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PREFACE

This book is intended for readers who, while mature mathe-
matically, have no knowledge of mathematical logic. We at-
tempt to introduce the reader to the most important approacheéa
to the subject, and, wherever possible within the limitations of
space which we have set for ourselves, to give at least< adow
nontrivial results illustrating each of the important methods for
attacking logical problems. Since Lewis’ sURVEY @F 8YMBOLIC
Locic and Jgrgensen’s TREATISE ON FORMAL L0GIc, both of
which are now obsolete, the only work of thi€ hature has been
the excellent book of Church, which is not {uitable for beginners
and which is not easily accessible. Thus the Present book differs
from those which confine themselveg™to the detailed develop-
ment .of one particular SYSWQWQ;,5%%’%‘&1]%05%:0“;‘?1%”3 empha-
sized instead the modern tendenew of anafyzmg fhie structure of
a system as a whole. We feel.that too many authors in this field
have overlooked the necessi(:}' of exhibiting the power of logical
metheds in non-trivial problems. Otherwise mathematical logic .
is a mere shorthand for'transcribing results obtained without its
aid, not a tool foreséarch and discovery.

Thus in the ¢hapter on the logic of classes we have a section
on the strueture and representation of Boolean algebras, which
is applieddnthe next chapter to the study of deductive systems.
In the ghird chapter we sketch the methods of Russell, Quine,
Zernfelo, Curry, and Church for the construction of logies of
propositional functions. Finally, we give a brief introduction

u;\‘thc\: the general syntax of language, with applications to unde-
N\ cidability and incompleteness theorems.

We have attempted to make the exposition as elementary as
possible throughout, Nevertheless, those who are unfamiliar
with medern algebra may find it advisable to skip the proofs

* in Chapter I, Section 3, on the first reading,. :
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In the last chapter we use the profound and beautiful ideas of
Post. We hope that one by-product of this book will be a more
widespread recognition and appreciation of his work, which
amounts to the creation of a new branch of mathematics of the
same fundamental importance as algebra and topology.

The connoisseur may find of some interest (1) the insistence
on the demonstrable properties of a formal system as a criterion
for its acceptability, (2} the simple proof of the completeness of
the theory of combinators,* (3) the simple explicit example of &
recursively unsolvable problem in elementary number theofy;,
{4) the first connected exposition of all the essential steps ifythe
proof of Church’s theorem on the recursive unsolvability, of the
decision problem for the restricted function caleulugy,

Much of the material was presented in a courge given by the
author at Lund University, Sweden, in the spring-of 1948.

- 1t is impossible for me to express adequa my debi to the
late Professor H. B. Smith for hig constgﬁét indness and gen-
erogity. I am grateful to Professors Churchman, Post, Curry,
McKinsey, Huntington, mum%f_g}{gthgir friendly encour-
agement when I was beginning my mathematical career. 1
cannot refrain from also thanking Professors Cohen and Nagel,
gince it was a misinterpretation of a footnote in their beok
which led me to abandgn chemistry for mathematics twelve
years ago! I thank Dgver Publications, Inc. for its unfailing
courtesy and helpfulness during the preparation of this book.
Finally, I shouldlike to express my gratitude to my beloved
wife, Flly, fox Yroviding the stimulus and the working condi-
tions without'which the book could not have been written.

Octolze}\\}l', 1649 PAUL €. ROSENBLOOM
N Byracuse, New York

N
N \ N 4
L

*Curry has arrived independently at esgentially the same simplification

of the theory of combinators, This appeared since the above was written in
Bynthése, Vol, VII, 1948-49, No. 6-A, p. 391-308,
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INTRODUCTION

In this book we shall study the laws of logic by mathematical
methods. This may seem unfair, since logic is used in construet-
ing mathematical proofs, and it might appear that the study ‘of
logic should come before the study of mathematics. Such alpro-
eedure is, however, typical of science. Our actual knowledge isa
narrow band of light flanked on both sides by da.rkness We
may, on the one hand, go forward and develop further the con-
sequences of known principles. Or else we may- press backwaid
the obseurity in which the foundations of scienge are enveloped.
Just by using mathematical methods, i.e:.Qy.‘Wor_king_ with ideo-
grams (gsymbols for ideas) instead of ordinary words (symbols
for sounds), we can throw new and important light on the logical
principles used in mathematics, oach has led to more
knowledge about logic in one c\gjzr?t}g%;r&&ﬁaﬁwf 'Been obtained
from the death of Aristotle: up “to 1847, when Boole’s master-
piece was published. ™%

We begin with the sitplest branch of the subject, the logic of
classes. After an inférmal introduction, in which we derive the
properties of cl vy a free use of naive intuition, we formulate
that theory asa.deductive science, that is, as a science in which
the assumpt‘lé’ns are explicitly stated and in which everything
else follow§irom the assumptions by means of explicitly stated
ruleg ﬂhe agsumptions are stated in terms of certain notions
whlch are not analyzed further and are taken as undefined. All
‘other concepts of the science are defined in terms of these.

"We then proceed to a study of the system as a whole. That is,
1nstea,d of developing more and more consequences of the as-
sumptions, we try to find general characteristics of the science
itself. This is typical of the modern tendency to emphagize the
structure of a science, to derive theorems about the science,
rather than to concentrate on the detailed derivation of results

i
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within the science. This study of the structure of the logic of
classes culminates in Chapter I, Section 3.

We then apply the same methods to the logic of propositions.
In doing this, we uncover a striking similarity between this
science and the logic of classes. It is precisely through formulat-
ing these logics as deductive sciences that we see that both are
special examples of a general theory.

The logic of propositions has been the subject of much eon- <
troversy among logicians and mathematicians. We discuss the
various alternative approaches which have been proposed.& %

We then try to consiruct general logical theories which' are
adequate for at least a large part of mathematics. Heére We run
into difficulties since the unreined use of naive intyitive reason-
ing leads to devastating paradoxes. Thus we must seek s theory
which admits as much as possible of the readoning intuitively
accepted as valid, but includes such restrictipns as to evade the
paradoxes. But a profound theorem. of “(36del shows that no
logical theory of a very general typé:cém include methods of
reasoning strong enoyeh,for, the Jrodf of its own consistency.
Indeed, in any system of logic'of this general type, there are
propositions which can be proved by an argument outside the
system but which cannot, be, proved within the system. Thus no

- formal logical system of this type, which includes all adequate
logics 50 far proposéd;,ean contain all valid modes of reasoning.
All that we can hope Tor is stronger and stronger systems which
are adequate, for, tnore and more powerful arguments, or else
some systmxadicaﬂy different from anything so far proposed.

In order to arrive at such results as Gadel’s, it is necessary for
us to\stmtinize our tools more closely. In a deductive science

thqai;gdeﬁned terms are denoted by certain symbols, which may
_bevblobs of printer’s ink, speech sounds, printed marks repre-

\ genting the latter, ete. The propositions of this science are com-

municated by means of these signs, These signs, together with

the rules governing their use and combination, constitute a

language for stating relationships within the science. This js

called the object lunguage. In an exposition of the ecience the
assumptions must ba communicated in g, language whose mean-
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mg is already assumed to be known, say English. This is ealled
the syniazr language. We usge the object language to talk within
the science and the symtax language to talk about the science.
In ordinary usage the confusion between the two leads to no
difficulty, but when the scienee under eonsideration is logic itself
we must lean over backwards to avoid unclarity.

The primitive signs of the object language are called its alpha-

bet. Certain combinations of these signs may be assigned meany’

ings. Such combinations are often called words or sentences. [f a
certain combination of signs denotles an object, then t.h:s com-
bination will be a name for that object. In speaking about the
object we use a name for it. Thus “Dewey smiled” is@@ sentence

wherein we mention the man Dewey by using gli}';'name, the-
word “Dewey.” When we are talking about a fidme or s symbol,

N\

it iz convenient to use a specimen enclosed \juotation marks

h 7 ig aname of

“Dewey,” which is, in turn, a name of\Dewey, who is a man,
Again, on p. 2, 25th line from the bogfom, we are speaking about
a name of the universal class,wbg&ad,bmthﬂmm.h:@mt is the nuil
class itself which is mentiongg}.: To avoid the use of names of
names of names and the like;\we shall also use such phrases as
“the letter —” or “the sign —" as names of the symbols of
which gpecimens are exhxbsted It is often overlooked that while
we cannot put a an on the printed page and are thus forced
to use a name when writing about him, we do have greater
resources whet’we wish fo write about symbols.

In partigular, a senténce is a name of & proposition. We shall

as a name of the name or symbol. Thus, “ ‘‘Dewey

say t;'t;he sentence erpresses the proposition, and we shall

often mge *‘statement’ as a synonym for ”sentence.” We shall
ofteii use the phrase ‘“‘the proposition that p”’ to indicate the
prbpomtlon expressed by “p.”’ Careful attention to these matters
Helps in discussing ticklish questions.

‘We are thus led, in chapter IV, to the mathematical analysis of
language. Whereas in the previous chapters our attention is
centered on the relationships expressed by the object language,
in the lagt chapter we focus our attention on the structure of the
language apart from its meaning. The former process is some-



w
times called the semantical study of language, i.e. the study of
the meanings expressed by the language, while the latter is often
called the syntactical study of the language. The methods we
use were developed espeecially by Post. We find in this chapter
that certain classes of languages, which include practically all
languages which have been precisely formulated, can be singled
out and possess important common properties. It is exactly the
mathematical method of abstracting from the special features of
_particular languages which enables us to prove ngorousj)? a
number of profound general truths, where metaphysicians would
argue back and forth for centuries without ever reaching 4 con-
clusion which could be tested.
" Mathematical logic is, then, no mere shorthand £0r expressing
in ideograms what hag already been digcov by reasoning in
ordinary language. It is, rather, a powerful @nd versatile tool for
solving problems which are 1nacee531ble ﬁ) other methods.

In the following we shall make references thus:
III2  denotes section 2of, ﬁm‘@&% in

T2 denotes theorem 2 of the present section;

T5.2.3 - denotes theorem 3 ofisection 2 of chapter V;

2714  denotes numbex?i by author 27 in Church’s Bibliog-
raphy, J, Symbolic Logic, vol. 1, no. 4;

(1135 denotes the\&tmle beginning or re\newed on page 35 of
vol. 11, 7. Symbolic Logic.

¥/



Chapter I
THE LOGIC OF CLASSES A

N

SECTION 1 INFORMAL INTRODUCTION ¢\

. N\
FUNDAMENTAL THEOREMS « N

Logic is the science of the valid processes of~1§ea§bning. In
mathematical logic we investigate these procéeses by mathe-
matical methods. In this first chapter we shali sttdy the simplest
branch of this science, the logic of classes,\J _

For the moment we shall not attempj;lto analyze the concept
of “‘clags.” Rather we shall take it ,asjuﬁdeﬁned but shall assume
that its intuitive meaning is knoﬁ\\yn’. d%y al{;{jass‘We shall mean any
collection of things, for exampley the cfass of Al fén'dr the class
of red-headed baboons. The members of the class may be ab-
stractions or may be in some other sense not tangible; thus the
clags of positive intégers and the class of jabberwockies are
perfectly good da{?seé. We shall denote classes by small Greek
letters. N

We shall gay-that the class « is the same as the class § if and
only if t!lejr.\have exactly the same members. Thus the class of
even primes is the same as the class whose only member is the
number 2. We shall denote the relationship “‘a is the same as §”

b)'r.:the symbols “a = 8.” The following propositions are evident:

O Tl a= a;

T2. if « = B, then § = a;
T3. fa = Band 8 = v, then e = 7.

In most statements, if & = g, then “a’ may be substituted for
“gn ot any point without changing the truth or falsity of the
statement. o

1
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We shall symbolize the statement “z is a member of «” by
e o= a”

If « and 8 are classes, we shall denote by “‘e /M B the class of
all objects which are members of both & and 8. Similarly, we shall
use “a\J 8" for the class of all things which are eitherin e orin g2
or in both, Thus if o ig the class of females and 8 is the class of
engineers, then & M 8 is the class of female engineers, and o \J/ 8
is the class of all objects which are either females or engineers or
both. By o’ we shall mean the class of all objects which are noh,
in e The class @ = B = a M #, by definition, so that ¢ B8
the class of all objects which are in « but not in 8. Two,:gﬁécial
classes are of importance, the universal class, denoted\by *“17,
which is the elass containing all things, and the.fwll olass, 0,
which is the elags which has no members, N4

These symbols have been introduced so.that we may con-
struet an algebra of classes. They enjoy tl;e;fbhowing properties:

T4 e N =8N a o)

T a M (EN T@ﬁw.%&ﬁl@fgbrg.in
Tﬁ.aUB=ﬂUa; :

T7. a\J (B ) = (a\ LB} U v;

T8. aNa=alUa=ga;

TO. a N (B 7) 3L N BV (N v);
T10. o\ (ﬂf\ﬁg{'\ﬁ"(ak}ﬁ)ﬂ {(a\J7);
Til. «\V & =5l;

TI2. a N\ ¢(=°0;
TR. e VU= U0 = a;
Ti4, op(’.i\ = 1;
T15.3e 0 = 0;
TG (o)’ =
(T 0 =11 =0
\}'TIS. e\ /B =o' Mg,
TS (@« N BY = o' U B;
T20. a\J (2 M B) =aeM{aUg) = a

[

. These Prop?si-tions are for the most part obvious. Thus T4
says that if zisin « M B, i.e. if z is in both « and 8, then x 18 in
B M a, and conversely. Tet us check ans of the mare compli-
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cated properties, say T10, as an illustration. We must show that
every member of the class on the left-hand side of the equation
is also a member of the class on the right, and conversely. If
¢ € a\J (8N ), then cither s E aorz C 8 O\ v or both. If
z € a, then certainly xr € « \J 8 and also z & a \J . Hence
z & (a\J B) N (a'J 7). Alternatively, fzEBMNy, thenz & g
and z & v. From the first, 2 € a \J §, rnd from the second,
z & a'\t gy Hence 2 & (aUﬁ)f‘\(aUT}.Wehavet.hus\
shown thatifz EaV (M), thenz & {a\J B M (a\J ¥
The converse may be shown in a similar manner. In view©ohT5
and T7, we shall write & M8 M 7, for (@ N B) My, and
a'\J B8 \J yfor (U B) v, elc. (»’}"

We say that « is included in 8, or that « is & subdlass of 8,
(in symbols, e C g) if every member of & i also}i member of 3,
i.6. 2 € « always implies that » & 8. The folloWing propositions
are easy to prove: B ¢ N :

T21. a = B if and only of & C ﬁ,d’?hﬁ C a;
T22. « C B if and only of a () B a;

T23. a C B if and only «;,f:cé:@.ﬂbmtﬂibrary.org.in
T4, a C 8 if and only sfe’— 8 = 0;

T95. o ¢ B if and onlypsf o \J B = 13

T26. a Ca; O

T27. « B CAT o\ B

T28. 0 C a O\

T29. if o, .0, then o = 0;
T30. if\NC o, thena = 1; -

T3L<§}}& CBand 8 C v, thena Cv;

ngv"afa C 8, ﬂwna(\‘y(:ﬁf—\'yaﬂdau'y C B\
T33. if a C 8, then 8 C & '

\T34 éfaCﬁandaC‘Y,thmaCﬁf\'y';

i 45

T35. ifaCTandBC'y,thenaUﬁC'y.

We have thus shown that if the operations with classes are
gymbolized in the above fashion, we obtain an algebra similar
to our ordinary algebra of numbers. The similarity becomes
more striking if we introduce the “axclusive”’ either-or. Let
a+B=(a—B\Y(@B—a)by definition; i.e. & + B is the class

“
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 of all things which are in one of e and 8 but not the other. If for

‘the moment we abbreviate “a M\ 87 by “af”, we obtain the
following propositions:

T36. aff = fa; o{fy) = (aB)v;

T87. a+B8=8+a;a+ B+ = (e + 8+ v;

138. a(B + v) = of + av; '

T3. e+ 0 = a = al;

T40..a+'a =0 ’\:\

It is unnecessary to go back to the original meanings of “the’
symbols ih order to prove these statements, We ean ins{te’ggi use
the properties already stated. Thus e\

B+ =anN@BNYIUENY) O
=(aﬂﬁf\‘r')U(aﬂﬁ'f‘-q).
= afy' U offy, D

and o + oy = (@M B N (N )Y N B N (@M 7))

(CIRTIIRYCAVES LA (AW S YV CTarh)

(e N BY MY o) I ler N 8) M 4))
WY e A ) ey

ac'B \J afy U ac’y \J af'y

0\ By A Oy \J o'y

O\ o\ 0 affy

aﬁ'yf\ Ura'y. .

Here we have used the definition of a + 8, and equations T9,

O (I

T4, T5, T19, T12/ and T13 sbove. _

By virtug-of-equations T36 to T40 the algebra of classes is
what mathematicians call a ring with respect to the operations
of an(?i';\f 8. Indeed, this ring is a very special one because of
T8 and T40, which show that the algebra of this ring is much
sitopler than our ordinary algebra since there are no exponents

or coefficients. ' :

By virtue of T21, T22, T23, T26, T27, T31, T34, and T35,
(or alternatively, by T4, T5, T, T7, T8, and T20) the algebra
of classes is also what mathematicians call a lattics. This is a
very special type of lattice because of T'10 to T13.

- We shall not use the knowledge already aceiumulated concern-
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ing rings and lattices in our present work. In more advanced
work, however, these points of view are useful.

The algebra of classes is called Boolean algebra after the man
(G. Boole, Irish, 1815-1864) who first studied i} intensively.

All the formal laws of Boolean algebra ean be obtained from
one general principle. We must first define the concept of a
“Boolean function” step by step. If f(«) = ¥, where v is a con-
stant class, for all «, then f is a Boolean function. If fla) = e
for all «, then f is a Boolean function, the so-called identity
function. If f is a Boolean function, and if g(«) = fla)) forall
«, then g is a Boolean function. If f and ¢ are Boolean fungtions,
and if hla) = fla) \J gle) and k(o) = fle) M glafor all o,
then b and & are Boolean funections. The class of Bodlean func-
tions is the smallest class of functions satisfyﬁl} these condi-
tions, i.e. it is the class of all functions whigh*can be obtained
by starting with constants and the identﬁﬂmction, and apply-
ing the operations o/, @ M B, and & \J/@a finite number of times.
Thus f(e) = (¥ M-a) \J (8§ N &) wliere v and 5 are constant
classes, is a Boolean function. g dbrau library.org.in

The fundamental theorem. efsBoolean algebra is

TrroreM 41. If f s 6. Bééiean Function, then
SN N o) (0) N )
Proof. If f(e) 5 7, where v is a constant, then
DDV O NN = @OV D)
’\.

v (@\J ) (by T9
A v 1 (by T11)

(by T14)

Bnn

v
~O fla).
N\ 1t fla) = «, then

(1) N a) V{F0) N o) (1Na)JO0Na)

a'lJO (by T13, T15)
« (by T13)
J{a).

hon
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Suppose the theorem is true for f. Let g(a) = (f(a))’ for all a.
Then :

(@) = ((F(1) M a) \J (F(0) M &)Y
= {F@® N N {FO) N Y (by T18)
= {JQY Vo) N\ {0y J (&)) (by T19)
= {FQ NSOV FQY N (@))
M N FO)) (@ N (@) '
(by T9, applied tmcg)\
=W NI VWY NV EOY Na) L
(by T16, T12, T18)
=AY N FO) N (aV )V FIY Ne) RG
0y Mo} (by T11) (‘O
= O N JAY Na) U FAY N FO)Y OO
P N ) U (F0) N o) (by TANTS, T9)
= (@)Y N a) VO N ) (by/T20).

Suppose the theorem is true Ton f‘ and g, and let
M) = fla) U gla) and k{a) = f;(a) Y g{c) for all @, Then

k(@) = (F(1) N o) VRO PSUEIVREA o) U 4(0) N o)
= ((F) U 9(1)) N o) WA(H(0) U g(0) M ) (by T9)

Also KA
ka) = ((7(1) N ) §LG40) N o)) N ((g(1) N @)
U (g0 &)

=SFO 0N NaNa U O NgO) NaN o)
MO N g) N el N o)
D(50) N g0) N o O o) (by T9, T4, T5)
<G N g(1) N a) U FO) N o) N o)
R\ (by T8, T12, T13, T15),

JE(His any Boolean function, then it can be built up in a finite
\aimber of steps from constants and the identity function by
means of the operations o', « M 8, and a \J 8. Therefore, by
combining these results, we immediately obtain the theorem.
This theorem shows that in order to prove that two Boolean
functions, f and g, are equal for all o, it is sufficient to prove
that £(0) = g(0) and F(1) = g(1).
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All these considerations can be extended to Boolean functions
of several variables. Thus if f is a Boolean function of two
variables, then

fla, B) = (1, Daf) U (f{, 0)ap) U {0, 1))
U (0, 0)e'B).

As a corollary we obtain

fa\d B\ flaMpy = fla) V1B, A

if f is any Boolean function. For let gla, 8} = f(d Usﬁ) U
fla O B), e, 8) = f(o) \ S(8). Then g(1, 1) k{1, 1),
g(1,0) = h(1, 0), etc. Therefore, gla, 8) = Me, B) fgr(allaand 8.

EXHRCIBES

Ex. 1. Verify T4-T40. R
Ex. 2. {a). Prove T8 from T27, T84, and T21.
(b). Prove T11 from T26, and T25.
(c). Prove that o C @drodbrFilpEhyand; T25.
(d). Prove T35 from 1’34, T33, T18, and T16.
Ex. 3. Show that if f is shy Boolean function of one variable,
then 8
(@). fla)z' ) Y a’) N (f{0) U ).
(b). f(f.(‘b*): = fON QD) C fla) CFOVV ) =
FFQ)).
() N\f{a) = v + da, where v and § are constants.
@I F0) N ) C g C fO (1), then the
J  equation f{a) = 7 has a solution. Find all solu-
N tions. _
NS (e). If the equation f(£) = » has a unique solution for
\ y one value of 7, then it has a umique solution,
namely f(#), for all values of .
(f). 1f f(&) C f(&) whenever « C & C & C8, then
BN FO) Ca\J f(1), and conversely. :
(g). ¥ ¢ C =, then f(f(&)) C S
(h). If & 8 and flaj C f(8), then fl&) C f(&)
whenever « C & C & C 8. -

D



£

8

SECTION 2 BOOLEAN ALGEBRA AS A DEDUCTIVE
SCIENCE

In the previous section we assumed that the concept of a
class and the simpler properties of this concept were intuitively
known. In the “proofs” of the propositions T1.1.1-T1.1.41
properties of classes were used which were not explicitly stated.
This leaves the foundations of our previous work completely in
the dark. In the present section we shall remedy the situation 5y
presenting Boolean algebra as a deductive science. O

By a deductive science we mean a body of propositiedg-con-
structed in the following way. We star out with a cefbain ‘set of
undefined ideas which we make no attempt to analjyiie further,
and & set of unproved propositions stated id\tefms of these
undefined ideas. All other propositions in thé.science must be
proved using only the unproved proposifions and previously

_ proved propositions. Similarly, all othgr eancepts in the science

\

must be defined in terms of the undefitted ideas and previously
defined ideas. For hrvawyllesgsditoleny oigh@ science, i.e. in any
setting forth of the science in a'Sequence of propositions, there
must be a first proposition, If this is proved on the basis of other
propositions, then its proghdepends on propositions whose truth
i8 not known at this tiple Similarly, in any exposition there must
be undefined termag.\

Furt.hermore? Among the assumptions there must be rules
telling us hoywe can obtain one true proposition from others
known to bgtrue. These we call rules of inference. These will
be per!)q?“s‘of the form: “‘if p, g, r are true, then s is true.” Here
Py 4, 8 3. .. are stated in terms of the concepts of the science.
Tll\e words “if,” “‘are,” ete., are in ordinary English and are not

“part of the language of the system under congtruction. Otherwise

we would not know the meaning of this rule and therefore could
not apply it. This shows us that in communicating our science
We must use to some extent some language which we already
kgow in order to deseribe the rules of operating within the
selence. This “embedding” language we call the syniax lenguage;
138 used to talk about the system while the undefined terms of



/N

9

the system constitute a basis for a Janguage which we use to
talk within the system. The language of the systém is called the
object language. This is analogous to the problem of teacking a
new language. We describe the language in terms of a known
language before we can communicate within the new language.
Of course, it is desirable to use as simple a syntax language as
possible in order that as few unanalyzed notions as possible be
used. The undefined terms in our science will be a non-empty
class of objects C and two operations M and '. The unprq\{\ed’

propositions are: N\
Al. If a is in C, then of and « (M B are uniquely qfetérﬁained
members of C. D

A2 If e and B are in C, then & M\ 8 = B AN

A3, If , 8, and v are in C, then (a M ) MNQN= aMN(BNY).

Ad. If a, B, and v are in C, and & ﬂﬁ‘ = vy M 7, then
aMNg=a o) _

A5. If o, B8, and v are in C, and o /Y8 = 2, then e M ' =
AANE . ,

AB. If o« and 8 are in C, and'e = BL hat &P Fore™

A7. If a, 8, and y are in Cylond « = B, thena Ny = 8N\ v and

Ty MNa=yNgN )

Here the relation “"=::”\is taken to be part of the known syntax
language. The onl,y})roperties of this relation which will be used
are T1.1.1, T1,42/71.1.3, and their consequences in eonjunction
with A1-A7Hence we could alternatively take “="" as an
undefined %érm and postulate T1.1.1-T1.1.3. A relation satis-
fying theJatter conditions is called an equivalence relation.

We'shall show that this is a deductive science whose true
pripositions are those and only thoge of the algebra construeted
iformally in T1. _

Note that since the propositions of this science are all conse-
quences of A1-A7 and the primitive terms are undefined, then
if ¢, M, and ' are given any concrete interpretation in which
A1-A7 are true propositions, all their consequences are auto-
matically true in this interpretation. Thus this science is, like all
deductive sciences, abstract; that is, its concepts have no specific

Q"
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meaning, and ity pmposmons apply whenever specific meanings
are assigned to its undefined terms in such a way that the as-
sumptions become true propositions. For example, if € is the
class whose only member is the number 1, and ' and M\ are
defined by the equations 1’ = 1/ 1 = 1, then it is obvious that
Al-A7 are true with this interpretation. A less trivial example is
thig: let C be the class of all positive divisors of 210, le Cisthe | A
class whose members are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42,
70, 105, and 210, « M g i8 the least common mult.lple of o andg@y/)
. and o = 210/a. It s shghtly more laborious but still easy to
verify the assumptions in this case. Of course, in formulating
these assumptions we had in mind the algebra of 11, 45d intend
that algebra to be one concrete interpretation of”‘\tu- science.
Indeed, if € is the class of all classes, and &« M ,6 and o are inter-
preted as in I1, then A1-A7 are true. ¢ \

We shall use throughout this section the ebnventlon that small
Gresk letters denote members of €. Thig'etounts to a hypothe-
sis not explicitly stated in the formulations of the following
theorems. www.dbr aullbral y.org.in

Itis convenient to begin w1th the following definitions:
DlLanNgny= (aﬂﬁ)ﬁy,a.’\ﬁ(’\-yﬂﬁ
(e M BN ), 0V3, et.
D2. o C 8fora (\‘ﬂ = a.

We now have @k{e following theorems:
T, a "V &\’5 o
Pra\f\a Mo = aM o Now apply Ad,
T2 \ 2 o =My, (Tl A5).
»ﬁ;hls ]ust.lﬁes the definitions:

D3 0=aNnd. 1 =0.

T3 e CBifandonlyif a N g = 0. (T2, A4, A5).

T4, a C a.

T5. If e« CBand 8 C v, then a C v,

Proof. Ifaﬁﬁ—aandﬁﬂ‘r—ﬁ,thena('\‘y_
@engiNy=aNBNy)=aMNg=a (A3).
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T6. « N B C a (A2, A3, T1).

T7. Ifa C B and 8 C o, then a = 8. (A2).
TR 8MN0=0. 0C 48
Proof. 0 = g N g C B (T2, T6).

T9. a"” = a.
Proof. o’ Mol =o' Na” =0. (A2, T2).

n o' C e, for any member a of C. (A4). A
Hence o C o and &/ C a’. PR\
- auu C o. (T5). ;.\,,.
.ot md: = Q. (T3) | ’“.(...}:
Lo C iy (A2, T3) m’\,\'.
noa =" (T \Y;
sang” =0, (T2). N
coa Cd (T3) '\s
sa=dl @) 20
Di. a\J B = NF). O _
TI0. « N B = (&' \JB). (@9 dbraulibrary.org.in
Til. o C 8 of and only i_{ﬁf’fc . ' '
Proof. If o C B, theie N § = 0; hence & N o’ =0
(A2, T9), w:g.ich implies that 8’ C . If f C o, then
o C, g% by the case just proved, and therefore
a G, by T9.

Ti2. « @B and only if*a\J 8 = 6 ;
Prgq‘;}&' C g if and only if #/ C o, which means tha_t.
NN =8 The latter is true if and only if
.s\ }3=ﬁ”= (ﬁrmaf)fs (afnﬁf)!._saUﬁ_

T3, e\ UB =V @UBHVY = aV Y7
(A2, A3, D4, T9).
Ti4. a\J & = o (T1, D4, T9).
T15. e U = 1. (D4, D3).
TG a CallJB. )
Proof. (a\J B)' = ( MY = &N Co (B9 T8,
T1l).



12
TI7. aV{@aNP=aN@Jf) =a
Proof. a\J (@M f) = a (T6, T12).
aN (e =a _ : (D2, T16}.

T18. IfaCﬁ,ﬁhﬁnanj'cjﬂﬁ‘ycmdau'y(:ﬁu'}r
Proof. If & C 8, then (a M) N (BN 7)

=aNBY (A2, A3, T1)
e (D2).
The rest follows in the same way by T12. ‘ \ )

\/

T19. faCyondB C v, thena’\t B C . (..'}‘.
Iy Caandy C B theny CalNB. ’
Proof. If-rCaa.ndfyCﬁ,then-y—'yf"\a«\’ﬁﬁ,so
that ¥ N (@M ) = (frf“\m)ﬁﬁr'rf\ﬁ—'r

The other part is proved mmﬂa.rly;\

"T20, a M’ IR =aMg \
Progf. a M (& U 8) —aﬁ(a” ﬁ")"—“a(‘\(a(’\ﬁ)'

WO dbraul}.blﬁ‘r‘ org.in
Hence (a N (o U'B)) N §.230 VErEM (o A2, A3).

saN{\Jg) = (a’f\(aUﬁ))f’\ﬁ
=aN (& \JB) NP = aNB. (A3, T17).
T2l a N (B\J ) = (q\(\ﬁ)U(aﬁ‘y)

Proof. BCﬁU‘{{\‘YCﬂU'Y (T13, T18),
aﬂﬁCaﬁ(BUﬂ,aﬂTCam(ﬁUﬂ

(T18).

&aY'\B)U(a(‘\’y)Caﬁ(ﬁU‘y) (T19).

N&m(ﬁw)m((anmuw\m'
=aNBUYNN @y NNy

~O° (D4, T9)
N/ ~aﬁ(ﬁU'r)f\(a’U6’)ﬁ(a’U'r)

(D4, T9)

=gUYNEYUy) (T20, A2, A3)

=0 (D4, T2).

Hence a M (B\J ) C(aMN By (@M 7).
T22. a\ V0=, aJ1l=1aMN1l=a (T8 T12, Ti1).
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. We now have everything necessary for the proof of T1.L4L,
with the glight simplification that the combination f M ¢ need
not be considered separately since it may be expressed in terms
of the operations \J and ’ by T10. For the sake of completeness,
we give also a proof of the analogous theorem for functions of
several variables.

TaoreEM 28. If flan, ~-+ , ) i3 @ Boolean function, then

N

f(ml r T g ak) ¢\
1 1 1 . . ; ) ‘ ;‘\ ) o
= Z E E Fa™ 17, 1*)‘”‘1‘&:’;"“:'

iy=0 ia=0 ix=0 “'s 3

Remark. Here “o' means o if i = 0 amd o 1£b\ﬁ 1;

(13 mn 1
38 means o \J B: VoM B
=0 A .
We use juxtaposition for “/V’ as on/b. 4.
Proof. The theorem is true for f\="1. If it is true for k — 1,

then v\-{ wiw dbraulibrary .org.in
flow s 05, - O
T\ 3 ) .
.KQE’ . 2 f(al ¥ 1“; T 1‘.)‘1;. e C!:,’-
A\ g =0 ip=0

Bt ﬁ“\*’?‘* L1 = T e 1A

W (-{(&\1“’ T 1"*)‘111),- .
by S0.1.41; now an applieation of T21 yields the desired result.
~ _The question arises, are the postulates A1-A7 complete in _t:.he
\sense that all general formal laws in the algebra of classes which
can be formulated in terms of /N and ” can be proved from them?
The answer is given by Theorem 24 below. = .
We say that B is o Boolean algebra whenever. B is a triple
(C, M, ') consisting of & class C and two operations M and
defined in € and satisfying Al-A7. :
A quadruple (C, N, ' =) satisfying Al-A7 and Ti.1.1-
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T1.1.3 will be called a Boolean algebra with respect to the equiv-
alence relation =, '

Lemma 1. If B is a Boolean algebra in which ¢ has at least,
two members, then 0 = 1.

Proof. 0 = I, thena = aMNli=aMNQ = 0, so that € has
only the single member 0,

Q"

THEOREM 24. Let B be a Boolean algebra with af least tiog

elements, £\

Let fay, -+, o) and gle, » 7y &) be lwo Booleaw fuicitons
containing no consianis in their construction. If f,(3°g for all
@y o, i O, then f = g is provable from AV-AT7, and is
therefore true in all Boolean algebras.

A \,/
Proof. By hypothesis f(e, Pty @) =o§(}¢1 , ~+ , ay) for all
@, * -+, o in C, in particular when the &lshave the values 0 or 1.
Now - O

INT=1, IN0=0N1=8M0 =0, ¢ =1 1'=0,
www.dbraulibrary org.in
and all these equations are cofBequences of A1-A7. Hence if the
«'s take on the valyes 0 orlythen f(e, , --- , &) and glay , ==+,
a,) have the values 0 ‘qr}, and these values are deducible from
Al-A7, By Lemma, K8 5 1. Therefore if the o’s have the values
Oor 1, then f(a, /N - y o) = gloy, +++ , a) if and only if this
equation follow§from A1-A7. By theorem 23, then, the equation
“fle '\‘I&) =gloy, -+, &) is valid for all values of

@y tc: 6N In any Boolean algebra and is deducible from
LARYVAN

' Qb,liOLLARY 2a. Let f and g be Boolean Junctions as in theorem
2 ‘mSupposethatforaHa, 77y e in C such that f(a, | - - L) =
1, ‘hgemg(al, L ,ﬂk) = 10;80. Then”f(al, ten ,ﬂ'k) C

gla , -+, @) is provable from Al~AT7, and is therefore valid in
oll Boolean algebras.

PTOOf. Iﬂth(a“ T 0y) = I CH L ya} M (Q'(Ct:l sy ).
e, -, atake on only the values 0 or 1, then f(a, , ---

El



£

/N

15

o) =0or L.If f(ay, +++ , ) = 0, then k{a, , -++, ) = 0. If
f(all U ,(Ig) = lﬁtheng(al} et !ak) = lx_a'ndh(alp b :ab)=
0. Hence h{ay , -+ , ) = Oforall ey, -+, & in C by theorem
23, and is therefore deducible from Al1-A7 and valid in all
Boolean algebras. The inelusion *f C g¢” follows by T3.

We now know that all generally true equations between Bool-
ean functions are provable from our assumptions and, by theo-
rem 23, have a simple systematic procedure for proving them or
for testing their validity. Before going on to a deeper study“ef
Boolean algebras, we wish to make s few remarks about deduie
tive sciences in general. A

First, what is to prevent us from laying down any agsumptions
we please? From a logical point of view, there is néthing but the
requirement of consistency to restriet the possible assumptions;
that is, it must be impossible to prove some\gmposition and also
its falsity from the postulates. The simplg’st way to prove that a
system of postulates is consistent is $0 exhibit a concrete inter-
pretation of the undefined terms in which all the postulates are
true. Thus we have given three concrete interpretations of
“OEY?, “ in which Al-<A¥heldbilfusilcentyadigtion could
follow from the postulates;*this contradiction would be true
of the conerete interpretation. But anything actually existing in
the real world mustube self-consistent; hence the postulates
must be consistent™ The last. sentence might be contested by
some philosophers, notably Berkeley, but we shall not enter into
any further(discussion of such questions. A more serious diffi-
culty is tHat the real world, so far as we know, contains only &
finite fymber of objects. Therefore it is impossible to give a
congrete model of a system of postulates requiring that some
elast have an infinite number of members. Hilbert has prop?sed
‘shother method of proving consistency whereby on the basis of
an analysis of the methods of proof in the deduetive science we
show that no contradiction can arise. This method requires the
machinery of Chapter IV. i

While fogieally we can take any consistent set of assumptions
and construct a deductive science from them, actually our
choice of postulates is constrained by other Qonsideratlons.
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Usnally we have one or more concrete interpretations in mind
and we know, roughly speaking, some of the propositions which
we wish to be true in the deduetive science to be constructed.
Aesthetic considerations also play an important role. We want
the postulates to be simple and the proofs based on them to be
elegant. Here science merges inseparably with ari; we wish not
only to build up a body of knowledge but also to create a thing
of beauty. Finally, the principle firsi enunciated by B. H:
Moore—‘The existence of analogies between the central featureés

of various theories implies the existence of a general théery’

which underlies the particular theories and unifies them “with
respeet to those central features” —also serves as alyaluable
guide in constructing deduective sciences. R4
Another desirable, though not essential, réguirement of a
system of postulates is that they be independent; that is, that
none of them be dedueible from the rest It the postulates are
not independent then some of them (¢4 be omitted without
changing the totality of true propdsibions in the deductive
science, For the sake of economy,fthen, we want the postulates
to be independent. To-say hatipestulateip is independent of
the others is equivalent to sagfing that ““p is false” is consistent
with the rest. Having thusfeduced the problem of independence

“to that of consistency, we'ean use the methods deseribed above

to prove the indepen‘(kéliée of a system of postulates. Thus,ifina
concrete interpretation of the undefined terms all of the assump-

_tions except p ¥eeome true propositions, then 7 is independent

of the othersi »

- For example, if we define ¢ as the set whose members are the
numbg » 1, and 2, and define M and ’ by the following tables:

:.\:.‘:" N H 0 1 2 o | o
0 0 0 o0 - o | 1
1 0o 1 1 1 0
2lo0o 2 2 2 | 0

then it is easy to verify that all of AI-A7 exc.ept A2 are true,
Here we read the table for /M as follows: ¢ M 8 is found in the

Q"
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o' row and 8" columan; for example 1 N2 =1,2M1 =2,
2M0 = 0, ete. Since 1 N 2 # 2 M 1, A2is false. Similarly we
can prove the other postulates independent.
The problem of the independence of a system of postulates led '
to the important discoveries of non-Euclidean geometry and the
theory of relativity. : :

EXERCISES

Ex. 1. Deduce the rest of T1.1.4-T1.1.40 from the postulatég.
Ex. 2. Prove that if (C, M, ’) is a Boolean algebra andif we -
define \U as above, then (C, \J, ) is alsoa-Boolean
algebra. For the moment let us denoté)e \J # by
“a M *8”, 8o as to suggest the correspo:@ng operations
in the new algebra. Let T'(a) = o forall ain C. Show
that oY
T(a) = T@), ~o0
T(a M B) = TNV T(),
T() = T(8).if\and only if @ = B,

and for every § in & thiere dtpnudibuehythat Hia) = B

Hence these algebras have exactly the same structure.

This is called(the law of duality. o
Ex. 3. Verify thatall the postulates except A3 are valid in

the following model: . :

N7 nfo|1i2 afa
\V 0 0 0 -
..s’\\" — i
N 12|10 142
) |
) 2f1]0}2 2|1

Ex. 4. Construet a model showing the independence of Ad.

Ex. 5. Show that the arithmetical interpretation on p. 10
works if 210 is replaced by any square-free number 7,
i.¢. any number n such that no perfect square except 1
divides n. Does it work for any other values of n?
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SECTION 3 THE STRUCTURE AND REPRESENTA-
TION OF BOOLEAN ALGEBRAS

We now ask how completely does the deduetive science con-
structed in the last section describe the algebra of classes. In
other words, are there Boolean algebras essentially different
from the algebra of classes? If so, what is their relation to that
algebra?

Let us begin with the case where € has m members, where m sy,
finite and greater than 1. We say that « is an afom whenever
a7 0,and 8 C aimpliesthat 8 = 0 or 8 = «. If we tiﬁp}g;o}‘ the
relation 8 C « as meaning that 8 is contained in e, thenjaﬁ"atom
i3 an element of ¢ which contains no others but itgelf’and 0.

Ti. If « 5 0, then there is an atom § such thal BuC o.

Proof. If o is itself an atom, then the eonclusivh immediately
follows. If & is not an atom, then there is ansloment e, such that
a =00 7o 0 Ca If aisnot an“gtom, then there js an
element o, such that oy £ 0, 0; 7 o, 7y C oy . Now a, a,
forif ay = o, thena C o, , o, C a;’and therefore o = o, . If @,
is 2ot an atom, there.is,an alemenbing surkgthut o 5 0, o 5 a, ,
and ey C a; . Proceeding in-fhis way we show that there are
distinet elements a, , a s \ “, o such that

)
ot Catk_l,ax\:\ﬁak_g, o Cea, e Ca,
\

and o, 3 0. If o-i8Hot an atom, then we can extend this chain
to one more elénfent. But there are only m elements altogether
in C. Consequetitly after at most m — 1 steps, the chain must
stop and\ii\must be impossible to add another element to it.
Hemiezi?\a,, is the last element in the chain, then o, must be an
atom Contained in a. )
m{Lét R{a) denote the class of all atoms 8 such that 8 C .

en R(1) is the set of all atoms in

T2, If‘yz'sanatom,theneﬁherv CaoryMNe=0.

Progf. vy M a C ~. Therefore v M o = yoryMa =0,

T3. RlaM g) = Rie) N R(B), R(«') = R(1) — R{a) ond
R{a) = R(g) if and only if @ = B o, -, a are distinet
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atoms, then Rio; \J a; \J -+« \J &) 13 the class whose members are

o g "ty
Notice that here & M 8 is the combination defined in B, while
R{a) N R(B) is the common part of the two sets () and R(B).
Proof. If v € R(a M 8), theny Ca/M 8 Buta N C e and
e\ B C 8 by T1.1.27. Hence vy C « and ¥ C 8. Therefore
v € R(a) N R(B). Conversely, if v € R(a) M R(B), theny C «
and vy C 8. Consequently ¥ C a M g by T1.134. Hencer
v € RB{a M B). PN
If v € R(e) and v € R(a), then ¥ € E{a} N VAC S
R(e M o) = R(0). Therefore v C 0, and, by T1.1.2, A= 0,
which is impossible. Hence if v & R{a"), v & Rglj"% RBie).
Conversely, if ¥ € R(1) — RE(x), then v is not in R(a). Hence
vMNa=+~M & = 0by T2 so that v &’; and finally,
¥ € RB(o). N\ :
If R(e) = R{B) and « # B, then either,d‘é ‘8 or 8 C « must be
false, say the first. Then M g’ 5= 0, g0.that, by T1, there is an
atom v C « M 8. But Ba N 8) S)(e) N R(E) = B(a) 1

(R(1) — R(8)) = R{a) — R(8). Sinice v € R(a} and not in R(8),
then R(a) »= R(8), contrary t& hypethksmilibrary.org.in

Finally, e, , - - , a, areitembers of B(ey U -+ \J ). If
YE Ry \J - ayandy ey, oY ;éa,‘,then,byTz, i
¥, =0 = TQ‘&B\= 0. Hencey = yN{mJ - V) =
(¥ N o) \J -+ - Ky M o) = 0, which is impossible.

By a one-to-ofidcorrespondence between two classes we Imean &
relation wharebly to each member of one class corresponds.a
unique memiber of the other and vice versa. Thus at a dance n

* whichthére are no wallflowers, the relation between each girl
and der partner is a one-to-one correspondence between the
gids'and the men. We say that two Boolean algebras B, and By

\are isomorphic if there is a one-to-one correspondence between
“the classes C; and C, such that whenever a, corresponds to &
and 8, to 8, , the subsecripts indicating to which algebra the ele-
ments belong, then af corresponds to e and &, /M 8, corresponds
t0 @, M B, . If B, and B, are isomorphic, then they have exactly
the same structure. We are now in a position fo prove

Tunorzm 4. Ij B is a Boolean algebra in which C has m e
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mends, where m is finite and greater than 1, then B is isomorphic
to B, , the Boolean algebro of all subclasses of the class of all atoms
tn C. If n 4s the number of aloms in C, then m = 2",

Proof. By T3, the relation between « and R{«) is s one-to-one
correspondence between € and €, , and B and B, are isomorphie.
Ifa,, -, a,are the atoms in C, then to each class R(e) corre-
sponds a sequence &, , --- , a, of 0’s and 1’ where a,=1lorQ
according as a, is in R(a) or not. There are two possible valueg
for each of the a’s; therefore, there are 2" possible sequences(of 2,
a's, and hence also 2" subelasses of B(1), N

CoroLLaRY 4a. If B, and B, are Boolean algebras wzth #he same
Jinite number of elements, then they are fsomarphic....:‘ )

Proof. If m; and n, are the numbers of atoms'in B, and B,
respectively, then 2 = 2% go that n, = nz.\~—j\n. Leta,,  +,an
be the distinet atoms of B, and let 8, ANy, B be those of B, .
If « € C, then R(a) is some subclass of {1} ; say that it has the
distinet members a,, , -+ -, a,, . Then Ria) = Rla;, \J -+ U
;) by T4, so that mwm,{;ﬂaﬂli-bm&dqmg.mLet Tley = 8, UV
++ -\ 8., . Then the relation b(},ﬁween e and T'(o) i a one-to-one
correspondence between Byand B, . By T3, R{(«"Y = R(1) ~
R(a) = the set of all these o,’s different from o, , - - ) @y
Hence T{o') = 8, Uk\ \J 8;._. , where the 8’s are all those

- B¢'s which are notMn R(T(«)). This shows that R(T()) =
B(l) — R(T(@)= R{(T(@))"), 50 that T(«/) = (T(e)).
Similarly we ean show that T(a M g) = Tla) N T(8). Therefore
B, and B, aréisomorphic.

In ordki“ta handle the more difficult case where C has in-
ﬁnitely.: many members we need the so-called Zom's Lemma.
T}xepmr (4, R) consisting of a non-empiy class A and a relation

<K defined for the members of 4 is called an ordered system if
@R band b R ealways imply @ R ¢. (Here “a R b” means “a has
the relation R to b.”) A non-empty subelass B of A is called g
linear subsyslem if for every pair of distinct members, b, and b, ,
of B either b, R b, or b, B b, or both. If Bis a subelass of A and a
is & member of 4 such that b R g for all bin B, then a is said to
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be an upper bound of B. If a R bimplies b B a for all # in A4, then
a is said to be a mazimal element of 4.

Zorn’s Lemma. An ordered system, each of whose linear sub-
systems has an upper bound, contains a maximal element.

This will be taken as an axiom in what follows. Wo shall -
diseuss Zorn’s Lemma in greater detail later in LII7.

T.ot B be an arbitrary Boolean algebra. We introduce some {
concepts of modern algebrs, which prove to be very useful in the
deeper study of Boolean algebras. By an ideal we mean & ,13’6)1:‘
empty subclass I of C such that for all o and 8 in € the ¢lément
a\JBE I andforallac Tand v € C the element « Yy & I,
A proper ideal is one which is not identical with L£{The dual
concept is the notion of a sum ideal, i.e. Sisa gim ‘ideal if and
only if S is a non-empty subclass of € such f.th,a, 8 € 8 implies
thata B E S, anda €8, vy & Cim ligs that « \J v € 8.
This last condition is equivalent to the'e ndition that &« € 8
and o C 8 imply that 8 € 8. (T1,3(28, T1.1.27). Similarly a
proper sum ideal is a sum ideal S different from C. By a product
system we mean a subclass K ofu@ sugbrihnbe§ frgfn implies
that @ M 8 € K. By a mazim@bsum tdeal (abbreviated MSI) we
mean a proper sum ideal(which is contained in no other sum
ideal. If B ia the _algeb;&’&f'a.ﬂ subelasses of a given class U, then
the simplest type ofiaximal sum ideal is the set of all s such
that 2 € a, for afixed element x in &7. Note that S is a proper
sum ideal if andlonly if 8 is & sum ideal and 0 €€ 8. Also1 € 8
whenever §3g'a sum ideal. In the proof of theorem 7 below, the
maximal §ir ideals play a role similar to that of the atoms in
the cadéwhere C containg only a finite number of elements. The
cl}'u\ef ‘difficulty is the proof of theorem 5, whose corollary corre-

osponds to T1. It will be helpful in following this analysis to
réfer constantly to the eorresponding points in the proof of
theorem 4.

TrEoREM 5: If K s a product system, and 0 € K, then there is a
mazimal sum ideal S containing K.

Proof. Let A be the class of all pfoduct systems K, such that
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KCK, and0 ¢ K, , and let “K, R K,” mean that K, CHK,.
Then 4 is non-empty, for K itself is in A. Hence (4, B} 13 an
ordered system. If L js a linear subsystem of A, let K* be the
class of all o’s such that there is a product system K, € L such
that « € K, . We claim that K* is an upper bound of L. Ior if
o, a; € K*, then there are product systems, K, and K, in L
such that o, € K, and @, € K, . Since L is linear, ¢ither K, (¢ &5
or K, C K, . If, for example, K, C X, , then ay , @ € K, %0
that o; M @, € K, C K* Thus K* is a product system’ If
0 & K*, then there is a X, € I such that 0 < K, . Dul this is
impossible since L C A. Hence K* & 4, and is(therefore an
upper bound of L. Let S be a maximal element of . Then S is a
product system containing X and not contaiming 0. We wish to
prove that § is a sum ideal, for which it now. uffices to show that
faec S,yEC, thena\Vys 8. If ¥&C, let S, be the class
consisting of sll members of S, and all 'é}eﬁlents of ¢’ of the forms
a8\ v) or a\J v, where a, # & W®If0 € §,, then thete are
elements a, 8 & S such that o £4,(8 \J v) = 0. Then a M B =
@M (8\J v) Mg = 0 & 8, which is impossible. Thus 0 & S8, .
Clearly 8, is merﬂséﬁiymgﬁning S, and therefore K, so
that 8, & A. Since S isamaximal element of 4, then S, CS8 In
particular, e \J y . 8Jor all v € 8. Tt is now trivial that S is a
MBSI. \\ '

CoROLLARE 8. I o € C, o 5 0, then there is @ mazimal sum
sdeql confsmi’ng a.

ch;f]};é’set K whose only member is « is a product system not
confaihing 0. )

() Tuzorem6. If Sisa mazimal sum ideal and « € C, then either

e Sora’ € 8.

Proof. Suppose that o M B # 0forall 8 € S. Let K be the
class consisting of S and all elements of the form o M 8 where
B & 8. Then K is a product system and 0 & K. Let S, be a
maximal sum ideal containing X, Then § ¢ 8, , and since Sis a
maximal ideal, we must have § = 8. Buta=aN1€KCS,.
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On the other hand, if there iz a B & 8 such that « N g8 = 0, then
=gUd & 8.

CoroLraRrY 8a. If S is a maximal sum ideal and o \J 8 € §,
then « & Sor 8 € 8.

Forif a & S, then & € S,S{)tha.tﬁna’ =@\Ug)Na €8,
and therefore 8 = (8 M &) UV 8 € 8.

Let T'(a) be the class of all MSI which conta;m a, and let ', be
the class of all classes of the form T{a). A

TugorgM 7. The triple (C, M, *), where T(a)* = T(1) — T(a)

is a Boolean algebra -z.somorphw with B. This ssomorg;hwm 78
generated by the relation whereby o corresponds to T (o)
. QS

Proof. First we shall prove that T'(e M 8) =2{a) N T@). It
PC T(a)\T(B),thena € Pand 8 € P. Henlega N 8 S P, 80
that P € T(a M ). Conversely, if P &»T(a M B), then
a8 eE P, Smcea.‘"\BCaa.ndaﬁﬁ 8, then « € P and
BE P, sothat P € Ta) NTE). OO

Next. we show that T(a’) = TURY T{a) = T{a)*. Now by
what we have just proved, T'(a). v Tedbreuliioar Beite e MST
containg 0; hence T(0} is the ﬁull class and T(a) N T'(e) = 0.
But T(1) contains all MSINTt follows that T(a’) C (1) —
T(a) = T(a)*. Now sqp}}ase that P is a MSI which does not
contain «. Then, by\'@heorem 6, o € P, s0 that P &€ T(e).
Puiting all this together, we see that T(l) — Ty C T(a"),
from which we,jofer that T{a’}) = T(a)*.

All that remiains is to show that the correspondence between
(' and (' défined by the relation between & and T'(«) is a one-to-
one correégpondence. But if @ # 8, then either & N 8 3¢ 0 or
B8 M@= 0, say & M 8 # 0. Then there is a MSI P such that
a1 3" & P. Thatis, P € T{(a N ') = T(e) N\ (T(1) — T(F))=
L&) — T(8). Therefore T{e) = T(8).

If B is a Boolean algebra, and €, is & subelass of € which is
closed under the operations /M and ’ (i.e. whenever « and 8 are in
C,, then e M g and &' are in C), then the triple B, = (C,, N, ")
is also a Boolean algebra. In such a case we say that B, is a
subalgebra of B. Then the algebra (€, , M, *) defined in Theorem

R
\
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7 is a subalgebra of the algebra of all subelasses of 7'(1), which is
the class of all maximal sum ideals of B.

CoRroLLARY Ta. Every Boolean algebra is isamorpfai.c lo a sub-
algebra of the algebra of oll subclasses of some class.

‘Thus every Boolean algebra is isomorphic to some algebra of
classes. This to a large extent justifies the prominent place given )
- to Boolean algebras in the study of the logic of classes. \

Under what conditions is a Boolean algebra isomorphic to the,
algebra, of all subelagses of some class? In order to answerhis
question we must introduce a few additional concepts. A

If B is a Boolean algebra and 4 is any class of eleménts in C,
then we say that 8 1s a least upper bound, or unson,of A if

(1) foralla & A, a C 8, \
and {2) iqu'yforallaE 4,’Q‘tenﬁ C .

Clearly, if 8 and & are unions of A, thenp\g ﬁ\ 8. For by the second
condition, 8 C 6 and § C 8. Thus 4 has at most one union, so
that we may speak of the union of‘g_if‘one exists. In that case we
shall denote it by _U(X)‘“Sﬁ’r'w;éj 4a. 1 tvety non-empty subclass
A of C has a union, we say'j;hat' ‘B i3 a complefe Boolean algebra.
A Boolean algebra is callt{i thistributive if for every subclass 4 of
C such that U(A) exists) and for every element 8 in !, we have

N\
: ’}%(\\U(A) = ké{ (8N ).

] \ X
We say that-Bak an alomic Boolean algebra if for eVery non-zero
element, ¢“thére exists an atom 8 such that 8 C a. :

_TglgtoiEM 8. A necessury and sufficient condition that the Bool-
eanaigebra B be isomorphic to the algebra of all subelasses of some
“Class s that B be complete, distributive, and afomic. In that case B
¥ isomorphic fo the algebra of oll subclasses of the class of atoms
in C. ' :
Proof. Suppose that B is isomorphic to the algebra of all sub-
classes of some elass 9. Let the subelass of ¥ which corresponds
to a given element « of C be denoted by 4(a). Now if z & 9 and
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{x) is the class whose only member is z, then for some g in C,
A(B) = {z}. We claim that 8 is an atom. For if v C 8, then
A(y) C A(B). Hence A (v) contains at most one member, namely
. Therefore either A(y) = 0, whereupon v = 0, or A(y) = {z},
whereupon v = 8.

Ifa & ¢ and a # 0, then A(a) = 0. Let 3 € A(a), and let
8 & C be such that A(®) = {x}. Then 8ig an atom and 8 C «
since A(8) C A4 (a). Hence B is atomie. N\

If ¥, is any subelass of C, let D be the class of all elementy x
such that £ € A(a) for some & & ¥, . Let 8-be the element of C
such that A(8) = D. Thenif « € ¥, , then 4(a) C.B = A(8),
sothat @ C 8. Also, if & C yforalla & ¥, , thenﬁ(o:) C A(y)
for all' & in %, . But if z & D, there is' some g in" 9, such that
z & A{a), and therefore x € A(y). This shows that D C A7)
so that 8 C ¥. Thus we have proved that 8 mthe union of ¥, , and
therefore that B is complete. \

Lastly, if %, is any subclass of C' and § is any member of C,
we must show that 8 M U(?I) 2l (8N a). Let D =
AU and D, = Al .e@N ). Tz € 4(8 N L)
= A(8) N D, then there is atre I0 A, P2 4(8), by the
preceding paragraph. Hgn‘ce T A N A(e) = 4B M a) C
D, . Consequently 8 QU(%) C \Jaes. (8N a). Conversely, if
2 & D, , then therdis'an o in ¥, such thatx € AB N o) =
A@) N Ale) CN(E) N D. Hence Uer (8 N @) C BN

(¥}, which, completes the proof.

Now suppdse that B is complete, dlstnbutlve, and atomie.
Let A be‘the class of all atoms in €, and let 4{a) be the class of
all am\ms 8 such that 8 C a We shall show that the relation
betfw&n a and A(e) is & one-to-one correspondence between C

_and the class of all subclasses of % whereby B and the algebra
“N'of all these subclasses are isomorphic.

L

Firstly, we show that A{a M g) = Af{e) N A(ﬁ). If
v € A(a M B), then yisanatom and vy Ca M §,sothat y C a
and v C 8. It follows that ¥ € A(a) M A(B), and further, that
Ale N B) C A(a) M A(B). Conversely, if v € A(a) M A(B),
then « is an atom and v C e and v C 8. Hence y C a M B, so
that v & A{a M B).
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Next we prove that A(e) = % — A(a) = A(@)}*. If y € A(a"),
then v is an atom and v C o/. If y € A(a) as well, then v C a,
so that v C @ M & = 0, and therefore ¥ = 0, which is impos-
sible. This shows that A(a’) C % — A(a). Conversely, if
vy €U — Aa), then, by T2, y N a = 0,80 that v C o', As a
coneequence, v < A(a').

Thirdly, we show that if A(e) = A(8), then & = B, which(

implies that the correspondence is one-to-one. If o 3 B, then
eithera N B # 0or Mo’ # 0, 8ay e M § # 0. Then therelis
an atom vy such that y C o M g Hence v € A{a ONF) =
A(@) N (A — A@®) = A(a) — A(B); therefore A(&) ¥ A(5).
Finally, we prove that if ¥, is any subclass of %, then there is
an element o in C such that A{e) = ¥, . Now %)i8'also a subclass
of C, and therefore, by the completeness of B)\ias a union. Let
a = U(¥,). We claim that A(x) = ¥, JFot if v € ¥, , then
Y C a, s0 that vy € A(e). Conversely ify & A(a), then ¥ C a.
Therefore v = v N a = v N\ U@ 5 Uber. (v N 6). Now it
B i8 an atom and 8 # «, then by\theorem 4, 8 N vy = 0. It
follows that if ¥ were not,i BrReRox he = Oforall in ¥, ,
and therefore ¥ j%:%?linﬂfﬁg{m impossible. Hence if ¥ € A(a),
then ¥ € ¥, . This completes the proof. '
~N

s \.J
&
Ex. 1. We gay that the descending chain condition holds if

théredis no infinite sequence of distinet elements Oy
sach that o,., C o, for all 2. Similarly for the ascend.
{ing chain condition. Show that (a) in a Boolean algebra
L\ either implies the other, (b) the descending chain con-

EXERCIBESR

3 D implies that the number of elements in C'is finite.

" Ex. 2. Show that if the number of elements of C is finite, and
[ 15 a Boolean function of one variable, then the num-
ber of solutions of the equation f{§) = =, for any g

such that f(0) N\ (1) Cy C JF{0) V 7(1}, is equal to

2", where k is the number of atoms contained in

FO)Y -+ fQ1).

dition implies T1, (¢) the descending chain condition.

N\
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Ex. 3. Let B be the Boolean algebra of all subclasses of some
class %. What are the atoms of B?

Ex. 4. Let € be the class of all classes of integers. Deﬁne
“a = §" to mean that & + 8 hag a finite number of
elements. Show that = is an equivalence relation, and
that (C, M, "} is a Boolean algebra with respect to =.
Prove that there are no atoms in this algebra.

Ex. 5. In problem 4 let “o =, 8” denote that « = g and that
the integer 2 is not contained in o + 8. Show. H’m.t.
(C, N, '} is also a Boolean algebra with respect. to =,.
What are the atoms of this algebra, if any? N

Ex. 6. In problem 3 show that if 9 is infinite, then there are
MBS different from the simple type meiitibned on p. 21.
Hint: Choose a suitable product gysfem and apply
theorem 5. Tarski and Ulam,, Bundamenta Mathe-
matica, 1930, have proved thzﬁ‘ the non-trivial MSI
outnumber the trivial ones Byfar. No way is known for
constructing one, howaw’er, or even of proving their
existence without sgﬁqﬁ,\, mumwg(glwps Zorn’s
lemma or the axiomdef choice (IF17).

Ex. 7. Prove that if a iS\an atom, then the class of all 8 such
that « C 8 169 @ MSI.

Ex. 8. Let O be bl;‘e class of all classes « of integers such that
either a 0r o’ contains only a finite number of elements. |
ShoW\that (C, M,") is a Boolean algebra. Is it complete?

Ex. 9. Show that in a complete Boolean algebra if 4 is any

\Ela.ss of elements in €, then there exists a greafest lower

L\ bound, or join, 8 of A satisfying

{1} forallamA 8C e« and
) ify Caforalla © A, theny C 8.



" SECTION 1 FUNDAMENTALS . ¢\

Chapter 11

THE LOGIC OF PROPOSITIONS .

N

NS ¢

In the last chapter we studied the genera} laws underlying the
logic of classes. The propositions with which we wotked were
mostly of the form “g = 8,” where o and 8 are classes. We found
out under what condifions such propogitions Hré true and under
what conditions one proposition of this Ype implies another,
Now we shall consider what laws governing the logic of proposi-
tions are independent of their inner gtacture,

If p and ¢ are propositions, then)Y*p A ¢ shall denote the
proposition that both p and ¢,and “p v ¢” shall denote the

* proposition that eﬂheﬂm'ml@mfbﬂlgviﬁmd " ~p" ghall denote

O“\'

YV

the proposition that it igfalse that p. For example, let “p”
denote that Willie ig silly, “g” denote that Jane is vain, and ‘7"
denote that man is xle. Then “~p v (g A )"’ denotes the
proposition that %t\}xei' Willie is not silly, or both Jane is vain
and man is vile, ot Jane is vain, man is vile, but Willie is not

silly. PN

We shall ?@nta.tively think of propositions as having one of two
truth v@g}a, “truth” or “falgity,” which we shall denote by ‘¢
and,\ v Then the truth values of PAGDPV g and ~p are
determined by those of p and ¢. This is indieated in the following

.~Qgﬁles:
' p | ¢ |p/\q|qu| . P | ~p
i ¢ : ¢ Y §
¢ 7 i : f i
f F f ¢ :
J f I f
. 28
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We shall say that two propositions are equivalent if they have
the same truth value, and shall denote this relation by “p £ ¢.”
The statement “p E ¢’ is a sentence in the syntax language, not
in the object language. ,

The following may be easily verified, either directly or by
means of the above truth tables:

WDpAgEgADp
@QpAE@ANEDGADAT T A
(3)if p A ¢ E p, thenp A (~q) Er A (~1), and (\J)
@) iEp A (~g) Er A (~), thenp A gEp. O

L 3

Also we have D
S
(5) if p E g, then ~p K ~q, and \%

{6) iprq,thenp/\rEq/\randeQ;’\ pEr g

Thus we see that the laws of Booleaii}lgebra also hold for the
logic of propositions with “A”, “~%2) and “E,” in the places of
itr‘\]:," m”, and ¥=". In f&(}t, %@ME];;Q%E%Q ‘,;-j-;” _fOI‘IIl a
two-slement Boolean algebra-with respect to the operations A
and ~ defined by the abova tables. The algebra of propositions
is, then, essentially thesame as the algebra of classes. We are
thus led to the following formulation of the logic of propositions
as a deductive gel nee.

The undefinédterms in our system are a non-empty class C,
two operations’ A and ~ defined on C, and a relation E defined
betweeq\@;é members of €. The unproved prqpositions are:

A?” If p and g are in C, then ~pand p A q 6re wniguely

' determined members of C.

A2 If p and q are in C, then p A gE g A P

A3, If p, q, and r are in C, then (p A DATEpA @A

A4'. If p, g, and r are in C, andp AgEp thenp A ~qE
A T . '

A5 If p, q, and 7 are in C, and p A ~g Er A r~r, then
pAgED

AG'. If p and q are in C and p E g, then ~p B ~aq.
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A7. Ifp,q,andrareinC,and pE g, thenp A rE g A r and
rApErAg

A8'. If pisin C, then p E p.

AY. Ifpand garein C,and p E g, then q E p.

Al Ifp, g andrarein C,and pE g, and g E 7, then p E 7.

It is now clear that (C, A, ~, E) is a Boolean algebra with
respect to the equivalence relation E. In other wards, the logid.
of classes and the logic of propositions are models of the same
deductive science, namely that of Boolean algebra. All thebréms
in Boolean algebra hold for both logics. Theorem 1.2,2% gives
us g eriterion for determining whether a sentence 6f the form
“p E ¢ is or is not universally valid in the logie of propositions,
where p and ¢ are expressed as Boolean functions of arbitrary
prepositions. . \

There is one combination; namel \}’( ~p) V ¢’ or
H~(p A {~q)),” which has many of\{he‘intuitive properties of
an implication relation. Tt is therefgré:cé.lled material implicaiton
and is SymbOH‘?Ed\Py\:ﬁbD & %Tﬁg%fglllé)&been some controversy
over the question of W efﬁer, t,l?s 18 a suitable interpretation of
the proposition that if p thém g, and we shall not commit our-
selves on this question. We merely remark that for most mathe-
matical purposes thig-interpretation is entirely adequate. The

determination of iti\'tl‘uth value from those of p and ¢ is shown
by the table: >\

\¢/ p g |pDyg

Tl ety o

4 H

¢ f

AN f i
' ' f !

Thus with this interpretation a false proposition implies any
proposition and a true proposition is implied by any proposition.
The proposition p O ¢ is false if and only if p is true and ¢ is
false. S8ome philosophers have argued that these properties of
material implication disagree with the intuitive meaning of
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implication. Nevertheless, these properties do agree with the
interpretation of implication used in practice by mathemati-
cians.

Note carefully that while “a (C § expresses 4 relation be-
tween elements in a Boolean algebra and is thus a sentence in the
syntax language, p O ¢ is an elemeni of ¢, and “p D ¢” is a
gentence in the object language. ~
SECTION 2 ALTERNATIVE FORMULATIONS O\

The formulation of the propositional logic based on Al ALy
is entirely adequate and shows very clearly the rela,ﬁfbh between
the logic of propositions and Boolean algebra. {hére are, how-
ever, other approaches to the logic of propagitions which are, in
some ways, more acceptable intuitively. %

The first one which we shall conside{f@s ‘the following primi-
tive frame: O '

Undefined terms: a class C, a ¢lass T, & binary operation D,
an%:p‘:zj;}i ;11?311;12112111();, :r}rw“\.fd braulibrary.org.in

Al If pisin E, thee p 45 in C;

A2 If p and q grean C, thenp D qisa uniquely determined
elemem\%g}"c s

A3”. If p i8dn C, then ~pis a uniquely deiermined element
of G}

A4". If\p, g, and r arein C, then[p D (@D NID P D9 O

Y Dnlism I;
A8 If pand g are in C, then p D (g D p)isin T

R “AB". If p and q are in C, then [(~p) D (~q)] D ig DO plis
nT;

A7, If pand p D g are in X, then g is in T.

An ordered quadruple (C, T, D, ~) satisfying these postulates
will be called a Boolean propositional logic.

In the concrete interpretation which we have in mind, € is
the class of propositions, ¥ is the class of true propositions,
p O qis the proposition that if p, then ¢, and ~p is the proposi-
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tion that it is false that p. We shall abbreviate the statement
- “pisin €7 by “Ip,” which may be read “We assert that p” or

“I% is true that p.” Of course, “}-p” is a sentence in the syntax

language. '

For brevity we shall adopt certain eonventions for omitting
parentheses or replacing them by dots. The symbols .V, A,
and ~ shall be called connectsves and this shall be their order i\
senzority, so that ‘2" is senior to the symbols that follow it in
this list, ete. We shall write sentences in the object lauiguige
using dots as punctuation instead of parentheses. A gzt is a
symbol consisting of zero or more dots, We use points on the
right of unary connectives such as “~ op on gither side of
binary conneetives. A point to the right of a‘ednnective will be
called a r4ght point, and one to the left will be\ealled a left point;
the point will be said to be aituched to th.j:.c\s}tmective in question.
Hach point in a sentence indicates a certain part, which is itgelf a
sentence and would be enclosed in Parentheses in the old nota-
tion. This part is called the scape-of the point. The scope is
determined by thefolleivingiggary org.in

L. If @ and 8 are pointslin a sentence, then e is senior to g if
and only if eithef
(a) a congigts\of more dots than 8; or
(h) & aW'have the same number of dots, but « is
@ttached to a connective senior to that to which
(/8 is attached: or :
A€)Je and 8 are the same with respect to (a) and (b)
N\ but « lies to the right of 8.
'I‘I§The scope of any right point extends to the right until the
AN first (if any) left point which is senior to the given point
~0  and all intermediate right points, '

& \

) IIL The same as IT with “right” and “left” interchanged.
Thus in ihe sentence “p O g D r” the points all consigt of
zero dots and may be identified thus “Pr Dz g2 Dy . Their
order of geniority from highest to lowest i84,3,2,1 (See I{c).).
The scopa of “3” is “p D ¢,” and the seope of “4’ ig “r’ 1§ we
write this sentence in the Pparentheses notation, we obtain
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“(p O ) O r,” where we have left, out parentheses enclosing
single letters. The conclusion of A4” could now be written

“py gDr.DpDedpDr

but we shall often put in extra dots to make the scopes more
obvious. The purpose of language being communication, it is
more important to write legibly than to be stingy with dots. We,
"shall therefore prefer to write this sentence thus: \

“PD-QDI‘"=D=PD€3$D?”, "\'\“.\

L 3 N

or even thus: N

“9.D gD :pDe.D IR

although the first form is more economical,
The conclusions of A5” and AG” ma,}(bé written as follows: _

“p 2D g DBY
‘and “mop D fig{:a:::?,d-maliﬂf-ary,org,m
We introduce the fo}l{“)wi‘n:g‘ definitions:
D1. “p V ¢” for AP D ¢

D2. ::p A qv %E"}“-'.p D) Nq_”
D3, “p = qj”f “p Dg. A > p_n

We shall ‘[';hkl; “=? gs genior to “.”
On thébasis of A1-AT7" we can prove the following theorems.

We sb\aﬁ usually omit the explicit statement that the elements
me;l'i??oned in these theorems are members of C.

®

OTL Fp Do .
Proof. ) lp D @D p 2O . (A5")
@D aeDp. {(A5")
@ HYyD. 2D T : (Ad")

Here step (3) indicates that the statement
D aDpDP:DpDADPD PDOP
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follows from A4”, and that certain parts are identifiable with
sentences which were proved in previous steps. Two applica-
tions of A7 yield the desired resul. Explicit mention of such
applications of A7” will sometimes he omitted.

T2 HgDrDpDepDr :
Proof. D) Ip D gD DpDg¢gDpDr (A4 ~

@D eDrD (A5
@FeDroQ (AT
DHgDr.DpD4Dr . (45"
(5) HB) D .(4) D T2 \ (A7)

T3. +~p D p D \\

Proof. (1) f~¢ D ~p D pDa. (A6’
@) F~p D .~gD ~p N (A5")
@D D@D .18 <~5' (T2)

Td. F~mp D p. \

Proof. (1) bvop D . ~p D w~~p (T3)
(2) fr~p Dy wdbraufbiBry &8ip D p, (A6)
(3 H2) D :(1) Der'~p D .~~pDop (T2)
() F~~p D o~ p D (AT
(5) F~~p 2y ~p (T1)
6) -4 {\‘(5 D T4 . (A4")

T5. bp D ~Ap

Proof. (1) k&~ ~p D ~p (T4)
@HH1) O Ts (A6")

TG,-:%“.D P2Dg¢Dgq _

Progf. (1) lpD¢D pDg (T1)

~O @DHYDp3¢Dp.DpDegDyg (A4™)
\/ @tpDgDp.DpDgDyg (A7)
WD pDgDyp (A5")
B H3) D .4)DTs (T9)

LD yDriDgDpDdr
Proof. ) lp DgDpDriDigD quDpD
gIr (T2)
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@ pD gD PDe¢D PO (A4"")
@D PpOe : {(A5")
GO D@ DpDeDr. D@D

D pOT (T2}

G pD gqDr. D3 DD PIT (AT'") -
6) H3) D 23 D gD P DD gD

pOT (T$)
MFHD gD pDr:DtgD pPIT (A7),
® FHND.5;DOTT (T2)
AN
TR \pDg: D27 PIT (T2, T2)
T9. bp D ~¢D 42 ~P
Proof. (1) br~r~p O P N (T
@ H1): D @D ~gD ~p ARG (T8)
@ pD~gD o~V D~ v (A7)
@) berp D g D gD YR (A6

(5) H3) D .4y DO T R
TI0. p~p D gD .~a 2w O
T1l. ]’p 5¢2.~4 2 ﬁ':%a!:\«?-dbrauljbrary,org,m
The proofs of T10 and Tll are similar to that of T9 and may
be left to the reader a.smexéfcises.

TIZ2. bp A ¢ DA P (Te, T11, D2)

T3. lp DO _gg\p Aq
Proof. ()0 22 ~1 2 ™4 (T8)
@dp D ~gD ~g.0 4DP NI (T9, D2)
B D@2 T13 (T8)
TP D¢ D g DPD P =1 (T13, D3)

AT15. bp AgDp

O Proof. (1) F~p 2D PO ™ (T3)
A% @ pD~D .~ PN (T5, D2)
@ LD .2 D.~pD .~ PN (T8)
() brp D .~ .p Ag: D: TI5 (A6
TIS. Fp A gD Y : (T12, T15)
TI7.lp Ag=gAD : (T12, T14)

TlS.l—r:}pD.rD_qD.rDP/\Q
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Proof. ) FpD gD pAg (T13)
@ HD DD (A5")

@FDMm.D TI18 (A4")

TI. lp A gAr, = PAG AT

Proof. () Fp A gAr.Dp : (T15)
@A gAr.D gATr (T16) ~
GhArDyg (T15)"
WHAD.BDpAgAr.Dg (T8
GbpA gAr.Dyg (AT

GFUD:MB) DA gAr.DpAg (T18)

(7)|—p/\.g/\r.3p/\q
®HArDr
(9)|—p/\-§/\?‘.:).r

) Fp A gAr.D pAg.

Stmilarly we prove that

Hence, (12) |-(10)v e

T20. If |pand }p = g, tken]—g
Proof. (1) Ip = ¢. D p,DNg

AN
T20 follows from (1) Q@Mﬂ.

(11) Fp A q. /\ 7, ?y']%g/},ég;)};r

T2L bp = ¢. D0hp = ~g

Proof. (1) lpnseig. D p D g

- @)D gD i~ D ~p
B =D .~ ~p
D =¢.D .~pD ~g

LB =00 ap =y
(PTZ?-Fqu PAg=p
“roof. (1)

g, PAg=yp
Ag

TS
. W'\ &
), (8), T8)
AT D), ©), Ti8)

(T14)

(T15)

(T15)

(T11)

(1), (2), T8)
(T18, T11, T8)
(3}, (4), T18, D3)

(T15)
| ((1), A5
A g (T18)

- ((2), 3), T18, D3)

=EP.OPDpAg (T16, D3)
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@D pDpAGD PG (T8)

NDipAg=p.DOpDg
(8) H4) D .(7) D T22

T23. b~p A ~p
T2 bp =p
T25,. fp=g. = g=7p
T26. bp=g¢gD pDr=¢Or
Proof. W) bp=¢D 4D p
QD hD2pDpDrDgDr

((5), (6), A7", T8)
(T14)

(T3)

(T1, T13)

(T17, D3)’

(T16)

e
QHYD.@QDp=¢Dp2rD qu‘"( g)

Similarly,
DHlp=¢gDe>rDpIr

(5) H1) D .(4) D .T26
T2. bp=¢D s Dp=rDg

'?s\ (T18)
(Similar to T26)

T2 lp=¢gDg=r. = p—rx\?Tze T27, T25, T21)

T29. f~r~p =p %)

(T4, T5)

Ta0. |—p g, = ~p }ﬂ\wwqm‘auhblary 0@29 T28, T26)

T3l f~p. = p=71 A ~r~

Proof. (1) b~p D p'.')ri\ ~r
(2) FI23 D s A ~r D p
B) b~p AN ~rDp
@) b~pOp =r A

(T3)

(T3)

(A5", (2))
(1}, (2, T18)

) kpr A ~r. D p DT A (T15)
@LEpPDr A ~rD:~r A~ D ~p (T

@GTBD p D7 A ~r D ~p

((6), T7) -

*‘QS) fp=rAc~r.Op ((8), (7), T8)
\“ @ hp.=p=r A7 _ (T14)
~T32. bpDg.o=pA ~g=rh~T (T31, T30)
..\'}T33.k—p/\QEpEp/\~q-r/\~r (T32, T22)
\J T34 Iflp Ag=p,the |—pA~qﬁrA~r(TZOT‘33)
T35. Iffp A ~g=1 A ~rthenlp Ag=7p
. (T25, T33, T22)
T36. fp=¢g. D pAT=CAT (T26, T21)
T37. lp=¢. D r AP=TrAQ (T27, T21)
D4' (‘p E q,, for l{l_p = q"’
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It is now easy to verify that (C, A, ~, E} is a Boolean algebra -
with respect to the equivalence relation &, Conversely if (C, A,
~, B} is a Boolean algebrs with respect t0 the equivalence
relation E, and we define the class ¥ as the class of all members
P of € such that PE ~(p A ~p), and define “p D ¢ as
“~(p A ~g)”, then (C, T, D, ~) is a Boolean propositional
logic. This shows that the two concepts are equivalent.

An alternative approach is possible in which we fix our atten-
tion not on the classes ¢ and £, and the properties of the operasy
tions O and ~, but on the object language in which vietalk
about these entities. That is, we can set up a system ofrules for
the manipulation of the signg without making any aséumptions
a% all about the things they denote, or indeed, without assuming
that the signs denote anything at g, ‘

We take as our alphabet the signs {,), :),{v.; and the infinite
ligt of “letters” p, , p, Ps s - - . The latter we call propositional
variables. A finite sequence of signs, waitben from left to right,
will be called & string. We shall use capital Latin letters to denote
strings, i.e., as nafﬁééwoi'béﬁ‘fﬁ'g')ﬁ%grﬁﬁﬁon of a string is ex-
pressed in the syntax languagga;:v}h’ile the strings themselves are
in the object language. b

A sentence is a string fo\riined according to the following rules:

(1) & string consi%i@g’of a single propositional variable is a
sentence.

(2) if A and Blate sentences, then (4 O B) and {~A4) are

sentencel,”

(A
P_Iere “(4¢(3°B)” denotes the string consisting of “0, then the
signs of»d in order, then “2", then the signs of B, and finally
‘()1?

) - A\string of signs in our alphabet and capital Latin letters

‘We take the following strings as axioms:

Ala, ((p, D (p, D P2) D (D p) D {p: O p))).
A2a. (p, D (P2 O ).

A3a. (((~py) D (~p2)) D (p; D ),
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and the following “rules of inference”:

Rla. If A and (4 D B), then B. _
R2a. If B is a sentence and A is a theorem, then S(B | p; | 4).

These axioms are to be used as an initial supply of strings, and
the thecrems are the axioms themselves, and all strings obtain-
able by a finite number of applications of the rules to the axioms
or the strings already obtained. For example, the first step in the!
proof of T1 now consists in observing that “(p. D p)” js a
sentence and taking the string (pr D (p. D p)) for A4 and
applying R2a to obtain S((ps D 1) | 25 | A), which is
“Up: D {p: D p) D))" - *

In our previous treatment a rule of substitution;‘guch as R2a,
was unnecessary, since if 4 is a sentence and allstter, say “p”,
occurs in 4, and if |-4 is proved for all men'%irs p of C, then we
may replace ‘“p” by any other name of axyyfember of C. Thus
R2a amounts to the observation thapute'members of C are sin-
gled out by A1-A7" as having spegial properties expressible in
the obhject language, so that\.gtd aﬁ%’iﬁgﬁﬁ%&aﬂfé “from these
assumptions alone holds for allmembers of C. In other words,
R2a is a statement of a propérty of the object language, i.e. that
the only true proposition#expressible in this language are gen-
erally true propositions,'and has nothing to do with the proper-
ties of C. R\

Nevertheless, dhe two points of view are formally equivalent,
since the provable sentences are exacily the same in the two
theories. 'Phe-difference is that previously it was assumed that
the strin@s had meanings, and whenever meanings are assigned
850 tha.&l”—A?" are true, then all the theorems automatically
becbme true propositions. In the second point of view we first
y m{le}elop a language by applying certain rules without any refer-
énce to any meaning of the signs. If we wish to use this language
for any purpose, then we must give rules for interpreting it. In
this particular ease it is easy to give an acceptable interpretation
and to see intuitively that the interpretation is satisfactory. It is,
however, a very difficult problem to define rigorously what is
meant by an interpretation of a language, and to give criteria by
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means of which one can decide whether s proposed interpreta-
tion is acceptable. This difficulty is avoided when from the
beginning we take the signs as names for various entities.

The second formulation is still not entirely satisfactory, since
the notion of substitution is a rather complicated one. We could,
of course, define that notion and thus make it available for a
rigorous theory. But this makes it necessary to use rather heavy.
machinery in the unanalyzed syntax language even for fhe
proofs of very simple theorems. ¢\

Of course, when we wish to prove deeper theorems ahout the
system, such as T1.1.41, we must use a great deal of the' syntax
language in any case, but in the simpler parts of’thé theory we
should try to reduce its use to a minimumy,, just because its
properties are not stated explicitly, If we t#iedto analyze the
syntax language as well, we ghould havq.Qs.‘communicate thig
analysis in a language whose meaning and structure was already
assumed to be known, and so on; thigweuld force us into a para-

“dox akin to the “Achilles the Tartoise” paradox of Lewis
Carroll (I67] 2, ¥85 ﬁéi"éﬁg‘ﬁ%‘g (%Fi'qected Works of Lewis
Carroll,” The Modern Library \New York).

We may solve this difficidéy by incorporating these trouble-
somne parts of the syntia.{’langua.ge in the object language. While
we are ab it, we ma¥ 2s well get rid of the infinite alphabet,
involving numerje bscripts, which occurs in the last formu-
lation. To do tHigy we identify the subscripts with strings in a
new sign “124nd in order to retain the uniform convention of
writing strings in linear order, we place the 1’s on the same line
as the{e;gt‘of the signs. In this way we avoid even thig trivial
unanalyzed use of arithmetic in the logic of propositions.

.. \Il;[?thjs way we arrive at the following formulation:

A “\Alpha'bet S’ |_! V! D! N: (} )! p: 1! @1 =J ;'éi I'
Axioms: Alb, Vp

A2b. p=p
A3b. 1=1
Adb, D =D
A5b. = e

ASb. (= (
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ATh. ) =)

A8b. D@1 Dpll) D{(aDph) D{(pDpll)))
ASb. {p D (p1 D )

A1Ob. (((~p) D (~p1)) D (@1 D)

Rules: Rlb. VA4 - VAl
R%b. 4 =B,C=D— AC=BD
Rsb. A=B—>B=A -
Rib. A=BB=C—-A=C _ .
R5b. t4,4 =B —|B <O
R6b. VA —p = Al C
R7b. A # B — Al » Bl
RSb. A= B—>B#A4A K,
Rob. VA — &4 ?)
R10b, @4 — S(~A4) \
Rilb, G4, &B — G(4 D B) (2
R12b. VA, ©B — S(B | AJA)= B
‘RI3b. V4, GB, VC,A = CyS S(B|A|C) = C
R14b. VA, ©B, &C, Eé‘b“f-—ibsf’(‘ﬂ‘&";irp’(‘ff &np)) =
SB1A QD 8B |4 D)
R15b. VA, ©B, @6\ S(B | A | (~0)) =
C(~SBALCY
R16b. |4, KD B) — B
R17h. VASB, &C, ¢ =SB 4]0)

Kn

Here again §he axioms are to be taken as an mitial gupply of
strings. Therhles are to be understood as meaning that when-
ever wr:{o;;la}rea,dy have the strings indieated to the left of the
arrowbhen the string to the right is to be taken as well. The
letteds 4, B, €, and D denote arbitrary strings.

d “For example, if we start with Alb and apply R1b repeatedly,
\we obtain the strings

(1) Vp, Vpl, Vpil, Vpll1l, --- .
We may then apply R6b to these strings and get

2) p = pl, p# pll, p = pIlL, -+ .
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Application of R7b yields

@) pl = pli, p1l 5= plld, -,
pl 5 pl1l, pll s plI111, --- .

By_RQb'applied to the strings in (1), we find that the initjal
“V” may be replaced by “&”. Then R11b gives us

N\
1) &l Dp),&pD@plD P), &(pl1 D (p1 D fP{] \)
p)))s ete. '\,.'\
7'\
Now we may use RI7b and A9b to obtain L

) B8t D p) 21| (0 D (1 3 p))).
To save time we shall merely summarize thé'text inferences:

©) 812 ) [P (2D (81 D p))=S((p1 D p) | p1 | p)
D@L D p) |l (p1 200 N

(73 gggpigp)llpligf)zp s 5L D 2 51 p1)

(8?33‘9111,1%,11010?:9
S S ke

(9) (01 5 p) | p1 | plI*= (p1 > p)

(10) (3((p1 D p) | p1 [ P1) = ((p1 D p)  (A6b, (9), R2b)

(1) (S((@1 D p) 93] p1) > S((p1 D p) | p1 | 1) =

((p1 a.pa;; p) (7}, (8), R2b, Rab)
(12) S((1 2 M p1 | (p D (p1 > p))) =

(® 21 D p) D ) ((6), (11), R2b, Rab)
(13) H;i (@l D p) D ) ((5), (12), R5b)

ug'We see what is invelved in this formulation i order to
pel%’ the first step in the proof of T1. We have, in fact,
omitted a few steps (applications of R2b) in (10), (1), and (12).

. (This situation arises because we have analyzed the rules Rla
\Jand R2a and the definition of 8 sentence into “atomic” steps.
Steps (4)-(13) are what we really do in one fell 8woop when we
substitute “(p1 O p)” for “pl” in AOb. This illustrates the
complexity of the process of substitution. In thig formulation
Wwe have reduced the use of the syntax language to a bare mini-
mum at the cost of greatly increasing the lengths of proofs. On



the other hand, the present object language is much richer, so
that many syntactical theorems about the logic of propositions
now become theorems in this precisely formulated object lan-
guage. The advantages and disadvantages of these points of view
will be discussed later in more detail. In the lagt chapter (p. 157
159) we give still another analysis of the ohject language of
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Boolean algebra.

EXERCISES-

A
Ex. 1. Prove (@) Fpr D D Dm0 1=: 01 AP A
e AP DG (n_.:'"

(b) Fr~p = ~p. 7,

(c) bp vV ~p. o)

dkp=¢.V.p = ~q

@tpDg.V.¢Dp Y

) Fp=g.=.p ALY ~P A~

@ tp .D.pAgEE ,

(h) H’ S p qu\:\:.\.{,dbrauhbrary,org,m

0 Fpve=aVpy

@ kp A.pE gD

Ex. 2. Prove the indépendence of Ad"-AG".
Ex. 3. Prove tlti!{if.f is any Boolean function of one variable,

then lp

g.D. flp) = f@

Ex. 4. (a)./Prave that if f is any Boolean function of one

. Show that a necessary and suffic

(\ variable, then

Lfp D ) A f(~( D p)) D f@-

(b). State and prove the analogous theorems for Bool-
ean functions of several variables.

. Show how problem 4 can be used to decide whether
for a given Boolean functionr f,

., ) is a theorem.

cop) Dy, D) be a theorem is that

whenever |f(p, , * -+ » Ps) then Fg(py, oo v s Bade

the statement

ient condition that
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SECTION 3 DEDUCTIVE SYSTEMS

By making use of the concepis introduced in the study of
Boolean algebras we can elarify the foundations of the logic of
propositions and study the nature of deductive systems from a
rather general point of view. As we have remarked before, the
propositional calculus forms a Boolean algebra with the relation,
E playing the role of the equality relation =, On the other handy
B =(C,N,’) is a Boolean algebra, and we define “p D
88 up.r U gn or tt(p Ia g;)n} and umpu as npn:, then ‘\

POE@OnN =9V =pUpUga,

and similarly for the formulae appearing in A4% a:nd A IT &
Is a sub-class of €' such that A4”—A7" are satigfied, then 1 = .
By T9”, p, ¢ € T implies that p N ¢ & Ty Farthermore

A
POV =p U =1etg,

sothat p € T, ¢ &0 EhpHi NS ') € T Thusif Tisa
subelass of C satisfying A. "-ATY, then T is a sum ideal. Coon-
versely, if T is g sum ideal,then 1 & T so that Ad"-Ag” are
automatically satisfied. Besides, if pand p D ¢ = PYUegec g,
theng = g U (p N P\ 9)) € T, which yields A7". We thus
have proved \\ -

THEOREM LALB = (C, N, ') is a Boolean algebra, and we
deﬁm “p D.qj’xas {‘(p n ql).f,} and “Np,,_ as _“pf”, ‘km for tk‘e
subclass Lof C o satisfy Ad"-AT" 4 15 necessary and sufficient
that Ei{ﬁd’ sum ideal, ' -

' F’e, ghall, in thig section, revert to the notations of chapter I,
~Supplemented by the symbols “ and “—*. In many deductive
\_tbeories we wish the axioms to be categorical, that i8, that the
system should be adequate to decide the truth or falsity of any
proposition which can be formulated in the system, In the frame
of AV"-A7" we can give this demand the strong form that for

every p & Ceither [-p or 1y, 1.e. PC¥orp € 2. As a conse-
quence of lemma, 6 we obtain :
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THEOREM 2. A necessary and sufficient condition that a propo-
sitional logic be categorical is that T be a mazimal sum tdeal.

Proof. By lemma 6, if T is a MBI, then the logic is categorical.
Conversely, if the logic is categorical and & is a sum ideal con-
taining T, and & = T, then thereisap € ©& such that p ¢ Z.
Hencep & T C &,s0that 0 =p N p’ € &. Therefore & = C.
This shows that T is a MSL p

1i % is any subclass of C, then the sequence i, * = * » Pu is gaid
to be a proof of g from the hypotheses X if ¢ = p,and if for enehy,
1 < 1 < n, either p; is in ¥ or p; is in ¥, or there are ik suzﬁl that
1< 4k <iandp = (2 O ps). We shall say that ik & conse-
quence of % if there is a proof of ¢ from the hypgﬁbeses ¥+ We
chall denote the clags of consequences of X by %", Of course,
the notion of a consequence of X is relativesbe*the sum ideal
initially chosen as the class of true propositions. If ¥ is taken fo
be the class whose only member is 1 (i_.e,\p > pfor some p € C),
then ¥ becomes in a sense the g (of Togical consequences of %,
i.e. the class of all pmpositioﬁji?sir?}h&é “follow fronf ¥ under no
assumptions as to | ‘extralogicia;l?"tmths. '

TreoreM 3. If % is @¥inte subclass of C, & = {re, non by

then g is & consequenceof X if and onlyif iV - M Dy
RS

(We omit parentheses here with T2.2.19 as justification.)
~ Proof. Leti@s, - » Pa be 4 proof of ¢ from the hypaotheses X.
Tet 5§ = (}' A\ coe O\ 1 . We shall prove by induetion that
bs p,rl,; i =1, ---,n, the last case of which is the desired
st |
ANow either |p, or ;1 € %. In the first case, the assertion

~~:L?‘|-'s D p,” follows from A5", and in the gecond ecase, from
) repeated applications of T2.2.15 and T2.2.16.

Suppose that s D pyfor 1 < § < i. If either bps or p € %,
then the argument just used foré = 1 applies. I there are j, k
such that 1 < j, k < dand pe = p; D P, thents Do O sD

N\

*We shall say that ¢ i1 a congequence of the propasition p 1f g is a conge-

quence of the class [p}.
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P; O .8 D p; (A4"), so that the assertion that [-s D p, follows by
two applications of A7,

Conversely, if -+, N, M -+~ N7, D g, then gisa cohsequence
of X.Forr, ,r, D D POV, D O, s, Yy,
rlf\rgz).ra:)rlﬂmﬁrs,ra:)_rlﬁrgf\ra,rg,
VAT Y A F R o P o T Nre,nN\r,N o Ay D 7,

g 1s a proof of ¢ from the hypotheses %. !

CoROLLARY 3a. [f ¥ isa non-empty subclass of C, then q i§’a,
consequence of X if and only if there are elements r, y U, {,{\of X
such thatfry O\ --- My, D g ~\

~ For the latter condition certainly implies that ¢'i9 a conse-

quence of X. On the other hand, if Pi,y t, Pd8)a proof of ¢
from the hypotheses ¥, andifr,, ... 5 are the elementis of ¥
occurring in this proof, then ¢is a consequpms}'of {ri, o, md,

80 that theorem 3 applies,

P

CoroLLARY 8b. The element %w a,cé;@éé%uence_of the null class
if and only if |q www.dbraulthraryorg.

For then g is also a consequéijce: of ¢ 3 ¢, so that |-¢ follows
from T2.2.1. -

CoroLLARY 30, The'gte;?nem: 9 18 @ consequence of p if and only
ifrp D \C

This is the caseVe’= 1 of theorem 3.

Corollaries 3n.50d 3¢ constitute the so-called deduction thoorem
of the Booléiin "propositional logie. We shall denote that gisa
consequuQ’c"E of Xby “Rl¢";#f % = {r, » "t * , T+}, then we may
also whts “r, » =+ 5 7 g, The use of the deduction theorem
would *have simplified many of the proofs in the preceding

\w:e@tibn. .
- THEOREM 4. ¥ 45 the smallest sum, wdeal containing both X and T.

Proof. H % is the null class, then ¥ = T and is certainly the
smallest sum ideal containing ¥ and ¢. Suppose that % is not
empty. Let & be any sum idea] containing ¥ and g. If q €%,
then there are elements Tis oty 1 & % such that b, N ...
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Nr D g Heneery M -+ NrESandr,N - N DeE G,
so that ¢ & &, by theorem 1. This shows that every sum ideal
containing ¥ and ¥ also contains %. Tt remains to show that X is
itself a sum ideal containing both ¥ and <.

If g © Xor T, theng itself is a proof of ¢ from the hypotbeses
%. Therefore X does contain % and ¥,

If g, and ¢, € ¥, then there are elements 7y, 7 s Tw s Tmet s

., 7, in X such that

bre (Y oos 1 D gy and Prag N e N1 D Gae A
But . ';:\’\..'

Fflf\---f\r,.Dr,(\---('\rm and &N

Loy N e V12 D P () 2o (N1, bY T2.2.15,(72.2.16.

Then g, M g € %, by T2.2.8 and T2.218. f & Xend r & c,
then ¢ D ¢ \J r (see p. 43). Conzegtiently, if we adjoin
gD g\Jr, g\Jrtoany proof of ¢ fro_l_l}{;he hypotheses %, we
obtain a proof of ¢\J r. Hence g &by highycompletes the

proof that X is a sum ideal. o0
The following properties atel easy to prove:

i-%,
p N’} =T, ;@ié c, o
if ¢, r € C, then gDOr X, if and only ifr € ¥\ {g},

b= am NG =%
I
Here {#¢y - -+ } is the class whose only members are P, ¢, ** *

and £he connectives “/” and AU are the usual ones in the
algebra, of classes. : : .
~ JWe may say that a subelags X of C 18 8 deductive system if 1t
\contains all of its consequences, i.e. ifZ C %. But, by theorem 4,
% C %, so that this condition is equivalent to ¥ = %, and this
implies that % is a sum ideal containing . Conversely, if ¥isa
sum ideal containing &, then X = %, by theorem 4. Thus the
coneept of a deductive system coincides with that of a sum ideal
containing . An equivalent condition is that there 18 a 9 CC
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such that % = ). In other words, a deductive system is the set
of all consequences of some given class of propositions. To say
that a class ¥ of propositions is consistent means that there is no
broposition g such that both ¢ and ¢ are consequences of %,
But ¢, ¢ €% im liesthat 0 = ¢ N ¢’ C %, and 0 € % implies
thatr=rU(_) E%fora]lr_ec.

Hence 0 € X if and only if ¥ = €. Thus X is consistent when
and only when Xis a proper sum ideal or equivalently, when not
all propositions are consequences of ¥. O\

‘We see then that many of the “metalogical” concepts ariging
in the study of deductive theories are subsumed by the notions
of modern algebra. This is discussed in detail by Stone and
Tarski, who arrived at this resylt independently from quite
different points of view. As these authors have shawn, there is a
close connection hetween the properties of déductive systems
and Brouwer’s “intuitionistic” logic as fortaalized by Heyting
(see the next section). X )

We are now ableﬁ%&hﬁﬂ%ﬁl%aﬁ@h&;gnﬁhe coneept of truth
value. As we have noted before, the\truth values form a two-
element Boolean algebra with respect to the operations /M and !
and may therefore be identiﬁe;iﬁri'th the elements 0 and 1. Now
Suppose we have a method of aséignjng truth values to all propo-
sitions in agreement with'the tables of II1. That is, we have a
function v defined on. theBoolean algebra of all propositions and
taking on only the vhhes 0 and 1, and such that

UOPERDY, v N ) = o(p) M o(g),

which -meljelyﬁi;ates algebraically that the assignment of truth
values m‘&ﬂy'does what we want it to do. Such a function is called
by algebraists 5 homomorphism of the given Boolean algebra B
onfa the two-element Boolean algebra. Let T be the class of

p pg‘g)positions-- with the truth value “bruth”, ie. such that
p) = 1.

It turns out that T is 4 MSL For if p, ¢ < %, then
¥(p) = v(g) = 1, 50 that v(p N D=vp) ol =1N1=1,
andpﬂqei.lfpex,qeo, thens(p\J ¢) = o((p' N g)) =
"P'ONEY = (2(p) N gV = (v N ©@)) = v(p) Un(g) =
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1Us(g) = 1sothat p\J g is also in T. This shows that T is a
quma ideal. Bub #(p) = Lore(p) = 0, and if #{p) = 0, then
wp) =o(p) = 0 =1 Hence for every proposition p, either
pETory €. Consequently T is a MSL '

Conversely, if T is a MSI, and we define » by the table:

1 ipET
o(p) =
0o ifpgd

then v is a homomorphism of the algebra of propositions, 6nto
the two-element Boolean algebra. For either p € T or p'x.é T,
and not both. In the first case o{p’) = 0= v(p)', abd n the
second, v(p’) = 1 = 2(p)’. Similarly we show thatWp M @ =
»(p) M v(g). This proves QO

THEOREM H. An asstgnment of truth pal@eé is possible in &
Boolean proposttional logic if and onlyif-the logic s categorical.

wwwidbTauli

Since logics adequate for matheraatics Ul E i to a cer-
tajn very general class canndt® be categorical, by Godel’s
theorem, it follows that in geﬁgé:ra.l it is impossible to assign truth
values to all propositionsin an adequate logie.

The concepbs introdiced here aid us in clearing up a number
of common miscon@tfons as to the nature of the Boolean prop-
ositional logic. £

In some quatters it is held that in the Boolean logic there are
only two distmet propositions, 0 and 1. This is manifestly wrong
since 16 special assumption as to the number of elements of c¢
is foreed on us. Even if we consider propositions p and g as the
safoe if p B g, (algebraically, we consider the Boolean algebra of

N equivalence classes), then this conclusion is not forced on us. In

) fact, it is the same as saying that & is a MST, Le. that the logic is

categorical. As we have mentioned above, the most interesting

logies so far constructed are not categorieal, and no way is known

to make them so. Even if the logic is categorical, then we may

still make distinetions between propositions other than those
expressible in terms of truth values. :
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The mistake arizes from confusing the object language with
the syntax language. The following are theorems iz_l the Boolean
logic:

g;f;p“;‘ . (1is v D r for a fixed r)

F~p = .p=0. (0 is 1%).
DiFp=0.v.p=1,fordlpin (. _ \
The statement that \:\' ~
2 tp=0orlp =1, forall pin C, N

is true if and only if the logic is eategorical. In a looge translation
into English (1) and (2) seem to mean the sama, bt the “or” or
“V?* of the object language is not the same as the “or” of the
syntax language. The difference is cloardrif we read “¢-p” as
“it is provable that p”. Then (2} holds‘enly if all sentences in
the logic are decidablevin dhesrlébigrwhichitneans that the logic
is either so simple that only fajrly* trivial propositions are ex-
presaible in it, or so powerful, t.{iat’ it transcends all logies so far
constructed. S
As we shall see in the next section, the Boolean logic has been
criticized on the grolgid’that it deals only with the truth and
falgity of propositioﬁs, and omits such properties as possibility
and necessity, the8o-called modal distinctions. Of course, the
only function®\5f propositions expressible in the present object
language are'Boolean functions, whose trivial nature is revealed
by T1:1\21’: There is, however, nothing to stop us from con-
side;ing\non-Boolean funetions of elements in 2 Boolean algebra,
and-$his gives us the possibility of studying modal Jogi¢ by
( merely extending the framework of Boolean logic. The introduc-
tion of non-Boolean functions is analogous to the extension of
ordinary algebra by the consideration of polynomials and even
more general functions instead of merely linear functions. A
small but significant beginning in this direction hag been made

by MeKinsey and Tarski (e.z. [IX]96), but much still remains to
be done, '
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EXERCISES

Fx. 1. Prove the statements on p. 47.

Ex. 2. Let T be asum ideal, and define “p = ¢ as‘bp = ¢
Qtate in words the meaning of the statement that the
proposition p 1s sn atom in the corresponding logic. Is
it, likely that in an intuitively acceptable propositional
logic there exist atoms?

Ex. 8. Let us say that one logic L, is an extension of another,
one, Ly , if the corresponding classes of true proposi
tions are related by T C & . Prove, by Tl:a;b,"tha,t
every logic has a categorical extension. Is iplikely that
uch an extension can be defined constmfetively when
the original logic is non-trivial? ’

| R \d

SECTION 4 MANY VALUED LOGI.QS.:x\MODAL LOGICS
IN'II‘UIT IONISM }f{aﬁw_ﬂbraulibl'ary.org_in
The logic of propositions clexréli)ped in the last two sections is
based on the properties of the two truth values “truth”, and
“falsity’’, which were talg:n o intuitively evident. Some scholars
have, however, pro iad systems of logic with more than two
truth values. Varjo\us interpretations have been given for these
logics. Thus_the fruth values in a four valued logic might be
interpreted @s “truth”, “plausibility”’, “implausibility”, and
“falsity’,’n\';, -
In the-kystem proposed by Post, there are n truth values
Whi(ﬂjl may be denoted by 1,23 [n — 1], and #- Here we
L ymite [n — 1] in brackets to indicate the n — lst truth value
_rather than the result of the arithmetical operation of subtrac-
tion. '
The operations \J, M and ' (interpreted as “gither . . . OF
.. “hoth ...and...", and “not...7) are defined by the tables
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Ultl2]3 n N[f1]2]3f-n r [P
11111 1 tf1]/2{3!-|=n 1 (2
201122 2 202(2/8|...in 2 |3

“Hn = 1) n
\\
n)]l1|2|3---!n RinIA]R | R

n 1

' AY;
Observe that # plays the same role as(\? or f in the two valued
scheme, O

The properties of these operatic ow be developed on
the basis of these ﬁﬁé?ﬁ%ﬁ% ig?ﬁ‘p a system of postu-
lates for the system and present it as a deductive seience. Also
we can develop an algebriiof classes and an abstract algebra,
corresponding to thisdogic of propositions in the Same way
that Boolean a_lgeb}-g'c,\onesponda to the two valued logic, These
algebras have bé@\ called Post algebras, We shall give, for ex-
ample, a set of ‘postulates for the four valued Post algebras.
Our undefined terms are a clags €, and two operations \J and

» and an undefined relation =, The postulates and first few
definitions are: '

PI\ If p and q are in C, then p \J g and p' are uniquely de-
A\ )y termined elemenis of C. -
v P2, prandq-areinC,ihenpUq=qu.
P3. pr,g,andrarsinﬁ,then(p\.}g)Ur=pU(qu).
P4. I)"pisin‘(,',thenpk)p=p. '
D1.pUqu=(pUq}Ur, .
pUquUsz(pUqu)Us,etc.
D2.p° = p._ " = (" -
DBA@) = T = pUp U p U
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D4. 2(p) = {L(p)), 8(p) = @), Alp) = B@)".
P5. Ifp is en C, then 1(p) = ((pH"" = 4(p)y.
D5. @i(p) = @ \J o\ Py
D8, alp) = ((p\J 2(e))" VY )" k=123
D7, —p = @) Y @) Y e(p").
DR piig = —(-p\VY —@.
DO.pMgiyr = Mg,
pgMrins= (pf\q('\r)ﬁs,ea:.
P6. If p, g, and r are in C, then '
pU NN =GYaN @Y. ol
P7. Ifp and q are in C, then _ A
NNV ip NgH\JNg’) =
Pa. If pisin C, then p = mx(p) \J 2@ N PR N
U 3@ N e\ 4(p) N @ NLY
PO. Ifp, g0, 1 » G » and g5 are in G, then 8
({ge M e@ Y @M el2') ) (912 Qj@l(pn))
U (@ N @) = @ N a@) Y @0 el
U (g N e @MY g’qi Q ﬂﬁx(i’”'])a)—

wwid] raulibrary.org.in
An analogue to T1.1.41 is thatlevery «Post’”’ function f of
one variable can be represented i the form:

i) = (@O @) Y @ a@) Y @D e’
Ulgs ™ qol(p*”)?{...} :

where g0 , ¢1 , 02 aud g, are constant elements. From this it
follows that evefy)function Jdefinable by 4-valued truth tables
is a Post funétien, ie. the algebra 18 ‘fynctionally complete.”
There is al&td decision procedure analogous to that of T1.2.24.
The thy\ valued logics proposed by Fukasiewics and Tarski
are n@t\functiona]ly complete.
~Atypical concrete example of a Post algebra is this. We sup-
“pose that gome class A I8 given. Then C is the class of all fune-
tions defined on A and with values among the integers from 1 to
n. If f and g are such functions, then

{\U g is the function such that for allgin A
(F U e} = min (f{a), 9(a));
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and f M g is the function such that for all g in A

(f M 9)(@) = max (f(a), g(a)).
Also, if f js in C, then

S’ is the function such that

F@+1 i @) <n \
@ =

N
L X
2N\

1 if fla) = n, N\

\

It is easy to check that with this interpretation all tHe Postulates
are verified. A Post algebra, P isa suhalgebrg{.(of PifC, isa
subelass of €, and M and * are defined ag i P. It has been
proved by Wade that every Post algebraNis isomorphic to a
subalgebra of an algebra, of the type desetibed above. We may
think of the elements in ¢ ag propexties of the elements of 4,
80 that the equation. fm}«imitiraxivesses that the proposition
that the element ¢ has the propérty denoted by “f” has the
truth value %. N
As we have mentioned Jbefore, many philosophers object to
the interpretation of “Pr2 ¢ as “p implies ¢”, mainly because
of the so-called “paradexes” of material implication. These are
embodied, for examiple, in A5 and T2.2.3 above. According to
A5”, any propesition implies that Gieseking played before
Hitler, and by,72.2.3, the proposition that Schacht was not a
Nazi implied\évery proposition. Many philosophers (and also
some mp}ﬁmaticians) have insisted that, “p implies ¢’ must
have ‘the’ intuitive properties of “g is deducible from p”, and
that\there is no reasonable way of deducing that Columbus
Miseovered America from the assumption that Schacht wag not
< '\;a Nazi. They say that this is because there isno inner connection
between these two Propositions. This argument is usually
vaguely expressed. Many authors seem to mean that while in
the existing real world Schacht was & Nazi and Columbus dis-
covered America, a world is Imaginable or possible in which
Schacht was not g Nazi, and Columbus did not discover Amer-
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ica. For determinists like Spinoza and Mark Twain (see “The
Mysterious Stranger”) this argument would not hold water.
Ir many presentations of this argument there seems to be a
confusion between this propesition and some such proposition
as that for all © and y, if = is & Nazi then y discovered America.
In others, the intended meaning seems to be that if the propo-
sition “Schacht was not & Nazi” is added to the postulates, then
“Columbus discovered America’ is not a theorem. That is, the
proposition “p implics ¢'' is interpreted to mean that if p is
adjoined to the postulates, then g is provable. This relation)
between p and ¢ is, however, clearly expressed as a sentencs in
the syntax language, not in the object language. Similarky, the
demand that “p implies ¢” mean that “p D ¢” is “afialytic” or
‘8 “tautology” is again an interpretation of imphbation as a
relation in the syniax language. One may attepapt to reconcile
this view with our previous one as fellows. Asbinary operation 7
in Cis to be a satisfactory “implication’t operation if fp T ¢
when and only when if [ is add enostulates, then g is
deducible as j theorem.[h?n this sﬁi%gb{ﬁ ]éaéﬁgyﬂﬁfgﬂf impli-
eation operation according to thegorellary 2.3.3a. We shall dis-
cuss below some of the attempty to construct logics with satis-
factory implication operations.”

Another objection which has been raised to the propositional
logic developed abow i{; «what there are other relations between
propoesitions other than those which depend upon their truth
values. This is usnally accompanied by a contention that two
classes @ and :ﬁlay consist of exactly the same members, yet
may be diffetént beecause of a conceptual difference in their
connotatipns. For example, the class of unicorns has the same
membe';::s as the class of centaurs sinee both are empiy, but
thegey Glasses are different because the concept of a centaur
difters from that of a unicorn. It is true that such distinetions
play no role in mathematical reasoning as it is actually used,
but it iz contended that the prineiples of logic used in this
reasoning are inadequate and incomplete just beeause they
neglect these relations between classes in intension. Analogous’
to these intensional relations between classes are certain “modal”’
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relations between propositions, i.e. relations involving the con-
cept of possibility. -

A third objection to the Boolean propositional logie goes back
to Krenecker, and has been advanced in modern times especially
by Brouwer and Weyl, and in more or less extreme form by
others, notably Lusin. This objection originates in the question
of the meaning of existence. The proponents of the point of
view under discussion hold that an object exists only if a method >
is given for comstructing it. Of course this depends upon*the
permissible methods of construction, but once they are.defined
explicitly, we have a criterion for existence. Now we may be
able to deduce a contradiction from a proposition gof the form
“forall z, z € o” without being able to give a congtfuction for an
z such that £ & «. The “intuitionists’” would theh deny that the
proposition that there exists an x such that\t & o is true, i.e.
neither p ior ~p would be true. Thus t éy say that the law that
Fp V ~p is invalid. Clearly g stég I8 overlooked here. For
Fp V ~p does not-havedisauldmsedguengdip or |- ~p. This con-
clugion follows only if T is a MSE.e. if the logic is categorical.
The intuitionists demand thafin a satisfactory logic p V g be
provable if and only if eithdt'p or ¢ is provable. Hence the intui-
tionists would object ta"any Boolean propositional logie which
was not categorical. Gddel has proved, however, that for a large
class of Boolean ’\Rm’positional logies, which includes all that
have been propbsed so far which are adequate for arithmetic,
that they casmilet be categorical. Thus all Boolean ‘propogitional
logics of thig’large class fall under the ban of the intuitionists.

Themotivation of the intuitionists’ eriterion for existence is
tha'.yihé naive application of the law p V ~p to existential
propusitions involving infinite classes is known to lead to con-

. (tradiction, as we ghall see in the next chapter. Godel has shown

that various Beolean propositional logies which have been pro-
posed up to now and which are adequate for arithmetie, if con-
sistent, are inadequate to prove their own consistency, so that
in this sense no Boolean logic of this very general type can be
“safe’” in the senge that one can prove, using the methods of
reasoning which can be formulated within the logie, that no
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contradiction can arise. The intuitionists say that a logie based
on their principles is tgafe”, that the restrictions thus placed on
the naive logic which is known to lead to contradictions, are
natural, that their criteria correspond to intuitively aceeptable
“patural” laws of thought, and that the restrictions which have
been proposed in the so far proposed Boolean logics in order to
avoid the known paradoxes are ad hoe, i.e. manufactured for
that specific purpose. One outstanding difficulty is the proof that
the intuitionistic logic is actually igafe”. According to another
result of (rodel, if the intuitionistic arithmetic is consistent, thesl)
£0 is the arithmetic based on the Boolean logie, so that thelatter
i as “‘safe’”’ as the former. On the other hand, Gédel’s work shows
that every sentence in the latter can be translated intoa sentence
in the intuitionist arithmetic such that either bothyare provable
in their respective logies or both are unprova@e. Thus the intui-
{ionist arithmetic is as adequate as the Bégletn arithmetic.

A formulation of the intuitionistic Qx:(jl}c:sitional caleulus as &
deductive science has been given- byikapti - The, yndefined
terms are: a class C, a subclass &) three binary operations M,
\J, and D, and a unary operation ~. As before, we shall use
t“p” for “p is in L. The ubproved propositions are: -

11. If p and g are in&, thenp N g, p\J 0,9 D g, ond ~p are
uniquely @éigrmined elements of C.

12. If bp andp D g, then Fe.

13. If p azid g are in C, thenlp D 4 2P

M. If pg; aﬂdrarainc,thenl—pD..q:)?‘.D PO

oY .p 2O '
I,El’.ﬁ‘fp and ¢ are in C, thentp > @O PN ¢
38. If p and g are n G, thenp M gD P

P\ 317. If p and g are in C, then tp Mg 2D ¢
’ I8, prandqarez‘n(},then}—p:)puq-

19. If p and g are in C, then'-g D PV ¢
110. If p, g, and r arein C, thentp Dr D gIT2 p\eOr
I11. If p and q are in C, thenlp DqD p 2D ~1 ~P
112, If p and g are in C, thenl-~p D P2 ¢

It will be observed that all of these are valid in the Boolean
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propesitional logic. Among the consequences are such theorems
as .

ke 3 ~~p b~~mp D ~p, and v p Y ~p.

On the other hand, neither |-p \J ~p nor L~~p O p are
theorems. Glivenko hag shown that if F~A is provable in the
Boolean propositional logic, where A is a formula expressed in
that system, then |-~4 is provable in the intuitionistic logie™\
Godel hag demonstrated ether important relations between, the
Boolean and the intuitionistic logics. Gentzen has fuund\’a}p}o-
cedure for determining whether a formula in the intuitionistic
logie is provable from I1=I12 above. The operationg ', \J, D,
and ~ are independent; none of them can be definied in terms
of the others, In other respects the sentenceN"»>p” hag many
properties in common with the formulaerepresenting “p is
impossible” in the modal logics discusseh’ below. From this
point of view, the intuitionist logie/may be considered as a
modal logie. wiw.dhraulibrarg srg.in

Brouwer, Weyl, and others havébeen engaged for many years
now in a vast program of redoing as much of classical mathe-
matios ag possible from thedgtuitionist point of view. It results
from their labors that s strprising amount still holds, other
parts can be retained.in a modified but more complicaied form,
and still other patth eannot be saved at all. It must be empha-
sized that much,of*this work is of value and importance even
for those whoyddmit types of reasoning which the intuitionists
reject, For.:}).ﬁ intuitionist proof that an object exists is tanta-
mount, toh construction of that object by certain well defined
meth\st and this property may be in itself interesting and im-
pertant, just as Gauss’ proof that the angle 2x/17 can be con-

¢structed by means of straight edge and compass gives important

w

&dditional information about this number.
The most widely known and most extensively studied modal
logies are those proposed by Lewis. The undefined terms are a

class C, a subclass €, a binary operation M, and two unary

operations ~ and P (“Pp” is to be interpreted as “it is possible
that p”.). We use our earlier notational conventions, and take
“~"" ag senior to “P*, We first introduce a definition
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(We take *“ <" as senior

in the basic logic of Lewis we may take the following as

unproved proposifions:
10. If p and g are in C, then pi\ g,
determined members of C.

If , g, and r are in C, then

L. bpMNg<gip
2. bp Mg < p
. tp<pNoy

4. bpNg N < pN gnr

L bp<gNg<r.<.p<r
6. FpMy p <g.<¢

17. Ifbp and Fq, then bp () ¢-
I8, Ifp and }p < g, then I-g.

~p, and Pp are uniquely

K7

PR

L9. Ifbp < g, then Pp < P@W:dbl'aU1_ibral‘y-Org-iﬂ

L10. Ifbp < g, then g <D
TIL Ifbp < g thenbp QI g M

7.

In Lewis’ formulation: L9 1,10, and L1t are replaced by the
more complicated a.ss?unpticm Ex. 3(i) below, and Ex. 3 (e)
and Ex. 3 (g) ara\a'.fso taken as postulates. His postulate

BY. There ggep and g in C such that|-P pNg NP pN~g
serves to dastiriguish his system from the Boolean propositional

logic. %"

Hi&prﬁmse is “to develop a calculus based on a meaning of
‘ir lisg' such that ‘p implies ¢’ will be synonymous with
4\t deductible from p’.” A further

of LO-L11 are, however,

b~P p. < P
and P ~p. <

object i8 to avoid the

““paradoxes” of material implication. Among the consequences

<
g<ph

so that analogues to these “paradoxes” Teappear in Lewig’

system. It seems, then, that the claim

of having avoided these
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paradoxes is not justified by the formal system itself, but rather
by the interpretation assigned to it. As far as the first more
serious purpose is concerned, no one has, until recently, pub-
lished any theorem of the type of the deduction theorem for
Lewis’ system, and this is essential for the achievement of that
purpose. In a recent paper Miss Barcan discusses theorems of
this type for logics of propositions (and also of propositiond\
functions) based on Lewis’ “striet” implication. She shows.hat
if p and ¢ are in C, then “LPp > Py’ is deduciblé, frem
“Ip < ¢”, but that “4p < ¢.<.Pp < Pg” is not, deducible
from LO-L11. If, however, the postulate RS

2

B12. If p is in C, then FPPp < Pp

is added, then the deduction theorem hol\ds i the weakened
form: D"

S

If ~Prepy, v, ~P pritgﬁr%?‘giﬂ

www . .dbral

FA~P ~p, < ,~P ~P, < o < ~P orop, < g

The contention that, fromjﬁie' standpoint of the interpretation
as d_educibiiit.y, “striet’~implication is a more satisfactory im-
plication operation Mian material implication is congequently
untenable until aggyatém based on the former is constructed in
which the deduciia%u theorem is proved, while in the analogous
?y?;te:n in tellmsof material implication the deduction theorem
ails, 3

The sfstem LO-L11 is far from categorical, for even such s
simpk;st'atement a8 “LPPp < Pp" is not decidable on the basis
of the postulates. Lewis and others have proposed various addi- -

#Alenal postulates to- complete the system, but no compelling

Teasons have yet been advanced to decide upon cne of these in
preference to others.

Two Boolean interpretations of Lewis’ system have been

*Since the above wag written, Curry’s monograph, 4 Theory of Formal
Deducibility, Notre Dame Mathematical Lectures Neo. 6, 1960, has ap-
peared, This book throws new light on the eonnection between Lewis'
system and the theory of deductive systerms.
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proposed, ie. constructions within the Boolean logic yielding
systems satisfying LO-L1L. Henls has shown, for example, that
#B=(C,E,N, ~)isaBoolean logic and C has more than two
cloments, and if Pp is defined as 1forp # 0and as 0 forp =0,
then 10-L11 are satisfied. Another construction has been given
by Fiteh, and 3s pregented here in a modified form. Let A be a
finite set and B be a Boolean logic. Consider the class § of all
functious f on A to C (i.e. the functions defined on A with values ¢
in €). The family § of all quch funections forms a Boolean logic

3

with the definitions R W
T, is the class of all J € § such that f(#) € T for alla < 4,
§ M g is the function such that (f M @) =,fle) M gla)
foralla € A4, NS
~J is the function such that {~f) (a) = ~fayforalla € 4,
Pf is the function such that (Pf)(@) =) -e- S
where b, , -+ , by are the distingi-elements of A, and ¢ is-
an arbitrary element of A"\"*fW-jﬁd’Hraulibrary.OLg,in
We can easily check that (§, ‘Lf,;f‘{, ~, P) satisfies 10-Li1 ifA4
containg at least two elemerits. In both of these construetions
certain relations hold whith are not consequences of the postu-
lates, e.g. FPPp < Bgﬁ'}hr all pin C. '

Another interesting approach to modal logic is due to H. B.
Smith. Unfortudately, due to Smith’s defects as an expositor,
the main feabures of his system have remained obscure and mis-
understood>In order to explain his point of view we shall need
some definitions. By a modal funciion of p we shall mean a func-
tion Sohstructed from the variable “p” and the operations M,
~sahd P. By a simple modal function of p we shall mean such a

(unction constructed using only the operations ~ and P. An
affirmative modal function of p is & simple modal function in
whose construction the operation ~ enters an even number of
times. Thus P (p M PP ~p), ~PPp, and ~P ~Pp are re-
spectively modal, simple modal, and affirmative modal functions
of p. Two modal functions are identical if and only if their
equivalence follows using only the laws
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(1) |—~~ p=p (“I = yn means ‘e < y N, ¥ < .’C”)
@) I 1p = g, then F-~p = ~q and [ Pp = Pq.

Now Smith places two demands on a system of modal logic, to
wit, (A) if M, and M, are affirmative modal functions of p, then
either LM, (p) < M,(p) for all pin C or F-M.(p) < M,(p) for all
pin C; (B} if M, and M, are simple modal functions of p, then
Faf,(p) = M.(p) for all p in C if and only if M, and M, are(
identical. We shall not be able to enter into a discussion here,of
the philosophical background behind these requirements., We
shall merely note that (A) is a requirement that the affirmative
modalities be linearly ordered (see p. 20}, while (B) i§ 4 ‘require-
ment that modal distinctions be preserved. Thix viéw may be
justified by the fact that the logic of ordinary{discourse is too
vague for us to identify, say, the proposition that it is necessarily
possible that p with the proposition that, s/t is very natural to
ask whether a linear ordering of the aﬁirﬁlative modal functions
i# compatible with a maintenance of alt modal distinctions, or
whether (B) forees a complicated “ramified’’ theory of modality
upon us. Smith shows that at'l% and (B} are incompatible with
Lewig’ L5, the law of the “tfabsitivity”’ of implication, and pro-
poses that this be replaced by L5':if p < gand }¢g < r, then
lp < r. The use of }'gaéan.ing in actual practice is too vague to
distinguish between\these two forms of the intuitive law of
transitivity. In any actual case L5 would be as effective ag L5,
Smith finds that; L9 is also incompatible with (A) and (B). Lewis,
himself, ha{iridica,ted some hesitation about adopting 1L9. Smith

assumes™\“ .

ng Fp < Pp,
o Fp < ~P~Pp,
~0 Fp < ~PP ~Pp, cte.

and shows that (A) follows from this infinite list of postulates.
He gives, similarly, a series of postulates which yield (B). He
then turns to the consideration of modal functions of two vari-
ables, The theorem in Lewis’ system that

FP (p\Jg) = (Pp) U (Pg)
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turns out to be incompatible with {B), and is therefore rejectéd
by Smith. On the other hand,

if bp M ~g = 0, then{-p < ¢ and thevefore [P (p\J @) = Pq,
if |-~p N ¢ = 0, then P (p\J @) = Pp,
sadif f~pMN~g= 0, then FP(p\J g = 1.

Thus in order to secure a completeness property analogous to

(A) for modal functions of two variables it suffices to assume a .
law of the form:

if not bp M ~q = 0 and not LepNg=0and not..\"‘".\
Lap M ~g =0, then [P (P @) = -——=» A\
where _ _ __. indicates a certain combination of simple modal

fimetions of p and ¢. For such a law to be eﬁeqti?ei’y usable we
must adjoin to the postulates what Carnap calls'Tules of refuta-
tion, so that we may be able to prove thal’ various sentences are
hot asserted. Smith and his pupils have,made various sugges-
tions as to the form of such an “oxphmision formula”, and have
from them deduced results analogous to (A) for modal functions
of two variables. So far, howevjeft’f‘ﬁ‘ff‘ﬂﬁéaﬁé@gwmg:msistency
proof of such a logic which iggompatible with (B). Tt is an inter-
esting problem to determine whether there exist consistent logics
satisfying (B) and pos essing a completeness property analogous
to (A). N\

Other authori\have proposed systems of modal logic. Prac-
tically all of these agree on making the logic Boolean with re-
spect to Gy E, N, and ~, but from there on the various pro-
posa@s\tﬁ&’érge. The laws:

O\
ifbp = g, then |-Pp = Pq, and }-~p = ~¢ and

\ lp < Ppforall pinC,

o’

are also common to most of these systems. It would be of some
value to make a systematic study of the structures of all such
systems and to determine what additional laws would yield sys-
tems satisfying certain simple and natural requirements. The
only work in this direction so far published is that of Tarski and
MecKinsey.
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Of those who have criticized the Boolean logic of propositions,
anly the intuitionists have carried out to any satisfactory extent
the constructive part of the critique, that is, o show that a
system can be constructed on the basis of the eritique which is
at least adequate for some considerable portion of mathematics.
The work of Miss Barcan can be considered as the first step in the
direciion of a gimilar development for strict implieation. Rosser
and Turquette made some beginnings for the n-valued logibg:
Such work remains to be done for such systems as Smith’§ %It
must be emphasized that in very few of these cases iave the
critics shown that the systems they have construstéd do not
have the features eriticized as undesirable in the ’Bnblean logies,
nor that they actually possess the properties advdcated as desir-
able at the same time that the corresponding \Boolean logics do
noi possess them. Others who have disehssed Boolean logics
critically have claimed that certain properties are undesirable
without even attempting to give alternative systems demon-
strably not having these properjgieé: In many other cases the
discussions are carried, audimlibraguerintuitive logic, in which
the essential distinctions areblurred, and it becomes difficult to

. pin the authors down and“determine just what they want and
just what they don’t'y(ant. ' .

We here suggest the ‘eriterion of “put up or shut up”” as an aid
in evaluating digcﬁ&ions of logic. If one advocates that certain
features are demirable. in a formal logic, then one should exhibit
a system which demonstrably possesses those properties. If
possible, One should show that the system is adequate at least
for a}ﬁ}fnetic. If one criticizes certain features in a systent of
logig, ‘then one should exhibit a reasonably adequate system
xhich demonsirably does not possess those properties. Of course,

¢\ when such a theorem as Godel’s indicates that the desired proof

*If a system of modal logie wers so completed as to be adequate for
mathematics, the resulting theory would be rich in relations which have no
analogues in classical mathematics. Thus to any class e there would corre-
gpond & class Pa = the class of all = such that P{z & a). Whether such an

enrichment of the classieal mathematics would actually be fruitful remains
fo be seen. i
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may not exist, then the criterion may be relaxed. A vague in-
formal discussion may be valuable as a guide for future work,
but must be regarded as af most a preliminary sketch until the
theses have been stated in terms of a precisely formulated object
language which is proved to have the desired qualities. Unless
such criteria are strietly applied, diseussions of logic and the
foundations of mathematics are in danger of degenerating into
the type of philosophic controversy where one never knows
cxactly what the problem is, and one never knows surely when

the problem is solved. \
\

'\
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EXERCISES ~\
N

Ex. 1. Prove the following from the postuiates\@n p. 52

(). pNg=qgNHp

(b 1Up) = 1(g), 2(0) = 2(9), 3(py*= 3(9),
4(p) = 4(g). (Hence w{m\ay define 1 = 1{(p),
ete.).

(e). p\J1 —~1Up-- i

(@. p\J(pNg) = ghww.dbraulibrary.org.in

. pNGEYg &P,

M. pNp=~p =p

@. pN1IFHEMp=1p

@. pOEGMRY = (g Nr

@. pf’\\équ) (NN
(). 2" = np.
(k}.\pﬂg =pHandonlyifp\Jg=4q
iﬂz(z) = 4,
\\(m) 21(2) = 0,(3) = 0{4) = &
OV ) 1=y U4
N (o) 4 =1,4= L

N\ ). p\Ji4=4VUp=p.

A% @. pN4=4Np=4
). @l) =1
&), 2U3=2U4=2
(t). @(l} = 2, {1) = 3.
@. @) = () = a2 = @@ = ad) =
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Ex. 2.

N

W. pUg=—(—pN —g.

(w). ei(p) \J @IV e\ e(p”) = 1.

(x). H fis a Post function of one variable, then

o) = TM N ea(p) Y (F@) N @) \J (F3) N

e(p1) U (f{4) M ¢i(p’)). State and prove the analo-

gous theorem for functions of several variables,

(y}. I f is any Post function of one variable, then
e JaVieNg = fp Vg,

ad Jp\J Q) NN = f@) N ). ¢y

(@. ep Y q) = e{p) ei{g). : ’

In connection with (x), (y), and (z), state an appropri-

ate definition of “Post function.” A

Prove the following from the postulatesion’ p. 57:

@). tp D p. %

(). tpNpDop. RN
). lpDpNop. {0
@. bpYpDop. NS

(?)). g Dp\Up. \é’"
(t). ngra:&m% 4y o in
@ b33 a0 por.

. Dp.D2aDgD ropNg
®. lpNgJgnp

B OgN.¢Dr:DipDOr
&) HPDEDrD:ipNgDr.
. NN gSr.D.pD gD

mAr D> pD¢De
@7 D¢ i~g D ~p,

9. FPDeD pAr D¢
). i ?rD¢D PUrDqUr

@ D ~gD gD ~p.

t). F~p M ~p.

®). F~pVUg.D. ~pn ~g.

(t). F~pN ~g.D. ~pUq

. F~pMNg.D.pD ~yg

V). D ~g.D.~pn g

(W). F~p\J ~¢ . D. ~pN g

(x). H’-"'\Q-U.pf“r.:).pﬁ G\
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. NN gUr DipNgJ.pNr
@. b~pNg.N.p\J ~p D ~p\J ~q.
(aa). b~~~ .p\J ~p.

- Ex. 3. Prove the {ollowing from the postulates on p. 59.

(a). FpOp < 2.

®). Fp <p

(c). FP .pyg. < Pp.

(d), F~P .pM ~p.

(e). F~r~p <p. .

M. Hlp <gthenfrNp<rNg -

. Fp< ~~p. O
Define “p = ¢” as “}p < ¢ N g <pd’

(h). Btate an appropriate definition of j;h.e conecept of
a Lewis function, aralogous to thabof a Boolean

function.
(). Ifp=gandfisa Lewis fuhetion, then
f@ = flg. ~\

(). pMNg=p thenlp < q.
&). ¥lp < ¢ thenp Q4 = p.
). p= ~~p 'stﬁ,'l'?w dbraulibrary.org.in
(m). p <gq. *—.WQ{ ~p.
(n). pf‘\q<r LN o < g
Eo; Fp 1 3¢ g\ <. ~.p < q.
P} P = p.
(@. hugg
(r), ¢ FN P ﬂ ~p.
(S OF~Pp .<.p < g
AL RP ~p <L < p.
\ Au). If{p < gandbr < s, thenfpMNr <gMNasa
Define “p = ¢ as ‘p < ¢ N. g < p".
(V). F~Pp N\ . ~Pg.<.p=¢
(w). p < gifandonlyf p N ~g =71 ~r.
(x). {C, N, ~, =} is a Boolean algebra.
¥). pNr<gNr.=. ~P . pNrhH ~q.
(). tp<g.<.pMr<ghr .
(aa). i b~P~p, then g < p M g¢.
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Ex. 4. Let € be the class of all integers which divide 216, i.e.
C=1{1,23,4,689,12 18, 24, 27, 36, 54, 72, 108,
216}. Let “a M £ denote the greatest common divisor
“of @ and g8, and let

B if neither 8 nor 27 divides «,
»— |8/8a if 8 divides « but not 27,
" 12/2T e if 27 divides o but not 8, i
1 if @ = 216. O

Verify that (C, 1, *) is a four-valued Post algebra, ¢

N

Ex. 5. Let € be the class of all divisors of 30, and let § =
{1, 2}. Let & M 8 be the least common multiple of o

and 8, let o' = 30/q, and let Py = 1 ex"gépt"in the

cases a = 6, 15, and 30, when Pa ='3\5 and 15,
respectively. Verify that postulates LO~EL11 are satis-

fied but that 3 < 6 .<, P3 < Pg '@{ht in . Explain
the significance of this resylt, )

X
v

wwrw.d braulibl;.?ﬁy’torg.in
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Chapter 111

THE LOGIC OF
PROPOSITIONAL FUNCTIONS
O\

BECTION 1 INFORMAL INTRODUCTION N\

Y

Heretolore we have constructed logical systems s¥hich for-
malize reasoning on classes and on propositions agwholes. We
shall now attemp$ to construct systems dealing(#ith those gen-
eral forms of reasoning which depénd upon theinner structure
of propositions. In this section we shall,ﬁf&éed informally on
the basis of naive intuition in order togive the genera! ideas and
also In order to exhibit the difficultiesinto which this naive intui-
tion leads us. X . .

The fundamental idea is th&t:};ﬁ ﬁféﬁ‘éé’i?ﬁ?ﬁﬁﬁ&ié’tion. in
mathematics a funciion is a'telation B whereby to each object
there is at most one objeghy such that % has the relation & to y.
Thus the relation hol@i'ttg between x and y if and only if x and ¥
are numbers and 5% #® is a function. The object y is called the
value of the funetion for the argument x and is denoted by
“R{z)”, or if there is no danger of ambiguity, by “Rx”. The
class of all.as’\'s“Such that Rz exists, i.e. there exists a ¢ such that z
has the relation R to y, is called the demasn of the function R,
and the elass of values y is called the range of E. By a propoesi-
tiopwlfunction we mean a function whose values are propositions.

A propesitional funetion is denoted by a sendential function, and
.4 sententia function is usually denoted by a sentence-form such
as “z is a man’’. This is not a sentence itself, but if a name of an
object is substituted for “z”, we obtain a sentence, which de-
notes a proposition ; of course, this proposition may he either true
or false. For example, if we substitute “Dewey”” for “z” (i.e. we

69
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substitute a name of a certain object, namely, the man Dewey),
we obtain the sentence “Dewey is 2 man”, which expresses the
true proposition that Dewey is a man. If we substitute “Pitts-
burgh” for “z”, we obtain a sentence expressing the false propo-
sition that Pit4sburgh is a man. We shall say that a sentence-
form expresses a propositional function; for example, the sen-
tence-form “z is a man” expresses the propesitional function
that = is a man. The letter = will be called a variable occurring ip{_ N\
this sentence-form. If names are substituted for the variables in a
sentence-form, we obtain a sentence expressing a propogition,
which is the corresponding value of the propositional function
denoted by the sentence form. These distinctions {miay seem
pedantic, but they are actually needed in order togavdid some of
the common confusions in the treatment of prapositional fune-
tions.

We shall denote properties by capital Latl\ﬁ letters. If 4 is a
property, then the sentence—form Az, sl?ail denote the proposi-
tional function that = hag the propertyd’ Thus if “o” is a name,
then A« is & proposition, and the "g}‘%njq.p “Aa” is its name.
For example, if A iﬁﬁgﬁrﬂﬁgﬁ%ﬁmg a man, then 4 Dewey
is the proposition that Dewey Is a man, and “ADewey” is a
sentence expressing this proposition. If “. . .z . . .7 ig a sentence
form, then “(z)(. ..z , )% shall dencte the proposition that for
allz,...z...,an ‘{(Qz)(. --'...)" shall denote the proposi-
tion that there isan % such that . ..z . . . If A is the property of
being a man, then'{z)(Az) is the false proposition that for all z,
2 is a man, and (3 z)}(Az) iz the true proposition that there is an
z such t}'lﬁ.?} 13 a man; in brief, “(x)(Ax)” says that everything
is & mian, while “( Jx) (Az)” says that there are men. The
syrqbbl\“(:c)” is called the unsversal quantifier on the variable

&

‘:‘:r{f,. and “(J2)” is called the existential guaniifier on that
{Yariable.

If< .. z..7i & sentence-form, then “z (... z. . )" shall
denote the class of all 2’s such that...z.... Hence in the above
example * S5 (Az) is the class of men. The universe may be
defined asz 3 (& = z), and the null class as 2z (~(z = 2)).

We should expeet that



N

N\

71
aE2 D02 )= 0

is always a true proposition. We should also like to use classes a8
arguments, and thus to be able to make general statements about
classes, classes of classes, etc. For example, we may define the
class whose only member is a by

o) =z D (& = a),
and the integer 1 by

N

1=a 3 ({(32) &= o)), )

'\
This definition turns out to be satisfactory from many‘pgihts of
view. We then have the true proposition that \ 3

(Cﬁ)(m)(y):-GEEl/\IEa/\yEarﬁ:};:=y.

This means, in ordinary language, that fo}‘,ai}o}, z,andy, ifaisa
unit class, i.e. & = (2} for some 2, and Jfz, &nd y are members of
a, then = is the same as y. We may define the ordered pair of £
and y thus: : . .t.’\:m;ww.dbraulibl'ary.org_in
(5, ) = ou(@)) LWe@) V@)
that is {z, ») is the class whose members are the.classes () and
) W (y). This ea,gy“q}) see that

b= (o) =iz =uAY="

The troublélis that this naive point of view leads to contra-
diction. Consider the class of all men. It is itself not a man. On
the othér)hand, the class of all classes is itself a class. This sug-
geg,t;s'%e study of & D (~{o € @), i.e. the class of all clasges
'\(hi(‘fh are not members of themselves. Let us denote this class

vby “p”, 50 that

p =0 (~@a€ax)
ie. Ha) S p .= ~(a € ).

We raise the question, is o & member of p or not? We have

o€ p.=. ~0 € 0)
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in words, if p is a member of p, then 4 is not a member of p, and
conversely. This is, of course, a contradiction by Chapter 1T,
section 2, Ex. 1(b). This paradox, due to Russell in the present
modern form, shows that the naive application of the ideas out-
lined here leads to contradiction, This contradiction arises from
a straightforward application of principles which are ordinarily
accepted as intuitively correct. Furthermore, reasoning very
similar to this is commonly used in important mathematical
proofs. <\)
We see, then, that in order to ebiain a consistent, logic it is
essential to make certain restrictions and to forbid gertain argu-
ments which naive intuition permits. Most of thé modern work
on logic has been directed toward the construetion and the study
of formal systems which avoid these paraddxes. These systems
differ considerably in the restrictions omintuitive logic which
they introduce, and much controversy.ha$ arisen as to which of
them is most acceptable on intuitive) i)hilosophical, or mathe-
matical grounds. Some of these systems are adequate for mathe-
matics or a large portisndhenetfrony thesihave not been proved
consistent, and in view of &an important theorem of Gédel, are
nof, likely to be proved consistent by methods which are univer-
sally acceptable. Furthérmore, no such system can be categor-
ical, according toanuther theorem of Godel. By using a method
based on transfinite induction Gentzen has proved the consis-
tency of a systetn which is adequate for arithmetic, but the
reasoning of (éntzen cannot be expressed in the object language
itself. A'Av"Weil has said, God exists sines mathematies is con-
istentpand the Devil exists since we cannot prove it. The con-
sigtgrmy proofs of Gentzen and others for systems adequate for
large parts of mathematics, even though they are based on
methods which are under fire, for example, by the intuitionists,
are convincing to the extent that no one seems to try seriously
to construct counterexamples to results proved in this way. The
margin between what can actually be proved by constructive

.methods and what is required for a proof of the consistency of

arithmetic is, according to the work of Gentzen himself, Bernays,
and Goodstein, very narrow but yet essential. We may say that
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they have confined the Devil to a dwelling place of almost van-
ishing, but still not negligible, dimensions.

A number of systems have been constructed which are ade-
guate for much of arithmetic and other branches of mathe-
matics, and Church has proved one of these to be consistent.
Yome advocates of these systems demand that those parts of
mathematics which cannot be developed by their methods be
abandoned. Brouwer and his disciples have been attempting the =~
reconstruction of mathematics in the effort to develop as much
as possible by intuitionist methods. Nevertheless, many of the)
important properties of real pumbers which are used in evqrx&ay
mathematical practice eannot be developed on such a basis, and
their intuitionist analogues are probably too compliséfted to be
considered as adequate substitutes. Op the othér‘hand, the
work of Gadel, Kleene, and Nelson on intuitionist arithmetic
provides a certain justification for that pointyof view and makes
it seem less dogmatic and more plausible,The result of Godel
that every formula provable in the “pfithmetic based on &
Boolean propositional logic can be trandated into one provable
in the arithmetic based on intuiﬁi'qnﬁﬂﬁ’rﬂbﬁ%i‘ﬂi&ﬁﬂl‘ Yogie, Bhows
that as far as arithmetic goesythe intuitionist logic is as powerful
as the classical one, and al§dthat if the intuitionist arithmetic is
consistent, then so is fh} classical arithmetic. We repeat that
the work of the intditionists is valuable even for those who do
not accept their (philosophy, since a constructive proof often
carries with jb fmportant additional information which is not
yielded by‘q\m)n—constmctive proof.

EXP{R}E}‘SES

~ Bx. 1. Interpret, in ordinary langnage, the following strings
\/ of symbols: :
(a). e D C 8).
ONEEXER rEahaCd)
(e). =3 ((a} .aEADzEa).
(@). @@ aEIABE §.D.aNBET
(). vyE B :=:(3(IN ¥ = L,y AzsESal
Yy & a.



/N
\
\/

74

0. @2 Ev:=: (Y. Zy Ca Ay 2 Ch
Ex. 2. Give strings of symbols translating the following
- English phrases and sentences:

(a).
(b).
{e}.
(d}.
(e).
@.

(2).
(h).
@.

().
%).

The elass « is included in the class 8. (p. 3)

The class « is the same as the class 8.

The common part of « and 8.

The union of a and 8. ' ~\
The class of x’s which are in « but not in g,,

J is an ideal in the algebra of classes. "¢(\J)

K is a product system in the algebra of Clusses.

a 18 a cluss containing exactly two mbmbers.

« is a non-empty class conta.inin{é't most three

members,
o ig the class of all ordered pairs (x, y}, where
zisin 8 and y iz in 4. b \ud

The class of all classes,@which contain a.

Ex. 3. Show that the “class” o ;_-*tz:::x DB .~ aEB A
B & a} leads to a contradiction. '

SECTION 2

FIRST ORDER

www.dbl'aul:i’br;l'y_org_in
THE FUNGRIONAL LOGIC OF THE

We shall first set; yp.\the simplest of all functional logics, the
first order logic okmonadic functions. Qur primitive notions are
four classes of gbjects B, T, §, , and 3, two unary operations ~
and [], and §¥6 binary operations O and application, denoted
by juxtapgsition. The desired interpretation is:

P \Ois the class of propositions;
35\ is the class of true propositions;
28 is the class of properties;

N is the class of individuals;

P O ¢ is the proposition that if P, then ¢;

~p is the proposition that it is false that P;

Aa  is the proposition that o has the property A ;
. 14 isthe proposition that for all o, de.

We shall retain our earlier conventions as to the use of paren-
theses and dots, and we use the definitions and notations of 112.
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As a mnemonic device we shall use small Latin lethers except
“1:”, ilj!l} ‘lk)!’ “m!’, i’{n”’ “x”, Il‘.y”, md ‘Iz” th denot'e 818111811138 Of
%, capital Latin letters to denote elements of &, , and small Greek
letters to denote elements of J. The letters x, y, and z, with or
without subscripts, are reserved for a special use a8 described
below.

Qur postulates are as follows:

A17-AT7" as on p. 31. _
F1. IfAisinG andeising, then A« and [ 4 are uniquely ¢

determined elements of B. A%

F.2. Tf A is in &, and FAa for all @ in J, then HI4. .\~

By a sentence-form in & we mean a string of signg’built up
from “z”, names of elements of P, G, and J, ahd the names
“~y" and “~" of the fundamental operations im%; and paren-
theses by means of a finite number of applications of the follow-
ing rules: N

(). If 4 isin §, , then “(Az)" is wsentence-forn in 2.

). If p isin B, then “n’ isa seimiwﬂ%esmma-gm- .in

(c). If A and B are sentence-forms in 2, then “(4 H)" and
“(~A)” are sentence-forms in Z.

In (c) the signs “(4 B}> and “(~A)" are to be understood
as the strings obtaineg\}& putting for 47 and “B” the strings
which those lettersidenote. To remind the reader of the letter &
used in these congtructions we shall use gymbols such as “A(z)”
to denote sedtence-forms in z. As we have remarked before,
sentence foums express propositional functions. We define in &
Siﬂlﬂﬁgrgln}.nner the notion of sentence-form in any other letter.
We ﬁi}ﬁn: however, reserve the letters , y, and 2, with or without

(8ibseripts, for this use.

We define the value of a sentence-form %(x) for the argument
a, where o is & member of 3, by the following rules:

(). If A is in §, , and A(z) Is “(4w)”, then A is Ae.

(b) If p is in P, and U(z) is “p”, then Y{a) is P-

(©. If A(z) is “(B) D 6()", where BE) and G(z) are
sentence-forms in z, then ¥(e) is Bla) D €.
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(d). If U(z) is “(~B(z))", where B(z) is a sentence-form in z,
the () is ~Bla).

It follows from A2”, A3”, and F,1, that if @ is in § and Alzx)
is a sentence-form in =, then %(a) is a uniquely determined:
element of P.

F3. If U(z) is & sentence-form in , then there is a unigie,
element A in §, such that A« .=, %(a) for all ain'S.
2N

A sentenceform expresses a propositional function and 7,3
assures us that every propositional function determines a prop-
erty 4 such that the proposition that A« is always equivalent
to the value of the propositional function for...ﬁhé argument c,
Of course, F,3 is to be understood as applyhs $0 sentence-forms
in any letter. N

We shall denote this uniquely deteyg{ined property by £%(x).

Di. “(z)A(z)” for “] [ (z)”. O
Note that if p isuin-R hhgxiﬁﬁgimma in z, and
Héple =9 forall ain 3,
by condition (b) in tile definition of “%(a)".
Fid. Iipis ig\aﬁﬁd 4isin§, , then
O M) D 4x) . p ST]A.

RS A i, and aisin 9, then F[JA O de.
F&“ and J are non-empty.,

M this formulation of the first order logic of monadic func-
(fions the letter 2 in the syntax language plays the role of a vari-
/ able with values in S, ie. for which names of members of &

may be substituted. It is also possible to give a formulation in
which the variables are part of the object language; this carries
with it simplifications of some parts of the theory and complieca-
tions of other parts.

In the expressions “4%(z)” and “(z)A(z)” the letter  is a
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dummy symbol, that is, it has nothing to do with the particular
elements of §, and P here denoted. For this reason, in expres-
sions of this fype “a” is called an apparent variable or a bound
variable. Such apparent variables are very convenient o work
with, but the concepts of “variable” and “apparent variable”
are quite difficult to analyze precisely; the detailed discussion of
these notions is eonsequently deferred to a later section.

We can eliminate the complicated notions of “apparent . O\
variable” and sentence-form by a very simple device, at thes
cost of several extra postulates and primitives. The exira pripi~ s
tives and postulates amount to & real economy since they are
squivalent to the assumption of F,3 for three very speéiah sen-
tence forms. The idea is that £p is the “constant’’ Hr:opésitiona.l
function whose value is the proposition p for appargument a,
and similarly £( ~Az) and £(4z A Bz} are the\properties which
correspond to A’ and AN Bin the algebra'\ofﬁlasaes. An exami-
pation of the definition of “sentence-fort n'z” shows that these
suffice for the construction of the p;'épérties corresponding to
arbitrary sentence-forms. S dbraulibrary.org.in,:

We sre thus led to adjoin twanew primitive unary operations
K,’, and a binary operatigxf'ﬁ, and the following postulates,
replacing ¥,3 and Fi4, ta(the primitive frame;

F.7. T p is in 3ifhen Kp is a uniquely determined clement
of § .Y _

F 8. If A andB arein §, , then A’ and 4 M B are uniquely
determined elements of F - :

F9.3fp%s in B, and eis in %, then -Kpa = p-

Fdﬂ)’.%f Aisin §, and aisin 3 then |A'a = ~Aa.

Y. If 4 and B ate in 5, and a is in §, then (4 N B)e

Vo ol = Aa A Be.

) P12, T pisin 9 and A jsin & , then FKp C 4 D.p2 T4

D2. “4 C B for “T1((A4 N BY)"

We could have achieved greater elegance had we worked with
the combination “(4 M B')"” instead of “/\'’, oF had we formu-
lated the propositional logic in terms of “~*" and “A”. Postu-
late F,12 could be replaced by
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FZ. Hpisin B and 4 isin §, , then H[(Kp M 4)
D.p A []A.

We chose the present form to facilitate comparison with the
postulates #,1-F.5 and with some logies introduced later,

It is now only an exercise for the reader to prove F,3 and F,4
from A17-A7" F.1, Fi2, F,5-F,12. We leave the rest of this
alternative development for him to work out for himself, + N

We return now to the postulates A17-A7", F1-F 5, and\their
consequences. We shall denote the statement in the syditasedan-
guage that A and B are the same element of §, by f‘.{if: B,

T1. If tAa = Ba for all « w3, then 4 = B“(

N
Proof. “(Bx)” is a sentence form in . Henc"é;\by F.3, there is
4 unique element €' in §, such that \ '

N

A\

FHla = .Bn:;.’\x o

forallain §. But 4 and B are suchiél’e‘ments, 80 that they must
be the same. N

.dbraulibrary org.in

CoOROLLARY la. ‘fi)"X Cals ts%u%}ta; en E = #(Ax).

CoroLrLary 1b. If Ql(x) ¥ a senlence-form in x, and A(y) is the

resull of substituting ‘G™ for 37 i A(x), then £%(z) = EiEEN)

and Nz)U(z) = (yJeily).

This fol[owis, from F.3, T2.2.98 and T1.

CoroLLan¥ e, 7 [ A(x) and B(z) are sentence forms in z, and
E—ﬂI(aJ'E;%’(a} for all @ in &, then EU(x) = 2B(x).

O\
Qa}ol‘lary Ib justifies our assertion thas “z” is a dummy
syibol in “£%(x)’" and “(x) AK(x)”.

\\T2 Iy Ax) is q sentence-form in z and o is in 3, then

F@AG) D, A, : (F\5, Fy3).
T3, If U(x) s g sentence-form in z and |%(x) Jor all o in &,
FH) U (z).

T4. The set of postulales Al"-A77, F\1-F\6 is consistent.

Pragf. Let P be the two-element Boolean algebra with ~ and
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o) defined as in 111, identifying ¢ with 1 and f with 0, let §:
contain two elements V and A, and I contain only one element
a; let application and I 1 be defined by the tables

A Aa HA
A 1 1
A 0 0

Thep the postulates are obviously satisfied. For the verification N\
of F.3, note that if A(z) is an arbitrary sentence-form, then ™
H(a) = Oor Ula) = i, so that \

() = Ae or F{e) = Va

in the respective cases. .

Essentially, our proof of consistency is the\verification that

the postulates hold in a universe of one m@ dual. '

D3. “(I2)U(@)” for “~(x). ~A@DT; ie. (TN A=) s
an abbreviation for “~] i(N?I (x))”, where A(z) isa
sentence-form in . T};ei’.‘i'e‘ﬁﬁeilbf‘a!ﬂifm’,arqf.w(gmse, a
dummy symbol in £{3 2)%(x)’. If A s in §s and o
is in §, then FAaD (3 ) Az. :

More generally, if 2(6:;)" is a sentence-form it T and a5 in 3,
then RN a\

o HI@ D (39U

Proof. l'(af)ij;'f-'ﬂ(z) O ~UA(a). (T2). Now apply T2.2.9,
AT, ans(]’?Q:
O\
TN Alx) is o sentence-form in T, then

N\

Ha) U@ .D. (10)3)-

Proof. Let a be in & (Fi6). Then T2 and T5 yield the con-
clusion.

Note that we needed in T6 the assumption that there are
individuals. In some formulations where the notion of “variable”
is used rather freely, T6 is proved without this assumption, but

the deduction, while formally correct, smacks of sleight of hand.

2%
< 3

{0
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- One may doubt that a formal system in which such a deduction
is valid is a correct representation of our admittedly vague
intuitive ideas of what constitutes a valid inference.

T7. If A(z) and B(z) are sentence-forms in z, then
F) . A0 D B(x) :D: D AR) DO (=)B(x).

Proof. Let o be in §. Take (=) %) D B(z) and () W(x) a8\
hypotheses. Then : .
@) Az) D Ala), RN
(I)_QI(.’K), »
(e}, Ra
() Az D Bz) ;D Ale) D Bl (T2)
%) D B(a), o)
and Ba)

w\,/
constitute a proof of Ble) from the hyp\bt}leses. By the deduc-
tion theorem (T2.3.3a), 9

M He) @) D 8@ D: @%6) . S B,
www.dbraulibrary.org.in
By T3, o

@ He) «. () U 2BE) 1 (96) .S B,

The conclusion follows %y two applications of Fi4 and A7",
Note that in (1)%ahd (2), (z) HA(z) D B(2) and () A(z) are
elements of B. The inference is Perhaps more obvious if we de-
note these elements by “p” and gt respectively, thus:
~0T oo 8w,
A H#) 2 D ¢ D B(@), ete.

The quantifiers have “killed” the variable #, so that being
: \»«::dead”, it has no significance in the rest of the argument,

CoRoLLARY 7a. Ha) H@) > Blx) :D: (Fa) Ay D
(312)8B(2). _

T8. If pis in B, and W(z) 4s ¢ senlence-form in x, then
He) %@ D p D (I99) . p

ol
!
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Proof. Let o be in 3, and take (2} .H(z) D p and ~p as
hypotheses. Then
' (z) Az O P
{z) Az Dp 2 Hiad DD (T2)
Ale) D P :
Aea) Dp .0 ~P D ~(a), - (T22.11)
~p ) Nﬁ(a)’
~pPy

~(a) n
oA
is a proof of ~Y(e) from the hypotheses. Then X O ’
Hz) U@ O P D ~p D ~ (o)

for all o in & Now T3, two applications Fi4, T2§§, A6", and
A7", and finally D3 yield the conclusion. )
To. Ha) 8@ = B() D IR = @B

Proof. If « is in §, then by ;DZE:é and T2.2.15, +%(a)
= Ba) D Na) D Bla). Henee} BY Aty dufidre¥far ginB()
D). @) D Bw). Now TTand A7 yield Hz) (z) = Bx)

D)z {x) LUx) D Bl@), and the game theorems together with
T2.2.2 give o\

H) -%(x)\éé(x) D: @AE) D, @B

If in the ﬁrsps&fﬁ we use T2.2.16, then by the same reasoning
we arrive by '

O
Al A1) = B D: @BE) - WA
_.and the conclusion now follows from T2.2.24, A7", and D2.2.3.

NN
L 3
p%7 2

WV T10. }(z).%(x) = B@) O: (I9U@) .=- (10)B)-

Proof. I arisin 3, then 1-90(e) = Bla) .- '*-'915&) = ~Bla)
(T2.2.21). The conclusion sollows by Fi2, TT, & #, and T2.2.21
again. .

TiL. bp D @U(z) :=: (@} P D A=)
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Proof. -z} p D U@) :D:p D (DU(2) (Fid, let 4 = £(A(x))).
Here we use the fact that

b D Aa .=.p D Ua)

for all « in &, and 13.1d. Let « be in §, and take p D (@) A(x)
and p ag hypotheses. Then

, ~
? D (x)¥U(x),
(2)U(x), O\
(@) %) .D. e, (T2
and ¥{e) "

are a proof of ¥(e) from the hypotheses, Henceo\z'
tp D (@%@ D.p D ma) '

Now F.2, F,4, and A7" yield the othe\rha\,lf of the equivalence,
and T2.2.14 and A7 complete the\prop:
The proofs of the following are 1e£t as exerclses for the reader.
a’I'y (o] g

Ti2. H Bx)ﬁ(xng dbrau]}btx} S x} :) p.

T13. [2) JU(2) A p :2a ) U) AL p.

T4, Hzx) . 8{z) V 2y —’(5}91(:6) V.. :
T15. H{3x) 31(:3)5(\ pi=:(Fa)Ulx) A p.

T16. |- =) .Yy VP =:(3z) . %=) .V.p.
T17. Hz) ) . r=: (dx) .%(=) D p.

TI8. |n Q(az)?l(w) =:{32) .p D ).

T19. L&) Uw) v Bz) Z) @A) V. (I2)B().
T20«..\]s:v) @) A B@ =1 @)AE) AL (@B,

~In order to construet a logic for polyadic propositional func-

tmnfs that is, intuitively, functions of several variables with

\ ~pr0poslt10nﬁ as values, we must introduce some new primitives.
We proceed with the following intuitive idea in mind. The diadic -

function that  is bigger than y may be thought of as a function

of the one individual variable = whose value, corresponding to

an argument e, is a monadic function of y. Thus “2 is bigger

than y” and “Spain is bigger than y”’ express monadic proposi-

tional functions and are regarded as the values of the previous



33

funetion for the arguments 2 and Spain, respectively. If A”is a
diadie propositional function and « is an individual, then 4%« is
to be the monadie propositional function obtained as a value
when the first argument of 4” is e. Thus A’e will be & member
of §, and A’af will be a proposition, ie. a member of P. We
might have written instead (A’a)8, but the use of simple juxta~
position to denote the application of a function to an individual
will not lead to any ambiguity. We shall also need an extension
of the universal quantifier. To this end we regard I1 as an

operation which transforms diadie functions into monadic fungsy

tions, triadic functions into diadic functions, and so ongin
accordance with the rules \ o

FIIADe = (£) Az,
([ ]4%)e8 = (x)A’zof, ete.

(Here A" is an n-adic function.) Thus if “A%gy s the sentence-
form “x is bigger than y”, then «([[ 4% ill denote “for all 2,
x is bigger than «”. We now proceed (0. precise formulation of
these ideas. DA
We take as primitive notions .clggsv;g%?lﬁl&r%;y;%ﬁ}m iy

%, -, unary operations < and T1, and binary operations O
and application, the latter dénoted by juxtaposition. Here B,
T, 3%, ~and D are.fo be interpreted a8 pefore, and for each
n, %, is to be concel édsfs the class of n-adic propositional fune-
tions. We shall use ;&Jital Latin letters with the superscript “n”’
to denote men;béha of §,,and shall otherwise continué to use the
notational c\on‘ventions previousty explained. By_ a sentence-
form in e, , -, T W chall mean & string of signs built up
from.tuhklétters Xy, - T, NAMES of elements of B, S, Fs "
Fagti , and of the primitive operations, and parentheses, 1o
_~dcgordance with the following rules:

T,
7%

? " ¢
LS

i A% isin ., then #A” - -7 isasentence-form Iz, -1 R
where - - -” denotes  string of # gigms, each of which is
“g M for gome i or a name of an elemnent of J; - -

if pisin P, then“p”isasentence—forminx; s B
if B and G are sentence-forms in &y, =« s % then “(B D €)”
and “(~B)" are gentence-forms in iy ot 2 T

Q)
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A sign such as “9(z, , - - - , 2,)” shall denote a sentence-form
gy, 2 U@, -,z isa sentence-formin =, , - |, x,,
then “%(ey , -+« , &) shall denote the result of substituting
“a” for “e", { = 1, .. |k, and is a name of a uniquely de-
termined member of P. (See p. 75 for an explicit definition in the
case of one letter.) '

Our postulates are as follows:

A1”-A7" and F,1-F.6 as befofe. .

FLIf A" 43 in §, and « is in S, then A"« and I14% ape

uniquely determined elements of F,_, . O

F2 IfAisin§,and @ , -+ , , are in 3, then

Fl 14, - a, = (5)A e, - - a“,!\\ )

F3. If Uz, - ,z)4sa sendence-form i x.l r... y Zu , then
there is a unique element A™ in Sosiech that -A"a) - o,
= EI(OZ;, e ,an)fo?‘aual ,"’\"‘", (]!,"B'n 3-

D4. If %(z,, -+, z,) U8 @ sendencesform in x, , - - - s T, then
we shall denote the elemegaf{ & of B whose existence and
uniquenesg\isfﬂd@mwﬁgak'ﬁ-?ﬂ%‘ﬂy e R X (N
LR A ONF

Thus N |

= £, Az, ,L&i\: ) Bndory e @, = Aoy , - -+ y )
forallq,, - y e i3

D5. (m;)a(xg‘,:i; "y Ey) =

T 2%, - w )z, - s,
oy, .

Note thdt the umqueness guaranteed in F,3 assures us that
‘xl”?\'y » and “z.” are dummy symbols in “8, --. £,%(z, ,
C o) eg. |
N

\M\‘“ ﬁl ..-:ﬂﬂgl(xlr e ,Q’:n) = ﬁl '”y‘nﬂ(yl) e ;'yn)

and similarly for any other string of n distinet letters. The order
of the letters in the prefix is, however, essential, for

I‘fxfzﬂ(xl sy Ta)onoy = ¥ (o, s 0),

Q"

Ny

¢

while
|-:E,:812{(a:1 s Tlona, = A(ey » 1),
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In D5 note that £, --- £ (@ 5 o z.) is in F, , so that
H£1 e :Eng[(xl y "ty xn) is in %n—‘l 3 and “xl”l ttt “x’l” are
dummy symbols in this string, and therefore

(xl)ﬂ(xl y T 3'5,‘) :

is a senfence-form in &, * > 5 Ta - We can, then, apply the quan-
tification operation to the latter string and obtain

() (@) AL, T2y "7 s T}, ete.

o1, [TA" = 4, -+ &(@)ADE =0 2 &y
. Proof. Forall o , =+, & 10 &, we have |\ O
Hd s -+ e = (E)dmien =0 o AR

2, oo B (@IATT Doy o

mou

and the theorem follows from the uniquengs%@ﬁserbed in F.3.
22 L), ¥ = O@AE DO

Proof. Let A* = £9%(z, ), B =\2¥(z, v. Then (2)¥%(z, ¥)
= (1A%, and @@AE, y)g%**"ﬂéﬁﬂﬂmmmmﬂar}y
@Az, y) = [1d18%- Now,take (z) () Az, y) a8 hypothesis,
and let o, 8 be in §. Thens .

TEABD,
,%B") > (18,
1B, -
NO ([1BYa D Bga, (72

AOT B D e ),
N ﬁ(a! IB):
\' ?[(Ut, £ . Asaﬁ,
) Alaf

N
S

form & proof of A’ap from the hypothesis. Hence EH(HBBL
A%, Since this holds for all §in J, then HI1d18H 2 (114%8,
by F.2, Fi4, and A7". Applying these postulates again, we

obtain
HId18) o T1AI4Y
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By symmetry, F[J(T]4) > TKIIBY and consequently the
theorem holds by T2.2.14 and A7", '

CororLArY 22a. Jf3, s 77 5 L s any permulation of the integers
l? T, R, then I_(x:',) e (:L'},,)Q[(x, I 31.',,) = (xl) T (xn)
9[(:51 PR x,,).

D6 @, o 2y, -, 3 =

@) @), - ) \
D1. (32, "'an)g]:(xls LT = . o'\:\’

Q=) - (Fz)U(z, , --- s L) o
T24. If4,, --- » %a 18 @ permulation of 1, +-. ,n,’t}ign

]‘(3_3-” "'-,I.—.}?I(ﬂ'.’;,"" }xn} = o:

(=, e w) M, SRR § N

A good deal of mathematies can be built upon the basis of the
Postulates of this section. For example nﬁjr{ch of arithmetic can
be developed if we adjoin to those alré}dy given the following
primitives and postulates: O

primitive www.dbra Mﬁ%ﬁ%ﬁ%‘
Nt (“N'a’ shall meah “a is a positive integer’’)
S (“S’aB” shallmean “B=a+ 17
B (“Ezaﬁi’:‘éhall mean “a@ = g’
1 (the in\teger one)

PO. N is i, | and §*, E* are in §, ,and 1 4s in &,
PL (N0
P2, E—(a;{yﬂ : Nz A Sy D, Ny
P3. Ny, 2) : Sfay A ez O By
PANM), ¥z D (3 18%zy.
5. H(z) ~8%1.
(NP6 Hx, g, 2) ¢ Sz A 8%z .. Eay.
N P () B,
P8. Mz, y) By = Eyz,
PO. Nz, y, z) By A E'yz D, B,
P10. If A" isin §, , then F, ) : Blay D, Az = A'y.
PUIL If A' isin §, | then FA'L AL (2, 4): A%z A 82y D
Ay 1D (@) Nz D A
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In ‘words, P1 says that 1 is a positive integer, P2 that the
© successor of an integer is an integer, P3 that an integer can have
at most one successor, P4 that every integer has at least one
successor, P5 that 1 has no predecessor, P6 that integers with
the same successor are the same, P7-P10 are the usual properties
of equality, and P11 1is the postulate of mathematical induction.
P1-P5 and P11 are essentially Peano’s postulates for arithmetic.
The main defect of the logic just constructed is illustrated by
P10 and P11. A statement about all members of §; can be madé
in the syntax language but not in the object language. We have,
no machinery for applying quantifiers to letters representing
clements of . . We can, of course, introduce a new,pt’::lﬁiitive
class §1., and postulates of the type: 2\

\ .

If A'isin §, , and T is in 1.0, then A" it ] [ is in $.

If A'isin §, , and T is in §1.» , then |-H\r T T4, ete.
'Then we should also need to deal with Seftenceforms in vari-
ables representing elements of &1, * ¢ gn, oo, and alsoFia;
we should wish to apply quantifigrs £0 Jetters representing ele-
ments of {1 , and similarly forgs.; ete. LTSI éthplica-
tions of such a system, not te gpeak of its inelegance, forces us to
look for a better system, AWe shall discuss two Ways of overcom-
ing these difficulties. The first depends upon the construction of
a very expressive Bj:ec’t language without regard to any inter-
pretation. We distinguish between various types of strings of
symbols, and give rules for operation on these strings. It is only
later that,we. interpret these strings s names of objects.

In the'second approach, we note that F.3 can be replaced by
simplet™ assumptions at the cost of multiplying the primitive
ngtionis. For example, we may adjoin the operator K and two

y "sjé}:ﬁers C snd W to the primitives, and such postulates as

FK. IfA " isinGuaond or, - ", 0 G0 in &, then KA™"
is a uniquely determined element of §u and
'[—KA"-lalo:z pee o, = A" g o @

F.C. IfA isinG.and oy, **° , &, are in 3, then CA™ is a
uniquely determined element of T and

— "
I'CA”dlasas et Oy = Ao <" Os .
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FW. IfA™ dsinGanday, -, a,arein S, then WA™ i

a uniquely determined element of §, and

4 +1
I‘WA”+ Xyl - &, = An QO Oy = O,

In section IT14 we shall make an independent systematic study
of such operators and shall show how they may be employed in
constructing systems of logie.

Q"

EXERCISES 4 \\
Ex. 1. Prove the following from Al"-A7", F\1-F,6. o~ ¢
(a). If pisin %, then bp = (2)p. ~\*
(b} H(32) .U D B=) :=: @A) 4D

( I5)B(z). AN
(©). H3InAR) .D. @B@) D@V A) D B(z).
Ex. 2. Prove the following from Al”w;&z{’; F,1-F.6, F1-F3.
(a). Hz)(y) U@ A By) =D AR) AL ()BY).
(). @)U, ). D, @NBE) O (1) 6, y) :=:
(32} ) (2)( Ju) ~U, ) vV ~B() v
€z, %w.dbrauljﬁt'é?y.org.in
(©). Fa)@) Uz, y)ed (=) B D (1) 6@, 9) :=:
@(IP(IRI~AY, 2) V ~B@) V 6z, 2).
@ @) ~UW@e) (A @@)E) Az, y) A Uy, 2)D
Az, 24N @(IPAE, 1) =2 @@ ()(Tw) :
~AlN) AL~ y) VS, 2) VA, 2)
AN (z, ).
(EBH2) ~Az, =) :A: @R Az, 1) A Uy, 2)D
o Wz, 2) D @) Uz, ) D ~Uly, 2).
. H3AD%@) .D. @B@) =: @) %@ DO
7 B0,
.Ex.'3. Prove F,3 and F,4 from A1l "-A7Y, 1, ¥,2, F,5-F,12.
JEx. 4. Define the notion of a sentenceform in Ty, v

#
N

Ty Ty
X::"'yxlln:Xi: e :Xis,-"' ;X;", "‘,X:"‘.
By a prenex sentence form in X}, ... | X, .,
Xy, ---, Xi, , we mean one of the form “(Qz,) ---

(ka)gr-(xl y 2 ey X: sy "t X:‘,.)”; where “(Qxi)”
is either “(z,)” or “( Jz,)” and ¥ is a sentence-form
with no quantifiers. Prove that every sentence-form
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with only bound variables is equivalent to a prenex
sentence-form. (See Ex. 2(b, ¢, &) above.}
Ex. 5. (a). Prove thatif (X3, -+, X}) is a sentence-form

in X}, --+ , X! with only bound variables, then
9 is equivalent to a Boolean function € of the
following 2* sentence-forms:

(32) B@) V - V Bul@),

where $B,(z) is either X'z or ~X:z.

(b). Prove that if € is not a theorem in the Boaléan

propositional logic, then there is & model of
A17-A7", F,1-F,5, in which § has 2; ~ri;‘.§fnbers
and in which € is invalid. ’

(¢). Prove that if (X Lo, X)) is,&éeﬁi;ence—form

in the first order logic of monatlie functions, then
either PN

(1) “f AL, -~ . Alarg it , then |-U(43, <+,
A7 o\ _
is & theorem, or thegipJ8 finitg moodel (.e. where
S contains onlywa finite number of eléh ents} in
which (1) is jnyahd.

Ex. 6. (a). Prove thatf 3 is finite, then forall A*in s

QO

'S )

@) LN @) ~A%mz A @06 A A

XA%yz D A%z A () Jo Ay,

N

(b, .;I?réve that if arithmetic is consistent, then (2)is

50\ not a consequence of Al7-AT7", F,1-F6, F,1-
~Y  F3. (Hint: take I to be the class of positive

integers and interpret “A”zy” as “z is less than
y”.}

{¢). A formula in the first order logic of monadic

functions is either universally valid and provable,
or is refutable in some finite model. This is not
true in the logic of polyadie functions.

Ex. 7. (). If U X3, -, Xp)isa gentence-form in z,

X, - ,Xi,andif 4y, - , A} are in §, , then
there are elements p; , ++* , P P and Boolean
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Ex. 8.

functions B,(x) ,--- , B.(2) , of Alz, -+ , Alz

such that

B) @) ~.Bi(2) A By(z) G, i =1, -+, nyi = ),

and F®(e, 4], -+, 4} .=.p, A Bila) V.
P2 A %2(0’) Y .\/.p,, Fa -%,.(Q‘).

(d). If Yz, y, X1, --- , X1) is 2 sentenceform in x, v,
Xi, -+, Xi,andif A}, ... Alarein F:, then
there are elements p,; , 4, = L - ,n,imP and, >
Boolean functions B,(z) ,--- , B.(z) as in7(a)
such that (3) holds and o\
(e, B, Ai sty Ay) =, Pu /'\‘58‘1('1) A
%1(&) -V- pm /\ %1(“) A %2(5) ."\.Z. ‘:" .V-
P A Bila) A Bu(B). o\

Iet & be the class of real numbets,\which we may

interpret geometrically as points«oh'a line. To every

element A of §, there cor p(ﬁds the class of all
points & such that 4'z. Similanly, to every element A4*
of &, there corresponds thé.olass of all points (z, %) in
the plane gueh thasul bt Navw take §, to be the class
of all monadic propelties of the form “#(a < z)"” or

“&(z < a)”, i.e. thdelass of all half-lines, together with

all others obtafnable from these by the use of the

postulates AK“A7", F,1-F,6.

(a). Provethat a property A" is in §, if and only if it
corresponds to the sum of a finite number of

(disjoint intervals. (An interval is taken in the

.'\:“'Widest sense, Le. with or without either or both

N endpoints, and it may degenerite to a single
point, or it may be a half-line or the whole line
in extreme cases.)

(b). Prove that if %A(z, ) is a sentence-form in z, y,
the corresponding class of points (x, ¥) in the
plane such that Y(x, i) is an “elementary figure”,
i.e. asum of a finite number of disjoint rectangles,
quarter-planes, half-planes, ete., with sides paral-
lel to the axes. :

(e). Conversely, to every elementary figure in the
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plane there corresponds such a sentence-form’
Az, y). .

Thus the eclass of polyadic propositional
funetions definable in terms of monadic functions
alone is extremely restricted. On the other hand,
essentially all of mathematics can be expressed in
terms of diadic functions. (See Lowenheim [171]9,
Kalmér [384]5, 6, 8.) ’

N
SECTION 3 SOME VERY EXPRESSIVE LANGUAGES

We shall now describe several languages which hsm; been
proposed and shall show how the difficulties of thg‘féét section
can be eliminated. In section 5 we shall showdiow these lan-
guages are adequate for expressing much of mat emafics. The
problem of defining precisely what is meant by an interpretation
of a language is not yet completely soﬁe}l. "For the present we
shall content ourselves with intuitiye_ interpretations which are
at best vague. O

We shall first construet the SHHe" SHEVE1HRER Yalehiis of the
first order. In general we shall*follow the exposition of Church
X119, with certain modifiéitions to avoid an alphabet of infi-
nitely many signs. O ralphabet consists of the signs 0, 1, @, f,
(, ), D, and ~. By(d siring we shall mean 2 finite sequence of
these signs. Sométimes we shall exhibit strings explicitly ; more
often we shallé ilse special symbols as abbreviations for certain
strings. InMfy context such a symbol may, of course, be re-
placed bthe string which it abbreviates. We shall use capital
Lati}\lf@férs a5 names of strings. Two strings are said to be the
samel they have the same length 7, i.e. the number of signs in

_8ach is the same, and if for each k, 1 < k < I, the k-th sign of
{éach is the same. If A and B are strings then “AB” shall denote

the string econsisting of A followed by B. We shall introduce
abbreviations thus:
.ov for A,

where it is to be understood that - - - is an abbreviation for the
string 4.
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D1. Astringin the signsa, , -+ - , a, is a non-null string each of
whose signs is one of “a,”, - - -, “a,”. The class of such
strings is denoted by ©(a, , -+ , @,). This definition

will apply to all languages here constructed.
- D2. An individual is a string of the form “aA", where A isa
&(0). |
D3. If nis a &(1), then a function of degree n is a string of the,
form “fnA”, where 4 is a &(0).

We identify the strings in 1 with the positive integers f o\i‘\;lii‘:
sake of the exposition. This could be avoided at the cost of.com-
plicating the following definitions. ‘O

D4. A sentence is a string formed according ﬁofthé following
rules: i

{(a). If F is a function of degrec # Qid Ty, " -, T, aT€
individuals, then Fz,z, o \;v,, is a sentence.
(h). If p and ¢ are sentence, $tien ~p and (p O ¢) are
sentences. ) .
k ‘dhbr uhbr&ary‘qrg,m' .
(¢). Iip is g\gentéflcg'&nd z i8 an individual, then {(x)p
i8 & sentence. N :

In the intuitive interprétation the “individuals” will be either
names of individyals Af'the ordinary sense or variables ranging
over the class of individuals. We use the term “individual” here
instead of the mof&suggestive term “individual variable” for the
sake of brevityidictually our language is so framed that the only
true sentenees/are generally true sentences, i.e. those which are
valid forall individuals. A function of degree n will express a
propp.s&;nal funetion of n individuals such as ‘. .. gives...to
+ - I this is denoted by “F* and b, ¢, and d are individuals,

~then the sentence “Fhed” shall express the proposition that b
Ngivesctod If pis a sentence, then the sentence ““(z)p" shall
express the proposition that for all individuals z, p. We shall
often denote. individuals by “z”, 4y, “s” ...  sentences by
“p”, “q”, -+, and functions of degrees n by “F,”, “@,", --- .

It will be convenient, to make use of the “null” string, denoted
by “A”, consisting of no signs at all. Thus Ad and AA shall
be the same as A for any string 4.
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(A;, -+, Ap) is o pariition of B if B is 4,4, --- A, .

A is part of B if there are strings C and D (either of
which may be null) such that B is CAD.

If C is null, then 4 is called a head of B.
If D is null, then A is called a fasl of B.

If x is an individual, and (€, =, D) is a partition of B,
and “0” is not a head of D, then (C, z, D} is called
an occurrence of z in H.

If = is an individual and (C, 2, D) is an occurrence of
z in B, and if there exists a sentence p and strings‘(? A
and D, such that CyaD, is (z)p and C, is & tail of C
and D, is a head of D, then (C, z, D) is called\bound.
Otherwise (C, x, D) is called free. .

Ifx,, -, % are distinet individuals and p}s\a sentence,
and if (Cl sy Tiy Ogl?,‘, e 01;{1); AN (Clx.-l con Gy f
Zi , Cisy) ate all the free occl}px-énées. of these indi-
viduals in p, then Sbiz: , - 3 %n s p} (g, -0y Yu) 18
the string Cyy.,Cs -+ *+ Cwy 6% - This latter string is
thus the Tesult of substilpbing b ior, 8o {f ~ b

., n) in all free ocelutences of the 2’§ m P.

( F2)p for ~(z) ~pa"
p D, ¢ for () EDO @.
P D.. g for&)H) e O 9-
p =, ¢for @ = 9.
P = fdor @@ = @

In D13 'El'bM and throughout this section we shall use the
definitions @nd conventions of 112. '

Wesh

31l now define a subelass of sentences called ¢rue sen-

temeés'and shall denote the proposition that p is & frue sentence
B3 . :

D15,

FL

FII.

A sentence s is said to be true (i.e. [-s) if and only if its
being so follows from the following rules:

If bp and Hp D ¢), then [-¢.
If bp, then Ha)p, where z is any individual.

FIIL. If p, g, and r are sentences, then

b D gqDr.DpDgDpOT
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FIV. If p and ¢ are sentences, then |p O. ¢ D p.

FV. If p and ¢ are sentences, then Fp D o~ D gD p

FVL. If p and q are sentences and z s an individual with no
' free oceurrences in p, then

Fp 2.¢. 0.2 D (x)q.

FVIL If p is a sentence and « and y are individuals, and there
are no strings €, C, , D, D, such that (C, z, D} iha
free occurrence of z in p, €, is a tail of C, D, is afigad
of D, and C,zD, is (y)g for some sentence q{ then

H@)p D Sblz, pl (). N

In D15 the phase “foliows from - - - ig noi:.~cfie§ﬂy defined.
We remedy this in ¢

D16. The sequence p, , - - - s P of senteriéés' is called a proof of
¢if p. is g and for each i, 1, <\ < #, either
(8). p: has one of the fortas described in FIII-FVII,
or N\ )
(b). therd ¥8:7 354 R Veh that pu is (p, S p,), o
(c). thereis aj < such that p; 18 (x)p; , where z is
an indingluai.’

language whose coffgbruction is embodied in the preceding defini-
tions will be cg}leﬁd L.

It is now easy to show that L, is essentially equivalent to the
object langiiage of the previous section. It is slightly weaker be-
eause of the absence of any analogue to F,3 (p. 84). This postu-
lite, dntroduced partly for the sake of the theory of quantifica~
tiqgfas developed there, says that & is complete with respect to

. Elementary propositions, i.e. that any sentence-form nz,---,
\_%. corresponds $o an element of &, , so that relations may be
defined impredicatively. Otherwise the deductive power of these
two systems is the same. The main difference is that previously

we had an object language which communicated something,
namely certain properties and relationg involving the elements

of B, §, , I, ete. The center of interest was just the properties of

A sentence g is saidlo be true if there is a proof of ¢. The
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and relations between the elements of these classes, and the
object language was merely a convenient tool for expressing
these mattcrs. In the exposition the syntax of the object lan-~
guage was an automatic affair since we gave rules for determin-
ing what a given string denotes (e.g. F'.1) and these enable us to
decide whether a slring is meaningful or not. There i no ob-
scurity in the problem of interpretation, for if we are given cer-

tain classes of objeets, B, T, 3, T , ete., and operations ~, ¢

IT, ete. defined upon them, then the question of whether these
constitute an example of the deductive science there considersd
simply requires an examination of these classes and operations,

and a verification of the postulates. If the classes T, 3, &

., §, and the operations are given concre‘geiy, then this
verification of the postulates involving only {hese classes is a
matier of direct observation. On the other haitd, in this section

we have constructed an object language’ thout any reference

at all to the denotations of the signs and strings. Our rules for

the classification of strings as individusls, functions, and sen-
tences, and true sentences may becpusidored By, pyles for

a game played with these signg; The problem of consistency may

be thought of as the problem of whether the game is loaded
against us or fair, i.e. whether every sentence is true or not. The
game is interesting ingefar as the propesed intuitive interpreta~

tion is acceptablej ke as our mental habits agree with the rules

of the game when the signs and strings are interpreted in that
way. Thisyis unsatisfactory mathematically since there is no
offective/way of determining exactly what our mental habits,

i.c. vodis'and mine and the other fellow’s, are, and of eommuni-
catiDy them with complete precision to others, or even {0 our-
sdlves. (In the latter respect the situstion is analogous to that of
~ihe indeterminancy principle in quamtum mechanics; the very
' act of observing our own thought processes changes the phe-
nomena observed.) Thus the most interesting and important -
interpretation of our object language is unfortunately one whose
acceptability we canmot test, and therefore is unavailable to us

in a rigorous theory. In this way the problem of defining the
notion of an interpretation of & language becomes of funda-
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mental importance when a language is constructed syntactically,

e. without any reference to what its strings denote. This has
been neglected by a mumber of otherwise competent authors
who construct languages (or as they sometimes eall them,
calculi) independently of an interpretation and content them-
selves with giving untestable intuitive interpretations. Such
practices have given rise to the view that mathematics consists
of a game played with meaningless signs according to certain
prescribed rules, and to the charge that this way of approaching
logic and mathematies is not mathematics at all since theJatber
18 not such a conventional game. It must be said that“many
writers who attack mathematical logic on this bagls ihsist on
some mystical virtues of ordinary language as compared to a
precisely constructed language of the sort undsr ‘consideration,
and forget that words are also symbols, a,nd\ that ordinary lan-
guage merely differs from these other symbdlic languages in that
its rules of syntax are very complicap}(;&ud never stated pre-
cisely and explicitly, (It is true thag there are countries like
France and Sweden witielf b Sfedixlugotties, their academics,
which formulate canons of corrget usage, but an examination of
these formulations and & comparison with those of logicians
show that the last statemient holds without exception,)

We observe, however, that the study of an object language for
its own sake withofit'réference to an interpretation is often fruit-
ful and has led™\fo results of.fundamental importance. We
shall, ourselve§) fitake use of this procedure. But we emphasize
that a langQage must have an interpretation in order for it to
serve ag-a language, namely as g tool for communication, and
that pk}ose who neglect this, and those who dogmatically insist
that'the study of a language independently of its meaning is the

anly rigorous procedure, are wrong. This statement is itself
fomewhat dogmatic; it is difficult not to be dogmatic when one
feels strongly about something.

The language L, is adequate for much of mathematics but
suffers as indicated at the end of the preceding section, from the
defect of lacking an apparatus for applying quantifiers to fune-
tions. We shall now consider some proposed remedies of this
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situation. A device due to Wiener, and later gimplified by Kura-
towski, enables us to develop the theory of polyadic functions
from that of monadie functions, or alternatively from the theery
of classes. We shall adopt this procedure. In this section we shall
restrict ourselves to the construction of various languages and
chall diseuss in section 5 their adeqiacy for mathematies.

We shall first construct a language L, due originally to Rus-
sell and Whitehead, simplified by the aid of the device of Wiener/
and Kuratowski, and formulated in a precise manner by Targki,
The following exposition is due essentially to Quine. Qur alpha-
bet consists of the signs (, ), €, ~, D, &, b,andv. @,

D17. A variable of type %, where n is & &(b), is ga,'sﬁrixfg of the
form “ond” where 4 is a &(@). N
DI8. A senience is a string built up according to the following
rules: : N
(a) If z is a variable of type‘n‘and y is a variable of
type nb, then {z € y)Ns-a sentence.
(b) If p and ¢ are sentgnees, then ~p and (p D ¢) are
sentences. ':’W,ww.dbraulibrary,org,jn
(¢) If pisasentence and z is a variable (of any type),
then {z)p-is & sentence.

A siring is a sentezi& if and only if its being so follows from
these rules. \ \! .
In the intuitive interpretation a variable of type b will be an
individual yariable, a variable of type bb will denote 2 variable
whose ylties are classes of individuals, a variable of type bbb will
denqt{e;a‘variable whose values are classes of classes of individ-
ugl§y.ete. Other strings will be assigned interpretations in & man-
¢ 'r{ef'analogous to that of the previous language (see p. 92}, The
"\ “paradoxes will be avoided since strings of the form “(z € 2)”
are not sentences, by condition (a) in D18, and hence the rules

for the eonstruction of true sentences do not apply to them.
Definitions D5-D14 are taken over with the change that

“individusl” is to be replaced by “variable” in D7-DI.

D19, (z C.p) for (B)((z E2) D (& E M)



98

I z1s a variable of type # and z and y are variables of type nb,
then (z C.,y) is a sentence. Of course, z will twrn out to be a dum-
my symbol in D19,

D20. A sentence s is said to be frue (ie. }s) if and only if its
being so follaws from the following rules:

FI-FVII with “individual’’ replaced by “variable”. In FVII ,

add to the hypothesis that ¥ is a variable of the same type as x.

FVIIL Ifzis a variable of type n, and z and y are variable$.of
type nb, and u is a variable of type nbb, thdn)

FHEEED = e D(ew DLE ).

FIX. If pis a sentence containing no free oqeu‘jri-énce of the
variable z, and y is a variable of type'n, and 2 is a
variable of type nb, then PN

HI9GNW € ») 2@

FIX is a form of the “Axiom of 'rédﬁcibility” of Whitehead
and Russell, stated imarsimpiatd;td'weias-tﬂanner. Intuitively,
it guarantees the existence of the class of all ¥’s such that p, in
other words it justifies the definition of a class by abstraction
from a propositional functidn. FVIII says, intuitively, that if
the classes z and y hay€ the same members, then ¥ is 3 member
of any class containifig'z. Since, by FIX, every property defines
a class, it follows €hat y has every property which x has, so that

‘'z and ¥ are ideatical in the intuitive meaning of the word.

Although/the'system L, is already adequate for practically all
of ma tatics, it is convenient to introduce an abstraction
operatarsIn order to maintain our convention of writing strings
in hiear order, we shall denote this by “z 3" instead of “4” ag

before. Thus we adjoin to the alphabet the sign O and make the
following modifications of the previous definitions, and replace -
D18 and D20 by D21 and D22, :

D21, We define “term”” and “'sentence” simultangously:

(a). If x is & variable of type n, then z is a term of

type n.
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(b). If z and y arc terms of type nandnb regpectively,
then (z € y) is a sentence.

{c). (b) and (c} as in D18. - '

(d). If p is a sentence and z is a variable of type n,
then D p is a term of type nb.

A string is & term or a sentence respectively, if and only i its
being so follows from these rules. In D8 the oceurrence (C, z, D}
in B will also be called bound if CzD sz D P 7

D22. The definition of & true sentence is the same as in D20
except for the following changes. N\
(). In FVIL y may be an arbitrary term gf.fslfé same
type as 2. If y is a variable, then after the phrase
C\aD, is ()" add “or y D g
(b). Add the rules ’
FX. If pis a sentence, and £ and ¥ a{reK\Ta‘ariables of type n,
and .z is a variable of type shwhich has no free oceur-
rence in p, then P\%
by Ex Dp.=:. (3@;&@@:&&5@%@%5} =p).
FXI, If pis a sentence, and, 2% a variable of type nb, and ¥ is
a variable of typé#bb, and  is a variable of type »,
and there is po oeeurrence of z in p, then

Ix2 BKE\ET?)‘\-:E:.(HZ) 12C Y A@{zE2) =p)

The languageobtained from L, by means of D21 and D22
will be called .

We uséhere and shall continue to use dots for parentheses
according to the conventions explained before. It can easily be
sho@h "(see Hailperin ((IX]1)) that we can seb up & correspon-

_déice whereby to each sentence P in L} there corresponds &
\ uniquely determined sentence ¢ in L, such that

M. bp=ginl:z,

(2). Fpin L}, if and only if bgin Ly,

(3). if p is a sentence in L , then }p in Lz if and only if bp in
I, . This shows that the system Lz is essentially equivalent to
Ly . L{ is what we call in the next chapter & conservative exten-
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sion of L, . It is, however, technically easier to manage. The
following applies to either system, but for the sake of technical

convenience L} will be the one actually used.
In Principia Mathematica Whitehead and Russell showed in
great detail how practically all of mathematics can be developed
within & system of which L} is a simplified version. On the other
band, Tarski has pointed out that this simplified version is
already adequate for Principia Mathematiea. Thus the present, {
language is adequate for practieally all mathematical reasoning.
All we lack is a consistency proof. But, by Godel’s theorem, if. the
system is consistent, then any consistency proof must.involve
methods of reasoning which cannot be formulated in the'system.,
To this extent a proof of consistency seems hopeless; This cannot
be eonsidered as a reason for rejecting the systér since Gadel’s
theorem applies to every adequate system sofar proposed. It
means, however, that the system can be/aetepted only as a
working hypothesis as long as no contradietion is discovered in
it. From this point of view this System i one of the best which

have been constructed y A BAT o or e i
;] ! ] i1 .org.in
While the languag“é“ﬁ sabisfies regsonable demands of ade-

quacy, it has certain technieal defects which eause msany to
consider it unsatisfactory. To Hlustrate this let us try to define
the universal class (the “fof Chapter I). The simplest way is to
choose a sentence avhich is universally true, i.e. such that
FHz)p, and to deﬁng%:e universal class as the class of all z such

that p, ie. asz 9. Thus we are led to the following definition:
A%
¥z S W €y D @ y).

But if the.definiens is to be a term, and 2 is 5 variable of type n,
then’yjm\ust be a variable of type b, Consequently V is & term
of type nb. The particular choice of the variables ¢ and y is
p ’ir@mb.teﬁal since they can easily be shown to be dummy symbols.
It'is now easy to prove that F(x & V) for every term x of type n.
If 2 is not a term of type n, then (z = V) is not even a sentence.
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V. forz D @)z €9 D & EW:

where = is a variable of type nand yis a variable of type nb. We
have, then, not a single universal class, but infinitely many, one
for each type. The same phenomenon arises in connection with
ail other mathematical concepts. There is an integer 3 for each
type, an arithmetic for each type, and so on. To each true sen-
tence involving terms of one type there corresponds an exactly
analogous true sentence in each higher type. We have an infinite~
reduplication of logical principals on the various type levels. To
put it in another way, we can in the object language L; express
propositions about all elasses of individuals, or about gll,élassea e
of classes of individuals, ete., but we cannot express propositions
about all elagses, for example. : < D
Whitehead and Russell get around this diffic(lty by their con-
vention of typical ambiguity. In the theoreths and proofs they
do not indicate the types of the terms whigh oceur except in the
rare cages where the neglect of the type distinctions would cause
trouble. Tt is tacitly assumed that) the variables are always
chogen in such a way that the rifdesof Iyoulivenpiserged.
Another objection which hasbeen raised is that the theory of
types is artificial. It is con ded that such statements a8 “the
class of all classes is a-Glass” or “the class of all men is a man”
ought to be considefed as meaningful, and should therefore be
reckoned as senténees. Hence it is concluded that a theory such
a8 the theory ©btypes, wherein it is impossible to express such
propositiopsdoes not jibe with our intuitions. There are, how-
ever, algyvery plausible philosophical arguments to the effect
that~the type restrictions are natural. We shall not, however,
digress at this poiut and enter into the dangerous quicksand of
_pbilosophical controversy.
N\ Some authors have dismissed the theory of types as an ad haoc
' device, i.e. one invented for the sole purpose of avoiding the
paradoxes. Historically this is surely the case, but is not in itself
a serious objection. For in attacking & problem we often hit upon
& device that works, and then discover, upon reflection, that the
device was an obvious and natural one after all.
Quine ({II]86) has proposed & system which eliminates the



102

technical difficulties involved in the theory of types without lead-
ing to any known contradiction. We shall call the language now
under construction L, . The alphabet shall be the same as in Li.
'The definitions up to D21, including the new version of D8, are
retained except that all phrases of the form “of type n” in D17
and D21 are omitted. The same applies to D22 except for FVII
and FIX. FVII is taken as in L; rather than ! so that the sub-
stitution of a term of the form 3 r” for “y” is not directly
possible. In order to explain how FIX is to be altered we must

introduce the important coneept of stratification. "

D23. Ii (C, ¢, D) is a partition of pand (C, , 2, D,) isdn oceur-
rence of the variable  in g, then (CC, /2, DD)is
called the (C, ¢, D)-extension of (CryanD,).

D24. If p is a sentence and %, -+, 2] isadivision of the
oceurrences of the variables in pinfo a finite number
of disjoint elasses, then %, ;{», 2.} will be called a
stratification of p if and onlyif the following condi-
tions are satisfied : Dl

-aulibraey . .in
(8). 12388 Varlabley g 1 & sonience, and (C, ¢, D) is
& partition ofw, then all (€, ¢, D)-extensions of
free occurrences of z in ¢ belong to the same
class.

(b). If ﬂg?are free oceurrences of the variable x in
the sentence g, and (C, (#)g, D) i8 a partition of
2ihen (C(, z,) ¢D) belongs to the same class as

(e (C, (2)q, D)-extensions of all free occurrences
SO ofzin g,
.S“('c). T(he; analogue of (b} with “c 3 ¢ instead of
"..\ [44 T g)!-
AN @I (e ), D) is a partition of 7, and 2 and y
N are variables, and if (C(, T, EyD)isin €, , then
1 << <nand (O C,y)DYisin g,,, .

{e). The analogues of (d) with “tx = y D gy,
“z 2 r € )7, and “(z DrE€ YD Q" re
spectively, instead of “(z & #)". In the respec-
tive conclusions the class of the corresponding
oceurrence of y is 8, , .., , and Linr .
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Note that the class of (C(, z,)¢D) according to (b) need not be
the same as that of other occurrences of z in p of the form
“(0,(, #,)gD,)” or of free occurrences of x in p. :

If an occurrence of a variable in p belongs to £; , we shall say
that its level is 7 (in this stratification). )

D25. The sentence p will be called stratified if and only if
there is a stratification of p.

We can now explain the desired modification of FIX:

FIX'. If p is a stratified sentence containing no free p,c’cﬁﬁ
rence of the variable z, and y is & variable, then

HIDWWE D =9,

This makes it possible to substitute for ‘g \in Fk’II & term of
the form “z O r” whenever r is stratified, .

The system L just constructed could {Em}e been slightly sim-
plified in that we no longer need theX§iga “v” in the alphabet
since its only use In L was in providing the distinctions of type.
We have not done this in order .tm“k%bﬁﬁgltpﬁﬁﬁﬁi%ﬁ‘bm L
to L, slightly easier. The for;néf ‘procedure would, of course, be
preferable in an independenticonstruction of Ls .

The infinite reduplic fion of logical prineiples in L now dis-
appears. For exa,mpl\é:we can define the universe V as follows:

Yorz > ((z €y D, [z E W),

where y ":e\my variable difierent from x. The gentence

“@ € y e € §)”, or “@)E E ) D (@ € )" inits unab-
brevig{ed form, is stratified by taking ¥, as the__class of all

ocaurtences of « and £, as the class of all oceurrences of y.
"By FIX’, we have

~ l—(az)(x)(a:Ez_.E.xEyD‘,xEy).

which provides a justification for the definition of V. _ .
If z is a variable, then ~(z € %) is a sentence I I:;.,, in
contrast to L . Tt is, however, impossible to prove by FIX' that

N

oy HA@E €z .=, ~EED),
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so that Russell’s paradox is avoided. Postulate FX yields only

@ kEyD~yCy
' a=n (D2 €2 A.GHY E D) = ~(y S o),

which no longer leads to contradiction by the substitution of
“y D ~(y € )7 for “x” by FII, FVII, and ¥FI. If we had
omitted the condition that p be stratified in FIX’, then (1)
would be a true sentence. N\

Now O\
FHodz Ez.=, ~z € 2)) :Di2Ez .=, ~(z E2)
:"by FVII
But F~z€z.=, ~zez) X, 2.2.1b).
Hence F~(z)(z € z .=, ~(z € 1)) N(T2.2.11, FI),
sothat Hz) ~(z €2 .=. ~(z € z)) (FII},

and consequently F~(J2)(z)(z € 2 .= sz € 2))
' LY (D10, T2.2.5, FI),
which contradiets (1), \%

The same reasonig\g ﬁﬁgggﬁjﬁ ﬁ(;z))( “glrtggjgg yield only
F@) ~z €4 D ~y € g)),

which simply says that pD ~(y € ) is the null class.
Rosser {[IV]15) repgrts the results of his unsuccessful at-
tempis to find an i ths}stency in L, . This language is probably
the most flexibla\language so far proposed which leads to no
known contradiction. We shall in the next section discuss the
work of Cunfy\ which indicates that he may have found s still
more flexiblé system which is demonstrably consistent.
The Janguage L; avoids almost all the objections which have
be&n;faﬁvanced to the theory of types. The condition of stratifi-
cation may, of course, be eriticized as artificial. It is, however,
{ "the weakest restriction on our intuitive reasoning so far pro-
posed which is not known to lead to contradiction. One weaken-
ing of the stratification restriction in Ly which Quine proposed
later ({V]163) was shown by Lyndon and Rosser ([VIII1) tolead
to the Burali-Forti paradox. Hailperin ([IX]1) has shown that

FIX' may be replaced by a finite number of similar postulates
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involving only special forms of “p” instead of a general stratified
sentence. A more serious defect of L, is that there are certain
simple and natural arguments which are correct intuitively and
which can be translated into Ls, but whose validity is not
provable in L . These arguments are so plausible that we should
probably condemn Ls as a formalization of logic if the stronger
system obtained by postulating the validity of these arguments
is inconsistent. Rosser ({IV]15) did not succeed in finding an
inconsistency in this stronger system. By Godel’s theorem, we
could not hope to incorporate all consistent and intuitively valid,
methods of reasoning into the system. )
Other systems have been proposed which aveid the\kifown
paradoxes in a somewhat different way. The first of.these was
proposed by Zermelo {[12513), and later formulated ‘more pre-
cisely by Skolem ([247]5). As we have seen, the origin of the
paradoxes is the intuitive process of constljugting the class of all
2’'s which have a certain property. Quine's improvement over
Russell’s solution of the problem is to'testrict onesell to proper-

ties expressed by stratified sentences, Zermelq’y idea is that it is
unreasonable to demand that one gather togethés tFom the
whole universe those objects,which have a given property. He
" considers it reasonable to.pi’ék'out from an already known class
the objects which hayelthe given property. This leads to the
replacement of FI&"\by’ '

FIX". If z, yfand 2 are distinct variables and p is a sentence
gorbaining no free occurrence of x, then :

D7 HI9@E Es =y EXAD.

The’:feg‘llting language will be called L, . Zermelo adds certain
P@Sbﬁlates providing for the existence of classes constructed

{ from given classes according to some gimple rules. For example,
the following guarantees the existence of the class of =il sub-
clagses of a given class:

FXIL If z, y, z, and u are distinct variables, then

LI s =y C. 1)
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Quine ([1}45) has shown, however, that L, without such addi-
tional postulates as FXTI (and with a slight alteration of FVIII)
is already adequate for standard methematics as meagured, for
example, by L7 . He does this by constructing within L, a model
of L; . With Zermelo’s additional postulates the system becomes
almost as manageable technicaily as I, .

An interesting alternative has been suggested by Quine
{[VI]135). As L, stands without FXII and the like, we are not
only unable to prove the existence of a class corresponding togn
arbitrarily given property, but we are also unable to prove<that
an arbitrarily given object is a member of some elass, Wethay,
then, weaken the restrictions on those properties whichdefine
classes and impose instead restrictions on which objeets may he
members of classes. In this way we can eliminate Ruzssell’s para-
dox not by denying the existence of the class\of +'s such that
~(z € ), but by denying that this class ¢ e . member of any
clags, in particular itself. Formally this tan be done by adding to
L, the postulate W

FXIIL 1f 2, y, and 3 6H BAREEYSH RS, then
HIN@EE y .=. (3196 € 2).

This guarantees the existence of a class which contains every-
thing which is a mefmPet of something. This elass plays the role
of V'in L, . It is eady, $0 show that FXIII and FIX" together are
equivalent to \ ;" -

N

¥IX', If :l\ y, and z are distinet variables, and P is & sentence

\j containing no free occurrenee of z, then
(N

2 8

,\.f;"' HIomy €2 :=: (Ia)y € 2) .A. ?).

et us call an object an element if it is & member of some class.
Then FIX' guarantees the existence of the class of all elements
which have a given property. It now becomes desirable to add
postulates which guarantee that certain entities are elements,
In other words, we may supplement L, either with postulates of
class existence or of elementhood. Both vield plausible systems.

Q!
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It is still too early to decide which of these is the most con-
venient. _ '

We call attention to the detailed development by Bernays
([I1]65) of a system which is essentially the same as L, with
FIX" replaced by FIX" with an additional resiriction on p,
and with supplementary postulates of class existence, He shows
how classical mathematical analysis can be developed on this
basis. In his epoch making memoir on the continuum hypothesis
Godel ([VI)112) made use of this system.
O\
EXERCISES 'S M

Ex. 1. Interpret in English the following sentencgg(iﬁ"L, :
{(a). ((e0)f10a0 O f10a00). m’\i_f
(b). ((a0}f10a0 O ~(al) ~f10a0): )
(c). ((a0)(a00)f110a0a00 D (aOQKaO) F110a0a00).
(d). (a0)(f110a0a00 O ~ 110d a0) .
(e). ~(a0)(a00}{f110a0a0Q D f 1100“’00“‘}) °00a0))
. (a0)(10a0 D £100¢0.D (f10a0 D f1 .
Ex. 2. Identify tl’ﬁa occurrenqésy(\)“fwtﬂ]%rﬁﬂd?ﬁ{uaﬁ' ginn the
above sentences. Whiéh‘are free and which are bound?
Ex. 3. Translate the sentences of Ex. 1, 2, p. 88, into L .
Ex. 4. Define the natioh of consequence (see P 45 in Ly).
Show that gi94 consequence of the sentenees r1, ***
r. if and &ﬁy e AT A A Ty 0 G, wher.e 7y 18
() sardzn)rand 2, <00 5 Fm are all the individuals
whieh“oceur free in 7 . .
Ex. 5. Ifterpret the following strings in L, and Lz
.§R'a.). ((vba)((vba € obba) D (vba € whbaa)) D
A\ ({(vba)((vha € vbbaa) O (vba & vbbaaa)) D
_AY (vba) (vba & vbba) D (vha € vhbaaa))))-
O (). ((vba)(sba & vbba) D (vbaa € vbba).
(0). ( 3 vbba)(wba)((vba E vbba) = ~(pba € vbbaa))-
(). vba D ( Jebba)((vba € vbba) A (vbba & vbbba))-
(€). ((wha € vba D (bba)((wba € pbba) D (wba &
obba))) = ( Jvbba)((vba € sbba) A (vha)((vba &
sbba) = (sbba)((vha € vbba) D (whe & #bba))))-
(). vbbaa  (vba)((vba € vbba) = (06 € vhbaa)).
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Ex. 6. Give suitable definitions in L for the following con-
cepts: :

(a).
(b).

(c).
{d).
{e).

The null clase of type bb.
The union of « and §, where a and A are terms of
type bbb,

The join of & and 8, where & and 8 are terms of
type bb. :

The common part of all members of a class of
type bbb. A\

The class of all idesls in the Boolean algehracof
all terms of the type bb. g >

Ex. 7. Translate the following English sentences in,t?;)‘i’a .

(a).
(b).
(c).
(d).
(e).
(1.
().

(h).

Every member of « is a member of 8 ¢

218 In & if and only if  is in § butnet'in .
Forallz, y, and 2, ifxandyarps‘g;sa, then xisin 2
if and only if y is in 2. D

8 has a member in commof %ith each member of

[+ \J

For all z andp,.if W yrarenin «, then » and y
have no cornmon. fnembers.

There is a clagsbe containing all members of
members of 8,

The men}b’érs of & are linearly ordered with re-
spect tQ'qncIusion. (Bee p. 20) '

Thete id a member of § which is included in all
members of .

Ex. 8. Tell ghich of the following sentences are stratified, and
givd Stratifications of those which are:

» :’\'.j:z (C)
N
Ex. 9. (a).
(b).

~(vba) ~(vba & vbaa)

~(vba € vba)

( 3 vba) ((vbaaa) ((vba < vbaaa) D (vhbe < vbaaa))
D (vha & vbba))

~(vbag) ((vba & vhaa) O ~(vhaa € vhaan))
Prove FIX'" from FIX" and FXITL.

Prove FIX" and FXIII from FIX'",

N

Q
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SECTION 4 COMBINATORY LOGICS

We have already emphasized (p. 95) the gtriking contras
hetween the systems just described and the logical systems
treated before. The root of the difficulty of interpretation lies in
the use of variables and in the process of substitution. In ordi-
nary mathemadical usage a variable is not the name of an entity
but rather a letter used in building up tword-forms” or “‘sen- s
tence-forms’’ such that when the name of an entity in an appro-
priate category is substituted for the variable, a word or a sen*
tence, i.e. a name of something, results. Thus “z + 1 =.1\}T— 2
is not a sentence, and does not express & proposition,butif the
name of an integer, say “3", 18 substituted for “z){ & sentence,
expressing in this case a true proposition, results¢Thmakes sense
to substitute “Dewey” for “z” in “z is disappeinted”’, bub it is
nonsense to substitute the man Dewey for’ b in the “‘proposi~
‘tion” that z is disappointed. The usg ofwariables is convenient .
because of the rule of substitution, which is expressed in L by
FIT and FVIL, whereby we may, sabstidatenimasptengs-form
whose values express true propositions, word-forms for the vari-
ables oceurring free, and the vesult is again a sentence-form
whose values express trué'propositions. The precige definition of
the process of substitgion, and the correct statement-and justi-
fication of the ruléj are nasty enough when the variables repre-
sent entities of ©Ohly one eategory, a8 in sections 112, ITI2, and
II13. 1% becomes much worse when we have several categories of
entities, agwould be the case in TI12 if we had considered also
sentendé-forms in variables representing elements of &, as well
as 9 'The situation becomes almost intolerably complex when
welthust allow for bound or apparent yariables, for which sub-

~Sfitution must be forbidden. Thus the statements of this rule in

) such standard works as Hilbert-Ackermann (i365]1), ([IIL183),
Hilbert-Bernays {[507]1),; Quine ([458]5), Godel (1418]14) are all
incorrect; for a correct statement see Church ({359]_9), ([X119).
From our analysis of the process of substitution in the very
simple language of 112 we see thiat it is essentially & complicated
matter, and no real short-cut is to be expected.
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Also from another point of view the use of variables, though
convenient, seems unnatural. For in g sentence like

“for all integers z,z 4+ 1 =1 4+ z",

the variable “z” has nothing at alt to do with the assertion. The
sentence is really about the constants =+, I, =, and the class of
integers. The letter “z” is uged merely as a tool in communiest- N
‘ing a certain proposition, but only apparently appears in it. In
the language L, it would be expressed by the sentence ()

"N\

(DE@EEN Dz +1 =1+ 2, A\

where N is the class of integers, and the fact that//%" doesn’t
really enter into the meaning of this propositiond®shown by the
analogue in L, of T3.2.1b, whereby “z” is a dbmmy symbol, In
the system of section ITI2 this propositioniﬁ\éxpressed without
variables thus: L

HAI.- :’t’ x
where A4’ is the element, @ﬁalﬁuﬁ}ﬁ@aﬂg,m
Fdla i=: N'a 3. P@P (1 + o), forall ain 3,

assuming that addition has already been defined. We know,
however, that this formialism is inadequate from the remarks on
D. 87. It thus appears that the notion of a variable is a lin-
guistic, rather than, s logical, concept, and similarly, that a rule
of substitutioniga Linguistic, rather than a logical, law, amount-
ing to the pbservation that in certain languages only generally
true propositions can be deduced, so that what is provable about
one qu}eﬁ of a certain category is provable about all. This view
18 sabstantiated by Lindenbaum and Tarski ([I]115).

o (This raises the question: can 3 system of logic be constructed
\.1n which the signs of the object language have denotations, which
1s adequate for at least a large part of mathematics, and which
deals only with constants? Can we make the system adequate
for all the ordinary uses of varisbles and the process of sub-
stitution, so that the convenience of variables as tools in com-
munieation is not lost? This problem has been solved by Curry,
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partly on the basis of previous work by Schonfinkel, and simpli-
fieations of Curry’s work have been made by Rosser and Curry
himself. Kleene and Rosser have shown the close connection
between Curry’s theory and that developed independently by
Chureh. They also found a serious inconsistency in the systems
originally proposed by Curry and Church.

We shall attempt here to give an idea of the work of these
authors, but for lack of space we shall be forced to limit our-
selves to a brief, and perhaps inadequate, gketeh. Our first task
is to set up an independent theory of operators, the so-calledy
“eombinators”, of the sort introduced on p. 87. O

We start with a primitive frame consisting of a clags € of
objects ealled entities, two special entities 4 and y'a binary
operation | called application, and a binary relaion = between
entities. If a and b are entities then “|ab” shall\Jehote the appli-
cation of @ to b. We may conceive of the epfities as operators or
functions, and |ab as the result of operating on b with a.

By writing the stroke before the fafies of the entities com-
hined by means of the indicated ‘QWRAﬁ%Ljﬁ'&lﬁyx%iﬁiﬁohﬁ I}jeed of
parentheses, and also simplify: gonsiderably the syntaﬁ- of the
object language. We defingtthe rank of 2 string of names of
entities and strokes as thewumber of strokes minus the number
of letters, i.e. names of entities. A string is  word, 1.6. & name
of an entity, if an(’k"mily i its rank is —1 and the rank f’f each
proper head (achead which is not the whole string) 15 non-
negative. To,éath sign in & word there corresponds a unique p_al't
which is s word beginning with that sign. These syntactical
theorenis Wwill be proved for more general languages in the next
chapfer*(Theorem 4.1.1.)

_For example, the string [|A|K|AAK s & word. The word

y \ béginning with the third stroke is “K|AA". I we had denoted

)the fundamental operation by “alb”’ and used parentheses, then
this word would have been written ‘(4 [(K(4 |A)K". Alter a
little practice in the use of the above criteria this not,at.ior_l is
much simpler to read than the ordinary parentheses notation,
especially when the formulae are rather complicated. For con-

venience and economy, we shall omit writing the strokes oo the
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extreme left of a word occurring alone. Thus this word will be
written “A|K|AAK”; by the use of the above criteria we see
that two strokes must be written to the left in order to ¢btain &
string of rank ~1, and therefore an unabbreviated word in the
‘“official” notation,

* The assumaptions are:

R. If ¢ and b are in &, then |ab is a uniquely determined{ N
member of §. A

N\

El Ifaisin @, then g = q. AN,
E2 Ifa = b, then b = g, « N
E3. Ha = band b = ¢, thenag = ¢,

E4. fa = band ¢ = d, then lac = |bd. ¢

E5. T g and barein G, and [ae = [be for all 368, then @ = b,

This means that o and & are the same opergtor if and only if
they always yield the same result When.@ppﬁied to an arbitrary
entity ¢. E5 may be called a postulafeof “extensionality” in
analogy to FVIII (p. 98). D :

COo. Aand K mw@;dbrauljﬁ[:éfy,org,in
Cl. If @, b, and ¢ are in @y-then Aabe = aclbe.
C2. feand b are in & then Kab = ¢,

Thus K is a “cong;t’a;s\ncy” operator, generalizing the notion
introduced in 7K {p:\87), The entity {Ka is an operator which,
when applied to aharbitrary entity b, yields the constant result
a. The entity, 4'js a certain “substitution” operator. If ¢ is an

. Operator whieh, when applied to arbitrary integers m and =,
yields the'integer 2m® + n + 1 while b is an operator which,
when spplied to an arbitrary integer n, yields n®, then Aab is an
operator which, when applied to an: arbitrary integer n, vields

Jthéinteger 2n® + n® 4 1. 1t ¥ is & function of two varishles and

\g'1s a function of one variable, then Afg is the function A whose
value, for an arbitrary argument ¢, would be expressed in the
usual notation by h(c) = e, gleh.

The following defmitions are very ugeful:

Dl- “I}) fOr “AKK’}'.
D2. “B” for “A|KAK™.
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D3. “W” for “AAJAK”.
D4. l’-{D!’ for “BB”-

D5. “C” for “A|DA|KK".
D6, “T for “CI”.

The following elementary theorems exhibit the nature of these

~ operators, and illustrate the use of these postulates. In the fol-

o

N\

lowing, the small Latin letters ¢, b, ¢, d, and e denote arbitrary
members of &. :

TI, Ia = a. <\
Proof. Ia = AKKa = KajKa = @ (D1, C};C%-
T2. Ba = A|Ka. )

1

Proof. Ba = A|[KAKa KAglKa = Ale

T3. Babe = albe. O
Proof. Babe = A|Kabe = Kadb{ﬁs albe.

T4, Wab = abb. QWY AKab = ab|||AKab
- _ L= = a
Proof. ZaijK l:;la‘g |i 'I;%g:wwwégl}aulibrary.o?' g.lin

“T5. Dabed = abled.  ~\"
Proof. Dabed =<BBa ed = Blabed = abled.

T6. Cabe = a.c:b\\i
Proof. Qabe = A|DA|KKabe = DAdl|KKabe
(5 DAaKbe = AalKbe = ac||Kbe = ach.
T7. Tah'= ba. :

,&1%0;. Tab = Clab = Iha = ba.

3

.\'Tiﬂus I is the identity operator, which Jeaves each entity un-

Jellanged. If § and g are functions of one varisble, then Bfg is the

'function whose value, for an arbitrary argument ¢, 18 eXpI

in the usual notation by f(g(c)). L fis & function of two variables,
then Cf is the function h whose value, for arbitrary argtm?ents
b and ¢, is expressed by 2(b, ) = fle, ), and W is the function ¢
such that o(c) = J{c, ¢), for an arbitrary argument ¢. See alzo
p. 87, .



114
T8, A|Kal = a.
Proof. If bisin &, then A}Kalb = KablIb = a|Ib = ab.

Since b is an arbitrary element of &, the theorem
follows by E5.

CoroLrary T8a. AB|KT = ],
Proof. AB|KIa = Ba||KIa = Bol = AlKal = a = Ia. _
Again we apply E5 to obtain the desired result €

T9. A||A|KKab = a, )
Proof. W ¢ 15 in @, then A[|A|KKabe = A|K&arbe
= KKclaclbe = Klaclbe = ae. N (ES).

CoroLrary T9a. BA|BK = K. \‘
Proof. BA|BKab = A||[BKab = AfMKKab = aq
= Kab, NY; (E5).
T10. A|Ka|Kb = Klab, o
Proof. A|Ka|Kbe = Kacl|[Kb6 ¥ ab = Klabe.  (Ii5).

Til. A|DBIKK = Bighepulibesty orgin
Proof. A|DB|KKabh \DBo||lKKab = DBaKb
= Ba|Kb = "A[Ka|Kb. :
B|BKIab & BK|lab = BKab = Klab.  (I5).
£ Y

T12. Al|Aac||Abc*<>A||A{|BAabe.
Proof. Al{Aac||Abed = Aacd|||Abed = ad|ed||bd|ed.
oMAi|BAcbed = A||BAcbdled = BAadibdled
Ov= Aladibd|ed. (C1, E5).
R s

TI3. 41D BA||BIBAA|K A = B|BA||WI|BA.
5 Proof. A|D|\|BA||BIBAA|K Agbe

~O° = D||BA||B|BAAa||K Aabe

QO = D||BA||B|BAdadbc = BA||B|BAAa|Abe
= A[||B|BAAa|dbe = A||B4|AalAbe
= BA|Aae||Abe = AllAacl}Abe.
B|BA||WI|BAabe = BA||lWI|BAabe

Al|[lWI|BAgbe = A\ IIBA|B4abe

A|ll{BA|BAabe = A|A|[BAabe. (E5).

i1
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These theorems all have very simple meanings, namely that
two operators always have the same effeet. Thus T13 says that
we can construct the entity edled||bdled from four arbitravily
given ones, ¢, b, ¢, and &, in two ways, either by forming Aacd
and Abed, applying Cl, and combining, or by applying the
operator A to the entities ad, bd, and ed.

We shall show later that T8a, T9a, T11, and T13 are suffi-
oient for the whole theory in that two words in “A” and “K” ¢
can be proved equal from R, E1-5, €02 if and only if they
can be proved equal from R, Kl—4, C0-2 and these equations;
This is important in the “metatheory”, ie. the theory ‘b the
structure of the system, since the hypothesis of ES requites in-
finitely many premises, so that it is & simpliﬁcat%of; o replace
E5 by a finite number of equations. On the othefliand, the proofs
are much simpler on the present basis. \

Curry took B, C, W, and K as primitive ‘notions and gave
another system of postulates in terms af these operations. Rosser
gave a set of postulates for a weaker gystem without & constancy
operator, and Fitch studied 3.S@k&’m{u%%p‘§%}%m§% a W
operator. We give below Curty’s “combinatory axi ns’ and
indicate how they are provedby showing the steps where B5 is
applied. The details ma{y“ be left to the reader as an exercise.

Ti4. BI = 1. ¢ \
Proof. BI&‘ = gb = Iab.

T15. C||BBIBBBB = B|BEB.
Pioyf. C||BB||BBBBabed = albled = B|BBBabed.

Ty6\\C||BB||BBBC = B|BCIBBE.
Proof. CI|BB||BBBCabed = alfbde = BIBC||BBBabod.

2N\®
N\VT17. C||BBBW = B|BW||BBB. _
Proof. C||BBBWabe = allbec = B\BW||BBBabe.

T18. C||BBBK = B|BKI.
Proof. C||BBBKabc = ab = B|BKlabe.

T19. CBI = L
Proof. CBIab = ab = Iab.
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T20. B||B|BCC|BB ~ BBC.
Proof. B||B|BCC|BBabed = adlbc = BBCabed.
T21. B\B|(B||B|BWW|BC|B|BBB = BBW.
Proof. B|B||B||B|BWW|BC|B|BEBabe ~ albd|bd

= BBWabe.
T22. BBK = BKK. ~
Proof. BBKabe = ¢ = BKKabe.
T23. BCC = 7. R\,
Proof. BCCabe = abe = Jabe. . \
T24. B||B|BCC|BC = B||BC|BCC.

Proof. B||B|BCC|BCabed = adep = BIBEIBCCabed.

T25. Bl|BIBWC|BC = BOw.,

Proof. B||B|BWC|BCabe = acch =BCWabe.
T26. BCK = BK. O

Proof. BCKabe = gb = BEabe,

T27. BW¢ = W}vww,dbl‘aul%lj{'él‘y,org,jn
Proof. BWCab = abb = Wab,

T28. BW|BW = BWw. " :
Proof. BW|BWab = abbh = B,

T29. BWK = F
Proof. BWKab = gb = Igp,

AN .
We shall néw prove that our system is functionally complete.
In ordert6do this we shall need some syntactical concepts. We
adjoin.bo'the object language an infinite List of letters a, Y2 %,
YL 2z, + Yz 22, -+ -, which shall be called variables, We define
dword as s string built up from Dames of entities, variables, and
_the strokes, according to the following rules:

(a). If % is a variable or a.mame of an entity, then 9 is a
word. '

(b). If 9 and B are words, then |%$ is a word, Here “| 918"
denotes the string consisting of /", followed by the signs of %,
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followed by the signs of 8. By a word in the variables z; , 72 ,
.+« , 7, we mean a word in which these, or some of these, are the
only variables; thus “x” does not necessarily oceur in a word in . .
We shall denote a word in z, , + - - , %z by some such symbol as
“Y(m, , v e, )" H U(z) isa word in i and “a” is s name of an
-entity, then ““%(a)” shall denote the result of substituting “a”
for “z”’ in 9(z), and similarly for words in several variables or
for substitution of words for the variables oceurring in another
word. I no variables other than “x” oceur in ¥(z), then N{a)isa
“name of a uniquely determined entity. Thus if Az, y) is e
then 9(|AK, B) is “||AK|B|AK”, so that A(|AK, B) i€ the
name of u definite entity, while H(JAK, 2) is “lAKHAK"
which is merely another word. We shall use such, gymbols as
“91{a)” 0 denote the entities of which they are the names.

We aim to prove that if #(x) is a word in ytHen there is a
uniquely determined entity F such that = ¥(a) for all .
entities ¢. To do this we introduce a new,sign, ¥, and establish
a correspondence between words and entities by means of the
following Tules: "}fu";'.uf\au:_dbraulibl'ary.org.in

(a). If A(x) is a name of apzeﬁt’if:y, then Az¥l(z) is |K U (x).
(b). If Afx) is “z”, then Apdli(x) is 1. o
(). If A(x} is |B(x)E(x); then Azdi(z) is ||AraB(z)ArC ().

For example, \\ .

Maf | A Kl FORAN| Al Kodel = (|4l ANzAN| K| KT
= [|4||4|{KA| ANcE Nzl KT = |AllA{KA}|A|KKIIKI.

For eadée }eadjng, we mention that “Az¥l(z)”, where A(x)isa
wordidn ¥, is also a word. If we define the rank of *“A” as +1 and
thab of a variable as — 1, then the previous criterion that a string
{"b’a, word still applies, with the restriction that ‘N’ must always
be immediately followed by a variable. Note that if a is an
arbitrary entity, then
[rxj|A|Kzla = ||1AHA|KAHA1KKI|KI¢1
A|KA||A|KKIa||KIa = KAdl||A|KKIal
A|||KKa|lal = A|Rel,

I
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80 that in this case Ae||A)Kzi is the entity F such that
Fa = A|Kal for all ¢ in &. We shall now prove this in general,
Until further notice we shall not use I3, but shall instead rely
on T8, T9a, T11, T13 and the other assumptions.

T30. DzA(x)a = A(a).
Proof. If %(z) is a name of an entity, then
Pe¥(@)a = |[KA(z)a = A(z) = Aa). | -~

If- A(z) is “2”, then Nefl(z)a = |Ig = ¢ = H(m). If A(is
[B(2)E(x), and the theorem is true for all words shorter than
#(z), then >

PrA(x)e = | | AAeB(@neC(z)a = Ifk:c%(x)alh.’n@i{;)t:
= 1B(a)8(a) = A(a). )

We now supplement the above deﬁniti@,;of “AzA’ by the
following rule: ' \ 4

(d). If %is a variable different fdm"%”, then g9 is K9,
and we assume E0-4, C0-2 KBk 98y Lhl, and T13 for arbi-
. wirwr.dBPaui it 8r glind
trary strings. In thléfwgy, b}il %['w.gﬁfrdg any number of variz-
bles, then Ax¥ is a word m whith z no longer oceurs. T30 still
holds, with the remark that ¥ (a)” means the result of substi~
tuting “a” for “z” in % Jeaving the other variables untouched.

In this way we c@ ‘eonstruct words like “Aery¥(z, y)",
“AeAyhzU(z, y, z)f’,\etc

T308. |RXg(E, yiab = 9A(a, b): DMz, 3, 2)abe =
.,?{(a, b, ¢), ete.

Ayllzyy = Mzlldglopgy = Azl Al ANyaryyl
T MAAK=IT = || Axzj A\l A| K aIneT
' = Al ANz ANl A| K 2T KT ]IAHAIKA”A)\:«:}AIK:{:MIIKI
= ANAIKANAN ANz Ada| K| K TR T
= IMNAIKA| 4|4 [& 4] AheRnza K 1K
= lANAIKA|A) AR A||A|K KK 1|K],

Of course, thig entity is equal to .
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It is uselul to note that T8 follows from T8a, T9 follows from
Toa, T10 follows from T11, and T12 follows from T13, ss is seen
from the above proofs. ' '

T31.

T32.

T33.

T34.

T35.

If “z" does not occur in the word %A, thenrzd = [K
Proof. If U is a single sign, then the conclusion follows
from parts (a) and (d) of the definition of “Az¥"".
If 9 is [BE, and the theorem is true for all words
shorter than ¥, then
e = B = [|[AxaBrab = A|KBKE,
= K|BE, by T10. o\

If “z” does nok occur in the word A, then h| Mz ===‘2I
Proof. az|flz = [AMzUhxz = AlKUT = .\Ql}by T8.

If 9, B, and € are words, then Mz A ABE= K| AEIBE
Proof. x}||4ABE = 1|A}\$[|Aﬁ552\§3
= A||Arzid DaBraC =AY A Az Are MaeBrC
= A||A||4| KAz AneBral

= A||ArsINzC)|ApeBrxS, by T12,
and Az|| A€|BE ﬁﬁmffﬁ?ﬁ@w@ygn
= AnAmma@lﬁwﬁm@.

If o and B are pigrds, then || KAB = A

Proof. Az||KAB = ||ANz|KMaB = AllAraEre ¥MneB
= AlMKE ANB = az ¥, by T9.

I a3 %o and @ = ArD, then M| UE = Az} BD.
PT(Q£~M}%IQ = Az¥na€ = AreBrD = M} BD.

T36\T}':%I and B are words, and “A = B follows from R,

O\

E1-4, C0-2, T8a, T9a, Ti1, and T13, then so does
iz = A8, .
Proof. Bach of T8a, --- , T13 is of the form “91, = B,
where z does not occur in 9, or B, . Then

Az, = K¥9, = K8, = Az%B, (T31). Thus the
desired conelusion holds for these four equations.

Now if %" and “B" are arbitrary words, and if,

in the proof that % = B, we replace each appli-

cation of B4 by T35, of C1 by T33, of C2 by T34,
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and of T8a, , T13, by the corresponding
equation of the form e, = ArB,”, then we
obtain a proof that Ae¥l = AxB,

Cororrary 36a. If “¥” and “ﬂi” are words and if “z" does
not occur in either, and if “|Ax = |Bz" follows from R,
, T'13, then so does “% = B,

For % = hz|¥z = Az/Bz = B, by T32 and T36.
These last two results show that E5 may be replaced hy TBﬂ
» T13 without any change in the theorems.

It is instructive to work out the proof of BI = T by this
method. In the above proof we first showed that Bfab = gb =
Iab for arbitrary entities ¢ and b, and then app‘hcd E5 twice.
Now we parallel the proof in accordance with'0'86. The follow-
ing steps should be eompared with the cng,le proof, beginning
with BI = A|KI. SV

We first prove that A|KIz = z by epplying the method of
T36 to the proof that A|K Tz Izy, Wc note that A[KIz =
Midley = al)|AKKIzy %E’r’w}ﬁlcﬁg suggests the following

Q!

steps:

AKIz = A]K[]AKK:.:: = AJ|A|K|AK|KKz (T10)
= A[lAﬂA [KAiKK{KKx {T10)
=, &IAIKK:::[]A KKz (T12)
= (T9).

We now app}j’* ﬁhe method of T36 to this proof to obtain the
result thatﬁi]KI = I, remembering that Az}|A|KTx = A|KI,
hy T32\

' 4|K1 = A|K|A|KTT : (T8)

>} = A|K|A|K||AKKI = A|K|A||A|KIAK|KKI (T10)
\V = A|K|A||A||A|KAIKK|KK] (T'10)
= A|K||A||A|KA|AIKK|A|KKT (T13)
= A|K}|AK|A|KKI (T9a}
= A||A||A|KA|KKIK|AIKKT (T10)
= AllA|KKIJAIK|A|KKT (T12)
=7 (T9).
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Of course, once we have found a proof by & direct application of -
T36, we may often construct a much simpler one, but in any case
736 shows one umiversally applicable method of dispensing
with 5. We now return to the free use of E5.

We can construct a sequence of entities which have a remark-
able analogy to the (non-negative) integers, and may, for our
present purposes, be identified with them. The idea behind this
correspondence is that the integer # may be considered as an op-
erator which, when applied to any other operator a, yields the <
n-th iterate of a. Thus [na is the operator which, when applied. o
an arbitrary entity b, yields the same result as a applied n, tinaes
to b, For example, L

2ab = alab,  3ab = dlalab, etc.\;‘T :

In particular, 1o must be the same as a; it is eprvenient to con-
sider Oa as the “‘operation” of not applying anyyoperator, so that
it leaves every entity b unchanged. Thig{éa}ls to the equations

Ogh = b AWV
1ab =§Mdﬁ}vfdbraulibl'ary.org.in

By E5, we have the follow;ipéf Squations:

0 = xgy= al = KI,

1 = xaalay = I,

2 =upylzlzy = ABI,

3 &= anylelizey = A||BAKZ, etc.

In general, tHe&aecessor of n (Le. n + 1), denoted by “S»’’, may
be identiﬁ\siﬁ}és ‘the operator such that '

\\\ : Snab = al|nab,
i-BQ’Sﬁa consists in applying @ » times and then applying a to the
\ Yasult, This leads us to the definition
8 = xoaaely|lzyz = A||BAK.

It is easy to cheek that 1 = 80,2 = S1, 3 = 82, ete. We may
now define N, the class of non-negative integers, a8 the common
part of all classes 9 such that 0 ig in % and if n is in IR, then Sn
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is in M, We intend N to be the class of all entities obtained by
operating with S on 0 a finite number of times, but must employ
some dodge to avoid the vicious circle of using the concept of
number in the definition of 0. }

. The elementary arithmetic operations are easy to define.
Thus the m-th iterate of the n-th iterate of the operator ¢ is
the (m X n)-th iterate of a, i.e.

(m X n)a = mina = Bmna,

80 that O\

m X n = Bmn, £\

Similarly, the m-th iterate of a applied after the wt}];i‘térate of a
yields the (m + n)-th iterate of g, j.e. s

(m + n)ab = mallnab,

&

80 that AN
(m + n) = Aayl|maz|lnzy = AllBBmn = A|Dmn.
Finally, O

e = (n X' PIEEY

n'a = (n X n¥)a = afr'a = n||2na = 3na, etc.,
which leads to the simp}e déﬁnition
o im 3 B
& n® = mn.
The entity mn ogeurring here is not to be confused with (m X n),
which is {| B,

We might also define an operator -+ such that <+ab = (¢ + b)

for all entifies ¢ and b, i.e.

+&NaMy(z + 1) = Nody||4|[BBey = A|KA|BB = BAD.

,..Then parentheses would be unnecessary, and + would be an
 éntity itself. The corresponding entity for multiplication is B,
and for exponentiation is 7. An alternative definition of addition
is diseussed in the exercises below.
We can now derive most of the important properties of inte-
gers. With the definitions just given, some of these properties
hold for all entities. We give some examples.
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T37. Ifa, b, and care in &, then (a X B) X ¢ = a X (b X ¢).
Proof. Let d be an arbitrary entity. Then
{{@ X b) X c)d = B||Babed = Babled = afblcd,
while
(a X (b X ¢))d = Ba||Bbed = a|[Bbed = albled.
The coneclusion follows by Es.

T38. If a, b, and ¢ are in €, then (a + By +e=a+ (d+¢).
Proof. Let d and e be arbitrary entities. Then ~
({a + B) + o)de = (a + bydllede = ad|bd]|cde,
while O\
(@ 4+ (b -+ ede = adl|(d + c)de = adl{{mi!l]cde.
Now apply E5. '

These theorems hold for all entities. The ne)(\t((‘)ne is more
characteristic of the members of N. QO
T39. Ifuisin N, then Sn =n + 1 = At n.
Proof. We note that Sa = 1 ¢ for all entities a, for if
b and ¢ are arbitrary’¢ntities then
Sabe = bljabc =wibijdlilerzalirapymbe.in
Let MM be the,_jélaés of all entities a such that
Se=a+ 1."1Then 0 is in M. For
80 = 1,and" (0 + 1)ab = Oal|lab = Iab = lab,
so thath80 = 0 + 1 = 1. K a is in I, then
S '%qi + 1, so that
it )=1+(Sa)=1+(a.+1)=(1+a)—1-1
o= (Sa) + 1,
which sh wfs;lhat Sa is in 0. Hence all members of i are in M,
which préves the theorem.
Ql@'ch has developed a system of logic with an apparently
q@ﬁ}pletely different approach. We take as primitive an infinite
L (hst of signs z, , 2, --- called variables, the stroke, and the
) symbol A. By a word we mean a string I ormed according to the
following rules:

(a) If % is a variable, then % is a word.
(b) If 9 and B are words, then |AB is a word.
(e} If 9 is a word and “z” is a variable, then 2 is & word.
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All oceurrences of a variable “z” in parts of a word % of the
form *“Ax¥,”, where 9, is a word, are called bound ; all other
occurrences of ‘=’ in ¥ are called free. The precise definitions of
occurrence, part, bound, and free occurrence, as given in 1113,
D17-19, are to be modified in the obvious way to apply to the
present object language. A word in the variables z, , - - - s Xy I8
one in which no other variable occurs free; all of these variables
do not necessarily oceur in the word. As before, we shall denots,
awordin®,, --- , 2, by some such symbol as Wy, -, )
If A(z) is a word in z, and B is a word, then (V)" shall denpte
the result of substituting “B” for “a” in all free oceurkences of
“c” in U(z), and similarly if % is & word in several frariables.

A relation — (read “produces’) between word&ds defined by
the following rules: o)

L. If ¥ is a word, and “z” is a variable whieh does not oecur
free in ¥, while “y’* does not occur at a.llx}n %, and if B is the
result of substituting “y” for “z” thretghout %, then % — B,

X

IL If Az, , -+, z.) is & word inthe variables Ty, -, T,
and B is 2 word, the‘u&ﬁ}%ﬂﬁuﬁﬁfa;'ﬁg%m AW, 2y, -+, z)

III. Under the hypotheses of II, A(B, x, , -+ , @) —
[Mlgl(xl y o, T8, < ’ y

IV. If ¥ — %, € isg.a Word, and “2” is a variable, then
|96 — 186, |6F — |6, and Ac¥ — A,

V. If the vari lg‘.‘."x” does notoccur in the word 9, then
M| Az — A and A5 Az|Uz.

If A and B ere’words, then ¥ is said to be convertible to B,
denoted by “¥ conv B”, if and only if there is & sequence of
words %>+ , %, such that Ais A, , Bis A, , and A, — A, ,
(€ =1‘\’:' y 1),

We tan define A and X as the following words:

\“\ YA for “exyhe||rzlyz’,
) and “K" for ‘“Napays.

It is a remarkable fact, first proved for sn analogous system
by Rosser, that if %(z, , 2,) and B(z: , x,) are words in x, and =, ,
and do not contain the symbol “A”, then A(4, K) conv B(4, K)
if and only if “%(A, K) = B(4, K} can be proved from our
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assumptions. The proof is fairly easy on the basis of T36 and
T36a. '

We shall illustrate this system by proving a few elementary
results on the basis of the definitions

I for Axz,
B for Axdyhzlzlyz,
and € for Azhyrzl||rey.

T40, AKK conv I. A
Proof. AKK conv Axhyhz||zelyzKK conv }\zHKz]Igz?".\
But ||Kz|Kz conv [Aadyzz|Kz conv z, S0 that
M2||Kz|Kz conv Azz conv Azx conv L& "

T41. BI conv I. S
Proof. BI conv [Axdyhzlziyzl col¥ aynz|I|yz. But
|f]yz conv [\exlyz conv |y 50 that
ayaz| Tz conv Melyz ‘coﬁ\'r Ayy conv Az conv .

T42. A|Kz|Ky conv Klzy:
Proof. A|Kz{Ky conv.XW]?ﬂ@?T%?rgéfxy conv
Mdzulzy. Busthudzy conv AzAyz conv K, by
rule I. Henee, by rule IV, udzulzy conv K|zy.

These examples stiondd suffice to illustrate the technique of
conversion. X\

The theorerm of Rosser, cited above, shows the essential equi-
valence of thé theories of Curry and Church. Church and Rosser
have also’groved a consistency theorem which shows that such
words &9 A and K are not convertible into each other. By the
cquivalence theorem, it follows that the system of Curry is also

'!Z\él,lisistent.
. On the basis of these resulis Chureh constructed, by the ad-
’ junction of another primitive notion, a system of logic whose
consistency could be proved and which, though inadequate for
extant mathematics, is undoubtedly adequate for all mathe-
~ matice acceptable to the intuitionists. The system of Church
escapes Godel’s theorem that logics are, in general, inadequate
for the proof of their own consistency just through its inadequacy



126

in another direction, pamely that no universal quantifier exists
in his system. There exist, indeed, better and better approxima-
tions to a universal quantifier, but it is impossible to express a
proposition of the form “for all 2, +++” within his object lan-
guage. On the other hand, Curry has made certain suggestions,
whose detailed development has not yet been published, but
which promise to be more adequate for mathematics as actuallys,
practiced. We can only give the merest sketch of these ideag in
thig vohime. ¢(\N

We take now as primitive notions a class & of objects ealled
entities, cerfain special entities 4,K,Q,T], D, and Pya binary
operation |, called application, and a subclass A0f ‘entities,
called érue. As before, we shall denote that ¢ isdn T by “Ha”.
The entity @ is to be an operator such that {ot\dn¥ entities a and
b, [{Qab is the proposition that ¢ equals b, Phe entity P is an
operator such that [Pa is the propositionthat ¢ is a proposition.
The operator D) is such that if g 20e ¥ are propositions, then
1{Dab is the proposition that if g, then b. A class is to be an
entity @ sach that ot certtain obeiizsobg job is the proposition
that b is & member of g, expréssed in our former languages by
b & a”. Finally, if q ig a class, then [ [« is the proposition that
for all z, az. ¢

In stating the assurptions and definitions it will be conven-

ient to use wordy ; & symbol A as before. The symbol A ean
be eliminated by(the definition on p. 117. '

AX
D7. “q & for “H{|Qab”.
R, D176,B1-4, C1-2, T8a, T9a, T11, T13, as before.
COM; K, @, [T, , and P are in G,
D& “a, +-- | bl-¢” means that if ta, ++- , and }b, then |-c.
(83 q, ||Qab b,
)DO. “B” for «[wgn,
L1. T]A, b, Hab.
L2. aHPa.
13. Pa, PbL|P(|D ab.
D10. “P,” for «||BP]]".
Dil. “p” for “|[[jQA4".

£
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Qi HBLTIiBIBPR.
Q2. H1liBP.Q.
Fi. a||Dabtb -
¥F2. If Hab forall b in G, then HI La.
F3. Pa, Pb, PcH|D||D ab]| DD be|[D ac.
F4. Pa, Pb[||D[ID]|D abas.
F5. Pa, Po HID af| Dba.
F6. Pall||D fa
D12, “~ for “Mgl|D zf” (e {IC D f)-
DIS. 5 for “Neng| [l Dlwzlye” (e BIBLIIIBAIB )
¥7. P2l Tales Ge HTIBIDIIoa). O
¥8. Pa, P HiDIE|Kab]|D al[]b-

< .

In the old notation the postulates F3-6 have kh;é‘forms

F3. Ife,b,andcarein B, thenfa D 6.3 HoeD ade.
F4. Tf aand b are in B, then }-a D b O a.

F5. If aand barein P, then fa 2\ D @

F6. Ifaisin P, thenlf D a. AV

ww 7. dbraulibrary.orgi
Now f is the proposition thatievery entity mbéquél To 4, s0

that f may be taken as a typical false proposition. It can easily
be shown that F1, L3, F$=Fb are an adequate set of postulates
for a Boolean propositienal logic. The assumptions L1, F2, F7
and F8 complete the hssumptions for the logie of propositional
functions as giv‘er\ﬁ L, (IfI3). Assumptions Q1 and Q2 say that
Qab and [ ]|Qd-are propositions for all entities ¢ and b. L2 says
that every tiue entity is & proposition. C3 says that if & = b
and @ is &' proposition, then so is b. Some of the above postulates
NV . o e
are superfluous, and @ may be defined satisfactorily in terms of
the'other primitives, but we shall not attempt to gain the utmost
-eeonomy. We have taken “P;” to mean the class of classes, 1.e. @
\Ms a class if and only if [ [a is a proposition.

A large part of mathematics can be derived from these
assumptions, especially if we adjoin some postulates ¢oncerning
class formation. There is reason to believe that these postulates
are consistent, although a proof would be rather difficult.

In the original formulations of Curry and Church they postu-
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laved the properties of implication and quantification in fyl
generality, ie. for a]l entities, with no restriction that these

in the sense of T30, and in which certain laws of the Proposiz=
tional logic hold for arbitrary entities, Russell’s paradox ariges.
We may formulate this result in the following manner, A\

T43. If, besides the above poshdateé, e assume that ||| D;a\cz and
1DalDabHD ab for all a and b in €, thénfd for al
din @, )

. L
Proof. We first construct an element w"ix} & such that
¢= 1D ad Let ¥ = |j¢ > B = |W|BN, and

@ = |RR. Thus we have e\

Nb=0:)db—‘=:)‘b'd}0ra..llbin@, :
Be = W|BN¢ = BNcc = Nlec for all ¢ in &,

RO Mw_dbraulitjlr}?'r‘é;".org.in
@ = RE'= NIRE = No = > aq,

Intuibiv{el% if d is a falge Proposition, then “ANp”
expregies-the falsity of b,andif ¢is a class, then
Re is%e Proposition that ¢ is not a member of e.
Thhs R is Precisely the clags which appears in

K Riissell’s paradox. We now obtgin successively

O“HID aa, HIS o] aa, 1> od, fa, and Hd,
A by C3 and FL

Thus under the conditions of T43 every entity is asserted,
\'vi'r}gich means that the system ig Inconsistent,



129

type, which appear to be adequate for mathematics, Curry has '
announced the possession of a proof of consistency. It is to he
hoped that he will publish the details of this work in the near
future.

He has pointed out that much of the formal development can
be simplified if one takes as a primitive the entity

F = xadyhz|| Z2|| Bye.

If ¢ and b are classes and ¢ is an arbitraxy operator, then Fobo

ig the proposition that if x is an arbitrary element of a, thén Jez

is in b, so that ¢ is a function on a to b. In terms of Fiwe'may
define %, ], and O by the equations - n 3 :
% = aengl|Fayl = Al|BAFIKIKLOS
Il = =E, \
and D = oyl ElK#|Ky = Al|AIRB|[BEK|KK.

It may be noted that combinatory, logics analyze the processes
of reasoning into such “atomdiodysttpsubiat.h preliniinary
development needed in order (0 arrive at “real mathematics”
is longer than with other apptoaches, bus the single steps make
much smaller demands on our intuition than is the case in other

systems. A

EXERCISES O\
Ex. 1. If “ﬂ—{: zy” denotes ¢ + ¥, || Pgy”’ denotes zy, and
M~z denotes —z, where T and y are numbers and
\"\ﬁhese are the usual algebraic operations, then interpret
A\ the following operators:
N (a). B+ WP

(b). 4 + ||BP| — 2.

(c). AP|WP.
(@. C||BB|iBB ++.
(e). C|\BB||BB + P.
Ex. 2. Using the notations of Ex. 1, construct operators
which, when applied to arbitrary numbers, yield the

following results:
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Ex. 4.
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{a).
(b).
(c).
{d).
{e).

{8).
(b).
(e).
{d).
(e).
.
{g)-
(h).
{i).

-
{k).

(m).
(n).

2 4+ 9y

& — i

2z — z°

Ty 4+ xz.

(z 4+ yXz + 2p).

Fliminate “A” {rom the following words:

[ = Azagz]l=| Ky

a« = xz||{|8|z0|=0. .

p = Azl|lrelKOL. o\“}'
B = rahynawwl| [ Kalytpwwle{pw. O

© = Az|{W|Bz|W|Bz, N

R = xaaylo|ifry.

» = Ohrngazl]|fzley|Selyz. o
A = 2adyll{pyl| BluwS]|ux0. '
7\353)\1’1 - lxh]xb” - fxlxg .’t\\i" .
)\x}\y?\zl]Wiy:tlzx ..\

Ayl Imyy 3 wlth nY's.
ALgALy * %0 MwBp - o

Axohz Iwww B ﬁulkbfﬁlx)’ oF8! n - Ty

Prove the followmg m three wa.ys, from R, E1-5,

Co-2, using TSa,, "9, T11, and T13 instead of ES,
and from I-V{p: 124:

(a).
(b).
(¢},
(d);

\ (f)
(®).
(h).
{).
@)-
(k).
.

(m).

(n).
{0).

Blap &Al|BalKb.
AKK—} KI.

AWA||BBabe = Aa}|Abe.
‘A[]BWab = A||Aabb.

AD¢ = DijdIa.

B0 = KO.

A||BBab = a.

AllBDab = D||Aab.
AljA}|A||BDabed = Al|AabllAed.
AlA[|BCabe = AljAach.
AllBTab = Aba.

BCCab = qb.

Bj{Babe = Bal|Bbe.

B|Ka = K|Ka.

BBK = BKK,
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{a).

(r).
{g).
Ex. 5. Using the notations of Ex. a(a, -
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B||Bab = B|Ba|Bb.
C||BBBK = BK.
W||B|Bab = Ba| Wb,
BA|A||BBa = B|Bl4deA.
, h), prove the

following:
{a}).
(b).

(c).

(d).
(e).

).

(&)
(h).

(®.

{-

(k).
1.

(m).

(n).

(0).

(P) .. >

A\

:‘\ vl
Q).
().

(s}.

NS
/PN X "':

\‘:

[¢b0 = a.
[ab|Sn = b.
If »is in N, then nalK0O = n.
p0 = 0. L\
If nis in N, then p|Sn = n. S\
6a = ¢|Oa. ’
Bagf0 = a.
If » is in 9, then Bagf|Sn = gn]fm
If § = Rag, then [ = Bagf, andY

fo = a, o\

fi8n = gn|fn, for a}Lﬂ. in N.

pan = (nfjualSnlan. S
If a0 = 0, then m\&&dbrauhbl ary.org.in
If g0 is in 9t but, tilﬁferent from 0, then pa® = pal.
Ifan = 0, thﬁnpcm——' n.
If an is in W but diferent from 0, then wan =
,uﬂ.lSﬂ...
If remannm%suchthatan = (), then pal is
the smallest such integer.
If ’there is an integer n > m such that an = 0,

N

» “then pam is the gmallest one.

Aal = pal.

Aa|8|Sn = m!SHAaISn

If the equation am = O has at least n solutions
in non-negative integers, then Aan is the n-th
solution in order of magnitude.

(t). 00 =1,8n0 = 0.
Ex. 6. Using the results of Ex. 5, give definitions of entities
satisfying the following conditions where m, n, ete. are

in N

(a)-

~mn=0ifm<n =mp =m — niim > n
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(b). Mmn = max {m, n).

{¢). Mmn = min (m, n).

(d). Amn = 1form = 7, Amn = 0 for m = n.
(). 10=1 18 = B|Snn. (n factorial).

(). <mn=0ifm > n, <mn=1im < n,
(8. +mn = the integral part of the fraction /N

where 1 = 0, \
(h). pmn = the remainder on division of m by m,
where n = 0.- R\,
@.  émn = 1if mis divisible by n, 0 if m is Aob divis-
ible by n. ' N
. =n =1ifnisa prime number, O3 7 is not a
prime nuinber., "‘\

(k}. wn = the n-th Prime numbegs
(D). ¥n = the integral par of y/m,
(m). ¥n = 1ifnigg perfect gquare, ¥n = 0 if 1 is not
a perfect square. . 2\
(n}. m = the number, of divisors of #.
(0}. on = whodhs BDEEY V& s of .
(). esnay = the stallest of the numbers
e ranges through the values
1,2 ..4
(@). ez #%e smallest of the numbers ey for
Y =Q\; 2, .- s
(r). &= the smallest. ¢ 2 1 such that the equation
AN = 4"+ 2" has g solution in positive integers
2y and z, if such exist,
(). ¢. = the Smailest integer n > 3 such that the
KN\ equation #* = 4”4 " has s solution in positive
™ Integers 2, y, 2, if such n's exist,
(). yn = the smallest of the numbers (7m) 4+ (r(n 4+

7 —m)) form = 2,3, ,n
(). v = the first 5 2 2 such that yn > 4, if such
exist,

(V). van = the number of integers m such that
2<m=<nand ym> 4
W) ~0 =1, ~1 =g,
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—_
i

(x). VOO =0, V0L =VIl= Vil =
(y). A00 = AOL = Al0=0, All
(). DO0=D201=Dll=1 DI0=

|l
&=

SECTION 5 THE DEVELOFPMENT OF MATHE-
MATICSE WITHIN AN OBJECT LANGUAGE

Woe shall now sketch the formalization of mathematics within ~

a language of the sort constructed in section 3. To fix the ideas;
everything will be carried out in Ls, although similar develop:
ments are possible for the others except L, . We shall make frée
use of the results of section 2, all of which can be derived in Ls ,
with trivial modifications in the statements and ‘gotations.

It will be useful, however, to state and prové\some of the
results again for Ly . We shall adopt the mnéonic device of
using uun’ uwn’ “.’B”, uyn, 657 fop variables}‘fp”, ”Q‘”, “1"”, and
“g for sentences, and “a’?, “87, “y,.t6” for terms.

It will be convenient to begin with\the following definitions:

Di1. A string of the form “(ﬁgw'glbm%hg'aﬁy;%é?e pisa
sentence is called z-bound.

D2. The (n + 1)-tuple @, -+, %, p), where the z's are
variables and{p\is a sentence, is said to be adjusiad to
(r, -+ -qa)df fornos, 1 < i < m, is there a variable

with a f.re%occurrence in &, such that thereisa y-bound
partr€het p and a free occurrence of 2 in C.
A .

The imjpbrtance of (2, , *** , T , P) being adjusted to
(ay , ;\\;.}E&n) is that when we form Sb{z1, - ==, %, pYla, -,
o) o do not wish free occurrences of variables in the o’s to
hieeome bound after the cubstitution. In this terminology FVII

C \ean be stated more simply:
FVIL If p is a sentence and z and y are vatiables, and if
{x, p) is adjusted o %, then
FHa)p..D. Sblx, pi@W).
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We can now prove some useful analogues in I, to T3.2.1b and
T3.2.1c. : :

T1. If (x, p) is adjusied to y, and g 1s Sbiz, p} (1) and ¥ does not
occur free in p, then Fap .=, g.
Proof. By FVII, F@p D, g

By FII, Ha)p .D,. . ,
Hemee  [(z)p .. (y)q. (FVI, FRON
By D2, (y, ¢} is adjusted to z, and pis Sbiy, ¢} @),
and z does not ocour free in ¢- By symmetsy, we
have ' N

Fode O @p. O
The conclusion follows by T2.2 4% FL.

This shows that “z” is a dummy symbol ah“(z)p”, e, 4y
may be replaced throughout by any other a’{h}ia.ble ¥, which doeg
10t oceur free in p and such that (, p)igadjusted to y, and the
result will be equivalent to {x)p. Thtig¥in a definition where a
variable bound by a universal quantifier appears in the defi-
niens, it may be replﬁ.gedciweﬂmﬁmbep%i'i“able satisfying these
conditions without affecting. the notion defined, and therefore
does not have to be indicated explicitly in the notation for that
notion. These remarks wilkbe used from now on without explicit
mention. For exam: Q“,.D&IQ m#y be written as follows:

D3. (« C8) Xor EAeeca)D e BN,
and “‘z" may bé-teplaced by any variable which dees not oceur
in e or § Witkout affecting the result ag far as equivalence is
N _

We‘xﬁ\o“; define identity as follows:
. D2 (o = B) for GCa=,, < 8.

\/In such definitions as D3 and D4 it is simplest to adopt the
convention that z is chogen a8 a variable which does not agceur
n & or 8, and analogously in gl similar cages,

T2‘ If ? e, and Y are as n T]_, then I—x = P =y o qQ.
Proof. tm)w € u.=.p) = WwEu.=.q). (11
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Hence H{Ju) : z € v A (& € v .=. p)
c=w (W :z2 € u AN @y Cu.=.9by
T2.2.37, FII, T3.2.11, and FI. The conclusion
follows by FX, T2.2.28, FII, and D4.

The comments to T1 apply also to T2, We shall use these
observations from now on without explicit mention.
Postulate FVIII may be written in the following form:

FVIL e =y D.za€Cuy & w 'S

O\
The following theorems are almost trivial. - O )
T3. Hz).x = 2. O3

T4 Ha)(y) sz =y .=y = % LV

T5. H2) (@ o =y Ay = 2:0: 7 =2

T6. L)) ()i o = g :D:2 € 2 .2 WG 2.

T7. He) ) () o = y D12 €5 .= DE Y

T8. |p =.¢.0.(@ 3p) = (z DY

By repeated application of _PéT8bmwelidanr phog.ibhat if
Fz =y, the “a”’ may be replaged by “y” in any free occurrence
of “z”’ without changing th& result with respect to equivalence
or identity, according &$\the substitution is performed on &
sentence or a term. Tnvact, if p and ¢ are sentences §0 related,
and a and § are térms so related, then

Q" te=9y .D.p=¢
O famyDla=s
This is\’t"k?e principle of substitution of equals for equals.
Itds convenient to introduce the null class:
o»\Z;\j—j5. A for =z 3 N(Q: = x)_

J T Hx) ~ (€A
Proof. [y C A :=:. (A2 g2 A

@z = ~(z = x)). (FX).
FHa)e €z = ~(x = 1)
D.yCe=~y =9 (FVIL)

D). ~(y € 2) (T3, T2.2.21, T2.2.15,
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T2.2.7), and therefore '

b~y € ) A @z € 2z = ~@& = o).

(D2.2.2, T2.2.5, T2.2.12). Hence

Ho ~ (0 €2 A @)z € 2 = ~ = 1))
(FII), and

F~(32) 1y € 2 A @ € 2= ~E = )
(D10, T2.2.5), so that A~
F~(y € 4). (T2.2.21, KB,

The notation of the second and third steps of this proof indiedites
that the eonchysion of step (2) implies the conclusion ofstep (3,
50 that, by T2.2.8, the hypothesis of step (2) alsoimgplies the
conclusion of step (3). , \

AN
T10. If p, q, z, and y are as in 11, and 2 ispapiable which does
ROt occur in either p or q, then O

P\
HEZ)_(S)(?»'Ez = p) :p@yEz Dp.=.q

This shows that if the pro})ér.;y expressed by p corre-
sponds o a class, then 03 5 1 Fhat class.

Proof. [(x)( gdfléug?r@f@ =g (FVII}

N iy €z @ E 2z = p)

A =g (Ex. 2.2.1g).

Hencgf}—}‘}lz)(a:)(x €z=p) 0. yezSDp
= R}g)g (FII, T3.3.11)-

Now it ig tﬁv@ati;hat F(1z2)¢ .=, g, for
ANX

2 HRED 9 D (3.0, (T3.3.9),

OV d F&E@ D) D g (2)q (FVI),

_ ~§ ' 21 D (] g (T3.3.7).
N ,Q\i(:é.pply T2.2.1 and FII.

&“\.

. CoroLLary T104. ) (w Cz=p) D.z= (z 2 p).
Til. If 2, 4, 2, p, and q are as in, T10, then
by € x Dp:DigA ()@)€ z.=, p).
Proaf.FyExE)p.::):.(az).yEz :
A @& e =, ) (FX).
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Butly Ez ARz S 2z=2p)

Ty Ez A yEr =g (FVIID)
D¢ - (Ex. 22.1)

AlsoH(32) iy E2 A @) E2.=p)
G (e Ez =)

(T2.2.18, T3.2.8a). ,
The conclusion is now obvious. .
¢\
CororLary Tlla. F~(32)(x)(x € z .=. p} O

D) ~y €23 p)
Fr(12)@)E E2.=.0) 0
D.xDp= A N
Proof. The first part is an obvious consequence of the
theorem. To prove the rest, wehoie that
La(yExDp) Dy EpDp=.~ =9
AN\ (FX)
\ywwd braulilEagymdin (T9).

Thus if the property express&bby p does not correspond to 2
class, then # O p is the nullglass. Hence if z S p has any mem-
bers at all, then it is thelass of all # such that p. In particular,
it pis stratified, then it automatically corresponds to a class,
by FIX (and therefare y € # S p if and only if ¢, by T10), and
2D pis this class.

We can now<define the operations of Boolean algebra:

D6. Vdorz D (& = o). .

D%Q:L&')ﬁforz S@EEaVach)

RENaNBforzDEEaAz€ B.
N, of forz D ~(x € a).

A It is easy to show that classes form a Boolean algebra with
respect to these operations, so that all the results of Chapter 1
hold in L, . _ .

We shall now explain the Wiener-Kuratowski method of
developing the theory of polyadie propo 'tional~funr,:t.10ns ‘.irolfn
the theory of elasses. To fix the ideas let us consider diadic
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funetions, or what comes to the same thing, binary relations,

Suppose that we are able to deﬁne a notion of ordered par so
that '

o He, i) = u0) s=io = u g g = o,

i.e. two ordered pairs are the same if and only if they consigt
of the same elements in the same order. Then to each relation’\g
We can associate the class of gl ordered pairs (z, v} suckl“that

ny H \

TUD (3, ) 2Ry Ay = (2, y)gz’,}‘l.

In this way each relation corresponds to a uniquély determined
class of ordered pairs, and conversely if z is g elass of ordered

bairs, then the sentence “&, ¥) € 2" exprosses a relation be-

5

“ordered pair”. Thig will be accompliched ag soon as we have
construeted a notioy “Lx, satigfying (1). Its exact nature is
immaterial for mathemdticall w0587 g leads us to

DI0. () fory 3 (o =gy,
D11 {a, 8) for (el o (e \J (:8)).

Thus «z is the “unit plagg” of z, the class whoge only member
is 2. And (g, y)‘iéx\rhe class whose only members are i and

@ \J . It is nofy a8y 0 prove (1). We can therefore define the
relation expresséd by a given sentence:

D12.'33;:,\3" pforz 3 ((Fz, p)z = (e, ¥ A p), where zis a
,§~ "variable not oceurring in p.

J6us easy to geo that if p is stratified and if the free oceur-
~Jences of z and ¥ 0 p (if there he any at all} have the same level

S the stratification, then *( 3z, Y) 12 ={z,y) A p” is stratified,
80 that

@) HIEeecqy =LAy e = (g, ) A p).

If (2) doesnot hold, then @y Dp) = A Ttis also easy to prove
the following analogue of TYQ, :
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Ti2. If (z,y, p} s adjusted to (t., ), and if ¢ =
Sbix, y, pl (@, y) and if nesther x, nor Y, occurs freein
p, then F2) e € w =2 (Ax, ) 12={z, ) A D)

iU =3y D P

We shall usually use capital Latin letters B, S, T, efe., for
relations.

D12, “(aRB)” for “({a, B) € R).”
The converse of the relation R is defined thus: RAY.

D13. R for zy S (yRz).

Many important concepts can be defined in terms of telations.
Thus a funetion is a relation B such that to eathz there is ab
most one y such that zRy. The x’s for which there is a y form the
domain of the funetion. To each # in the domain of the function
there is a unique y such that zRy. This yis the value of the func-

tion for the argument z. In the language L, we have
wwiy’ dbraulibrary.org.in

D4 Rel = B D (2 € B Da(5 9 2 = & o)

D15. Fet = B D (R € RebveA i 2Ry A 2Rz :Dopsi Y = 2)-

D16. Cor = B B (B& Fet A R € Fot).

Thus a relation ,ié\a} class of ordered pairs. A function is a
relation R such that if xRy and zRe, then y = 2. And a corre-
spondence is what we usually call a one-to-one correspondence.

An examp].qis\ihe relation between a man x and his partner y at
a dance,‘{si avhich there are no wallflowers.

DIH D(R) = = D ((3n)aRy).
..\fI,)‘is. a(R) = D(R).

If R is a function, then D(R) is its domain and {(R) is its
range, i.e. the class of values taken on by the function. We shall
often denote functions by the letters f, g, & & ¥ F, G, H, ete.

D19. fa) =2 D (Fy) wefy A2 E Y-
The notation here will be used principally in the case where
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J ig a function, Then if « € D(f), there is only one y, anyway,
such that afy. In the cases of interest to us, y will be a class, and
will therefore be determined by its members. In this case f{a)
will bave the game members, so that |f(e) = y. In other cases
f(a) also has an interesting interpretation, but we shall not
digress now to discuss it.

It is more to the point to meditate on the proverbial procegss
of counting noses. In order to understand more clearly the
phllosophy behind nose counting let R, \Y)

E =gy 3 (visanose of y .A, y is human and net.s freak).

Then R is a correspondence, since ne nose belangs to different
huraans, and a human non-freak has exactly efie'nose. From this
we conclude that we ean determine the nuniber of members in &
class of normal humans by counting their noses. If “N cla)”’
denotes the number of merpbers of oc,\then

Nefa) = Nelx 2 (( Ely} Ry Ay € o))

for any class o« of mrmahhumhn%l YN8 1hds us to a better idea
of the notion of number, Hor we can now determine when two
classes have the same~pumber of members without counting
them, simply by lookmg {or a correspondence between their
members. Two ¢l&sses for which there emsts such a correspon-
dence will be sailed similar.

D20. snm—:sy D(AR):RECorADR) =2z AUR) =

Thus, ‘i:n?m ¥’ will mean that there is 2 correspondence between
theiuembers of z and the members of y whereby to each z in =
there corresponds a unique % in y and conversely. As nose count-
.. (\ing teaches us, such a correspondence exists if and only if z and
O« y have the same number of members.

We have thus been able to define the relation holding between
two classes which have the same number of members, without
using in the definition the concept of number. This was ac-
complished in a manner which may a$ first sight seem round-
about, but which really analyzes the concept of the equality of
numbers into simpler notions. The process of counting can be
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explained now as follows. We have a standard class consisting
of the words “one”, “two”, ete. To determine the number of
meinbers of an arbitrary class a we pair off the members of «
with these words until the ¢lass « is exhausted. The last number-
word used in constructing this correspondence is the name of
the number of members of a. '

Clearly we may use any class as & gtandard provided only
that it has enough members for our purposes and that its mem-
bers can be distinguished from each other. In particular, in our,
language I, we can eonstruct many classes which could serye. N
equally well as standard. Its members (or rather the cérre-
sponding strings in L;) may be used as number-names just as
“one”, “two”, - - » , in ordinary discourse. One simple method is
the following: ' *)

\/

D21. Ne{a) for 2 D (o sm ). N\
D22. Neforz 2 ((3y) .« = Nely)- \

Thus we define the number of membets'of « as the class of all
classes similar to «, and a (cardinzpmtbbenlssrany o hich is
the number of members of some elass y. These definitions yicld
coneepis which are very easy.ovwork with in the language L;.

We now show how thefinile numbers may be distinguished
from the rest. One of the'characteristic properties of the finite
numbers, or as we may. also call them, the (non-negative) inte-
gers, is that expressed by the principle of mathematical induc-
tion, It burnssodb that this is very convenient to use ss the
definition of/the class of integers. For this we need the special
integersO(and 1 and the concept of addition. (We could also
define ghe successor of an integet directly, but it is more natural
to IJ\I'oceed in the following way).

“\D23. 0 for Nc(A).
D24. 1 forz 3 ((39) & = &)
D25, 4 + v for z D (39, 2) : Ne(w) = v .A. Ne@) =
A.yNz=A . A.zsm (a2

D2%. Finforz S 0 Cy.A.2Ey .+ NEY
I:)y: X E y)'
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Thus 0 is the number of members of the null class, and 1 is the
number of members of v for any @ If 4 and v are cardinal
numbers, and ¥ and 2 are classes with no common members such
that ¥ has u members and z has » members, then © + » is the
number of members of ¥ \/ z. A number z is fintte if and only i
it belongs to every class ¥ which contains 0 and which contains
z + 1 whenever it contains z.

We can now deseribe one of the intuitively valid arguments,
which cannot be formalized in L; . It may very well happepsthat

£ \

(1) i'Sb {.’.t!, p}({)): }“Sb{.’ﬂ, p} (1)1 }-Sb{;l‘.‘, P}(l + 1‘)3’\:\' =
are all provable without ' N

@) e ePnD.p N
being provable in L. . For example,

N
HO 5% A, FI % 4, 1—1-1-\4;&1;

are all provable in L; , but there i #§ »0 known proof that
3) o PR TEBTSTY £ 1R,

and it is very unlikely tha¥3) is provable at all in I, . In other

wordg, we may be able/te prove that each particular integer has

a certain property,,an;\l yet be unable to prove the sentence ex-
pressing the pr bsition that all integers have this property.

Rosser has proposed to adjoin to L the rule FQ. If p is ¢ sen-

tence and if S8z, p}(0), HSbiz, p}(1), FSbiz, P} + 1), -+

then L-ﬂ: \Fin 3, p. I there should be an inconsistency in the

lap 1 thus ob{ained, then we should probably reject Ly as

unm\ ptable intuitively. In the paper previously eited Rosser

: reports on his vain atterapts to prove L, inconsistent. _

~C “\ “We have now shown how many basic mathematical concepts

) can be defined in L, , and have indicated briefly how their most

important properties may be proved. Of course, our treatment

was, of necessity, very sketchy. We have contented ourselves

with these brief indications paytly because of limitations of space,

but mainly because we wish to emphasize the main tendency of

modern work on logie, namely the study of the strueture of a



143

logical system as a whole, rather than the detailed development
within the system. The latter is, nevertheless, necessary and
important when one is either inferested in the adequacy of the
system or in the applications of the system.

EXERCISES

Ex. 1. Prove the following:

{a).

(b}.

{c).

(d).

(e).
{f).
().

(h).

().
(-
(k).
(0.

(m).
. {n).

(1@ Es =@ ~MEED A
w € o). e
laMB=gMNa O
FaN@ANy=aN BNy
FaMp =A=aCpB

0"¢
\

laNg=a=aCB O
Fa Mo = . \ \
T3-T8 above. PN

He, ) = (0, 0) =0 =4 dY =v

fe €z Ay €2 D 2=

!—93 =y 3 (yEw) Wl s:dbraulibrary.org.in

I‘R R. "7.;

I—ﬁva(y)(yEanEy)/\ZEa D

8 Ce

F(z)(za"m\DﬁCZJDﬂCzB(y)(yEaD
z € BN

H=x9(3y)(yea/\x€y)/\

.3\6 .2

(o)\Hz)(z EadzCVD

N
QA
~O° .

V (s).

Wed (IpwEenzeEnCY

ba M B = A D Ne(a\JB) = Ne(a) + Ne(B).
FO = A.

F1 £ A.
H&ENC/\TL#A/\?&?—‘-NC(V) O

n+ 17 A

Ex. 2. Give suitable definitions for the following:

(8).

The product of two cardinal numbers. (Hint:
how many ordered pairs (%, y) are there with
rCaandyELY
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(b). The class of functions with a given domain and a,,
given range. -

(¢). The relation “less than” between cardinal pum- -
bers.

{d). 'The class of equivalence relations.

{e). 'The class of transitive relations.

{f). The class of even integers.

(2). The relation between « and B which holds if and™
only if {a, R) is an ordered system. \

(h). The class of sum ideals in the algebra of classes

SECTION ¢ THE PARADOXES

The restrictions on intuitive reasoning whishisire embodied in
the languages constructed in section 3 wereiitroduced in order
to avoid the paradoxes into which our nm\'e intuition leads us.
The simplest of these paradoxes, namély Russell’s; hag already
been discussed. We shall now deseribe some of the others.

One of the oldest is the so-called Epimenides para.dox Epi-
menides, the Cretanagpgqhsp&ﬂg,&m&s always lie.”” It is sup-
. posed to be knowi that alhather statements by Cretans are lies.
Now if this statement x&true, then the Cretan Epimenides spoke
' the truth for once, and® Cretans do not always lie, so that the
statement is real \faﬂse If, on the other hand, this statement is
false, then oll)statements made by Cretans are false, so that
Epimenides; was ‘speaking the truth, after all.

A mmgle,r buf less picturesque, form of this paradox is

\: “y““The sentence guoted on this line is false.”

Th]b sentence is so framed as to refer to itgelf. That is, the phrase

) :~“the sentence quoted on this line” is s name of the whole sen-

) “tence. Now if it is true, then it is false, and conversely.

It is not obvious how this can be formulated in any of the
languages conﬁtructed here, What is needed is a sentence p of
the form “~¢”, where ‘¢’ is also a name of p. In combinatory
logic such a phenomenon seems possible if we adioin a 1.1(383451‘”3l
operator ~. For if p is W|{B ~ |W]B~, then we bave

p =B ~WB~WB~ = ~|[W|B~ (W|B~ = ~p.
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The way out of the difficulty is to deny that “p” is a sentence,
ie. that p is a proposition. As we have mentioned before, in
Curry’s original system he postulated the properties of implica~
tion for all entities withoub restriction, so that the paradox did
arise in his system. Inm such s language as L; we can formulate
something similar to this paradox, using s method due to Gidel.
We can construct a sentenee p whose intuitive meaning is
“~p is provable in L,”. If L, is consistent, then the reasoning of
this paradox shows that neither |-p nor b~p in L; . Thus the

Epimenides paradox shows that if L is consistent, then there i's‘\‘ .
an undecidable sentence in L , 50 that Ly is not categorical: The

same argument holds for a large class of languages adequate for
arithmetic, : ~
The theory of types, as originally formulated By Russell,

explains this paradox in another way. In his original version

types were assigned to sentences as well as terms: ‘A proposition
about a sentence of one type is itself expressed by a sentence of
the next higher type. Since every sentfmee has & degfni:]f tyve,
the sentence “ “p” is a false sentencel J8 4] ce of the next
higher type than *“p” and thereforé* gﬁ’ﬁ%&t e & Rame of the
proposition here expressed. Hepge's sentence of the form “ am
now making a false statemext of type n” is itself a false sentence
of type n + 1, since no stabement of type # is being asserted.

We have already digcussed Russell’s paradox. We enly men-
tion here that an tially similar, but correct, argument 18
used by Cantor te'prove that the class of subelasses of a given
class o has mof®hembers than the clags of all subclasses of e of
the form {‘@3>:"where ¢ € o Intuitively, the number of' s{uch
subclassed I equal to the number of méembers of a. Propositions
amlug".;‘ls to this ean be proved in systems of thc_: Zel_'n'ﬂelo type.
In,'and similar systems a gentence expressing mtlllt“’el)f that
Ri5 the relation between x and y such that 2By =2 € yisnot
stratified, and does not define a relation by FIX.

Richard’s paradox arises on © idering the names of the
integers in the English Ianguage. “The least integer not name-
able in English in less than thirfeen wo » ig itself the name of
a definite integer, and is a name consisting of twelve .w_ords. In
consistent; languages which are adequate for grithmetic one can

Q)
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formulate sentences whose intuitive meaning is Just this. This
leads, however, not to contradiction but to a theorem of the
Gédel type on undecidable sentences. In the systems originally
propesed by Church and Curry the freedom of expression was so
great that it allowed a paradox analogous to Richard’s,

The paradox of Burali-Forti concerns ordinal numbers, and ig
beyond the scope of this book.

We observe that when a logieal system has too weak regbrics
tions on the meang of expression or proof, there is always danger
that the paradoxes of intuitive reasoning may creep in.(Ou)the
other hand, the reasoning in each of these paradoxes dontains a
kemnel of truth, and when performed within the frame of a suit-
able and precisely formulated language, leads?td results of
fundamental importance, ~N

EXERCISES \\\
Ex. 1. Prove in I, that F~ 308 Re = ~ WEy)). Re-
late this to Russell’ _
Ix. 2, ShO_W th g:ﬁww.lé%l_aulsltpt%l: -org.in

naive mtyition leads to a paradoxical situa-
tion on considerafion of the relation R which holds
between the relations § and T when and only when S
does not ha,}{e'\‘the relation S to 7. How is this paradox
avoided in {)and in L, ? Show how this paradox eould
be formdlated in combinatory logic if a negation op-
erator(is adjoined.
AS

o
SECTION'T THE AXIOM or cHojcg

Zgﬁnéio, In 1904, proposed as an axiom a principle which has

ledtbo one of the most hotly contested controversies in the his-

that for each o in B, the class o /M 4 hag exactly one member.
This says, intuitively, that the class v chooses one element out
of each member « of the class 8. We remark that Zermelo was, t0
some extent, anticipated by Peano in 1890 and Levi in 1902.
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This principle had been used implicitly before Zermelo and has
often been used without explicit mention since. Many objections
to it have been raised by distinguished mathematicians and
philosophers. The difficulty is that the existence of a class v is
postulated without any method for constructing such a class.
There are many who deny that an object can meaningfully be
said to exist unless a method is given for constructing it.

The underlying reasons for the controversy seem to be psycha<
logical rather than logical. Those who accept the axiom~of
choice are, in general, pragmatists or idealists (in the tecknical
philosophical sense). The former aceept it because it worls, ie.
because we can draw so many useful and interesting conse-
guences from it, and also because many of these donsequences
are obtainable without it. The idealists acceptib because they
are willing to conceive of something as exigting even though they
can’t lay their hands on it or see it or otherwise ascertain just
what it is. Sometimes the idealist apptoach smacks of theology
and metaphysics. O

Those who oppose the axiom @R ¢hoice are usually empiriecists
or realists or members of sgmé%gs iﬁs‘ o ey soh@dls. They
are like the man from Texas, who doesn’t believe that some-
thing exists unless yox\’put it in his hand. Obviously the intui-
tionists are strong oppbnents of the axiom of choice. Often these
opponents profegs\l\ot to understand the very meaning of exis-
tence without-éxplicit construction.

Formerly'ihe argument has often been voiced that there was
danger of Arriving at & contradiction by means of the axiom of
choigs.\Since, however, Fraenkel has shown that if such lan-
guage} ag L, , Ly , and L, are consistent, then they remain con~

_istent if either the axiom of choice or its negation Is postulated,

Nt on

siich arguments have lost their plausibility. It is to be observed
that the axiom of choice is convineing at least to the extent that
its opponents do not try to find counter-examples to results
proved with its help. Nevertheless, some of its consequences are
80 amazing that they seem automatically to arouse distrust.
There are some who feel that Fraenkel’s result is irrelevant.
They say, “So what! It may very well happen that a given
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broposition doesn’t lead to contradiction in spite of its being
false. The axiom of choice is true or false in an absolute sense and
- this may be determined by examining the real world (or some-
times, the absolute laws of logic).” (This argument has some
welght since, as is shown in Chapter IV, we may adj oin, without
destroying consistency, to a language of a very general type a
postulate which we can prove to be false by an argument outm
side the system. See also Gédel [XIIT]116). As we have seen bex
fore, the very existence of controversies over the f oundatidn®,of
logic shows that our intuitions differ greatly from pétson’ to
person, and make it extremely doubtful that there are’any abso-
- lute laws of thought. A
It may be useful to list here some of the ndost interesting
propositions equivalent to the axiom of choice.(geé the comments
which follow): (We use here L; as a shqd:hand for ordinary
language.) L
(1) There exists a, funetion 5 sucli ‘tha
F{(\?& S 1%5%)‘0.1;%‘% *
(2) If gisa class of non-empty classes, then there is a function
f whose domain is 8 suchuthat Ff(a) € o for all o € 8.
3) Haisa non—emp:ty class, then there is a relation B such
that \\
(). € a -y ~(xRz).
(b). 2By AYRz :D, , ,: zRe.
(0. 2, & D, ,. 2By v 1 = ¥ V yRx.
(‘D-%g’ﬂ Ay # A D, (32) 2 Sy A,
KN ¥&erv Doz =y v aRy.

A4 If o and 8 are arbitrary classes, then efther o is similar to
{“asabclass of § or 8is similar to a subclass of «. (p. 140, D3.5.20).
(5). If « is a class, and ~(Ne(a) € Fin), and if 8 is the class
of all ordered pairs {x, y) where z < 4 A ¥ € a, then 8 is
similar 0 ¢,
{6). If R is a relation satisfying (3b) above, and if to every
:lela,tion 8 satisfying (3b) and (3¢) with ¢ = D(8) U A(8) and
50
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(e). | *Sy Da.x8y
there is an  such that |- ¥Sz D,,.28%, then there is a % such that

Fu € D(R) \J A(R).A 4Bz D.zRu.
(7). Let 8 be a class of classes such that
Lz & f.: =y Cz A Nefy) € Fin. O,4 E 8.

Then if « is any class, one of whose subclasses belongs to S
there is & subelass & of v such that 5 € 8 and such that 8§ C 3C
Y. A& € f: Dat = B WA/

Proposition (1) means that there is a function f which fo‘each
clase @ assigns an object f(a) such that f(o) € « if.Andjonly if
everything is in a. We may think of f{e) as a tesh ease so that
we can find out whether a = V simply by testing whether f(a)
is in «. For example, some political observers, mostly Repub-
licans, consider Mr. Truman such a test'\' ase when it comes to
understanding political questions. Thus, according to these
observers, if Truman can understand-a given political question,
then anyone can. The axiom of pﬂéit?e ithplidslthatywe gan always
find a test case. SN

Proposition (2) says thith given any class 8 of non-empty
classes, then there is g{unction f which picks a member out of
each member e of 8:\) :

Conditions 3&3&&39@1 that the members of « are ordered by
the relation E.ina serics. This becomes clearer if we think of
“xRy” as meaning ‘‘z precedes y'". Condition (3d) signifies that
every nonlempty subclass v of & has & first member in this
orderine 1f 3a-34 are satisfied then we usually say that the
clags '\ is well ordered by R. The axiom of choice implies that
every class can be well ordered.

{\VYIi o and @ are classes and e is similar to a aubelags of 8, then
we should say that Ne(e) < N ¢(8). According to proposition {4),
and therefore according to the axiom of choice, any two eardinal
numbers are comparable in size. This ean, of course, be proved
without the axiom of choice in the case of finite cardinals.

If « is a finite class, then the mumber of ordered pairs of the
form (z, y), where z and » are in a, is equal to n’, where
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n = Ne(o). If ais an arbitrary elass and p = Ne(a), it is natural
to define 4 as the number of these ordered pairs (x, y), where
x and ¥ are in . The axiom of choice is equivalent to proposition
(5), which states that if x is not finite, then p* = u. If « is the
class of positive integers, then the similarity can be proved by
constructing the required correspondence explicitly. If K is the
relation such that .

KR(m, %) if and only it = Tbn = Bmtn = D) Gy

then R is & correspondence between o and the closg ok ordered
palrs of positive integers; the pakrs correspondmg 60 1 2,3,4,5
- are

(l 1}1 <1r 2): (21 1)) (1: 3); {,2)\2 y Tt

respectively. \

Propoesition (6} is what we ealled\ Zorn’s temma on p. 21.
(It was actually discovered mdependently by R. L. Moore and
Kuratowski in 1923. Zom re gredit in 1985, and shortly
after Teichmitlem Ry yg"ém “The name “Zorn’s lemma'’ was
apparently coined by Bourbakl in ignoranee of the litersture,
but became current because of the important applications whieh
Bourbaki made o bhls ‘result).

A class § of cidases 18 said to be of findte characier when g class @
belongs to g 1f and only if every finite subeclass of z belongs to 8.
By propo&tlon (7}, if B is of finite character, then every class v,
one of wlw\se subelasses belongs to 8, contains a maximal sub-
class i\'beiongmg to 8, i.e. no other subclass of v contains & and
belongs to f.

¢\ Tn many applications, propositions (3), (6), and (7) are more
&lrectly useful than the axiom of choice itself.

Among the more astounding eonsequertces of the axiom of
choice is the theorem of Banach and Tarski (later refined by
Robinson) that a sphere of radtus 1 can be decomposed into 5
parts which can be put fogether again in such a way as to form
two spheres of radius 1,

The axiom of choice iy often used so casually that one often
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does not realize how much it pervades the most common reason-
ing processes in mathematical analysis. Whenever, in speaking
of an infinite class «, we say, “Let =, , T2 , %5 , - - - be a sequence
of distinet members of «'', we are using the axiom of choice in
the form of proposition (2). For let 8 be the elass of non-erapty
subelasses of @, and let f be a function whose existence is asserted
in (2). Then x, , %, , - - - are obtained by the construction

T, = f(a)s Xy = f(a - wl)r xy = f(d S w‘l)! ete.,

and the assumption that o is infinite implies that the pmée\s“s\
doesn’t stop. The assumption that we can choose a sequerce of
distinet members of « is equivalent to the existence.'of such a
funetion f. R4

It is for this reason, that the axiom of choicgds so useful, and
simplifies so much of mathematics, that opponénts of this axiom,
when not writing about the foundationg\o’ﬁ}nathematics, often
make free use of it. NV

It seems surprising, after all this, conttroversy, that there has
been no systematic study of tl}e;v:éﬁnsdmennqgﬂ—@fydﬂlgﬁng the
axiom of choice, beyond some work on the consistency and inde-
pendence of different forms™ef it. The only work in this direc-
tion, so far as we know&is a paper of Church (350]1. When one
considers some of the gomplications in mathematical analysis if
this axiom is nobassumed, one may well expect: consequences of
its denial as paradéxical as the Banach-Tarski theorem. Denjoy
[XTII] 144 'giv'és'some indications in this direction.

P

EXEROISES
¢ EX 1. State the axiom of choice and thé propositions {(1—(7)
y in the languages Lg and Ls .

Ex, 2. Prove that (1) is equivalent to the axiom of choice.

Ex. 3. Prove the axiom of choice from Zorn’s lemma. {Hint:

consider the class I' of all clagses v such that
v N\ a # A for all « in 8. Let v,Bvy. mean that

v C 11 )



Chapter 1V

THE GENERAL SYNTAX
OF LANGUAGE N\

N

0' \Q
SECTION 1 BASIC CONCEPTS SIMPLE LANG.QX’GES

‘We have, up to now, studied logic mostly a.s,a,',;d:éductive
science, although we have indieated in 112 and/3I3" how one
might approach logic by considering a language .and its formal
rules apart from any interpretation. As we hawe pomted out on
p. 95, the second approach does not tell-the whole story, but is
2 valuable tool just the same, which ghiottld be neither overesti-
mated nor underestimated. In this'ehapter we shall attempt to
deseribe some of, phedorotbide At &ofults of this syntactical
study of language. As we shall see, the deepest of these results
could hardly have been obta.med without syntactieal methods.

A language consists of tertain signs, and certain strings of
these signa. Its syntax\conmsts of rules for classifying and trans-
forming these st\ ‘gs The alphabet of a language consists of
certzin basic signs)usually in finite number. By a siring we mean
a finite sequenece of signs. A string is exhibited by writing its
signs in lineat order from left to right. We shall denote strings
by smaﬁl*}reek letters. If « and 8 are strings, then “eg” shall
denbt@ the string consisting of the signs of 8 written in order
affer the signs of «. Two strings are said to be the same if they

~have the same length, and the same signs in corresponding
\“places. We recall D3.3.1. The length of a string is, of course, the

number of signs in i§, repetitions counted. We shall denocte the
length of ¢ by “I{o)”.

The syntax. of a language can be very simple or very com-
plicated. We might define the English language as follows. The

- alphabet consists of the letters “a”, “®", --- , “‘z”, the usual

152
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cated and full of irregularities and exceptio
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punctuation marks, and a sign for the space between two con-
secutive words. A word is any string listed as a word in the
Oxford English Dictionary. A sentence is any string which is
formed according to the rules in some standard book of English
grammar. We may alternatively construct the English language
by taking as the alphabet the strings of letters already classified
as words, together with the punctuation marks. Then a sentence
is a string in this alphabet formed according to standard rules of
sentence formation, We may then regard English sentences agy
“words” in this alphabet and the rules of formation of English
sentences as rules of word formstion (i.e. spelling) in this alpha-
bet. This procedure of using the strings in one alphabet, or
names of these strings, as letters in another alphabés, is very
useful. As in all natural languages, including, Esperanto, the
rules of word and sentence formation.in Enﬁksh are 50 compli-
thas it is almost
impossible to get a general view of the strubture of the language,
and to make generally valid statements-about the language. It is
for this reason that mathemaﬁcimﬁﬂd%gidimﬁﬁegvm work
with languages like L, with very-simple and regular structures.
Among the languages suitable for mathematical purposes
there are some whose ruleg'are especially simple. The signs of the
alphabet are classified @8 letters and conmnectives, and each con-
nective has a certain degree, denoted by a positive integer. The
main rule of word\formation is:

AX . .
W1. If eisad comnective of degree n, and B, , -** , B, are
svdrds, then af, - - 8. 158 word. _

By, 'ﬁ)}mu-lathlg the rule so that a connective is written in
front-of the words which it connects we avoid the nead of paren-

‘theses to indicate grouping.

Thus the language of II2 can be formulated as foliows. The
alphabet consists of the letters p and 1, the connective ~ of
degree 1, and the connective 2 of degree 2. Besides rule W1 we
have the rules: : .

Al. “p’ is a word.
A2. Tf v is a string in 1, then pv is a word.

Q)
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Thus “~p1"” and “D pplll” are words. Then we have some
rules classifying certain words as “true”. For example,
“Dp D plp” is a true word (A12'). A slightly different but
equivalent and syntactically more convenient formulation is
obtained by taking as the alphabet the connectives ~ and O
as above, and the letters p, p, , p,; , - - - | ‘where “p,” is a name of
the string py, and » is a string in 1. Then the rules are W1 abnye,
and

N

' 4 ." \5

W2. A string consisting of a single letter is a word."\

As we shall see, the syntax of languages governed. iy, rules W1
and W2 is especially simple. £O

We can formulate & part of arithmetic ag d'language in this
sense. Our alphabet consists of the letter 1,the connective — of
degree 1, and the connective + of degl;ee&. We take rules W1
and W2 as rules of word_formatior{.“g‘hus H—41411" is a
word, and denotes what we usually*would mean by “—3"”. We
can classify & word as true if the\integer denoted by it is zero.
E.g. “+1—1” wouldwbd el i BNIEN - Ehi8s h tuitive idea 25 a basyis
we can eagily set up a s;:sﬁf;in of rules of inference, and thus
obtain & suitable language For arithmetic, '

Before we go on to a'discussion of the rules for sentence forma-
tion, and the elassification of words or sentences ag true, we wish
to give a generaltheorem on word formation. We shall say that a
language L is-simple if its alphabet consists only of letters and
connectives,"and if W1 and W2 are the rules of word { ormation
in L. We/define the rank of a string as follows:

D\lb(h.). If o is a letter, then p(¢) = —1.

287 (b). If 5 is a connective of degree n, then p(s) = n — 1.
N

O (¢}, M ¢is ay0,,and {(e;) = 1, then ple) = p(ay) + play).

(d). I o is the null string, then ple) = 0.

Thus if ¢ is “aya, - - - "y and “a;” is a letter or a connective for

each¢(i = 1, .- . , k), then p(0) = p(a,) + p(as) + -+ + play).
We recall D3.3.5 and D3.3.6.

TuEOREM 1. If L 4s a simple language, and o is a string tn L,

- then o i3 '@ word in L if ond only of
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(1). pla) = -
(2). If o, is any head of o, and o, # o, then p(e) = 0.

We divide the proof of this theorem into four parts.

19. Under the hypothesis of T1, if ¢ is a word in L, then (1) and
{2) hold.
Proof. 1f l(¢) = 1, then the lemma is true by W2. If T2is

true for strings of length less than k, (¢ > 1), and
if i{s) = k, then, by W1, 0 isaB; - - - 8. where aikay
connective of degree nand 8, , + - - , A, are wch'ds
For convenience we denote o« by “,8 v Let
I8y =1,0 <¢ < n Now ,'f.

pla) = p(Bo) + p(B) + -~ +'p('l9n)

n— 1+ (=1) + 0% (-1)

"_1._. \\

so that (1) holds. If o, igh head of ¢, and o, # o,
then there is & umqlwq{fgggn g &S g*m n, such
that X

lo‘|"“"!"?f"$l(0'1)<£a “"|"3f+1-

Then t.here\ls a string s, , possibly null, such that
o, 18 Ba\\ - 8,00 . If o, is not null, then it is a head
of §x, and different from f8;.. . Hence, in any
:cas’e, o(z) > 0, by T2 applied to 8;,. . Therefore

nh

:'\'
O ple) = plBo) + +-+ + o(8) + plos}
D Zn—l+(—1)+"'+("1)+0
N =n—1—3j
~O° > 0,
A which proves (2).

T3. If ¢ is a string in L satisfying (1) and 7 15 not null, ther o7
does not satisfy (2).

For o is a head of o7 and p(e) = —1, so that (2) does not hold
for 7.
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T4. Under the hypotheses of T1, if o is a siring salisfying (1)
ond (2), and ¢ = 0103, 7o 1ot null, then there s a unique
string T such that t satisfies (1) and (2) and is a head
Of g

Progf. There eannot be more than one such string -, by
T3. Now
N\
ploz) = pla) — pler) = —1 — p(e) < Q
£ N

Let r be the head of o, of minimum length with negafive rank..
If 7, is any head of 7 different from r, then p(r,) 20, Let “a;”
be the last sign of =, and let 7 = r,a0; . Then 7

€

0 > p(7) = p(r) + sla,) > P(G;).:
AN
Hence “a;” must be a letter, and p(q;j:.\z —1, and therefore
0 S P(Tg) < 1, 80 tha.t p(fz) ES OJ.P(T): = —1,

T5. Under the hypotheses of I8, % o is a string satisfying (1)
and (2),vthen dbislifpwrgy org.in

Proof. 1fl(s} = 1, thielemma is true by D1a. Suppose that

T5 is trué\for all strings of length less than

k > lrand that I(e) = k. If “a,” is the first sign

of @ ¥hen p(ay) > 0, by (2). Hence “a,” is a con-
neetive of degree n = 1 + p(a,). Let o be
(a1, + - - @ Thereis a uniqgue string 8, such that
\“ ’ B is & head of “a; - - - ¢, and satisfies (1) and (2).

(\~ Hence 8, is a word. Suppose the words 8, y s Bi

'\'\\ ) have already heen defined, 1 < j < n, such that

N @+« B; 18 ahead of ¢, 50 that s is @,8, - - - B0, .
O Siee p(@y8y +-- By =n—1—j> 0, r; is not
Y null. Then there is & unique head 8;,, of o, satis-

fying (1) and (2}. By T for strings of length less
than &, 8;., is a word. Thus we can find words
B1, -+, B.such that a,8, -+ 8, is a head of o.
This string is & word by W1, and consequently
satisfies (1) and (2), by T2. Hence o is N A
by T3. :
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The eriterion of spelling embodied in T1 explains why the
syntax of simple languages is simple.

An examination of the rules of sentence formation and the
rules of classification of sentences as true in the languages
hitherto considered and a comparison with the rules of word
formation in these languages reveals such a striking analogy
that we are led to seek a theory which unifies these rules with {
respect, to their common features. This may be done by means
of Post’s concept of production. R )

EXERCISES _ O3
Ex. 1. Formulate the object language of 2 Boﬁiéan algebra
with the operations M and N (Naex)e') 28 a simple
language. State the postulates ,i;\\fhe new notation

without parentbeses. o\

Ex. 2. Set up a system of postulatés for the elementary
arithmetic of integers, pesitive, negative, and 0, using’
the idea on p. 154. “::y&ﬁrw,dbraulibl'ary.org.in

Ex. 3. Prove that if L is asimple language, then a string o in
L is a word if and only if p(e) = —1 and the rank of
every tail of .18 negative.

\’\ \o
SECTION 2 PRODUCTION, CANONICAL LANGUAGES,
EXTENSION AND DEFINITION

Let us'ﬁ’xkfnjne the language of I12 from a glightly different
point\o}iriéw. The alphabet consists of the letters o, 01, Puas * ' 7y
theconnective ~ of degree 1, and the connective D) of degree 2.
mThé vules of word formation are W1 and W2. The rule of sen-
Yence formation is simply that all words are sentences and con-
versely. The rules of truth are stated by means of the symbol
“49 which indicates that the string which follows is to be

clagsified as true:

Al”, 1f Lo, then a is a sentence.
A4", Tf @, B, y are sentences, then - DD a0 By DD af D ay.

A5", If a, 8 are sentences, then FD a D fe.
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A6”. If a, 8 are sentences, then |- D ~a ~g O Be.
A7 Htaand D af, then }-g.

The whole system can be formulated in a more suggestive
way if we adjoin to the alphabet the signs %8 and |-. Here
“e” is to be interpreted as meaning that « is 8 word. Since we
identify words and sentences in this language, we do not need o
formulate explicitly any rules for sentence formation. ’Ifhe.\]an-

guage now appears in the following form : A\

P1”, e — Ba. A\ s
P27, Ba, W - B D ap. 7\
P3”. W —> W o~ ..,'\\

PA% B, B, Wy — 13D « D gy 3% O .
P5". o, W8 — FD a D ga. ~

P6”. Be, WE - [DD ~a ~g 2 Ba.

P’ Ve, D af — |-g.

P0”. Bp, Wy, » Bpyy, -

®

We may tllink“g{‘r \5{3’6 a5, ﬂ'ﬁn i igl-supply of strings, and rules
Pi"-P7" as instructions for, producing new strings from strings
which we already have, The rules are understood in the sense
that if a, 8, v, etc. ate: arhitrary strings such that the strings
appearing to the,left.of the arrow in any rule are in our stock,
then we may a,d&\%he string to the right of the arrow to that
stock. A

We call’BY'-P7" yroductions and the strings in PO the
axioms, &nd’an axiom or g string obtainable from the axioms by
'repea@ applications of the productions is called a theorem.
(N,o% that P1” might have been omitted.)

I this formulation we had an infinite alphabet and infinitely

“\\many axioms. We ¢an, as indicated before, reformulate the lan-

" guage €0 that there are only & finite number of axioms and s
finite alphabet. We take the alphabet to consist of the signs
2,10, ~, B, and g. “g» may be thought of ag denoting the
elass of letters. The productions are P1”—P7 a¢ above and

P8". o - fa,
PY’. fa — R,
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and the only axiom is

PO, %p.

It is not obvious, at first sight, how one would formulate the
first system of combinatory logie given in I113 in the present
manner hecause there are infinitely many premises in K5
(p. 112). We can, however, approach the system in a different
way. If @ and b are formulae in 4, X, and & finite nurnber of £
variables and  is a variable which does not ocour in either @ or.b,
then E5 is used only where the inference from azv = be to a=b
would be allowed. This idea leads us to the desired formulation.

Our alphabet consists of the signs 4, K, Lz, a O, GWE and
=, The productions are: \\

Pl. % — Zaa. _
P2 Qa — ,;r)sa_ x’\\:
P3. Wa, W — Blas. L&
P4 Wa — a = o :.’.‘
Ph.a=f—f8=a \g{*\:r\i_dbraulibl'ary.org.in
PG, a=8,f=71—>a= %
Y7, a =8,y = 8 jox B8
P8. §aB, 8, Ua — FeoPu.
PY. FoB, W8, o - Faas.

PL0. Fap, Fory, J8B, Wy, e — Falor.

Pll. §asB, %a‘x,},&ﬁ, By, |frac = lyzaa, e 2 B = 7.

P12. Wa, BBy — |[|4asy = lloviBr.

P13, Wey B — [|KoB = o

P14. A& Naa.

The.'agb}ns are: _
o) P0. Qza, Faze, BA, BE, Fed, FaK, Aa.

. The interpretation is that the “letters’ are “za”, “:cqa”,
.-+, (P1), and that 4, K, and all letters are words. If e is &
string in a, then a word 8 is of type « (i.e. Gop) if and only if it is
built up from 4, K, and letters involving &t most the same num-

ber of ¢’s as in «. P11, which corresponds to E5, says that if g and
+ are such words then we may infer 8 = 7 from |Bzaa = |yzea.
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- Butzaaisa lettor which does not oceur in either 8 or v. We have
used the sign a to distinguish between the letters of the language
instead of “1” ag before, since in the development of the system
on the basis of P0-14, we should Iike to.be able to use “1” agin
I113.

We could have eliminated %8 and taken “a" as an abbrevia-
tion for “a = «”. This makes possible certain economies in the
system. .

. Another way of looking at these languages is to consider’the
Pproductions as instructions to g moron, who can seard g string
and recognize it ag being of a certain form, fqrf.producing
theorems starting from the axioms. The happy, feron can, by
merely following the instructions, generate as many theorems as
he pleases, and never feels the need for any: initelligence in the
brocess. He might just as well be » robobbr'a machine. Now a
mathematician proceeds in a somewhatidifferent way. He is not
satisfied with this mechanieal methgd of producing all theorems.
He takes, rather, a string which hag'some interest for him, and
by applying his ingemﬂbyauﬁég‘w};ﬁ%&ﬂﬂe it from the axioms or
o show that it cannot be so produced. If the string is a theorem,
then the moron will produceit sooner or Iater, but on the way he
will produce g lot of in@levant madtter which has nothing to do
with the problem. If the'string is not a theorem, then the moron
will never find it oht.\b_y means of his purely mechanica! method
of generating all the theorems, for he will never be sure that he
cannot produeé it by working longer.

The decision problem tor the language is that of determining
whether % given string is a theorem or not. For the language of
PO, PI"-P9” the solution 15 essentially given by T1.2.3 and
T4, For as we see from the statements of P1"-P9", every

~theorem is of the form Fet, Wa, or La. By PO’ and P8” 9u is

N theorem if and only if « consists of “p” alone or “p" followed by
& string of 1’s. Theorem T4.1.1 takes care of all theorems of the
form Wa. Theorem 1.2.3 together with the definition of “
given on p. 38 tells us how to decide whether |-« is & theorem.

Note that this decision brocess can also be carried out by the

happy moron. It can also be set up in the form of g set of pro-
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‘ductions and axioms, so that he could apply:it and always
arrive at the decision. We need only to adjoin new signs F (for
“false’) and T (for “true”) and give rules for producing the
string Ta whenever a is a theorem and Fo whenever o is not &
theorem. The criteria just outlined show us what instruetions
must be given to the moron in order that he may carry out this
decision process. Thus all intelligence and ingenuity is eliminated
from this language. There is no blenish on the moron’s happi= £\
ness, for he can solve any problem stated within the language,
A 1le for producing Fe in cases where & is a string in the origirtal)
alphabet which is not a theorem is called by Camap-{VIH]?ﬁ a
rule of refutation. In the present language wecan give aiomplete
set of rules of refutation. PR 44

The situation is different for PC-P14. Accordiigito a theorem
of Chureh, if we adjoin the signs T and F asbefors, then it is
impossible to add a sef of productions apd’ axioms to PO-Pl4, -
in such a way that T'e is a theorem if gy

nly if « is a theorem
in the original system, and Fo i8 % ¢heorem if and only if « is
not a theorem in the original sysﬁéfﬁ%isﬂidwmmigoﬁ@possible
if one restricts oneself to strings'of the form § = %, where §and ¥
are words formed from “A* K", and | alone. Thus there is
no mechanical process forsotving all problems stated in this
langnage. Ihteﬂigenc&'ﬁd ingenuity cannot be dispensed. with
in this or any otherlanguage adequate for arithmetic. For any
given string ¢,(One may perhaps, by exercising ingenuity,
be able to dgeidé whether it is & theorem OF not, but there is no
general pro&edure for this purpose which could be applied by &
moron\gr, & machine. . o
Cljurel’s theorem has sometimes been: interpreted pessimis-
FiQ&HY as & proof that there are absolutely unsolvable problems.
s indeed a fundamental discovery on the limitations of human
ingenuity that no machine can be invented which will solve all
problems stated in the gimple language of P0-P14. But opti-
‘mistically speaking, it is & rigorous proof that brains are indis-
pensable, and that should be comforting to anyone who hopes
that he can solve problems which a moron cannotb.
The languages considered in this section illustrate the general
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class introduced by Post. We consider a language with a finite
alphabet ¥ consisting of signs e, , - -+ , @ . By a production we
mean an operation whereby the strings

Frp, C12Q%iy, """ Tin,
Fo1ky, Tagi,, """ Tan,
(1) e e e
Ty 0 hﬂ'hzﬁh ka Finy N
£ 2\
. 2 AN
produce the string "
N
(2) 0, 0007, O, \

Here the o's are given strings in ¥, some of $hé€rh possibly being
null, and the numbers in FETEINE PR *, 7., are chosen
from the integers 1, --- , M, for some 3¢ '%he rule means that if
v, @y HIe a.rhltrary strings, oveD | possibly null, then the
strings in (1) yield the string (2). The strings (1) are called the
data of the production, and (2)4%8 ¢alled the produss. We make
~ the restriction thp(g@@@l}aaimh @Ei®s in the produet must
occur in at least one dafin, and that each datum and the
product contain at ledst one «. We further assume that the
product is not null e matter how the «’s are chosen, This
amounts to assufing that at least one of o, , - - - , o, 1t not pull.
A canonicaldanguage is a language I with a finite aiphabet,
finite number; of productions, and a finite number of axioms.
Every precise language which has ever been constructed, except
for those’containing rules of the type of FQ on p. 142, can be
lated as a canonical language. Of course, the canonical
f*o:ms of such languages as L, and L, are rather complex, but
(¥his is to be expected since these languages are themselves quite
) complicated. The point is that by abstracting from the special
features of a particular language and studying canonical lan-
guages in general we can obtain results which apply to all lan-
guages which ean be put in canonical form, and this includes
practically all languages which are useful in mathematics and
logic. We shall consider only canonical languages from now on.
With this tool at our disposal we can explain simply and
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elegantly many important mathematical and logieal notions.
One might, also expect that many concepts in linguistics which
have resisted all attempts up to now at clear and general formu-
lation may now be treated with the same Jucidity. and rigor
which has made mathematics a model for other sciences. The
wealth of detail and the manifold irregularities of natural lan-
guages have often obfuscated the simple general pringiples
underlying linguistic phenomena.

We wish to emphasize that ecanonical languages seem o be t:hc
most general languages which the rules of word and sentence
formation and the rules of inference are constructive,(Le. In
which one can determine in a finite number of steps/whether a
given chain of strings constitutes & valid proof. Churgh’s theorem
may be considered as a proof that a certain problem cannot be
solved by constructive methods. 1f, as some believe, these are
the only methods available to man, then thattheorem brings out
a profound limitation to what man ca‘n‘xaécomplish. As we have
pointed out, this limitation 15 esse ‘@ia.lly that he cannot elimi~
nate the necessity of using lﬁgﬁwﬂi@mﬂ@blﬂ%@?ﬁtﬁr how
cleverly he fries. - &30 ) .

The o’s occurring in thé statement of & production wﬂl.be
called its siring variable§NA string 7 will be called an immediate

®

consequence of the g‘gi‘ihgs Te, DY R g'%ven pFodu(Etion P
if strings can be substituted for the gtring variables in P in a?uch
a way that the data become i, =7 » r, and the product is 7.

A sequencedistrings 71, +** 5 T 18 called a proof by Py P,
from the’hypotheses H, where H ig & class of strings, if each 7,
is eithérin H or an axiom or an immediate consequence of some
preée ng r's by one of the produetions Pr, *** I:“’, . A string 7
i consequence of H by Py y +72 5 &r if the::e is & proof- by
(P, , P, from the hypotheses H in which 7 is the !aat string.
' A string 7 is a theorem if it is & copsequence of the axioms.

Tt should be noted that a moron will prove a1y theorem if he

lives and works long enough, and he can check any proposed

sequence of strings to determine whether it is a proof, but unless

the decision problem for the language in question 18 afolvable:.- he
will, in general, be unable t,o_disoauer a proof for a given st.rmgg




a goal; mere patience does not suffice. -

The language I is called an extension of 7, if (1) the alphabet
¥ of L is contained in the alphabet 9" of L', and (2) each theo-
Ten in L is a theorem in L. The simplest case is where ¥ is con-
tained in 9’ each production of 7, ig g production of 1./, and each
axiom of L ig gn axiom of L', In thgt case L’ will be calledza.
direct extension of L. If I and 1 are extensions of egch (Jt}\mr,
then they will he sajd to be equivalent M)

In the languages Lyand L, ang some,é{mila.r Ianguages which
we have studied the notion of “variable” wag modified by

means of a technieg] device in order to have infinitely many

®

variables gt our disposg] and. ilbhasie.a dinite alphabet. It is not
easy to see how tﬁ'ewe\%?{!jelst éfﬁla be ;%edeﬁned generally so as to
take care of gych a situationy _
extension 1/ of 5 latguage 7, ig saig 10 be conservative if a
Sring 7 in the alphabatof 7, iq 5 theorem in 7 if and only if it is
& theorem in 7, & conservative extension of Z is one in
which the clagg of\theoremg eXpressible in the alphabet of 7, is
left unchanged(> ™
Aclass ¢ of Strings in the alphabet, % of the language 7, s said
to bhe cangrgeal if there is g tonservative extengion 7./ of L and a

e ig 8'theorem in L. We may consider a canonieal elags as one
wbqse'members may be enumersteq by a construetive process.
{PFor'if we construct a maehine which generates the theorems of
L and printg 4 On 2 special tape eVery time a theorem of the
form “zo i produced, theq the machine wil3 list the members
of € step by step, and each one will appear on the List sooner or
later. In barticular, the ¢lggs of theorems in 5 canonical language

s eanonical, for we may take o 10 be the py]| string and .’ o be
L itgelf, _
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The class of all strings in the alphabet ¥ of 1. is also canonical.

We may adjoin to % two new signs, say “@" and “T". To each

production P in L, with the data x, , <+ , 7 , and product =,
we take as the corresponding production in the extension

iﬁ'l,..' ) zﬂ}-_)‘t‘l’.

We adjoin also the produetions

Ta,a — a0, g=1," ", 0 _
. N N
Sa, B8 — Dab, A
. £\ ”
and take as axioms Sa;, 1= 1, = and Toy, 2 =L, ™
0 . - -_-0 ’.‘
whereq; ,2 = 1, -, ™ are the signs of 9, and g;, 8 FL 2 5

are the axioms of L. Then we have & congervativelektension of L
in which @« is a theorem if and only if @ is agteing in %

A moron can make a list of the members {)f,a canonical class €
by mechanically applying the produgtis '4.5f I and picking out
the theorems beginning with a cerpain’ xed string a. He _v{i]l-,
however, be unable to decide, i netal, whether a given string
e will appear on his list if he,\gcﬁﬁo‘i‘ﬂaﬁhﬁgﬂwcm & for
which this decision problem & solvable by & moron will be ca.l__le_.cl
solvable. More precisely,..tlié’élass @ will be said to be solvable if
there is a conservativé.extension L’ of L and there are two dis-
tinet strings o, & (Ké‘g \such that for any string & 10 tl.le-a.lphabet
of L the string a:}is o theorem in L/ if and only if @ 1810 @, a_.nd
vy 18 & theoreny in L' if and only if @ is DOV in'@._The‘ declSIO_Il
problem f%'rig. language is’ golvable cdnstruct.ive_ly lf and only if
the class of theores is solvable.

T l%sfbllowing language N is adequate
“l% wlphabet consists of the signs 1and =

for a patt of arithmetic.
_The only production

Q.

Nil. a = 8 —al = 8L,

and the only axiom is NO.“1 = 1”. The decision prob}em is
letters F (for “falge’”) and

solvable. For we may adjoin new €u r
8 (for “string”) to the alphabet, and the productions

N2.a=a’_‘8=ﬁ_->Fa_-—_¢ﬂ,.
N3. a=uay=7Far=a
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N4 o = o — Fa,
N5, o = a — Sa,
N6. Sa, 88 — Sa8,
N7, 8¢ = F = g,
N8. 8a — Fa =,
NO. Sa, 8B, Sy — Fa = 8 = =,

and the axioms - N\
N10. 8, and 8 =, \

(\)

These productions show thaf if « is a string in 1, then'w‘\-‘— alsa
theorem and that no other strings are theorems. Mﬁféﬁxplicitly:
N2 and N3 show that no equation with more( s on one gide
than on the other is a theorem; N4 shows that a string of 1’
alone is no theorem; N7-N@ show that ohly equations can he
theorems. A string + in NV is » theorem if and only if it is a theo-
rem in the new language. It is not q.ﬂéorem in N if and only if
Fr is a theorem in the new language.

We can now explain the Rdcéssmoggpﬁnition. The simplest
type of deﬁnition%k’bhﬁ?‘iﬁ%gﬁy& new sign is taken as an ab-
breviation for a given strifig ¢ in the alphabet of the language.

'This amounts to adjoiding the new sign, say “s', to the alphabet,
and the productionsy™

Ps(l).f asf T"X}"ﬁ
Ps{2). aof'\=> asp
\X

to the Yisb-of preductions in 7. In other words we extend L in
such@Vay that in every context “s” and ¢ are interchangeable.
This'extension is conservative, angd to each string in the exten-

_Bien there corresponds a string in L such that each is a conse-

~\.J quence of the other.

\/ More often a new sign is defined in context. That is, certain
strings containing the new sign are taken as abbreviations of
strings in L. For this to constitute a definition in the usual sense
of the word, the extension of L thus constructed must be con-
servative, i.e. no new theorems in the old alphabet are provable.
Also, there must be & condition of translatability, i.e. that ab
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ciranslatability of every senfence in N’ into an equr

o/
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least to every meaningful string in the extension there corre-
sponds a string in L such that each is a consequence of the other.
In order to formulate this condition in a general manner, we
must suppose that certain classes of strings are distinguished as
meaningful. , '

Thus in the sbove language N we may define a senience 88 &
string of the form & = 8 where o and § are numerals, and 2
numeral is a string of 1’s. Formally, this may be done by adjoin-
ing the letters N and & and the productions: :

NIl o = a — Rea. ' .'.\“>
N12 m(x —r o = a. X '\.\
N13. Eﬂcx, MNE — Sa = B. ("}‘.

Tt is convenient to adjoin also the productions Q¢ 4

N4, &« = ﬁ — 16 = a. \
N15. o ﬁ, B =52 = . . ‘x;\\'
le. o = .8’ y = 5§ —> ay = ﬁa. ‘..\ o

3

We shall use N’ from now on @qﬂ&ﬁﬂihr‘ﬁhﬁibﬁ%g@&eg%NO_
N16. N _
We may then define additi'pli'by adjoining the signs (,), and
+, and the production .

N17. Ra, RE — (@5 ) = ob.

The language N4 tﬁ\m obtained is a conservative extension C:f N
since N14-N16 are trivially valid in N, for the only equations
which are_theorems in N are of the form “a = . To every
string 'Yf\'ia} N’ such that &y’ is a theorem there corresponds a{
String\\{(«j_ﬁ N such that Sy is also a theorem (in N') and each O

v and ¥’ is & consequence of the other (in N'). This assures the
y ; valent sen-

*

tence in N. We do not need to be able 10 translate such Sbrings
as (1) =" L |
A more complicated type of definition is defintion by recur-
sion, sometimes called definition by induction. Here the new
sign is defined in some simple contexts, and then lzules are gngl:,:’
for translating an oecurrence of it in a more complicated cantex!
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in terms of one or more occurrences in simpler contexts. Thus we .
may define multiplication in N* as follows:

N8 fla—={aX1)=oea
Ni9. %y, M8 — (& X 1) = ((a X B) + o).

This amounts to adjoining the sign X and the productions N18
and N19. Thus we do not equate (a X 8) directly to s string in
which “X” does not occur, but we give productions whereby
any sentence in the new language N" may be translated info.an
equivalent sentence in N'. O

For exarple the sentence .

o"..

“1I1 X 11) + 1) = (1111 + ID”
m N’ 18 equivalent to the sentence

“111111 4 1) = (1111 qs 11)”

in N* (i.e. each is & consequence of the other), and in fact, both
are equivalent to the false sente;nce

W mmamlma@ 17
nN.

Sl more comphcatéd is the type of definition where several
new signs are deﬁpe?} simultaneously. An example of this is
D3.3.21, where “fern” and “‘sentence” are so defined.

We are thus\led to the foilowing definition of “‘definétion”.
¥ 1/ is an exteﬁsion of L, and & is a canonical class of strings in
L/, and wisd sagn in the alphabet %’ of I’ but not in the alphabet
% c{ir i'e. w is a variable in I/ over 1), then w is defined in L/
relative to L and & if and only if I’ is a conservative extension
nf L, and to every string ' in the class & and in the alphabet

‘?I U {w}, there corresponds a string v, in L and in the class &,
) such that each is a consequence of the other in /. Thus the sign
« is defined, essentially, if the definition doesn’t change the class
of theorems, and if it can be eliminated from any sentence.
In partieular, a function g on the class of posmwe integers 18
-recursive if there is an extension ¥, of N and a sign *f” defined
in N, relative to N and & such that

fla) = g(a)




s & theorem for each a such that Jta isa theorems We may define
the notion of a recursive function of several variables ini a similar
manner. S )
The above discussion shows how we can analyze rigorously
s number of concepts for the whole family of canonical lan-
guages, where mosb previous treatments are either vague or
refer to some special language. In the pext section we shall de-
rive some non-trivial properties common to all- canonical lan-

guages. AR S A
. - - . A
N
EXERCISES B Y
Ex. 1. Formulate the postulates for Boolean algebré.in Chap-

ter I, section 2, as & canonical languagés’ .

Ex. 2. Formulate that language using a'ngg.ef-jsubstltutmn )
as on pp. 40-41. o

Ex. 3. Adjoin to the alphabet of the language onpp. 4041
the signs 0 and F, and adjein-the following axioms and
productions: N & }-*W_\-f,dbraulibrary..org,j n
Allb. &0. N ' i
Al12h. FO. S
R18b, G4 ={4D0) = (
R18b. @ﬁ\'\i—.b’(o 3 4) = (~0).

. BAN— )

R2lbo@A — (~O) DA = 4. 7
R2%bFA,A=B—FB. T
_B23b. VA, ©B, FSQO|A|B) = FB.
A\R24b. VA, @B, F((~0)|A|B) —FB. - _
A5 Prove that if @A is a theorem, then -4 i not atheorero
oY if and only if FA is a theorem. Hence the.cpss of t;?ee. -
()" sentences, ie. the strings A such that -4, Js s0vab &
Ex. 4. Prove that the class of words, Le. the striBgs & sue
that %« is a theorem, in the 1anguage on.p. 159 ‘3_
golvable.
Ex. 5. Prove that the language Li (C
o conservative extension of Jmst i . .ble
Ex. 6. Discuss the analogy between the: notion of 8 V Jental
s explained above, and that of  brensees o

hapter 111, s_ect.idn 3) is
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estension of a field, and the analogy between the
notion of a definition and that of an algebraic exten-
sion of a field. (For readers acquainted with algebra.)
Ex. 7. Give extensions of N’ in which the following are

defined: .

(2). o,

{b). al

{¢). & < 8.

). a~8 (if<a) O\
(e). a divides 8. O

(f). the greatest common divisor of o and ;3
(z). the number of divisors of . j.f
(h). «is a prime number. S
(i}. the o~th prime number. \
Ex, 8. Show that the following classes Q{ integers are canon-

ical: .
{(a). the even integers N\
(b). the perfect squares,
{c). the no Ay org-An

(). t.ﬁ“éwp“;‘une numbers

SECTION 3 NORMAL LANGUAGES THEOREMS OF
POST AND Gi’jD\f‘\I;’

A very spegiabkingd of canonical langnage is one in which the
productions gl have the simple form

1) A0 e > ao, (o1 , 7, given strings)

andthere is only one axiom. A production of the form (1) 18
,t:a.ﬂfed normal, and a language, with one axiom, whose produc-

~ions are all normal is called a normal language. Post proved the
' remarkable

TaroreM 1. Every canonical language has a conservative normal
extension.

As aresulf, every canonical class of strings can be generated in
& normal language, and a class is solvable if and only if it is
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binormal, i.e. both it and its complement ean be generated in a
normal language. This makes it possible for us to focus our
attention on normal languages without any loss of generality.
The proof, though completely elementary; is rather long; and-
eannot be given here. We shall, however, malke free use of thig
theorem in our discussions. S o
We remark, also, that it is sufficient to congider languages
with only two signs. For if “@”, -+, g P gre-the signs of &

language L, then we may construct & new language in the signs

a and b, and make the strings abe, abba, -+ @b~ -ba correspond .y
t0 the signs of our original language. This i8 eé;senti_a.lly'_hqw\??e
avoided infinite alphabets. This shows that s canonicalclass of
strings in 1 can be obtained as the class of all sfigs n 1

. » - wy b
which are theorems in a certain normal language Wﬁ‘.’h'--‘.{lu ml e
alphabet. For there is a language I, whose aiphabet '°°‘.“"'2”““5
“1 and a string o in L such that § is the lass of all sirings @
in 1 such that oo is a theorem in L. N x\ Con e
We adjoin two new signs, say “R @ad “d”, to the alph@b?t
of L. If ".’\Tr"ww,dbra_ulibrai"y;brg,'i_h o

o

Ty, "N Ly Sl

is a production in L, then.‘We' i-epla»cfa ithy

R\ . :
dgdh -, dnd —dnd. - - |
This pracess we

If = is an axiom df , then we Teplace it by drd. Li _
call sealing theYanguage L with the sign d. it 1s ¥ mef:e&l]l; N
Gomtmcting\éxtensions of languages, since it he}-met_lc&l_lj.( h to

off provekges in L from the new processes which we Wig ‘_’
intrpd{lée. _ Lo T
¢ We'take the following new productions: -

dolad, Nla — 12,

_ : o in the
and the following new axiono: 1. Then every the?mrgh:;rtem
new language 1/ is either of the form “drd”; whore® ;er of the .
of L, or “Ne”*, where a is a string in 1, O 18 amers

olass €, and furthermore, every member of the dlags € 182

o
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rem. Thus € is the class of all theorems of L’ which are strings *
in 1, By Post’s theorem, there is a conservative normal extension .*
L. of I/, and consequently @ is the class of all theorems of L”
which are strings in 1.

Let “17, “a,”, -+, “a’ be the signs in the alphabet of L.
We introduce a new sign b, and replace “‘a.”” by “bl1---1b",
with ¢ 1's, ¢ = 1, - -+ , n). If we perform this replacement in all
the productions and the one axiom of L"”, we obtain a normaal™
language L' with the two-sign alphabet {1 b} such that*{i is

precisely the class of theorems of L/ which are strmga il We
have thus proved

TaroreM 2. § s a canonical class of strings tn'1 zf and only f
there is a normal language L with the alphabét {1 b} such that o
shngamlasatheoremmehenandQzéywhenassm .

If L is 2 normal language, and ¢, -*thr. =1 - ﬂ)ﬂl’e
its productions, and  is its axiom, then the string wadalc T:d
do.er,d, where “a”, “¢”, and “d? are fixed signs not in the al—
phabet of L, Wlllvbﬂ @hfk&dlm'b&s%g’fhus we have a means of
representing each normal Ianguage with a given alphabet % by

“means of a single string, The string in % preceding *“a” is the sole
axiom of the ’corresp@dmg language, a string in ¥ flanked by
“d” and “¢” in that order is the head of the datum of a produe-
tion of the langﬁn}e and the string between ““¢” and the next
“d” in the tailof the corresponding product. A ba.sls of a normal
langnage . mth the alphabet ¥ will simply be called a basis
over E’L

elass of all bases over a given alphabet ¥ is canonical.

Fer\iet A be {bl, <+« h,} and let “AP Gpr ugn g » e 1! and
o) £d” be signs not in %I We take the followmg productsons
Se > Ae,
Aa: Sf — Sﬂ_&,

Sa, A8, Sy — BoadBevyd,
Ba, A, Sy — Bafod,

and the axioms: 4, 8b,, (i = 1, .-+ , n). Then Aa is a theorem
| if and only if « is & string in ¥, Sa is a theorem if and only if o
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is o non-null string in %, Be is a theorem if and only if «is a
basis over 9. This language we shall call B, and its alphabet A .
Let “p’ be a sign not in ¥, . By a senlence We shall mean & string
of the form “apg’’ where ais a basis over % and g is a string in
9. We may think of this sentence as expressing the proposition
that 8 is a theorem in the language whose basis is o. We shall say
that the sentence is frue if the corresponding proposition is true,
and false if the corresponding proposition is false. .

N
N

T3. The class of true senlences 4¢ canonteal. ¢\
Proof. Let ‘1" be a sign not in 91, . We adjoin the follow=
ing produetions to B, : ' N
Bmaf — HG‘BWJ +¥¢
Badserds, Ae, 87, 47, f»admdﬁpw%»’
ladocrdfpyT-

A
Then a string o is a true sentence if and on!y\iﬂ‘—a ig & theorem n
the language B, just constructed. The alphabet 91, of B, consists
of the signs |, p, and those of % . .\

The ahove remarks mean th%@vgimamlal,g)l_gpgynﬂ, our
happy moron can write down stép by step all bases over ¥ and
produce the corresponding triie sentences one by one. This is to
be expected, since these 4cts can be performed purely moechan-
icalty. We should € @t," however, that there is 0o mechanical
procedure for decidg% whether a given sentence ig true or false,
for non-trivial parts of mathematics can be formulated as canon-
ical, and thérefc}re as normal, languages, and it i reasonable to
suppose ‘g.héx,t non-trivial problems require prains. This hunch
can bps;s\\mtéd and proved rigorously:

) ‘wworew 4. The class of false seniences is not canonical, if A
y "b@nfains at least two signs.

Proof. 1f the class of false sentences i canonical, then there
is a conservative extension B and a string ¢ in the alphabet of
s such that a is a false sentence if and only if ais a string in A,
and oo is & theorem in B, . By sealing B, with a new sign
and by using a device like that of p. 171, we can construet a
language B, such that a is o falge sentence if and only if a i8 &
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string in 9, and 5 theorem of B, . Also, we may suppose, withoyt
loss of Zenerality, that, «)» and “p” gpe signs in 9,
The idea is to Set up a one-to-one torrespondence R between

thought of 45 5 “name”’ relation, ie, the proposition that o hag
the relation B tq % (denoted by “aRn") can be interpreted/as
Meaning that » g 5 ame of the string o, I et € be the class of

TLet “(3”, “I”, “4 1” f":‘is”, umn, “R;", L - u, u(n, H)”, “+”,_
“X*, and “G pe sigfisnot in 9, 'the alphabet of B, We con-
struct a pew langubge B, ag 1 ollows. Its alphabet ¥, shall consist
of %, together with the aboye Mmentioned new signs. We seal B,
with the signﬁ{'aé on p. 171, 56 that, o is a theorem in B; if and
only if eqe i{a’ theoremn in B: . We take also the gxioms

A\(l:";‘ila: Alb: Alc} Aldl Aa iy (?' = 1: Ty, n)!
‘A)As AEB} Aﬂa} Azcy Azd; Az“, Azp: Aﬂ‘SJ
and the Productiong
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and the productions N11, N12, N14-N19 of the last section,
which provides us with as much arithmetic as we need for the
present proof. .

"Phe relation between a string in {1, ¢, b, ¢, d} and its length is
characterized by the following axioms and production:

111, all, bll, ¢, dit;
odB, v15, Aa, Auv, N, Ns — aylpl.

It is now easy to define the desired name-relation . We wish
to use “1” as the name of iteelf, and agn igi 447 and 57 a8,
the names of “a”’, “b”, “c”’, and “d”, respectively, and if o iSany
string in {1, @, b, ¢, d}, then its name shall be the integek repre-
sented in the ordipary decimal notation by the stringin {1,2,3,
4, 5} obtained by replacing in o the signs 1, abe, and d by
their names. Thus the name of the string abpld!i shall be the
integer 234153, i.e. In unabbreviated for:;:l,;\\'

@ 3 (0 + (3 X (100 + (& XG0 + (1 X 10
. +(5 h 4 (10)) + 3. y@.ﬁbl'aulibral'y.or in
This relation may be defined Wlthm our language by the axioms
1R1, aR11, bRILY, cB1111, dR11111,
and the productions ¢\
Ay, Asf, 5Rtw, BRu, 1 — aBR(w X T) + ),
S T2 oy, p=v» — Ry,

AS
(Here “T"\:is’an abbreviation of the string 1111111111, which
denote{:ﬁﬁe integer 10.)
THaabove discussion shows that to each string « in
{138, b, ¢, d} there corresponds a unigue string v in 1 such that
~‘aRv is a theorem, and that to different o's correspond different
"v's.
We are now ready to construct the class € which packs the
wallop in this proof. We adjoin the production

eppre, BRy — E».
This completes the definition of the language B .
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astring in {1, % b,¢,d} and, ig its uniquely determined “name”,
~Hence Gy ig 5 theorem in 8, it and only if » ig the name of a
basis 8 gver {1, b} and is 2ot a theorem iy the la,nguage\corre-

and consequently, by theorem 2, there is 5 normal Yanguage I
with the alphabet, {1, b} such that @ ig preciselyn the class of
theorems in 7, which are strings in . Tet By be the basis of L.
Then -8,y is 5 theorem in B, if and only {85 is a theorem m
B, . Thus if g(8) is the unique » guch that ¥Ry is 5 theorem in
B , then for any basig 8 gyer {1, b} we'have that -8,pg(8) is a
theorem in 9, if gnq only if §g(g) s eorem in B, , which is
true if angd only if H8pg(8) is 0t a thsorem in B2 . In particular
Mg (8,) is & theorem in $, i andonly if i i not a theorem in
B, , which jg 5 co\gg%qlgm%@arym g.in

CoroLrary 4. If 8 isany canonical class of fulse sentences,
then there ;o a false sme\ribe not contained in, Q.
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are unsolvable by constructive methods. For L, this is an im-
portant theorem of Church, which was originally proved by a
somewhat different method.

Proof. Let f be a function such that for each « in language B
f(a) is a string in B which expresses the proposition that « is &
false sentence of B, . Seal B by a new sign ‘¢ and adjoin a new
sign, say “F", to the alphabet, and the production

ef(a)e — Feu

Since B is adequate for B; and the notions of “true” and "i@ls‘e"
sentence, then every true sentence in B, is provably truesin B.
Since 9 is consistent, no true sentence in B, i provably false
in B. Then Fa is a theorem in the language jusi;’constmcted if
and only if « is a false sentence in B, whose falsify’is provable in
@. Clearly the class of all such o’s is car;ox{ical, and therefore
cannot contain all false sentences. D

If B contains a notion of negation; th% for a false sentence a
such that f(«) is not a theorem in B ﬁ%iﬁl}er ‘E‘) nor its negation
can be theorems in B, Note that the negation off@Fit'a state-
ment in the language B Which:%e, observing % from the outside,
can prove to be frue, but which cannot be proved within B.
Thus any consistent 1 guage B satisfying the above conditions
will contain undegidable propositions, and there will be true
propositions expreﬁhﬂe but not provable in B.

Thus the decigion problem for the language B, is not golvable
in any canehied] Janguage adequate for the statement of that
problem, ‘The problem of inventing a machine for solving the
decisionproblem of B, is absolutely unsolvable. The language B
is a~$chiﬁc one with an alphabet of 7 + 8 signs, 6 productions,
and n -+ 1 axioms, where n is the number of signs in . For the
{\#dke of definiteness we seb down the primitive frame of B, for

the special case n = 2.

Alphsbet: 1, @, b, ¢, d, 4, B, S, b, -
Axioms: 4, 81, 8b.
Productions: Sa — Aen

: " Aa, Sg— Saf.
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Sa, A8, Sy — BaadBeyd,

Ba, A8, 8y —» Bagevyd,

Baag — Faaspa,

4y, 4q, Sz, Badserdg, f—-adacrdﬁpar'y —

Fadecrdgpyr.

We can “arithmetize’” 8B, by taking as the alphabet the digits
1,23 ..., 9,0, corresponding in order tq the above sigps,\and
making this replacement throughout the primitive framp.of48, |
thus: L >

Alphabet: 1, 2, 3, 4,5,6,7,8 9 0. ON

Axioms: 6, 81, g3, AN\

Productions: 8o —, 6. ¢

ba, 88 — 8ap. \\

8a, 68, 8y — Ta2584v5," L

7a, 66, 8y — 7By 5

Ta28 — 9a280a.

6y, 60, 87, Ta5adihy, 8050475806y —

s6iiigacy org.in

= (23X10%, if there ig 8 k such that 8§ x 10* <
J(n) = Q" 7 <9 X0, :
6 ,\ otherwise,

Simﬂa}*lﬁ..}o each of the othep productions there corresponds a
. certain e ementary arithmetic operation which, if the integers
opnga;fed upon have certain forms, yields 5 certain result, and
~obhérwise yields the number 6. Then the decision problem of 3,
ecomes the problem of determining for any given integer n
whether it can pe obtained from the integers 6,81, and 83 by a
finite number of applications of giy elementary arithmetic opera-
tions. The problem ean also be transformed into one of the fol-
lowing type: for g certain elementary arithmetic function 5
to determine for which infegerg 5 the equation S(@) = nhagan
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intcgral solution. (See Skolem [X1]26. Thus any canonical lan-
guage which is consistent and adequate for arithmetic will
contain undecidable sentences expressing elementary arithmetic
propositions. There will even be such sentences which we can
prove to be true by an argument in the syntax language.
I we like, we may take an alphabet of two signs {1, b} and
replace the signs of ihe above alphabet by blb, b11b, --- ,
51111111111b, respectively. We thus obtain a very simple lan- ¢
guage in two signs whose decision problem is unsolvable by any
machine. S
The proof of theorem 4 has & very simple meaning, We'may
think of a basis a8 a statement, namely the joint stgtement of
all the theorems in the corresponding language, apd'the integer
i, such that By is a theorem, as a name of that statement. The
sentence Spr may be interpreted as an exp gion of the propo-
cition that the statement 8 asserts that the statement whose
name is » is true. The class € is the class.of names of statements
which do not assert their own truth. If the class of false state-
ments were canonical, then t e vl | eany stafement So
asserting the truth of all staféments and oply those statements
which do not assert their gwn truth. The contradietion is simply
that if 8, asserts its ows{ truth, then its name is not in €, so that
8, does not assert it own truth; and if B, does not agsert its owm
truth, then its nameis in G, so that 8, does assert its own truth.
Thus S, is exaetly the kind of statement which is made in the
Epimenides ‘paradox. The theorem says that a canonical lan-
guage Wl{ic\_h" gave an exhaustive definition of falsity and which
had rﬁﬁcﬁinery for expressing names would give rise to this
pa.ri;;dox. :
.. (" These results, anticipated by Post and Finsler, and published
{\With rigorous proofs for the first time by Godel, show that no
consistent canonical language ean be adequate for the expression
of mathematics and at the same time be capable of proving all
true propositions in elementary number theory.

The undecidable proposition which was constructed by Godel
is one whose intuitive meaning s that B is consistent, Thus
Godel’s proof shows that no consistent canonical language can



own adequate languages are itemplete ang not provably

eonsistent by the modes of reagdning which they express, and
the only gafe (ie. progglbalmg{)gsgs&mﬂnones are inadequate.

W W
o
".'

EXERCISESg L

CNEx 4. (a). Prove that the clags [7 of bases of normal lan-
8uages in a given alphabet {1, p, » 7, 6} in
Which «q7 ;o 2 theorer g €anonical,

®). X iy the basis of 4 hormal language £ in the
alphabet, {1 by, .., b} and a, is g string in 1,
@ 7 1, let “ov 8 sign not in the given alpha-
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bet. In each of the productions and axioms of L -
replace “1” by “21” and “b” by “2b,", i = 1,
.-+, n. Adjoin the following productions, where
k is the length of e : '

9121 «-- 2a — 02 (k 2's n datum),

120 — al.
Prove that “1” is a theorem in this new language
if and only if a, is a theorem in L. X\

(¢). Prove that the class of normal hngua.ges,i‘\%’

(1,4, - ,a]) in which 17 is not a theor@is*

not canonical. ‘}X



APPENDIX 1 CANONICAL FORMSY OF
L., L, anp L,
L,
Alphabet:

N
0} lr a}f} () ): DJ N! I; F: ‘S} @J =} |! |_J’%\{)’ ﬁ’
Z,U. \/)
Axioma: Al
A2,
A3.
Ad,
Ab,
A6,
A7,
A8 ) = )
ww{}%hlaﬂﬁr@y org.in

. N=“‘N

Wiogopon==®
f“\.‘"‘!g —_ o

Y,

&

Produetions: P1 .»'\Za - Zao.

b :\P4.

. 2§Urx = Ual.

Pa.
6.
P7.

Pg.
Py,
P1o.
Pi1.

Pi2.

I'13.
P14,
Pis.
P16.

Za — Iaa.

Ua, Z8 — Fofag.

Fifa, I — EfaB.

Ua, Falfg, Iy — FafBy.

G — S~a.

@ar @.ﬁ — @(Q’ ) 8)

Se, I8 - S(B)a.

i_a; i_(a o8 — ]'-18

Fe, 18 — H(8)a.

G, €8, &y - H{e D (B )
D{aDB) DDV

Ca, 88 > Ha D (8 D a)).

Ca, B8 —{(~a D ~8) D B D a).

o = ﬁ —-)B = ry,

a=-8;r8=7_’a=7-

182
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Pi7. a = g,y = & — ay = Ai.
PlIR. a8 8 # a.
Pl9.a=88Zy a7
P20. a = 8,7 # & — ay ¥ i
P2l. a # B,y = 6 — ay # §4.
P22. Zo — a # ca.

P23. Ia — ala.

P24. I, I8, o 5% 8 — allg.

P25, U, Z8, Iy — vBfeB. R
P26, Ia, Fafy — alfya. O

P27, Ia, I8, Fyfé, offf8, a = 8 — aﬂfﬁﬂ 2
P28. Ia, I8, Fvf35, a0f8 —>a0faﬁ g
P29. Ia, @5, a0 — a0 ~B. N
P30. Ia, ©8, afif — o ~8.
P31. Ia, @8, Sy, ol — aﬂ(ﬁ\B v}
P32. o, ©B, Sy, aly 68 D 7).
P33. Io, €8, Sy, o, &y — BB D V).
P34. o, &8 — aﬂ(ﬂ)!&ww dbraulibrary.org.in -
P35. Ta, I8, Sy, dly, a # B — ab(B)7.
P36. o, I8, G elly — ofi(B)y.
P37. Ia, I3/ — S(alsly) = 7.
P38. Ia,d@— S(2|Bi8) = e
P39, FaplB, Iv; Fofe — S(allfty) =
O Slalslf £)8(a|Bly)-
WD, e, 18, Sy — S(alf|~y) = ~S(aibly).

~Pil, fa, 18, ©7, S5 — S(efflly D &) =

(Stalsly) O 8(alB8))-

P42, T, I8, Iv, &8, 0 = v, 87 v
SlalBl(r)8) = (V)S(=ifla).

P43, a = 8,1 |_

P4, I, @8, Sy, offs — H{(@)(8 D v) D
B D (@vh-

P45, Ia, I8, &y — HBY O S(a|ﬁl’)‘))

“Jo' means e I8 AN individual’
“Fafg’ maeans “f8 isa function of degree o',
“Gq" means “a is a gentence”.
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L;
Alphabet:

Axioms:

“S(alBly)”’ means “the result of substituting o
for §in v.”

“04"" means ‘e oceurs free in 7.
“off3” means “‘a does not occur free in 37,
“Zo' means “a is a string in o”.
“Uea” means ‘o is a string in 17,

. A
05 0
N

\
W

(; ); E: 9; ~ D, a, b, v, V, @, T,A
#:gsssiasa 3, /\,1"-

Al Aa.
A2. Bb.
A3 (= (. '\
Ad,
A5,
A6, N\
AT, ~ = o~y WV

——
-
%

Wm
[

wm
Z

wwﬂ&b@u&b@;&{-org-lﬂ

AS. @ =a’
A10. b=,
Alk'\v = .

Productions: \\Pi Aa — Aaa.
- X, VP2, Ba — Bub.

>
s
AN
£ )
x'\w
'S
\../
T\
W
..\\;‘
r‘\: N

2
4

P3. Ae, B — VvBa.
P4, Vorg — Tavp.
P5. TorB, Tabvy, Ba — &8 € vy).
P6. ©a, VBry, B3 — Ty D a.
Pr. € — g,
P8. Ga, &8 — &{a D B).
P9. &a, Vpoy, B — Sry)a.
P10, Asin T, .
Pi1. te, Vguy, B8 — Foy)e.
P12-P21. Asin L, .
P22. Aa — ¢ # ae.
P23. Ba — b # ba.
P24. Aw, AB, By, Bé, a 3 8 — ay # B2



P25,
P26.
P27.
P28..
P29,

P30.
rai.

P32.
P33.
P34.
P35.
P36.

P37.
P3s.
P3g.

P40.

P4l.,
AN

P42,

A</

o P43
“\.‘~

P44.
- P45.

P46.

P47,
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Ae, AB, By, Bd, v # § — oy #= 5.
Be, BB, Vavy, TBed D ¢ Sy # s DL

Bea, Vo — 08,

Ba, BB, Vavy, VBrs, vy 5 vé — vyliné.
Bo, Bs, Tear, Tabvy, Vv, videg —

0B < vy).

Ba, BS, Tavd, Tabvy, Vﬁug‘, vy —

2E0(vs € vy).

Ba, Bs, Tavg, Tabvy, Véef, viles, O

vifoy — viBE8 € vy). O
Sa, VBry, Bf, vyla — vyd~a. .\
Sa, Vevy, BB, vyl — vyl~o
Sa, S8, Vyvs, By, vila —-)mMO(a D) ﬂ)
S, &8, Vyrs, By, 1808 250{c O 8).
Sa, &8, Vyvs, By, m}ﬂg, vofs —

véfa D ).

\.

@a! Vevy, Bg '_? ().
Sa, Vvy, Hfi’mﬂi‘}%"} byagy.org.in
Sa, Vavy, Y&vg', Bg, Bs, vy # vf, vv0a —

‘U'yO(i)j‘.)u.

Sa, VB, Véug, BB, B, vy # v, vy —

(?ﬁ(vf)a.

Sa, Vevy, Vv, B, Ba, vy # vf, vyla —

vyl = o

@a, Vovy, Vil, BB, Bi, vy ## v, vyfo —

pyfel 2 a.

Tavs, Vyus, Ba, By, vé; —

S(pv|t) = ¢

TowB, Vyvs, Ba, By — S(¢8|pépd) = vg.
Tewd, Tyvs, Tybot, Vb, Bw, By, By —

S(slps|(ws € vi)) =

S(zBjpolp)).

(S(ohlpdied) <

T8, Vyr3, ©f, Ba, By -—-bS(vB]va] ~E) =

~S8(o8lvsl$)).

T, Vyvd, €F, @ﬂ?-Ba, By —
S@alpdl(s D M) =

S(ivdin))-

(S@aipals) O

o
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P48. ToawB, Vyus, ©f, V8, Boy, By, By, v8 #
v8, v8 # v8 — S(eBpd|(pe)l) =
(v6)8(vBlvs[2).

P49. Data of P48 — S(uBlpdjrs D ¢) =
v8 D Slrélr).

P50. a = 8, |a — | 6.

P51, VavB, Ba, Sy, €35, vy — N\
@B D 5 D (v D @) A

P52. Voug, Towy, ©8, Ba — ~
o) D Serbsle). O

P53. Go, &8 - S{a A B). "4’ N

P54. Ba, S8 — H((a A 8) D o 3 ~B).

P55. Sa, @8 — [(~{a D XB) D (a A 8.

P56. Ga, B8 — S(a = S\

P57. ©a, B8 — H(a rm—\ﬁ Dla>B) A
(8D N

P58, ©a, €, -—>1—(((a 28 A BDa) D

W W, dbt’au ﬁ’){)y ©Org.in

P59. Sa, Vary, B8 — &( Jvy)e.

P60, Sao, Wby, B —H( Fvm)a = ~(vy) ~a).

P6l. Yewi, Vobog, Vabug, Vabbet, Ba —

O HED (s € ) = (r Ewm) D

& (@t € 06) D (o0 € 08))).

P62, S, VPom, VBuk, BB, vifla —

Interpretation:

FH( JvE)(om) (v & v§) = o).

P63. ©a, BB, Vg, VB, VEbve, vile —
Hir €D &) = (Jud) (g Evf) A
@D (et € v5) = a))).

Pé4. &a, BB, VBuE, VBbul, Vabboy, vlfa —
@t D aC ey = (3D € v) A
@) (vt € o) = a))).

“Aa” means ‘o is & string in ¢,

“Ba'' means ““o is a string in b,

“VavB"” means “v8 is a vanable of type o'".

“Towf’ means ‘o8 is a term of type o, if a is a
string in b”,

The other signs are interpreted as before.
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Alphabet:

Axioms:

Productions: Pl.
P2
P3.
P4,

NS
Q
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{ )r &, 3, ™ :)J a, o, |"1 V: @’ Tl A: =, 0, =,
= AL

=
R

P5.

g

oy i
CTuum
G

D
w7

a
v .
. [—((maa)((vaaa & va) ={vace € vag)) D

{{vagaae & wva) D\L(va & vaaaa) )
{vag & maa)))K

Aa — daa. M
Ao — Vv&\/\-.(w dtbrauhbl fary.org.in

Va — Ta
Ta: Tﬁ.——r@(a e 18)

Ba,, Vﬂ"—-> T8 3 o

PG—PT P7-P8 of L; .

@ia VE - &(B)e.

Pg \PIO of L .

R0

Fa, V8 — HB)ex.

N“P11-P21. P12-P22 of L] .

,\ P22.
O P23.
P24.
P25,
P26.
P27,
P28,
P29.
P30,
P31,
P32
P33.

Vo, T8 D v > a = 82w

Ve — ola.

Va, VB, & &= 8 — afif.

Ta, T8, Vv, v0a — v0{a € B).

TQ'; 7s, V‘f} 08 — 'YO(Q' = ﬁ)

Ta} T-S! V‘Y! 79‘11 7“’3 — Yﬂ(a &< 8).
Ba, VB, f0a — S0 ~a.

Sa, VB, fla — B ~a.

Sea, B8, Vv, v0a — 4Ma D B).
Ba, &8, Vv, 108 — v0(a D 5).

Ge, ©8, V7, vha, v8 — vﬂ(a o8
Sa, VB — pB(Ba
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P34. &a, VB, Vv, 800, B > v — F0(y)e.
P35. Sa, V8, Vv, 88a, B % v — (7)a.
P36. &a, V8~ 588 D o

P37. Data of P34 — 80y D a.

P38. Data of P35 — g6y = «.

P39. Ta, V8, 8y — S(alfly) = 7.

P40. Ta, VB ~> S(alf]f) = . S
P4l. Te, VB, Ty, Ts — S(alsl(y € 8)(%,
S(«|8lv) € S(s8)). 'S )\

P42 T, VB, &y — S(alf] ~v) = 3~>S(al8l).

P43. Ta, V8, Sy, &5 — S(aljfD 8)) =
(S(alBly) > S(als|a)L"

P44, Ta, VB, Vy, 38, a Z\gv8 = v —
S(alBI(r)®) = ()8(alsls).

Pd5. Ta, VB, Vy, @8 a/s v, 5 7 —
S(a!ﬂ}ll;a‘ﬁl_) = v 3 S(al8]8).

P46, o = 8, bo kg

PAT S BEIOG  L(v)a D 8) D
(D' M8Y.

P48. Ty W8, &y — H(B)y D S(alBim)).

P49-F34. P53-P58 of L/ .

P5558a, V8 — &( 38)a.

P56, Sa, V8 - H(IBa = ~(8) ~a).

SOFST. @a, VB, Vy, Vo, 8 5 v, 8 5 5, v # 6,
P\ Ao — - IBHONH( € B) =
N (v € 8) A ).
0" P58. @a, VB, Vy, Vs, oo, v # 6, 8 = 6 —
O Hr €83 a) = (I € & A

(BH(B € &) = o))). _

P39. &a, Vg, Vy, Vi, éfa, v = 5, 8 % & —
HEDa€y) = (355 € v N
BY(B € 3) = a))).

Interpretation: “Vo” means “« is a variable”.
“To” means “o is a term”.
The rest as before.

2 8

In order to put L, into canonieal for:h it would be simplest to
use Hailperin’s formulation [IX]1.
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APPENDIX 2 ALGEBRAIC APPROACH TO LANGUAGE.
CHURCH'S THEOREM

Just as the notion of a logie of classes or propositions (and
presumably of logie, in general) can be framed as a deductive
science, 5o can the concept of language be profitably studied
from that point of view. If we consider sirings, including the {\.
null string, in a given alphabet, and their behavior with respest;
to the operation of concatenation (the formation of af from g and
8), then we are led to the study of a special type of algebra.-We
shail now formulate this notion as a deductive sciencé, ™

TUndefined terms. A class C, a binary operat.io"r:l;-\dénot.ed by
juxtaposition or a dot, and a binary relation =)

Postulates, o)

PL. Tfaisin C, then a = a. O\ )
P2, Ifa = b, thenb = . \-{Ww'fdbr_aulibrary,org,jn
P3. Iig = bandb = ¢, thedr = ¢. -
P4 Ifa = bande = 4 anl's, b, ¢, d are in C, then ac = bd.
P5. If @ and b arc in.C, then ob is a uniquely determined
element of €. '
P6. If @, b, and otawe in C, then {ab)e = a(be). _
P7. If a, b, and are in ¢, and @b = ac, then b = ¢.
P8. If &, byand ¢ are in C, and ba = ca, thend = ¢ _
PO. H o, &) and d ate in €, and ab = cd, then either there
49%:1 x in € such that ax = ¢ dr such that ex = a.
D1 Mvunit is an element z of € such that 2z = 2.
D2\ A prime is an element p. of ¢ which is not 2 ufnt, and
A% such that if zy = p, then eitherz or y is & unit.
\m VP10, There is a unit in C. o - _
P11, If a is in C and is not a unit then there are primes p and
g and elemenis 2 and y in C-such that @ = pzr = ¥g.

We shull eall 2 triple (C, ., =) satisfying these postulates a
script. A language is o script together with: certam rel_a.['.lons
which define a syniaz. The alphabet is simply the class of primes,

" which play the role of the primitive signs. In order to charac-
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terize the usual types of language it is convenient to introduce
some other algebraic notions. '

D3. aisa part of b (in symbols “a C ¥"*) if there are elements
z and 4 in € such that zay = b. We say that a is a
proper part of b (in symbols “a C ¥ if @ © b and
a #= b Q)

D4, The descending chain condition is said to hold in ¢ if there
is no infinite sequence {a,} of elements of ¢ sug’ff'fhat
1 C a, for all n, v M

It is easy to show that the descending chain cqnﬁi-tion holds if
and only if each element of ¢ has a factorizatien into a “prod-
uct” of a finite number of primes. Such\a factorization, if
possible, is unique, both as to the prime faetors and their order.
Thus in a seript with descending chain edndition, every element
can be spelled uniquely in terms of fhealphabet. For our present
purposes, however, it is unnecegsary to assume this condition.

We can formuléfi‘é"ﬁh%bﬁ%%ib%n%fyaoé&fﬁt within L, . Let “M”
denote the string “f1110”, %" denote the string “f10”, and
“E” denote the string “f116”, so that C, E, and M are functions

- of degree 1, 11, and 1 M respectively. We may interpret “Cz* as

meaning that » isin)C, “Exy” as meaning that z = g, and
“Mryz” as meaning that z = xy. The postulates are now ex-
pressed in L, agfollows: (We supplement the language L, by the
usual definitions of “A", “y " “=" and “3” and adopt the
use of deffor brackets, and denote the strings “‘a0”, “aly’, - - -

by ¢ :;iﬁ’uazn, e
RS
B (a)(Cay, D Ea,a,).

O P2 (0)(0)(Bna, D Eayar).

) |

P3.  (a1)(e.) (@) (Eea; A Eoay O Ea,a,).

P4. (al)(az)(as)(aq)(as)(%) Cay A Ca, A Caz A Ca, A
Eaa, A Bayo, A Mayaas A Ma,a.as D Ega,).

Pa. (0:)(a:)(@2)(Cay A Car A Maya,0: D Cay).

P5b. (a,)(2:){ J@5)(Ca, A Cay D Maya,a,).

P5e. (a))(a:){as){@)(Ca, A Ca; A Ma,a.0,, A Ma,aa, O
Easu,).
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P6.  (a.)(e:){as) () (as) (@) (Cas A Cay A Cas A Ma,a,0, A
Ma,oa0; A Mayas0s O Ma,aess). i

P7. (a)(a2)(a:)(@)(Cas A Caz A Cas A Moasa, A
Ma,gaes D Eayas).

P8, (a)){an)(a:)(a)(Ca; A Cas A Cay A Mazala'-i A
Maza,a, O Eayas).

P9.  (a)(a:)(a) (@) (a:)( Ja)(Car A C“s A C"‘a A Cas AL\
Maa,a, A Masaas .. Cas A Maaas V Mﬁaﬂnfh)

We use “U" to denate the string “71000” and “P” tof dénote

the string “£10000”, N
D1, {(a)(Ua, = Ma‘la'lal) . \ o
D2. (a)(Pa, .=, Ca, A ~Us A (ag)(aa)(Mazaaal A

Caﬂ A Caa D Uﬂ-g A" Uas))

P10. ( Fa)(Ua, A Ca,).

P11 {a)( Ja2)( Jas}{ Jau){ 3%)(‘0&1 A ~U61 D Pﬁs A
Pa, A Cay A Cas A Maja@a&bra lﬁfamal)

brary.org.in

Let “p” denote the sentenge “Pl AP2A-- APRADLA
D2 A P10 A P117. We shall now adjoin some further. camp:::-
nents in order to expréss the language B, (p. 177). I:Bi' “Aq
YA, e, A ”‘amd wp denote the strings “f10000”,
£100000”, - 000 --- 07, where the ]ast has 14 0s.

“Ag" shaJi mean “z is “17 7,
“A,x" ghall mean ‘'z is “a” ”
N
‘.‘A% shall mean “z is “8” ",
“‘T-'B” shall mean “z is a theorem
JBla. (a)(Aa, D Pay). E =0, - , 9.

Bib. (a,)(a:)(As6: A Atz D Eala,) G=0--,9
Bie. (@)(Pay, D Adea: V 41ty V Y uﬁh)
Bld. (a)(a.){(d.a, A Asas D ~Ea1ag)

(%J - 0 9 § # J')

B2, (a,)(4:a, D Tax) '
B3' (al)(ag)(aa)(Aﬂal A Aaaz A Mﬂrlaz“s D Tas)
B4 (al)(ag)(aa)(Asal A Agts A A Ma,tqt ] Tag).
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BS.  (a0{a:)(ms) (a.) (s) (as) (@r) (@s) (A st A Cay A Maa,as A
Tay A Agay A Cas A Masasas A Tag A Ma,a.a, A
Maaa; O Tas),

B6. (a)(e.)(as)(a.)(as)(deay, A Ca, A Ma,aa, A Tay A
Ay A Maa,a; 5 Tas).

B7. (a)) --- (@)(dots A Caz A Mayaya; A Tay A Asaq A
Cas M ﬁf@taaaa A Taﬁ A CG—; A Mﬂlﬂyaﬁ A T(Ig 2N
Aotts A Magttattio A Ay A Ma,a, A A‘ga\l{ A
Mapaao A Maosa,s A Adsgy A May it A
May .00 A Man;ta O Ta,s). A\ by

Here Bia~B1d express that the signs 1, - - - , S,f"o;'m the alpha-
bet of the script €. B2-B4 express the axioms\af B, . B5-B7
express the first three productions of 8, . In'a'similar manner we
can write down three more sentences, B8B9, BI10, expressing
the last three productions of B, . Let&‘?j” denote the sentence

Bla A Blb A -« A BI0. The equation z = a,, --- a,, , Where

for each j, a;, is in thamphahek elofpincan be expressed in 7.,

thus: o

(da){(Ja) --- (13 17{23&‘-:2}(-4&.31 A s A Ajae AMagg .,

A Maki-la’sak-i—z&f:\ e A Ma‘ﬁ—zakz)s

which we shall d\g@o’ne by “J.2”, where « is the corresponding
string in B, . Then the proposition that the string « is a theorem
in B, is expressed by the sentence

D
:"\.‘.

- PA GO 8ra) Tty D Ty ),
whreh we can denote by “&(a)”. Then

4 o\' 3
\"\3 v , : FS(a)
is provable in L, if and only if « is o theorem in B, . Since the
class of non-theorems in B, is not canonical, it is impossible to
give s mechanical procedure for deciding which of the sentences
©(a) is provable in L, . This proves Church’s theorem that the

decision problem for L, is unsclvable by any mechanical pro-
cedure.
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By the procedure of Kalmar and Suranyi [IV]i, fo each sen-
tence S{c) we can congtruct a sentence of the form

(1) ( Jad e} Fea)(a) -+ (6)S4(a),

where &,(a) is 2 Boolean function of sentences of the form
“f110a.a;”, and such that -&(e) is a theorem of L, if and only u‘
the corresponding sentence of the form (1) is provable in EQ
Thus the decision problem of L, , even for sentences of thfwa{n
paratively simple form (1), is unsolvable’ by any mecﬁamcal

procedure. 7
7 ‘s ‘
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BIBLIOGRAPHICAL AND OTHER REMARKS

I1. The first to attempt to formulate logic as a deductive science
with a precisely constructed object language was made ‘b
Leibniz [1}. His work, though not very successful, was a1 imn-
portant stinulus to others. The first systematic and compata-
tively successful treatment of logic from this poinj:ng\'view is
Boole {19]1. Boole used 4 (p. 3) as a basic operation, but
assigned a meaning to « -+ 8 only if & M 8 = 0. Fbr treatments
of Boolean algebra with + as basic see StonaJ499]3, Bernstein
[T168, Newman [VII]123. A

The identity f(a U 8) U f(a M §) £07(a) U 1(8) holds in
general Post algebras. (See.p. 52). ‘The general proof is similar.
This answers & questiodloh MhclnerfVii ] 124.

I2. The postulates used here are due to Byme [XI]85. Others
have been given by Huntington [122]1, 3, Sheffer [106]2, Bern-
stein [239]1, 2, 24, Whiteman [I1]91, Hoberman and McKingey
{YI]172. The last authors'use T1.1.41 as the sole “formal” law.
See, however, Churth’s review [11]172. Church’s criticisms ean
be met, at the expense of some extra primitives and postulates,
by means of #ery simple device.

The notioir\of a deductive science was first brought to the
attention éf'a large public by Hilbert in his work on the Founda-
tions‘QﬁGeometry. (English translation, 1002, Open Court Pub-
lishing Co., Ill.). The germ of the idea, as applied to particular
geiences goes back at least as far as algebraists like Peacock,
)Galois, and Hamilton, and geometers like Gergonne, and was
further developed in particular applications by many mathe-
maticians such as Pasch, B. O. Pierce, Peano, and Dedekind.
An excellent discussion, with emphasis on the corresponding
object languages, will be found in Curry [VI]100.

A great deal of nonsense has been written even by otherwise

194



195

gompetent authors, on the relation between Boolean algebra and
the Aristotelian logic of classes. The fact is that the latter js con-
sistent and can be formulated as a perfectly good deductive
science; see e.g. Curry [[]L14. Many writers interpret Aristotle'’s
“a1l o’s are §s” by “a C @7 and his “some o's are 85" by
“p M 8 5 07 for arbitrary elements in & Boolean algebra, and
then find that some of Aristotle’s valid moods do not hold. This,
they say, shows that his logic is fallacious. There is, however,
no reason why this particular interpretation must be accepted-as
the only one; rather, the consistency of Aristotle’s system and
the failure of this interpretation show that this one canhet be
acoepted. An acceptable Boolean interpretation has been given
by Smith [259]8, 24. (See also Miller [IV]121.) A gimplification
of his interpretation would be to consider the dass C, of all
elements of € except 0 and 1, and to interpret Aristotle’s
“categorical forms” as above. The whole ‘obAristotle’s logic of
classes holds for the elements of C, . I ﬁ%uld be easy to set up

a deductive science adequate for th(’%)theﬂy of classes on the
Aristotelian basis. (The logie o?’.‘;&\rf’fs 16 18, i itseft, hot quite
adequate for the treatment of\gtich operations as M.} The ad-
vantage of Boolean algebrais its simplicity and just its alge-
braic form. It is interesting to contrast the theory of Quine
[T145 (no null class), #hab of Zermelo (L, in II13) (no universal
class), and that of\Aristotle (neither null class nor universal
class). In the vor{ Neumann-Bernays version of Zermelo's system
(von Neumann([299]2, 5, Bernays [11]65, Godel [VI]112) there
is, indeed /@ universal class, but there is a distinction between
d Sets, and the universal class is ot a set. (See Quine

classes\an
[V]{{i:e;:%. 165.)
_J8yAn account of finite Boolean algebras, with referénces, is
given by Bernstein [239]25. The structure and representation of
Boolean algebras was first investigated by Stone [I]J118 and
Tarski [285]18, [1]71, independently and from quite different,
bhut equivalent, points of view. In this section Stone’s approach
dominates, while in I3 we give an account of some of Tarski's
idens. Many of the results of this section have been generalized

by Birkhoff and others to lattices.

Q"
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Theorem 7 was first proved by Stone [1]118. The proof here
is adapted from Frink [VII]39.

We should like to call attention to the very interesting prob-
lems which arise when one attempts to set up the logic of
relations as a deductive science. See Tarski [VI]73, McKinsey
[VI85, Everett and Ulam {XI]85. There is also some recent

unpublished work of Lyndon. N\

IIt. The observation that the logie of classes and the logieyof
propositions are different models of the same deductive stierice
is due to Boole. Yy

The first systematic treatment of the logic of propositions
by means of truth tables (i.e. tables for the determinations of
the truth values of Boolean functions of propesitions) was given
by Post [280]1. This method was anticipated by Schroder [42]10,
among others. ".\

The distinetion between the syntax a,n\d the objeect languages
mentioned on p. 81 is sometimes oxqei-ldoked, even by competent
authors. This hasdedy dbwuditddtiesr stin flagrant errors. (See
p. 50).

I12. The postulate set Al”-’A?” is Lukasiewicz’ modification
of Frege’s set (see Church [X]19},

There is a wide p{b&ﬂ superstition that formulations of the
logic of propositian%must be of the type A17-A7" that systems
of the type AANALY are appropriate, say, for algebras and
other deductive’sciences, but that the logic of propositions is
unique .ir;:‘f}fat such systems are inappropriate for it. The
mysticalwirtues of using an undefined clags (or “predicate”) T
rather than an undefined relation £ have been dogmatically
asferted. without any cogent explanation. The rite of writing

§F” before a sentence instead of “is jn 37 after a sentence
has also been attended with almost religious awe.

Assumptions of the type of A2” and A3" are called Tules of
closure. Often a distinction is made between assumptions of the -
type of A4"-A6" (called ‘“formal laws™} and those of the type
of A7” {called rules of inference). The distinetion is rather
tenuous. In an exaet analysis of the object language, as on
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p. 158-159, no obvious general difference appears, unless one
regardg it as a serious logical matter that the premises of one
rule séate that certain elements belong to the class C and the
premises of another state that certain elements belong to the
class T. Sometimes the situation is disguised by pufting assump-
tions of the type of A2” and A3" in the form of preliminary
remarks and then omitting an explicit statement of the premises
in A4”—~A6”. Then these rules are called “axiom schemes”, with
the convention that the letters ‘“p”, “‘¢”, and “r" may bewre-
placed by names of arbitrary elements of C. The procedurd My
again be given mystical connotations by the ceremony of ysing
German letters as names of names of arbitrary elements of C.

The use of dots as brackets was introduced by Peano [71j1, 21.
The simplification used here is due to Curxy: [11]26. See also
Turing [VII]146. \

The set Ala-A3a, Rla, R2a, is taviiﬁfom Church [X119.

The set Alb-Al0b, B1b-R17b, i8(3) tanonical form of Ala-
A3a, Ria, R2a, in the sensé of Dost 'LVIII 50. See also IV2. In
such a formulation the role of?i'ﬁ%ﬂi%ﬁiﬁulls' Tellwcell&td' the pre-
liminary instructions and thelfiot of recognizing specific strings
as being in the forms of the data in a given rule. '

A different method of Incorporating the operation of substitu-
tion in a more gedéyal object language has been given by
Chwistek and Hésper [IIT]1. In [ITI]120, the reviewer confuses

' the interpretation of substitution in the syntax language with
its meaning &8 determined by the formal properties within the
object lafignage. This error is also committed in [IT]170.

IIIi:'}he methods of this section and most of the material
_oaitie from Tarski [285]18, [1]71, supplemented by the ideas of
\\Stone. Concepts of consistency and categoricity essentially
" equivalent to those discussed here were already introduced by
Post [280]1. Related concepts may be found in Camap [IV]82,
[VIII36, [VIIT}81. '

A number of notions used by Wittgenstein [281]1, 2 and

Carnap are very neatly explained by the algebraic approach,
escription ariges nsturally

For example, the concept of a state-d
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from the device used by Tarski [285]17 and Stone [I11]47 for the
construction of atoms in a complete distributive Boolean
algebra.

The notion of truth value may he regarded as a special
case of that of probability, which is, in turn, essentially equiv-
alent to that of measure. (S8ee Kolmogoroff, Grundbegriffe der
Wahuscheinlichkeitsrechnung, Berlin, 1933, Cramér, Methodsdf
Mathematical Statistics, Princeton, 1946, Reichenbach [430}4,
Koopman [Vi153, [VI]34, [VI]163, Kleene and Evans [F¥120.)
In most of the precise treatments of probability the ‘golfcept is
defined on an algebrs of classes. Since propositimis also form
a Boolean algebra, it should be easy and degirable to treat
directly the notion of the probability of a propesition.

. A
I14. The fundamental papers on man&k&lued logics are Post
[280]1, Lukesiewicz [186]4, Lukasiwicz and Tarski [407]1.
Further discussion of Post algebras’may be found in Webb
1532]1, {1}42, [IIIIMbWﬁﬂﬁ{’X},lQSgMet of postulates and a
development as a deductive‘sciéiice oceurs in [VII]124, A method
for carrying this out is also-indicated by Post, op. cit.

Rosser and TurquejteM[X]61 have presented as deductive
sciences many valugd)logics which are not necessarily func-
tionally complete X\ Other treatments are given by Wajsberg
(43711, Slupecki(TT146, [XI]02, [X1]128, Bochvar [IV]98, [V]119,
[XI]129, antl FErink [IIN]117. For a treatment of quantification
in many yalued logic see Rosser and Turquette [XITI}117.

In ﬁq‘néction with the “paradoxes” of material implication,
Rusdell* was once challenged to deduce that 2 = 1 from the
.p{bp'rosit_ion that Russell is the Pope. His proof was “If I am
\tbe Pope, then the Pope and I are one. Since I am not the Pope,
‘then the Pope and I are two. Hence 2 = 1.

) More detailed discussion of material implication and deduci-
bility will be found in Lewis [215]9, Lewis and Langford [456]1,
Nelson [411]1, 2, Bennett and Baylis [526]1, [IV]04.

Thf: relations between the intension and extension of classes
are discussed by Carnap [XTII1]237, Quine [VIII]45, Church
[V]162, [V]163, [VII]100, [VIII[45, Russell [VI]29. The older
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work of Frege [49]5, 8, 10, 16 and Russell [111]9 iz of great
importance in this connection.

Expositions of intuitionistic points of view are given by
Brouwer [155]7, 10, 20, Weyl [192]2, 9, [XI]103, Het ting [385]2,
3, 10, Dresden [308]1, 3, Lusin [403 1/2]. Interesting interpreta-
tions are given by Kolmogorov [314]2, Godel [418]11, 12. The
postulates given here are those of Gentzen [442]2. See also the
papers of Heyting, Gadel, Glivenko [381]2, 2, MecKinsey [[V]155,
Wajsberg [I111169. Fundamentally important contributions™to
intuitionistic logic have recently been made by Kleene IXJ169
and Nelson [XII}93. Examples of proofs of a cIa%icﬂ~j:ﬁEorem .
by intuitionistic methods can be found in the Amerpiéan Mathe-
matical Monthly, vol. LTI, 1945, p. 562, and the _papers cited
there. \

Huntington [I1]91 has given a deta.iled\\ga,ccount of Lewis’
system, exhibiting clearly its relat.iong‘\ﬁto the Boolean logic.
Other papers on connected problemsdre) ecker {35117, Church-
man [III}77, Vredenduin [IV]73 ’dPémrry JIV]137, McKinsey
[V]L10, [VI]177, McKinsey and ‘Tt (XTI bt [V]150.
An important interpretationief Lewis’ system has been given
by McKinsey [X]83. See alse Fitch [XTII]38.

Miss Barean, [XI]L, {15, [XTII}12, has made the first attempt
to develop modal logic'beyond the propositional logic. Another
approach (not ypt\i Ity worked out) is due to Carnap [1X]33,
[XTTI1]237. Seme’of the difficulties of interpreting such systems
are also discussed by Quine- [XIT}43, Smullyan [X11]139,
[X111]31,/nd the reviews by Church mentioned above.

. Note'that the version given here of Fitch’s model of Lewis’
sygherr\L is essentially the same ag taking the system F, of 1112
aitd defining PA, for any 4 in § , as the element B in §, such
\that _
F Ba = (39)(4y)

for all @ in &. If & has a finite number of elements, then this

coincides with the construction on p. 61.
For expositions of Smith’s ideas see Smith [250]27, [IIM3,
Churchman [VIII]53. Mrs. H. C. Doob and the author havs,
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in an unpublished paper, presented Smith’s system as a deduc-
tive science. . :

The investigations of Tarski and McKinsey are contained in
[VI]117, [EV]26, [1X]96, (XT3, [XTIII]1.

The importance of discussing logical questions on the basis
of precisely constructed object languages is very aptly empha-
sized by Church [V]78. . N

ITIl. For an excellent and not too techmical expositjgit~ of
+ Godel’s and Chureh’s theorems see Rosser [IV}53. More detailed
aceounts of these and related matters appear in Gédel [418]3,
14, Gentzen [1]75, (IV132, [IX]70, Hilbert-Bernayg (B07]1, [V]e,
Goodstein [IX]33, [X11]123, Rosser f1187, [11}129y

III2. A similar approach to the functional Jagic has been given
by Notcutt [503]2. RS

Formulations of the corresponding, ebject languages are to
be found in Hilbert-Ackermann [365]1; Hilbert-Bernays, op. cit.,
Church [X]19. wwwdbrauljbp;a’r‘)}:org.in :

The infinite list of postulatésiean be avoided in several ways.
For example, by the aid “of devices due to Skolem [1T}88,
Kalmér [TTMS8, [TIT]86, QV]I, one can formulate the firgt order
theory of polyadic, fufictions in terms of the diadic functional
logic. Or else one cin combine the notions of this section with
those of comhin.aﬁgry logic, as has been hinted at on p. 87,

NS

HI3. It ispodsible to give a general theory of logics baged
on Boolean‘algebra and of their deseription by languages of the
- type Qi@\i’ssed m this seetion. This involves a combination of the
methods of I3, 113, and the last chapter of this book. Such a
tHeory gives a rigorous treatment of the name-relation, logical
truth, extension, and intension, thus making precise the some-
what heuristie, but suggestive discussions of Carnap [VIII]386,
[VILI]81, [XITIT]237. We hope to publish the detailed develop-

ment in the near future,
A fundamentally important attack on the problem of defining
an interpretation of a language has been published by Kemeny
[XTI1]16. Although his solution cannot be considered completely
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satisfactory, it is & valuable point of departure for future work.

It would be easy to modify L, so that it would contain also
names of individual constants, propositional constants, and
function constants of all degrees. T

The question as to whether it is legitimate to regard classes
and propositions, and other “abstract” entities, as existent in
some sense, so that signs purporting to be names of these entitieg™
really denote “something”, goes back at least to Plato, and.has’-
been raised again, in a particularly sharp form, by Goodmg:ﬁ‘ahd
Quine [XII]106. One can, however, consider these entifies as
“existing in space-time” by identifying them, for exatple, with
certain chemical reactions in men’s brains. Thisis@ot the only
possible interpretation, but the existence of ¥t)least one such
interpretation shows that we can work with\lhese entities with-
out assuming any metaphysics like Plagomc idealism.

The masterpiece of Whitehead and; Russell [194]1-7 has been
the direct or indireet inspiration of piest work on mathematical
logic in the last 40 years, even yihenyif-inpenty sppdgrned or
not mentioned explicitly. Some'of the steps preliminary to that
giant undertaking were influenced by the work of Frege and
Peano cited above. Ong'can see its influence very clearly by
comparing it, chaptgy:ﬁbr chapter, with such works as Lewis and
Leangford [456]1, Quitie [458]5, [V]163, Church [X]19, Hilbert-
Bernays [507]1.The later parts of the first volume and most of
the other twdAzolumes have been unjustly neglected; & number
of modern-developments in algebra and topology are anticipated
and theirfundamentals treated quite fully. In charity we do not
mentfoh by name some illustrious authors who have exhibited
their ignorance of the literature by not citing Principia Mathe-

. matica.
) The devices of Wiener and Kuratowski appeared in Wiener
[238]1, Kuratowski [433]0.1. Quine {X]95 gives & more compli-
cated device, which applies only to special systems but has
certain technical advantages. : .

_ The present formulation of L is due to Tarski [285]13. 'I.‘he
version given here is borrowed from Quine {I145. Another version
will be found in Church [X]19. An elegant formulation of the
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general theory of types without the Wiener-Kuratowski device,
has been given by Church {V]56. Other approaches to the theory
of types are given by Quine [I11]125, Newman [IX]50, Turing
[XTII]80. .

FIX ig not called an “‘axiom of reducibility” by Quine, but
it plays the same role as that axiom in Principia Mathematica.
It avoids many of the philosophical objections to the axiom ‘of
reducibility as originally formulated. O\

L; is what we call in Chapter IV a conservative extensibn of
L, . The analogues of Hailperin’s theorems show thgt}FX and
FXT constitute a definition of “37, AN

Other formulations of Zermelo's system ha.veﬁe’en given by
von Neumann [299]2, 5 and Ackermann (IIT188.

w\,/
I114. The basic works on combinatory'IeEic are Schonfinkel
[304]1, Curry [39611, 2, 3, 5, 7, Rosser {ME]l. In the latter paper
& proof of the equivalence with Churél’s system of A-conversion

®

is given. 'The basiec pa grs apoCligrehis system are Church
{35914, 6, 8, K]eenew{xg{fﬁ,au%% entc%{positions of these and

related matters may be fogmi in Church [VI)171, Curry [VII)49,
and Feys [XIT]27, The fun8amental rules of combinatory logic
have been simplified Ky) [VI]41, 54, and Rosser [VII]18.
(Curry has noted an’error in the latter in Mathematical Re-
views.) A forthcoming book by Curry and Feys will undoubtedly
be an importai;t'contribution to the literature. We note also
the interesting’papers of Fitch [1]92, [VII}105, [[X]57, [1X]89.

The $ﬁée of writing the name of an operation before the
nameg(of the operands in order to avoid parentheses is due to
Lulféts'iewicz. The analogous syntactieal criteria for word forma-
bion in languages using parentheses are given by Kleene [497]1,
antd Church [VI]171.

~The system given here is equivalent to Curry’s system of
combinatory logie with the postulate B = 7. {There i3 a mis-
print in the statement of Ax BW (our T21} on p. 521 of Curry
[3986]2, but the statement, in abbreviated form, on p. 534 is
correct.) The equivalence of this system to the gystem of A-con-
version defined on p. 123-124 is given by Rosser [VII]18. The
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system without rule V on p. 124 ig called by Church A-K-con-
version, and the one with rules I-1V and the restriction in the
rule of word formation that “z” occur free in U for Az¥ to be
a word is called \-conversion. In the papers of Rosser postulates
are also given for these systems. In fact, Rosser gives a general
method for setting up postulates for combinatory logies and
proving their completeness. Qur version is a slight modification,
of Rosser’s. . .

The theory of positive integers in combinatory logic:i’(ilm
to Church [359]4, 6 and Kleene {497]2. O

Curry proved a consistency theorem for combinatgr.ja logic in
[396]2. This was strengthened and generalized by Ehurch and
Rosser [I]74 and Church [359]8. (See also Church [VI]171).
Curry [VI]54 has indicated some simplifications in the proof.

The development of the theory of quantification in Church’s
caleulus of A-d-conversion is. publishpdj\ohly in hig rather in-
accessible lecture notes [11339. AV :

The paradox of Kleene andmml-m@_é%[ﬁﬁ]l. Its
underlying meaning is clarified, by Church {359]7 and Cwrry
[XI]136. The derivation of Russell’s paradox is taken from Curry
[VII]115. A

Curry’s suggested remedies and announced consistency proofs
appear in Curry %‘{11141, [VIII]52. We hope that the above
mentioned bookef Curry and Feys will give full details on these
questions. | {(7;" _ .

His discfisgion of functionality and its use as & primitive
notion avere published in [396]7, (1165, [VII]49, and [VIII]52.

IIIS; >I'he fundamental ideas of this section are due %o Frege
{2911, 5, 10, 16 and Peano [71]2, 7, 14, 21, 45. These ideas were
Jamplified, extended and otherwise further developed by Russell
[111]4, 6 and Whitehead [99]3, 5. A detailed systematic exposi-
tion is given by Whitehead and Russell [194]1, 2, 3, from which
most of the definitions in this chapter are borrowed. A somewhat
non-technical and enjoyably readable account is given by
Russell [111]26. We mention also the excellent exposition. of
Jgrgensen [424]1. Modern treatments with many technieal im-
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provements have been given by Quine [458]5, [V]163, [X11}56.

The fact that a relation cen be defined as a class of ordered
pairs does not mean, as some dogmatically assert, that g relation
must be defined as a class of ordered pairs. It is possible to
develop these theories independently, as in Prineipia Mathe-
matica, or to take either as primitive and to define the other,
For example, in Bernays [IT]65 & mixed procedure is used. In thé, >
systems of Curry, Church, and Robinson [1I}29, the notiorof
function (a special kind of relation)is taken as basie. It-45.a1%0
possible to take the general notion of relation as fundasiental,
and to adapt the ideas of Tarski [VI]73 to construgh adlogic in
which classes are defined in termg of relations. I isvery risky,
in general, to make dogmatic assertions, espedially when they
can be disproved. When, as we show so often in this baok, there
are many different methods for obtaing ¢/0ertain results, it is
stupid to insist that there ig only one'edtrect method.

H a language adequate for elementary number theory remains.

consistenf wh_en a {fu&,% qugg‘glmg%@q,;s adjoined, then the
language is said to Be w-consistett. This coneept was introduced
by Gadel [418]3. He and Tdreki [285113 have given examples
of consistent languages /which are not w-consistent. Rosser
[11]129 has investigated the completeness of logics which contain

rules of the type of @

ITI6. Excellent gnd not very technical expositions of Gédel's

and related thebtems have been given by Rosser [IV}53 and

" Bkolem, [XTH1169 (in Norwegian), In Gadel’s original proof that
such Ian%i}iges as L; are not categorieal w-consistency wag
assumeéd; but Rosser [T}87 showed how that assumption could be
eliminated,

’m\ffﬁeene' (11]38 has shown how Richard’s paradox leads to
theorems of the Gidel type. (See also Church [359]7, Curry
[X1]136, and Rosser [IV]53. '

For Burali-Forti’s paradox see Whitehead and Russell [184]1,
Rosser [VII]1.

IT17. Zermelo’s fundamental paper [125]1 is concerned with the
proof of (3} from the axiom of choice. Peano [71]4 -observed,
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apparently for the first time, that a distinet assumption was
involved, but dismissed the axiom as cobviously false. Levi
(Rend. del R. Ist. Lomb, 1902) pointed out the need for such an
assumption in order to prove that every infinite class has a
denumerable subelass.

It should be mentioned that there are several non-equivalent
weaker forms of the axiom of choice, some of which hawe
been declared acceptable by scholars who oppose the geneéral
assumption. One would think, however, that once we admif siich
non-constructive principles, we might as well go the whole way.
The implication and independence relations between jhese prop-
ositions have been investigated by Fraenkel [26912,20, 27, [II]1,
Lindenbaum and Mostowski [IV]30, Mostowskh[1V1129, [XIIT]
45, Szmielew [XIIT1]224. An excellent summary of propositions
equivalent to the axiom of choice and ji8'ednsequences is given
by Sierpinski [VII]35. LS '

Fraenkel’s independence proofMsvgiven in {269)2. A much
stronger consistency proof iy puilheholibpyrGédeinn his im-
portant [VI}112. OB

A detailed discussion of jth’s lemma and related prineiples
is given by Tukey, Convergence and Uniformity in Topology,
Princeton, 1940. Theloriginal papers on this principle are R. L.
Moore, Foundations' of Point Set Theory, Am. Math. Soc.
Collognium Pu%hations, 1932, p. 84, Kuratowski, Fundamenta
Math., v. 3,1922, Zorn [IX]56, Teichmiller [VI]65, and Wallace
X155 O\

The.fheorem of Banach and Tarski appeared in Fund. Math.,
vol,\\ﬁ,~p. 244. See also Robinson, Fund. Math., vol. 34, p. 246.

¢ JVI. Fukasiewicz apparently devised the notation on which the
{"\“eoncept of a simple language is based. For the case of binary
connectives Theorem 4.1.1 was proved by Menger {370]5. (1t was

also obtained independently by Adjukiewicz, according to a note

in one of Eukasiewics’ papers.) The general theorem was proved

by Schréter [IX]69, and rediscovered by Gerneth [XIIT]224.

P. Hall has, in recent unpublished work, developed a new ap-
proach to the fundamental problems of algebra, which should
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have important applications to the theory of language. He has
also rediscovered Schréter’s theorem.

IV2, The basic concepts of this chapter were ntroduced by
Post [VIII]50.

The theorem of Church appeared in [I]73. Simpler proofs\
were given by Kleene [11]38, Skolem [IX]21, Kalm4r [(IX)24,
Post [X]18, O\

The general theory of canoniea] classes has been dewaloped
by Post in his profound and beautiful paper (X]18. & >

While the idea of recursive definitions goes back ab least to
Peano {71]2, the first study of “recursive” drithmetic, i.e,
arithmetic based on recursive definitiong alonle,'ig due to Skolem
[247)4. A formalization of this theory ag an\independent science
has been given by Cwrry [VII42. The notion of recursive
function (in a special case) was firgbbr ught to the attention
of the mathematical public by Godel [418]3. The general defini-
tion is due to Gadel and gghrm}bu,tgwas first published and
studied by Kleene 1i138. Other important, work was done by

Peter [466]11—4, Robinson JXIIT113, and especially Skolem
[X1}26, and an excellentexposition of many of these resylts
will be found in Iﬁlbert}Bemays [507]1, [Vi1e.

Precise definitio {ofthe concept, of “effectively computable”
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for definition and Church’s criterion for meaningfulness. (See
Chureh [VI]171). '

IV3. Normal- languages were introduced by Post [VIII]50,
where Theorem 4.3.1 appears. _ .

The theorems and proofs of this section are taken either
directly, or with slight adaptations, from Post [X]18. Q

A fairly general definition of the adequacy of a language
for arithmetic is given by Kleene [II]38, p. 740. It is zather
clear how this definition would have to be modified to take care
of the language B, . N

The proofs that L, , Li , and L, can be put.‘jnté canonical
form are given in Appendix 1. The proof that I, is adequate
for the expression of B, is given in Appendi§2, using some ideas
of Markov [XIII52, 53, 170. D

In an important series of papers, PpsﬂX] 18, [X11]55, [X1T]90,
and Markov [XIII]52, 53, 170 have shown that several sig-
nificant mathematical problemidssay belfolved bssrichanical

®

methods. &

The language B; is a kind\of *universal” language gince every
cancnical language hag4 bonservative normal extension and the
latter ean always be"t}anslated into a two-gign alphabet. Its
basis is represented\by a certain string 8 such that BS is a
theorem in B, , @hd its theorems correspond to the true sentences
of the form 8. Thus B, is already adequate for practically all
of mathematics. Every mathematical problem which can be
formu]éfjea in some canonical language, say Ls , is equivalent
to thie'question of whether a particular string of the form |- 8oy
is& theorem in B, . Thus B; is a minmum caloulus in the sense
*_~lof Fitch [IX]89. There is an obvious analogy between the uni-
'versal language B, and the universal machine of Turing [I1I]42.

We remark that some authors have used the word “luck” for
what we call brains or ingenuity, With that interpretation, the
history of science shows that the ones who have the luck are, in
general, the ones who deserve 1t.

Wiener, in his recent book, Cybernetics, Wiley and Hermann,
1948, has given a beautiful mathematical model of the brain.
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This is a fundamental advance and must he considered as the
first significant breach of the frontier between mathematics and
psychology. It seems, however, that his definition must be sup-
plemented in an essential way, since one can probably prove
rigorously that a machine tan solve any problem which a brain,
according to Wiener’s model, can solve. We may consider in,
telligence as the capacity for introspection, the faculty ‘of
thinking about one’s own methods of reasoning and what(héy
ean accomplish. In mathematieal termes this means the qa‘pa.(iity
of using a syntax language for reasoning about-an object
language. It s in this way that a brain can make.usé of such
rules as ¥Q in 1135, It seems altogether feasible to incorporate
this idea into a mathematical definition of e\briin and to prove
that a brain can solve some problems whi¢h/a machine eapnot.
Theorem 4.3.4 shows that certain probléms cannot he selved
by machines, i.e. that brains are negegsdry. A result of the kind
just suggested would establish rigerously that brains are useful.

wWww ,dhrau[ilpf%ht'},or g.in
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