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PREFACE

HE present small volume on the theory of probability

represents a manuseript which Professor Burnside had
practically completed some time before his death,

The theory had begun to occupy his thought during the war;

and the earliest (1918) of his papers, relating to any of dts’)

topics, deals with what 1s manifestly a military qu,eéti\on,
reduced (for purposes of calculation) to a purely mathematical
form. As was his wont in any subject, his in}%&é‘t In 1ts
developments grew: a number of isolated Papers by him
appeared from time to time, in a widening range of treatment.
Mtimately, he set himself to make a sysp@ic account of the
theory as it presented itself to him. A\

So far as can be remembered by Mrs Burnside, the draft was
written at intervals before the mhddle of 1925. At the time
when he had finished 1ﬁ’swa‘&€;%’£%%,[ TG eimbl all the issues
which he proposed to discitss: but marginal references in the
manuseript shew bhat)j‘eﬁntended to add a number of Notes
elucidating or establishing statements in the text. Of these
Notes, only one®, )vés actually written; and no memoranda have
heen found whigh’ might have indicated the intended range of
the remaipgé}." His work was interrupted by a serious illness
late in, 3925 After a recovery which was only partial, be
occasiétrla,ﬂy longed to return to the draft, so as to make
additions and amplifications: but the necessary strength was

\la(:"k"ing. The manuseript remained unaltered.

It has seemed desirable to publish his draft exactly as he
left it. The Syndics of the Cambridge University Press have
been willing to undertake the publication; and Mrs Burnside
desires me to express her thanks to the Syndics for their
action.

* It occupies pp. 101, 102 of the volume.

Q!



vi PREFACE

At the request of Mrs Burnside, and by the willing acqnies-
cence of the Syndics, my notice of Professor Burnside which was
written for the Royal Society is prefixed to the volume. And
I have appended (p. 104} a list of the papers which, in his
later years, he published on questions cognate with the range
of the volume.

During the progress of the printing, I have owed much to the
Secretary of the Syndics, Mr S, C, Roberts, and to the Staff ofil QO
the University Press, for their unstinted and ready help; H-TJQ\I
retarn to them my sincere thanks for their wnmderat@
operation, \Y

AR g‘@ﬂSYTH
Murch 1925 \\
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{From the Procesdings of the Royal Society, Ser. A,
vol. 117 (1928}, pp. xi-xxzV.]

WILLIAM BURNSIDE

WILLIsM BURNSIDE was born on July 2, 1852, the son of Willtam
Burpside, a merchant, of 7, Howley Place, Paddington, London.
His father was of Scottish ancestry: his grandfather, who had
gone to London, was a partner in the bookselling firrn of Seeley
and Burnside. R\,

Left an orphan at the age of six, Burnside was eduea,téd\ ab
Christ’s Hospital, where he was a Grecian: there, hegides his
distinetion in the grammar school, he attained the ig}i’est Place
in the mathematical school. Having been electedo)an entrance
scholarship at 8t Johnw's College, Cambridge,"he went into
residence in Oetober, 1871, and was regardédas the best man
of his year in the college. 1In a.ccordan}e with the general
custom of capable students of maﬁhematlcs in Cambridge, he

“coached” for the Tripos, his privat) $utor being W, H, Besant,
one of the few rnalq of hhe fam0us Routh. For some reason,
Burnside mlgra.t(,d 6 B AR, CAbe in the same university,
the change being made lapé in his second year (May, 1873). He
gradnated in the Mathemahcal Tripos of 1875 as second wrangler,
being bracketed w1th\(}é0rge Chrystal, who afterwards was pro-
fessor at Bdinburgh ) the fourth wrangler was R. F. Scott, now*
Master of St Julin's College. In the subscquent Smith's Prize

- Examination)Birnside was first and Chrystal was second.

A felIbWa}np at Pembroke was the worthy sequel of such a
degreey {he continued & fellow from 1875 until 1886, He was
at once appointed to lecture 1n his college and he lectured

4199“4t Emmanuel in 1876 and at King's in 1877. At that time,
eollege teaching for the best students was sometimes shared by
a few colleges, in isolated groups, and included subjects selected
from the average normal courss for Honours ; and Burnside, in

- addition, gave lectures on hydrodynanics, an advanced course
open to all the University. That particular subject was coming

* The writer is indebied $o Bir Robert Scott, for several of the personal records
in this notiee.

Q"
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into vogue again at Cambridge; attention, regularly paid to the
established work of Stokes, was stimulated by the then new
work of Greenhill and especially of Lamb. Burnside also examined
for the Mathematical Tripos from time to time. Oceasionally,
he did some private coaching. But later it appeared that, in-
stead of restricting himself mainly to Tripos subjects in further-
ance of his leetures and his inevitable share in examinations, he
had launched himself upon a broad sea of study, then far »
removed from the Tripos domain. :
As an undergraduate, he had proved an expert oarsyl'lémf’
While at St John's College, even as a freshman, he had rowed
in the Lady Margaret First Boat which, with the famons'Goldie
as stroke, went head of the river in 1872. Rather lightin weight
as an undergraduate, too light (according to thé{chnons of the
day) to be considered for the University Beat,"he was always
rather spare of build and he retained g‘wonderful power of
endurance ; and he kept his rowing forp) for many years. He
rowed in the Pembroke Boat after aé‘lc{i,dua.t:iml, as long as he
continued in residence; he was acdplendid “7.” and had a full
share in its Ste%%@gﬁhwﬁg}fmgﬁ some years after he left

Cambridge, his reputation a8an oar survived as a tradition in
eollege circles, (

After going out of resl ence, similar opportunities for rowing

Were nog accossib}e.\\But in the course of holidays frequently

spent 1n Scotland) Burnside had acquired a zest for fishing ;
and for manya’ summer onwards he continued to go there,
Pursuing wHaE grew to be his favourite sport. As in rowing, so
in fishing/he developed skill and became an expert fisherman;
indged, ‘with all he undertook, nothing short of his best was
n suffieient,
<) "In 1885, at the instance of Mr (afterwards Sir) William Niven,
the Director of Naval Instruction—himself a Cambridge man
flevoted to natural philosophy, as it was styled by good Newton:
lans—Burnside was appointed professor of mathematios in the
Royal Nava.l College at Greenwich. The rest of his teaching life
was spenb 1 that post. There was a eurrent belief, & belief
now knov‘\m to be justified by fact, that his old college had
mnvited him to return to mmportant office; but he remained at
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Greenwich, His work was to his liking. It was a course, well-
defined in extent and in demands on time, within a variety of
congenial subjects, though only touching in part upon the
regions of his constructive thought. The actual teaching, with
its incident duties, left him adequate opportunity to keep abreast
of progress, even to advance progress, in the subjects of pro-
fessional duty. It also left him leisure, which was carefully
and diligently used, to pursue his own researches, whateven,
their direction. Best of all to him, he was free from the iptéy:
ruptions and the incessant small demands, business and secial,
that are inseparable from official administration, For at all times,
and in all ways, multifarious detajl—whether mcidengal to the
nou-scientific side of official duty, or the current; presidency of a
scientific soclety such as the London Maththatical, sven the
purely algebraical garniture and the side-igSyes in mathematical
investigations—such detail was :inexgr’g%sfbly irksome to his
spirit. \$

At Greenwich, Burnside’s work ‘waa devoted to the training
of naval officers. It consisted of<ilitee ranges. There was a junior
section for gunnery ands W@uhﬁéﬁf@pt‘@enchief subject of
study was the principles ofballistics. There was a senior section
for engineer officers: tle,chief subjects of study were strength of
materials, dynam'ca\,"a;hd heat engines. The advanced section—
perhaps that inywhich he exercised the greatest influence on his
students—was, reerved for the class of naval constructors; in
that rangef "‘Biirnside’s special mastery of kinematics, kinetics,
and hydxpﬂ}:hamics, proved invaluable. Records and remembrance
dcclais;t]iat he was a fine and stimulating teacher, patient with
stadénts in their difficulties and their questions—though else-
.. (Where, as in discussion with equals, his manner could have a
Jdirectness that, to some, might appear abrupt. He certainly
carned the gratitude of his students, as appeared from their
spontaneous token of tribute to him when he left in 1919; the
address, which they then presented, was treasured by him and
his family.

Burnside had married Alexandrina Urquhart in 1886, soon
after he was appointed professor at Greenwich, She survives
him, with their family of $wo sons and three daughters.
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After his work at the Naval Cellege had ended, the whole
family retired to West Wickham in Kent. Burnside, happy s
he had been in that work and regretting its actual termination,
enjoyed his leisure, spending 1t among his books, in ﬁshmg. holi-
days in Scotland and, not least, in his researches, some continued
in regions recognised as specially his own, some of them in the
systematic development of ideas in still another branch of mathe-
matics apon which his intellectual interests had settled, The,
last year of his life was marked by failing health: and thé
proximate cause of his death was a recurrence of conchril
hmmorrhage. He died on August 21, 1927 ; and he 15 Iglir?e(] in
West Wickham churchyard. N

In recognition of his eminence as a mathemati\ia.zi; not a few
academic honours came to Burnside during his)life. He was
never avid of honours; indeed, he was eager tc avoid those
forms of academic recognition constituted ¥ official positions of
dignity, when they demanded the pg€formance of any public
duty set in formal pomp or cireutstanée. He received honorary
degrees, Sc.D. from Dublin, LLD“ from Edinburgh. He was
elected a Fcllg@@%ﬂp&lﬁ%&ﬁpglﬁpy in 1893, on the first
occasion of candidature : he'served on the Council of that body
from 1901 to 1903; a{}({’ he was awarded one of the two Royal
medals for the year 1904, He was a member of the Council of
the London Mathe}}\atic;ﬂ Society for the long continuons pertod
from 1899 to JPLT: there, he was a tower of strength, in advice
during the(Botncil’s meetings, and by his many reports as a
referee_updh & multitude of varied original papers submitted
by a.@ﬁ.ﬂ army of anthors. He was awarded the De Morgan
me’{:l}ﬂ of the Society in 1899. From 1906 to 1908 he served as
. (Bresident: while willingly allowing his name to be submitted
) [or membership of the Couneil year after year, he accepted their
highest office only with grave and characteristic reluctance. The
honour, in which he appesred to shew most interess, was con-
ferred on him in 1900. In that year he was elected an Honorary
Fellow of his old college, Pembroke; and at the time of his
death he had become the senior on the small roll of Honorary
Fellows, Yet, even in the few and far from fluent remarks of
thanks which he made at the college dinner welcoming, by
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courteous custom, the newly elected honorary members of the
foundation, he urged that the happy and suceessful pursait of
research was its own reward; and the sincerity of his plea was
appreciated not least by those who had done their part in
recognition of his labours,

Burnside was frequently called upon to examine for the
Mathematical Tripos and for the open Civil Service examina-
tions of the highest grade. Occasionally, he acted as external
examiner for one or other of the English Universities, as well ag<
for the Naval College after his retirement, He was not an easy
examiner—before his early days of such duty, the phrase<easy
problems” at Cambridge had come to bear a perverse mgmﬁr:ance
His questions conld be of the type which, gathered itivone of his
papers, might justify the epithet beautiful: they. were certainly
too beantiful for the candidates in the 1881 Trlpos the first
university occasion when he examined. Yenk\though they often
were difficult and always on a hlgh lev€l “they were set with
the design of evoking an examinee’s thought, rather than of
providing an opportunity for the facile display of trained mani-
pulative skill along famhiar lé%?ﬁullb]"al o orgin

Through many years, Bumslde was In constant requisition as
areferce, for the Royal Sogiety and for the London Mathematical
Society. He could not hégcalled lenient: for, however sympathetic
with writers, and eggeeially young writers, he held a high stan-
dard of the attalﬂtg%nb that was deserving of publication. He
was often frulhf‘ul in suggestion. He could even be severe on
cceagion ; yeb. e would mitigate a judgment when grounds for
its reconsideration were submitted. Similarly, as a critic of a
friend’s proof-sheets, he could be severe, yet always objectively
so: be ‘obviously assumed, without the possibility of question,

'Js‘lij&t.the friend’s standard and his own were alike in practice,

Thus, at the end of a discussion, the friend would find that
added light had been cast upon the whole matter—surely the
best criterion of sympathefic eriticism. And if severe with others,
he was stern with himself-——a mental discipline that exercised
its influence towards the directness and the preecision both of
form and of substance in his writings.
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Valuable as were his teaching, his activity as an examiner,
and his influence as a referee, it is by the contributions which
he has made to his science that Burnside’s name will be held in
remernbrance.

His range was wide; for it branched out, through applied
mathematics from the days of his early traming, into great
tracts of pure mathematics in the years of his matured powgrs
Yet, even in the later time, when specialisation has tended o>
become acute, he could specialise with the best. Though of
course not comparable with an Euler, a Cauchy, or a Cs.yley, n
the variety or the amount of work he has left, he has delved in
miany fields and has left his trace in many directious. He pub-
lished over one hundred and fifty papers, as welk hs'one troatise,
the Theory of Groups, of which a second (and greatly amplified)
edition was issued also under his own ca{e He has also left a
manuscript, fairly complete as far as it v?as carried, on the theory
of probability, He himself did not zégard this work as finished ;
on various issues, he was in co}'ret}pondence from time to time
with the present President of e Royal Society, the Astronomer
Royal, and othessgbnshhegetgaingyidid not consider that he had
resolved all his own questions. Had life in health lasted appre-
ciably longer, there is\no doubt that he could have attained, as
he intended to Ue, further development in a subject Whlch
occupied much’ef the thought of his later years.

In that cpqszderable tale of papers, most are short. Very many
of them ageupy only a few pages. His longest individual paper—
he m{;é!" nsed the more ambitions title “memoir”—deals with
augdmorphic fanetions: it really consists of two parts connected,

R fhough not comsecutive, in matter; and the whole occupies no
{Jmore than Bfty-three octavo pages. Brief however as his papers

are, 1t can fairly be asserted that each one of them contains
some definite and recognisable result or results. He never dis-
cussed side-issues; he would not even dwell on the minute
detatls of a main issue. Indeed, he could be intellectually bored
by processes, that halted in their march to settle subsidiary
questions as they arose; with him, auxiliary necessary material
was set out before the main advance. When once an issne was
attained, he was content to let it stand by its own significance:
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to others he would leave attempts “to gild refined gold, fo paint
the hly.”

He happily was saved mathematical controversy, which he
detested. On one occasion he was surprised, even disturbed, by
the receipt of an unseemly letter the very tone of which amazed
him (not unjustifiably): it concerned a question of prierity whick,
in so far as 1t could affect a man punectilious 1n his acknowledg-
ment of the work of others, to Burnside was as thin as air, though
manifestly not so to the writer of the letier. The quiet firmness™\
of Burnside's answer to his ungracious correspondent ended she”
matter. On oecasion, hig work has been known to prov}dg an-
munition for others, Thus in 1887 and 1888 he wrote papei‘s on
the kinetic theory of gases, a subject which at thd*t date led
to much disagrecinent in opinion; stating his assumptlonb he
dealt with the average exchange of energy during the 1mpact of
elastic spheres and with the partition of engrgy-between motions
of translation and of rotation. These papers’can only have heen
the outcome of some appeal emanating™irom Tait. The result
was used (but Burnside took no.direct part) in an onslaught
upon Boltzmann’s work wsadebyalBtisssy bopnie fechter,” never
reluctant in the use of the controversial tomahuwk.

In his writings, Burn.ﬁlde had a style which precisely, and
habitually (as if it werétan instinet), contributed to efficiency
of presentation. Evén :}hﬂe an undergradnate, he had been noted
for the style of higntathematical work; he was reputed to be the
most “elegant,\though not the most W1dely read (Chrystal was
thus reputed)/among the young mathematicians of his own
standingeJn” pure literature, critics, whether analytic or con-
structive, do not always agree upon the necessary essentials of
generﬁl style, though they can select individual characteristics.
Ta_scientific produetions, the task is assuredly no easier than in
the humanities. Burnside had two of the essential secrets of an
effective style: be exercised a power of clear and precise
thinking that was maintained until the achievement of a de-
finite issue; and he possessed a faculty of lucid (if condensed)
expression of the whole course of a constructive argument. He
was intolerant of approach to vague meandering: * Words, words™
would be his caustic comment on an unconstructive passage. The

™\
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elusive charm of the sudden thoughi, that in itself is a revelation,
is rare in mathematics, though it can be found in a Fourier or
a Salmon. But such was not Burnside's aim, perhaps never his
dream; he did not seek for aught else than clearness, directness,
terseness most of all. He would practise no art in trying to secure
the attention of an inexpert beginner. In exposition, conciseness ,
was his rule. Once, the attempt of a friend, to obtain from hiEn
a more expanded treatment of some early stages in his Thebry
of Groups, was met by a declaration of regret that he had béen
unable to effect further condensation. The consequencelis that
all Burnside’s published work is close and firm in téXsure; yet,

- s - - P
to an attentive reader, it is never lacking in cleatd®ss and move-
ment.

\\‘

Throughout Burnside’s residence ag Bambridge, the Uni-
versity had been in the finest flower ©f her activity in applied
mathematics. Stokes, Cayley, Adams, were long-established
professors; Maxwell’s appointment had been more recent. The
staple subjects for the most ca}qﬁbie mathematical students were
physical astvenomiyndytinthey, bizhin sound, and heat, The range
of electricity and mag:geﬁsm, except for a slight infusion of some
of the work of Sir William Thomson (afterwards Lord Kaelvin),
was academic andunconnected with laboratory knowledge; and
Maxwell’s pregentation, based on the researches of Faraday, had
still to makewats place in the Cambridge course, men scarcely
even dredming of the revolution it was to accomplish later. Pure
math¢fatics, save for the rare appearance of a Clifford, o Pendle-
buryior a Glaisher, was left 4o Cayley’s domain, unfrequented

~JByaspirants for high place in the Tripos. Much of the original

thought of her mathematicians in those years found
m problems, a veritable mine of isolated results
eonundrums in the Senate House and in College cxaminations,
Even so, the worship of the mathematical spirit at the shrine of

natural philosophy was maintained in a well-defined conservative
range.

1ts expression
propounded as

At the heg%nning of his work, Burnside could hardly fail to
conform to thig Canbridge use; indeed as regards the subjects
(though not as regards all methods for the subjects) applied
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mathematics, he largely remained in the older round to the end.

Yet even while be continued in Cambridge, he was gradually

emerging into his own domain. Bred an applied mathematician

in the Cambridge schoal of natural philosophy, which tended to

regard all mathematics as a useful tool—no more than a tool—

in so-called practical applications, he came to find that there

was & world of pure mathematics different from that which filled

the receptive stage of his stndent days. In the creative stage of
thinking for himself beyond the range of learning and of teadh
ing for the Tripos, he gradually made his way into thaf pew
world. He took rank with the constructive pure mathematicians,

without losing hold of his earlier studies. Indeed 16 hira, as to

others with a similar experience, the new knowletge shed fresh

light upon the older interests; but any effective’eombination of
the old and the new could only be made by% intellect of the

type such as Burnside happily possessade\

Thus, as already stased, Burnside's (earliest advanced lectures
were devoted to hydrodynamies.  Hlsewhere, the old-fashioned
methods for conjugate functionk, stream-lines, and velocity-
potential, were being analyrizatbreEHRE;2EMrough the in-
troduetion of functions of@\complex variable. For many a day,
Cambridge had prese;y’éh‘ an almost mvineible repulsion to the
then oabjectionable WL cnmbrous devices being adopted fo
avoid its use or 4is occurrence wherever possible. But some
teachers could$héw that, in two-dimensional fluid motion, sim-
plicity and e results alike were easi ly attainable by its means;
and its fokpial debut within the Cambridge enclosure was made
In Ii;aanib’s treatise. To Burnside's intellect the new caloulus
app@a,léd ; and as a matter of record, his first published paper

p '(‘1588'3) is concerned with elliptic fanetions, not with hydro-
dynamics.

Three examples will suffice to indicate the development in
Burnside's thought, thus indicated.

In 1888 he investigates three main questions connected with
deep-water waves resulting from a limited initial disturbance, a
Tesearch probably sugpested by certain phenomena noted in the
Krakatoa eruption. In that paper, he proceeds by analysis which
belongs to what would now be called the classical methods of

bz
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Fresnel, Poisson, and Stokes; it requires much elaborate work
in definite integrals with real variables, without any reference
to the (happily satisfied) convergence of those integrals; and
Burnside arrives at direct results of observable significance,
which relate to the greatest amplitude of displacement, the
range of propagation, and the governance of the wave-length. Ii
is not without interest, in eonnection with his increasing grasp™\
of newer methods, to note that in this paper he “ justifies ”.the
use of a complex value for a constant—while, two yearsilater
in a paper which deals with streaming motion, he uses cemplex
variables without a word of prelude to superfluous, justification.
The problem of the two-dimensional potential, s envisaged
by the applied mathematicians in the middle‘shird of the last
century, such as Green, Stokes, Thomson, and Tait, has been
completely changed by the ideas of the t.h.e\rzy of funetions. Old
assumptions have had their significinge and their limitations
revealed, the earlier physicists ]:50:1:~ always in sympathy with
exacting refinements which bo’thé’m smack of pedantry, the later
mathematicians not always espectful to the intuitions content
with a sembtagésaufiyrdofiumside knew both aftitudes of
mind—the earlier froxg*his training, the later from his continued
study ; and so he,cofild bring old results to new issues. Thus in
a paper (1891)0n \he theory of the two-dimensional potential,
satisfying the ‘equation
A\X ot
o 8 " oy
and\desermined by preseribed conditions within an area and
g.ggibxed values along a boundary, he returns to the old property
/~~the possession of every undergraduate—that the potential can
“\*have no maximum or minimum within the boundary. Pointing
out that maxima and minima must therefore lie on the boundary
and than. conditions of continuity require their aggregate to be
an cven integer, he obtains a relation between that integer, the
Integer d?noting the number of distinct portions of the boundary,
and th nteger representing the number of double points on
the equipotential contour lines as they pass from a boundary arc
over the area back to another boundary arc. Moreover, he obtains
the relation for the most general case when the conditions are

=0,
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extended so as to admit discontinuities (in the form of logarithmic

or algsbraic infinities) within the boundary ; and he indieates

the bearing of the relation on the graphs of these coutour lines.
In 1894 he published a paper discussing Green’s Function for

a system of non-intersecting spheres. There, beginning with the
known result for two spheres, he transformed it by a property
he had deduced from a geometrical interpretation of homo-
graphic substitutions, He extended the transformed result to
any number of spheres. By inversions which are represented b;r\
point transformations, and by scts of inversions which accurdulate
nto a group of transformations, he obtains a pseudo—aufpﬁmrphic
fanetion, in the form of a series where the coefficiéhts of the
successive terms are powers of the magnification afythe successive
inversions, Lord Kelvin would not have recoghiséd his theory
of images in that final form : yet the development into that form
is ouly a continued amplification of the thtory. Burnside, more-
over, carried 1t further, by connecting, tile:applica.tion with any
solutton of Laplace’s equation, instéad of the inverse distance
alone as in the theory of imageé:f Here, as in all his investi-
gations, it was only too dempribatiehadgwandered far from
the ancient Cambridge folds,

Various well-markeld™stages in the progross of Burnside’s
knowledge almost nditate themselves, from the evidence of his
original papers, { ™

Apparcnt!y,{the first large new subject, of which he made a
profound spady, was clliptic functions : its rudiments had hardly
been admisted to his Cambrid ge course. At every turn he devised
somebhling novel. Is it the transformation of the simplest elliptic
giifﬁl:réhtial element ? Noting the general characteristic of the

“our critical points in the Riemann interpretation, he deals with
the successive possibilities of the transformation : {a) into itself,
by interchanging these four points in pairs, with the obvious

inference that there are three modes, which are explicitly ob-

tained ; (b) into the Weierstrass normal form, with one of the
eritical points sent to infinity, and the remaining three practically
arbitrary; (¢) into the Legendre normal form, with the four points

Syimetrically arranged round the origin along an axis; and
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{d)into the Riemann normal form, with 0,1, ,as three canonical
points for all, and the fourth defined by the parametric invariant
of the element. Is it so simple an jssue as the division of the
periods by 8 or by 9 7 Even for the simplest form of that issue,
be treats it by a general method and not by any special artifice :
a short paper in 1883 achieves the trisection for the Jacobian
elliptic functions; a later paper in 1887 athieves the same
problem for the Weierstrass elliptic functions; a still later papen
nses the same method, supplemented by the introductichyof
resolvents, to obtain the results for division by 9. Is(i the
extension of Jacobi’s expression of the apparently hypgréllipbic
ntegral

S

[to (1 =) (@ =) (3= 1) (a — er )y 3t
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under the (quadratic) transformation

K

=zt

ag the sum of two elliptic iqtégﬁls? Burnside deals with the

cublc‘and thﬁw‘lg.ié‘]}}% ﬁ’iﬁ?ﬁ@@lﬂﬁ]ﬂ?s in odd degree, with the

quartic transformation irreyen degree, and obtains the respective

types of degeneratcohyperelliptic integrals; characteristically

leaving other in§thntes as “cxercises” (though, not “easy”

exereises) in the'method expounded. And, almost as an incident,
he notes a eaié;when an apparently elliptic integral

NV e —
:.\;,Jw P
N F= ¢

wlietre the relation

(@~ u) (2~ 8) (@~ v) (@ —8)}ida,

p__2z=p

¥—1q L—q
tl.*ansforms the elementary elliptic differential into itself, is only
simply periodic. Or, to take only a last example in this racngé
he_ completes the known proposition that the co-ordinates of :;
point on the interscetion of two quadrics are expressible in terms
of elliptic functions, by constructing the actnal arguments ; an(kl
ke shews‘that the two invariants in the Weierstrass f(}l“l’;l are
the quadrinvariant and the eubinvariant of the customary qua;‘bit;
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equation occurring in the reference of the quadrics to their com-
mon self-conjugate tetrahedron.

Another subject that absorbed his attention was differential
geomctry, which also, save for some rarely read sections in
Salmon’s Geometry of Three Dimensions, hardly entered into
the Cambridge course. Burnside gathurs together fandamental
propositions, then accessible only by search among widely scat-
tered authorities; and he applies them with effect. Before 1890,
the parameters of nul lines on a surface had not appeared {6r)
perhaps, only with Cayley) in English memoirs. In one paper,
Burnside uses them, with severe ingenuity, to obtain.the dif-
ferent classes of surfaces that possess plane lines of :b[]rva-ture.
In another paper, he uses them to construct the differential equa-
tion of all confocal sphero-conies, proving thatbite’ co-ordinates
of points are expressible in terms of elliptic Anbetions of a para-
metric argument which is obtained expligitly. There, as always
in his papers, Burnside’s work marches forward to a definite
issue and constitutes a contributiond knowledge.

Comparative simple known properties are given a widened
significance. Thus he takgs \&}%ﬁ;g%?ﬂglga%qggrp&that two ﬁnite
screws compound into a siigle screw; and (f890) he devises a
simple geometrical constriction for the axis of the resultant
screw. He mnotes thatias the proof does not require the use of
parallels, the result{is valid for elliptic space and for hyperbolic
space. Five yearflater, he returns to the matter in a paper on
the kinematiéghof non-Euclidean space; and now be notes that
disPIacem‘&ét’é‘correspond to point-transformations, sets of dis-
placengent} to groups of transformations. The theory of groups
is beginning to atfect his work,

{He&’can derive new results from elementary results in ordinary
gelmetry, as well as from the range of abstract geometry. His
interpretation of a homographic substitution
az + b
Y= wrd
as inversion at two fized circles—this 1891 paper seems the
first occasion when the specific mention of a group 18 made in
his published work—is used to assign the criteria, necessary and
sufficient, to determine whether a group, formed of assigned
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fundamental transformations, will or will not contain a loxo-
dromic substitution, Or he will deal with the ancient problem
of drawing a straight line between two points, for which the
ruler suffices m the Euclidean postulate when the points lie at
an implicitly supposed finite distance apart; and he gives a
constraction for the cases, when one of the points is at infinity,
when both of them are at infinity, when one of them is the idcal
pomnt required in projective geometry; his construction applies
to any space, Euclidean, elliptic, hyperbolic. Or he will tdks a
proposition (analytically established) concerning the foln® ‘rota-
tions by which a triply orthogonal frame of lines #an’ be dis-
placed into coincidence with a similar frame; by’ Ahe use of a
known (Hamilten) proposition in rotations, hegives a geo-
metrical construction for the displacement, aonstruction which
seems almost obvious-—after it has been'};]jtained. Or he will
proceed to abstract spaco: he discusses a configuration of 27
hyperplanes and 72 points in spacde Yof four dimensions, such
that six of the planes pass througheach point and sixteen of the
points lie in each of the plangé.: ‘I'o him it is a natural extension
of the customary, emfamistion ofgthe 27 lines on an ordinary
cubic surface in three difhensions,

Burnside’s inves@ig&}‘ions in elliptic fanctions compelled him
to range in the widler field of the theory of functions in general ;

80 thither he W&d proceeded and, in his progress, he became an
Investigaton, &

His contributions are, as ever, varied in range, Fifty years

a.go,"\t:ﬁijrés a surprise—to-day, it is almost a commonplace—to
leaxti\bhat functions of rea] variables exist, which are always
are always continuous, and never possess a determinate

cal example, due to Weier-

/

strass, is that of the series

2 " cos and,
R= )

there are functions of real variables,

here uniformly convergent, everywhere
ed complement of successive differential

everywhere finite, everyw
Possessing the unrestrict
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coefficients, yet never expansible in power-series; and, as an
illustration, he constructs the fanction
21 1
vy 11 1T @ (< an nap?

where a is real and >1, and where af7r is not a rational fraction.
His proof is concise and demands no acquaintance with elaborate
theory; as usual, it leads direct to a definite result that eoris
pletes the investigation. ‘O

On another oceasion, he deals with the Schwarz solutiol\l'nf the
problem of representing a closed convex polygon in.gne plane
corformally upon the half of ancther plane—a regnlt that has
rendered signal service in mathematical investigations in mat-
ters so diverse as heat, hydrodynamics, and ele¢tficity. In these
last applications, only the simplest exarpplés’ are used: in the
general Schwarz solution, an Abelian aitbegral occurs the use of
which is gravely handicapped by ifs, "rﬁult-iplicity of periods;
80 that additional conditions begdme necessary to render tllle
analysis specific. in application\ Burnside, already skilled in
polyhedral funetions and general automorphic funetions, in-
vestigates the aggrega%"wf\ffd%ﬁg a%hhc':lé%l whete, at the utmost,
doubly-periodic functioms ‘will suffice. But he goes on to c?eal
with muItiply-conhQ‘&téd spaces having polygonal boundaries:
n particular, hegives the solution for the conformal repre-
sentation of \thé ‘aoubly-connected area which lies between t_wo
concentric gimilarly placed squares, the side of one square being
doublethat of the other.

Hq(s‘eﬁes upon the existence-thecrem whi.ch establishes th.e
po,s\éi]:’rilityof expressing the co-ordinates of a point on an a.lgebralc

Zeltwve by means of uniform functions that are automorphic under

gets of transformation. The lack of determination of the group,
appropriate to a postulated equation, has left the solution as
one merely of existence without specific deterlr'linatlon‘. Burnside,
combining his knowledge of groups, of elliptic funf:mons, a.nd. of
Klein's icosahedral functions, givesa complete-spemﬁc rf.:solutlon
of the problem for the (apparently) hyperelliptic equation

y“:x(:v‘-l).

: 3
It is unnecessary to accumulate more instances. Burnside’s
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matured development flashed out in his double paper on auto-
morphic functions, published in 1892. The subject belonged
to a new section of mathematical knowledge, mainly inaugurated

by Henri Poincaré and systematically expounded in a series of
memoirs, now classical, in the initial volumes of Acta Muathe-
matica. The underlying idea is simple. Trigonometrical fanctions

are singly-periodic: that is, each such function is unchanged

when its argument suffers an increment or a decrement which

is any integer multiple of a single quantity. Jlliptic functions
are doubly-periodic: that is, each such function is unchanged’
when its argument similarly suffers an increment or & decrement

which is a linear combination of any independent integer wulti-

ples of two quantities (the ratio of these quantities@russ not be

real). Jacobi had proved long ago that unifomn/functions of
triple periodicity (and, & fortiors, of perlodicityhigher than triple)

in a single variable do not exist. But in ewefy such instance the

modification of the argument consistsidelély of an additive in-

crement or decrement. The question drises : What is the most

general type of periodicity for a f:qhdtion of one argument? And

it naturally entails &hﬁbﬁgar&iql&t}ggy_s};o!} i What are the functions

possessing that type of perodieity? Tolated results were known,

such as Jucobi’s elliptic modular functions and Klein’s polyhedral

funetions: their sigr{ eanice as examples of a wider theory had

not appeared. It ywas Poincaré who presented the first general

treatment of thesé-questions.

Into this w\oyﬁ of Poincaré, Burnside plunged. In it he revelled.
His new,restilts are embodied in the paper on automorphic
functi\ois'which has just been ecited. In particular, Poincaré
had gverstated an exclusive central result. Bumnside detected

\t,ha,‘()verstatement and the fandamental cause; and he devised

3 new class of automorphic functions, simpler than any of the
classes devised by Poincaré. The full theory, even now, remains
to be established: it awaits the construction (or the equivalent
of Phe consfruction) of a central function or functions which,
while palpably antomorphie, shall be amenable to ordinary
a.naly.tical manipnlation as are the corresponding central theta-
functions of purcly incremental periodicity. When the history

of that theory coraes to be written, Burnside’s name will hold
an honourable place in the record,
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The consideration of the very foundation of these automor-
phic functions led Burnside further afield, along a way already
opening out before him in his progress, into a region which he
explored with ample discovery. It was fo provide the most
continuous and most conspicuous of his contributions to his
science. The characteristic property of every automorphic func-
tion of u single variable is that, without change in the value of
the function, its argument is subject to a number of diserete
operations, which are independent of one another, are capable
of unlimited repetition and reversion, and admit all possiblge,g’dm—\
binations, repetitions, and reversions, in unrestricted sgqhence,
The aggregate of all the operations, which thns, émitrge, is
termed a group, so that a function can be autoniogphic under
a group of transformations {or substitutions),But just as the
properties of the integers, which occur in the atithmetic of any
calealation, merge into the general theor§’of number which
1gnores all speeific application, so the Propertics of transforra-
fions in a group merge Into z rgfqré" comprehensive calculus.
That caleulus deals with the comyposition, the constraction, the
resolution, and the ebb&r\g@aé%%?&%tﬁagf a group regarfled as
an abstract entity whose gomyponent ¢ eméhts are subjected to
mathematical laws of cofibihation. It is no part of that calculns
to take account of Rbﬁéible regions of application: Istances
present themselvgs it algebraic equations, In analytic functions,
in differential eg{laﬁions, in divisions of space of ditferent orders
of dimensiouiin the digplacements of a solid body, in invariants
and covariahts of all kinds—a selection of subjects manifestly
not complete. .

The carliest expression of the notion and its initial develop-
adolit are due to Galois: he indicated the kind of relation that

Sohuld exist between the properties of an algebraic equation and
some corresponding group of finite order, The early growth of
the theory was due to Freuch mathematicians, Cauchy in.p.ar-
ticular, then Serret. Somewhat later came the fine exposition
by Jordan who, it may be mentioned, had Klein and Lie as
pupils ab the outbreak of the Franco-Prussian war in 1870.
Down to that date, the subject revolved round algebraie cqua-

tions as a centre.
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The interest in the theory began to spread. The next real
extension was due to Sylow, in a memoir on groups of substitu-
tions. Then followed a partial construction of its mathematics
as a pure caleulus, without regard to applications: the contri-
butions of Cayley and of Weber may be noted. The theory soon
divided itself into two co-ordinate sections, sometimes advancing
as pure calculus, sometimes extending to new regions of
application. A theory of continuous groups branched off into
complete independence; it became a great body of mathernatigq,} \
doctrine, under the inspired researches of Sophus Lie and«his
disciples. The theory of discontinnous groups at’sraiqpeid’ an
equally ardent band of investigators: the names pf Klein,
Burnside, Frobenius, Hélder, and Dyck, recall diyerse”develop-
ments in theory and mn use. i

It was to the theory of discontinuous grpiips of finite order
that Burnside mainly devoted his attention{Seattered references
to such groups eccur in some of his papergaiready cited. At first,
their occurrence seems merely incidental; then they almost prove
that his thought was gradually'aé’géumulating the evidences of
a connected thegry,, Hrom. itheagarlyonineties onward through
much of the remainder of his life, Burnside’s constructive
thought concentrated on {the subject. Paper after paper appeared
from him, on a vasti¥ariety of associated topics, in ordered de-
velopment, each providing some fresh contribution, all of them
marked by imaginative insight and compelling power. They
found thejg.first culmination in his book on the Theory of
Groups, published in 1897, That volume was a systematic and
continmels exposition of the pure calculus of the theory as it then
stogthiand it embodied the researches of other workers in Europe

qnd America (always with ample references) as well as his own,

His papers on the theory of groups continued, unhastingly, un-
restingly. A second edition of the book, considerably more
extended than the first, appeared in 1909, Even s0, his activity
in the sgbject still continued, though with 5 gradually decreasing
production. He published over fifty separate papers on this
range of knowledge alone; each of them, even the briefest
contained some definite result or results of significance, Ali

this work, original from himself, is a splendid contribution

Q!
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emanating from one mind and, of itself, is sufficient to secure
the remembrance of his name.

With the coming of the war in 1914 and during its course,
there was a comparative cessation in Burnside’s produetivity.
His frame was almost as lithe as ever and apparently as full of
easy spring, as though to belie the passage of years. Some of
his constructive activity passed silently into the service of his
country in certain naval matters. In those years he undoubtedly ®
continued to produce papers; but the main body of hiscwork
could be regarded as verging towards ifs termination, o "

One new subject, however, secured some regulas attention
from him, even amid his unbroken interest in grofuﬁé. It may
have originated from the mathematics of some, War problems,
and its interest may have been fostered as he pondered over the
combinations of diverging results of obséxvations. In the year
1918 he produced a short paper dealing with a question in
prebability, purely mathematical A8 ~1§ropounded; and 1t was
tollowed, from time to time, by ether papers, some suggested by
practical problems. Probability, as & mathematical theory, has
not yet lent itself to a 4inRIe UGS _é}régl}qised development
based on any unique sgthof ideas, which are generally accepted
as fundamental. Eyem the method of almost universal use in
astronomical observafions depends upon the Gauss assumption
of the arithmetie mean of a naumber of discordant observations,
as the best<messure of the unknown quantity. Bub that
assumptioﬁ"étands as only one out of many inferences from the
less ‘s\f'Ei‘f:rary assumption that the probability of an error, in
a{lylﬁservatinn, is some function solely of the deviation from the
anKnown accurate measure ; with that less arbitrary assumption,
4 more general inference is that the difference between the
unknown measure and the arithmetic mean is some symmetric
fanction of the differences between the observed magnitudes.
{Of course, the oceurrence of the symmetric function modifies the
law of facility of error: or the adoption of an admissible law, not
inconsistent with the assumption and differing from the expon-
cntial law, determines the form of the symmetric funetion.)
Burnside deals only with the arithmetic mean : thus tacitly, with
other writers, making the symmetric function o be zero. As
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indicated earlier, he did not consider that he had resolved all
his difficulties. Ever a severe critic, he remamed ctitieal of
himself; he was not afraid to medify an opinion; he did not
hesitate to abandon an opinion, if ever he regarded it as not
fully tenable, as indeed bappened in fact. The manusecript,
which he has left and which will be published by the Cambridge
University Press¥*, is the expression of his views so far as they
had been framed into a system.

There is one activity in human nature which exer:c.@}és.\ i
perennial lure for living minds. When a worker of recogmised
distinetion in any field has completed his contribution $o thought,
some survivors delight in assigning him his placelifvan ordered
hierarchy of memorable names. The task «déwands an easy
ommniscience which shall gauge all knowledge 3nd all intellect, if
the estimate of precedence in relative mgiﬁis to be promulgated
with authority and received with helief Yet, somehow, such
estimates lack the quality of permg,néni:e. Nearly two thousand
years ago Lucretius, the brilliau;t—:tﬁﬁositor of natural philosophy

in an age of culbure, gﬁscriﬁgd’ﬂﬂ iCUrus as a man
www dbrau 'raryorg,m

Qut genus hwanum ingenio superavit,

a tribute paid two ﬂl[!}enturies after the death of the Groeck
philosopher of the*atom: the world to-day, if it ever hears of
the name thus Jadded, greeis the judgment with a smile. Less
confidens menmay, in their own day, render a more modest yet
equally gi\ni@ei’re homage to a passing spirit, from their reverence
for tl}\genius that has striven and in their remembrance of the
worlllly task that has been done. Burnside, during a life of
:.sg‘ealdfhsb devotion to his science, has contributed to many an
<\} issue, In. one of the mest abstract domains of thought, he has
systematised and amplified its range so that, there, his work
stands as a landmark in the widening expanse of knowledge.
Whatever.- be the estimate of Burnside made by posterity, con-
temporaries salute him as a Master among

; ) the mathematicians
of his own generation.

KNovember 11, 1927, AR F

* H is embodied in the present volume.
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CHAPTER I
INTRODUCTION

1. The words “probable” and likely ” continnally ocenr in |
conversation, as also does the substantive © probability ” though
not so frequently. O

“The glass fell a lot last night, it will probably rain today™
or “The baromcter has fallen half-an-inch since yestcz:dg%-y:'there
15 a probability of rain beforc night ” are statementsysuch as we
all have heard at the breakfast table. The heazek, ¥ he treats
them as anything more than attempts at startiﬁg}conversation,
will regard them as more or less vague judgments founded on
the speaker’s previous experience. He willg’ar}ainly not recognize
any numerical precision in them. \ &

A more speculative acquaintance Ba’ving'examined the baro-
meter might say, “ I'll bet you 2481 in haif-crowns it will rain
before night.”; to which the answt 1ight he, *“ No, but T'H take
3 to 1.” Here both spég,ﬁéﬂrs%%?%ﬁai%ﬁ}gﬁlnake some rough
kind of numerical estimate of the probability of its raining
before night. Their eskifrl}ates however apparently do not agree,
nor would an audiende infer that either speaker attached numeri-
cal precision to hig'estimate.

Let us take&nother set of statements involving the words
“likely, prébable, probability.” The captains of two cricket
teams habibually determine the choice of innings by spinning a
coin. They would cerfainly repudiate the suggestion that a coin
is rx\lbfe likely to fall head than to fall tail. They would assent
to'the statements i

“When a coin is spum, it is equally likely to fall head or tail”;

“When a coin is spun, the probability of its falling head is
the same as the probability of its falling tail.”

Though they might find a difficulty in explaining, wi_thout.
asing the words “likely, probable, probability,” the meaning of
these statements they assent to, they undoubtedly act upon
them,

FE



2 PRELIMINARY EXPLANATIONS [CHAP. T

In the above sentences between inverted eommas, the words—
probable—likely—probability—are used in & more ot less vague
conversational sense. Now when the caleulation of probabilities
is spoken of, it is implied that the Probabilibies In question
are capable of being measured or specified by numbers. About
such probabilitics there can be nothing vague. It may very well
be the case that some of the probabilities of ordinary conversa-
tion cannot in any way be brought under the head of calculatie®
probabilities ; while others, by making smitable assumptions;‘ean.
For instance, probabilitics connected with the questien” of
whether it will rain before night may be found to belong to the
first class, while these connected with the fall ofja.“coin may
belong to the second. S\

A probability can only be said to be measired or represented
by a number, when a rule exists by means‘eiwhich the number
can be caleulated from a sufficiently cxténsive set of data. Before
stating such a rule, it will be copwedicnt to begin with ex-
planations of both the phraseolggjf"and the notation that will
be used. SN

When making a trial or ¢hdice is spoken of, it is implied that
the result of My’ tHukwibehoicergsimincertain. The degree of
uncertainty will depefids ipon the nature of the trial or choice.
A sormewhat typicalicase is the choice of an integer, When no
condition is impclke on the result of the choice, the number of
results 1s clearly’ unlimited, When an integer is expressed in
the scale Y0y the sum of its digits, s, and the number of its zero
digits, 2f are definite numbers. All integers may be divided into
two blasses: those for which s does not exceed 20, and those for
\y}}ich s docs exceed 20. The condition that “in the integer

:.\r;hésen, s does not exceed 207 is a limitation on bthe trial or
{\“thoice, for it cuts out a number of what were possible resnlts,
There are still however an unlimited number of results. In the
same way the condition that “in the integer chosen, z does nos
eggeed 10" is a limitation on the choice ; and with this con-
dition by itself satisfied the number of results is still unlimited.

M, however, both conditions are satisfied, the nuraber of results s

no longer unljmited. It is clear that there must be an unlimited
variety of sely, of conditions, such that when those of a single set

are all satisfied, the number of results of the choice is finibe.
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If the two above conditions are called conditions 4 and B, then
when they are satisfied there is a finite number n_g (=ny,) of
results of the choice.

Now consider some further condition €, for instance, that
“ the leading digit in the integer is 8.” The number of results
of the trial when, in addition to conditions 4 and B, a condition !
1s also satisfied will, in general, be less than %,,. Denote it by |
napo. This set of n,p, results belong to the # 4, results; and in
those of the np results, which do not belong to the np,,, t{He\
condition (7 is not satisfied. If then £\

N
Rap = Nypp + N ypy, N\

" anc is the number of the 4 results in which the condltmn ¢
1s not satisfied. When n 45, is greater than unity; ;t‘}ﬂl clearly be
possible to divide the » 45, results in which conditions 4, B and
O’ are all satisfied, into two sets by means oQa fourth condition
D which 1s satisfied by some and is not gaftisfied by the rest. In
general the n gy results will also be divided into two setsby the
condition D, so that >

T 4= " qmop T Manon g nA.BC'D + ap0D)
where, for instance, n e i r&‘&'ﬁb gﬁzlf Integers which
satisfy conditions 4, B, Dpand do not satisfy condition ¢, The
order in which the lette.rmn a suffix are written in this notation

s\

1s immaterial, &™

I any one of the numbers gz, is greater than unity, this
process may be;éohtinucd by introducing new conditions.

Finally thev . results of the choice, which satisfy conditions
Aand "‘aybe distinguished from each other bya finite number
of othéieonditions €, D, K, F,-.... To each one of them will
cormspond a symbol CD .. E’F ,implying that for it con-
»dxt.lons O D, ... are satisfied and conditions K F, ... are not

\Sétmhed

The suffix notation, that has been introduced and explained
in the case of the choice of an integer, is quite independent of
the particular case to which it has been applied. In the pre-
ceding illustration, with regard to conditions 4, B and € which
have been stated expllmtly, it 13 clear that, as regards each, an
integer must either satlsfy it or not satisfy it;@#re are no
ambiguous cases. It is assumed, once for all, that a condition

I-2
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introduced in conmection with other trials or choices is such
that a result either does satisfy it or does not. With this
assumption, the suffix notation may clearly be extended to dis-
tinguish between the results of any trial or choice.

Even when the results of a trial are subjected to no conditions,
their number may be limited owing to the nature of the trial
itself. In such cases, the introduction of conditions to be satisfied .
by the results will in general involve a further limitation of the

R

number of results. <\)

2. With these explanations, the rule for ealculating caicu\lable
probabilities may now be stated. N

Rule. The results of a trial or choice, or the 4rial itself, or
both the trial and the results, are subjoct to such'ednditions that,
wherever whenever and by whomever the trialys made, there are
Jjust » possible results, of which one must obéhr and only one can
occur. Ifin n, of these results the coqdi}%n A is satisfied, while
in the remaining n — n, 1t is ot satigﬁe.d, the probability that the
condition A is satisfied, when a prial is made, is n4/n; provided
that each two of the n results:are assumed to be equally likely.

The rule on wbﬁglnﬂ;g@kgﬂéﬁgpggﬁpmbabﬂities depends has
been stated in a variety®f forms. For instance, Poincaré puts it
in the following form ¥ 3~

La probabili‘té\}un événement est e rapport du nombre
des cas favorables & cet événement an nombre total des cas
possibles ;& ¢ondition que tous les cases soient également
vraisexglables.

In\ 2 Note (p. 101), some reasons will be given for the form
chegen here, and especially for the way in which the assumption

. 0fequal likelihood has been made. The number n, is some

«nteger from 0 o », both inclusive. If n, is neither 0 nor », the

results of the trial are divided into two sets by condition 4,

namely those in which condition 4 is satisfied and those in which

1t 1s not satisfied ; but, if n, is either zero or n, this is wot so.

Condition A will be said to be relevant to the trial in the first
case and not relevant in the second.

Suppose now that condition 4 is relevant to the trial, and
consider the new trial which is subject to the further condition

* Galew! des Probabilités, 17 &d., pp. 1, 8; 9w éd., pp. 24, 26,
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that condition B is satisfied. This new trial has just n, possible
results. In n,y of these, the condition B is satisfied; and in the
remaining n,—n 4p, 1t is not satisfied. It follows from therule that
the probability that in the new trial condition B is satisfied is
n4p/n ¢; since each two of the n, possible results have already
been assumed to be equally likely. In the same way, in the new
trial which is subjeet to the condition that condition 4 is not
satisfied, the probability that condition B is satisfied is n 4p/n 48
Hence when the trial is made and the condition 4 is satisfied,
the probability that condition B is satisfied is not in general\thie
same, a8 when the trial is made and condition A is nqt.gimfisﬁed.

If however condition A is not relevant to the stial, the pro-
bability, ng/n, that the condition B is satisfied d’é&s not depend
on whether n 4 is zero or n; ie. on whether A\ig'satisfied or not.

The suffix notation, which has been intr @utced for distinguish-
ing between the results of a trial, will also be used in representing
probabilities. Thus p, will denote the'probability that, when the
trial is made, condition A 18 satishod: pap (=pgg will denote
the probability that conditiogx:;_f “is satisfied and condition B is
not satisfied, and so onwwg@fz@mﬁg}tﬁﬁﬂ%@gp of thig notation
is to use py, for the probability that, when condition B is
satisfied, condition A.\sﬁay be satisfied.

Suppose that Ay, A, ..., 4, is a set of conditions no two
of which are bath'satisfied in any result of the trial, so that the
n,, results in{which A; is satisfied are all distinet from the n,
results in-which A; is satisfied. Then

O nmngtngd ot g e
Orqu, is the condition that no one of the s— 1 conditions
(AT A, ..., Ay is satisfied,
R=Ng+ Rttty
Hence, since p,=n4/n,
Tespy +Pat et Py rorrrrmmernrvanee (),
where A, 4,, ..., 4, is a set of conditions of which one must
be satisfied and only one can be satisfied when 2 trial is made.

In particular,
t=patpa
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Again, since the n,y resulis in which conditions 4; and B
are both satisfied are distinet from the =,z results in which
conditions 4; and B are both satisfied,

Ag=N, g+ g+ ...+ g,
so that Pp=PantPapt - T Pam e e {11).
The last equation but one may be written

n n ) Q)
A B AzB AsB .
Mp=—— g+ R+ STy
4 M (" O\
and it has been seen that n,gfn, =».,,,. Hence 2\
7.
PE=PiaysPay T PPty t oo + DiggpPay pch (111}

3. Among the conditions that are not relevant tthe"result of
a trial, there are some which call for special natics, “Consider for
instance the condition-—that the trial has beely’ made at some
other time or in some other place than,those in question. If
this were relevant, it would be satisfied 'lsqxr?some and not satisfied
by other results of the trial at thexpatticular time and place
considered; and the number of possible results at the time and
place considered would be less than %, contrary to the supposition
in the rule. In precisely the €ame way it follows that a condition
—that anotherm%dbhguﬁﬂi:ofmlwgaime kind or not, ghall have
a particular result—isalsd not relevant.

If a trial is repeated, and it is proposed to consider probabili-
ties connected vgif‘h the repeated trial, it is necessary to make
an assumption vflequal likelihood. Suppose there are ¥ possible
results eachy$wo of which are equally likely for the repeated
trial, and2tHat in N; of them the éth result oceurs at the first
briabg’xg} the jth at the second. For the repeated trial, subject to
t%lgs&mdition that the 4th result oceurs in the first, there are Just

\' N51+N€'2+'--+Nin
\'"\; “fesults; and each two of them are equally likely, Now it has
just been seen that the result of the first trial is not relevant

to the seeond, so that the probability that the #th result cecurs
at the second trial is
N

Vot Tt 4T,
From this it follows at once that

Ny 1

for all values of 1,
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or in words, each two of the n? results of the repeated trial,
arising by combining any result at the first trial with any result
at the second, are equally likely. This reasoning may clearly
be used to shew that when the trial is repeated m times, each
two of the a™ results ate equally likely.

If attention is directed, in the repeated trial, to whether
condition 4 is satisfied or not, the ¥ results may be divided
into four sets N ., Ny Nas» Ny in number, the notation
being that already used. Then N, (N 44+ N 4 0) is the probas
bility that, if the condition 4 is satisfied at the first friakb 18
satisfied at the second. It has been seen that the progia;{g i8 not

relevant to the result of the second trial. Hence
Naa  _ » .mz\‘
NA.A + NAA’ A )
N, A\,
Similar} A K7,
arky NA’A + A Y, "PA’“x\..
N +N,., 0N
and A}\T—A{!,? P,

the last equation expressing dig'tff;iafy that the probability, that
cc.mdition 4 is satisﬁedm}p{%ﬁgﬁhﬁp&@yg Pai These relations
glve

Naa_ o Nax Jﬂ’s’A_. Naya _ 2
N P4 _ﬂ'f_'\'i“N =p,(L—p4) N =(1-p,)’

In precisely the)same way it is shewn that if the trial is
repeated r + Hiies, the probability, that at gpecified trials in
the set the/gondition A is satisfied and that at the remaining s
trials i!}\@}lﬁt satisfied, s

R\ \ pa (1 —pa)-

Afia second trial has just n’ possible results, wherever and
"?\*;}réncver it is made, and if cach two of these results are
\assumed to be equally likely, it may be proposed to deal with
the probahilities regarding the results of the two trials when
performed together. As in the previous cases, an assumption of
equal likelihood must be made. Let there be N results for the
double trial in N, of which the ith regult of the first and the

jth result of the second oceur. Of the ¥ results, there are

N1j+ Ngj-l--.- + Ny

results satisfying the condition that the second component of
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the double tria) has its jth resnlt. This condition is not relevant
to the result of the first component of the double trial, so that

Nj=Ny=...=Ny
for each value of 7. It is similarly shewn that
.N,:-l=N{3= =Nm,
for each value of v Hence '
Nog _ 1) N
N oan’’

R\
In words, each two of the nxn'resulta of the double trial§;¢0rmed
by taking any result of the first component with any vesult of
the second, are equally likely. AN 4

This result also may clearly be extended, g~ multiple trial
with any number of different components.

Still using the same suffix notabion’z%& a5 +Bep)fn is the
probability that either condition A oF edndition B, but not both
of them, may be satisfied. This mag be rather more conveniently
expressed by saying that:— %

Probability that just one of-fbe conditions 4 and B is satisfied
www.d btaﬁl%ﬁiaamytbﬂgm
Similarly, the probability that at least one of the two conditions
A and B is sa.tisﬁ@‘, }
\ =PaptPar + Puas-

Now ;" Pa=PstPaws Pr=PantPus

Hence thé. gxpressions
\"\ (@) Patps—2p4n,
O (B) Pa+ps—pan

ogive the probabilities that of the two conditions 4 and B,

\3 Aa) Just one, (B) at least one, is satisfied.
The corresponding formule, in relation to a number of con-
ditions greater than two, will now be established. _
Let 4y, 4,, ..., 4, be n distinet conditions each of which is
satisfied or is not satisfied, when a tzial is made.

F| * .
There are just 27 symbols such ags Pdits.. didisr.. 4 iD Which

ea.cl}. suffix oceurs either accented or unaccented. It 1s a resuls
of (1) above that

pdl = 2 }IJAIAE..-.eﬁA’i.;.l et
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where the summation extends to all the symbols with n suffixes
in which 4, Js unaccented. Similarly,

.,
Payae= ~Pirdody,.. 4id131,.. An>
where the snmmation extends to all the symbols in which both
A, and A, are nnaccented; and so on.

4. A typical symbol in which 7 suffixes are unaceented, and
n —r are accented, will be denoted by

. e N ¢
pl N n—r . , \“\
. . . T L4
Since » suffixes can be chosen from the » in (*r) or W
T =P

Ways, Pr, a_y stands for any one of a seb of Cf) symbols,’afp}urtfcular
. &

one being specified by the particular set of = sufffxés which are

accented, O

i
Similarly particular ones of the symbolgply, Pa,ass Pasassr -

will be denoted by p1, o, P, -+ ; 90 thatpgdor instance, is typical .

of any one of a set of (:) symb()]s:‘f{l

N

N 7
. 3 . 2 l
In what follows, Zp;, - \5’1 e;_taeu li'b}i% lgg(lr(ﬂ gi;nthc ('r) symbals
£ -n
of which p, , . is the t_\‘rpé; and 3p, denotes the sum of the (3)
symbols of which p, Tothe type.

If now Zp, 1s\m§presa.(,d in terms of the 2* symbols with =
suffixes, any, particular symbol pgas will occur in the sum once
for each distinct set of r unaccented symbols which it contazns.
Hencq AR8<r, P, as will Dot ocOUT &% all, while if 827, Psa-r
wilkgééur (:) times.

\ §It follows that B
2—}),-;' i (8) EPs,ﬂ—.h

=¥

this relation holding for all valnes of r from 1 to n, Hence

T () se=E E e () ()

r= H r=L g=1r

=T () 3po

g=¢ r=%

N
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Now Es (— 1y (;) (s) =0, s=t,
r=¢t g *
=1, s=4&
F=i r .
Hence Spe ot = i (= 1y (t) SPreieraenenn {iv}
Rt s=nr=n - »
putr, % = 5 E (5
P=nu a=r % )
= a %t(ﬂ = (3) Zpri .\\\'
ar r—- 14 N\ )
and since si (—1)y—= (D ={— 1) (t ) ‘\

4

it follows that :
s=n = -1 ~ N
%t 0y ap= 3 {—1)r (:_ 1) 32 einns (v).

r=t
A,
Now Zp; n ¢ is the sum of the (:) Qr@bols Pards.. ded'spr.dn

in which just ¢ of the » suffixes are @egented. It is therefore the
probability that just ¢ of the niconditions are satisfied; and

similarly S Sp, ., is the probability that either # or more of

# -, i Y N i ..
the n conditions’ 1h o be‘r?\%g?(?g ‘that &t least ¢ of the n conditions,

are satisfied. The fordinlze (iv) and (v) therefore give the ex-
tension to the caselof n conditions of the previous formulws
() and {8) for ’t}e\case of two. In particular, the probability
that at least onedof the n conditions shall be satisfied is
“\ Ep - Epy+ 3y — ... +{—1)"p,;
and th’eﬁezﬁre the probability that no one of them is satisfied is
:x"': 1 *Epl"-ng— e +(—' 1)“?}“'
+8N Returning to the formuls
'"\:\ ) Pa=PapTPap: Pe=Pur+tPup,
N/ 1t follows that
PaP2=Psp{Pap+Pap +Pusz) + PaxDis
=Pag(1 = Pyp) + Pappap-
Hence if the condition :

W = 1)
is satisfied, then PusPur —PawPss

Pip =P 4Py, Paw=p4(1~pp),
Per=(1-p,) P Baw=(1—py)(1—pp)
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In this case, the conditions A and B are generally said to be
independent,

1t might be expected that when, in this sense, cach pair of
the three conditions 4, B, € are independent, all probabilities
connected with them could be expressed in terms of p,, py and
pg; bus this is not necessarily the casc.

Suppose that

Pan=PaPr: Pac=Pale: Pre=PePo: - N o
and that at the same fime ) \' \)
Puape = PalrPe+ k. ~ bt
Then  Pysc=Pso—Pasc = —PadPspo—Fk 3
Pawc =1~ pa)PaPo— ke
Parc =(1 *PG)PAPB—’?- v
Also Pape =Pro— Pape=(1—pr)(l :'?ﬂ\c) — Papes
Pare =1 “PA} ('1}}’0) ~PsEC-
Pame =({1— ?@Mi —Ps) —PaBo-
Entering these valnes m ¢ »
Base+ Papet Parot Pasc '!'P,mv’c +Ppape +PagetPare=1
it follows that wwwidbraulibrary.org.in

Page™ G?VP&) (1-pg)(1—pp) - k. )
Hence when 4 and'BME and €, € and 4, are respectively inde-
pendent, all the( probabilities connected with them can be
expressed in tetms of py, Pp, Pe and another number &, which
may have anyyalue between — &, and &, where &, is the greatest of

'\NWV
.§*~’:P.4 PrPe: pa(1—pg) (- po);
\ pa(l—pa)(1—pe) Ppoll —pay {1 —psh

Mg\u:f?kg ig the least of
N A —p)A—px)(1=po), (1P PsPe;
(1~ pe)PaPe, (L —pe)pape
Also Papo=PpPe — P.apos

pape = (1 —pa)(l —po)—Pawe:
Papc+ PePo+PoPa+ PaPs— 3Dase
+83-2(ps+ps+pe) FPpPot .. —3Pape T Pape= L
2-2(py+pp+pg) + 2 (PpPor -+ ) — 2Papc — 2p 450 =0,
(1 —p) (1 —pp) (1 —pg) + paPsPo— Papo— PaBc™ 0,
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e ={1—pg) (1 —py—(1 —p0) (1 —pay{1—pc)
~PaPsPo+ Pavo
=p (1 =pp}(1 = Po) — PaPrPc+ Pazc
= Pape + Pa(l —Ps—Po)

The various results and formulz that have been now dedneed
from the rule, especially formula (iii), will be found to simplify
very materially the caleulation of probabilities in complicated ™
cases. In particular, they enable the calculator to dispense mith
a continual reference to the rule by utilizing probabilitids that
have already been determined. But, in general, the wéal diffi-
culties of calculation are connected with those casés, in which
the number denoted by n is great. The detertnimation of p,
involves the distinguishing and picking outdfthose of the n
results, in which the condition 4 is satig@d. That it may be
impossible to do this by a direct enume@b}oﬁ a simple example
will shew. O

Let us assume that when a coin is-8pun it is equally likely to
fall head or tail. Then we have seeh that when the coin is spun
n fimes In succession each twesof the 27 results, as regards head
and tail, are ewih’dlﬁ’keyi’bl%‘emgh@ coin is spun three times,
what 1s the probability-hat there will be a sequence of at least
two heads? The ediwleration is quite simple. In the cases
symbolized by _ X\

N ' HHH, HAT, THH, V¥A.

, and in no gthers, the required condition is satisfied. Hence the

e

probabilityis £,

thn ’the coin is spun 100 times, what is the probability that
there will be a sequence of at least 10 heads? The problem is of

~just the same nature as the preceding one, except that larger

numb‘ers are involved. The number giving the possible results
contains 31 digits. Assuming that an inspection lasting one
second would enable one to say whether a particular result
satisfied the condition or not, it would take over 3 x 102 years
to complete the enumeration. It is not thercfore going too far
to say.thsfh 10 this case a direct enumeration for n 418 impossible.
Some 1nd11:ect method must be used, A large part of the following
chapterawill be devoted to these indirect methodsand the approxi-
mabe calculations which are necessarily connected with them..
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Equal Lakelhood.

6. Before going on to this, it is well to consider shortly the
assumption or assumptions of equal likelihood that must be
made, if probabilities are to be calculated by means of the rule.
Tt is to be noticed that two calculators making the same formal
assumptions of equal likelihood necessarily obtain the same
numerical value for a probability, assuming them not to make
mistakes of caleulation, The resulting value in no way depends
on the meaning that either caleulator may attach to the
assumptions, nor on whether or no the assumptions appeak, ta/
them reasonable assumptions. So far, in fact, as the caleylations
go, the assumptions are purely formal. It is only &hen the
caleulated probabilities are applied to questions of{inserest out-
side the calenlations themselves that the assuiipbions cease to
be merely formal. These applications are continyally being made,
As a particular instance, a good deal of modétn molecular physics
is bound up with certain caleulated prohabilities. When such
applications are made, the assumptiong of equal Hkelihood, on
which the calculations are made,ccan no longer be regarded as
purely formal. They become ‘inffact, directly or indirectly, as-
sumptions about physical, BhiadmeRdy. dnthe question of
whether the a.ssumpti?gs, are reasonable becomes at once of
fundamental imporjance

It is quite obyious that two different assumptions of equal
likelihood will, i géneral, lead to different values of the caleulated
probabilifies! “t'has been seen that the probability of a sequence
of at lea.st,,}n}t; heads, when a coin is spun three times,is §; the
assumphon having been made that at a single spin head and tail
are eiiuaily likely. No surprise would be felt at getéing a number

moﬂiéi' than 2 had a different agsumption been made as regards

{the result of a single spin. The apparently paradoxical result of

getting two different values for the same probability is always

to be cxplained in this way. One of the most noted of these 18
due to M. Bertrand. He solves® the question:— :

What is the probability that a chord of a given circle

drawn at random is greater than the side of the inseribed

equilateral triangle ¢

* Caleul des Probabilités, p. 43 the question is asked for ‘gmaller than’ and

is solved for ‘greater than.’
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He carries out the caleulation in three different ways and
arrives ab the results 1, 4, §, respectively. An analysis of the
three caloulations shews that the assumptions of equal likelihood
are not the same in the three ways. This fact however is masked
by the comparative complication of the assumptions; hence the
appareni paradox.

Another possibility that may be mentioned here is that bhgz\
data, from which it is proposed to calculate a probability, ‘are
insufficient whatever assumption of equal hkelihood is madey A
well-known example of this is given by the following guestion
due®* ie Professor Boole . — Ao

The @ priori probabilities of two causes 44 ‘ja:nd Hz are ¢
and e, respectively. The probability that, if“c}sﬁse A, oceurs,
an event £ will accompany it {whether aslebnsequence of 4,
or not) is p,; and the probability thapeBAvill accompany 4.,
when 4, occurs, is p,. The event.J “annot happen in the
absence of both causes 4, and A, N\ What is the probability of
the event K7 N O

With the notation used in #his chapter, there are eight possi-
bilities to be taken ipto af%eiuﬁt denoted by
WW\;\’ I'E!.Ll lll"ar}/‘.ol"g’.lﬂ
AIA‘;’-ES A1A2El A1A2E: Al"‘{?'E?
48 E,CHACE, AAK, AASE
In any case, \\
RE=Parter T Priaret PayacE+ Payar's
A
The, dafa give
) \.§ N Pae=0p, Par=0P: Piagxr="0
5@ that Pe=0p + CopPs— Py sz
. Y + . .
© 4 Since the data give no information at all about the simul-
taneous occurrence of the causes 4, and 4,, nothing is known
about 4.5, other than the necessary relations that it is equal
to or less than bot}l Paug and p,,,. Hence the data are in-
sufficient to determine the probability of K. It is remarkable
that Prof. Boole himself and other distinguished mathematicians

arrived at definite values of p,, which did not agree with each
other,

=Part Pap— P+ Payass

* Laws of Thought, p. 321,



CHAPTER I1
DIRECT CALCULATION OF PROBABILITIES

7. The methods and formaula: of the previous chapter will now
be illustrated by considering a number of particular cxamples. In{
each set of cases the assumption of equal likelihood willbe
stated explicitly. The words “chance” and probabilityf’\' will
be used indifferently as being equivalent to each other, \

The first set of 1llustrations will be drawn from J;BE '};ame of
bridge. There are 521/39!13! ways in which a_sétlof 13 cards
can be taken from a pack of 52, It will be dssumed that each
two of these are equally likely. RN

I. What is the chance of holding atﬂl{za;‘s\t one long suit (Le.
a suit of five or more) at bridge? 3

In a hand which docs not contain along suit, the distribution
of the 13 cards in four suits mitst be according to one of the
schemes N
(i) 4, 3,3,3; wiiipdhhdBarfioggdnd, 4, 1.

The number of sct§ of 13 cards, of which 4 are hearts,
3 diamonds, 3 clu s@nd 3 spades, is
o 914I0r3Y
The suit.bf 4 cards may be any one of the four suits. Hence
the numbet’of hands corresponding to the first scheme is
o 13; 7 131 ¥
\ The number of ways, in which 4 hearts, 4 diamonds, 3 clubs
\vand 2 spades may be chosen, is
1312 13! 13!
(‘9"@) 10131711128
There are six ways of choosing the two 4-suits, and then the
other two may be taken in two ways. Hence the number of hands
corresponding to the second scheme is

131y 131 13!
12(9—14‘1) g iiral
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Similarly it may be shewn that the number of hands corre-
sponding to the third scheme 18
13!
(a1
Hence the chance of not holding a long suit 18
131 , 131y 131y 131 13! 131y
‘9_!4'1('161“51) +12 (95"_4,:) EIR I 914!) 13
521 |
. 39118! A\
After reduction this Is found to be ‘331, to three Rlswes
Hence the chance of holding a long suit is "649. AL
II. ‘What is the chance that one’s hand ab br1dge, sha,l} confain
just one card of some suit? "
A single heart may be chosen in 13 ways; andt'the remaining
12 cards may be chosen from diamonds,.tlubs and spades in

Q!

391271121 ways. The same applies to\a smgle card of any

other suit. Hence the required chance 15

-
"M

www.dbraul@%ﬁ&ora.m
~ 391131

On reduction. this i ‘found to be 320, to three places.

III. The num l\Of ways, in which a hand at bridge can be
chosen to hold #¥< 13) assigned cards, is the number of ways in
which 13 —g(ards can be selected from 52— n. Hence the
probébilip)(that a hand at bridge contains » assigned cards is

Y 131 (52 —n)!

N\ (A3 -n)1" 52!

4.18 . 5=

2 8

For n—-l 2,3, 4, this gives £, %, g, +Hs- :
IV What is the chance in a hand at bridge of holding (i) at
leasb one ace, (it) just one ace, (111) at least two aces?

From the previous case the chances of holding one, two, or
throe assigned aces, or all four, are

oM A o
There are six sets of two assigned aces, and four sets of three.
Hence, with the notation of (iv) and (v), p. 10,

Ip=1 3Zp,=&, Zp=gk, Zp= e
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It follows that the probability of holding at least one ace
=1—f+ 44— 11 —-604, to three places;
the prohability of holding just one ace
=1-2. 5+ 3.8 — 4. ;. =434, to three places;
the probability of holding at least two aces
=H —~ 2. &5+ 3. 313, =255, to three places,

As already stated, the assumption underlying the aboye
calculations is that, when 13 cards are chosen from a pack of »2‘
each two sets are equally likely to be chosen, The questmn
clearly arises as to whether fhis assumption is ag ne{:essary

consequence of the assumption that, when one catd s chosen
from a pack of 52, each two cards are equally llkely\bo be chosen.

Let us make the assumption that, when orie‘object is chosen
from a set of n, each two objects are equally; ﬁely to be chosen;
_and let us subject the choice to the condit\)n that one particular
object, say the ith, is not chosen, Thémin the restricted choice,
subject to this condition, there a.reJust n - 1 possible results; and
by the assumption already mades each two of these are equally

likely. Hence the proba‘ﬁ“ﬁ%ydgf U EH SF Bl is ﬁ .

Now if it is proposed” t}» deal with the probabilities connected
with drawing twg ohjects simultaneously from the set of «, an
assumption of cqual likelihood reust be made, Suppose there are
Just N results.eeh two of which are equally likely, and that in
N; of these: tbre ith and jth objects are chosen (Ny= Ny, N;;=0).
Impns % “tHe further condition that one of the chosen ohjects
is the\ there are Z Ny possible results of the restricted trial;

i
a,nd ea,ch two of these are equally likely by the assumption
ajready made. Hence the probability that the other object
chosen 1is the jth is Ny/ZNy, and

J

Ny _ 1
EN,,) n—1"

This being true for all values of 4 and j, 1t follows that
Ny_ 2
N ar-1)
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In a similar way it may be shewn that, when a set of » objects
are chosen from n, the equal likelihood of each two scts of r
follows as a consequence of the assumption that, when one object
is chosen, each two are equally likely to be chosen.

V. A box contains 2 white and b black balls, and N (=p + g)
balls are stmultaneously drawn from it. If p<a, ¢ b, what is
the chance that p white and g black are drawn? When N is
given, for what value of p is this chance as great as poss]ble ¢

From o+ b balls, ¥ may be drawn in (a + )}/ N1 (e +'E>~-\N)’
ways; and by assumption each two of these are equally'likely.
From & balls, p may be drawn in al/p! (a — p)! ways} ‘and each
of these may be combined with the &i/g! (b — g)fways in which
¢ may be drawn from . Hence the requiredy c‘h\anne is

alb! Nl (g +b— NN
(a+5)iplg!(a—p) BB

This will be greater than the ch mce\fm p+ 1 white and g — 1

black or for p —1 white and ¢ + 1 hlack if

g(a— P)<(P+1)(5 g+1),
and p(b f( <(g+1)(u Pr+1)
Moreover, if “the gigt? %%se ﬁlequahbles holds, so also does

“the one derived from\l’o by increasing p and diminishing ¢ by

the same number é a similar statement is true of the second.
The chance then as greab as possible when

p+1>a+1 P

~\'

,\ g b+17 g+1°
or \:\ p+1 >(N+1)—3'_—}:—12>

w\The chance is therefore greatest when p is the greatest
mteger in (N+Dy{a+1)/a+b+2).

VI There are n boxes of which the sth contains a; white
objecta and b; black objects. Ome of the boxes is chosen and
from it an object is drawn. What is the chance that it is white?

If we denote by A; the condition that the ith box is chosen,

and by B the condition that a white object is drawn, then by
formula (iii}, p. 6,

pB = i§1 PA"p(Ai!B '
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On the assumptions, that each box is equally likely to be
chosen and that from any box each object is equally likely to

be drawn,
1 o
P.4¢=,j‘,;: Pags= P
1 [
n agt+ by

VII. With the conditions of the prewous case, what 1s phs,’
probabilisy that & consecutive drawings give white ob_]ectsy \aach
object drawn being replaced before the next drawing: (f} When
a box is chosen before each drawing, (ii} when the hbx ‘ghosen

and pp=

for the first drawing is used throughout? ,\
. a;
Putting w2 N

in the first ease the probability of 8 'Mute objeet at each
drawing is C

Ep, =N :
nel”

so that (Chap. 1) the prob%;&éfm%mwg}%e] white objects is
Lyspa?
O (E)
k™
If the drawings@ze all made from the ith box, the probability

of N consecutivéwhite objects is ¥ ; and therefore, by formula

(i), p- 6, th:e\i'eqﬁired probability in the second case is
&
N\~ 2p
.’\ kr} )
__Flollows, from & wellknown inequality, that the probability
\'%n‘:ﬂie second case (if ¥ > 1) is always greater than that in the
rat.

VIII. What is the chance that an integer chosen from the
first A integers is divisible by at least two of the four primes
2} 3’ 51 7?

Of the integers from 1 to N, the number that are divisible
by a prime p is the integral part of N/p, which is represented
by [&/p]. Hence if, when an integer is chosen from the firss &,

2-2

N
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each two are equally likely o be chosen, the chance that 1t is
divisible by p is
[jp]

N

Unless & is divisible by p, this is less than 1/p, but its
difference from 1/p 18 less than 1/N. If N is sufficiently large
the chance is very nearly 1/p. If ¢ is another prime, the chance

that the number chosen is divisible by both p and ¢ is ™\
(/pel. : O\
i\? ? ,\ ”

and when ¥ is large enough, this is sensibly 1/pg. Thig reasomng
may be repeated for more than two primes. 3

With the notation (p. 10) of (1v) and (v} trheb\relatlons

101 1 1

=gty ztant 3\5%“.37 5.7’

s _,1_ Loy 1

ST B AL N A W
. \

RN

v
vl abﬁxu&lbi’*dry org.in
are approximately true ‘When N is large enough, the errors
approaching zero as. i\( increases. Now with these values
\\ Epg— 28p+ 33p, =

Hence, when! N I8 large enough, the chance that an integer,
chosen from‘the first IV integers, is divisible by at least two of
the ﬁrst T@ur primes is sensibly 1.

IQ\Ishe same way it may be shewn that the probability of
divieibility by at least two of the first 10 prlmes is "48 to two

¢“\Places; or by at least two of the first 20 primes is -55. It should

P
\ W
\ }

be noted that as the number of primes considered increases, so
also must the number ¥ to ensure reasonable accuracy in the
inference.

The general statement is that, when ¥ is large enough, the
chance that an integer chosen from the first ¥ is divisible by
at least two of the set of distinet primes p,, ps, ..., P 18

1 i 1 1 1
1= (1+P*'1+Pz jfoe —1)(1_53;)(1_5 (1*33;)
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IX. There are n letters and » corresponding envelopes, and
one letter is put into each eunvelope. This can be done in »!
ways, It is assuted that each two of these distributions are
equally likely. What is the probability (i) that just  letters go
into their corresponding envelopes, (i1) that no letter goes into
its eorresponding envelope?

T . . -
There are 0 f W ways 1n which a given set of r letters can . O\

be put into r out of # envelopes: and in just one of these ways )’
will each of the r letters go into its corresponding envelopenso -
that with the notation of (iv) and (v) \ 7

s
2N
< ‘:

o.' 4
~\

_{n—r)i
YTl
nl

Also r letters can be chosen out of n in w ways, so that

1 \‘
EPT‘:?T!' :’t‘}

The probability, that just = lettexsgo into their corresponding
envelopes, is \y

W(\E \:]f_..tﬁ,(?.qb%agy .org.in
1.27 "

Spe=(r 4+ 1) Zp,n + 2 Prie—
2\
(\J ey T FD o+ 2)—n
N \\ +{-1) = '“‘W}Un
1 oMt 1 1)
=l IV - L (=D L
'r!{ xx..?l1.2 1.2.3 - (n=ryi

N\ -1
Unlesa%;-*«'?} is quite small, this is very nearly the same asg e_.

!
The ‘probability, that at least one letter goes into its corre-
SIJ\(Jﬁdin g envelope, is

Ip—Zp+ . (=1,

T 1 |

It follows that, unless n is quite small, the probability that no
letter goes right is sensibly ¢ The numerical value is “368, to
three places,



22 EXAMPLES OF [cHAP. IT

X. A line of unit length is divided into M equal parts; and
1t 18 assumed that when a point is marked on the line it is as
likely to be in any one part as in any other. N points arc
marked on the line. What is the chance that they all lie on
& segment of the line made up of » consecutive parts?

There are M —r + 1 segments of the line made up of r con-
secutive parts. That segment, which starts from the tth division
reckoning from the left-hand end, will be called the ¢th segmen.
Denoting the chance that all ¥ points lie on the parttithe
line common to the ith, jth, ... segments by py ., theédnired
chance ¢ is N\

pi-Zpy+ Epg— ..., D
the sums applying to all setsof 1,2, 8, ... segmé‘r;}s respectively ;

for this is the chance that there is at least dite segment which
contains all N pointe. K7, \d

Now if {and j are not consecutive }’Hﬁ:l’!\lbcl‘s, the part of the line
common to the ith and the jth scginnts, is also common to the
ith, sth, kth, Ith, ... segments, Where &, 7, ... are any numbers
lying between ¢ and j. If; >%Yust r 47— § parts are common
to the ¢th mmaﬁggmégﬁm@iﬂong as this number is not

negative. Hence, if r 44 7>1,

Hrsh g — N
piji\( M r—'j) =P =Py =...,

where %, 1, wmare any numbers lying between ¢ and 4 and
ifj >t !:, ¢ . .\
R O=p4=pu=pay=....
I{.®i+s+ 1, py; oceurs once in Epij, & tlmes in Ep.}-k,
456~ 1) times in Py, and 80 on, when the above equalities
.. (@@ taken account of Hence if s >0, py will oecur in the
3 )expression for ¢ with zero as coeflicient, so that

q= zps - EPi, it1

(M —r 41y (i%)“ (M —~7) (r_;{lf"

The probability, that the ¥ points are in some segment of
* parts and in no smaller segment, is

Ep;- — 22}75}5 + SEpijk — ...
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If =14 s+ 1, the coetficient of py; is
9 _gs 44581 _

2
Thisis 1, if ¢s=1; and 0, if s> 1.

Henee the probability ¢, that there is just one segment of
r parts in which all ¥ points lie, is

g =0r-ri (G 2 0r-n ()
+(M=r—1) (""ﬂ"j}” .\f"*\.

If, in the formule for ¢ and ¢, we write
T ‘ :
ﬂ_“ﬁ;’ ’m’\\'
then v
g =N — (N -1)a¥ - . N“] "’J’N——\—m L
2 " \\ M
!_f"fff"__:l_ﬂ’—_@_?ﬂ'” o\
7= M \

~ where the unwritten terms contxaiﬁ M*“ and higher negative
powers, When M is ver Tlhg unwritten terms will be
very small, Hence the pw}%ablﬁay, At therdis Some continuous
segment of the line, of Iength @, which contains all N peints,
18 very nearly

}mN"l — (N =-1)e¥,
and the probabllity‘, ‘that the d]stance between the two extreme

points Hes bé%een # and 2 + <, 1s very nearly

\O U’
O N{N-1—(N-3)a}a""
~\ M
_XT. The conditions being as in the previous example, what
_1s'the probability that, N being greater than M, at least one of
the divisions shall contain no point ?
If ¢; is the chance that the ¢th division contains no point,
¢i; the chance that neither the <th nor the jth division containsg

a point, and so on,

1y¥ ) 2y¥ Ny
Q’«:=(1~ﬂ—f) P <’1;,s=(1—;1'j) s 9'«1!::(1—]4)
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and the required chance is
=3¢~ Zq5+ Sqm— ...,

1‘“2“”’% 7 (1 Mf

For quite small values of M and N, th{, numerieal value of ¢
may be caleulated from this formula: but clearly some methed
of approximation must be nsed whou M and N are Iargc

so that

Suppose, for instance, that 4
N=HM(log M+1k), 3 hudf
where M i3 large and k/log M is small and posz’gﬁre Thun

) \9&?\\
1og(1~—,—) —(0gM+k)( r <3 - )
so that 'x:‘\\"

N\ ¢ log M+ &
M (1“_?‘)1\?‘{.]“. _ M\ 'g"ogmt_
LM — ) )T N =y ¢

For any given value of 7, tﬁ:é:’f:acbor
www.dbr aﬂ,xubml V. of’glﬂh’ M+k
R

M Qﬁl = 'r)
rapidly approad\s\ﬁmt_v as M increases, while
4 \ 3 g_kr
\ (.,, N/ o
rapidly approaches zero as » increases. Hence for the value of
N agsdiged,
’\ o L=
N \ T-g=% e_—‘_ very nearly
i"\.; b T
\’,“ =¢" %" very nearly
e .
=e nearly.

As a particular case, if ¥ is nearl y equal to
M(log M~ log log 2,

the probability that every division contains a point is very
nearly 4,
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XIL. A coin is spun n times. The probability of its shewing
head at the first spin is p'; while at any subsequent spin the
probability, that the coin shews the same face as at the previous
spin, is p. What is the probability that the eoin shews head at
the nth spin ?

If the probability is p,, then, by applying the formula (iii) on

p. 6 to the nth spin.
Po=PPu—+ (1= p) (1 = pay), A
or Pu=(Zp-1)p,, +1-p g\ v,
Similarly Par=(2p =D pp,+1 -p ,\\:‘3
................................ ; o
. W
while, for the sceond spin, \\}
p=@p=-Dp'+1-p
Hence \;\\'

Po=(2p—~1yp NS
+HE+Ep— D+ (2p -1y £ A (2p - 1)) (1-p)

=i+ @1 (p - oV

Tnless p is eithe b O verv nearly '
Unless p 1s either ver‘;{rwsrg b on yer ¥ nearly 1, the required

T pt Lt Koy
probability is very nearly 4 after qult)e{ 3 inoderate number
of spius, (,\\

3
N
o\
7N
\<&
L >
9\
w\’\/
N/

N

>



CHAFPTER IiI

INDIRECT METHODS OF CALCULATING
PROBABILITIES

8. If p is the probability of an event on a single trial, then\
p" 1s the probability that it will happen at each of n consecutive
trials; and therefore 1 — p® is the probability that it will failto
ha,ppen at least once in # consecutive trials. Hence, "WV sets
of n consecntive trials, the probability that the even,bswﬂl fail to
happen at least once in each set is (1 — p™)™. Thﬁ probability
clearly approaches zero as N increases. Therefer}‘l —{1—p™%,
which is the probability thai in one at leasfsf the N sets of
n consecutive trials the event happens gyery sime, approaches
unity as & increuses. ..\

The result may be expressed i z}, shghtly different way,
since the N sets of n comecumve trials constitute a set of
HNn conscoutive trials. ']1%8”1&0‘1?\? n consecutive trials, the pro-
bability that the event appens n times consecutively, once
or more, the sequences conmbtmg either of the first n, or the
second =, ..., or theNth »,is 1—(1—p™P¥. The probability
that, at some stagelof'she Nn trials, the event will happen n or
more fimes cogsecutively, is clearly greater than 1 — (1 — p*)¥,
To take a ps\LrtrcuIa,r case, the probability that in 7200 trials

a spun co\h »will fall head 10 or more times consecutively is

br-
greab(\"f‘ha,n 1- ( ;)1]—0) .1e.is greater than }, assuming head
aud taﬂ equally likely,

d \ It should be noted that, no matter how small P and how great

\ / n may be, 1 — (1 —p™¥ will differ very little from unity when
N 15 large cnohgh.

Though the above process gives a lower limit $o the probability
required, the limit is clearly much too small, and the true valuc
must be arrived af in some other way. In this and a number of
similar questions, which are gencrally classed under the head
of “duration of play,” the required probability can often be
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determined by obtaining a finite difference equation which it
mast satisfy.

Let p be the probability of an event ab a single trial. Denote
by u, the probability that, by or before the Mth trial, the
event has happened n or more times consecutively; and by =,,
the probability that, at the Mth trial, the event has happened
n times consecutively without having done so before the Mth
trial. Then

Upg = Upy oy + Vpre .

In order that the Mth trial may complete the first set of@
consecutive happenings, the following conditions must be safished :

(i) It must not have happened # or more tirmés con-
secutively, up to and ineluding the (M —n - 1)th Q‘iﬁu’l;

(1) It must not happen at the (M —»)th Laiall

(iii) It roust happen at each trinl from theX(M — n +1)th to
the Mth. RS

The probabilities of these three independent events are

1 —uprp, ‘I_ﬁ, ?9“-

Hence v =(1 — qug,}”;)'(l -ppt
or g — v pg g e Hbwandibrahy bregih ™.
Putting AN 205 =100y,

so that w,, is the p}'ﬂhﬁ{l}ﬂiby that the event has noi happened
n times up to and‘ihauding the Mth trial,
Wy War— + (p"— ") Wy =0

When M &M72, ..., n—1, the value of wy is unity, and
wa=1—g The probability that, in the first »+1 trials the
event shall happen at least n times consecutively, is elearly
PN p) p7 5 so thab w,,, =1—2p* +p™*.
" To determine w,,, put

~ Fwy =
Then
L=y +(p =p™) y™ f ()
=+ (W —w) g+ ... (W — W) Y

+ X yMiwy—wy, +(pt— ") Wat—mr}
M=n+1

=1 _pn yn—l — (pﬂ ,__,pn+1) yn.
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Hence w)y, is the coefficient of ¥~ in the expansion of
1-— pn yﬂ,—-l — (pn — Pu+l) yn
1-— y +( pﬂ _ P“+1) yn+1
in ascending powers of y. Since
1 ()= 1—pty”
+yf(y Tl -y 4 (pr = ey gt
the value of w,, is expressed rather more simply as the cogfﬁcier}t '
of ¥ In this latter expression. It remains to determine @hi\s
1 £
numerically. AN
Ta;(i=1, 2, ..., n +1) are the roots of the equatiqr;"}‘ by
.’L‘ﬂ+1—'$n+?)ﬂ—pn+1 = 0, \ 3

\
which are easily shewn to be all distinet, \

#+l
1__y+(pn_Pﬂ+1)yn+l= 131 (xl\xzc&y)
1§

When 1 + g/ (y) is reprosented as phé: ;nn of partial fractions
in the usual way, it takes the form W W

”gfl o (o — pi) 1
a0 — {1 T it Tz’
80 that ! wfu‘w,dlgratl}ﬂéqu.m}g){.in) iy
Wy = n§1 A\ — p) o

Nt s,
L&D~ (1) (pr - pry
If p is either vqr}smaﬂ or very nearly unity, the solution of
the equation fopréquires special treatment. It will be assumed
that this is not the case, and that » is not too small a number.
It may thga,\n:\'bé shewn that the equation for # has one root very
nearly}{giual to unity, given approximasely by
R\ =1 - p» 4+ pnt,

LIt wiay also be shewn that the moduli of the remaining roots

y 1

do not differ much from p (1 ~ p)», and that they cannot there-
fore be near unity.

Hence, except for comparatively small values of M, the
quantities £, 2. M . are all extremely small compared to 2, ;
and a good approximation is given by

(1 —_ pn + pn+1)n — pn
1 —pn n+1 +1,
—Pr AP - (n+ L(p" ~p’”")( PP




9] DURATION OF PLAY 29

In particalar, if p = and n 18 not too small,
R 1y

g g (g ey early,

except for comparatively small values of M. For instance, if

a spun coin is equally likely to fall head or tail, the probability,

that in M spins it will at some stage fall head at least n times

running, is nearly
M+1
1— (1 - L ) .
Qati \\
¢\,

The numerical significance of such a formula as this 15 faher
difficult to grasp. As an illustration, if the coin is spun, sbeadlly
at the rate of 12 spins a minute, the probablhty of sach’of the
following events is almost exactly §, viz ’m’\‘

W

(i} The occurrence of a sequence of 10 b more heads, in
1 hour 58 minutes; N

(i1) The occurrence of a sequence of\2‘0 or more heads, 1n
85 days; O\

(i} The occurrence of a sequence of 40 or more heads, in
241,724 vears.

In particular, the proba;bllﬂ%' he case referred to at the end
of Chap. 1, when n (‘jmﬂy 6 15 03 vet ”Illea.rly

N Ezamples.

9. 1. Three persbus play as follows. Two play a single game;
and the loser sits out, while the third person comes in for the
second game N\ At the end of each game, the loser sits out; and
the one whiwas not playing comes in. In each single game the
two en 4gad have equal chances of winning. The play goes on
till oule player has won » consecutive games. What is the chance
th{t the play will be over by or before the end of the Nth game?

\ N If play is not over at the end of the Nth game, denote by ua,-
the chance that at the end of the Nth game it winner has won
r(r=1,2,...,n—1) consecutive games. He has an even chance
of winning the (¥ + 1)th game; and therefore

Ungrri1 = Rtw, (r=12,...,n—2)

Now uy.,, is the chance that the winner of the Nth game
loses the (N -+ 1)th, whatever number of games he had won
consecutively. Hence

'R,;.\?—}-l,l =13 (uN,l + tw, st - +u'N,n—_1)'
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Using the previous relation, this is

1 1
UN41,1— E“N,l T3 Uy_11— o — g1 Uy pys=0;
and since UNts, r41 = BUN, 5,
each of the quantities uy , (r=1,2, ..., n— 1} satisfies this linear
difference equation. Now ¥, the chance that play is not over
at the end of the Nth game, is given by N\
ﬂN—uN,1+RN‘g+-.-+uN,n_I. :~\.
¢\
! 1 e X
Hence ”N-H_Q”N““Q_J‘N—l = e 5531-—1 U}_\'-_HL;,—O " N/
Moreover vy=1, where N=1,2, ..., n— 1. HP})GL,, 1fw, (z=1,
2,...,n—1) arc the roots of the equation . ~\
1 1
x"""l—Em“—i—Q—sa&“":‘— o B =0,
UN_ 2 A!m% v
71
where 1= _2 A, {«m 1 2, ...,n—1).

3 ‘

Tt follows t'ha'!i.\.rw dbrauhhr‘ary org.in

! Y, 3}[\ ) ub'g P .‘Ef_l ‘ = (}.
a‘ il\o\&.@l by e, B
‘1 ¥ $1 $2 > 2 '(8211—1
% RTINSO ’
x,\'“.‘ I 1, &, g1 a::i |
The@gweloped form of this determinant is easily found to be
O ngt £)
N Vp= o g1 SN ,
NS o =1 (1—a f (m‘b)
”\where o L 1
—_—ph + =
1 1 1 R
=gphl___gm—2_ — n—y_ _—— =
f($) ¥ 2.’1,‘ : szn - on—i 33_%
The equation 2 — g1 4 % =0

is practically the same as that which has been discussed in the
. 1
previous example. It has one root, ,, very nearly equal to 1 — o

and the moduli of the others differ only slightly from §. Hence
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when N 19 large, the fivst term in the above formula is very
much larger than any of the others, ie.
mxIN—x f

—— very nearly.

T =)
(=D& = (§n=2)a= 40— D= L

Now (@)=

) (@ =%y ;
if terms containing gamaTe neglected, .
L\
’ 1w '\ ”
f(531)=2(1“2_n) . AN

Hence, when = is not too small and N is large cgl'igi:;aréd to n,
¥+ N
U= (1 — %‘) .

IT. If the probability of a coin ‘lin\g head is p, what is
the probability that, at some stage.in’:.hf consecutive spins, the
number of heads exceeds the number’of tails by +?

(This is the same problem asg thit of & person playing against
another with unlimited resdirces, which may be expressed as
follows :—If a person recs{¥ek & BEHHBF8RERER he wins a game
and pays one each timé'hé loses, and if he starts with » counters,
what is the chance that before N games are over ko will have
lost all his counpe\m\, assuming thas the chance of his winning
any games is p%))

Suppose (W > is the required probability. Tt is clear, from
conside;‘j{lg\ﬁhe two possibilities with respect to the first spin, that

&N\ - Uy, r = PUN—y, g T (1 _P) YNy, r1
R .M’areover, from the meaning of the symbols, uy,, is unity; and
mfb:;:’, 18 p¥, for all values of N.

A% Consider now a sequence of » + 2s spins, in which there are
7+ s heads and s tails. At the cnd of the sequence, the heads
exceed the tails by r. Denote by f(r,s) the number of such
distinct sequerces, for which the heads do not exceed the tails
by r until the end of the sequence. The probability of any one
of these sequences is pr+* (1 —p). Hence the probability, that
in v+ 25 spins the heads exceed the tails by » at the end and
by less than r at each previous stage, is £(r, s) pT (1 —p).
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It follows at once that

=z
Urios,e = £§0 f(?‘, t) Pt (1-pr

Entering this expression for w4, in the above differcnce
equation, and noting that the result is true for all values of p,
1t 1s found that

f(T’t)zf(T_lrt)"}'f(?"i']n't"]-)'

Also, from the meaning of f(r, 8), it follows that N\
Sla,0=1, f(0,86)=0, OV
for all values of @ and b. Direct calculation gwes N\

fry=r, f(r,2)= r(r+3), f(r,3)=1ir (fr +~4) (r+5).
This suggests that

S s= (e bs 3 1) (rb s +2) (;?;23_1),
which is verified immediately on enf@ping this valuc in the
funetional equation. Hence “\

yasny = 2'.‘“(1"-’r-t+ 1} t:{?‘%—- at - ])p‘(l ~ ).
This is cle&nwamﬁhﬁlmw Vibrig 41, e

The numerical determma’uon of U,y » for given values of +
and s from this formula. would be laborious. It may however be
shewn that, fo é\n ~alues of @ from 0 to  inclusive, the series

147+ (;;3) '+r(fr+tf1).t.l.(r+2t—1_)xt+“_
18 cmwo(gcnt and has the sum
\l\’ (1~VT'ZTQ~)*,
2z

o where V1 —4« denotes the positive square root. When p=4,
“ p(1 —p)=1; and for any other value of p, p{1 —p)isless than .

Also when @ =p (1-p), Vi—ds is 1—2p or 2p—1, according
as p 13 less or greater than 1. The series in w45 ,, when taken
to infinity, is thercfore (1 — p)y~* or p—, according as p 1s less than
or greater than §. It follows that, when & is great enongh,

P
uzv,r=t\'1-_'—p> » P
=1, P>t
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It has been seen that, however smull p may be, the probability
of a run of r consecutive heads approaches unity, as & is taken
greater for all values of .,

The present scetion shews that, if p< 1, the probability of
the heads exceeding the tails by », however large N may be,
diminishes towards zero as 7 inercases,

III. What i1s the probability that, in a sequence of M epins,
the tails shall never be in excess of the heads, assuming head
and tail equally likely? A

This question has several intercsting applications, Congider-
first the case, In which a sequence of 2V spins results in M hiads
and N tails. Denote by 4 (¥) the number of these séquénces,
in which the heads are in excess of the tails at everylsfage excopt
the last; and by ¢{V) the number of the sequefieds, in which
the heads are either equal fo or in excess of thetauls at eack stage,
In each of the ¢~ (¥) sequences, the first twe‘sﬁins must be head
and the last must be tail. Removing th¢fitst and the last, there
remains a sequence of ¥ — 1 heads apd\¥ — 1 tails, in which the
heads are equal to or in excess of th@ tails at each stage. Con-
verscly, by prefixing a head andalinexing a tail to each sequence
of N —1 heads und & -—‘i“ﬁﬁﬂ;ﬁﬂ?%’ﬁﬂ: %1ie heads are equal to
or in excess of the tails af each sbtage, a sequence of N heads
and N tails is formed jsgrt'}} that the heads are in excess of the
tails at cach stage exeopt the last. Hence

SO ) =g -1,

Now each of\the ¢ () scquences must either be a yr(¥)
sequence, 'o{tjﬁk}re must be a maximum valne of =, such that it
begins with-a + (n) sequence; and iu the latter case, what follows
the ﬁg?}:}n spins must form a ¢ (¥ ~ ) sequence. Hence

Vs n-
Q¥ SN =2 S (W =)

with the convention ¢(0)=1. It s also clear that 4 (1)=1.

Combining these two equations, it follows that
n=N

P F+1)="T Y (m) ¥ (N —a+1).
n=1

Now put )= S (@),
1

FE 3
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Then . [f@F= 5 @%@

H=m g=n—1

=% 51 Yr{a) P (n—a) 2*

n=2 a
=n§. Yrin)at=F(x)—a.
n=8
Since yr(a) is essentially positive, this gives O\

2f (2)=1—~1—4a, O\
where the positive square root must be taken, and the-infifiite
series used is convergent if 4w is less than unity. rl‘hcp,.tg‘o‘xiiparing
cocflicients, ¥y ) V{T: }

_ (2N - 2)! L el
V(= yiy -1y = (NFA N
Snppose now that there are just ¥ (i‘t()\SQJ:lucnces of M spins,
in which the tails are at no stage in exéoss of the heads. If M
15 odd, say 28 — 1, we can pass tojd\séquence of 2N spins, in
which the tails are at no stage in excess of the heads, by annexing
either a head or tail to the sequerite of 2§ — 1; and in this way

all sequences of 24, satisfying the condition, may be formed.
wwwdbraulibrﬁ'

.»or An
Hence PN 37 (2N - 1),

If M is even, say ?ﬁ{ & tail cannot be annexed to any one of
the ¢ (¥) sequenee, in which the heads are equal to or in excess
of the tails at e¢wery stage except the last. Hence

NG FQERN+1)=2F (2N)— 4 (V).
Combining these two equations, we have
O FEN)-4F (2N —2)=—9¢ (F — 1).
Sl'r}é- F(2) is 2, this gives

\ 3 r=N—-1

m~\\J F(?_N—) =N~1__ F - DeN—zr— & ().

\‘; r=]1

It follows that in a sequence of 2§ spins the probability, that
the tails are never in cxcess of the heads, ig

1 [1 At 2t _]
2 S+ 1)l |
This may also be put in the form
1; 2| i
N (r+ L)irl’
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and 1t will be shewn in the next chapter (p. 42) that, if ¥ is

not too small, it is very nearly equal to

i
A mmore general question of the type of those just considered
is fhe determination of the probability that, in 2 sequence of
spins, the heads shall never exceed the fails by more than r, and
the tails shall never cxcecd the heads by more than s They
question may also be put as follows.

1V. A and B play a game at which A’s chance of Iosmg ¥ p
To bogin with, 4 has 2r counters and B has 25, where ¢ »s =n,
Each time A wins a game, B pays him a counter; and ¢dch time
he loses a game, he pays B a counter. What is the probability
that 4 will have lost all his counters before or ¥t the end of the
2Nth game?

o\

Let #, y denote the probability; so ‘oh%b, for all valucs of X,
t#yx=1, #, y=0. The chance that }1 loses two games con-
secutively is p?, the chance that hey garns one and loses the other
is 2p (1 — p), and the chance tha.t he gains both is (1 —p). Hence

ty=p"+2p(l- p)ul l3{_1 aup]:u‘a?t:i ofg*ﬁ’
Uy 3 =p* wl,x—1+2{(1 Py ya+ (1 — PP p,

.........................................................

Up 1 ¥~ ,’P 'an—z -t 2}-’(1 - )wn 1, N—1+
This 18 a..gj\:(,m of linear difference equations for
R '§ u‘l.N: Uo, Wy +uey U, W+

If\‘t:h'é particular solution, independent of ¥, is

Q
then pC+[2p (1 —p)y—1]C, +{1 - pyCry =0,

with the conditions

Ur, N = O‘I”

These conditions give

Of?_ PZ?L-—‘ZT — (]_ — p) M—ar
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If now U x =0, + A,.a%
then
Aa= 2p(1—p) A, + (1 —p)* A4,
dsa=p4;, +2p(1—-p)d,+(1-p)4,,

.........................................................

.........................................................

Apa= pPd, .+ 2p (1 — Py A 2\
and a is given by A
2p(1-p)—e,  (I1-pp a , 0 ,o0, 0 :‘\r\;o,
o » 3p{l-p)—a, (l-p2? , 0 ,o0, o

0 » P2 1 2}‘(1—33)_“3 (1 p): ' "0'&

1 0 ] 0 o B 2;’% (1 .} -a
where there are n — 1 rows and eolumns,

Let 2, and a, denote the roots of the ,Gq‘t}atlon
P+ {2p(1-p)—a ~v+(\l —py=0.
The determinant equation is (O
e,
on putting W™ d&’ralﬁlﬁb(‘fr’ypojlﬁ 3 cos 9,
the determinant (,quatrou becomes
e sin
B\ sing@
so that the n — 1 walues of & are
\ ¢/

x,\'ip(lmjp)cos2 =12 .., 2-1)
The\d}ferenca equatwn f’or the coefficients 4, is
Q=prdrs+ 2p 1 —p)— o} 4, + p2d,, =0,
) "’ i fm
,\"g‘jvmg 4,= (1 3.}3) [Bc sin -— 4 B, cos T—n]
Since w, y=1, Uy x =0, It follo“s taking account of the

particular solution, that A4,— A,=0; and thcrefore B/=0.
Henece

0, 0

i Pm—zr (l _ )m —ap
U, L A
NP P (1 - gy
= Vot ¥
+ 2 _p'P) B, sin %73 {4".{9 (1 - p) cos? tl;}

g=1 11
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The n~1 constants B, will be determined by the conditions

th,1 =P Us, g = Ug,,

==ty =0,

The probability, that B will lose all his 25 counters by or
before the end of the 2Nth game, say ¥, 5, will be found, by
putting 1—p for p and n—+ for » in ur,y. The probability,

that neither player has lost the
end of the 2Nth game, is 1 — Up 5

whole of his counters at the
— v, x. This is the probability™\

that in 2 spins with a eoin, for which the chance of falling
head is p, the excess of heads above tails at each stage is be;lﬁ;?ef}n

2r—-2 and — 2s + 2.
fp=4i,
f=n—

e W + Vo, 8 = 1+ =
=1

. T
=1 + 28’ B; sin — cos?¥

5
n

1 i .t
B, {sm i
T

N

R

T+ sin (_n:ﬂ{}\ cos¥ (E)
A 2n
\/

&
20

N\

where 2 is the sum for odd values of ffrom 1 to n—1.

To fix the ideas, suppose n eten” and equal to 2m. Then
if w, 5 is the probability tha,t;’af each stage in 2NV spins of
a coin for which head and tsih re lg&t%allytl)ill%clg, the excess of

heads above tails lies betg\\“;e“z:g‘%rr

and = 254 2 inclusive,

s AN (@D (%i— D
Wegx+ 2 X Byl sin T(ZE =D cog™ Z=Dm_ 0;
i=1 \\ - 2m 4'm
and Wy, = %, Wram—zn=1 {r>1)
Hence N
'\w ™ . drw ar . (2m-1yrr (Zm-1}r
= . > N L - vl g b LA i L
goney ’:'Q‘nﬁm eos dm? TR 005 gy ooy D 2m oos 4m
83 \Now L Pl o @m-Tyr
R\ sin 008" o Bingocost 7o, L, i o .
ay 9 - . &r 3¢ - 2@Bm-1r  {2m-1r
S in — cos® — — = , .., 5n - oS
NS s dings eos® oo, sing - cost o R o
i mar T Smm 3r Lom(Zm-1)r L (2m -1
= in— T __ in — 2 vn gin ————. cepgd YL
2 » Mg oon Im PP a0 e 2m 4m

determines w, , y. When ¥ is sufficiently great,

ar@i=)m

co
4m

2,3..,m

)
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18 very small compared to

m
W .
cost¥ .
dm’
so that, for large values of N,
T, rr
W = Acos?¥ _— gin —
naN dm 2m’

where 4 is very nearly constant.

V. A box contains » objects; when one is drawn, each ‘id

equally likely to be drawn. An operation consists of drawing
an object from the box and replacing it by a white sebject.
What is the probability that, after operations, thers,afe just
@ white objects in the box, assuming that there wére & white
objects initially ? R4

Denote the required probability by p, ,. Jf%’s less than a,
Pz » =0 for all values of r SO

If there are just @ white objects afterFop 1 operations, there
must be either 2 or 2 — 1 after » operaions,

If there are  after v operations, snwhite one must be drawn
I order that there may be #lafter r+1 operations; the

probability Of“t‘l}z]@_(i%%ﬂlﬁl%érgm @#—1 after r operations,

no one of them must hevdrawn in arder that there may be
# white after r + 1 operations; the probability of this is

#1

n—-_—m---'_—%. Hence N
- x n—ax+1
:,:\ ‘;Pz,:-+1=£;05,r +- o Pr—rr,
for all w'a.l{ig}'of x from ¢ to »,
Tak@g"d for «, this gives

g 2}
pa,'r_ ; '

2\ .)Taking @+1 for 2, it gives
4

a+1 n—a (n—a)ar
R e

The general solution of this is

B Popr =0z + 1y —~(n—a) ar;
and since Patre=0,

we find Pen,r=(n—a) [(EI—;—I)T - (S)’J .
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Taking 2+ 2 for z,
a+2
Pate,r+1 — “n Pator
_q—a~1
- n

Paprr=~a=1)(n—a){{a+1y— a7,

the solution of which, when Ptz o=0, 18

(n—a—1}n—a) [(a+2)’*2(a:‘-1)“+(§)j. N .:"\

Pater= 3 5
There is no difficulty in verifying, by an mductmn,‘{l‘“&
general formula suggested by these particular cases, viz. \~'

Pz,r = (n—(-:)‘_(i)1 a)l [( ) —(&—u) (m—l)\(:\ "\
(a—u)ix;a—l)(xn2) 4{‘& Fye-a ()r:[

The Pprobability, that after »(>n— a,)‘ ‘operations all the
objeets in the box are white, is

—a)h-a—1 2\
1_(,1_@)(1 __) (”_”'2%1\_“ )(1__) -
When r=pn, and n is nwtumiamxﬂhbnhwwl@mlbly
Q —_ —-p)n—a
Feor instance, if » -—,}\0@ a =0, the probability, that the objccts
wiil all be white afl;‘&(\l 200 operations, exceeds F#82.

.{;
>
)"
N\
.\\
A
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CHAPTER IV
METHODS OF APPROXIMATION

10. It will have bcen seen in the previous chapters that,
while the formula for a probability connected with a com-
paratively small nuniber of trials is often a complicated nunefich!
funetion, the approximate expression for the probabilityhwhen
the number of trials is great, takes a relafively simpledorm,

In the present chapter, 1t is proposed to obtain.Approximate
expressions for the probabilities of various results,orr’ the under-
standing that the number of trials is very grodt.”

The particnlar casc chosen for investi. a(ion is that of a series
of N spins of a eoin, where ¥ is a 1:1rgx¢%umbor; but 16 will be
clear that the method of approximation has other applications.
The case, in which the coin is cqually likely to fall head or tail,
15 first dealt with. o\ ¢

11. A. Inascquence of. Nspins there are 28 possible results,
all of which are cqually pivbable, taking account of the order in
which heads and taldd\follow each other, To determine the
number of these wilich give r heads and ¥ — » tails, is the
same as finding$the number of distinet ways in which # things
may be choseiNrom &, Hence the probability, that the series
of spins veslis in » heads and ¥ — 7 tails, is

O NT o1

O° =12

A
\So leng as ¥ and = are small numbers, there is no difficulty

N\In evaluating this formula mumerically ; but it is obvions that
“direct numerical ua]culaf_i%n is ou of the question, when numbers
agliprar

running into" WS EALY OIBAD 0 o with, For instance
the labour of determining directly the probubility, that in
10,000 spins the number of heads lies between 4900 and 5100,
would be prohibitive,

’

To deal with any such calealations some method of approxi-
mation 1s absolutely necessary ; that is to 5AY, S0Me approximate
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formulia for n!, when = is a large number. What is known as
Stirling’s theorem serves this purpose. It states that
ni= Ve (141200,
12n
where &, approaches the limit zero as » increases.
The &, of the formula ig already small, when = is conlz
paratively small. If n > 10, 0< 8, <01; so that, for values P2

exceeding 1000, the proportional error involved in omitting the
factor 1 + 1-1+2—f“ is less than <00009. \ O

This formula will first be used to obtain a convgnjién{:approxi-
maftion to the probability of & given cxcess of heads in a sequence
ofspins. Temake theealeulation assymmetricdlas possible,suppose
that the number of spins is 2 and the numbet of heads ¥ + , 50
that 2r is the excess of heads over tails. Tk probability of this is

NS
(V)0 (N iy2s-

o o, 1+8,
If, in the above formuls a, hé written for -, then

12n
2Ny 1 N\
(N + ) (N —ry1 228 V\qxza\.rw.dbraulibrary.org.in
\/ ¥ O aw o dltaw
TN (2 (N (T =) (1 4 aiyer) (L -+ ar)

_«/'1 SO 1 (1—3“)% 1+ oy
VR -pT Y T Ty

\\ ;N N

A\ oy Ntr oy N—r
Leb> D=(1+?—T (1~ir) ;
L N N

~Jbhen, since /N is a proper fraction,

PO T R
log D=(¥+7) [ﬁ“@fm*@zﬁ*-"

ro 1t 1 ¢
(N —1r) [§+§F+§iﬁ+"'
RN N
TFTENT BN

,-2 pd . ...‘ﬁ__;_ )
TARTENET AN T

| —

and _'115



49 APPROXIMATIONS WHEN [cEAP. TV

Henee
2N! 1_ 1 -x
o= =gyt SN
where ( § - )
NS SN (A
_ r? BN 15N 1+ ay
f(r,N)-—(l—ﬁ) € (1 + o) (1 + awy) O

When N is large, it has been seen that the last factor is yery
nearly unity. In the other factors, write x for »*/N,. TﬁLy

become \W/
(S O
A T et
When #/N is small, this is very nearly umty \ but it diminishes
as o ¥ increases. Hence ¢ \
.}3 \\
1 BN
=€ TN
M’wiv o) e

is a good approximation to thé reqmred probability, so long
as r*N is not too large; but it gives too great a value as 1%/ N

increases. It jg, ofﬁg}gﬁ%{%}? &gﬁzpd that, unless v/ N is small

enough, the numarlcalmwlue of the probability is inappreciable.

B. A preciscly sﬁq‘ﬂar result can be obtained when the number
of spins is odd;(but in dealing with large values of I, there
would be no‘}:ezﬁ loss of generality in taking the number of
spins alwavﬁ even.

Th.n\thls approximation lends itself readily to caleulation
wills Jbe'clear, by considering the guestion suggested above. In
%.spms the chance, that the number of heads lies between
\’\N +p and N — p, is approximately

- B _,_,.2
e ¥,
r==p '\/ alN

Puiting r=aVN, r+l=(s+ Sz) VN,
this 15 sensibly the same as

| VF
7] e

W&

=)
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If, as in the question referred to above, 2§ = 10,000, p=100,
p/¥N is ¥2; and tables give the value of the integral to be ‘95,
As a further illustration, sinee (from tables)
L™ eode =99
‘V‘ I ’
the probability, that the difference between the number of.
heads and tails in IV spins will exceed 254 v'N, is less than 1/100.
12. C. If the probability of an event happening ai;a{s?'fm\gle
trial is p, the probability ¢ that it will happen » times in Ntrials is
1 {N
0= i (P @

(i). Put r=pN + 2, )
s that Ner=(1-p) N —;3&%5
and suppose NV so great, that the facter ~N&N in the approximate
expression for N may be safely replagéd by unity. Then
log ¢=—4log 27 + (N +4) log NS ( pN + 2+ 1) log (pN + )
— {1 =p) ¥¥+3}log (1 -p) N~ o]
+( PR FPhsE ATy Ry N 2 log (1-p)

= —1log 2wp(l..:§P)N
,\ P P \pN 2p2N: " 3pr N
O a1 T @t
'S z +
RS STy RS
N=—tlog2rp(l-p) N
~O 1 (x’*-c—m azﬂ_ﬂs) 1 {xs+3=””_‘”3_‘32_"”2}
\Y TN\ p TT1p/Tem L p T
+ terms in }%3’

and therefore
1

Qwﬁfg—d —p)d
1L a2+(1-2p)z 1 (1~ﬂp)z3+%(1—2p+2p’_]f+
xe N p(l-p 6N P 0-pp
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When & is large enough, the factor

L Q-2 a2t (19427 o8

GWS P I-pF

cannot differ sensibly from unity, until « is of the order ¥%, Bus
when 2 is of this order, the factor

- L A0 - o
¢ N pl-p}

is excessively small. Again, the factor \

2
will not differ sensibly from unity, until # ig of}]h\e order N, and
then, again, \

a2 AN

z
e Wi pl®
is excessively small. oY

N\ . xf
= '\'/: :ii‘é‘i’: 3 B 21\7"? (l “ﬁ
Zrp (LS ¥
W W dbraﬁﬁb&%;ﬁﬁ"& in

15 a good approximation/to the value of g, so long as this value
is appreciable, If, hgwéver, it were necessary to determine the
numerical value of\q\‘fbr values of 2, for which g 1s excessively
small, this appréximation might not hold.

Hence

(1), In thadase, in which either porl—pisvery small another
approxigm?iﬁﬁ to g maybe obtained, which is for some calenlations
more «cdnyenient than the precedmg. Suppose that p s very
smgiliNand put pN = ». Then

O 12y
\M\‘} v :?T N‘ (1 N) .
1 ?I'W’

and, replacing the factorials by their approximate values,

NEgw 1 2\
= (N—A_—f g% i r)g—*e—ﬂ)ﬂ“ "

Now »is very small compared to ¥, If  diffors very much
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from », the value of ¢ is excessively small. On the other hand,
if  does not differ too mueh from »,

(1 - %)N =67, (1 - l—::,.)N = ¢ ' very nearly,
and 7 _ev 1 (1 B l%')—f

: (1;_ (I“Er)_r’

so that g =

Probable Value : Most Probable Value. :‘.'}"\

13. It is convenient here to introduce two concefitions which
prove to be of great value in many applications.ofithe theory of
probabilities; viz. those of the “probable value, &nd the “most
probable value.” N

If a number can take any one of the d\tmot values

, 1=12,.0m),

and if the probablhty that the: ‘nlim}Jer tekes the value u; is

P, (=1, 2, ..., n), so that Spe=\l, then
W dgi auhbral y.org.in

is called the probabl@iv'a?hle of the number; and if p,, is the
greatest of the p’s, &y s called the most probable value.

It is to be noficdd that the probable value is not necessarily
one of the values that the number a.ctually takes; it is the
mean of thé\values when the weight, given to each in taking
the mea.{ s ‘proportional to its probability.

1¢L‘ \D. Since g T), 18 as great as possible when r =N

“on %(N + 1), according as ¥ is even or odd, the most probable
\Value, of the difference in number of heads and tails in a sequence
of ¥ spins, is 0 or 1 according as & is even or odd.
The probable value of the excess of heads over tails (or tails
over heads) in ¥ spins is
¥ N! 2Zr—-N
Ay =P
and this is obviously zero, as would be expected.
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In 2N spins, the probable value of the square of the excess
of heads over tails 1s
g 2N! 4t
BN g g Sy g, s TE

This may be evaluated as follows. We have

¥ 2N . (Lo
et xXr o= = s
re¥ (N + ) (N =7} &
3 Q—NE_W_(w iy.¢ T

r= N (N + )N =~)! T\Vdz/ T &Y \\\

so that, putting #=1, A
A 2N 4r® A0
rEN(Nw):(N ST 2. LY

It may be shewn, in a similar way, that thg probable value of
the fourth power of the excess of heads ove{\ta.ils is 12N —4N;
while the probable value of any odd pmmgg*of the excess is zero,

It is interesting to note that, if the' apprommate value
)9-2
1 Oy
_"'r.e;
www.dbl'aulibr%é’yl_}')rg_in
of the probability is useddustead of the true value, the probable
value of the square ofi%@e excess 18

# N\

,~\\ % 1w

N

3 4o,
& r=-=N '\f'! 'J'TN
which is senglbly equal bo
Y
\ f 4Nz e dz, that is, 2N,

"\&ommllar ca,lculatlon of the probable value of the fourth power
\ ““oF'the excess gives

1 [= ) .
—_[ 16Nzt e da, that is, 1282,
V! _w

This is about (1 + %) of the true value. Sinee the approximate

expression for the probability has been seen to be too great for
congiderable values of , an over-estimate of the probable value
was to be expected, when making use of the approximation.
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E. Any scquence of N spins will fall into a series of sequences
of heads and tails. The first spin necessarily starts a sequence
of heads or tails. Suppose that, from the remaining N — 1 spins
M—1 arc chosen in any way; and that thesse M —1, and these
only, start the sequences of heads and tails other than the first.
This implies that the sequence of ¥ spins falls into M sequences
of heads and tails. Corresponding to each way in which the
M —1 are chosen, there will be two distinet sets of sequences /

~of heads and tails; for the first sequence may be either heads

or tails. Now the number of ways, in which M —1 things alay)
be chosen from N —1, is O

(& -1t \*

(M- 11N - )° Ko,

. There are therefore just twice this number of.w,}};s, in which

the N spins may fall into M sequences of heads and tails. Tt

follows that the probability, that a sequence’ ofN spins falls into

M sequences of heads and tails, 1s AN

@-n1_ Or
(M- 1)1 (N zg9hy125

The most probable num&eébﬁ[f lsieﬂuex}ces of heads and tails is
that for which this num\"b\gg 18 aéalérlegta ‘b pdSsible; ie. for which
M—1 and N— M are equalbor differ by unity. Hence, if ¥ is
odd, the most probable{miumber of sequences of heads and tails
is 1(N +1); while, £V is even, it is either } ¥ or 3 N + 1.

The probableg npmber of sequences of heads and tails is

oo ¥ (N1 M
O wh -DUN -z
and, by'%e method already used, this is found to be (N +1).
Fpr\~l?f sequences, the average number of heads or tails in a
sseyience is N/M; hence, in a long series of N spins, the
\pfobable value and also the most probable value of the average
number of heads or tails in a sequence is 2.

Suppose now that, in a set of M sequences, there are
sequences of i{i =1, 2, 8, ...). These numbers are obviously
connected by the two equations

EW=M, Ezm&=N
Twice the number of solutions of these equations in positive

793
4 %
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integers gives the number of ways, in which a set of N spins
may fall into M sequences of heads and tails. The number of
solutions of these equations is the same as the cocfficient of #¥ In

(z+a+a+ . )
and there is no difficulty in verifying in this way the result
already obtained.

Suppose, next, that each sequence of heads or tails is limited
to contain not more than » members. Then the number of
solutions of the two cquations between ithe m's, with this 1iznita-

tion, is the coefficient of a* in o\
(z+at+.. +ar i, O
Hence twice the coefficient of 2¥ in N
IR CE TR N 8 R
- ~
.o 1—= g
that 18, 1n

[ 22+ @ 5\
is the number of ways in which aQSéK 6f N spins may fall in
sequences of heads and tails not extepding r in a sequence. This
gives a new, but in general mugh less effective, solntion of the
question of p. 47. _— N
W .dbraulibrar i

F. The number (I)?u“-!s?;g; i Which a set of M sequences of
heads and tails, in whi¢h,there are m; sequences of s (=1, 2,8,...),
can osccur, is the gamme as the number of permutations of M
things which arealike in sets of m;, (1=1,2,3,...); and this is

S )
PN\ mylmgt..,
Henge! the most probable set of M sequences is that for which
AN\ (m+mt ) 1
. \ m, ! m,l... 2F7
S \ is as great as possible. This involves determining the leaat
\ 3 value of mlm.!..., subject to the conditions

Zamy=M, Zim;=N.

then N is large enough, a roughly approximate solution of
this problem may be found as follows, Thus

log (my 1! ...) =S {LTog 27 + (m; + §) log m; — mal,
which differs by a constant from

Z (m + 1) log mg.
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If the m's are treated as continuously varying quantities, the
minimum valae of the last magnitude, subject to the above two
conditions, is given by

1 . .
]ogm;+1+%+A+Bw=0, (i=1,2,8,...),

where 4 and B are constants. 1
2m;
parison with log m;, these equations may be written
= g=t—A—Bf N
m; =€t J (r=1,2,...) '.\:\
. g—B 7'\
Hence M=ei—43gBi=g1—4d = .\
l-eg % )
. N
A4S B s
R T ga=Bi _ a—1— - £ £
N=g¢ i B—g =i Q¢

Mo W
N ° N=M/
N s M%\N My
N-—M'( N )fﬁ'( N ) '

For the most probable numheg’]p’f: sequences B = §N: and the
most probable set in thig cas%‘i.]s that for which m; =271 N.

rary.o

It is interesting to compaye the results,ythat have been obtain-
ed on the supposition that the probability of a coin falling head
is definitely known; tuth those deduced from the comp]ete data
regarding a selection of the coin. Suppose there are » coins, and
that the chance\of the ith coin fallin g head is p; (t=1,2, ..., n).
Suppose algo{that, when one of the coins is chosen, the chance of
choosing #hejth is ¢;(j=1,2,..., n)

If a{i&iuenue of N spins is made with a chosen coin, the
probobility of the various results will clearly depend on the

»Iluﬁlber of spins made with a chosen coin before a fresh one is

\chosan For instance, if a fresh coin is chosen for each spin, the

probability of a head at each spin is Zg;p;; and the problem is
the same as those already considered.

Suppose that the chosen coin is used throughout the & spins:
what is the probability of » heads and N —r taﬂs? If the 4th
coin is chosen, the probability is

N
A=y

so that e Bf=1-— \.

M=

(1 —p).
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Hence the required probability is
NT i:ﬂn.
e Z pd (=P
?.!(N_T)E‘::lqz) ( P)N
Consider the ease in which
% 1 ..
P@:xm; Q'j:i: (1‘!_?:1)2;"'!“):
<0 that the chance of the coin falling head is equally likely to
have any one of the values

1 2 n )
T e e <O
The probability of r heads and ¥ —» tails is then ()
N! (4l —e)¥ " N

PN—r)lis n(n+ DY D
If n is not oo small, the sum in this exprégsion differs very
little from

p ¥

[oa-apr >
a (1 —x)" Tdai
: a5

. F (N = PPNV
the value of which is W
Hence, if n is large g?l?]?ﬁla%}; ﬁ?i r{equired probability is very
nearly independent of » ahd equal to il ® marked contrast

with the results alre:mfg} obtained.

16. G. So farfif dealing with a repeated trial, it is only the
probabilities connected with the satisfying or mot satisfying
of a single ¢dadition, that have been considered.

Supposghsiow that 4 and B sare two different conditions
relevamtyéo the results of the trial. When the trial is repeated
N ,Qikre"s, suppose that, on N, specified oceasions, A and B are
both' satisfied ; on XN, occasions, 4 is satisfied and B is not; on

("W occasions, A is not satisfied and B is; and on

N(=N-N,-N,— N,
oceasions, neither condition is satisfied. The probability for
this combination is
PPy Pn Pt
Now the N, N,, N, and N, specified occasions can be chosen
from the & in
N
FINA NI
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ways. Hence the probability that in the ¥ trials, 4 and B are
both satisfied N, times, and so on, is
N I Nt Va s X,
NN AN pABPf;_B’ pi'}; p;'s“
If condition 4 is to be satisfied in just r of the trials, and

condition B in just s of the trials, then

N+4N,=r, N +N,=s
Hence the probability ¢, that A is satisfied in just » and B in

just s of the ¥ trials, is O\
! R\
g:E N - .\.\
¥ NI =N (s— N (N —r-s+N)!
ARG Y - S P S
XDy P Pk P 7t

where the sum is taken for those valnes of N, wh"ig\',h make no
one of the numbers N,,»— Ny, s — Ny, N—r =34 N, negative.
If » > s, the greatest value of &, is s; and the 10ust value will be
0 or #+s— I, according as  +s is less.grgreater than N.

Putting Z48P4% _» the formula hetomes

PanPas N ¥
=P B Bl 4 G i
D

where f(N,)= I_\T,_I'E-ﬁl)!(S—NJ! T r v Wl
When I is large, an ?}p&»f-oximate expression for this probability
may be obtained, similar to that of p. 44 for a single condition.
Thus, if PN
N1=}JA§}7§\‘FZ|- n=p N+a, No=pw N+ =N + 2,
N, =,®5N+wa=psl\r+ z, N, =pA-BaN+x4:p4N+w,,,
where &+ @, + #; + @, =0, then
log@rs=log NV !
U —log(p. NV +a)—log (po IV + ax)l — log (psV + 1)
—log(p N 42!
+ (2 N + 2} log p, + (PN + 7) log ps
+ (PN + ) log'ps + (p;N + a4 log pa.
Writing log n!=}log 27 +(n + %) logn —n, we have

logg=— $log 2m — glog N - 3log prpepsps
i=d & o )
él(Pil'f + é) (Pﬁ N 2Pi2 K rrr )

4-2
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so that, when N is large enough,

1 (adtm ol mbras afba,
1.._____1 e TERNATh s + P + v )
TV ppapeps (2
very nearly.

The probability that, in the N trials, the condition 4 is satisfied
(p +p2) N+y times and the condition B 1s satisfied (p, +ps) N+ z
times, is therefore Sg¢ for the values satisfyg

- N2
ntmtomtan=0 =y atm=a L)

With these values, it will be found that \
9;1_” + & " @.? + mg__i_ el + oy + ol -}_—_f_i 3
¥ P Ps G\
1 1 1
NN ‘
pl p2 PS p" x"\\"
1 1 & 1 1yi2
[ ErDegeasi i aed

x g, — B Py P _Panc Po_ P Py P
a0 1 1
X |
ot P2 Ps D

WWW . dbriuhbl ary.ot g.

[(;l+;)(;g+—\)\(y+yn}’ (; + D2 Deray

A\ 1 1
,\o\x, +2( —— )(y+yu)(z+zu)+0

+ ﬁl?h P=Ps
O i 1 1 1

i\ S e TR

N\ }31 P2 B s

where \Qy,, Pt Pa—Ps— P,
\‘,/ 2 P'l +P3 Pu

., ..40_l+.1 l _1._2
o) pelops T p
o R L LR Ry
PPz PP
1

1
-2 1-—- N 2 )
(PIP, M‘){ — (i pa— = DI
1
[ — — ]
+ plp‘{1+2(p1 P

1
+2 {14 2 (. —ps).
Pefps{ (p:— ps)
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Wisth the abbreviations

a= (G D +2)y =Gt ) Gt p)

= i __1_ ’ 3-—_1__{_1_5_.!_4.}.
PP Pips] PP P P
the required probability %g becomes
1
Vpupapsps (27 N )

§ e_ﬂl_N l:a{a_&_xﬂ)ﬂ,+ e (y +yo)* +28 (y+yo}§fz+z°1+7_(z+zo)*+£’1:\

The sum is taken with respect to values of , increasifigl by
unity ata step. Now the Ny, Na, Ny, N, of the original'ngtation
are p N4 o +y+z, pN-2—2 0N —z—y, an{i*p,NJ;-w‘;
and no one of these must be negative. Hence @, rﬁr}ges from the
larger of the integers —p, N and —p, ¥ —y ~z'to the smaller
of the integers p, N -z and p, ¥ —y. In th\%’words, the lower
and the upper limits of #, are of the orders~ & and N. The same
is true of the lower and the upper litaits of , — 2, until either
y or z is of the order N, in which case ¢ is excessively small.

N8 e
Now, if N is not too sma«llgf.&J&a@l‘ifl:(a?%ryxﬂ}arg,mder these con-
ditions, is sensibly O
AN \/2-;“’_\-7
¢ 0"" 8 -
e\

Farther,e 38 différs very little from unity under the conditions
assumed, Heric‘e, y, and z, being proper fractions, the required
approximation may be written
AY 1 R A c:
p 25N very nearly.

AN Vpipepap 2w N
~(This quantity varies slowly with y and 2 Now y i3 the
Nefcess of the number of times, that condition 4 is satisfied, over
(p, + p,) N, which is the probable number of times it is satisfied;
and a similar statement may be made for 2. The probability
that the excess for condition A lies between y and y -+ 8y, and
for condition B betwecn z and z + 8z, is g3y 82
From shis expression the probability,that these excesses should
%ie between given limits, can be determined approximately by
ntegration.
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For instance, the probability, that the excess for condition A
lies between y and y + 8y, is
1 1 o nyz + 20z 4 y2?

TN (g

Sy s
Y ¥ P, P pepad 20N -
-3
Now  ayr+28yz+vyst=——= ”’ B Y +7(z+ﬁy)

and f B e_?';N ( y) dz = %7—?§§ \

- , {\‘
hence the required probability is ‘:S\\ '

1 1 By

— = ———— &
'\/plpg'psp4ry Var N
or, inserting the values of &, 8, ry, it is \\\")

y%\
1 P 2[?1"’2& 3'*‘?4&).-5"'8:,;_

Va7 (+p)(ps+pd N ’“}

z»
%

X
& \,‘
www . dbraulibr ar\y{)l g.in

‘“

/ N
A\

/
3
&\



CHAPTER V
PROBABILITY OF CAUSES

16. When an event has happened which may have been due
to any one of a number of different causes, the question arises as
to which cause has most probably been in action. Is 1t possible,
from the observed happening of the event, to draw any con-
clusion as to the relative probability of the various causes thab
may have led to it ? ' A\

From the discussion in Chapter 1, it has been seen hat
Pass/pp 18 the probability, that condition A; is satisfied When
condition B is known to be satisfied. a3

7

must be satisfied, and only one can be satisfied, when a trial is
made. Then N

7

Pp= §PA‘-B= x\

Suppose that 4, A,, ..., A, are n conditiong™o “which one

Pain
Pas P P 0N PaiPay B
so that = == — .
B ‘gpw;@_.{iﬂllib?ﬂymgﬂn
= AN
i P
Suppose now that the'event £ may have any one of n distinet
causes, of which 1 & 'gfven irial one and only one can come
into play. Let condition B be that the event K shall happen, and
condition A;bétHat the ith cause has come into play. Then p,
is the probakulity before the trial, that the ith cause of K will
come m\m lay: p4gp 18 the probability that % will happen as
a resulthof the tth case; and p 4p/pe 19 the probability, when
E has happened, that it has happened as a result of the 1th
.»\ga;ﬁsé. The formula may be conveniently written
N/ oS
= S

where 7; is the probability of the ¢th canse, before the result is
known (the so-called & priort probability of the ith cause); s; 18
the probability of the event when the sth cause is in action;
and g; is the probability of the ith cause, when the event is
known to have happened (the so-called d posterior: probability).
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This formula is known as Bayes’ formula*; and so long as
the r’'s and the §'s are known, there can be no ambiguity in
applylng it. As a simple illustration, the following case may be
congidered.

I There are n boxes, each containing white and black ohjects.
The chance of drawing a white object from the 7th box is p;.
In choosing a box from which to draw an object, each box a
equally ikely to be chosen. An object, observed to be white,
is drawn from a box; it is then returned. A second objél}t is
drawn from the same box. What is the probability hat it is
white ?

S !

In this case, T‘:}a; so that the probabilitx,'\t“ﬁat the white

object first drawn came from the ith box, is p;/ﬁpi. This is the

probability that the <th box is used at\}he second drawing ;
and therefore the probability, that the'second drawing gives a
white objeet, is
=P\
www_dbrauliﬁt"éf‘g}.org.in

It should be noted fhat this is greater than %% zpi, which 1s

the probability tli\‘fia’ﬁrst drawing gives a white object.

If from the hbove statement of conditions the sentence, “ In
choosing a bo\xfrorn which to draw an object, cach box is equally
likely to ] ’:chosen " is omitted, there are no data from which
to cateulate »;; and the question proposed cannot be answered.

QO Use of the Buyes formula.

,\’r 17, The hesitation that is undoubtedly felt in making use of

e

“Bayes' formula depends upon the fact that, though the &'s are

generally known, some assumption has to be made with respect
to the 's; and the calculated probabilities of cause depend on
the particular assumption wade. This will be brought out as
clearly as possible in some of the following illustrations.

II. A box contains # objects, each of which is cither white or
black, and each of which is equally likely to be drawn. An object

|7 It is due to the Bev. Thomas Bayes (elected F,R.5, 1742) : for an abstract of
his two memoirs, see Todhunter, History of the Theory of Frobability, ch. x1v.
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is drawn and is found to be white. It is returned; and an object
is drawn again. What is the probability that it will be white ?
Denote by p, the & priors probability that r of the objects

are white. Then

Ly

i
is the ¢ postertort probability that  are white; and the proba-
bility of drawing a white object at the second trial 1s

Zprt O\
REP,T NS *
If it is assumed that p, is independent of = and t!le'ggfore
equal to %, this last probability is m\:
2 1 N\
3t AN
If however each object in the box is aggumed to be equally

nt AN .

?;W.ga, and the required
1 By
A

wwxgzzlbrz’.ﬂibrary_or in

With regard to such agfuestion, 1t may be suggested that

the data arc very meagre; therefore it is not surprising that

different assumptiqrﬁ\\about the @ priort probability lead to

very different regults:

IIL. A box Coutains a number N of objects not greater than
M; and it igj}ﬁown that = of them are marked. It is assumed
that, when e set of m objects is drawn from the box, all sets of
m are efually likely. A set of m 1s drawn; and it is found that
%;oﬁ'tﬁem are marked. What is the most probable value of ¥'?

It follows, from the data, that N is equal to or greater than
n+m—m,. The probability of the observed event, when the
box contains N objects, is ;

likely black or white, then p, =
probability is

nl (N —-n}!
Tl (=) (m = my) L (N —n—m + my)
N1 !
mI{N —m)!
m!nl (N —n)I (N —m)!

that i B o S
8 Is, myl (n—m)! (m — my) ] NN —n—m+m)l
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Hence, if py is the & priors probability that the box contains
N objects, then, after the event, the probability is

- f () pw
Gx s
J’E‘ " f(N) Px
where JfiN)y= (¥ —m): (N —n)!

M (N—n—m+m)l’

The most probable value of ¥ is that which makes f (N) pN
as great as possible. O\

Suppose first that all posmble values of N are d\prwm
equally probable, so that p, is independent of N, Then the
most probable value of N satisfies the mequahtleSr

N >FN-1), f( N)>f(N+»lﬁ,‘

which gives, for IV, the greatest integer in e/,

‘3upp0°e next that py o N, so that largé values of N are
d priori more hkely than small ones. 'Kbe most prebable value
of N is then given by

NF(R) > (N -1 f(F-1), NW)>(F+D)fN+1)

which gives, for ¥, the greatest mteger in (r—1)(m—1)/(m, —1).

If lastly py Eﬁ“ s a;t’ §rﬂgll values of N are & prior
wore likely than large(Outs, the inequalities are

S P -1) FE) _FNV+1)
Fapre A S e R N
giving, for N, the greatest mteger in
NS+ 1) (n + 1) — m, — 2/(om, + 1),
It will BB Tiotrced that, so long as m, m, , , are not quite small
numbe\rs, the three different suppositions with respect to py
]ead~'}) results in close agreement with each other.

’ IV A and B play a game, at which A’s & priori chance of
\ 'wmnmg 1 equally likely to be 'E 2 n=—2 n—1

LR ; OF ——— . Out
o n n

of a set of @ +b games, 4 wins a and loses . What is the
probable value of 4’s chance of winning the next game ?

If 4’ chance of winning is £ , the probability of the observed
result of the ¢ + b gamnes is

St G (-2
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Hence the & posteriors probability, that A’s chance of winning

the next game shall be E, is
rats e
() (1=7) _
#=1 rp\ @ i B
200

and the probable value of A’s chance of winning the mexb N
game 1is Ko N

-1 a+1 b o "
(- (O
1 -\
n-1 L P bt “( “;
M
? (n) ( n) Nt

{350/ r\°
Now, if n is net too small, the quantity <\% (—) (1 - —)_
\\737 1 \B

is very nearly equal to
I JiLbt
g1 — &) - LV

fa: (1 —z)ds @b+
Hence, if n is large enough, thé vequired result is very nearly
equa‘l to wwwfgleiailllbral y.org.in
e b+2
It has been assu:&e@ “that the probability, of A's chance of

winning bemg measured by -, is itself independent of r.

Suppose\mw th-mt the proba.b;hty of A’s chance of winning
bemg&measured by o is proportional to — (1 - g), 50 that

nefther 4 nor B is extreme]y likely either to win or lose.
. Then the ubove expression, for the probable value of A’ chance
\ of winning the next game, becomes

ns\l (?‘)“"’2 (1 ?‘)D'H
1 \n n
m=l gy @71 r b1
s (OV 7 (1= -)
1 (n) ( #

which is senstbly equal to
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\\;‘..
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It is to be noticed that, if o and b are comparatively large
numbers, this result differs very little from the former one. In
other words, if the result of a sufficiently large number of games
is observed, the hypothesis made as to A’s @& prior: chance of
winning has but little effect on the result. This is obviously
not the fact when the number of games observed is small,

18 V. It is assumed that, when & calceulator adds a column
of integers, the probability of his raaking an error of either % a

¢\
or —a units is -2—,}1;; while the probability of his getti}i'g the

correct result is 4. The results of twice adding a(gwen column
are s, and & (> ¢,). What is the probable value Qf the sum ?

If s is the true sum, the probability pg 6t Jgetting s, and s,

for the sum at two attempts, is O
L™
When § < 8, 244—81 a— 2%
Of
§=% W\astumy
*» "‘ 1
8> 8 :-.si, prme
W W, dbrauhbrary org. uil
Ss.ﬁ 4 : rtays, *
\\ ‘,.’ 1
\ S8 ! 24--51—82-{-38 -

Henge, if a’g As the copmon probability that the sum is s, the
probdblé\value of the sum is

\,,.' ?éps Ty
O 2}% 2F] ’
\WHLIL the above values are nsed for p,.

Suppose that s may take any value from 4 to B, and that
@ priori all these values are equally probable. It will be
assumed, to avoid dealing with particular cases, that 4 is less

than s and B greater than s,. Then the probable value of
the sum 1s

,\

E

2 sps
.

= Py

A
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When the above values of p, are used, this is found to be

et m-—a+ -4 -4 24— 1 (B +4)2u2

8y— § + Lt — PA-Es _ g2, 2R

If A 15 very much smaller than & and B much larger than s,
this probable value is very nearly

é (31 + 32)— O

Bus if s, — 4 and B—s, are small, the probable valuc differs
sengibly from the arithmetic mean. The suppommn ghat leads
to the arithmetic mean as the probable result, yia, “that the
sum to be found 18 equally likely to have every Va,lue n a long
range, does not appear a very reasonable ong ?\ndecd it is oub
of the question, if 4 is negative.

It is also to be noticed that, in thiﬁ\}-atse, there 13 no most
probable value, Assuming that she)sum is equally likely &
priori to take any value from A(te"B, the 4 postemm proba-
bility that the sum is s, is the sayne as that the sum is s, and is
greater than the probablhpy $hat the sum has any other value.

1t is interesting to com\j)é.i" bthlslb% esult Wlth those, obtained by
. I mar
making other assum%mns about &y of the calculator.
If the probability, 6fyhis making an crror a were ke, then
the above calcul?bﬁion

..’“' Ps = h2gmhte—a) >k —sp®,

If it Q’Stﬂl assumed that the sum is equally hkely to take
al} 1\1&98 from 4 to B, the probable value of the sum is
'\

_2n (3 _sigf’*’f)
se

.
B —gh(s—s-‘—}’i“)
e

s=A

I
h~Mau

#

A small value of b implies considerable inaccuracy on the
part of the caleulator. If neither k, B—3{s5+8,), nor #{si+s)—4,
be quite small, it is easy to see that this fraction is nearly
equal to 1 (s, -+ 8,), independently of the actual values of 4 and
B. Moreover, in this case, the most probable value of the sum
is clearly the arithmetic mean of s, and .



62 THE BAYES (cHAP, V

With the second assumption about the caleulator’s errors,
the results, concerning the probable and most probable values
of the sum, are more definite and less dependent on the & prior:
probability of a given sum than with the first.

19. VL An obscrver watches the spinning of a coin, and notes
the sequences of heads and tails. What is the prebable number
of spins, that have occurred, when he has noted M sequences ?

The number, N, of spins must be equal to or greater than M)\

On the supposition that the number of spins is ¥, the pl'l:lb'i.-
bility of the observed events is

(N — 1) 1 '\g
(MDD (N —M)1 28T

Hence, if the @ priord probability that the pumber of spins is
N be represented by py, the probable num{éir. of spins Is

E N1 1 O\
& a0y Faly
(N' 1) "}

E(N M}" 21\-1 Py

www . dbrau

On the 8SSUMpLion bRsen gllmﬁumbers of spins equal to or
exceeding N arc é priord ejually probable, this is
$ NN
N=M (N -M )T 21
F o

oy

g
T
L

NN — M1 2R
\\ M+11l (M+DHM+21
l+— -3+ 1.2 %
"':’ =M
~O L4 M1 M+ T
\/ 12 1.2 =
(1 M=
M2 o
(14

Moreover, on the same assumption, the most probable value
of N is 2.

Now, in this question, it is not a reasonable assumption that
all values of N above M are equally probable. The spinning
must take time; and for this reason there must be an upper

Q!
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limit to N. If it is assumed that all values of N from Mto M
arc equally probable, the probable value of ¥ is

A
MYy,
where
L M1l (M+1)(M+2) 1
JRCEDC ST PR G SN
(M — M) LM
L M1 MM+ MM+ (M=) 1
B=1+5 5+ g mttTar-mins 20
so that 'w"\"
a1 M+11 (M + D) (M +2h0@ ~-1) 1
4 =3 + = -1_-524- +_—(M’?,Q\T1)1—_ =T
! {A (MM 2) HNT
T2 M7= M) (VR

Hence the probable value of Mis
M+D(MP2.. 0 1 1
2t {1 = Gy e 35}
This is always less tithaf SA2T201Prery-orgn
It has bheen se c'\‘ab’ove that, when ¥ is large, the probable
number of sequ(e;es in N spins is N, the duration of the
spins not affeeting the question. When however 2 number of
M sequepcés\ /re observed, and the correspending probable
numbep.of épins is to be determined, the question of duration
does:%ﬁ'eét the question, and the probable number of spins 1s
less,bhan 2M.
2\ ) VIL There are M counters, marked from 1 to M, in a bag;
. and one is drawn, each being equally likely fo be taken. The
counter marked N is drawn, and 2 coin equally likely to fall
head or tail is spun 2.V times; and the excess 2n, of heads over
tails is noted. This is repeated s times, 9N spins being made
each time; and the excesses of heads over tails are found to be
1y, Ngy --+s T
The whole proceeding with the numbers M, n,, ty, s % is
reported to a calculator, the number ¥ only being withheld
from him. What conclusions can he draw about NV 2
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The ¢ priort probability, that & has any given value from
1to M, is 1/M. Ifin,| is the greatest of the positive numbers
|n, ], | 7|, «--s \%!, the probability of the observed set of
excesses of heads over tails is zero, when N < | n, !}, and is

e
22N I it (N )L (N —ngpl”
when N 2in [,

The approximate value of this latter expression 1s O\
12 A .
1 FR O
(,H.N)sz ”\

If then N >|n, |, the calculator infers that the ,pfgbablllty,
that the counter drawn wag marked ¥, is P\

' 4
e ' .m\"
1 N v’
New )
' s ‘\\J
1 "8~
N2
where - =‘§,3’n

i 8
The most th‘@bdbl‘@%&h:@’éﬂf’iﬁ is that which makes ¢ N/N2
ag great as poamblc “The maximum value of this quantity,
when N varies uon{inﬁousl), 1s given by
N3
so that the moﬁt probable value of ¥ is one of the integers on
either s,@\of 2c /

S‘ﬁee e N /N2 when sengible in value, changes little when &

»{a cha.ng(,d to N +1, the probability that NV lies between N
“\“and N, may be written apprommately

¥ -z
f ¥ i, Ny

Puatting o= Nz

this is 1 J e *dm



CHAPTER VI

PROBARBRILITIES CONNECTED WITH
GEOMETRICAL QUESTIONS

20. In Chapter 11, a problem was discussed (p. 22) in connge:
tion with the position of points on a line. The line was dw\fdéd\
into » cqual parts; and it was assumed that, when a peint’was
marked on it, the point was as likely to be in any one part as
in any other. It followed that the chance of the peigb being on
one particular part of the line is 1/n. Supposéghat 4B is the
line; let P and @ be two particular points on itof which P lies
between the pth and (p + 1)th points of @iwision, while @ lies
between the gth and (g + 1)th. The segmént P() of the line
includes g —p complete parts of thé lide and portions of two
others. The probability, that a marked point lies on the ¢ — p
complete parts, is (¢ — p)/n. The probability, that the marked
point lies on P@, is thereforg! agual to or greater than (g — p)/n.
It was shewn, in the sggghﬁya,u{tl}rﬁé éqrﬁlnto or less than
(g~ p+2)/n. Beyondghis'it is impossible to go without further
data. Ifnis large,%lée'f;:robability that the marked point lies on
P is known between narrow limits; and as n 1s made larger,
both (g —pYndand (¢ —p + 2)/n approach the same value,
viz. PQ/AB\

chcg'}}ie supposition that, when a line is divided inte
n e‘q'u':ﬂ‘ parts, & marked point is as likely to lie in any one
pa(t.'ﬁs in any other, whatever number n may be; and the

“shpposition, that the probability of a marked point lying on

\any particular segment of the line is equal to the length of the

segment divided by the length of the line; are equivalent to
each other.

Either supposition is often expressed in the form, that all
positions of the point are equally probable. It should be noticed
that this does not involve all eoordinates of the point being
equally probable, for the coordinate which defines the position
of a point may be chosen in a variety of ways. For instance,

FB 3
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the position of P on A5 may be defined by a, the length AP,
or by y the ratio AP{PB. In terms of , the probability that
the point lies on P.P,1s

@y — @y

AB 7
In terms of ¥, the same probability 1s

_ =T
(T+y) QA+
All values of # between O and AB may be describeli\:?ns
equally likely; but all values of y cannot be so dcscribgd‘:\

Assuming that the probability of a marked pofntion AB
lying in the segment AP has a definite meafibg, it must
depend on the position of P, le. it must bewa/ function of #,
if AP =a. Denote it by f(#). Then fé@) 15 necessarily a
function for which 7(&,) - f ()2 0, if #=m >0; for if I, lies
between P, and B, the probability hat a point lies in AL,
cannob be less than the probability;tha’t it lies in AP,. Suppose
that f(#) is discontinuous at xS, 50 thab

F @+ oy f (@ = B8) =k,
however small a and 8 {ﬁay be, If
AC= Q\:AO’ =, —fB, A0 =a -+

then the probability that the point lies on the segment €€
is equal o or'greater than &, whatever points €, ¢ may be to
the left amd right of ¢ respectively. This clearly implies that
theresié a~ finite probability that the marked point has the
par@i&\\@[ar position €. Hence, if there are no partieular points
.o\n’ W B of this nature, f(«) must be a continuous function.
™\ Assuming further that f(x) has a differential cocflicient, the
probahilit% thaﬁbz} marked point lies on a segment 8z of the
line, when 5 1 lsarlﬁlzﬂ)[r%ﬁ’é%,“}s F'(x)de; and the fact, that
the point raust be somewhere between A and B, is given by
the condition

4R
fo Fiayde=1

Conversely, if it is assumed that the probability of a point
lying on a sufficiently small segment 8 of u line is proportional
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to F(«)8x, where x is the distance from one end, then the:

actual probability is
F{z) dx

7 :
fo F(z)dz

where { is the length of the line,

21. A precisely similar method may be used with respect to
a point marked on a plane area. If & and y are rectangular co-
ordinates in the plane of the area, and if it is known that theze)
are no particular points on the area such that the probability
of the marked point coinciding with one of them is fimibe; then
when 8z and 8y are small enough, the probability of the marked
point lying in the rectangle bounded by z, y,z.',\k Sz, ¥ + By,

may be denoted by
Fl= y) 828y, ::\\.’
subject to the condition S\

f f f@ y)dady=1,
where the integral extends over the area within which the point
is known o lie. wwv\;,dbrauljbrary.org.in

In particular, if A is she area, and if f(z, y) is a constant,
then the probability isfx\

N7 by
O A4’
and all positio’;::;;’ of the marked point are said o be equally
likely. \ o
Morage\nérally, if @, @, ..., @, are nindependent quantities

contjqﬁ}usly varying over a certain range, and if the probability
of.héir having values confined to some smaller range has
\'“&3 definite meaning, then when 3z, 8z, ... are small enough,
the probability of their having a system of values lying between
, and @, + &, @, and @, + 2, ..., will be of the form
¢ (1, @y, oovs En) B0 0Ty . Oy,
subjeet to the condition that '

'qu’.)(ml, Ty very Bp) A2 ATz .. ATy = 1,

wheve the integral is extended over the whole range of the
variables,
5.2

s
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It may be convenient, for purposes of calenlation, to use new
variables ., ¥, ..., ¥a, functions of the old. The method of the
Integral Calculus shews that

([ 8600 s 5,

extended over a certain racnge of the a’s, which expresses
the probability that the a’s shall have values within that
range, becomes

ff J-D‘# (%, Y2 oo yﬂ)dyld% dyﬂ, \/

extended over the correspondmg range of tbe ys, where
¥ (%, Yoo oons Yy 18 DBy, By, oo, T) expresbed\ln terms of the
y's, and

\\

bo e R |
oy oy \‘ayx '
% Ei.fz:d D bz,
a?/z’ ‘33{'2’ T a;z
www.dhrauli Efﬁ orgaﬁp oz,
Koy oy 7 g |
Hence the p a\bq,ﬁty that the y B should have values between
7, and g, + Sylf,,l{2 dys+ 8., ..o,
5D (s s -5 ) Sylﬁyg 2 Y.
Retummg to the case of two independent variables, denote

bec;?e by £ («, y) 828y the probability that the variables lie
betieen = and » + 8, y and y + Sy respectively.

D:

N ¥t the range of the variables is unlimited, the probability
~that the first lies between 2 and = + 8z is

[ rtay)seay,

which is of the form F(z) dx, F () being a function of & only.
Similarly, if

[ re@pan=cy)

the probability that the second variable lies between ¥ and
¥+ Oy is G (y) 3y.
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Suppose now that i1t is known that the prebability p,, that
the firs} variable lies between @ and x + 3z, is F{x) 8, while the
similar probability py for the second vamable is G(y)8y. We
have seen that

Pas=PaPp+ PunPar — PawPsp;

and unless P pPap — Paw Pap I8 zero, it does not follow that the
probability, that the two variables lie between  and « + &z, y and
y + 3y respectively, is F(z) ¥ (y) 8xdy. Now the assumed data,
give no information as to the value of PapPas — Pan Py ,\and
therefore, from the assumed data, it is not possible to déter-
mine the probability that the two variables mmultaﬁeously lie
between given limits, "

The same is obviously true when the rangef ‘the variables
is limited. A gimilar result holds when the, Q{lmber of variables
exceceds two. ..\

T llustwations.: \g
22. In the fellowing illustratiohé it will be assumed, unless
the opposite is stated, that all; pﬁﬂtmns of a point marked on a

line are equally likely. <, dbl‘ﬁullb]“al y.org.in

I A point is marked &trandom on a unit line. What is the
probable value of theisum of the squares of the two parts into
which it divides the line ?

The probabili\tﬁ; that the distance of the marked point from
one end of gheJine lies between z and « + 8, is 8. The corre-
sponding walde of the sum of the squares of the two parts s is
given by~
\ §=1-—2x+22

&l
e

2\ ﬁéﬁce the probable value of s is

1
f (1 =20 + 200 do =
1}

It is instructive to consider this simple example from another
point of view. When s is given, there are two values of o, viz.

=%+~’§—“£ z, = —Vis—1.
b

Hence 8oy =} —— V{%__} —Smy=1% __;i;ﬁ ;
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and if the sum of the squares of the parts lies between s and
s + 8s, the point must Jie on one of two segments of the line,

ds
35—

each of which ig of length }

. 8s
LI

5 Vis—1

Hence when the point is marked, the probability that the\
sum of the squares of the parts lies hetween s and s+ g5 s

oA\
Jgﬁsi—_l— The extreme values of 5 and } are 1, Hence the
g - « N

~

probable value of s ig N

f _sds
sV 1

1I. Two points are marked at random on & unit line. What is
the probable value of the sum of the squfabes of the three parts ?
The probability, that the distanedgof the two points from
one end of the line lic between g aitd « + 8, y and y + 3y re-
spectively, is 828y, If y is lessfhan @, the sum of the squares
15y 4 (e —y2+ (1 —ap; if.;g}j'is greater than z, the sum 15

2+ — ool Ubr glibHFepdt he probable value is
1 E oL
[ Uﬂ i +(o:5.@2+(1 -z dy
),
\ + | iw*+(y~w)2+(1—y)*}dy}=%-

11, & peitt 2, is marked at random on a unit line A B, and
then a point P, is marked st random on P, B. What is the
proba.gé“\ir’alue of the sum of the squares of the three parts?

The probubility that AP, lics between z and z+ dw is 6@}
adfh the probability that P, P, lies between y and y + 8y 18

. The probability for this

o

? '\ 2
%)

Lt

\ .:’Sy

e Hence the required probable value is

1 b4 %
jo dz ‘-[n 1%%: P+ @+ (1 —z—yy =45

IV. When n~—1 points are marked on a unit line, they
divide it into % segments. The lengths @y, @, ..., #a, of B — i
of these are arbitrary, subject to the condition that their sum
does not exceed auity., The question suggests itself : What 18
the probability that the n— 1 segments have lengths lying
between «; and «, + 8, @, and a, + 8y, ... respectively ?
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Denote the distances of the » —1 points of division from one
end of the line by %, %, ..., ¥»—.. When the points are assigned,
the segments are unaltered for any permutation of the points
among themselves. For one particular sequence of the points,
the #’s will be in ascending order, so that

Y=,
Ha= 3+ %,

Ynoy = @y + s+ oo+ Ens
Since there are (n —1}! permntations of the pomtns\ }he
probability that the segments will have the values Meorre-
sponding to this set of points is (n — 1)1y, 8y, .. Syﬂ,_l
Now the Jacobian I of the above set of egustiens is unity.
Hence, by the theorem on p. 68, the probabilitpthat' the n — 1 seg-
ments have lengths between @, and @, + 35;:1\\@ and 2, + 8a,...15
(n—1)! 8, 6, ... 8;3:&1‘.'
This agrees with the fact that NV

"1 L= 1—:::1-—.71.‘\;-'::..-::“_5 1
Io dwl‘lo day ... 0 .~ \ ity = T

Thus, if & unit line his e p?j{}&'sxaﬁé’a?kgdrht random on it,

the probable value of il surn of the squares of the n parts

into which they dividesphe line is

L SR 2
\J —-
(?1—1)rf \j‘ i =,

where S deOhes 22+ 22 + ..o+ @y (1t — oo —= Dy

V. It&s}lteres‘mng to notice how these reqults are modified,
whcn%ﬂ “positions of the marked points are pot equally likely.
Suppose that the probability of the distance of a point from
_. e’ end of the unit line lying between # and &z + 3¢ is pro-

\ portzonal to @ (1 — &) 8z, so that the point is more hkcly to He

in the central part of the line than at the ends. Then, sinee

[ -0do=4,

the probable value of the sum of the squares of the twe parts,
mto which a point divides the line, is

rl
eJ @(l—2)(1 -2+ 2% dow =2,
4]
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As would be expected, this is less than when all positions of the
point are equally likely.

VI From the point of view of the present chapter, the result
of Ex. X of Chapter it (p. 22) may be expressed as follows:—If »
points are marked on a unit line and all positions are equally
likely for each point, the probability that the # points all lie on
a continuous portion of the line of length & is na®* —(n— 1)a%

The problem takes a rather different form when the Aipe;
A . . 2\

on which the points are marked, is closed. Suppose.poiuts
are marked on a closed curve of unit length: and assume
that the probability, that a marked point lies én'ja given
continuous segment of the curve of length /, is¢equal to 7; ie.
in the sense already used, that all positionsief the point are
equally likely. Then, when » points are marked on the curve,
what is the probability that some congimhons segment of the
curve of length # 1s free from points2\&s3ign a positive direction
along the curve; and starting frofedeach of the n points, lay
off a length ] —« in the positi¥e direction. If a portion @ of
the ecurve is free from poi]}ﬁg} the n points must all lie on
one of thesg y.segmants.ofyengthnl —«. The probability, that
the n points all lie on{a particular one of these segments, is
(1 -y, O

First, let @ ke @eater than §. Then, if the points lic on &
particular ongfof the segments, they cannot lie on any other;
and the requived probability is » (1 — &)™

Nexp,\si?pi)ose that 4 > > 1. Two segments may now have in
compign-a part of tofal length 1— 24, which consists of two ares
starting respectively where the segments start. The case,in which

then points all lie on this portion of length 1 — 2&, has been taken

Nt on

hto account twice, onee with each of the segments. Hence when
3> a > §, the required probability is

n(l— a2y — i (ln—éﬁ

There 18 no difficulty in continuing this reasoning. The general

(1 — 2y,

result is that, when 1 PP , the required probability is
m m+1

M

51

" !

3 (~1)+ ST (1 — rayt.

It

»

N\
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Tt is not difficult to shew that, when n is large and « is log--??,
. n

this result is roughly 68, and that 1t diminishes rapidly for larger
values of z. Hence, when a large number n of points are marked,
the probability of a gap between them materially cxceeding
logn .
227 is very small.
n 3
. . . N
VII. The problem of the comparative regularity of a random
distribation of points on a closed curve may be looked at frof
another point of view. With the notation already used{"the
probability p, that just m of the » points lie on a co}}t}pﬁous
portion, length &, of the unit curve, is given by ’
nl " &
—_— e — 1—x i
p a"n!(;*?,-—‘m)!m (1-2) \
- N
Putting = @R+ \ ¢
and using the approximate expressignidor the factorials, it 1s
found that, when terms of the orde’l:gl’l.f*n” are neglected,
O (-2
log p=— % log 2mna (5™ 2y~ wt(l—20)p ;
il Qna(l — )
so that, reintroducing m, wehPraulibrary org.in
AN raia Rl 1y
_{\iggz}(;_l]__] e | mxil-w) '
— L) === ===
P"&S\ 2mrna (1 — )
If © 1s n—{'h“;‘iwﬁere a is positive, the first factor of p 1s very
nearly unjty™when n is sufficiently great. Hence p may be

written £}
“\ .
N\ _ b Ml
ad e it
e ="
O Narh

"\ ¥/
vand the probability, that the pumber of points on a segment of
fength n=rte lies between m, and my, 1s
T . o

s .- h
"=y '\"l'ﬂ‘k

Now tables already quoted shew that

_ (- mof?
mo+2Vn_1 e~ Th  dm=995 nearly,

mo—‘l\""ﬂ 'J‘?ﬁb
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and the sum differs very little from the integral. Hence, when
= 1s large enough, the probability that the number of points on
an arc of length n~1** lics between n® + 2v2n° and #® — 2020 is
*995. For such an arc: then, however small a may be, the proba-
bility is great thaf the point-density differs very little from its
mean value. No such conclusion can be drawn for an arc of
length 7, as is obvious from the nature of the problerm. N\

23, VIIL Tt will be assumed in whatfollows that, when &’p\,oint
is marked on a nnit sphere, all positions of the point ard aqually
likely, in the sense that, if §1s the arca of the sphericgﬁsprface on
one side of a closed curve drawn on the surface, then the'probability

that a murked point lies on that side of thelslwve 13 yi
. : NG
(1) Two points are marked on & unit sphérc. What is the proba-
bility that the angular distance betweenthem does not excesd a?

I 4 is one of the points, and\a small circle of radins « is
described with 4 as centre, its axeh is 2 (1 —cos a). Now, if the
distance bﬁé&%@@bb@&l#ﬁm@z@bﬁ,{bes net exceed @, the second
point wust le cither om the small ecircle or on the same side
of it as 4. Hence_t}iegequired probability is 1 (1 —cos ).

It follows at okte that the probability, that the distance
between two pdibts marked on the sphere lies between a and
o+ Oa, is L 8indidn.

(11} T.tl’r\ue poluts are marked on a unit sphere. What is the
plzob'.hhty that there is a small eircle of radius « (< %), on or
within which all three points lic?

o~ ) Let P@R, PQS be two small circles on the sphere of radius a.
N/ With # as centre and radius 2a, describe the are S5 7)S, of a
small cirgle, touching the above circles in By, Sy; and with ¢} as
u':aentre and radius 2e, describe the are B, 7,8, touching the circles

m R,,8,. Then an inspection of the figure shews at once that
any point U within the closed curve RR, T8, 88, T, R,R 1s
such that P, @, U lie within a small circle of radius a; while

if 17 18 without this closed curve, P, Q, 7, do not lie within any
small eircle of radius &, Let 0, 0’ be the centres of PQR, P@S.
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Then
area RE, IS, 88,7, B, R = 2 ares POR, T.8,0'P
+2 ares OR,BR.0
—area POQGO'P,
If the angles OPO" and POR are 8 and «, then
area POR,T\ 8,00 =8(1 —cos 2a), O\
arean OR,RR.0 =y (1l —cosu), ) \~\‘
area POQO'P =28+ %y — 2. O K

Hence the prebability, that U lies withic RR, T, S Sb,i” R.R, is

2 — 28 cos Za — 2~y(ma \\
4o

Tf the distance P, is 4§, it has been aﬂ&l:that the prohability
of the distance of two points on the sph\m, being between ¢ and
B+ 66 1s $sin 868, Hence the probability, that there is a small
circle of radins & containing ‘oha three points, is

1 f2 | g
i L sin {;Wﬁggg?ga — vy cos a) df,

rary.org.in
while from the sphqil?igxll quadrilateral OPO'P,
S’\\w ¢  y_ ... B 8
cos ~2 cot o tan 3 08 3= S 5 COR 3¢

The mtc,g{a] is r(,adlly evalnated ; and the required probability
is founr.Uao be
’§,. {1 --cosaP{l+Lcosa)

ThLS 1s unity when a = 4, as it obviously should be.
~\ 3

"\ From the resnlt 1t follows thai, when three points are marked
on a unit sphere, the probability, that the radius of the amall

circle through them lies between « and o+ 8, 18
fsina(l —cosay(l +5cosa)da

(1i1) Three points A, B, (f are marked on a unit sphere, all
positions of each being equally likely. They are joined by the
shorter arcs of the great circles BC, €4, and AB. What is the
probable area of the spherical wriangle AB{ so formed?
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The probability, that the arc B lies between a and @ + da, is
}sin ade, ¢ lying between 0 and 7. Similarly the probability,
that the arc (4 lies between b and b+db, is §sinbdb. The
angle ACB lies between 0 and =3 and the probability, that it

lies between (f and €'+ dC, is %_dO.

Hence, when all positions of each of the three points are
equally likely, the probability that the elements BC, CA4, and
angle ACRB lie respectively between a and a + da, b and b +db,
C and 0+ d0, is R, \J)

1 inasinbdadbdl, O
der £™

Now the area of the spherical triangle iy 2+ B+C—m.
Hence the required probable value of the afsay
1 L i \
yye Lj j (A+B+C—m) b}pﬁbsm bdadbdC.

¢ Jo
Now j (4 +B)dC=(A + BYE= | C(d4 +dB).
From the trigonometry ofvt'h’é.'spherical triangle,

i "*_.:’cos ta—0) . ,~.
tan 1 (A“{ii)_ cos (@ F5) cot 1O
thus Q
dd ) cosg+cosh
+ d&i 1 + cos @ cos b + sin ¢ sin b cos O'do’
g0 that K '
™ " ¥ ™ . =
L (@¥'B)d0= [(A +B) 0]
/, o=
Y E M
A’\\“ N { ! (cos a -+ cos b) dC

R\ J.;.1+cosacosb+sinasinbcos@'
23 "Now it is clear from a figure that, when Q= A+BisQor
-/ 27, according as ¢ + b is less or greater than =,
Further, it is easy to verify that
v]"’]ﬂd bray i braes By gitba sin bda db
0Jo

1+cosacdsb+sinasinbcos()’= ’

Hence
fo L L (4 +B)sinasinbdadbdc*:fzjﬂﬂk.sinasmbdqdb,

where kis 0 if a+b <, k=2n%if a+b>: so the integral
=47,
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Also J‘wfﬂfw(c-w)sinasinbdadbd0=2ar%

oJoto
Henec the required probable value of the area is .
In a similar way the probability, that the area of the triangle
should lie between § and 8 +d8, may be determined,

2¢. 1X. The position of a point on a sphere is determined by
two angles ¢ and ¢, its co-latitude and longitude measnred from.az\
given pole and a given meridian. The position of & figure,of
given shape, on a sphere may be determined as follows.{ Leb
A, B be two marked points of the figure. Denote by 8 E;nd},’o the
co-latitude and- longitude of 4 from a pole O, and by 4 the
angle OAB. Then the position of the figure i§)completely
determined by the three angles 8, ¢,; and aiti}\positions are
given by values of these angles lying res&ctiveiy between ¢
and r, 0 and 27, 0 and 2. The probability,that the fignre has
a position in which the three angles lislbetween & and ¢+ 36,
¢ and ¢ -+ B¢, ¢ and r + Sy, will be*efthe form

F (6, ¢, ) 385554
Now an element of area of the sphere surrounding 4 is
W\f\a{ﬂﬁﬁﬁﬁ@m’y,org_m
Hence the probability,(that 4 lies in the element of area &S,
and OAB lies betweet ¥ and ¥+ v, is
WY P8 ¥
Ko —smd 388

When F(8, §)a00)/sin 8 is a constant, all positions of the figure
are said 36, bE equally probable; and the constant is 1/8a%, since

O j:da j;vdqs quf P8, ¢, ¥)=1.

~Buppose two carves of arbitrary shape, but of finite length,
N ire drawn on the sphere: and that when displaced, without
change of shape, all positions of each are equally probable. What
is the probable number of their intersections? This question is
due to M. Poincaré*; but the solution given here is somewhat
diffsrent from his.
Whatever positions are given to the two curves, one of them
way, by a rotation of the sphere as a whole carrying the

* Caleul des Probabilités, p. 122.
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curves with ib, be brought into a standard position: so that
the generality of the question is not affected, by supposing one
of the curves fixed and the other equally likely to take any
position with respect to it.

First, suppose the two curves to be ares of great circles sub-
tending angles a and /3 at thecentre,and suppose thateitherqor 8
is less than 7 so that, if the curves intersect at all, ithey can only
intersect once. The probability of their interseetion dependsan
a, 3 only; it may be denoted by f(a, 8), where the function 18
symmetric in its two arguments. Mark a point € ongAB, the
a are, dividing it into two ares A, CB, lengths e, : r;d;:a}. If the
8 arc intersects AB at all, it must cither interseob A or CB,
and it cannot intersect both. Hence 7,

f(a-l +ay, B)=F(,F) +f(a2’:|§3-
Similarly Fla, B+ Boy=f(a, B)+ é(g, e
From these, it follows that ¢*¢
N .f {a, 3) 2bafs,
where k 1s a constant. RO

Suppose, next, thab the fixadtenrve consists of two ares of great
circles, subtending a and Bk the centre, where « and 8 arc both
less than =, and that the other curve is an arcy (< m) of a great
circle. In this case,if is possible for the vy arc tointersect both the

aarcand the 8 aﬁ‘;.Denotc the probability of this by p. Then the
probability tha}t e yarc intersects the a arc only is bay —p; and

the probability that it intersccts the 8 arc only 1s &Sy — p3 80 that
the problibility, that the v arc intersects the fixed curve af least
oncg,,ééﬁc"(a—i- By —p. On the other hand, the probable number
of intérsections of the fixed curve and the moving curve is

1(kay—p)+1{EBy ~p)+ 2p=k(a + B)v.

o “\ ‘Tt may be noticed that in the first casc, where the curves can

.  only intersect once, the probability of intersecting and the
probable n%ggﬁ,g}gﬁgﬁ%gpﬁﬁm the same thing.

There is clearly no difficulty in extending this result to the
case, in' which both fixed and moving curves consist of any
number of small (<) arcs of great circles, The result, if one
curve consists of arcs a, &,, ... , &, of great circles, and the second
of ares 8,, Bs, ..., B, 18 to give

k(a1+a2+ ---+°‘m)(;81+1812+—-- +Bn)
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for the probable number of intersections, i.e,

&,
where [ 1s the whole length of one curve and U’ that of the other.
Now whatever the curves may be, points may be marked on them

dividing them into arcs which are ultimately arcs of great circles,
The result 1s thercfore general.

P
The constant & is determived at once, by considering the csisé\\
of two great circles, Here {=1"=2sr, and the number of w\'ﬁ}gs
15 2; so that e “

k(2m)=2. K
: L O °
Hence the required result is . &
2‘71'2 '\<;>
©
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CHAPTER VII

THEORY OF ERRORS

25, Practically all magnitude-determinations are liable to
error. It 1s true that, if a basketful of apples is spread out on a
table one can determine with certainty the number of apples;
but when larger and larger collections of distinet objects a,re dealt
with, a stage must be reached at which it is no longex posmble
to be certain of the result of counting, if only becaﬁlse of the
length of time the process takes,

In general, a magnitude-determination ’Ggin\no's be reduced
directly to a process of counting. It necatljnalways involves the
observation of certain coincidences, suqh, as that of & pointer
with a division on a seale. LV

The imperfections, both of ourufises and of the instruments
used, necessarily imply then am\uncertainty as to the result of
the determingtion , ﬂq@lgﬁrg fleterminations of the same

magnitade are made, thay will be in general different from
each other, "

The question t}&e}a arises, if a number of determinations
have given \\
Gy, Uy, - Qs
as the valt{es of a certain magm’aude what use can be made
of this m{ault ?

’g}ne a's are given, without any indication of the way in
which they were arrived at, a definite resnlt can be obtained
only by making some more or less arbitrary assumptions.
J Under such circumstances, the actual value chosen for the
ma.gmtude is, in general, the arithmetic mean of the results, viz.

1
o BT Gt o+ ag).

If a were the true value of the magmtude the errors implied
in the data, reckoned Positive when in excess, would be

@i — 4, =12, ..., n).
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The algebraic sum of the errors is

§(“i—!’t);

i=1

and the sum of the squares of the errors is
ki)
% (a;—a)
i=1

If, in the last expression, a is regarded as a variable, its least « N
value 1s given by A
" S
S{ai—a)=0; NS ¢
i=1 A
le., & is the arithmetic mean. Hence a choice, of the &ﬁ%ﬁ‘metic
mean of the @'s as the true value, implies that theé-algebraic
sum of the errors is zero, and that the sum ¢f\bhe squares of
the errors is as small as possible, If a valug'\th excess of the
arithmefic mean is taken, it is imp]ied'ﬁh}t' negative errors
are more numereus, or greater, thagNpbsitive errors; and if
a value less than the arithmetic mear is taken, it s implied
that the positive errors exceed thelpegative.
Cenversely, the assumptiogz‘gﬁét the sum of the squares of
the errors is as small as posBLY 48548 "B I SFffnetic mean

as the required value. A

This however 1s ‘osﬂ‘y‘ ‘one of a great variety of assumptions
that might be ma{% with respect to the errors. In general,
each assumptiomwill give a different value for the magnitude.

A

N

26. I Eohahstance, it might be assumed that the sum of the
absolute ¥alues of the errors, that is, their valnes apart from sign,
is as mall as possible. If the n» given values are taken to be
In asgeniding order of magnitude, and the true valae a i1s assumed

.16 Ve between a, and @y, the sum of the absolute values
\.of the crrors is
»n r
@Zr—-n)a+ 2 a— o
#+1 1

If 2r > n, this is least when a=a,; and if 2r <n, 1t is least
when a =g,,,. If 2r =n, it is independent of . '

Hence, if » is odd and equal to 2m + 1, the sum of the absolute
values of the errors is least when a = g, ; while if n is even and

equal to 2m, the sum of the absolute values of the errors I8
6
FB
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constant for ali values of a from a,, %0 @4, and this value is
less than any other.

II. Again, if it is assumed that the sum of the 2mth powers
of the errors 1s as small as possible, o will be given by

®
S (a;—ap™ =90,
1

If g, and a,, are the least and the greatest of the o's, and as
sufliciently great, every term in thls equation is VOLPS sinall
compared to either (a, — a)™ or (@, — a)™ % Henee\ d.ppI'OXI-
mately

ad

o= é ("11 + a"n) ..'( 3

It may be inferred that the assumption, shiat the sum of the
2mth powers of the errors Is as small ag posmble when m > 1,
makes the determination of the true VQLU,E depend more on the
larger and the smaller observed va{uas than on those in the
middle of the series. 8

A

In the complete absence cf any information as to how the
a's were arrived at, it wou]d \always then seem most reasonable
to take them:tﬁ:gmﬂlﬂﬁm@ﬂu&hﬁm the arithmetic mean of the o’s,
as any other assumpt.lon would imply that either an excess of
pesitive errors or m\excess of negative errors has oecurred.

If the set oi\Q\results are divided arbitrarily into two sets of
rand n —7, a.nd if

.f\ } E ig’»
3, Slai=u, &= g,
D =Tt

\ W
(1%13 no longer supposed that the a’s are in order of magnitude),

\then

1z rth +{n—7r
Ifgaratin—na
" (i
The quantity an the right is the weighted mean of &, and a,,
attaching weights r and # —r to them, where » is the number
of observations giving &, and »—r is the number giving s,.
Suppose now that two sets of determinations of a magnitude
are given, viz.
a'l.: a’s; veay a‘m;
b]: b?} LR bﬂ;
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and that the only thing known about them is, that the first set
is obtained by better methods or by more accurate observers
than the second. The first set, about which by themselves
nothing is known, would give, by the rule of the arithmetic
meat,

m=—2a;

m o
and similarly the second set would give
C(2=—1§b‘;, ."\“.\
Ty O

for the value required. In deducing the final result (frﬂim &
and &,, if nothing were known about them but the nGwbers of
observations from which they were derived, Weightgp}x)\portional
to these numbers would be used. When howc¥er'1t is known
that the s have been obtained by better meghods than the bs,
it is reasonable to attach a greater weight\td’s, in consequence
of this knowledge, so that the final resultbw;vould be

ko -+ nog, 3

km -i-—'nj i
where % is greater nH@{iﬁwlﬁﬂ@f[ib{Uﬂﬁl%&W known, all that
can be said from this fordiula is that the required value lies
batween 7 }

P

N \\al and ﬁ;—:i—a*‘
What is alyvéiﬁrs“wanted practically is. a definite result; and
this can onlgbe obtained by giving & a definite numerical value.
The meré statement then that the first set of values are
obtaindd\ By a better method than the second is of little
Plt&f‘(ﬁ‘izcﬁl use.
“\What is necessary to get a definite result 18 a statement
\f the relative weights to be attached respectively to any one
of the first and any ome of the second sets of values, This
clearly cannot be reduced to a rule, but must be a matter of
Judgment in each particular case.
Even if it is known that the sets of determinations of a
magnitude have been arrived at by the use of the same method
and by cqually sccurate observers, the problem of obtaming

a definite result from them remains largely indeterminate. If,
6-2
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however, it is known that the observations made are liable to
error following some definite and known law, the problem takes
a less indeterminate form.

27. TIT. Suppose the obscrvations are such that the proba-
bility of an error in the determination lying between x and
@ + 8w is equal to f{x)dx, with the necessary relation

f:f(:;;}d::::l. ~

If & is the true value of the magnitude, the proba-bility\ﬁhat
n determinations give values lying between @ and o, B, s
a, and @, + oa,, is \

Floy—a) flag—a) ... f{n—a) 5@18(12‘..‘\&3”.

Denote by p(«)da the @ prior proba.bili‘b}P that the true
value lies between a and a+3a. Then afferithe determinations
have been made, the & postertort probatﬁiﬁz:that the truc value
lies between & and « + 8, is by Bayes formula

_fla—afa-a . fm-ap@ds

i "

'L;gwﬁgi"a_ﬁ ﬁl}rrta{{i?;va’a . f (Bp—a)p {c) da

En
and the probable value of a'is

[ af@=w...f (@ - p(da
\..ﬁj’mf(a,,—a) o fla,— o) pla)da

Ity (ajiwére known, the latter expression is & formula for
the pgifbéble value of o, while the most probable value can be
dediieed from the former one. Which of the two is chosen as

) \g‘i}?*ing the true value must be 3 matter of judgment.

\'“\; +/ The difficulty is that p(a), from the nature of the case, can
never be known : so that some assumption must be made with
regard to it. It might be expected that the results would
depend to a large extont on the assumptions made with respect
to p{a); and this 15 no doubt the case if such assumptions are
made quite arbitrarily. But within the range of the a’s, it
would be quite unreasonsble to assume rapid variation of p(a)-
On the other hand, if p(a) varics slowly between 4 and B,
where 4 is less than the smallesi and B greater than the
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grealest of the a’s, the values of the two above expressions
depend in general but slightly on the way in which p {a) varies.
The simplest assumption to make is, that p(«) is constant so

long as '
o —a) fla—a) e flan—a)
hag a sensible value,

With this assumption, the probable value of a is

n &
J’ f(al_a)f(ﬂs_“)---f(a'ﬂ—a)da A
— : "S
and the most probable value of « is given by the E%Q‘ ton
flo=o fllam-a, f ' (2 =0l

fla—o " fla—a) f(%\v)

98. IV. That this last equation will uét;in general, give the
axithmetic mean for the most probableyalue is obvious; but it
may be asked, for what law of errqiis the arithmetic mean the
most probable value ? N

o
=

Write ‘ﬁ(x)"‘_Fa@)' rary.org.in
Then if S;’:‘E\(aﬁa + e ),
et

the equation ,,f.E',(ml) + Fz)+ ...+ Flag)= 0
1s true whcp:’:\' o4 ¥ ... +2a=0,

$
50 that, 7™

ARG T F () ot Pl — ) =0

is 'Qﬁ,firdentity. Hence
~ P (@)= F (=, — 2= or = @nma) =,
N Fla)y=Ce+ 0,

and

Fla)+ Fa)+ ...+ F (@) =Cm+ ot ) +nl’,
s0 that & =0

@
Hence ff% = O,

@)= De!™

Fna_f(alna)f(azma)...f(mn—a}da. A
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Now the relation
J. Fleydz=1
shews that € must be negative, say — 24, and gives

1 (® \/;r
= -h g, _ |7
D j_w é dx B

Hence the only law of error which makes the arithmeiie
mean the moat probable value 1s that for which

S(z)= \/ge"““. A\ C

This 15 called Gauss’s law of error.

LN

)

N fog

O
It may be noticed that, with this law, thevprobable value
of ais N

" § 4
b —hE{g;—a) '\ /
f ae ! da
-

i Y
5 _hE(g-af
i e 1 da ey

W .db raulibrary::ar;g,jnz

J‘w -k aféiza‘ d
ne 7 1 o
AN

= &% F]
5\\ —-k(a—iia‘-)
Al e 1 da

4 N e 1 Fr3
> f (a + —Ea,;) e~ " gy
" *¢ ] noy 1 ki
Y = = =-2a;;
\\\ f e M gy *a

Nt/

™

M\;:!é,{’)‘that, with Gausy’s law, both the probable value and the most
/) Probable value are the arithmetic mean.

29. Gausss law of error makes positive and negative errors
equally probable. It will therefore certainly not apply to observa-
Ficms which are affocted by systematic errors such as the
index error of a sextant, Assuming that a set of observations
have been corrected in some way for systematic error, 1t may

be asked whether there is any reason to expect that the law of
their errors will be Gauss’s law.
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In general, the actual error of an chservation is the sam
of a pumber of minor errors due to different causes and having
very varlous values. To take a specific case, suppose that the
actnal error 18 the sum of N minor errors, each of which has
one of the values ay, a,, ..., @, Denote by p; the probability,
that any minor error has the value g;, so that

Sp=1
1
. 5 ¢ \:\.
Then if In;=N, AN
1 e
the probability, that the actual error has the value .“"”'.‘:
2 ..,'\'\'.
Ina,, \V
1
: N e\
b Tl el PP ’RS“
Znga; W\

which is the coefficient of #? m
L4 %ﬂbﬂ}aﬁl‘)ﬁhl ary.org.in

Hence the probab,lilj;y, that the actual error lies between
», and 7, is the.sdh*of the coefficients of those powers of &
n this expres,siori hose indices lie between 7, and 2.

In the s plest case, viz, 8= 2, py=p:=}, &= — 0, 1t has
already besfv'seen in Chapter tv that this leads to Ganss's law;
80 thdt.%bf the actual error is made up of a sufficiently large
number of minor ervors of the same magnitude, each of which
A équaﬂy likely to be positive or negative, then it follows

\ anss’s law.

30. This, no doubt, is a very special assmmpt_ion; but the
result holds good under much more general conditions.

In the above expression for the probability, ¢, of an error
?mm, pus
=p N+ ay, (=12 ..., 8
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{cHEAP, VIT
Then, when the factorials are replaced by their approximate
expreﬂsmns,
.- \/ T -
= N+a2). N + @)
l‘TN Nepm p8p3N+ms
(;.n, N4 xl)PrNﬂx (-ps N+ )P ¥
— _ N 1 &
Cenis Y @V +a) . (p Ny D ..ifsﬁ\'
B @ \ PNt O e R
where D= (1 +p1N) (1 + PsN) O
This gives \:M:\‘~
log D= E N+ 2) 1o 1+—--) g
5D =S(nl +a)log(1+ 2 S
& a;\g\. s )
%(P oV + &) ( N QpXNg 3p ER T
ﬁ( %2 %’,3 ’s ) )
\Sp T Gpal T )
www,dhbr auhbraﬂ)@oi’g in
sinece

Sy =0
1

Q
Hence, when & iél‘%ge enough,

T ‘2

I
P N 1 %31“\

2O @nNyT VPP s

It folkﬁvs ‘that the probability of an error lying between

I)d\é"z is 39, where the sum is taken for those values of
the\'(;% (with integral differences) for which

LS

~\J me_ =0,
} 1

5
<X (J’p“N"r Q':q;) [£ S P
1

31. So far, no supposition has been made about the minor

errors. Suppose now that the probable value of a minor error
18 zero, so that

L)

Epga-g =1},
1
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The equations of condition are then
L4

Zm,; = 0,

1
&

€ 00 € T
b

Consider now 3¢ for all values of the &'s {with integral
differences) which satisfy the relations

0 3m<ld,

P Dty € Tan \\\
' is i - |\
When N is large enough, this is sensibly ~\ /
A\ )
f—--fquldmg...dxg, R
)

taken over the range given by the above ineql@ities.
Writing wo=Npy, (=12 ,,{;@),

‘,¢

the m’oegra.l becomes

- =+ 32 -F\k +ys
f f 2 \r(yl y dyl dyg . dys,
(27-}_\'7)_ W dbnauhbl ary.org.in

taken over the range y
0%’; ”’Piyﬂs <ld,

< T pia i € o
Now make aanf\olrthogonal substitution, such that

7. ?Jﬂm%

\‘ 4= \/2‘ P
§ Pt
’.\ =2 '\/p%y“

“]}3 Za, ..., Z; are chogen consistently with these relations,
\,:}mh can certamly always be done. The integral then becomes

1 f .6_ 2’?\*(5‘2”2%"‘va}dzldzg...dzs,
@)Y
taken over the range
. Vg f;i_ai:x LHET, v EE:E‘:E;

0ge<h
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NG e ;-
ie. L[, 2Ndzlj ¢ N,
NorN v NV Epag 0
7t
or —_% frg ¢ 2NEpd dr,
‘V’?'?:‘szpiaf "
if ¢ is small enough. Finally Zq, subject to the conditions
0= Emil
GRS LTSS R
o (\)
is e [ WG O
V29rN3pat’r \

7
\ 3

This completes the formal proof that the error, fHllows Gauss's

law, if it arises as the sum of a suﬂiciently."iér?gc number of
minor errors, of which the probable value is‘zerb.

1t should be noticed that the quantity:E%{ a#, occurring in the
above expression, is the probable value.of the square of a minor
eTTOT. QO

32. V. If each component .(f:ﬁjér follows (Jauss’s law, ifs may
be shewn that the %;Faltﬁ%%é_ff%l; also follows the law, quite in-
dependently of the numberot gdmgbnent-s being great. Suppose
that the actual error i€ the sum of two components, and that
the probabilities of ¢the two components lying between z, and
%, + &my, 2, and @4 Sz,, respectively are

Th*’f'ﬁl‘}ﬁability that the component errors, assumed to be
inde?éndent, satisfy these conditions simultaneousily is

\’ N '\%_h—? e w3y B,
Put Bt a=X, —xota=7F,
80 that 8,82, =3 85X 8Y.

Then the probability that the sum and the difference of the

two component errors lie respectively between X and X + 8%,
Yand Y+ 87, is

Vhh, —1(h bR _
*::&8 A7) ¥ i~ b) YX - 3 (B g 0



32} THE GAUSS LAW 91

Hence the probability, that the sum of the component errors Jies
between X and X + 86X, 18

Vit sy [ s
=k T Rt R
—fUn+hd ¥ X LR
'\/kl 231’{ 2[ o -
e PRy o &\
= b TR oy N
Fot by . ,.\Q}

This clearly involves the consequence that, if a number of
independent compone ot errors all follow Gauss's la, éu if the
resultant. error is compounded lincarly from then&m any way,
then it also follows Gauss’s law, \\

r“\

P
,.&\\
)N
£ )
o
<,
L))
tl":\\s./
~
\i“,
O
SN
))



CHAPTER VIII
GATUSS'S LAW OFF BERRORS

33. As has already been stated, when the probahility of an
error lying between @ and « + 8z is

£\
h
Z p—ha? A »
\/ﬂ-e Sur, O\

N
the errors are said to follow Gauss’s law, .

The constant & in this formula is clearly a kind €f measure
of the precision of the observatiovs, since the prebability of an
error of given magnitude diminishes as ke Jugreases. Since
positive and negative errors arc equally likely, the probable
error, as defined in Chapter 1v, is zero. 7%~

” A

1f ]‘d \/é e“"‘”r{zg; =1

JUg— ki ,:.'
the probability of an error lyjqig :_ts;ithin the interval from —d
to d, Is equabts HPFRBEBIREPER 1B 1ying without this interval.
The interval from —d to.d 18 often spoken of as the 50 per cent.
zone. Now the precedifighcquation may be written
3

P -
{ M TR 2
"\\ ;\/—q—;' e‘“’dx:i:.

\ A

In an apperdix (p. 103), a table of values of

::\',,.’ ) 2 e

Q\, Ao

1y gL"ﬁQ}l for values of & from 0 to 3 proceeding by differences

of <) from which by mterpolation the value of the integral for

“\mtermediate values of # can be determined with considerable
N\ accuracy. For instance, the table at once gives

dvh =477 to three places:
which may be written

i

po 210
T @dy
or I — E]_'ad_’ :

vE'
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giving the precision-constant in terres of the breadth of the
50 per cent. zone, and vice versd,
1 [avE
if — [ e d =098,
Vard g

the probcxbilit} of an error lying outside the zone from —d' to
d 18 515 or one may say the zone from ~d’ to  is practically
certaln to contain all the errors if the anmber of observations is
not too large. Now the table gives

d'vh =22, A
s0 that L™

d’ = 461d, O

3.6, the breadth of this zone of practical certainty IS %l‘hmes
the breadth of the 50 per cent. zone. { &

Half the breadth of the 50 per cent. zone, LeldN i often called
the probabh, error, thongh the phrase is not iged in the sense
defined in Chap. 1v. There is no risk oS confusion if it s
remembered that, in this connection,Nhe probable error Is a
po%ltwc quantlty d such that the m&bmtude of an error, apart
from sign, is equally likely to be greater or less thar d.

Hoon Brror: B g{i}r‘a g_}"‘bﬁ%aﬁﬁ Widye.
34, There are two otl{u multiples of 1/¢/% which are often
uscd e practice. )
The probable valx in the ordinary sense, of |z}, that is of
the errov apart from sign, 18

\/h ,1:3'3 I e__mzdm
= i 064
»:;» 2 \/ o g_'}wsd(g:: - :/'h to three places

%15 is called the Bleanl arror,
The probable value of the square of the error, 18

!I[m ) nhﬁ:zg_.._l
\/;1—- ﬁ”.ﬂ“e L 2}!,.

The square root of this, viz —:};7 to three places, 1s called the
(3

error of mean square.
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The result of differentiating the equation

® —hzt f TE
J_me d'b_\/h

n times with respect to A 18

. 1.3...(2n-1)
J- gmp=hatoly — 70 2‘“ \/hm'f—i .

Thus the probable value of the 2nth power of the error is

N

1.3...(2n ”(%J . &
Whatcever the value of 7, this quantity increases Pontinlfﬂfﬁy with
7 when » 1s greater than A; 1f takes its least valae wl"um n 1s the

integer betwsen A — § and h+ 4. The bearing n(thv oceasional

very lmrge errors which Gauss’s law unplle‘q is perhaps best
realized m this way. O

35. The probability that two obsgrv::ﬁ}ons give errors lying
respectively between @, and x, + Bm,,‘:q ) and z, + 01, 18

,o

h- “"‘(”l“r”fﬂ Sz, 855,

| li b . . .
Hence thewﬁ'\oba%rﬂ ] {;ﬁ tv%o observations give errars for
which | #, —,| is equal \to or less than Z, is

..,h
E\E —himta®) dip d
e i iy,
L\ wj J-

taken over thé dange for which

:’;\': ~l<agy,—m <.
As bé'f}m, put
\ -':Cg+$1_Y, wz_"l:l:JY;

aoN)at Sy 8, = 18X 8,
~“C \Then the required probabﬂlty is

taken over the rangoe —l<X <l

; J’w EELECE S LR
o= € dYJ z
9 . ";3 dX,

_ At ymxe
—\/;2;]__:6 dX.

that is,
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In particular, if 3\/ g =477 or I="705 x 24, this probability

is . The difference of the errors in two observations is therefore
equally likely to be greater or less than ‘705 times the breadth
of the 50 per cent. zone.

This may be expressed by saying that, in two ohservations,
the probable “spread” of the errors is 703 times the breadth of
the 50 per cent. zone. The question of determining, in this
sense, the probable spread of the errors in 4 set of n observations
raay be treated as follows, <\)

The probability, that the error of the #th of observatipf}s\lies
between x and @ + 3z, and that the errors of the othef #%-1 lie
between x and &+ 1, is R (4,

b } et n=l\/
»\/ A e B 8y [(f‘—) ‘ e—"y*dyl‘ )
m w5 e ¢ v/
Therefore the probability, that the ithlof“the = observations

has the algebraically smallest error ;aﬁd: that the spread does
not exceed [, is R

[ iemofgibers

Now any one of the beervations may have the algebraically
smallest error ; and,thé dases so obtained are mutually exciusive.
Ts follows that the probability, that the spread of the exrors of

observations does.not exceed I, i8
"N/

SO g e o+ -1
DR ([ [y
\J ke —g r

Iy ma,u‘);\be. observed that this resulf can also be established by
the-wiethod of Example x, Chapter I,

\\ “The formula may be written

- 1% n-1
2 [ o Uﬁkke’ﬂsdy] de;

»
&£

a2
and for given numerical values of » and wh, its value may be
calenlated by means of the table already referred to. Wher} this
is done for various values of (W% and the same n, the particular

value of IV, which makes the probability §, may be approximately
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obtained by interpolation. In this way the following table is

arrived at, giving the probable spread in terms of the breadth
of the 50 per cent. zone :—

7 4 5 6 8 10 12
{/2d 147 167 184 207 224 237
It is easy to sec that the probable spread increases without
linit as » increases, )
O\
Combination of Determanations. O\
36. Assummg that the crrors of vbservation of a\certam
quantity do, in fact, follow Gauss's law, the questmm Arises as
to what deductions can be drawn from a gwen set of determi-
nations. ) ,\ v

Denote by &y, @y, e, By,

the numerical values obtained in a set, 687 determinations: by
O ‘.- L}

@, the unknown true value of the qt@'ltlty to be determined:

and by A the unknown value of #hs ‘precision-constant for the
observations. ™

“ S
NS

The pruba,bllffg etti g "a._set of n determinations lying
re31:|(,(jc,1ve1y\'lf)re{a\\re]%alkl1 il LTS Y-z, %, and @, + day, ..., @, and
&y -+ da,, 18

- hz
310\{\( dxl dxy ... day;

and the probabiht} of gettlng a set of n determinations, which
satisfy %ﬁmbe conditions, is the integral of &p over the range

determined by the conditions. In parblcular, the integral of &p
tc;{-o%u Teal values of the n variables is unity.

. 3Tt is easy to verify that

. 3"\:" » # ] n 3
\\: “' 28— =0 l:(wo - 1 EM) + 12-%2 - (1 g%) } .
1 n Ry "
Introduce new variables defined by
1 k3
h= E = (- @),
n—j+1
o= . .? { 1

n(ﬂ“3+2) ‘;.'+1(wf+~%+1 ‘--+%)}s
for j=2,8,..,
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and denote by —J 2 numerical constant, the Jacobian of the
#'s with respect to the ¥'s. With these new variables, it will be
found that

1 % 1 " 3 "
=t — (—' 2(171:) = Eyf,
%1 2

fn En
h )§ - 'hay;ﬁ

so that op -———J( v dyidye .. e @Yne

-] e
a0 .

The integral of

— ﬂh%yf 4 \..\'
e 2 dyzdys vor @Yn, \} ”
taken over the range defined by X N\
(B+8Ry 24 25 v

is the product of ¢~ and the integral 9{\;
A2y - - Ya ,\ v

taken over the same range. Noi\i;ﬁﬁe integral of this last
differential over the. range defited by
o

ww%%ﬁﬁ %‘Ql'y_org_ in

is clearly (" 8, whe AL is a numerical constant depending
ouly on 7. Hence\ t\heJ integral of
Zf: —ﬂh%yﬁ

‘\, P P dygdys...dy,,,
taken qy\e}&tﬁe range defined by
N

o (8+887 >3y 28
\"b; Ce—nhe* gr2dB,

) where € is a numerical constant; and the integral of 3p, taken

over the same range, i3
”

07 (L) eratsergrdyndf

Now again introduce new variables defined by

wy

m=z B=gi =g’ P
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() x
so that the immediately preceding differcntial becomes
ke—maﬂ 141 gl di d‘U,
where & is a numerical constant.
This is the pmbabﬂity that 7,/8 shall lie between u and
w+ du, and gVh shall simultancously lie between » and v + dv.

For these, 9y, B _v,

@ ,@- o
Now [ gt gl gy = 1 O
L0

nt
o A .
(1 + w2 Lo
where k, is a numerical constant, and a\

* 1 & \/
e—'nu‘z i du — y ‘,}‘
e n' o\

Hence the probability, that /8 11&3 hetwecen 'uo&ﬁd w+ du, 18
kk, du

' and the probability, that 8Vh - lied between v and
1+ wR B A
o dy, 15 & . T g—nvtyn2 iy, ‘

37. The conclugions, which caﬂ bé drawn from the given set

of detemnnatmns e ther efoxel
ary W .g in

(1) the probablhty, hat N\
"\ g — 13 ‘E.mt

\\\'/ B

lies between m}, amd Uy, 18

x'\s.o dy du
S T .
N ey
’::; * e ?
i"\‘.’; J —
v ) (14 u*)z
N/ (i) the probability, that

=)

lies between #, and v, is

U
J e—mvﬂ e dt‘

1

e —
" o2

J e—mﬁ! ’UMd‘U
[t}
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P f o .
If f du 9&=%J’ du’ T
TR Q4w T (AU

then , is equally likely to Jie within or without the range from
i W 72 2 Ll o n 2
EE:&; A 1 Zm - (E Exi) to 12:&‘; + 8, \/ 1 Zef— (1 Zm;) .
T T oq o Ny ni n gy
With the phrase that has already been used, the breadth of
the 50 per cent. zone as determined by n observations is

——— A

[z, Ty O\
26"'\/;5 %x‘; —-(a%ﬂa’) . AN\ *

\

For the smaller values of n, the value of &, is givézn':‘bjy; the

following table: (&
8, NS

4416
8708 0
3249\ &
2920’
12687
V297
\gw\-f.dbiiéulnibr‘ggﬁ%rg_in
9 N 9213
lp\‘ 2104,
When » is large, 0,6£-6726/vn nearly.
38. It would gppear from the result just t?btained that, by
sufficiently ingréasing » the number of observations, the probable

diﬁ'erence"\b:éfﬁveen ;11 i:fx,; and the magnitude to be determined
£ ) 1 . ‘
cauld, &Qﬁl&de as small as desired. In arriving at this result,

it hasi however been assumed that the guantity o_bszierved, 18
.gisteptible of continuous variation. Now In fact this is never
\the case. What is taken down as the resalt of an D?Dscl'mt_wﬂ 18
always a rational number. A series of observations lell be
represented by a series of numbers, say 11-921, 11'937', 11 ?18,
which are written down to a certain decimal place, I8 this case
the third; and each observation is repre_sented by & certglr:
integral multiple of ‘001 In taking a reading, say 11’9]31, Wti?e
is implied is that the position of the pointer o mark on

scale is nearer to 11921 than to 11920 or 11492, the next
2

~T T v oE on py R
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two possible adjacent readings. In other words, regarded as a
measure of the magnitude, 11-921 and 11'921 + 8, where 8 is a
proper fraction not exceeding 3, are not fo be distinguished
between. It follows that the mean m of the readings and
m + 8, regarded as measures of the magnitude, are not to be
distinguished between; and this means that the part of m, which
extends beyond the third decimal place, 1s of no significance,
The determination arrived at for the magnitude must besan
integral multiple of -001. .
Hence,in taking each observation as an integer,it iS'i;D’l‘plh}itly
agsumed that the quantity to be determined is itself an’ integer

~

and that every error is an integer. N

~

nearly similar to Gauss's law is that, in ¥hich the probability
of an error » is sensibly

If the errors are all integers, the law of erfofAvhich is most

) R K7\
g DN
e N AV

The sum of the series, of which\this is the general term, for all
integral values of n excee@g Iu'n’il;y; but unless ¥ is very small,
the excessvigwextiresatlyrampbleg For instance, if N = 3 the excess
is Jess than 4 x 1078,

Now, assuminggthis law, if @, 2, ..., @, are the serieg of
observed integfalvalues of a magnitude, and if s 1s the true
ntegral valug)the probability of the set of observations is

W, 1z
N —1—,16_F?(8_$‘]2.
O (=N )
§ 14 % 1
N L E%-%:Su %’-‘«_‘f - £(2$£)2=82,
) the probability is
) 1 Rt
bL] e N
(N}

Whatever N may be, the greatest value of this for irrbegral
values of‘s is given by s=s/, where s is the nearest integer
to ¢;; while for & varying N, the greatest value is given by

235
=223 sy
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NOTE

The rule on p. 4 differs from that usually giver, rmainly as
regards the eondition of equal likelihood. This proviso is by
1008t writers put in the form—provided that all the » resnlts
are equally likely. It is cvident that, so far as the caleulation,
13 concerned, it 18 immaterial whether we say “the n resulb.s. fm’e\
equally likely ” or “the n results are assumed to be equally likely.”

It 18 not however the same thing to say “ a.ssuminé all the
n results to be equally likely” and “assuming eachl $wo of the
n results to be equally likely.” In the one case,Ehe property of
equal likelihood is predicated of the resu.lig'as s whale; and

in the other, of each pair of them. &

Suppose the rule to be modifiedsd-/'that the last clause
runs “provided all the N results are“assumed to be equally
likely.,” Consider the restricted \Imal subject to E\l;e furt'l};clar
limitation that congit ig.gatisfied. It has just N, possible
results ; and in Nfﬁ?ﬁlﬁ;@% 6 dondstion B is satisﬁed. . It is
not however possible to gayin this case that ’the_probablilby of
condition B being s ti{ﬁefi in the restricted trial is V. p/N 4. In
order that this ma']y\be true, the property of equal hkehhoo_d
must apply of phe/set of ¥, results as a whole. Does t._hls
necessarily folldw’as a logieal consequence f'rom the assnmption
that the Pngp}i:ty of equal likelihood a,ppl'les to the‘N .Iesult.s
as a wht{%&?' It can only do so, if there is some criterion for
distingiishing a set of results with the property of equal likeli-
hopdfrom a set which does not possess this property. In the
abgence of any such criterfon, it is not possible to say that the

}robabﬂity of condition B being satisfied at the regtricted tm_;]
Is V,p/N,; and therefore, from the modiﬁed”fonn of the rule, 1t
is impossible to deduce (p. 6) the formula (iii) of Chapter 1

Pe=PuappPa Y PuasPaxt o TPl
without further assumptions.

It must in fact be assumed that, for each condition 4, all the
N, results which satisfy condition 4 are equally likely.

Q"
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So far as setting up the necessary formul®, by which caleulable
probabilities can be determined, is concerned, the last clause of
the rule may be stated in either of the forms:—

(i) provided that each two of the N results are assumed to
be equally likely; or

(i) provided thab, for each condition 4, the N, results which
“satisfy condition 4 are assimed to be equally likely. N\

Hitherto, no criterion has ever been given for d1stingms\hmg
hetween a set of results, which have the property of equ@J hlkeli-
hood, and a set which has not, This is the true _]ustaﬁcﬁtion for
saying that “each two of the results are assumed\to‘be equally
likely” rather than “each two of the results a,liQ equally likely.”
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TABLE OF THE INTEGRAL J = ——

TABLE OF ERROR-INTEGRAL

v

for valuesof 2 =-1,2,..,, 29, 3.

x I &
1 1125 18
2 2270 17
3 -3986 1'8
4 -4284 19
5 5205 20
G 8039 21
7 6T78 CERY
8 YrwwadbrayliBEry
9 | resssS 24
10 \Q'é?' 2%
I\ .
11 )8802 28
kjﬁ»”? 8103 27
x'\wl )
}‘1-3 9340 28
14 ‘0523 29
15 0661 30

Q763
‘9838
ORGL
9928
9953,
"\\/
_agr0
N
NS 8051
or g

2593

.3

9996
D008
HoLa7
99992
59396

H5998

103
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On errors of observation: Camb. Phil. 86¢) Proc., vol. xxi
(1928), pp. 482-487.

AN
[Tn connection with this paper, Q@‘ﬁéu]t Mr R. A. Fisher,
Note on Dr Burnside’s recent paper on errors of obser-
vation, Camb. Phil. Soc. .Pmc.,‘.v‘@lz xxi (1923), pp. 655-658.]

On errers of observabion : @{,‘%&)l. xxil (1924), pp. 26-27.

The problems,of m;ygﬁ,fglﬁgnd conduetion of heat: b,
vol. xxil (1924), pp...{GTAIGS.

On the phrase f‘eqilja\[’ly probable”: 7., vol. xxi1 (1924), pp. 669
~671. B\
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. On apylntegral connected with the theory of probability:

Messoiger of Moth., vol. liii (1924), pp. 142-144.

&z} the approximate sum of selected terms from the multi-
“nomial expansion : ib., vol. liv (1925), pp. 189-192.
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