zero m, then = == I8 4 one-to-one

/

correspondence, becanse if #) = wha; tliay, o o o,
1. By Dia, ¢, g, and %,
R [ (N S + )1y, and
@i b=y -1 )= (2 (g =) = .
The result follows by adding - .y on the right and - .2 on the left,

becanse, by a proof similar to that in exercise BS, 2+ 0 =2z and
—% -z ==0,
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E

If x is 2/8, put g = /(3 - (8 + )

It (2/8)® = 2, where /3 is in its lowest lerms, then x? = 2.82,
and so « would be even, and so f# would be odd. Then o2 would he
divisible by 4 but 2-5% would not, O\

If there is such an x, let it be /6 where v and 8 have no ¢diimion
factor. Then 28 — 8%, 4 is prime to § and so divides 2 et
y? =&, Then 2= £8. Then £— 0o otherwise yaud”’s would
have a common factor. Put Y ==7i¢', and 2 = dfole 3

Il there are such & y and z, they are non.—zprg{bim&use o and g

are. Put x = y-z-. v

Puiting 0==(0, 0), 1= (1, 0), — (apdy = (~—a, —b). and
(@, b =(-a-c, b'c}mwh;tmrsuﬁ@@»g;hﬂ-gﬂﬂz}—, whose exig-
tence is assured by exereise 2, D1—a™evare easily verilied.

The given correspondence is glg:ﬁatrl}' a1 isemorphisn.

<N

(05 -”(0! I) = (21 0) ’.:'“6

. 2

z 4 (=) = sy (—(—a))
Tf y =0, ¢Heh™o > o and « >0, whence ¢ — o. By exercize 1,
—y & —wsphénee (—x) > (—y) by 14, whence —(z-) > —(y).
N ,
1fiNAd =0, then a = —i ¢ P.
N\

‘A’l}: o' =y, thenw 7=y L1 and g0 » = Y.
CAlb: o€ P, and if w e P then 2 € P; therefore every clement

Nof {is in P, whenee, by exercise 3, if @’ = o then a ¢ P.

5.

Ale: obvious, )
ABa and b and A9a and b are clearly satisfied by addition and
multiplication in the field,
Alb may fall for a non-ordered field: in exercise D1, i’ = o,
Let (z, b) e Pif and only if (i} o 0 and & =0,
or {iiya =0 and ® > 2462,
or (i11) b =10 and 262 > a2,
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posit-i\-'e, put =5 .md ﬁ = —_rf_

Let p be &y and g be /¢ where » and ¢ are positive (iwing
excreise 1), Then put o == &, 3= 50, and o = 4ch,

Let p be /v and g be fij» where y 1= positive {using exeralas

1 and 2), Then {x 4- {—f)}fv =0 and so 18 quld.l to ofp M6 Kome
nositive o and p. Then, by E2 and 082, « -+ (~-3) 13 pomtlve “Now
put r = (e + )ty + ).

_

If x is posifive, put y = x and z= 10, if no{:put .y =@ aund
Z o= — X, 8

By variong isomorphisms, the pomtw{unteﬂeh form a suc-
cession, Let N\\rh&\rf&llﬁr s&h!ﬂ[arﬂg}'lopgdltr\v mtegers x snch that {t
yeMtheny > x. ThenOe N. Thxle N whenever x & I then
every positive infeger would be 1 N “which cannot be. Thus there
is an X such that x e N and x{’qé N. This x is easily seen to be
the required k. N’

T x is positive, let Mibe the sct of all positive integers mrt such
that m = x. Let k beas'in exercise 5 ', and then let p be such that
p-I=k hoxu{\aﬂ‘wo g+ 1>x>q, then g+ I M, and s0
g-I>p1+ IANiq+#p theng >p+ Iandso g = x, which
oot g0, @57

It x 1‘»Q0t‘ positive there is, by the above result, one and only
one mtewxal rational r such th‘it r--1>—x2>r Then pisthe

nump For which P 1=—

ﬁ‘ there is such an z, then ¢ - (-—~p) = re P.

\”\; “ 1t g = p, let ¥ be q |- {—p), which is in P.

H

If aea? = U, put y = a'x - k.
If 42 —h2-—-ab put & = a—{y — h).

#* 0. Therefore #® 0. —& 0. Therefore —z2+ 320,

Bee J22.
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If 2> 1 then, by exercise 3, 22 >1 + Pz —1). Choose p so
that p(z — 1) =L,

If 1 > @ > 0, there is & ¢ for which (z-)2 > %, Put P=—q.

HO0>g0 (—2) =k Xris even, " = (—x)*. If not, either
T 2 (—g) or 271 = (—a),

. Let &= be the smallest power of ¢ greater than . Dividing a by
17 we have @ = £,4% 4~ 7, where ¢ > 2, > 0 and £* > r, =0, Now\
divide r, by #-2, getting 7, = #,_,1%1 - Tn—y, 80d 80 on. Nownif

¢ = 3y, 7, clearly £7+1 ig the smallest power of ¢ greater'gﬁhn\‘a._.

=1 :\ /
and 50 m = Then z,¢" J-r, =y, + g, where B s, = 0.
Then (z, — y,)¢" = 8, — 7,,. Bubz, — Yy 18 @1 inte}gpf, anid 80 can

only be 0. And so on, N
If a holds, 0 = I If b bolds, 07 = 0-1+1 L0 = 0,
www_dbr‘auhbj%{‘y_org_m

1 O

S

. Let £ be as in lemma 185, apg{f’l similarly for {u}. If b > 0, then
uy — U, < ghk and x, — 2= 35077 for all large p and ¢. And
|ty — @y | <@y | f@ly — e | + | ug |- | 3, — 3, |,

Thus {wz}is a Cauchy(aquence.

| sy, — vy, |, 7‘3:,, || %, —u,| <b for all large p. Thus
{wz} and {vx} arein the same Cauchy number,

Applying thif”’result again we see that {va} and {vy} are in
the same szu}ﬁy number.

. LB‘F\&;E‘:%H{:h that 3251 2y, for every p (I15). Then
& }3‘%’}1&:5—1-5 + kb b > I Lo ¥n [ - l Toliq ] > i TyYp — Tye |
fQ{"E}H large p and ¢.
NIt {y} has property («) then | z, + 3, — (@, - y,) | <b.
If {2 4 y} has property («) then | (=, + ¥,) — (%, + y2) | < 35,
and 50 [y, — Yo | <3+ |2 [ + 2]
It is easy to prove that, given I, n, =1 for all large p. Honce if
P(p} is true for all large o, so iz Pln,).
If d >0, thend > a,,— a,, | for all targe p and ¢. Therefore
{6} is a Cauchy sequence. 4 >]a,, — a, | for all large p. There-
fore {a} and {b} are in the same Canchy number.
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4. Let x be a Cauchy mumber and {o} any Cauehy sequence i x.
Let 2 Z=u, for every p. Then k =z, If » = kyothen 6 7w

J
1. It is easy to verify that F is an ordered field.
rilz e/t and only if (—» — #)L s poattive, Le. —1 T
which is not so, N\
2, Let p be an infeger and an upper bound of 47, Tet ni & W i
let ¢ be an integer such that m 2= - . S\

For any swhole number 7, as s runges from 0, ~1;-’Q'sfj:r'; =gl
—g |- 277s ranges from —g to p and 20 some NS valies are
upper bounds of M. Tet [, be the smallest. TheaN, — 2 7 is not an
upper bound and so, whenever ¢ Zor, [, Z2RN¥L — 9= Tt woun
follows that {7} 1s a Cauchy sequence arichgdalt if 7 iy it linsi, then
L =1=t — Do Graglibrary orgin { &

I'is an upper bound, for if m =AHen 5 — [ = 2% for some 1,
whence m = [, because { =1, — 27

Now let & be any upper bmm.d:;. Tf L = et — L 9-r Jr— 2=
15 not an upper bound and ao mo= L — 277 for some m.  Then
k=1, — 27" and so I > 4 Which is not so.

-

Let I be the least, gtpﬁer hound of Q. If @ =/, then r & ). There-
fore e P, If £ “;«\(,\f;llcn 18 not an upper hound of €. Therefore
there & a ¢ in Quch that y > 2. But itz & P, then z > g. There-

fore r e Q. &~
Let Prbethe set of all rational numbers x such that x® 2= 2,
and b8 the st of all rational muimbers x sueh thet 2= x% By
the Jroot of H9, P and Q are seen to be non-null. By exercize B2,
rlgj?aetiouul number is in both; and clearly euch rational numnber is
”\‘41@;0110 or the othor,

Now if a rational number k with the given properties exists and
Kk > 2, we can find 2 p in P such that |p2--2| = k*— 2| by
letting b = { | k* — 2. and p be the Brst of the mumbers i1+ b,
I -2b. ... P Butthen k -~ P, which is not so. Similurly we
cannot have 2 = k2 Since k% # 2, k cannot exist, l

1. |1---99 ... 9| =10-", which is ax staall as we please for
all large n. Therefore § represents 1. Then epem, . . . a9
=8y, b I b, =q, +1,
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oy, ... =x = by, .. and e, > b,, then by F1210850,.
But ¢ and by are tutegers, and so g, = b+ 1. Then Ly, . ..
= hihy oL, Then ay =0, =... =0, for it not gy ..
= l=0Z28b . ... Andb,=b =... =9, forif not Laga, . ..
=l=0 > hph ..,

It follows casily that if pam, . .. = bbb, . .. and a, and >
tre the first unequal corresponding digits, then either q, = by L.
Gigr-oo=0and b, | ...=0,0rb =g -1, ste. \<\



INDEX

value, VI3, XI 6, F16.
L2, Voo,

It

Adons, LV 20
5 01,
alion .,11 numbers, E10.
vf Ciinehy numbers, 16
of comnplex members, 1X03, K1
wmbiitive, 11T 3,
tlerbrade system, FIT 2,
ali large ..., H13.
snalozy between subtraction and division,
Vo
approximation, V11 2,
Avchimedes’ wxiom, VI 7, GB, J2.
arithmetic, T4
of whole numbers, 1T 4.
of integers, V 4.
lasws of, TTT 1.
associative law for addition, TIT 1, A4,

LIty

W W

€7, E18, 19.
for multiplication, IIT 1, Al3, C19, E§, «
120, N
whatract, B10. ~ .
axiom, 1T 1, IIT 2, ¥ 5. \"

axiom of Archimedes, VII 7, G&,z:m?

balance, ¥ 1. A\
bound, ¥x. J2.
bus fares, [V 1, )
calke, 1V 1. \ :'\
cancellation il\\eij,r:ﬂ.f:ﬁiolls E4.
eancetation daws of addition, IIT 1, AS,
04
af m}}&-ip‘l{mtion, IIL L, AlS6, C22.
adrstrapt, BS.
carfingl, I 4.
(fauchy field, VII 3.
number, ¥I1T 3, I3,
sequence, Vil 2, I2.
eirele, VIT L
comrutative law of addition, IIT 1, AB.
08, Ei2, I8.
of multiplieation, ITT 1, Al4, C18, ES,
Io.
abzlract, BO.
complele, Y11 O
complex namber, 1X, K1

i of whole numbers, 11 4, X 5, A8,

| contmuity, VI 6.
eontinuous, Vil 4, J7.
codrdinate geometry, IX 4,
counting, I 1, T 3.

crosging the road, 1L 8.

decimal, T 4, V1T 2, J28. N\

Dedekind, Ex. 33, XI 3, XT4, M)

diagonal of a square, YTU 1. {

dmccmhmlous, V11 6. \
 distributive law, IIT 1, Y} 1, W1 2, Alg,

" Al5, €20, D7, E16 197,
division, ¥1 2, Hlaz \
dyad, Bl.

N

bl a%qeﬁus',ﬁ?]fg {HS X131, Bll, Ex B3.
C23.\E1Y, I37, K4.
eual furletions, X 6.
equa‘] gets, TV 4
L‘qm»alent VI 2
sg}u,hwu e, ¥1 3.
b oxiatonee of Freotions, IV 3.
of complex numbers, IX 4.

d

{ield, ¥T 1, D1.

{ingers, connting on, IT 4.
fraotion, I'V.

funetion, X 6.

greater, I 2, VI 3, F§.
gronp, definition of, 111 3, B18.
examples of, 1114

half, F23.
hemigroup, 111 3, V 3, ¥ 4, B1.
historical order of development, X1 2

identieal, TV 4.

imaginary, IX 4.

meiusive, ITT 3, F1 3.

index laws, ¥TIT 1, F17-19, J27.

induction, TT 3, I 3.

inductive, 10 4.

infinite, 1 6.

infinite decimal, V11 2, J28.

integer, I1I 8, 1V 5, ¥ 2, C1, G¥, J1.
of an oerdercd iicld, F21, G7.

integral, E17, JL.

153



134 INDEY

intigral donain, X1 2. " pewilic numhbers, NI b,

isomeorphic, 1L 4. polyuinmial, J3.

tsomorphism, definition uf ITT 4. positive 1T 3, VI3 (24, GI, H1, 129,
examples of, 11 4, TV 5, BI1, €9, €23, . power, V11, H2, J186, 125.

El7, I37, K4. Priveipioe Yeth matficg, X3,
©oprodnet of while naeilbers, A9,
Iemrldu E., X1, X1 2 H1. ob interors, (1%,
large, H13. of Canchy nombers, I3

lm- ot arithmwetic, 1111, of complex wimbers, K1,
frss, V33, Copraperty, 1 7. 7\
limit, VIT 4, J8. pire imaginary, TX 4,

Littlewoud, J, 12, A\ ¢

lowie, X 2, qedratic cquation, TX 1. ¢ \..>
qualcrnion, IX 4, \\

E::;hzlih:d;o; t_fé,-f_ " I'eLt-l: onal nmmber, ¥ 2% f'J 4, E1, J1.

matching ,1 9 ,'}{ . rational real mnulg@@\BI14, J1.

1-11: o T J, ’ real complex J]I]]]?{{Y’ K5.

real nuemben SN, VL, J1, K5,
reality, T -J-
u.n]lmluuk\i a.

mislending isnmorphism, X 1.
mixed nmber, TV 5,
maode], ¥ 5,

" root, VIT 2, ¥IT 6, J14.
wmefulo, TI1 4. . i \J_ @
maitiplication of wholewivsd barpljbrary Big > .

- o= lJ.l‘iwf“” i@ [.:..u‘adox X
X A AD

of iuicg_{‘.rs, 01?. . ,w‘r 1 2,17

of frartions, TV 2. ol Mt Rl(l[lddr‘d, 13

of rational nunbers, E1. N sipuare, drronal of, VIT 1.

of Canchy mmmbers, 117, e suare root, VL L, V2

of complex numbecs, IX 8, Kl* o standard (of approximation), VII 2.

’\ stardarid sets, 1 3.
succcasion, 102, AL,
successor, IT 2 X 1, A1,
sum of whole numbers, A3,

of raticnal numbers, E10,

of Cauchy numbers, I6.

of complex numbers, KJ.
surnrmation notation, Hl,
super-Canchy-number, 142,
svstem, 100 2.

natura izomotphism, X 2. '
negative number, ¥ 1.
neutrality for a,ckhtmn h‘] 1, €10, E15,
2.
far mulhphmtwn‘ BII 1, Alp, 026, E7,
2.

abstrast, qu;\
Newman \];“15[ AL ITT 3.
uota,hon';\%fr[tnc, IT1 3.
rhctywc of, 11T 4,

f>fs Ly » tahle, ITT 9,

»m\:l' SN 4. terminating decimal, Ty J4,
number, X 2 tranabinite, 1 6.

tumaerical value, V1 8. triangle inequality, F25.

two, I3,

one, 13, X1, X 8. _

aperalion, TIT 2, X §. unit sot, X 3,

urder, 11 2. upper bound, Fx. J2.

order-isomorphism, 138, 142,
ordered field, VI 3, F1.
The eemplex numbers not one, 1X 3.
ordered pair, IT1 2, whole fraction, 1V 5.
ordinal, |, 5. - whole number, T 8,11 2, X 4, Al.

valuation, XI 6,
vacung cleanee, ¥ &,




	Page 1�
	Page 2�
	Page 3�
	Page 4�
	Page 5�
	Page 6�
	Page 7�
	Page 8�
	Page 9�
	Page 10�
	Page 11�
	Page 12�
	Page 13�
	Page 14�
	Page 15�
	Page 16�
	Page 17�
	Page 18�
	Page 19�
	Page 20�
	Page 21�
	Page 22�
	Page 23�
	Page 24�
	Page 25�
	Page 26�
	Page 27�
	Page 28�
	Page 29�
	Page 30�
	Page 31�
	Page 32�
	Page 33�
	Page 34�
	Page 35�
	Page 36�
	Page 37�
	Page 38�
	Page 39�
	Page 40�
	Page 41�
	Page 42�
	Page 43�
	Page 44�
	Page 45�
	Page 46�
	Page 47�
	Page 48�
	Page 49�
	Page 50�
	Page 51�
	Page 52�
	Page 53�
	Page 54�
	Page 55�
	Page 56�
	Page 57�
	Page 58�
	Page 59�
	Page 60�
	Page 61�
	Page 62�
	Page 63�
	Page 64�
	Page 65�
	Page 66�
	Page 67�
	Page 68�
	Page 69�
	Page 70�
	Page 71�
	Page 72�
	Page 73�
	Page 74�
	Page 75�
	Page 76�
	Page 77�
	Page 78�
	Page 79�
	Page 80�
	Page 81�
	Page 82�
	Page 83�
	Page 84�
	Page 85�
	Page 86�
	Page 87�
	Page 88�
	Page 89�
	Page 90�
	Page 91�
	Page 92�
	Page 93�
	Page 94�
	Page 95�
	Page 96�
	Page 97�
	Page 98�
	Page 99�
	Page 100�
	Page 101�
	Page 102�
	Page 103�
	Page 104�
	Page 105�
	Page 106�
	Page 107�
	Page 108�
	Page 109�
	Page 110�
	Page 111�
	Page 112�
	Page 113�
	Page 114�
	Page 115�
	Page 116�
	Page 117�
	Page 118�
	Page 119�
	Page 120�
	Page 121�
	Page 122�
	Page 123�
	Page 124�
	Page 125�
	Page 126�
	Page 127�
	Page 128�
	Page 129�
	Page 130�
	Page 131�
	Page 132�
	Page 133�
	Page 134�
	Page 135�
	Page 136�

