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NOTE.

When the editing of this volume was undertaken, pages 1-48 and 65-128
had been stersotyped, and so no alteration was made in them exeept to insert
the usual symbols for partial difforentiation. Some notes are given on these
pages at the ond of the volume on pages 306, 307. The following Arficles or



Note.

Examples were re-written or much revised or considerably inereased : Art. 186 ;
Ex. 8, p. 166 ; Bx. 0, p. 168; Art. 201 ; Art, 202 ; Art. 205 ; Art. 2065 Art. 207 ;
Art, 211; Hx. 15, p. 208; Ex, 17, p. 208; Ex. 18, p. 209; Ex. 19, p. 210
Ex. 20, p. 210; Art. 216 (on Unigue ‘Pernary form such that concomitants
are the same for Binary and derived Ternary quanties); Ex. 7, p. 237; Ex. 8,
- 238; Ex. 10, p. 239; Ex. 13, p. 241; Ark. 226; Art. 227; Art. 234 (on
the group of an equation, pp. 276, 277); Ex. 1, p. 278; Fx. 2, p. 279.

Minor alterations or additions were made on pp. 134, 143, 216, 217, 2‘&4&\
226, 254, 262, 267, 268, 269, 270, ¢

A section on Abelian equations has been added, pp. 266-305. t”\' N

& \/
M. W.4\FRY,
Biitor.
¢ 5}‘



CHAPTER XIII
o N\
N
DETERMINANTS, O\

127, Elementary Notions and Definitions, —Thls‘ ohapter
will be occupied with a diseussion of an 1mp05@nb class of
fnnetions which constantly present thLmSB]}N{S in analysis,
These functions possess remarkable propertiegy’by a knowledge
of which much simplification can be jintroduced into many
operations in both pure and applied{oiithematics.

The function a,6; + a;by, of the{ﬁmi‘ quantities

,..

al" 5[,

W W, dbr%hbjfgl y.org.in

is obtained by asmgmkg:bo ¢ and b, written in alphahetical order,
the suffixes 1, 2, and 3,1, corresponding to the two permutations
of the numbers I\2, and adding the two products so formed,
Similarly,, t];m function
a@m + ety + axbsty + @adas + tabicy + dabaty, (1)
of t}\ﬁﬁle quantities
@y, by o

’o

»\ @ 2P 62, '32’

a&, 53, 33)

is obtained by adding all the produets abe which can be formed
by assiguing to the letters {refained in their alphabetical order)
suffixes correspondiug to all the permutations of the numbers
1,2, 8. The whole expression might be represented by (abe),
or any other convenlenf notafion, from which all the terms
could be written down.

VoL, H. B



2 Determinants.

The notation (abed) might be employed to represent a
similar function of the 16 quantities a,, ., ¢, dy, 45, &c., con-
gisting of 24 terms, which can all be written down by the aid
of the 24 permutations of the numbers 1, 2, 8, 4.

And, in general, taking » lefters ¢, &, ¢, . . . I, we can write
down & gimilar function consisting of » (n - 1)(?3 2)....8.2.1
terms, this bemg the number of permutations of the fir st n num- \\
bers, 1,2, 3. ¢

Now the functmns above referred to, which are ofy Buch
frequent oocurrence in mathematical analysis, differ from fhose
just deseribed in one respect only, viz.: of the 1;'2\\3 A
(which is an even number) terms, half are aﬁoqte\& with posi-
tive, and half with negative signs, instead of baapg all positive,
ag in the expression written down on the pre&dmg page.

‘We shall now give some mstances\of the functions which
will be discussed in this chapter. They oceur most frequently
as the result of elimination fromf n.lihea,r equations, If, for

example, # and y b%‘?@ﬂ%@*%@ﬂ‘? o{hgequations
ax+ by = U,’ a4 by = 0,
Q)

the result s (@b, - aby = 0.
Again, the resu]ﬁ;?f eliminating , ¥, & from the equations
“\':'" a@ + by + 65 = 0,
“\ @ + boy + o2 = O,
\'\\ agp + by + o = 0,

is,.aéfﬁhe student will readily perceive by solving from two of
\'ﬂie ‘equations and substituting in the third,

tybats — bty + @byt — @bies + @ibier — ahaey = 0 (2)
and this function differs from (1) given cn the preceding page
only in having three of its terms negative, instead of having
the six terms positive.

Similarly, the process of elimination from four linear equa-
tions gives rise to a function of the sixteen quantities @, &, ¢



Elementary Notions and Definitions. 3

di, @ by, &c., which differs from the function above represented
by (abed) only in having twelve of its terms negative.

Expressions of the kind here deseribed are called Determi-
nants.* The notation by which they are usually represented was
first employed by Cauchy, and possesses many advantages in the
treatment of these expressions. The quantities of which the
function consists are arranged in a square between two verticak\\
lines. For example, the notation )

a b

25 bz x'\

W

7

s X Y

represents the determinant ab, — @br. v/
Similarly, the expression on the Ieft-hat%gide of equation (2)
is represented by the notation \\"z‘
N\
& b 01‘\'“ )
1153 %’aﬁ"f:é}.' )

wwrr.d E;g{%g Bra};y. rg.in

And, in general','@h\e determinant of the #* quantities
ay b, oo by az,.ﬁ({\&‘e., is represented by

Do b oo 4L
\‘ o boe . . . h

\;:‘ as b o . . - & (3)
Vi\ .
NN an by € - . . &

N By taking the » letters in alphabetical order, and assigning
to them suffixes corresponding to the n(n ~ 1}(n - 2) ... 3.2 1
‘permutations of the numbers 1,2, 3, ...n, all the terms of the
5,7 determinant can be written down. Half of the terms must
" receive positive, and half negative signs. In the next Article

% See Note A at the end of Vol. I1-
B2



4 Dreterminanis.

the rule will be given by which the positi ve and negative terms
are distinguished.

The individual letters ¢, by, €y, . .« @5, ... &e., of which a
determinant is composed, are called conséifuents, and by some
writers elements. Any series of consliluents such as a, &, ¢,
... h, arranged horizontally, form a row of the determinants
and any series such as @y, y a3y . . - dyy arrangoed vertipaﬁ}r,
form a column. The term Zine will sometimes be uked) to
express & Tow or colnmn indifferently. \ )

128. Rule with regard to Nigns.—It is.é:s?f&ent from
the preceding Article that each term of the dwé:términant will,
gince it contains all the letters, contain one constituent (and only
one) from every column; and will also, sine@the suffixes in each
term comprise all the numbers, contain\'o'ﬁe congtituent (and only
one) from every row. We may Bherefore regard the square
array (3) of Art. 127 as the gymbolical representation of a
function consisting in generallof # (n —1)(n —2) ... 3. 2. 1
ferms, comprising Eﬂ%b%%i% ‘B?%&’(ié’{sg%ich can be formed by
taking one constituen,(and one only from each row, and omne
constituent and omeyonly from each column. All that is
required to give ‘péﬂéct definiteness to the function is fo fix the
gign to be atlddhed to any particular term. Kor this purpose
the following two rules are to be observed :—

(1), Tke term by o o o ln, formed by the constituents svbuated
in thesdlagonal drawn from the lefi-hand top eorner to the vight-
ka?a}i ottom corner, is positive,

)" Thisis called the Zading or principal term. In it the suffixes
\ ) and letters both oecur in their natural order; and from it the
sign of any other ferm is obtained by the following rule :—

(2). The sign of aiy other term is positive or negaiive, according
as it containg among tls suffives an even or odd wumber of inversions
of order as compared with the suffizes of the leading term,

The letters are supposed to retain the alphabetical order,
and an “inversion” is sald to occur whenever any higher



Rule with regard to Signs, 5

number precedes a lower among the suffixes. In the term
asbierdy, for example, there are four inversions, the number 3
ceenrring before 1 and hefore 2, and 4 oceurring before 1 and
before 2. Similarly, @:d.cidier contains six imversions, as the
student will readily perceive. The following will be found to
be a useful modification of this rule:—.4 fransposition (or inter-,.
change) of two adjacent suffixes alters the sign of a ferm. For >
is easy to see that any such transposition is equivalent to' the
gain or loss of one inversion. No inversion, in faot,’"fn the
series is disturbed by the process, exoept such as Gp311ds on
the relative position of the two adjacent suffize’When com-
pared with one another. If before transposition’ these suffixcs
are in their natural order, one inversion\}¢ gained by the
process; but if not, one is lost. In the @iyingement 5342716,
for example, the interchange of 2 an@¥" introduces one addi-
tional inversion, the number being {thus inereased from eleven
to twelve. The sign of the correspondmg term in the deter-
minant is thelefore\al&a&ﬂdnfmnbm@ ong.in

It is easy now to gus'nfy the remark in Axt. 127, that a
doterminant centains &Q\equal number of positive and negative
terms. For, from (any term encther can be derived which
differs from ths, ﬁr\: only by the transposition of the last two
suffixes, and .Ehese are the only two ferms which agres in the
order of pefptation of the first # - 2 suffixes. All the terms,
therefore,Cean be arranged in pairs such that if the first is
pos.i@q . the second is negafive, and vice versa.

~ 4

e
”~

O Exsmpres,

1. What i the slgn of the term aabsesdsss in the determinant of the 5th order ?

The yusstion is, How many inversions of order oconr in 34231; or, How many
interchanges will change the order 12345 inlo 342517 Here, when 3 is inter-
changed with 2, and afterwards with 1, it eomes into the lending place, the order
becoming 31245. Again, the interchange in 31245 of 4 with 2, and afterwards
with 1, presents the order 34123, The interchauge of 2 with 1 gives the order
34215 ; and finally, the interchangs of 5 with 1 gives the required order 34251,
Tlus there are in all six Interchanges ; and therefore the required sign is positive,



6 Determinanis.

The general mede of proceeding may plainly be stated as followa :—Take the
figure which stands first In the required ovder, and move it from ils place in the
natuzal order 1234 . - . into the leading place, counting one displacement for each
figure possed over.  Take then the figure whieh stands second in the requived order,
and wove it from its places in the natural order into the second place; and soon. If
the number of displacements in this process be even, ths eign is positive; if it be
odd, the sign is negative. )

2. What is the sign of the term aabresdse) fige in the determinant of the 7th or’&Qs?

Iere two displacements bring 3 to the leading place; five displacemengs\then
brivg 7 to the second place ; four then living 6 to the third place; Lllreq.rhen"hr’ing
5 to the fourth place; the fgure Lis in iis place; and finally, une.(l’ispiucement
Dbrings 4 into thesixth place.  Thus there are in all fifteen displacm\}lék}ts ; and the
required sign is therefore negutive. o

¢*C
3. Write down all the terms of the determinant 8 .",\ i

Y

[i3] 51 €1 aT1 l
'

| a: bz oy da

N\
| a b3 e \%\
1 £

I oay Bs &y ‘fd‘;
The sixz permutations of suffixes i ;;‘-}[fch the fixure 1 oegurs firat aze
www.dbrattlibrary orglin

1234, 1243, 824, 1842, 1423, 1432

The &ix corresponding t ﬁng\.re, us the student will easily see by applying the
Rule (2}, as in the previ;:(s’ gxamples,

arhyrada Bt + mbiratds — arbacedy + a1bicady — arbuosda.

The other aig]xtéeﬁ terma, corresponding to the permutations in which the figures
2, 8, 4, respecli}'diy, stand first, are as foillows 1 —
AN
;\{.82510,@3 — aebioytly + axbsonds — aabacuds 4 abgendy — aabyerdha
‘\\w-l- ashroads = asbiesds + daboeady — @abeerds + aabyorde — axbatoin
& N 4 @ibroads — eabicods + abeoids — agbocady + aybatadh — asbsnda,
N\ , s :
2\ Show that sny interchange of two suffixes (the letters refaining their order)
\ / olters the sign of & term.

For, if there are m slements between the two whose suffixes are interchanged,
the proposed transposition can he effected by 2m + 1 trangpositions of adjacent
suffizes. By the aid of this proposition the sign of 2 lerm can usually be found
by & smaller number of trenspositions then is required in the general method
deseribed in Bx. 1. Thus, in Ex. 2, five transpositions ave enongh to fix the sign
of the term, viz.:; first, of 1 with 8, and then in sucesssion 1 with 6, 1 with 4,
1 with 5, snd finally 2 with 7. The determination of the ¢mallest number of
transpositions necessary for this purpose is easily shown to depind en an elementary
proposition in the theory of substitutions. (Compare Chap. XX. of this Vel.)
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5. Show that any interchange of two leiters, the order of the suffixes being
retained, alters the sign of a term.

Far, if two letters be interchanged, and the corresponding elements then inter-
ehanged, the entire process is equivalent to an inferchange of suffixes. If, for
example, in @ifoesdses, & and £ be interchanged, we derive aeae3d,85, which is equal
to wibgesdyes 3 and this is derived from the given term by transposition of the sufizes
2 and 5.

6. Show that if any two adjacent figures be moved t.orrether over any numbb\\
m of figures, the sign is unaltered.

For if they be moved separately, the whele process is equivalent to » mcrwament
over 2m figures. {

o/

7. Determine the sign to be alteched to the second diago al “term, viz.

b1 0n.2 « . o Fodi, I the determinant of the nth ovder, ¢4
Ilere the number of inversions of order Is clearly ¢ x\
=1
-+ m—-2)+{n-8+. ..+2+1\ ,—(—)
nin-1} \ N\ e
Hence the required sign s (- 1) * . AN/

%

129, In the propositions of, ‘the present and following
Articles are contained e tma)sﬂ{hnpqrfﬁng: ilementary properties
* of determinants which, by'the aid of Cauchy’s notation above
deseribed, render the 'anployment of these functions of such
practical admntag&‘\.f

Pror. I.——.fj," duny two rows, or any two eolumns, of ¢ defermi-
nant be ﬁet\q-a*c?!tr}zged, the sign of the determingnt is changed.

This follows at once from the mode of formation (Rule (2},
Axrp{128); for an interchange of two rows is the same as an

,j{lft.é’rchange of two suffixes, and an interchange of two ecolumng

\'\; is the same as an interchange of two letters; so that in either

case the sign of every term of the determinant is ehanged.
(See Exs. 4 and 5, Art. 128)

By aid of this proposition the rule for obfaining the sign of
any term may be stated in a form which is usually more
convenient for practical purposes than that already given. It
will readily be perceived that the gencral mode of procedure
explained in Ex. 1, Art. 128, is equivalent to the following



8 Determinanis,

Bring by movements of rows (or columns) the constituents of the
term whose sign i required info the position of the leading dingonal.
The sign of the term will be positive or negalive according as the
number of displacements is even or odd,

s &\
Examrrr. \\
What sign is to be attached to the term Afnw in the determinant. ~"’f S
e b e =z A -
i e« B v g K7, \d
2 2 &
I m n ¢ )
i A vy 0
-1 - * \./

; Here a movement of the fourth row over three {mws {i. . three displacements)

! brings A into the leading place. One dlslﬂ\b@meut of the original second row
npwards brings 8 into the required place, 1u~the disgonal tevm. And one further

g displacement of the oriyinal thied TOW, u‘pwurﬂs effects the required arrsngement,

i : bringing ASnz into the diagonal plagcé. \ Thus the number of displacements being
' odd, the requived sign 1§ :?i“é@{n&l brau“bl ary.org.n

. ’
| 130. Pror. II.- \ﬁ’}aenewr, n any deferminant, two rows or
two columns are u&‘s{\mcaZ the deferminant vanishes,

For, by Fuop. I, the interchange of thess two lines ought
to change’tlfe’ sign of the determinant A ; but the interchange
! of twq\’i@ﬂe’ﬁtical rows or columns cannot alter the determinant
Ny in a}\{j&%vay ; henee A=—-4, or A =0,

i \" 131. Pror. IIL.—TVe value of a deferminant is not altered if
I!.i \m/. “ﬁze rows be written as coluwmns, and the colwmns as rows.

|!  For all the terms, formed by taking one constitwent from
|55 each row and one from each column, are plainly the same in
i value in both oasesj the prineipal term is identically the same;
lili. and to determine the sign of any other term (by Prop. I.) the
!:=. number of digplacements of rows necessary to bring it into the
B leading diasgonal in the first case is the same as the number of
displacements of columns necessary in the second case.



Ezamples. 9

EsanmpLE.

@ b oo A laiﬂzasa.;l

ag bz ez dp ‘515353541

l

@3 153 &5 ds

S

0 & &y \
a45404dai|d1dz!f_sd¢ K
R\
Here the sign of any term, e.g. @zbieidfz, 18 the same In both deBrmluﬂntém}FOI‘
three displacements of rows are required 1o bring this term Inty the lea wgi:oaitlon
in the frst determinant; and the same numbar of displacements {obyfolumus is
required to bring the same constiluents into the leading posifien,ifi the seeond
deteriminant. AN

\J
1392, Prop. IV.—If every constituent w{riny line be multiplied

by the same factor, the determinant 18 m}@phed by that factor,

For every term of the determm&nt must contain one, and
only one, constituent from g.glyagf:ﬁ or anry golumn,

AR ATy .o

Cor. 1. If the mnstitnqnts in any line differ only by the
same factor from the, a‘t»n tituents in any parallel line, the
determinant vamshe{\

Cor. 2. If t&&aﬂlgns of all the constituents in any line be
changed, the\s;;@n of the determinant iz changed. For this is
equwalp\t‘ttr multiplying by the factor — 1.

QO

a3
LA 3

S
N

\,.\/5 ’\, - lxarLes,
) ;
kan Boo a broe
1 kas b3 ¢ |=A | a3 by e ¢
kag 53 £3 a8 5'3 =1
g1 fHm) | | o1 o] &2
2. B1 mB1 Az t=wm| B B Bz |=0.
Y1OWYL YR [ m o ¥

4

N

x



10 Determinanits.

3. Bhow that the following determivant vanishes :—
1 5 2
B 7 3

L - I N
-]
-
.

s &\
4. Prove the identity \\
be a af 1 o g° SLON

\s.::
ew B2 =] 1 2 8 [. O

27

2 2 «"
ah ¢ ¢ 1 o o8 ’\.

Represent the first determinant by A, and multiply the row§\bs @y b, 5 reapec-
tively. We have {hen \w
abe @t o \

\/
aboa =| abs B B ’;2\

abe ¢ }\i\’

and, dividing the first column by abe, the i‘esult follows.
6. Prove the identityrw. dbraulrb);a‘ry org.in

ByF w o ‘s& I & & ot
¥da B\% g 1 8 g g
5&{\\7}7 7 177
ZaB'ySS“ & | 1 8 3 §
6. Prove ‘\
.\w 2 1 -7 1 1 7
\i\” 4 -3 8 |=2f{2 3 8§ |
O
,\ 6 5 -9 3 5 9
Change all the signs of the second row, and afterwards of the third eolumn.
”\/
7. Prove
a 8 ¥ 1 1 1
S Jap. '8y & 'af8
a Y =5 | B fre B
a  F Y By Bya 2B

This is easily proved by multiplying the eolumns of the firat determinant by
Bv, v&, af, respectively ; and then dividing the first row by =fy.

It is evident that a similar process may be employed to reduce any determinant
to one in which all the constitnents of any selected row or eolumn shall be units.
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8. Heduce the following dsferminant to ong in which the first row shall consist
of umits : —

4 % & 10
1 1 L 3
7 8 ¢ &
o 2 5 8

Since 20 is the lenst common multiple of 4, 2, 5, 10, it is suficient to muitiply, ™\
the columns in order by &, 10, 4, 2 we thua obiain ) \\ :
%0 20 20 20 )
i"\\ N
1 5 10 24 6 \
A= —m— . N
B.10.4.2| 35 3p ¢ 10 x,}\\ 3
&
0 20 20 18 )
N\
Taking oat the multiplier 20 from thae first Tow, 5 from t\hf third row, and 4 from
the fourth row, we get finally "l
1 1 1 A
AN
5 10 24\
&= R\
7. g0 2 | .
wandw dbl'gujtibral y.org.in
. 0 %6 B T f
9. Prove the identity ~ "
1 1M
2. &\ }
n\\ﬂ’ v |=@-vr-ala-8-
;'jz g
Sinee it 8 wgi’ebfual to ¥, two enlumns would become identical, 8 - y must be
o factor in tfeMdélerminant. Similuly, y—« and e -4 must be factors in if.

Tfence tl\%“)d’uct of the three differences can differ by a numerical factor only
from L}:(\ tue of the determiusnt, since both functions are of the third degree in
o, BRW; and by eoraparing the term 8y° we obeerve that this factor is + 1.

£ \15 Prove similarly the identity

\; 1 1 1 1

e g g |STOTPEDOmAE-BEHO-
& B P B
It is evident that 2 similar proof shows in geners! that tha value of the deter-
minant of this form, constituted by the = quantities &, £,y ... A is the product of
the Ln {n — 1) ditferences which ean be formed with these n unn.‘lI.tIea
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133. Minor Beterminants, Pelinitions.— When in a
determinant any number of rows and the same number of
columns are suppressed, the determinant formed by the
remaining eonstituents {maiutaining their relative positions) is
called a minor determingnt.

1f one row and one columu only be suppressed, the corre:
sponding minor is called o firsé minor. 1f two rows and two
columns be suppressed, the minor is called a second mm(p‘. Jand
8o on. The suppressed rows and columns lave eomm@n con-
stitnents forming a determinant ; and the minor }‘mh remains
is sald fo he complementary to this determiu 1‘(,\ The minor
complementary to the leading constituent g is billed the leading
first sminor, and its leading first minor agaiiyis the lading second
minor of the original determinant. ¢*

It is usual to denote a determiti@it’ in genoral by A. We
shall denote by A, the first minox obtmned by suppressing in A
the row and eolumn which conta"n any constituent a; by Aa,s
the second mmo‘t"ﬁ"ﬁ’%sﬁhﬁﬁ‘ld?ﬁu‘\f) t&iTng the two rows and two
eolumns which confain o and £ and so on. Thus &, xepre-
sents the leading ﬁlst&mnor, and A, s, Or A, s, the leadmg
second minor. ¢\

The determmant A, formed by the constituents @, bi, ¢, &o.,

is often denoted ‘for brevity by placing the leading term within
brackets t{s foliows -

’\ ) A= (albaca ..... J,,).
R\
“( * The notation S + @biey . ., 1, is also used to represent A ;
) this expressing its constltutmn as congisting of the sum of &
number of terms (with their proper signs attached) formed by
taking all possible permutations of the a suffixes.

134. Bevelopment of Beterminants.— Since every term
of any determinant contains one, and only ons, constituent from
each row and from each column, it follows that A is @ Fnear and
homogeneous function of the constituents of any one row or any one




Development of Determinants. 13

column. 'We may therefore write
A=md, + ad + agds + &o,
A= bDB + BB+ BBy + &o.;
or, again, A=A + 5B+l + &e,
A =t dy + 0 Ba + 60 + &e, .
The student, on reforring to Ex. 3, Art. 128, will ehserve
that the determinant of the fourth order there written at length N\

is constituted in the way hore described, namely, )
by € d A b o ds | by erd;
A=t | by cath |+ @ A O I do 1+, ;.l s“'cs ds

| b o de by e ds boo 440" 1 e dh

We proceed to show that in the generaledse, writing A in
the form LV
A= ady + andy + agd; ﬁé‘; + iy,

\/

the coofficients A, A» Aa &, axh determinants of the order
n-1. www.dbl;a\t:x‘l'i‘l;;‘al'y_org_in

Tn effecting all the permutafions of the suffixes 1,2,3....n,
suppose first 1to remain,in the leading place, as in the example
referred fo ; we then 9@1:}:111 1.2.3.... (n—1) terms which have

a, 8s & factor, and X\
’ :"‘ﬁ1A1=ﬁ12-_Fb;,cs...Zn;

lienee %
"\x;\’...‘ by @
Q7 by 3 ... &
.14\1. Stho.. fy, = '
R .
~\/ by €p... In \

\';nd this determinant is the minor corresponding to the consti-
tuent @, or 4; = Aa.
To find the value of A, we bring @ into the leading place
by one displacement of rows. This changes the sign of A, 80
that we obtain s = — Ag, Le. 4, = the ninor correspending {g
#, with its sign changed. Again, bringing @, to the leading
place by two displacements, we have Ay— A, ; and 80 o0
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Thus we conclude that, in general,
A= €E1A51 - fsza, + ﬁ"zAaa - ﬂ'..j{la‘ + &C.

Similarly, we ean expand A in terms of the constituents of
any other column, or any row. For example,

A =mAq, - &y + e, - &o. “
AN

If it be required to obtain the proper sign to be attachdd to
the minor which multiplies any constitnent in the ei‘i)a;ﬁed
form, we have anly to consider how many displaceméptg wonld
bring that constituent to the leading place. TFor jex\drﬁple, sup-
pose the determinant (a,b.0.des) is expandednin terms of its
fourth column, and that it is required to find what sign is to be
attached to d;A;. Heretwo displaeen}eﬁ@'hpwards, and after-
wards three to the left, will bring d.i{nthﬁ leading place ; hence
the sign is negative. This rule may _bé stated simply as follows:
Proceed from a, fo the conshmeut"emder consideration along the top

www dbraulibra
row, and down the column co an%ng the eonstituent ; the number
of letlers passed over before rtmcfewg the constituent will decide the
sign to be attached togfhe minor. In the example just given,
beginning ab a,, ,wé_sount a, by, ¢, dy, di, 1. 6. five; and this
number being odd he required sign is negative,

It will be found convenient to retain both notations here em-
ployed for thé development of a determinant, The expansion in
terms off ti}e minors, with signs alternately pesitive and negative,
is us@ﬁ in calenlating the value of a determinant by successive
rgl‘u})tions to determinants of lower degree. For some purposes,

(s will appear in the Articles which follow, it is more convenient

o’

to employ the notation first given, in which the signs are all
positive (whatever the row or column under consideration)
and the coefficient (or co-factor) of any constituent represented
by the correspending capital letter. By substifuting for.the
capital letter the corresponding minor with the proper sign,
determined in the manner above explained, the latter notation
is changed into the former.
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ExAMPLES.
L. s o oa
Bs e oo h o
g B3 2 |= @ —az + a3
53 [ 53 fa b2 ¢
s By o

= aylooy — s1B302 — mabies + azbuer + asbiey — asbuer.
{Compare (2}, Art. 127.}

2. s <\
) b f g Ay N
Ad fi=a - P ‘ 5 7 O\

] u::
g f ¢ foe z“\\
—abc+2fgk—aﬁ by® — oh®, %\

3. Expand the determinant of the fourth order in terms of the, m{\stm‘uents of
the fourth row. \\
A= - mds, + bias, — cide, + didg N
oo & | @ e d1 a & \d} @ oo

w—ay| b oo dr |+b| @ e & ]-a ae\z{ d& [+di] m B oen |
2 d3 6a d3 \&a by s az B2 3

When the determinants of tha thi e thip gbﬁfr““ ‘are exp: anded, this will give the
expression of Ex. 3, Art, 128, as the E’ wﬁyeusﬁy verify.

4. 3 2 4
& "l 2 4 2 4
T 6 1 =$\ _7’ + 5 l
) 38 38 g 1
B 3 J
\.-3(48-3) 7(16 — 13) + 6 (2 — 24)
,\.} =_3.
5 Find the Valua of the determinant
D 8 71 2 20
\\"' 3 1 4 T
R\ A= .
AN 5 0 11 0
{\"

\”/\; Vo 8 1 0o 6
Expanding In terms of the third row, sinee two of the constituents in that row
vanish, we bave without difficulty

T 2 20 8 1 20
A=5] 1 4 T |+11] 8 1 T s

[1 o ¢ 3 1 &
and expanding the two determinants of the thixd ordor, we find A = 2188,
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6. Expand 0 ¢ i d
¢ a a e
b a o f
d [ f 4] |

The expansion {a a?d? + B2t 4 otf2 — beaf — 2eqfd — 2ubde; the given deter-
minant is therefore equal to the product of the four faclora

ST T - T, \\
S TV =Sy o SRV o B VTRV A \\’“’

a result which is sometimes useful.

o,r

7. Prove p ~'\‘ !
1 a B 7 \&,
| - 1 ')l" i \v’
i =14 o+ Bk 4 a NG Y {aw + BF + ¥ F
| -8 —v 1 ¢ '\\/
E LY
— 7 g -« 1 "N\
8. Expand - & ”\}\\\ d |

/

www.dbrau l%b];?lay org in

dv‘“‘d - L
~X
"‘\d' ¢ & —=a

Ans. at+ b+t -’gti?\- 322 o 207 — Dath? — Datidt — 2D — DetdE —Babed.
X & A .
9. Prove the !'oi\é\iug identity, and expand the determivants:—

1 1 1 | & & ¥ 4
0 £ 2 x 0 $ ¥
z*’/ o & - ¥ 8 "0 oz ’
R ¥ xz/// 0 r ¥y z 0
™ dns, ot gt ot - Jytad — 2%a® - DRy

10. Find tho value of the determinant
@ A ¢ A

Aob &
g F e ¥

A M ¥ 0

sxpand firet in terms of the last row or last columm, and then each of the
determinunts of the third order in terms of &, u, v

Ani. ~ a={de—F 2);\21—(“:3«— )pzf—{ab—ki)y'*-i-?(gk_-—r?_f)#v
+2(ﬁf——5g)n+2{fa—oh}r\#.
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135, Lanlace's Development of a Beterminant.—
The expansion explained in the preceding Article is included
in s more general mode of development given by Laplace.
In place of expanding the determinant as a linear functicn
of the constitnents of any line, we now expand it as a linear
function of the minors comprised in any number of lines.

Congider, for example, the first two columns {(a, b} of any .

determinant ; and let all possible determinants of the second'\\
order (ay, by}, obtained by faking any two rows of these t(we
columns, be formed. Let the minor formed by suppreksing
the a, and B, lines be represented by Apg; then ’t@}:@leter-
minant can be expanded in the form 2 # (ab,) Agyy where
each term is the product of two complementary déterminants
(see Art. 133). To prove this, we observe thab every term of
the determinant must contain one eonstitue:;h‘ Trom the column
@ and one from the column 4 Suppedé a'term to contain the
factor a,d,; there must then (inter@mfpging pand g) be anothor
term differing only inihe sghgil.fhe.dpigrebange of these
snffixes; hence, the determingithcan be expanded in the form
S (tpbhy) Apr gy and . Ay ¢ 18 clearly the sum of all the terms
which can be obtained,,{g} permuting in every possible way
the n - 2 suffixes of’\i}a«é letters ¢, d, e, &c., viz. + Ag,,, the
sign being detexmiiped in any particular instance by the rule
of Art. 128, Phis reasoning can easily be extended to the
goneral casg.\:Let any nimber p of columns be taken, and all
possible, Migors formed by taking p rows of these columns.
Each &1\ hese minors is to be then multiplied by the comple-
menbary minor, and the determinant expressed as the sum of

osli-such products with their proper sigus.

N ExamnrLEs.

1. Expand the determinant (méscads) in terma of the minors of the second order

formed from the fivst two columns.
Employing the braclet notation, we can wiite down the result as followg pmm

(a;bg_}l_{qﬁ) — (@1da) (eade) + (@ady) {cadfa) + {azba) (e1cks) — (nz.f)q.)l {erdls) + {@sbu) (ereke) ;

where the sign {o be atlached to any produetis determined by moving the two rows
involved in the first factor into the pusitions of Arst and second row. Thus, for

VOL. T, C

- .
v
e
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example, since three displacements are required to move the second and fonrth rows
inte these positions, the sign of the produst (aha) {e1da) i negative,

. Expand similarly the determinent {«ibaeadyes).

Az, (fq&g} (L‘;;tf.;e‘ﬁ) — ((313.'3) {cza\eg) + (:1[54) (ﬂzd;;e,-,) _ (‘3155} {r::dmj
+ (@ada) (e1daes] — (e2ba) (o1dses) + (aebs} (mrdaen) + (asy) (erdty)
~ (asbs} (160} + (@shy) (erddaea). :

-
\\9,/_ 3. Prove the ideatity )
a1 Moo d1 & N R \\
az b 02 dy ez S . "\;;. )
’ M b a A
a3 by o5 da &5 fs ~
=| @ & @ B e
O 6 0 a B om ‘:{&
ay by ea LN Es Bz 7
0 0 0 wr £z ra QS

0 0 0 ay B 7 P\ y. _
This appeurs by expanding the dptermi\mﬁ;\i% terma of the minors formed from
thoe first three colummns, for it is evident thi\ul}'these minots vanich (having one row
al least of ciphers) exeept one, viz. albzéa)‘
In general, 1Wd}5§€a@ir@'eﬂéb§&§w xﬂ]‘;gtb'&t. if n determinant of the 2mth order
\g:ﬂ { eontains in any position & squars,| of«ne ciphers, it can be expressed as the produot
: of two determinznts of the i wider.
4. Expand the determms{nt

:..\\ A g A N
¢ L\
L\ Ao g
PR g F o v ¢
PN A 0 o
L > AL F
x:\bt’
\Vv L L I
@a‘ﬁrers of a, B, v, where
"‘:;’, a=pf— Wy, B=vA = A, yaax - A
AN .
~\J Ans. aw® + 58+ oy® + 2By + 29ya + 2haB.

8. Verify the development of the present Article by showing that it givesin the
general case the proper number of terma.

Consider the first r columns of a determinant of the »™ order, The number o
minors formed from these is equal to the number of combinations of » things takes
r together.  This number multiplied by 1.2.3 ... » (the number of terms in eacl
miner), and 1.2, 3 ... % — # {the nuniber of terms in each complementary miner)
will be found to give 1. 3.8 .., %, viz. the number of terms in the determinant.
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*-136. Development of a Peterminant in FProducts
of the leading Constitucuts.—In this end the next fol-
lowing Articles will be explained two additional modes of
development which will be found useful in the expansion of
cortain determinants of special form. The application which
follows will be sufficient to show how any determinsnt may
be expanded in products of the leading constitnents—

Tt is required to expand the detorminant of the fourth order

A .31 £ & & -

ax B o \ \V
A= s XY

23 63 0 Cis xo\\ :

24 54 [ b ' X " '\ v

according to the products of 4, B, ¢, D, In exder to give pfdm.inanne to the
leading constitueuts, we have here replaced a, bz, €3, aT% 'IQ\.ZI, A, ¢, . When
the expunsion is effected, it je plain that the result nn}a\f: Yo/of the form

A= Ay + 3ad £ 3NAE {\\\Z&CD,

where Ap consists of all the terms in which na‘Ieaciiilg constituent ocours; Zad is
the aum of ull the terms in whitlh wndhﬁg;.gﬂﬂ}ir&ebcmgj,mnta oceurs; ZAAB g
the sum of all in which the produet of o Pair of the leading cunstituents is found ;
and 4B0H, the leading term, is the profuct of all these constituents. It will be
chserved thatthe expansion hers tht,en contains ne terms of the form A" A B¢} and
it is evident, in general, thut,nhg:\expunded determinaut ean contain no terms in
which products of ail the m&@ng constituents but one oceur, since the ecefficient
of auy such product is the réaining dirgonal constitueut. It omly rermaing to seo
what is the form of Agpgnd of the wndetermined coofficienis A, 4, - - - Ay .. Ko
Putting 4, BW, all equal to gero in the identity above written, we have

{.{{'\ 0 ho e d
'\\w. az 0 es 4z
M\ Apg = .
y ”\’ \ ) & 1] s
\; 1 oy &y ¢ 5

/
Again, to oblain A, let B, €, D be made equal Lo zero. The coefficient of 4 is
clearly the delenminant :

(] o2 dy
bs 0 A |3
By [ o

the coeficient of B is similarly obtained by replacing 4, €, D each by zevo in the
c?
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\/:

igplacements into theso positions.
3 to write the detorminant under cons
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minar 4 AN ertey da B sgn] oo e wldiin A let (rand D be Teoda g6
the corflivchonl of L3 op. e toeslo g Coietvinirnnt is [1]uittl}' the zecond wipor

{1 |
9] [

Tle crefliviet of any wler 3y

en s cltadnd inoa similar manner, Finally
E

the expan-ion ol 4 iy b woit e i the oo

9] Iy €1 oy |r
iy \] &y o i ':‘:ﬁ
. “‘\ o
d5 by 0 ofs i O
o 5 o 0 N .
0 o 0 ¢ I 0 5;’\& 0 b ﬂ..
FA Ll 0 s a b & w0 a0 g 3D ®0a
|5;¢'40 aiqol:o\w',a,o o by O
ra
C0 ey | "0 Lo ead "\.\ O d 0 2 0 i
v AR e + AT \k\f;('| + R0 + 00
|f~t0| i dg O lﬁ;gul' ag 0 ay Q “ﬂp
+ ABCE

www.dbraulib ra)rytﬁl‘ g.in

A determinant whose leading~eohstituents all vanish lias beon called sero-asisl

The result just obaine muyfﬁé stuted as follows :—dny determinant may le o
panded in produets aof the,

Dugling vonstifuents, the co-fueloy of every produet in the
result leing o sero-axigl Welbrninant.

137, Exiné'b‘\n:i;pnn of a Determinant in Products in
Fairs ot""tjye Constituents of
In whabfpﬂows wo take tho first
in teraﬁé“ﬁ
51 }:}éi}t,

@ Bow and Column,—
vow and first column as those
1 which the expausion is required.  This is evidently
since any other row and column may be brought by
It will be found convenient
ideration in the form

&% a 3 5 .
a @ b g

|
E

B oa b o6 . |
')”aabac’f;'
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Tet this be denoted by A’, and its leading first minor
{tdses .. ) by the usual notation A.  The determinant A" may
be said to be derived from A by Bordering it, horvizontally with
the constituents a,, @, B, 7, . - - » and vertically with the con-
stituents @, o, B, ¥ . .. When A" is expanded, all the terms
which contain a, are included in g,A. In addition fo this, the
expansion will consist of the product of every other constifuent
of the first column by every othor constituent of the first row,

every such product of two being multiplied by its proper factor(:. )

What this factor is in the case of any produet is easily sefn)
Tet the co-factors of @y, By €1 + « - Gay by .« &0, in the gxpan-
sion of A be Ay, By, .. » Aoy By .o+, according to the/mptation
explained in Art. 134. It is plain that the factor wp}bh meulti-
plies any product, for example a«’, in the expan{iqn of A’,1s the
came as the factor which multiplies @ with &80 changed, viz.
— A, ; similarly the factor which muitiplies@ is the factor with
sign changed of a,by, viz. - Di; and so.0m” To obtain the factor

of any such produet, thwwﬂdb}m@p{%ﬁﬁgﬁﬁke JSourth consti- -

tuent completing the rectangle fb?:med ‘by the leading term @, and
the tiwo constitucnts which cgaféf‘:iﬂto the product : the reguired
Factor 18 obtained by su-bs.f.{f;b-'\z‘&rg\ for the constituent of A so found
the eorresponding capiteileiier with the neqative sign. It appears
therafore finally that the expansion of A" may be wrtten in the

following form i~

A"%’@A - A,an’ — B 3a" - Oyad ~ ...
{\\:“} - AQ(IB’ - BQ}BB!_ 037}3’-' PRI
R\ ~dsay = B3y - Oy’ — - -

\"\; - &e.
Examples of the utility of this mode of expansion will be
found under a subscquent Arlicle.

138. Addition of Heterminants. Prop. V.—If every
constituent in any liie ean be rvesolved dito the sum of fwo others,
the determinant can be vesolped into the sum of two others.
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Suppose the constituents of the first column to be a, + «

@2 + ¢y, 45+ a5, &e, Bubstituting these in the expansion of:
Art. 134, we have

A=(m+ea) di+ (@t e) Ao+ (a3+a) 4, + &o.

= A @ds+ asds+ .. &c. tad, + agds + ands+ &0y

or, .\\\
| a4+ o b| ¢ .. &y bl £1 . . 151 61 cl,a‘.’
28
. "'Q
&y + ag bg [ . rfg E)g |22 oy bg :‘”B.g .. |-
— + ‘b". N/ ,
iy + 63 €3 .. Ty bg [ oy 4 i“' 03 .
7 |
1 / !
!'. ‘.l[.\\ o e v

which proves the proposition.

1f a second column consistz of the:}um of two others, it is
eacily seen, by first resolving wit \v;efereuw to one column, and
afterwards with reference to thb ‘other, that tlie determinant

can be rosolv%@!w&ltmlﬁpﬁli@g %?IH others, For example, the

determinant

a'l"‘ﬁ ﬂ1 b, + 61 ¢ |
R\
’ &"gg + ag z)g + ;33 4]
.‘\ ﬂa'}’ﬂ'; bg"i'ﬁa i)

L

is {in the" :)JétatiOU of Art. 133) equal to the sum of the four
dPtermhants

\” (arbaes) + (aibaes) + (@,f3:00) + (@13205)s

\* Bimilarly it follows that if each of the constitnents of one
V " column consists of the algebraical sum of any number of terms,
the determinant can be resolved into & corresponding number of
determinants. For example—

‘a1-a1+a’1 b o

4

[ m & 01[[&1 [ arlblcll

]{'1'-2—“24-'“!2 by 1= ta by e -
|

=51 bg &y |+ ﬂ',’g bg [ ’-
| a-azta’s ba € | s b6 ‘

03 és 08 ﬂ’s bs i
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And, in general, if one colnmn consists of thé algebraie sum of
m others, a second column of the sum of others, a third of the
sum of p others, &o., the deferminant can be resolved info the
sum of mup . .. , &o., others.

Similar 1e%ults plainly hold with regard to the rows, which
may be substituted for columns in the proof just given.

189. Prop. VL.—IF the constituenis qf one line are equal 10, A
the sums of the corresponding constifuents of the other lines muiﬁa\
nlied by constant factors, the determinant vantshes. :’. )

For it can then be resolved into the sum of a num~‘ner of
determinants which separately vanish. For exfimp{si

ma, + nb, @ b a @ b X E} a b
g + #by @y b j=m| 2 @ 6, -1@ b, az byl
Doy + nby s by d; O \b\, ‘ by a5 by

and each of the latter determmants %ramshes (Art. 130).

140. Prop. VIL- W&@MIM ysomgdkanged when to each
constifuent of any row or gukgﬂm are added those of several other
rots or colunng nmé’tz_pi@ed\reapem‘ﬂeiy by eonstant faciors.

For when the dgter\mm ant is resolved into the sum of others,
as in Art. 138, the eterminants in which the added lines ogear
all vanish, smee 3ach of them mnst, when the constant factor is

removed, c\oy}am two identieal lines, Thus, for example,
$ ¢

\‘ 4 b o a; +mb, + ey By €
'\

R\ 2 Lo =] mimhrne b &}
::\" iy 53 Oy da + mﬁ;., + ey bg LY

/ tor when the second determinant is expressed as the sum of
three others, the two arising from the added columns vanish
identically (Art. 139).

"The proposition of the present Artiele supplies in practice
one of the most ussful properties in the evajuation of deter-

minants.
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Exanrres.
1. Bhow that the following determinant vanishes :——
Bty 2 i

¥+ o B 1.

e+ B ¥ 1

Adding the constituents of the second column to those of the tirst, wo be}taim B
| ot &+ 8+ v as a factor, and two eolumns then become identical. N
| 2. Find the value of the detevuinant

W)
R 3
w4
1 2 4 \ ¢

i 2 3 Ti. Ry
&

: 3 4 10 ] o) ,\

| Bubtracting the constituents of the ijrst colun{&"from those of the second, and

‘ : three times the constituents of the first colurmugfedm those of the third, we obtain
B &)
1 IAN1
O |

2 oN° 1 f ,
R }

!

‘5
3N 1
. W

- . a 3 R - :
which vanishes identically, OB
\

] -1 1 1 {\ -1 1 1 1 ]
02 2]
1_1:.\\'1 4 0 2 2 .
A\ = =—-12 0 2|=-18.
1 A1 1 0 2 0 2
P 2 2 ¢
A 1-1 0 2 2 0

A, . .
ngé{'ﬁe first transfovmation is obtained by adding in succession the constituenis
of &Qa”ﬁmt row to those of the sevond, third, and fourth,
"\

ST I A VR A TR

710 -10
1 10

13 15 10 {=3113 15 10 {=8) 13 —24 18 | =3

24 16
3 9 &6 132[100

www,dbrauljbrary.ol;ggmlé — 24} = — 240,

Heva the second transformation is obtained b ¥ subtraciing three times the first
column from the second, and twice the first from the third. In examples of this
kind, attempte should he made to reduce (o zero ali the coustituents except one in
some row or eolumn, in which case the ealewlation reduces to that of a determi-
nant of lower order.  This can always be done by red ucing any one line to uaits, as
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in Ex. 7, Art. 132; but, in general, it can be effected more reedily by direet addi-
tions or subtractions, as in the present instance.

5. 7-2 0 & 7T-2 0 B
19 -2 17

-2 6 -2 2 13 6 -2 17
: = =2 -7 & -2.

0 -2 & 3 -7 0 5 -2
12 3 9

62 3 4 12 0 3 9

The first transformation is obtained by adding to the second row threc times the,

~

first, subtracting the firet from the third row, and adding the first to the fourth \

row. The reduced determinant is easily caleulated by subtraciing four tmleszthe
second columan from the fivst, and three times the second column from tha“ﬁnrd

Thus ~A
19 -2 17 27 -2 23 3
7 (23
2 -7 6 —2|=2{-27T 5 —17}==6 \‘ =— 972
- 27 — 17
12 3 9 ¢ 3 0
6. Calculate the determinant 2t t\\"

1 15 14 \3\
12 6 z\\s

wwrBar. db‘lﬂauhﬂﬂlar‘y Q)l g.in
Y2 18

18 @

The first sixteen natural numh%rl;aré arranged here in what is called a *“ magic
square,” £.e. the sum of all th«s\ﬁg ¢s it any row or in any column is eonstant.
In general, for & square n{xe\ﬁmt #® numbers, thia sum is s (»*4 1). Determi-
nants of this kind ean s ut dree reduced one degres. Here, adding the last three
eolumns to the first, aud,atlbtractmg the last row frum each of the others, we have

115 14 \4’

o 12 12 —1%
1 1 -1
1 i63 a9 0 3 5-1
A =34 =34 : ——six12 |3 5 -7
Q o1 5 0 7 9-11 .
7 —-11
\.1 3 2 16 1 3 2 18 .

},d subtracting the sceond row from the last row, it1s evident that the reduced

faterminant vanishes ; hemce & = 0.
7. OCaleulate the determinant formed by the first nine natural numbers arranged
in & magic square:

4 9 2
38 &5 T
g8 1 g

Ans, 360,



&

each of the following vnes,  In the reducddy
from each of the following, we find *;‘Z‘ »

26 Detorminants.

8. Caleulate the determinunt formed by the tirst tuwenty-five natyml numhets

arranged in & mogic squace

Lo 14 1 It 22
4 12 2 3} 3]
28 6 19 2 4
AN TR SR Y g \
: R
11 24 i 20 K Aus. — 4830000,
5. Evaluate, by the wmethod of the presenn Actiels, the dutermidant nf“Ex,ﬂ,
W
Art. 134, A\ ¢
o1 1 1 0 1 0 0 A\ 3
N ,{\\ 22 ot
1 0 £ g 1 0 £ e N\
A= - T :{‘J}l —zt p?oil
1 22 0 2 1 £ R S \
. '; 1 FINTE —1.l'1
L gt a* 0 1oyt e gy

. , .
Tere, to obtain the second dote rr;m:nlt\\&a}ﬂuhtr.u-r the cerom! eolomn from
Meterminunt, subtracting 1he first row

1 I »: "-f“
N . il = R
a ivgdbra Li%;bg?r(;y orgin | __ =F yrl 2tz
"\, ’ yEAent— RATS

0 2@ -2¢* |
= [y +rz! ,_'\;) — 4yt
= {y* +}\sz +2yzi (7 + 8 — 2 Zye)
= (PP~ 2 (g - 2 - 23)

:}‘he identity

yl‘]\\_’/’"‘ fi}é"—l—y+z)(y+z—x}(za-z—y}(;ﬂ-u«_u.
v 19, Pr

>

o i A
RS A A L =2abe{a + & 4 7).
A\ L4 ¢ (& + o)

#\\, Bubtracting the lust column from each of (he others, (e + 5+ ¢]* may bo taken out

3
) 2

4

ad a factor. Calling the vemnining determinint &', and subtracting in it the sum of
the firat two rows from the lust, we have

bro—a 0 a® b+e—a o at
A= 0 c+a—24 I =! 0 c+a-8 B
i
e—a—b o-g- ¢ ja+ 52 | ~ 2% - 2a Gah I
lalb +c—a) 0 o
1:

o Ble +a—6) &

~—3ab - 2ub 2ab
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Adding the Jast column to each of the others, we obtain
a(b+e) a* a*
1 afb+e) & bte a |
.:\‘_—b— Bt Bleray 8 =2 = 2ab !
@ B b{eta) Booetu
0 0 2qb
=2alela+ b+ 0.
Hones, A=Aa+b+e)?=2abc{at &+ )%
w11 Prove the idmtily
i
1 1 . Q
e B 4 |mE-Na-dE-Blrsin A
&
3 3 3 < »;x
@ S ®
Subtracting the firat column from each of the others, @~ & and y—& betome
factors. In the reduved determinant, subtract the frat row mulT.i;.l]_.it:\&fz}}‘,c{l from
the second row. - ) ¢ ’2\ ’
" 3. Resolveinto giwple factors the determinant 8 ,,\
A\®;
"/ 1 1 1 1
\/
a B ¥ 5,°
A=l s @ g \"2\\ '
o ¥ ¥4
o g o
. . wiw.dbraytibrary org.in .
Procceding, asin Fx. 11, we ewsily fnd that aeri— & (y — &) (5 —a) Is & factor,
und that the reduced detcrminant is ﬁ} o
1 P | 1
.\\
B+a :w\ r+e ft+ea
¢ &\
Bs+8’a+ﬁa"§\m" Piotatyd+ad B4 3a + a4 0®
Bubtracting the ﬁ:r.%}co]umn from.each of the others, [y — B) (3 — #} comes out
as a factor, and\tie zemaining factor in easily found to be {8—7) fe+8+y+E).
Bence, fioally,NJ
AEB - =N DB - Al e+ Bty+
1'3@\5‘01\'9 into linear factors the determinant
Q‘.\'; a & e
e N
@\ A}l e a ¥ |.
\/ e a ‘
and the third by «*; and add to the first.
1), leaving

Multiply the second enlumn by @,
The factor @ + wh + w'e may then be taken off the first column (since o =
the eonstituends 1, @, wt.  Adding then the second nuid third rows to the first, the
fustor @+ &+ ¢ may be taken out; and the remaining determinant is easily found
+ tohbeequal to o+ b+ we. IHence we have
po (ot bt o)atabt o) e+« o)
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-

14, Resolve into linear factors Lhe duterminant

@ b ¢ A
a5 a 4 ¢ .

e d a &

d ¢ a.

The result in as follows 1

=—fetétetd)(bte—a-difc+a_5- difa+b—o— ), .
since each of the factors here wrilten is n fastor of the determinant ; for B@mple,'
4+ & - ¢—dis shown to be a factor by adiling the seeond column to_ ¢he first, and
subtracting the third and fourth.  Be camparing tho sign of e, it ap‘ppats that the
negalive sign must be attarhed 1o the product,

It may be observed thut the determinant of Fz, 9 is a%ﬁ_ﬁcular casa of the -
determinant here considered, viz. tual obtained ! by plll.t.mg
by comparing the equivatent forms of Ex, 9, Axt, 134, \

0, as will appear -

141, Multiglication of Boter mumnts —Pror. VIII—Y
¥ The product of two determinunis of m;ybu Uer is ilself a determinant %
Y of the same vrder. Ne

We shall prove this for two‘d.e%ermman ts of the third order.
The student will observe, lrom the natuve of the. proof, tha} it

is equally applicable in geneml We propoze to show that the a
preduct of tho two det‘eu’nm%nts (arbats), {(af3uys) 18

ta, + b Bl + GJ‘Y\l thag + 6162 + €y .y + f).ﬁa + o1y

ity + 6261 + 2"}'1 Tatia + bng + &7z oty + bgﬁa + &3 1y

faey b.ﬂ{gl teyr @ar + bef3s + 6y, thyas + bsf3s + &rys
A/

whose,‘ednstituents are the sums of the products of the con-
itients in any row of {@1b.e,) by the corresponding constituents
iﬁ&ﬁy row of (@ fyy;). _
3% Since each column consists of the gsum of three terms, this
' determinant can be expanded into the sum of twenty-seven
others {Art, 138 jt.will he observad that when any one
of these is wut?éfl{ cé%v?ﬁi]a‘ ggﬂ?};(%n%f.sbtor can be taken off each
column ; and that several of the partial determinants will, when
these factors are removed, have two (or more) columns identical.
The determinants which do not vanish in this way can be easily

selected. Taking, for example, the first vertical line of the first
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column, this would give a vanishing determinant if we were to
take along with it the first line of the second column, We take
then the second line of the second column; and along with
these two we must take the third line of the third column to
obtain & determinant which does mot vanish. Retaining still
the first line of the first column, we may take the third line
of the second column along with the second line of the third

column. Taking out the common factors of the eolumns, we,

write down these two determinants as follows :— R
a b & . € b A\ ™
a\ﬁZ"/:% t by e |t ﬂl'}’?ﬁa a € b .‘;'\\ !

ds bs s a4 e BN\

Taking in turn each of the other lines, o‘thﬁe first column,
we obtain four other determinants Whlch tio Lot vanish. MThus
there are in sall six texms; and it i plam that (mbe) 1s a
factor in each of these. Taking oﬁt.thls factor there remains
the sum of six terms—¥"""" db“auhh‘ ary.org.in

mﬁz'}’s - alBJ'Y‘Z - ﬁzﬁl’}(s “' aaﬁl‘)‘z + a3y - 0383')’1,
and this is the determman\t\?u, {Buys). We have therefore proved
that the determinant Sbove written is the product of the two
given determinants:)

In either gf the given detorminants the rows may be writ-
ten in place’d 38 6olumns ; hence the product may be written in
several %kfﬁ‘erent forms as a determinant; but these will, of
coursex\gwe the sama value when expanded.

&42 Muliiplication of Beterminants continued.—
\Atnother mode of proof of the proposition of the last Article,
expressing a8 a determinant the product of two given determi-

nants of the same order, may be derived from Laplace 8 mode

of development already explained (Art. 135).

The nature of this proof will be sufficiently understood from
the application which follows to two determinants of the third
order.
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The product of the two determinunts (e by}, (a18ays} is (Ex. 8, Art. 135) .
pieinly equai to the determinant

3

a1 5 L ¢ 0 0 l

42 32 22 0 [ 0 i

a & s 0 0 0 |
-1 0 0 {3 - TS 1 ‘ ‘

¢ -1 0 B B B4

¢ 0 -1 ¥ o

In this determinant add to the fourth column the sura of the fixst multiplied by
a1, the segond by Bi, and the third by 13 add to the fifth co‘l\%&n the sum of the
first multiplied by az, the second by 8z, and the third by, 7\,\{ {4nd add to the sixth
column the sum of the first multiplied by as, the sccond by B3, and the thind by 7.
The determinant becowes then O

o/

a1 B e GmtbBitoay am +51ﬁa Feryr  mas+hfatays
ap by e A+ B8+ oay agﬁ\-k 5;34 +eay:  ases+ Bfs +ewys
a by o aaa+ B+ 1y hauz +BaBr +eayr  ausa+ BuBst oy

-1 @@ dbraulibrary. d-.l'g,\m 0 0
0 -1 0 v,‘D 4 9
0 0 -1 o 0 ¢

and this is, by Arf. 138y eﬁu\al to the product {with the proper sign) of the deter-

minant \
.\—1 o
W] 0 -1 0| (elichis equalto - )
x;\ @ 0 -1

S . 4
by t%cdmplemeuta.ry minor, which is the same determinant as that obtainedin the
prbﬁe ing Artiele. That the sign to be attached to the product is negativeis easily

N “apén by moving down the firat three rows till the dingonals of the two minors in

o \ «/ question form the diagonal of the determinant itself, The stadent will have no

/

difficulty in observing that, in the general case, the number of such displacements
is 0dd when the order of the given determinants is odd, and even when it Is even;

g0 that the sign to be placed befors the produci-determinant of Art, 141 Js always
positive,

The important proposition contained in this Article and

the Article which precedes will be illustrated by the examples
which follow.
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ExAMPLES.

1. Show that {ka product of the two determinanis

i EER?] C-[—ilfi

‘ o —ib ¢ —id’

-5+ id q—ib e i a L ib’

1
where ¢=+—1, may be written in the form

b—itt B-id \\
B ‘\
—B—id D+iC | \‘.0‘
where e
d=bi—Fetal —ad, B=cd—da+dd-bd, ;f
Coal —dbred —dd, D=ad bl 4ed +dd; .\\ )
\"

and hence prove Euler's theorem )
. : \\”
(o 82 4 o2 4 d%) (@ + B2 4 o + 47)
= (ua' + W+ ed + &I 4 (B — Ve g} a’d}’
+(ed — da + 87— V)P + (m‘{\ +od ~ 2dY,

viz. the product aof tiwe sums exch af four squarés Q’@ﬂ bs exprssssd as the sum of four
W dbraul\rb‘r‘ y.org.in
& ~‘~
2. Prove the following expre%wn fag’ﬁ:;e gquare of & delerminant of the third
order :—

a b o |3} p(u.\“zx) a+ o2 ad + e 200"
el @ v ¢ | =] aé\i\q\' 9y . - §F 4+ a0 -2
@B o l { B+ e 2 A=Y 28

»

SYUErEE.

This appears b u,u‘ltcL lying the two deteimmants
P .’;\ pLy:

YWe b o ¢ -3 o
O d ¥ ¢ |, ¢ -2 & |,
AN 1
N @ o l F -8
'“\ v 3
ijéh differ only by tho factor 2,
\\,/f3. Prove the identity
‘ 2be — a? & 52
l ¢f dou— 82 a* = (2% + 18 3 & — Babc).?

1 B # 2ab- 2
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i
This may be readily proved by multiplying together the two equivalert detg;
minanis

a b ¢ -0 ¢ [ |

’ .3 ¢ a i, -4 a [ f .
f
| ¢ a s - & a |

4. Prove, by equaring the determinant of Fx. 10, Art. 132, the follawis
relation helween the roots o, B, 7 § of a Liquadratic; s, a1, 2, &e. H@g il

eame signification as in Chap. VIIL., Vol. I, :— O\
LT T S "R A L
& 3 8y 8, \ |
= =8 F DB o Ao,
& 4y 8 &y RV
3 8y a5 &g \ .\\

) x:\\.,

The student will find no difficulty i 'w')iﬁ'“ng down for an equation of ar
degree the correaponding determinant (ié%rﬁm of the suma of the powers of th
roots) which is equal to the product ?f\,tl}é'squares of the differences.

N

G. Reaolve iﬂﬂ&&%’iﬁ%&?{ﬁ@%% n
5‘ N 0‘

e
‘5

3
7 8, 8 g 2B
\ (] 5 L3 E

:m‘\ B8 8 8 a2
¢ L\
‘\\ fr 8y s & N

PR fFa 8 & & 1

A ¥ ¥ ¥y 1 0
:?'\w
i “‘ﬂﬁh ®ny 81, 4, &o. are the sums of the powers of thres quantities «, B, 1
&lﬂs determinant iz the vroduect of {he two
o~ o) Y R EE R
-\/z @ g 4t e g L N
e B v =z 0 [, e« B ¥y 0 gy |;
1 1 1 1 [ 1 3 1 2 1
e 0 9 1 ¢ 0 0 1 0

naul each of the latter can he readily resclyed into simple factors,
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8. Prove the result of Ex. 2§, p. 57, Vol. L., by maltiplying the two following
determinants ;—

£ ¥y 3 ¥y 4
e & ¥, d 4 i
¥ % z o 4 «

. Show that two determinants of different orders may be multiplied together,
Fm' their orders may be made equai; sinee the order of any determinuns can be
incrensed by adding any number of columns and the same nnmber of 1ows consisting \\
of units in the dingenal, and ull the rest zero constituents. For exumple,

PR
&M
1 1] 0 0 O
& By 1 4 ] Ny
may ba written ,'\\
g b v 6 m B
0 0 g\

the only effect of the ndded constitnents being to multiply l,h’Bheteunmant by unity.
More generally, one set of added constituents (i e. thoaqqx’c‘hur to the right or the
left of the diagonal) might ke taken to be any quap & whatever, the remaining
set being ciphers. Thus (218:) may be wrilten m e‘ther of the forms

11 o waydblau ttrpal&orggn 7
a 1 8 £ “‘“ 0 1 & [}

N
g

aoalbji’ 0 5 @ &
0 0 Lar b 0 e @ b

ag readily appears by maq.ns‘é the expansion of Art. 134,

143. Rectangular Arrays.—Arrays in which the num-
ber of rows i$a0t equal to the number of columns may be called
rrctcmguﬂ\i»} These do not themselves represent any definite
funetlon\ but if two such arrays of the same dimensions are
g}vei}, “there can be derived from them by the process of Art. 141
E\,etemununt whose valne we proceed to investigate

(1), When the number of columns exceeds the number of rows.

Take, for example, the two rectangular arrays,

£ bl € dl i iy Bl 7}. 3[
(L, @)
a: by & dy oty ﬁz Y- &
VUL. 1L Hy

e



s

34

Delerugnants,

and perforning on theso a process similar to that employe&
multiplying two determinants, we obtain the determinant

ey + 03, + Gyt dier fa b3, + e1ys + d10y

a4+ b3+ epyy + ) dpan + huf3s + toya + dody
The value of this is e w[]y found to be
(@da) (f32) + (ot10s) avy:) + (auls) () + (e} (Brye) ~
SSUNATERAEACR AT 3)
Le. the sum of the produrts of all possible deter minants which ean
be formed from one array (by teking ¢ nunber of cold s equal to
the mamber of vwesy mnltiplied by the wnes'pmef{kag determinants -
Formed from the ofher Q. & -
Another proof of this proposition, ﬁ.ﬁftlhgous to the treat- -
ment of multiplication of determinant®in Avt. 142, is given
among the examples which followg iy Article; and elther’(}i
these proofs can be easily gonu’:ﬁ‘uud

(2). When the number of ; maq‘s exceeds the number of columms,
the resnliingedeld busizibday @{m‘s'étlﬂl

T'ake, for example, the ‘two arrays

I

fh,‘ékl ) a, B1

OO

@b W @ Bp @
\ ‘\f"a by ug B.‘s

Performm the process of multiplication, we have
g P P
p \, a3 @ + 0B, ae + 0B
~\ &/ -
fgony + 5261 ey + 0of3; g + Byf3s

O
\ gy + ()36[ stz + bgﬁz tfatly + 63[33

O It will be observed that this determinant is the same as would

P
\

\ 3
/

arise 1f a colummn of ciphers were added to each of the given
arrays, aud the determinants so formed then mu]tip]'ied. It
follows that the determinant vanishes. .

A similar proof applies in general. It is only necessary in
any instance to add to each array columns of ciphers, so as to
make the number of columns equal to the number of rows, and
then multiply the two determinants.
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Ex4wPiESs,

1. From the two arrays

35

11 1 111
} {1} }[2),
& B 7 z B 7
prove ’
3 o+ 8+
= a— B+ -7+ (B—vP
at 8+7y a8
9, From the two arrays 4
2 & ¢ ] c-‘sba}” \,;
(n 2} (™S
d ¥ c‘} - ON?
&

prove

3. By squaring the array

o ¥ c’}i 2\}\'

prove "

I iEye N f
(4% + 50 + )l + B2+ 07 E‘Ea‘?{‘-" b -l—rgcl)'lé-}%}ﬁ%r ygRE: {h — day?+ (b — aB
o Q‘ \Q‘

4, Verily, by squaring the array N\
“\b e &
Xy o el
. &\ d ¥ d
the resuft of Bx. 1, A:t.i.142-.

o Dud
b, Prove the d@tef\m?nant identity
L 3

li,\’@,\l}bgz (@1 — Ba)?
' lan - )t (az— b2 e )
A o e b
N =B (o — o (e B

\/z

~

£ (a0 ) (& — %) = {ad + de— 2B m & (o = Ho} (ol — ﬁi&{}d ~dat,

‘t;} w
A\

(o1 — B2 (m— AL

{as — Ba)® 0
(s — bs)? T
(o — Buf®

This cun be proved by mulliplying the two arrays

@ a1 1 =25

b 1 — 26
{1),

At w1 1 — 28

.iﬁ2 a1 1 =2

n2

&*
Ba*
(2).

#at

&g?
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m~\J
3

"4
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6. For the generel equation of the nt degree, whese roots are o, §, v, 3,
aud sq, 51, 42, &o. the suwms of the powers of the roots, prove

&n L31

= Z{a - A)Y,

L)} LH
This appenrs at once by squarin g the aray

11111.,}
a B8 ¥ 5 &

1. Prove similarly, for the general equation, A
[ U TR ) "\" \ wy

\NJ

fom s =3P - d e BT

1.0 3 En K. :\\
This is easily proved, as in the preceding example, ﬁy\q‘ﬁaring a suitable aray ;
and the same process can be used to establish n ‘%éde of relations of this kind.
When the number of rows in the array becomes equal to the degree of the equation,.
the value of the determinant is the product of t}a squares of the differences of the-
roots, 88 in Ex. 4, Art. 142, When tha m{ﬂ}}}ar of rows exceeds the degre:& of the
equation, the valus of the couespondingﬂe\t'erminant is zero. The determinant of
tha fourth order just veferred to, for,g‘*uxﬁb]e, vanishes for equations of the second
and third degreess dbra uljbrar;{’:c-iﬁ.in
8. Prove, for the general e,q‘f;ﬁﬁan,
| & &1 82 T
AN\
L] B, .
T O 2t - e e e -
2 8 o\\sg

| T I
N/

Multi;ﬂﬁ.rﬁ; the two arrays

~

1,;\’1.3 .. #—a z-8 r—y - 1
N v
N SOB a(z—~a) Blr-8  yla-y . [
™\ , a
SN g, P@—a)  Bl-g) yle—y
% we show that X is equal to
Aglt — 5y ax — 3 52% — 83
B1E — 2 sl — 8 Byt — &y ]
53X — 83 S3 — 84 54T — #g

which is eesily transforned into the proposed determinant.

It mppears in like manner, in general, that the determinant of similar form
order » + 1 is equal fo the corresponding symmetric funetion, exch of whose termj
containg p factors of the original equation, multiplied hy the preduct of the square
differences of the p roofs therein contuined. :
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#. Pind the value of the following determinant, and hence devive another proof
of the property of arruys of the firat kind—

@ H o d 06 0
e b e & 00
-1 0 0 0 o m
0o -1 0 0 B/ B
0 ¢ -1 0 ¥ m

Expanding this by Laplace’s method, we resdily find ita value to ba 8 six
preducts, = (mbs} (mfs), of p. 3¢5 and tresting the determinant as in A& 142, viz.
udding to the fitth colamn the sum of the firsi multiptied by o1, thégstond by Bi,
&e., we reduce it t0 the determinant of the second order at the¥opyof p. 3¢,

144. Sointion of a System of Linear Equations.—
We have seon in Art. 134 that a determinant may be expanded
a3 a linear homogeneous function of t b\\‘m;hstituents in any row
or column, the coefficient of any gonstituent being the corre-
sponding minor with ity prophr i!}‘éﬁlﬁ arWerkdwe, for example,

A= a1A1'+~&;ﬁg + Ay + &o.

LN\
Now, the coefficients Ax,,\&‘,, &e., are connected with the eonsti-
tuents of the other cxoklhﬁus by n—1 identical relations, viz

B2 + by Ay + byds + &e. = 0,
(Nads + ey + o ds + & =0, &
for any. of_fg{of these is what the determinant becomes when the
constifiisiits of the corvesponding column are substituted for
a;,é;,"'as, &o., and must therefore vanish.
\\3 By the aid of these relations, we can write down the selution
6f a systom of linear equations. The following application to

the case of three wunknown quantities @, v, %, is snfficient to
explain the general process. Let the squations be

at + by + a8 = my,
a + by + 68 = iy,

a4 -+ Dylf -+ Cg% = M

&
b0 0 —1 8 & M)

N\
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Multiply the first equation by A, the second by A, and ik
third by 4,; and add. 'The eocfficients of y and & vauish, in 5
virtue of the relations ahove proved, and we obtain
(s + @ dy b a,d2) @ = Ay + g Ay + mgd,, A%

or '
wy b e

) ,\
Av=| my b & | A\ :
Ma by ey | "\f )
{ \
whers A represents the determinant formed fromthe Rine oon-

stituents a,, &, ¢, &e x’\\
Similarly, multiplying by B, B, B;, \whbtmn
0By + 0By By y = m By -{ ??Eng + myB,,

o/
le m; «61 &
i\

Ay =| @ m-\z\‘és )
www.dbraulibrary m‘g 11% Ca
where the determinant ongthe right-hand side is what A beeomes
when m,, 1m,, m; are substafuted for the conslituents of the second

eolumu. Slmllarly\\ve obtain for =

l\\ g b oy

O As=| a2 B om
\NY;

O s by

ilﬂ;%se values may be written more compactly as follows :—
{\ Az = (mibes), Ay = {agme), Az = (@b
e S In general, the values of w, y, &, &c., may be written as
~O o
V follows :
_ (b .. 1) e (@mabs oo . L) .- (aybamty « .« In}
(@bats . o . Zﬂ), y= (albzcs .. Ju], h (ﬁ"lbzca e ) ’
where, to obtain the value of any unknown, the known quanti-
ties ., m, &c., on the right-hand side of the given equation:
are {o be substituted in A for the coefficients of the regunired

unknown, and the determinant so formed to be divided by &.

&e.
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X AMPLES.

L. Bolve the equations
z+y+z= Ay

ax + By + 95
ot + 8% + v = A

1
=

The solution is easily cffected by the formule given above. It can be shown

ynlnown quantities can be expressedusa quadratic

that the vulue of any one of the
along with symmstrie functions of
\

funelion of its voefBeient in these equations,
(in addition to the given cocffivients o, A1, Ag). For this purposs we’

a, B, %
write the value of the unknown {say, ¥) in the form A *
& N “X
0o 1 0 ¢ o\
R o
1 1 1 Ay ’ a N
=0, o * o
o A 7 A1 \ &/
a2 ar 9" As AN

which may be derived immediately by joining the iden‘ﬁw@"equaﬁnn y =y to the
{hree given equations, and eliminating nfter the p{s@ﬁer of the Article which

fullows. Now AWV

01 0 ¥ 1 1 1 oM 1 B gy
L1 | ety -orlz-;p nom o
«a A 79 4 y‘.i a? ‘é{“ ;” ¢ N n 2 & A
ot B 4t s "{{\\0 0 1 2 sz & A

iy mt a, 8, v sre all unequel), we muitiply the equa-

If therefore (a.ssumm%\k
tion (1) by the differerigg-product, we heve y expressed as & quudratic function of &

along with the sumgef +Re powers of the three quantities a. 8, 7.
2. Show, bysheans of the equalions of Art. 77, Vol. L., that the zuma of the
powers can b exfTessed in terms of the coefficients, or vice versd, in the form ef

datermimn\tg,\ﬁsl follows :—

"\ « 1 0 0
R\ ml @ ¥
AN “m 1 2pe g 1 4
,.\?;- 3 , 3= — 12 ;1 |, 8= , &e.
\/: 2pr P . 3z gz o 1
afa Pz M
dps P35 P2 P1
s 1 0 0
51 i
&1 1 % 82 &y 2 1]
2_392= N 6393 = — &3 L5} 2 4 24 s = ) &,
Ay X L iy 51 3
g A2 &1
&y By & &
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145. Linear Momogeneous Equations,—When »
linear homogeneous equations between u variables are givan, the
ratios of the vaxiables ean ho dotermined by bringing any one’
theni to the right-hund side of the equati

ong, and solving as
the provious Article; or we may determine thess ratios mor

conveniontly as follows, Wo take the particular case oflth\@'e
equations belween four quantities @, ¥, z, w, which will>be

suflicient to illustrate the general process s R,
N
ar+bhy+ez+dw =10 AN
G + by + et + de = 0 ,«t\\ (1)

T + by + €un + dye

fl

To these may be added a fourth eqhation whose coefficients

are undetermined, viz. N

ag@ + by + a;\ﬁ daw = A, {2
Calling (mb,edy) as usual A&} and solving from these fou!'
equations bymhdlzmﬁnlibgiﬂjfafbﬁﬁé“last Avrlicle, we obialn, sinoe
My =0, my=0, my= 0w, = A, the following values :—
L\
Az =ddy, {Ay =AB, Az=AC, Aw=AD,

¢ N/
Ne_v_ s w_ @
s 4 B0, DA

The ﬁ:r;t”three of these equations express the ratios of #, 4,

£, wanlerms of the coofficients in the three given equati.ons.

Andy'in general, the varichivs are proportional to the coeffivients
0 the eapansion of A of the constituents of the n®* row supposed
. Y vows resulling from the given equations.

We can now express the condition that # linear homogeneous
equations should be consistent with one another ; for example,
that the equation (2) should, when A = 0, be consistent with the
equations (1), We have only fo substitute in (2) the ratios
derived from (1), when we obtain

@ ds + B, 3 0,04+ d,D, = 0,
or & =10

or
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The same thing appears from the equations (3) 5 for if A = 0,
and if #, v, 8, » do ot all vapish, A must vanish.

‘What has been proved may be expressed as follows :—The
result of eliminating n quantities between n equations linear and
homogeneous in these quantilies is the vantshing of the deferminant

Jormed by the coeflicients of the given egméwns
ar‘—\

[

S Ny "/( Reciproeal Determinants. — The co-factors, N
"4y, By, Ci... 4y B, &o. (Art. 134), which occcur in the ex-»‘:*
pausion of a determmant (é.e. the first minors with their proper
signs), may be called inverse constituents; and the de e(mmnnt
formed with them the inverse or reciprocal deter mamaé We
proceed to prove certain useful relations connpcking the two
determinants. ) \\,

(1) To express the reciprocal in tem&Wke given deferminant.<; u
Lot the reciprocal of A be denoted h_y h “and multiply the two ‘\

determinant. )
Hants WWW. dbraul;bl ary.org.in

:’ N Al -Bl. O],
A = Ag .Bg Cz
Ads By O

Al the GO]lStlt.llen{:Bv Jot the resulting determinant except those
in the dmgonal yanish (Art. 144) ; and the result is

R0,
.xw” A ¢ 0
. ’.\
AN AA' =] 0 A O |=A%
ON”
<‘t W 0 0 A
"4
whenee Al = A%

The process here employed in the particular case of two (§-'
determinants of the third order is equally applicable in general;
giving AA" = A% or A" = A®".  Hence the reciprocul determinant

is equal to the (n — 1) power of the given determinant.
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A2}, To express any minor of the reciprocal determinant in ferms
of the original constituents, -
We take, for example, the determinant of the fourth order,
and proceed to express the first minors of its reciprocal.  Multi-
plying the two determinants on the loft-hand side of the follows:
Ing equation, and employing the identical equations of Art. 1%4,::‘4

we obtain

Determinants.

N\
a b e d.‘ L 0 0 0| la © 2\,:’0*
@ boo d| |4 B O D, @ A W0 .
@ byoo di| Ay By O Dy | | apn0dA 0
“ b d| |4 B 0, Dij (0 0 A
whence
B,
A D,
B AN
or www,dbrauljbrci}g{%;g; = Az,

thus expressing the first Minor of A" complementary to A
Agaln, to expr,esé{\?he secoud minora of A”, we have, by an

exactly similrma{({%éess,

& b cl; o |l 0O 0 0 ‘ a0, B 0 0]

a Dald, d2’ 1001 0 0 |a b ;

ga L ; Cs da‘ A4, B, O, by a2 by
\]\i oo dl |4 B oo D |a b0 A
“Sithence

A‘ o Dy | | m b ]a",'
C, A by

or | {CBDA) = (“152.‘1 A,

The general theorem may be expressed as follows 1—.4 mino:
of the order m formed out of the inverse constituends is equal to th
complementary of the corresponding minor of the original delermi
nant A multiplicd by the (m ~ 1) power of A.
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The method of proof above given can be generalized. In
the case of a determinant of the ffth order, for example, the
student will easily verify the following expression for a minor
of the third order :—

(CaD.Ey) = {aba) A

If the original determinant A vanishes, it is plain that not-\<
only the reciprocal determinant itself, but also 2l its minorg of
any order vanish. The vanishing of the minors of the seeond’
order may be expressed in the following useful form W hen a
determinant vanishes, the consiifuents of eny row of i{sbreci}?rocal
are proportional to those of any other row, and the~oaristituents of
any column to those of any other columm. 4\1

5“4}7. Symmetrical Detcrminants;-'—"\fvo constituents of
a determinant are said to be conjugaipWhen one occupies with
reference to the leading constituent\the same position in the
rows ag the other do%sw:’%}{l CHJ]T@a [: i‘ﬁl"_rg{ns.o _For esample, ¢ and
I are conjugates, one occupying the I{"gﬁrﬁ:’%“l[?lace in the second
row, and the other theic'm:ﬁ;h place in the second column.
Fach of the leading cofistituents is its own conjugate. Any
two conjugate eongt{\w‘nts are situated in a line perpendicular
to the principalydidgonal, and at equal distances from it on
opposite sides, ()

A symmdirieal determinant is one in which every two con-
jngate constituents are equal to each other. For examples of
such d&\%?ininants the student may refer to Art. 134, Exs. 2,9,
10,008 Art. 135, Bx. 4. ' _

~~f:\:In a gymmetrical determinant the first minors eomplemen%
tary to any two eonjugate constituents are equal, since they
differ only by an interchapge of rows and columps. The ¢J
corresponding inverse constituents are also equal, the signs
to be atiached to the minors being the same in bolh cases.
It follows that the reciprocal of a symmetrical determinant is
itself symmetvicel,

The leading minors are all symmetrical determinants.
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The mode of expansion of Art, 137 is especially useful fn-
the case of symmetrical determinants, as will appear from the
examples which follow,

Exanrres.
¢ {\
L. Form the reciprocal of the symametrical determinant \
e k& g ¢\ )
X“\§
a= A B F . . \J
a 3
g f AN

Using the capital letters to dunote the reciproenl cog;fqnents as explained in
Art. 134, so thet A may be expanded in any one of the forms ad 4 AH + g,
AH + 5B + fF, g6 +fF+ ¢)  we muy wiite the\feeiprocal determinant A’ s

fullows:— Y
4 H ¢ be —fRVfg—ch  Rf-ibg
a'=| H B F I = fg\\-éc\}; ea -yt  gh—af |.
leN o
¢ F ¢ J dSH—t¢  ghaf ab-w

2. Form sfiﬂﬁﬂ}dﬁ%a}élig}ég@f@?rg-m
‘\]’3; A i
. '\I AOb f om
(N4
L\ ] § s

w0y

[}

L~

”
N
£ »

A { " n [

Using a nofitith similar to that of the preceding exampls, so that A may be
expanded indifferently in wny of the forms
,\\‘ 64+ hH + gG + 1L, AH + BB +fF+ ml, &,

thg\ Teciprocal determinant A’ iz obtained by replacing in A the constitusnts by thle

z'ﬂh%rresponding capital letters. The student will find no diffiulty in writing out, if

} “'nccessal‘y, the expanded form of any of the reciproeal vonstituenis; for exafnple; F

\/ is the minor complementary to S with its proper sign (the negative sign in this case),
and F is therefore obtained from the expansion of :

a F Z
-1 9 f n
i m

3. Expand ths determinant A of Fx. 10, Art. 134, by the method of Art. 157.
Bringing the last row and Iast eglumn into the positions of first row and first
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column, and using the notation of Ex. 1 for the inverse constituents of the leading
minor, the result can be written down st cnce in the form

—A = AA2 4 Bu® + 7+ 2Fup -+ 26vA + 2Hap,

Bince a determinant is wnaltered when both rows and columne are written in
reverse order, if the expansion of a determinant be required in terms of the Ieat row
and last column {as in the present example), it is not necessary to move them in the
firet instance into the positions of first row and fivst eolumn, The expansion can be

written down from the determinant as it stands, replacing in the rule of Axt. 187°

the leading constituent and its minor by the last diagonal constituent and ita
|

complementary minor. L™

4_ Bxpand the determinant & of the above Ex. 2, in termas of the last rdi:)md
¢olumn, by the methed of Art. 187, A\

Attending to the remark at the end of the preceding examB}e\\nd’ using
A, B, €y F, @, H to represent the same quantities as in Exs, 1 .ai{d’\S, thq resulf
mey be written down as follows :— "\

\

L B

\/
Pp)
A=d]| k & f | —AP*— Bu'— On* —QFun — 265l - 2Hin.
WO
g F e o

VWhen » symmetrical determinant of any 911}&{ is bordered symmetrically {i.e by
the same constituenta horizonia]l{\’aagvewy), the resulf is clearly a symmetrical
AT i

determinant of the next higher order, TRt A VO R BT showa In general that

the expausion of the hordersd defcefm'i;ﬂ:z‘mt consista of the criginal determinant
waritiplied by the constituent common to the added row and column, together with
& homogeneous funciion of the ’sex\mnd degree of the remuining added eonstituents.

5. Expand the determi’na)\t\

N o# A g { a

QN ) &8 F = B

SO asl g f e oy

N\~ ! m n 4 B
R\

D a 8 v 5 0

AN
#\Plis is the determinant of Ex. 2, bordered syrmsteically, the common eonsti-

\K:ant of the added lines being zero. The resnlt is clearly & homogeneous function
of the second degroe of a, 8, v, 8; aud, by zid of the nutation of Ex. 2, the value
of — A may be wtitten down at once in the form

A+ BRY 4 Oy + D8* + 288y + 2Gya + 2.Haf + 2Lad + 2HBE + 2Ny

g. Trove, by means of the Proposition of Art. 141, that the square of any
determinant is a symmefrical determinant.

s 7. The product of two reciproeal determinants is the reciprocal determinant of

the product of the two original determinents.
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148, Skew-Symmetrie and Skew WDeterminants, -}
A skew-symmetric detorminant 1s one in which every constitusnt
is equal to its conjugato with sign changed.  Since each Iead-

ing constituent is its own conjugate, it follows that in such a
deferminant all the lending :

diagonal constituents are zero.
A determinant in whie

b all except the leading constitugnts
are equal to their conjugatos with sign changed is called aiﬁ_w
determinant. Thus, while g gkow-symmetrie deteamfn@nt is
zero-axial, in a skow determinant diagonal constitients are
present. The caleulation of the latter kind mgy(b"e reduced fo
that of the former by the method of Art. 1360

The remainder of this article will be gudupied with the proof
of certain useful Properties of skew-sym\n}etrie determinants.
AL A skew-symmetrie de.ferm‘mmt@‘ odd order vanishes.
For any skew-symmetrie debérilinant A is unaltered by
changing the columns into rows;-dnd then changing the signs
of all the rows, Byt w]xen’thg.:bfder of the determinant is odd,
this proe@s&%ﬁéﬁi@%ﬁ%ﬁ‘@iﬁ}ﬁﬂ% sign of A; hence A must in
this ease vanish. For éxdh1ple,
SN 0 4 b
” \2& =| -8 0 e |=0.
C ~b —¢ 0

A/ . . p th
~ {2) solibe reciprocal of a skew-symmetric determinant of the n
ordents s symmetric determinant when n is odd, and a skew-symmetric

rle{b«{ ninant when n iz even.

2% In any skew-symmetric detormivant the minors eorrespond-
t}:ing to a pair of conjugate constituents differ by an interchange
- of rows and columus, and by the signs of all the constituents.

- Hence the two minors are equal when their order is even,

namely when » is odd; and equal with opposite signs when # is

ever. In the former case, therefors, the reciprocal determinan€
18 symmetrie; and in the latter case it is skew-symmetrie, its

leading diagonal constituents being all skew-symmetric deter-
minants of odd order,
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~o (B A skew-symmetric determinant of even order is a perfect
square.
This follows from the prineiples established in Act. 148,
Take, for example, the determinant of the fourth order

0 a b ¢

s <\
- 0 d é A\
A= ; '::..x
-& -d 0 Vi i'«; “
—-¢ —-¢ ~f 0 x:\'\‘.;'

and let the inverse constituents forming its reaipi*o\éal be de-
noted by 4,, By, ... 43, &. We have then, by (9;, Art, 148,

0 f >
Al-Bz - A'JBI =A _]M'A
. -f \D
Now 4, and 7, bemg skew- svmmetrw determmants of odd
order, vanish; aud 4,%% I,tlé‘fﬁ’ee Rods ark conjugate minors ;

hence f*A = A,', which p{(n’es that A is a perfect square.
Similarly, for a detelmlmﬁt A of the sixth order, it is proved
that the produet of Q}* a skew-symmetric determinant of the
fourth order is & pelzfect square; and since the latter defermi-
nant has besn jL{éb‘ﬁroved tq be a perfect square, it follows that
A is 580 alsgu By an exactly similar procoss, the truth of the
proposition slﬁavmg been established for the determinant of the
smth h\- it muy be proved for one of the eighth; and so on.

"\ = ExamprEs.
\/ ‘
%7 L. Verity the following expression for the skew-symmetric determinant of the
fourth order :—

0 a & ¢ <

- 0 d e
— b —d o f
—-e —e —f 0

= {af — be + cd)
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At

%
\{Expan(l i powers of x the skew determinant :

~& -d = F |
-0 -8 —Ff gz ‘ \\

When the expausion of Art. 126 is employed to enlonlate a skew dﬁ@mﬁhanﬁ,
it 18 to be observed thut the duterminants of odd order in the expu;nsiign all vanish,
il thoss of even order may be expressed as squares. Ilure thevegeficients of tae
9dd powers of # plainly vaniah ; and the vesult takes the fop;f'\

=

.
A= (4 Pt diteld g 4-’@;-} be + edj,

3. Expand the skew determinant , :’{\\"
R
. N\
A « b..\' a
O
-0 B & f ¢
N
www.dbra hbiagyff_l' &,ii'lh D
N .
Ed -9 —i - B

| $
¢ 2\J
The result may b\\wit'teu in the form

O ABCDE + 57 ABC T 2 — fi 4 gh) 4,
A

whers t-he;h\-:it' 3 includes ten terms similar to the one hers wiitten, and the second

b teiﬁns. The terms involving the products in pairs of the lending constiluents
vgr{é&, a8 also the term not invelving these guautitics.

i"\."‘ 4. The equars of any daterminant of even oider ean he expressed as a shew -

N

\M> “symmetric determinant.

The following method of proof ia applicable in general.

he square of (mbesdy) is obtained by multiplying the two following determi-

nants -—
o b oo 4 b e —d g
o by ¢ 4, —b m —d e

*

Gy by 0y dy ) -l oy —dy gy J

@ by oo o | —b a4 —d g
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and the product of these is

0, — {mbg) ~ (o), — (ashy) — (eda)s  — {oDy) — (exdy)s |
CRAIE G AR 0, — (mabs) — (cxly),  — (azbe) — (egals
(mba) + (eds)y (o) + (cady)s 0, {aghy) — (o),
{(mdg) + (Gl (agbyd + (mady),  (mabe) + fehs) 0,

which i3 a skew-symmetric determinant.

5. Form the reciprocal of & skew-symmetric determinant of the third order.

z

.\\\

Using {or A the form in (1} of the present Article, the result is easily fouud tu .

ba the symmetric determinant &
c2 — bﬂ ae | ) A isn}
—b B —ab |, ’ o\ )
| e —mb @ “)\\
6. Form the reciprocal of the skew-symmetric detemman’ﬁ A of the fourth
order in Ex. ]. \/

Representing by & the function af — e 4 od whose\ ei}\ua.le is equal to A, and
by A’ the required reclprocal wa casily find \\

o<W |
ww dbraull\brar‘ﬁy org. u'?¢ i i
— ~633 0 td
|

P d&# N b —ah 0
The value of this slew-sy \m'lc determinant may be written down by aid of
the resalt of Bz, 1. Ttis th¢\ meadiately verified that A’ (af — bet-ed )Pt =A%
7. Form the reciproushof the skew-symmetric doterminant 4 of the fifth order
dbtained by making t.he [&ading coefficients all vanish in the deferminant of Ex, 3.
Sinee the reci rooa,l is » symmetric determinant (see (2), Arf. 148), and since
also it must bg guc that the constituents of any line are propertional to those of
any paralle\l\ﬁge? { Art. 146}, it appears that the roguired determinant must be of
the form. \
N bbb b b i

\”\ bbbt bbb e |
bbb GF b dedo |,

‘ Baty Puds ubs &l b5

| by bbb bbe IR

in which 4y, ¢y, s Far b5 axe five functions of the second degree in the original
constituents whose squares aze the values of the five first minors complementary
to the leading constituents of A,

YOL. II. K
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In general the reciprocal of a skew-symmetric determinant of any odd order
2m + 1 is of a form similar to that just written, the diagonal constituents being
the squares, and the remaining constituents the products in pairs, of 2m - 1
functions, each of the mf? degree in the original constitnents.

.. J/149. Theorem.—We conclude the present chapter with an
important theorem relating to a determinant whose leading
fitst minor vanishes. Adopting the notation of Art. 137, we
regard A as the vanishing determinant, and state the theorenito
he proved as follows: If a determinant &, whose value @yzero,
be bordered wn any manner, the product of the dete?‘mf.ﬁﬂg-ﬁi:’so fbfmed
by the leading first winor of A is equal o the pmr@a@'bf fwo linear
Fomogeneons functions of the added constituents &

Retaining the notation of Art. 137, wé sﬁgl prove that the
product of A’ and 4, may be cxpressed ithythe form :—

AN = (Ao + BB+ Oy .. {(41&’ b AR+ Ay + L)

This follows at once from (2)(of Art. 146 by considering in
the determinant reci rocal.tg,}_”;f ‘the values of the constituents -
ipverse to \&.x‘"&?gﬁfuﬁl}:’,‘r aﬁﬁcﬁr&fﬁessing in terms of the original
constituents the deteymi}iiint of the second order formed by
these four. Anotherproof of this result may be readily derived
from the expans'o'ﬁ:.‘of Art. 137, by the aid of the property of
the reciprocal of’a vanishing determinant (Art. 146), viz., that
in the det?{rﬁiﬁa.nt formed by 4., By, €, &c., the constituents
in any life)are proportional to those in any paraliel line.

Iirthfe determinant A is symmetrical, and the bordering also
syfiEnctrical, the two factors on the right-hand side of the above

’"\.ég’joua.tion become identical, and the theorem takes the following

~\orm : If a symmetrical determinant, whose value is gero, be bor-
dered symmetrically, the product of the determinant so formed by
its leading second minor is ejual to the square with negative sign of
a linear homogeneous function, of the bordering consiubuents.

Regarding A’ as the original determinant, the following
useful statement may be given to the theorem just proved: [ f
in any symmelrical determinant the leading firsl munor vanish, the
determinant itself and its leading second minor have opposite signs.
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Exanrieg,
~ ILL.Ha skew-symmetric determinant A of odd order 2m 4- I be Lordered in
any manner, the resulting determinant A’ is equal to the produet of fwo rational
functions each containing the added constituents in the first degree and the
original constitnents in the m* dogree.
Writing, aceording o the result of Ex. 7, Art. 148, the reciprocal of the given
skew-symmetric determinant in the form

Y S | N\
b b - | D
and applying the theorem of the present Article, we find P '\N N

LA = - (% L didaff + ‘95'1?"8}’ + oo Mt T+ ?529"118 iﬁ‘i{' ¥ . b
of A" = — (dha + $uff + by + . )(9"1‘1 + do8" & ‘Rss BRI A
It may be obaerved that if in this result o', g7, v, &p be madc cqual to —a,
~ B, — v, &e., respectively, we fall back on the thpug%uﬂ' (3} of Art. 148.

© # 2. Tf a pkew-symmetric determinant of even\orﬁc,r 2m be bordered in any
manner, the resulting determinant is equal to ﬁhe product of two rational fune.
tions, one of the 'm”’, and the other of the (way) 1}‘-" degree in the eonstituents.

This may be derived immediately fro ’tfre set example by makmg therein all
the added constituents in the first coiT’urxm, e ﬁalqy §rg cqual to zero, except
the last, which iz to be made = 1. The dater:mmant then reduces to one of the
kind bhere considersd, the bordesing constituents forming the top row and the
last column. Tt appears alsgr Lhat the factor of the m™ degree in the result is

~ the square root of the gqu\@ew symmetric determinant of order 2m,

. ﬁl’mve O\
N .00 oo/ |
| & = B v |

L A e
{ ~

— (e + B + oy} {na’ + BB’ + &),

pNE o0 a4
O
oX h —a 1
e 4 ,Rlasolvc into its factors v
\/ [0 @ B ¥ &
a’ 0 e =& @

PR - 0 a ¥ ’
¥ b —a 0 oz

8 —2 —~y —=z O
dns. (az + by + e} [5(By) + ylyw’) + af) + o(ed) -+ BEY) + c(yd )}
E2
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MrisertLAWEODS EXAMPLES.

@ Prove

thy tty oy
a a; Ty =J,
s By &y
where J has the usual signification. - \\
'@ Prove \'\ D
B+y v+a o+ B a B ~.’zi?"’;
F4+y ¥+ed T+ (=2 ',ﬁ}’\'\“’?’
B 4y W+ a B e A
.":'3\._\ Prove N
A BN
W By BBy BY 1L

ya ya' 4+ ya y'al
4 L W \"
af  of tof G

www.d bl'aulibral'y_o’r‘g.‘ia'l
where the factors on the right-hanfl*side are determinants of the second order.
o

Dividing the Tows by ﬁ’y’]‘:g’;&’, a’8’; and pubting A= %,, ;.c=%, v#;—r-,. the
determinant (omitting a,mfﬁ@tor) reduces to the form
)

I ptv o (Mo v
1 s+ =1 —p o = A= N - g &
1 A‘;@,“”Aﬂ 1 —v M
:}\E‘Q& the value of the determinant )
O 1 B4y45 i B [
.\"\,“ 1 a+y+8 ay+od+ ¥ b {
N/ T a+B+8 ef+ad+ 5 afs |

i a+f+y eftayt By ey

Rinee the interchange of twa letters would make two rows identical, this can
differ by a numerical factor anly from the product of the six differences. Or we
may reduce the determinant easily to the form in Ex. 10, Art. 132, The value of
g wimilar determinant of any order can be found in the sume way ; and the sign
can be determined in any instence by the method of Ex, 9, Act. I32. ’
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-~

| "@vae
Byt 4 a5t By +ad 1
Yol + B ya 5 L[=(8~nla—8ly—2)(8—Ha- Ay -5
o+ P8 af + 45 1 .

Add the last column multiplied by 2ufy8 to the first. The determinant
bocomes then of the form of Ex, 9, Art. 132,

s <\
@ Prove \\

z

B+y—a—8p (B+y—a—if 1
= 64 (5 — y)ta—s)(ymax\ﬁ—m
|rta—8-3 y+a-p-3sp N iy — 5,
At By =8 @tpoy- o 1 SV
. 7. Prove \‘
' a b wr4b \"
b ¢ o+ E-—(ac—b’}(g«:ﬁ\}#ﬁbz-{—c).
ax +b br+e 0 \i\’

Subtract from the third row the second r\f plua the first multiplied by .

v
.8 P;ove similarly , W\:,’%}pya ulib;;gl'_}\f SERAD
b ¢ “\ - 4 baf + 20z + d
c q }\ e cx® - 2de + €
axd + 2bx+e bxﬂ-i-z:}\-rd ex?+2dx +e 0
€ N a b ¢

=—| & c a {axt + 4bz® + Gea® 4 4dx 4 ),
[ d e

fil#) = ma® 4 32t + 3epe - oy

f}-: a,2% + 3bya? 4 Begw + da,
o *Falm) = 6% 4 36,% 4 Srgw - dy;

prove the identisy : P -rp“’ -1 K.'.—‘\:L,
I —= 2t — a2t
: fifz) = fzﬂ(x) a+ —'1;‘" 7 .
N [x’- 61
fdzy  ffed B (= —-18| a7 !
ay by £ ds

 fudw) fflw) fn)
&g By Gy g
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The first determinant reduces easily (omitting n factor) to the following ;:—
max -|- by by -4 ) o -+ ody
e + by byx 4 ¢y ey - dy
azx + b, bt + £y o + dy

We have reen ( Ex. 7, Art. 142) thet the order of a determinant muy he in-
creased without altering its value, By a suitable selection of the added{can-
stituents the calculation of a determinant may often be simplified by ]gm?sl‘ing
i in this way. The determinant last written is plainly equal to g\

W
Y
1 0 0 0 |\

o &
7 NS

o, e + & b + o G -+ gy
R,

&
a; wx + by br e, o ’Ns
v
g gz + by by + ey cat’ - dy
4

Bubtracting from the second column the firsd, multiplied by z; subtracting
then from the third the new second colump\in}}ltiplied by @; and, finally, from
the fourth the new third column mult.iplieé{?y a, we have the result above stated.

ol ¢
NG

10. Bhow that the determinant &3

dpraulibrary.exg.in
RN & St %.f{ﬁg— o)y (4 — B)zz
A —clmy NP et toat— 1 @ — a)pe
- 6}xz'<',\ (A ~ ajye A% be + ag? 1

containg A{z® 4 42 }\E} — Las a factor, and that tho remaining factor is inde-
pendent of ga. ()

Border thg@qﬁrmmant-, as in Kx. 3, with a first column whose constituents
are 1, Ar, Ay Q2 and with a fires row whose constituents are 1,0,0,0. Subfract
then x l‘Ji.(XEQEI the first column from the second, 7 limes the first eohumn from the

third\and z times the first column from the fourth. In the determinant thus

a-lt@{e\d, stebtract from the first row  times the second plus y times the third plas
%times the fourth,

P
N\ J\_//l 1. Expand in powers of  the determinant

\/

gy +x b € 4,
ay ) ;i,,}:+ x oy da
@y 63 eyt x dy
o, b‘. .-;'4 d; + =

Ans. 2t + oy + by + €y + A + {(byes) -+ {oady) + (a1eq) + (Bady) + {ehe)
+ (oo )ja® + {iBaeady) + (mynydy) + (abale) - {mbyeate -+ (@ybycudy).
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@ B ¢ 4
| & [ 4

P T I R — — (Be) {ad’} {ca) (") {ad") (Cd’
7 v 7 ol abeda'e'd
a’® b ot 4% i
a B ¢ d ‘
@ Prove the identities ’ :...3:
l 1 a « ad {"‘: -
1 8 g g B @ » KB’
1y Y oW | i B ‘ - ‘ ¢
1 & & &
where \j
A - )('1—5)’ B=(y—a)(f—3 =(a— f) (v — 3,

dZG TN Dy, BT §§ At S
Expanding the first determinant in terms of the minors formed from the firat
two solumns (see Art, 135}, we easily Proye e:tha;t it is equal to
A -+ o) + Bl BB + Ol + o)
and employing the identical eqmmwdif;}aﬂll}bﬁaﬂbngmg with the relations
of Bx, 18, Art. 27, the resnlt follows

14. Prove that the dctcrmx{ént of Bx. 13 is equal to
\ﬁy + ol g y 4+ a'd ‘
N1 ye + B8 Yo 4+ B
N\
J'\/‘ 1 ef+yi df ¥ ‘
This fo].lowz?\a?tfonce from the relations of Ex. 18, Art. 27. If o, 8,47, 8 be
put equ "\1"’” g, %, §% in the result, we cbtain an identity which includes

Ex. 3, %\ a,a & particular case.
. 15:3Express as & function of differences the following determinant, whose
{amﬁnw expresses the condition for involution of six points on & line :—

\/’ I oo oo !

A= 1 gBg+§ ﬁﬁ’

F3

L
Multiplying the determivant by

I a? — 1
g~ 1|,
vy -y 1
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and then removing the factor B — v}y — aX {a — B from bath sides of the
annation, the value of 4 is easily expressed as follows :—
A== B -yYIly—a)+(a ~ B —y)(y —a)
This result may also be derived from the determinant of Tx. 13, whose vanish-
ing expresses the general homographic relation hetween two sets of four pointa.

16. Expand the determinant

x 0 0 0 Qg _' '\
-1 x 0 0 a, A o

¢ —1 z 0 ty | . :"s: T

0 0 -1 = g A\

0 0 ¢ —1 a |
This is found to be identical with the quartic o)
agrt + @zt + g’ + a2 +

and it is essily seen that a polynomiul of a.u.i {egres cen be expressed as a

determinant of like form. \\\{\‘,
17. Prove . W
[ ity a; 6y 1 ¢ .‘;:"
www.dbraulibrary drg.in
a x b, [ 3}‘; *
a Bz ANl | sSE-q@-HE-—1E-8;

a B ¥ &;X\ 1
! l\.'
| a 8 yN'35 1|

My, Aay gy Bps bz,;t.'libé’ing any guantities,

This follo@\BY subtracting « times the lagt eolumn fromm the firat, 8 times the
laat from th;e\sé”cond, &¢.  The student will have no difficnlty in writing down the
COTTes m&,ﬁlg determinant of the (r - 1} order which is eyual to the poly-
non}'Q ~{x} whose Tools are ey, a;, az + . . a4y

J18. Resclve into factors the determinant
~O (@ =P (a=FP (a—yPF
Y% As| (B=aP (B—pPr (B—yP
{yr—df (v—FrP (y—yp

a® a 1 | 1 — 2¢" " |
Here A=| g2 g 1 1 —2p pr o
¥ oy 1 ‘ |1~z

and these two determinants may be resolved as in Ex. 9, Art. 132
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-
" 19. Resolve into factors the determinant
fe—a)P  (@—FP (a-¢P
A= (B-oP (B-FP (#-7P
_ | —oF G —EF &Y
Multiplying the two rectangulsr arrays
a? ot a 1 1 — 3 Ja’ —a? ®
A S . . Ay A e TSN
V)
¥ oA oy 1 1 -y omr =y )
4 becomes equal to the sum of fonr terms, from each of which \Yt%ah take out
as a factor the product of the two determinants p* {'\
1 a a® i1 o« .afz‘“%\
i’ -
1 g &, LAY
1 2 1§
v b \.:&
The remaining factor is A\

3{3afy — Sy’ + B8 Tl 8B,
which can be written alse in t-he“fgfrr& }i Brau Jibrary, org,in

Bla— a3 (B- By —v)+(a=BIB — My =) T {e— 1B o)
i N o B
':_/</ 20. Prove the expansion N&\

14+a 1 1 o\’\v

1 T4a LN 1 p 1,111
= =4 =4l

1 1 ‘\J/'F' ty 1 Glazasad{ + y * 2y ag}

1 TR I+a,

\ v
This ig %s'z[y proved by subtracting the first column from vach of the others,
and theA}xpa.nd.ing the determinant as a linear function of the constituents of
the "f'{r‘é‘.g?column. It will be apparent from the nature of the proof thas the vulue

'ﬁf\fthé similar determinant of the uth orderis ayo,2, . . . an {1 + Ei—l} w

Prove the relation

| a x z ®

= fl&) — (2.

| = x z &

whero f) = —a)(z — Bz — 9) (& ~ 3).
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This can be derived from the preceding example, or proved independently in
a similar way. Asin the last example, the deteriminant of this form of the nt®
degree can be similarly expressed,

22. Kach of the coefficients of any equation can be expressed in termy of the
roots as the quotient of two determinants.

The student can easily extond to any degree the following application to the
equation of the third degrec.

From Ex. 10, Art. 132, we have

o &\
N
1 z® & 1 A \
al «? o 1 \( K4
: =—F—yy—ole—fx— aj{a= B {z — ¥)-
£ 52 8 1 Y
= o
PRy 1 €4
Fxpanding the determinent, this identity can bg written
u’al! 3a3a1i Cat gt N P T
N '2{
A B L xamﬁ“ﬁ1|x2+ ﬁa\oﬁf\‘l x— | BB
\ |
‘yzrl ¥ v 1] (%2 1 ¥ Py
AN e g1
ol
O Ei BB 1| — 2+ o — Psh
O\ # oy 1

N\ ) ;
from which the ahove r‘rhaosit-ion follows, p;, p,, P, being the coefficlents of the
equation whose roo3'\ ' a, B, v

M @ Express ata determinant the reducing cubic of a higuadeatie.

A\

\/3

Writing dg@nthe equations which result from the identity
N\
(aga jv\%a(};" + beys® + dage + 0,) = (ax® - 2bx | o) (@'e® - 2% + ),

assus%%;}%ﬁ@ = e’ 4 a'c — 200, and substituting in the following identity ——
4 ’\ ’ H i . & ’ s rb ’ L
Ahe e 0[ e g 0! . Z2aa ab’ +a'h ac’ +a'c
SR 0])(!6’ BO|=ab+ab 26 bt e |=0,
c ¢ O l ¢ e 0 ‘ ae’ + a'c b’ + e e

we easily fipd, thigpgaitrary org.in

oy & ay + 2ogd
oy fy — b a | = 0,
5 y + ayh 241 ay

which when expanded is found to be identical with the standard reducing cubie.



§

Ve Muscellaneous Examples. 59

\-""/ 24. Find the condition that s biquadratic should e eapable of being expressed

ag the sum of two fourth powers ; and, expressing it in the form
ezt + 4ba® 4 Bea? | ddx - e = Uz + O + m(z + P),
find the quadratic whose roots are & and 4.
From this identity we have the following equations :—

bL+m =a,

4 m¢ =b,
0t 4 mgt = o, » (1), A
I 4+ mé? = d, i”‘;' -
4 + mpt = e, AN\ )

Assuming X -+ g + p2% = 0 as the equation whose roots am’&\ nd ¢, we
eagily obtain the three cquations,

Mo+ pb +ve =0, N\ %
Mo+ e+ vd = 0, \
At 4+ pd - ve =0, ’;\"

from which we have at onee the required condi bq W 0; and from the first
two, along with the assumed equation, we obtmn\ﬂ\e following quadratic whose
roofs are & and ¢ :— n;
| 1« &0
i W W d‘bg’auhbrary org.in
a b N =0
b .\g\ d I
If 1% were required fo express.\‘ cubie as the sum of two cubes, in the form
Mz + 87 + miz -+ 4P, thd st four of the above equations (1) would lead to
the same gquadratic for fand ¢.
25. For the biqua&fa.‘ti}:
AWiﬁﬁiB@+3P+Cw+yﬁ+D@+8rx&
§ £

prove 4
\z:}" H = FAB (e — B
A I =ZAB(a — BY,
A J = ZABO (0 — fF (o ~ yP(B ~ 9"
Tl‘fsse'expressmns are trae for a biguadratic written as the sum of any number
f'%!ﬂth powers. Lf if can be written as the sum of two only, J = 0, since only
d B remain ; and if it reduces to one fourth power, H, 7, J all vanish—
resulte already obtained by other methods.
28. Discuss the determinant of the fourth order, whose constituents {a — a”)4,
(2 — B'), &e., are arranged as in Bx. 19, p. 57; and if o, 8, v, 8, o', £, 7 &
are the roota of fwo given biguadratic equations, show that the value in termns of
the coefficients contains as a factor
ae” - a'e — dbd" + B'd) + Ber'.
When the two biquadratics are identical this factor becomes 21,
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- .. L
27, Fined the condition that the Lomagencous gundratic function of thren
vavrialiles
art byt e Bfyr 1 2gaw : Rhoy
should be resolvable into two Duetors,

Fauating the given function to the produet of the faclors

(ar - By + y3) (2’ By < 972,

we readily finl o N\
. , | N
coaoa 0 | a a0 a A g\l
i | H ' wx
B ) I B ‘s YA
by oy 0 vy 0 { f c

henee the regaired condition is that the (lctcrminant 91 awvrilten should vanish

28, Show that the most general values of 1:,'3,.!’, ::2, w which satisfy the twe
homuogensous cyuations

m\/
£ \ -’ #,
we by 4oz} ode — 0, @by + o+ d'w =0,
W\ -
iy be expressed symmetrically inte rm\\vjtu oindeterminates X, ¥ in the fom

{ab’) {ec”) {edd }— uX + 'Y,
{be"} aLHQ&“ ¥ — b b HY, &

Thivwirbedhvauli b},‘?ﬁﬁ}hﬁiﬁ%li]w two given aquations the two following :—

{;.'3 fJ ’tf a’? IS a3

J.{{\-i— u,_)l r{-T:,r-i-—z-i-Tu/—u,

where A, pu are indeborminate quantities ; by then solving for =, ¥, # w asin
Art. 144, and md}u 2 the determinants as in Ex. 12, p. 55 ; snd finally making
X .- ’b’c’d t\y }’ == ahcdu.

~
q{ 20,0 1f m\zrin determinant r colnmns {or rows} become identical when &= &
M- then {;’\“z’;)’ 1ig a factor in the determinant.,
m appenrs easily by subtracting in the given delerminant one of the 7
t%mns from cach of the others. Theresultingr — 1 columns must each contait
R 1 - a a3 o factor, since by hypothesis each constituent in it vanishes when » =&
u\ 3,

»\ w1830 ¥ind the value of the determinant. of the nf order
\/" z e ¢ . @
¢ * & . «
A= a « z . a
e a @ .

whose leading constifuents are all equal to @, and the remaining constituents all
equal to a.
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By the preceding example A must contain (z — )™ ! as a factor ; and by
adding all the columns we see thaf it must also contain @ + (# -- 1)u as a factor.
Henee A can differ by a numerical factor only from the product of these; and
by comparing the product with the leading term wa find

A e={z — gtz + (n - 1)k
This resnlt can readily bo proved directly without the aid of Ex. 28,
+/3L, The detorminant

fl@) fala) fule) Q
LB BB LB |, O\
A0 Ay fuw) O
in which fi, fo f: 8re any rational infegral functions, contains the Aiffptence.
product {# — v} (y — e} (2 — 8) as = factor. O\ ¢

This appears readily by reasoning similer to that of Ex, 29;.,\136termiuants
of this nature, in which the constituents of any column {or fow)are functions of
the same form, and the constituents of any row {or COhK Wpinvolve the same
quantity, are called alternants. It is elear that the resultis Weneral, and that the
alternant of any order contains as a factor the dlﬁer fee-product of all the
gaantities involved. The determinants of Bxs. Q;QQ,ZA?t. 132, and Exs. 11, 12,

3

Art. 140, are alternants of the simplest form, .
32. Express in the form of a det.ermm 3 t}ﬁh ot.Iept of Lhe alternant in the
preceding example by the difference: pchl Lgl aufibrar y.er
Assuming, to fix the ideas, that tll‘é*functlons involved are each of the G{th
degree (which will inclado lower deg{ﬁpq by making some coefficients vanish), we
may write
fila)= %C\‘i’ blad + ye® + fllﬁs + &t +f1,
Jo () = ol byat o+ oga® - doa® + ee i S
Js (a)—‘—a&aﬂ" + byat + ¢a? 4 dya® 1 e + fi
Kow, taking o, g,\y 10 be the roots of the equation

,,.' B4t g+ =4,
snd forming ’th @1 oduot of the following determinants -—

'\Q\“&‘ @ &t o by 4 e f

J g 1] G by 6 dy & fo
y 1 gy by £ dy & f
o 0 | 0061 p g7 |
00 ¢ 1 g r 0O
0 0 i ! p ¢ v O O

it readily appears that the detevminant last written is the required guotient.
A similar method may be used to form the quotient when the alternans is of
any order, and f,, f,, f, &ec., rational integral functions of any degrees.
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33. Rewolve the following determinant into linear fuctors :—

."\

N\

Tn all tho rows the constituents are the same five quantities taked nvgiroular
order, a different one standing first in each row.

called a circulant, It is convenient to write a cireulant in the orm here given,
viz,, such that the same conslituent oceupies the diagopobpla.cc throughowt.

A dctermi.nanti@}t-his kind is

Taking § to be any root of the equationa® — 1 = 0, and a ing to tho first columm
the sum of the constituents of the remaining colugm3multiplied by &, &, #2, 84
respectively, we observo that the following are factore®of the determinunt »—

thy

T 4y

+ @
")
a; + fa, + Hﬂaa\*ﬁﬁaa + fay,

'
gy

N/
& + Pa, + §5g3~—}~ b, + fay,
www,dbrauljhya;:ﬁ?%‘tgliﬂi;a + Ba, + Pa,,

a, +'Wa, + B8, + e, + Oa,,

L\ , )
the five roots of 25 — 1 f\[)\bei.ng 1,8, 0% 8% 8 ; and comparing the eoeflicient of
@° in both exprossipnglitlappears that the numerical factor is unity (cf. Ex. 13,
Art. 140}, A citenlant of any order can be treated in a similar manner.

34. The prqglu:gjs of two cirenlants of the same order is a cireulant.
Caleplate’the determinant of the nt* arder

NS

\"?3
O
Q)

Q~

in which all the constituents are zero except those which lie in the disgonal and
in lines adjacent {o it on either side and parailel to it, one of these latter seta
consisting of constituents each equal to — L

Expanding in terms of the first column, we havo the followingrelation connect-

Ing three determinante of the kind here considered whose orders ars n,on— 1

n— 21—

W

AﬂE

H

G
— 1
0
0

bn
ey
—1
0

8]
[
Gp—g

-1

0
0

bn—g

Bn-x

An =gy + bndyes,

O

bﬂ—s

]
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By aid of this equation the caleulation of any determinant is reduced o that
of the two next inferior to it in the series Ay Ag o, Ay « » Ay Ay and the
vaues of A, and A, are plainly ¢, and ey, + &, respeciively.

Dividing the equation just given by A,_, we have

Qﬂ — . by
‘sw'l " A‘-"l—l 8
Apy

replacing bya similar value the quotientof A,—; by A e, and continuing the pro-{ \
cess, ib appears that the quotient of any determinant by the one next helow if in
the series can be expressed as a continued fraction in terms of the given congti
tuents. On account of this property, determinants of the form here trefited arn
called continuants, When each of the constituents By By + v 0 By, i fin, the line
above the diagonal) is equal to+ I, the resulting determinant is,{\sf-ﬁaple com-
tinuant. ¢*

\ -
»,.~ 36. Caleulate the determinant of the »'* order A\ ¥
1 0 1] (RN 2

B a I 0\ N
A\

Ap = 0 B a 3;\ o o s
o

B

¢ AlVe 1
wwytdbraulibrary org.in
A P " . r
whose anly eonstitnents which do l{OL anish are «, §, 1, ocoupying the diegonal
and the lines adjacent and par 18l to it as here represented.

The caloulation is readilieffected for any partioular value of », in a manner

similar 0 that of the lastiekample, by sid of the equation
& Ay = alpy — fAn s,

the values of A aﬁgi\ A, being o and a® — g, respectively.
By examininy the formation of the successive values of A, tho student will
readily ob's(rgé that the terms contained in the result are
L\

) 2n 25— 2 +
“:;\ a®, ot-2g, asaﬁe’”.aﬁr—x’ B,
N
“w;hph\n’is even and of the form 2r; and .
\ W
3 . - -
\, @Rl gar-1g, gte-dge | gpel gr,

when # is odd and of the form 2r + 1. -

For the purposes of a subsequent investigation, in which the results just stated
will be made use of, it is not necessary to know the general forms of the numerical
coefficients which enter into these expressions ; but such forms can be arrived at
without difficulty, and the following general expression obtained for Ay

Ap=at—(n—1}a® 234 (= 3)(r f).(?;-———z)aﬂ"*ﬁs _(p-8Yn—d)n_3) 5)?& ;:ﬂ%{n — 3)0.“’“ 8%+ &,
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B M b el yoniad 1 divided by another & of lower dimensions, t
riwthietent < nd gy deitient, and of he rewnaitiler, can ba expressed as det<.
thinanty 1 terngu of i i liecdenita of ¢ amed {1, .

Thee byt etpboyied in the following particular case ig equally applica &
esteneril. L £ g af the Gifth, ad £ rof the third degree ; the guotient aI-

vernatder caty fhey [ye representied s Dbl ;o

[ ‘fu s b ta, R rﬂxe + LAt + fy
Aliny, [er 3 i\
i Had® gt ey S S R I e 47 =gl a2 + e & @ -
2 X X
- . R . - \ Qe 4
Froms tha identis v QU n N
L § 7
-
we live the fulleswing e uationg 1 —. a
%
g s 'y, AN
&

fy - g’y 4 gy,
Gy e’y boqaty L gty
Gy g’y gty - qg?(}af‘ *os
ty - Gy’ “\‘g‘fc"; Ty
fhg o= .\\’\\‘]ea’a + ra _
Sulving by Arg. 144, Yur Fus ffp arC &{:’[1?(";;5(\.(1 as determinants by means of th =

i - FRea . 3 he other-
flr.ql, f-ll{S[\';\’(\)A;Iﬁb‘ﬁ&liﬁr@r%g]’gu}'ﬂ'?ﬂ{]!1_5_: the lirst three with cach of t.feam s
In suceession, we determine Tor Fiova. For exam ple, to find ry we have, fr *

first four cguations, 3¢
'[ @ 0 0 a,;\\\ e 0 0 @ |
‘e 3 : [
@y a, 0 ¢ i\c{i | ¢ ap 0 n |
\ ¢ =0, or @y, = I
a.r2 arl ﬂ'h‘ — | @y a4y #
| .
O . :
o’y df iy — g -k 1y | @'y @y o)
 § »

38. Find the gencral forms of the coeflicients of the guotient, and Of. the
remad d@g, when a polynomial of cven degree 2m is divided by a qll.:i;dra‘t:.lc-_
;&ng @+ az - B as the given quadratic function, we have the identity

q@_’?ﬁgn + mgEim-1 g i tm—2 doe s+ Bam-p® T 1= oo
N

O st ggeomes L Tam-s¥+ Qam—s) (4 + oz + B} + 7% + 7y-

) 2
4

Writing down the first » 2. 1 equations, formed as in the preceding example,
to solve for g, g, o1 -« - gy, it 8 easily seen that the valus of g» thence derived
is o determinant of the # order of the form treated in Ex, 36, bordered at the
top with the constituents LO...0 g, and at the right-hand side with
%or @y « - . ap. Expanding this determinant in terms of the lagt column, it iz
immediate]y sesn that any quotiont is expressed by means of a series of the
determinants of Hy, 36 in the forrm

Ir=tr — g A+ oty — &e. . L. Fouphe , LA,
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the upper or lower sign to be used eccording as s even or odd. To obfain the
cooflicients of the remainder we have the equationg

Bima + agun 2 + 10 = A,

Byam-s + 11 = oy

Expressing the volues of gam.s, gums by the formula just proved, and attending

te the reaults of Ex. 36, we derive the tollowing generul forms for vy and # 1—
~

Vo= dam1 + Aym a8 4 Ao o7+ . L L Aggnt 4 A gme, \\
1=dom + BuweB + Bam o8+ ...+ Bofnl 4 Byfe, .

pE
&N
in which the cocfficients A, F ave all functions of a, the highest power of a}:a an"y
\ \\\It-.oeﬂiciaut A or B being represented by the suilix attached to the couﬂi,c.ig')g‘t.“
RPN @ 11 the leading constituents of a symmetric detevminant be ;x]i\\incréased by
the¥dme quantity «, the equation in # ohinined by equaling to zepé\thu determinant
. 8o formed has all its roots reel. \
' Let the determinant of the #t order under consideration De denoted by A,, and
written in the form 79 .\
44z A R J
A
B ob+a V.
g S et
wwxg.dhf%ulibral‘y, g.in

Let the determinant olbtained from ‘this by erasing the firat row and first eolumn,
i.e. the leading first miner of A, ‘bg denoted by A,_1; again, the leading first minor
of Auwp by An2; and so om, ’tﬁébst tunotion A) obtained in this way being of the
form ¢ + 2. To these we'dd the positive coustant g =1, which may be regarded
us eowpleting the serigof minovs and cbtained by the sama process, since An is not
altered by affizing u.lns:t'rlnw and a last column coneisting entirely of zeronelements,
with the exception\g# the constituent + 1 in the leading diagonal. We have now
a series of # + L fgtlctions—
’\s‘ L, Apoly Anzy . . . Ag, Ay, Ay,
whose.ﬂ:egrees in & are represcuted by the auflixes, When + w is substituted for #,
thessigns are all positive, and when -+ e i3 subsiituted, the signg {beginning with
’Ro)ure alternaiely positive and negative. Hence if « be regarded as inereasing
\soﬁtinuously, n changes of sign must be lost in this series during the passage
from — wto + «. Now it appears by the thoorem of Art. 148, that a value of =
which cauges any function {excluding an, Aq) in this series to vanish gives opposite
eigns to the funetions adfacont to it on cither side.  ap rotains its sign throughout.
It follows, exactly as in (2), Art. 96, that = chunge of slgn can never be lost except
when # passcs through a real root of A, = 0. There must, therefore, exist » real
roots of this equation in ovder that » chunges may be lost during the passags of
frum —w to + oo,
Yo, 11. F



Fielerminants,

: the series, beir of Tesnie furne as ay = 0, haw all ite roots
T 1o .
= 1 *liat ench of thicar e ittt Is o liniting v equation (see Art. $0)
=0 el L " ’
he equilivt next ohove 1 2 the series; sinee, in order that
: v

ba Jost betwann A ttml Ay oat e Massage through exch of

Lt

iy .
ors of 1he fornier. the vale o A, muat chunge sign Letwean
PR

e of The eqniting A= U aay have equal roots, and by what
':H c}ved it appeurs thuet, wloen this equation hus » roots equal to a, the
) has #— 1 roots cque atb tooa, the quatlion A,.e = 0 hag » —21'Q0t-a
10y O \

nt hers discussed werurs in several investigations i pure and
e piven of the important properbypunder dis-

--:;1;L:1- 5, The proof h:
Lo frem Salmon’s Fligher et {Art. 46], to \fbiﬁh work the

sraols o the same therem.
rreid for other prooals o Q '\ R

e

toarr Wil

L ojush

stinluent Is reiw \
/
fe determinant of tho proceding example hay L‘Kmnts equal to «, prove

minor has r — 1 voots cqual 1o o, eyech sieonn] minor r— 2 roots

voer, a1 o LIl

s notation A, &, 4, .. . for thé\be’rm‘nts of the reciprocal deter-

<&

- the cquation

AR — rfs\ﬂn—’ L.

"V zcen, by Tu‘!)pt?'r tra.usptmtlcn‘s of rows and eolumnas, that every
raulibrary ergin,

At BEATY 1Y Hi 11@.[;19 vaol 7 — 1 times. Tt follows from the
Uowritten dhat the m:mmr F7omust contaiu this oot » — 1 times; and T
srit b represent any, “ﬁ;.t minor.

Lrad thae |'u[:\1ii.i01‘.§\'t11\‘tt ihe equition
(W
\ 2 -] P g
AW
N\ A b4a g | =0
7 N e+ T |

Traine i !
NOT must contain the double rout, we readily derive the
i1 1he iollowlng form;—

a ¥l W W
v 7 I
er i, S I"’""“']ing "

X5 :
1oy Ample are taken from Routh’s Dymemics of @ System

li, Art, 61.7
'::r;ll

r.['k't(’l‘:r] .
LA can Be altered 50 as to have any selected

1 ) . . . Pl Ity en
e ¢
Vel o TR ennlog (he h 2€ro, the deferminant remaining symmetrical.
A T R R 2 f.[‘,l_(_\'rn.l . " - . .
- SR ER It . nant obtained by putting = = 0 in the pre-

T uired to renove the conslituent g Mulliply
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sach constituent of the third column by & (dividing the whole determinant by 2 at
the eame time), and subtrast from the constitucnts so alfcred those of the firsi
column multiplied by g, Treat now the two corresponding rows in the same WHY ;
the resulting determinant is syrametrival, and in it g is replaced by zero. Lhis
proeess mey be applicd to a determiinant of uny order, Lo remove in succession all
tha conjugate constituents of the first row and column, and afterwards of the
remaining rows and columns, 30 ag to reduce the determinant finally to one, all of
whose constituents vanish except those in the leading diagonal.

o X\
43. Reducs the following determinant, of any urder, to a form in which “;LH\\
appear in the leading constituents only :— ¢ WV
:NQ\. s
a o+ & bz 4 ¥ 0z + ¢ . \ vt
ma+ s bwt ¥y mwedy . :f\\

v &
a3x + a's Bax + B3 ez +dy N \

. . p \\'

Multiply by the determinant reciprocal to (mbzq(. M) Tithe given deter-
minant Iz symmetricul, the determinant derive&\\f(oin it in this way will not ba
symmetrical ; but a different process may b‘c{umd to reduce it in that ease to
a symmetriea! determinant which will h vq’:@'qi'r, sgent in the leading constituents
only, viz. by removiny tho uoaﬁﬁci%\ﬁﬁ\?ﬁlhé?ﬂg 1 )g]ﬂlf'ﬁl)ﬁgf g"cinlﬂlgate constituents
in succession by a process oxuctly ar}a!&édﬁs to that of the preceding example. IE
the coefficients of # in the leading constitusnts of the reducod determinant should
all have the same sign, it may kgx;rovaﬂ, just as in Ex. 39, that the corresponding
equation will have all itg rgofs yeul.

44, Lot u determinant of the »™ order be divided into two rectangular arrays,
one eontaining u ros, ahd the other v rows {where g + » = s}, and let wy sums of
produets be fornied(by cperating with one array on the other as in the multiplis
cation of detepﬁné.nts; if then such relations exist among the constitnents that
&ll these sqm{of producis separately vanish, the determinants of order g formed
Erom thuiﬁrélt’ array ave proportional to determinents of order » formed from the
com;@%ﬁnnmry constituents of the second.

Lafix the ideas, we take a determinant of the fifth order, but the mode of proof
“ig'perfeetly general.  Let the doterminant

\/

% &z 2 & Oy
b b, by b, B
e N
wooomy omy omy @

¥ L Ys Ys ¥s
F2



68 Determinants,

be #plit hurizontally into two arrays, one of three, and the otherp of two rows; and
let the following six velations exist :—

Zawn =0, Zay = 0, Zhm =0, Iy =0, ZEnz1 =0, Sy =10,

If now A be expanded by Luplaee’s theorem, and the mipor determinants so taken
(23 cun readily be done) thet the BXPANSION 1§ written with all positive signs, 6.5, in
tha form 1 —

& = [ayhaey) {xwu} + {drharg} {'xggfa) + (alagq) (xgy;;) + (615245} (3‘334"4) + &u_, .\\\

it is proposed to prove that each minor determinant of the third order formed(fram
a . B | ¥ 4
the lirst uiray is proportional to its factor in the expansion of A so writietty
We use for tonvenicnes the following notation for the expansion lagt Wiitten—

A =LU4 M5 NN+ PP 4 &0 (0
o

Bquaring tha determinani A, muking use of the sbove rcI&tisHs,\repIa,cing by their
values the determinants obtained by squaring separutclyedeh of the component
arrays, and equating the two values of A* thys obtairgt wo have

7

(AL + MM+ NN'+ &e. ., =Ty A +N2-\l\§zé,\ DIVAEY  C R SN SRR
whence ) . - b }.\\ N
(LM — LMy +{LN - TN+ (:-}{;M - MNP+ &, =0,
from wllic}fﬂ-’é“hﬁwté"&“&h%g”y OT8. “:': N
L_al¥ p
P N TP :

45. Write down the 1‘el-.5ti4?ns\which exist among the minors of the second order
formed from a determinam'\bfvfha fourth order divided equally into twe rectangular
aays in the mannerof the'Tagt example, like conditions Leing fulfilled.

We take the ger}p’ri;;l;determinnnt of the fourth order

2N/ 5 2
RN 2 1 1 v1 1
O
\Y Tz &a [ da
N/ A= ’
§\ 2 b 0z dn

s By o dy

a\" . .
\ p#nd first expand it by Taplace’s theorem, As the expansion of such o determinant
tn terms of its second minevs is often required in praciice, the student is recom-
mended to accustom himself to write it with all posilive signe as follows :—

{B12a) (audy) + (cran) (Bydy) + {@1da) (cody)
+ (@) (hsea) + (Budda) (eaas) + {eedz) (wady).

The method of writing this down is obvious, the same arrangement being observed
as on ail former occasions where four letters were involved.
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By the preceding example, we have at once the relations
(bres) _ (o) _ (maBe) _ (md)  (Buds) ()

twuds) ~ (bads)  (esfs)  (Baoa)  (eama) ~ {ashy)’
provided the following four equations hold ;1 —

Zaiaa =10, Zmeg =0, Zagsa =10, Smay=0,

What is hore proved has an important application in geometry of thres dimen- .
slons with reference to the six coordinates of & right line. (See Salmon's Anaiyfi{\
Geometry of Thres Dimensions, 4th ed., Avt. 57 b.) A

It may be remarked here that it will be found convenisat to write uniformly
with positive signs the cxpansion of & detorminant of the third order, whifh'obenrs
8o often in practical questions. Taking, for example, the daterminm}t,(}btﬁ;ﬁed hy
erasing the last Tow and last columm of A, We write its expnnsioy{s\fu;}lo wt, tha
three letters being taken in eireular order:— ‘\ &/

{mbaes) = a1 {Bzca) + &1 {caaa) + &1 fasbgh \%

¢6. Derive the equations (3) of Art. 145, for obtainife tho ratios of # variables
from # — 1 linear homogeneous equations, from the gropesition of Ex, 44.

47, Express by detevminants the values of)&ll&‘; unknown quantities derived
from 5 set of given linsar equations by the Method of Loust Syuares.

The given equations, which ave greater inqyruber thas the unknown qnantities,
ara aupposed to have heen obtainedww,@g;‘jrkmibbaﬂryaﬁm{ilnexperiment; and
the numcrical coefficients which enj?%’ Into them, being consognently liable to
errora of observation, aro not knowsh with certainty. In sach cases the most
reliable values of the unknown 'g;uantities are cbtained in the manner about to be
explained by what is ca‘lludfchb‘method of least squares.”” Take, for example,
five equationa of the forfa ﬁ@'—]— by + o1z = my, g+ Bay b ooar = mz, &e., between
three unknown quantities #,y, 4. Multiply them respectively by ai, a2, as, ay, as,
and sdd; agnin byadybs, b3, by, 55, and 2dd; and again by 1, ¢s, e3, 4, 05, and
add. In this way}hé following thres equations are obtained ;—

R ’\” 2Eo® b pZed 4 Zme = Zawn,
,§~~" 2ZabL 4+ yE 07+ 23hier = Shmg,
R\ zEne 4+ yIhe + 230% = Zemg

flfﬁf;: which we have, without difficulty,
4\ ¥/

\ 3 o {Elbzcs) {150 + (@rdaey) (nradzeq) + reen t {mabycs) ('”‘3'5405}

(midasalt +  (mibeer)* ...+ (esbymg)t  °

with corresponding values for y and 7, each of thess values containing ten terms in
the numerator and ten in the dencminator.

48. Bhow that the valne of » given in the preceding example can be obtained
by first eliminating y and 2 from every set of three of the fve given eguations, and

thea upplying the method of least squares to the ten equations in # slone which
resttlt from the elimjnation.



CITAPTER X1V,
o &\
ELIMIN ATION. A N
150, Definitlons.—Being given a system of n dquations,
homogeneous between n variables, or non-homoge: é::rﬁ;; betweern:
7~ 1 variables, if we combine these equations in‘é\ch
88 to climinate the variables, and obfain. 8 équation B = O
containing ouly the coefficients of tho eg\uations, the quantity
L is, when expressed in 2 rational and imbegral form, called the
Liesuitant or Kliminant, QO
In what follows we ghall bp‘é});)cerned chiefly with two
equations involving one unkndin quantity z only, In this
case thedgashrEul 20" R5dents that the fwo equations are con-
sistent; that is, they are“both satisfied by & common value
of . We now pro e to show how the elimination may
be performed so as &3 obtain the quantity R, illustrating the
ditferent methods by simple examples. It is proper to observe
that the valug 6% arrived ot by some processes of elimination
may contaif\a“redundant factor. The method of elimination
by symméiric functions leads to a value of R fres from any
guch Eo!;v;}r; and we refer, thersfore, to the conclusion of the
dis¢ussion in the next Article for the precise definition of the
Besuliant,
\M} " Let it be required to oliminate & hetween the equations

a4 manncr

ad® + 2+ o= e+ War e =0,
¥

Bolving these equations, and equating the values of # so
obtained, the result of elimination appears in the irrational form

b \/ B = ae ¥ JSE ad
.__+—.__.=__;+.___'__.
a

a @ a
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Multiplying by a¢’ we obtain
ab —ah=qa «/6” —dd - /P e
Squaring both sides, and dividing by the redundant factor
7a’, and then squaring again, we find
B=4(we~ ) (d'd - - (ad +a'c - 200}

This method of forming the resultant is very limifed in ’\\\
application, as it is not, in general, possible to express by .;.n N
algebraic formula & root of an equation higher than the togIrJ:h
degree. Other methods have consequently been devisgd- for
determining the resultant without first solving the e@(itwns
We now proceed to explain the method of gl}m}natmn by

symmetric functions of the roots of the equatiend.
151, EEimination by Symmetrie &7 un&ﬁuns.—Let two
algebraic equations of the ™ aud p® d(,gtees be
o (@) = ap™ +r¢19~’”+ﬂ9~’“+ kg =0,
(z’)—bﬂx"Lbr””Lbr’“‘ e+ by = 0
and let it be required to ﬁ,ml\»tlm)mmhbmiyﬂb@uﬂlese equations
shonld have a common raot, “For this purpoese Jet the roots of
the equation ¢{z) = 0 be a,{\as, ...ty If the given cquations
have & common root, lt*\lﬁ Jnecessary and syfficient that one of the

quantities
lp(‘“})! Plady -0y Plan)
shonld be zer g;(;;",'.in other words, that the product
A7 blabla b @) - e
should.‘{hmi'sh. 1f, now, we transform this produet into a
ratign?;f' and Integral function of the coefficlents, whioch is
&y‘% possible, as it is a symmetric function of the roots of

\hé equation ¢ (z] =0, we shall have the resultant 1equ1ret]
Further, if 3., 8., ... 8. be the roois of the equation ¢ (z) =

we have
l!l (t’h) bu (_01 - ﬁ1) (0‘1 - ﬁz) - qu),
‘l,b i,tl-,;‘: by (I’l-,; - Bl) (az B ) Bn),

’JJ '{am, bﬂ (am - ﬁ ) @ — ﬁz . ("m Bﬂ)

Il

]
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If wo change the signs of the mn factors, and multiply these
equations, taking together the fuctors which are situated in the
same column, we find

W la)iblas) o d () = 1020 (86 (8, ... #(Bn).

We may therefors fake

"\
B LB ) 6 Bt 618 - bl (o) .. ey (1)
for both these values of B aro wtegral functions of {he" coef-
ficients of ¢ (2) and ¢ (2), which vanish only wi e‘d’;;p (z) and
¢ («) have a eommon factor, and which become /identical when
they are expressed in terms of ihe coefliclents{™

152. Properties of the Resullamt-..—‘(l). The order of
the resultant of two equalions in the corffigents is equal to the sum
of the degrees of the equations, the coefficients of the first equation
entering R in the degree of the -segoﬁf!,\ and the cogffivients of the
Sccond entering in the degres qfthe first.

This appears by reviewi’li;g the two forms of B in (1),
Art. 151 W drylibprgpg b Goy @1y « « o @y enter in the n??
degree, and in the s%ﬁmd form 3, &, ... %, enfer in the m*
degree. Also, if, May be seen that two terms, one selected
from each form, avé (- 1y"*ba," and a,*b,m.

(2). If theyrebts of both equations be ultiplied by the same
quantity p, tfa? resullant is multiplied by p™,

This.{svident, since any one of the mn fuctors of the form
ay— @béeomes p(ay - B,), and therefore p™ divides the rosul-
tandy > From this we may conclude thab tke weight of the resultant

. :i'&\t.;?é-?s, in which form this proposition is offen stated.

\ ) (B If the roots of both equations be increased by the same
quantity, the resultant of the equations so transformed is equal fo
the vesultant of the original equations.

For we have

1A =ab" 1 {ap~ Ba);
where TT signifies the continued product of the mn terms of the
form @, - B;; and this is unaltered when ap and (3, receive the
game increment,
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(4). If the roots be changed into their reciprocals, the value of
LB obtuined from the transformed equations remains unaltered, secepd
in sign when mn i3 an odd number.

Making this transformation in

L = alb™ I {uy — 3,),
we have RS
R = a4y m{— 1) I (e ~ ’(,3?) ; A
{enes . .. &m)"” (ﬁ,;ﬁg e ﬁn)"' 3
but C
L B
Qg Ly = (‘ l)m_, Blﬁz e B“ = (_ 1)“—\; 3
2o o ‘:bﬁ
substituting, we obtain O N
B = a8 (- 111 (a, - B, = (—\IJ}"‘”R.

Hrom this it follows that in the resgl@ﬁf)u of two equations
the coefficients with complementary g‘@ﬁkes of both equations,
6.8. Gy Gn; G G, &c., may ba Al interchanged without
altering the value of the resultait.

(5). If both equations be ‘s’g‘e{:}iﬁﬁ%%ﬂﬁg}%}jf%ﬁﬂd}mw transfor-
mation, that is, by sz&bstﬁf-a{{mg‘far 2

,~:\\ Az 4
,;\ '\\ m;
and each sz'nw&'e’,ﬁ;cfor multiplied by Ne + 1, fo render the new
equations integhdly then the new resultant R’ = (A" =Ny R,
To prove'this, we have

9
\’\\“ ¢ @) = air-a)@-a) ... (F-an),
N\ ) = blo-Bilz-Ba) ... (-Fa)s
N/ & - a, becomes (A - N ay) ( - ;C_t’—}\—,;‘?),

’ ,'39- -
&~ B" 1 ("‘_}\ﬁf'J (xniih’éj)'
Multiplying together all the factors of each equation,
@, becomes @, (A~ Nai} (A =Nay) ... (A= Nay),
bo B (A-XNBYA-NBa) ... (- DYCHR
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) ‘4 /-
Also, since «,, 3, are transformed into H—T~;-E, ke-—f
;\ - /\ Qy ;\ - :\ }jf

O~ X))
(A = Nay (A - N3’

ar — [3, beemmnes

whence

o &\
1", 11 {e, — 3} becomes @0, (A = Ay 1 {a, ~ B,)\\

p
N 3

that is, the resultant calenlated from the new forms @f~\¢ {#) and
Pl is ~\
LS S

This proposition includes the three for’eg.{;f?ng; and they are
eollectively equivalent to the present praposition.
P

. RS
153, Enler’s Method of Llimination. —When fwo
equations ¢(z) = 0, aud P(x) A 07 of ihe m* and ntt degrees
respectively, have any comuom root #, we muy assume
www.dbraulibrary opgyih

$(@= (= - 01 ¢ (),
L\
N = - 0 4ute)

where 5
N (@) =P o pd™ 4 L4
./

NY (@) = gt + P L g,
No/
$

thesK@}:}fibients being wndotermiued quantities depending on 6.
Wihidrico we have

«ad

o $(2) da(2) = ¢ (2) 4. (2),
"‘\ w4

\/:

an identical equation of the (m +n ~ 1)% degree. Now,equating
the coefficients of the different powers of @ on hoth sides of tha
equation, we have m + n homogeneous eguations of the first
degree in the m + # quantitics i, s . 1 . Py Gus oy « - - gn; and
eliminating these quantities by the method of Art. 145, we
obtain the resultant of the two given equatious in the form of
a determinant.
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Examrie,
Bupposo the two equations

gzt tdrde=0, mP+br+e=0
to have a common root. We have identioally

(1% + g2} {a2® + br + ¢) = (pz + p){(a2® + b1z + o)y

or (118 — pra1) 2% + (B + 20 — pidy — pamr) 2?
+ (16 + q2b — gy —pab)w + goo — parn = 0. . {\
Equating to zero all the coefficients of this equation, we bave the fonr homg- N
gencous equations ¢\D y
q1n = P61 =90, NS
q16 + gua — prby — a1 = 0, Ao
beper — by = 3
q1¢ + q2b ~ 1oy — peby = 0, ’x:\\
gt — oL = 03 ~\
and eliminating p1, y; 1, g3, We obtain the condition for & edwmon ot in the
form )
a 0 @1 o y ’\\"
'’
Boa B \N
A Mo.

¢ b [} b}

N
0 e A
www%dgmulﬁ)r ry.org.in
The student can easily verify that this result is the same as that of Art. 150,

~

154, Sylvester’s Rialytic Method of Eiimination.—
This method leads tootht’;\sama determinauts for resultants as
the method of Enjerjust explained ; but it has an advantage
over Euler's mothod in point of generality, since it can often be
applied fo formthe resultant of equations involving several
variables. %

Sllp@‘sté?v’ve require the resultant of the two equations
AN 9 (@) mal™ + a4 L = 0,

@

ONY (@) m b b b L+ By = 0,

s 7
N,

N\ywe multiply the first by the successive powers of =,

AR A
and the second by 2™, ™2, ., . o*, 2, 2%,
thus oblaining # + » equations, the highest power of # being
m+n—1. We have, consequently, equations enongh from
which to eliminate ™7, g™ 2% o considered as distinet
variables,
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Bxavnprms,
. Find the resultant 2 of o quidntic equations
azt iz b e =10, bty btz 4 9 = (i
We have axd 4 bat g oox = 0,
ar*4 x4 ¢ =
mE o+ bty ooz
@1xt L b + gy = 0;

- o . N ,,:;’
from which, eliminating 43, 22, 7, we zet the anme determinant gs in 1;'“@““‘11‘15
‘®

i
>

.\i\

Article, colutins now TUpLelng rows ¢ A
A\
i a E c 0 .\\ 3
' 4 \F {
0 @ b ¢ AN
R= R
a1 & e 0 \

o "4

0 a1 b gt
- L AN
¢ Form the resultant of the two equatio 2\,
U=sa+tme+ r&zx'ﬂ-l-&“ﬂ-’ﬁ +agxt= 0,
Fom= By + bz 4 bndop bia® = 0,
. h
Proverdngusdhtauliby. %%Eﬂigﬁﬁﬁ
& tfl’:‘az w3 a4 0 0

»
...B\\ﬂu ] #: a3 €y 1]
o\.J

i\\\ﬂ 0 @& m @ a [

EB=| b omoa s o0 0 g
e 9 %ok b B o0 0
N
:"\{' O 0 & M b & 0
NY
,Q\ 0 0 0 By B &y B

..\\.If will be observed that B eontains the noefficients of Fin the 8rd degree, and
”\j those of ¥ in the 4th degree; also 2yt is o term in 2 {see (1], Art. 152).

4 155, Bezout's Method of Elimination.—The general

method will be most easily understood by applying it in the
first instance to particular cases. Woe proeeed to this applica-
tion—(1} when the eguations are of the same degree, and
(2) when they are of different degrees.

(1). Let us take the two eubic squations

ax® + br* + e+ d =0, @ + b + e+ d, = 0.
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Multiplying these two equations successively by
a and a,
aw+b 4, ar+b,
ar'+he+e ,, ar®+br+to,

and subtracting each time the products so formed, we find th%\
three following equations :—

(udy) 2" + (aer) o + (ady) = O, i"‘;. N
(ac)a® + {(ady) + (ber))w + (bdy) = 0, \\ )
(ad) & + (bd) & + (cdy) = &\

By eliminating from these equations w’, m, as distinot
variables, the resultant is obtained in the fofm of a symmetrical

e

determinant as follows:— \S

o

@) (e (ad)
(aCI) @%*ﬂﬁ%&hb(’g@ otjd.in
(@d) ) (o)

To render the Iaw\}f formation of the resultant more
apparent, the folld ’}q;lg mode of procedure is given :—
Let the two eguations be biquadratics, as follows :—

art+ bx“+caf’-f— dx+e=90, art+da’tost+ dat+e =0;

whene mng Cauchy’s mode of presenting Bezout’s method,
we ha\"a ]19 gystem of equations
\,, 4 _ bPreat+deie

ap + b e +de + e
ax+ b e+ dwete

ax2+6x+c da + e

4+ b + 6 d,m +e’

wt + b2 v ex + d é
e+ b’ +ew+di &




\> (ae:) (@i} (8) (¢fh) EQ:’?‘J
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which, when rendered integral, lead, on the elimination of
2, &z, to the following form for the resultant ;—

(@) (e, (ad)  (ae)

{wer)  (ady) + (hey) (e} + (bd))  (de)
(@) (aer) + (bd)  (Bey) + (ed)  (cey)

(0] (be) o) () | W
If, now, we consider the two symmetrical determina:ji;ts :
| (e (aey) (adi)  (an) x \\“
(ac) (ad)) (ae) (b)) ‘ (ben\\(5d) I
(ady) (ae) (be)  (er) ’

(38" (o)
x:\ v
(ae) (b)) (o) (dey) R

N Y
the formation of whicl is at once @s}érent, we observe that R
1s obtained by adding the constitients of the second to the four
central gonstihentstofuthodity
Similarly, in the case aftthe two equations of the fifth degree

ax® + égs‘\\:cxa +dat e +f =0,

al:z'\#'\}‘{& toa + d@ + e+ £ = 0,
the resultaut;;ié"ﬁbtained from the three following determi-
nanfs - ”
(@) (ad) (ae) (af)
(Q% (add) {(ae)) (afi} (Bf) (Ber) (bd) (Ber) |
"{l’;‘(mi;) (aer) (af) (BR) (eh) |y | (b)) (Be) (ce) |5 {eds),

(ber) (ee) (des)

@) R ) @ (o |

by adding the constituents of the second to the nine central
constituents of the fivst, and then adding the third to the central
constituent of the determinant so formed. The student will
have no difficulty in applying a similar process of snperposition
to the formation of the determinant in goneral,
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(2). We take now the case of two equations of different
dimensions, for example,
ar* + bt + e+ de+e=0, a@d +dhe+ea=0
Multiplying these equations successively by
2

a and  a2f,
wmr+ b, (ex+ By, A '\\

and subtracting each time the products so formed, we ﬁnd ﬁle
two following equations:— ”
{ad.) a® + (ae) 2® — dae — ey = 0,

(@) @ + {{bey) — danf @ ~ {dby + eay) @ =6l O,

.

)
\

,x:\\

1f, now, we join to these the two equatwna

a@® + b2t + e 1?\
[
a + b N 0,
we shall have four equathyﬁr\hgbm%.m aqugbéql,l, &%, a®, x ean

be eliminated ; whence we Gﬁtaln tho resultant in the form
of g detemllnd,nt as followé\v—
. X
‘ (adi) ¢ ({&1}3 da £t
(ae\ (Goy) —da,  dby +en,  eby

:‘éﬁ; 61 -t 0
\ i 221 ‘_bl -

'l‘hls\ﬁ‘etexmmﬂnt involves the coefficients of the first aqua-
t10n~\1n the secoud degree, and the coeflicients of the sesond
eqﬁaﬁon in the fourth degree, as it should do; whenee no
é’franeous factor enters this form of the resultant.

We now proceed fo the general case of two equations of the
m* end af* degreos.

Let the equations be

(@) = 0™ + @™ L@t L 4y = 0,
Yo = b + b 1 0@ 4Lk b, =0,
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where m>n; and lot the second equition be multiplied by 27—.
Wo have then

[J'_,owm a f);.‘.tm" 4 62;1""_’“ L+ bﬂ:.‘:”‘_" _ 0’

an equation of tha same degree as the first. Thig equation has,
however, in addition to the » rools of (@) = 0, m —n zero xopts ;
8o Lthat wo niust be on our gnard lest the factor am""",{ix}the
result of substituting these raots in ¢ (2)) enter the fothief the
resultant obtained, I'rom iheso two equations Wa’fieﬁive, ag in
the above case—(1), the following 5 equationg.%vﬁ

W

DL O™ x o, NO

by Bk bt g g
>

a4t + a, (RN T e I &

b+ by bamt g fgmy .:{gx‘ﬁﬂx"‘"’"

B
o bt HIPTav QRN 4y amn 5 g 2Pk g

box™ ™t 4 bt 4 o By D™

which, when rendestd integral, are all of the (m — 1) degree ;
whence, elimjuating a» 272 | »as independent guantities
between thesen and the m - equations

N4

K ;\’ba‘z“"‘ + 5@t g fgrs o = {0,
' Q\i”} bt™? & hiad 4 = G

\”.
<\M\,; b+ b+, 4+ b, = 0,

wo obtain the resultant in the form of a determinant of the 7t
order, the coefficients of the first equation entering in the degree
n, and the coefficients of the second equation entering in the
degree m; whence it appears that no extraneous factor can
enter; and that the resultant as obtained by this method has
uot been affeoted by the introduction of the zero roots,
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It B be the resultant of two equations ¢(2) = 0, ¢ {2} = 0,
whose degrees are both equal to m, the resultant R of the system

Ap (@) + mb() = 0, N (2) +pY(a)=
is Ayl = Ny R
for each of the minors (s, 8,), which in Bezout’s method cou-
stitute the determinant form of R, becomes in this case

Adp+ ube, N+ 208 | N ; \\
ot by Nagspty | T OE T XR) @b &2
whence = (Ap' - Au)™E, since R is a determmant of
order ., 95\

156. Other Methods of Elimination<We conclude
the subjeet of Elimination with an acoount of a method which
Is often employed, but which has the dlﬁ&@\(sﬁltage of giving
the resultant multiplied in general by extrtneous factors. The
process about to be explained is ur’suzﬂly equivalent to.that
usually described as the method of th\e‘greatest coOmMOn Measure,

In forming by this methpd, ‘tb@mqmﬂmt ploteihwo quadratio
equations
M+b$+cr\ﬂ, alﬁzi'b]x'l'ﬂl—-o,
we multiply these equdtipns successively by @, and «, ¢; and e,
and subtract the Hrod\ucts so formed. We thus find the two
equations p
P \% {ab) @ + (ae)

0,
" D> wi(ae) a4 (be)] = 0.

Obs@mg that the value zero for # does not satisfy both
the g\wﬁﬂ equations, we may diseard the factor 2 from the second
oft the equations last written, and thus obtain the resultant
w;thout any extraneous factor in the form

(e} = (ab) (be)) = 0.

As the degree of this expression is four, and its weight four,
it is a correct form for the resultant,

To form by the same process the resultant of the cubic
equations

wr+ bt +ex+d=0, o+t teox+d =0,
VOL. 1i. &

Il
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we multiply these equationg suceessively by g, and ¢, d; and d,
and subiract each time the Products so formed. We have then

(eb)a® + (ae)) w + () = 0, (ud)2* + (b )+ (ed) = 0. (1)
Now, eliminating # between (hese two quadraties by means
of the forniula abave obtained, wo find for thejr resultant

{(ah)  (ad)) (ab)  lacy) {ae)  (ed) A

AN\
(ad))  (ed) (o) (bd)) (bdr) (ed),

an expression wloso degree is 8 and weight 12, {p plece of
degres 6 and weight 9 whonce it appears tha ’i’&‘oughf: to be
divisible by a factor whoso degree is 2 andWeight 8. This
factor must thevefore be of the form 2(6a) + m(ad). We
proceed now to shiow that it is (vdi); aud'to find the quotient
when this factor is removed. ‘\ v
For this purpose, retaining Loily* the terms which do not
directly involve (ad,), we hau:ei:,. ’
() ecs) [ (abMed) + (ea) (b)),
which is divisiblo by (frr{,’",’ﬁncu
(be){ad) ¥ (em)(bit) + (ab)(ed) = 0.
Expanding th.e'}lgtorminants, and dividing off by (ad.), we
find ultimatelyiths quotiont
A@)° — 2 (ab) (cdy) {ad)) + (bt} (ea:) (ady)
NFAea, ) (edy) + {ab){bdy* ~ (ab)) (D)) (dey)s
which,/ }:}Yng of the proper degree and weight, is the resultant.
\I}%m procced in a similar mannor to form the resultant of
{we biquadratic equations, by reducing the process fo an elimi-
Mation between two cubie equations, we shall have to remove an
~ extraneous factor of the fourth degree, which is the condition
that these cubics showld havo a comamon factor when the bi-
quadratresvirbmewHith 10584% derived have not necessarily a
common factor; and in general, if we seck by this method the
resultant of two equations of the degree, eliminating betwoen
bwo equations of the (x— 1) degree, we shall have to remove an
extrauecus factor of the order 2 — 4. This method, therefore,

]
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is inferior to all the proceding mothods; and it cannot be
oonveniently used exeept when, from the nature of the investi-
gation, extraneous fastors can be casily removed.

157. Diseriminants,—The discrimingné of an equation
involving a single unknown is the simplest funetion of the
coeflicionts, in a rational and integral form, whose vanishing
expresses the condition for equal roots. We have had exam Rles\
of such functions in Arts, 48 and 68. 'We proceed to show
that they come under eliminants as particular cases. \V

I an equation f{z) = 0 has a double root, this, i@b‘t must
occur onee in the equation f'(z) = 0 and subtmetipg'm (x) from
uf(#), the same roct must ocour in the equation &) — af (z) = 0,
This is an equation of the (n - I}* degred'in «; and by
eliminating  between it and the equatigh(f*(w) = 0, which is
also of the {# — 1} degree, wo obtaiyl.\a;}unction of the coeffi-
cients whose vanishing expresses the wondition for equal roots.
The degree of this eliminant in thgicéé‘ﬂicients of fle)is2(n~-1);
and its weight is % (s — 1), e ntlyrdodilseery loy geamiving the
specimen terms given in section (1), Art. 152, Expressed as a
symmetrie function of“th\e roots of the given equation, the
diseriminant will be ¢he’ product of all the differences in the
lowest power whieh tan be expressed in a rational form in
terms of the gogfficients. Now the product of the squares of
the differen ‘;.‘t\]'(uI — a;)" can be so expressed ; and sinee it is
of the 2 (;z»S)"‘ degree In any one root, and of the » (n — 1)%
degree Annill the roots, it follows that the discriminant multi-
plieg by a numerical factor is equal to 2,V I {a, - a)%
~ \}f the function f(z) be made homogeneous by the introdue-

Ntien of a second variable #, the two functions whose resultant is
the discriminant of f(z) aro the differential coefficients of Jlx)
with regard to # and y respectively. In the same way, in
general, the discriminant of & function homogeneous i any
number » of variables is the result of eliminating the variables
from the # equations obtained by dilferentiating with regard to
each variable in turn,

g 2
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which may also be written j

already obtained in Are.

1. Find the discriminant of
aprd 4
We havo hiere to fing the

dgr? 2o 4 0y = 0,
a12? + 2a.x 4 ag = 0,
The condition for o common root is, by Art, 150,

4 {1y - 1% (wraq — a2

The functiem of the eon

Tt can be easily verif
42,

2. Express as a deler

£

‘fetents here oltained is th
m thy form of o determingh

Llimination,

Examrirs.

Azt dagr 4 ay = 0,

eliminant of the two equations

. \{\
>

N

3

¥

z"\\
N/

=‘0:~X‘ i

{Ei';\re the disoriminant,
5 follows, by Art. 154 :

~ {a0as — ayaq)t

-~

N

N .
ed thag this value of the diseriminant fs the sams as that

R
N

@t the discriminans of the biquadratia

gt + e + Baszt + daux + a4 =0.

#

We have ‘nery.t:himinate # from the equations
O
./

{

AN/
{ ;\Qt'

%ﬁ@}éﬁ method of Art.

AN

0088 + Fa2? + Baps 4+ @z =0,
2?4 835 + Saar 4 = 0.

154 the resultant ia

\ % Bm1 Fay a3 0 0
=3
{'\3“ 1] @y Bay Seag a3 1]
"\ -4
\/ 0 ¢ @ 3ur 843 ay
a1 3w 3ag @y 0 [i]
wiww dbra hlﬁ'aryiz?rg}j}?z Bag ¥y 6
0 1] 1 Bay 3az a4y
This must be the same ds I 377 of Art, g8,

3. Express the diseriminant of the guurtic as a determinant by Bezout’s method

of elfmination,
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4. Prove that the diseriminant, A, of the equation
U=aem  bym 4 pgm a,
where r+y+=e=0,
mey be obtained by rendering rational, in the form A, = 0, the equation
s <N\
=0; A \

N

X L
(5(;)»3—1 + (ga)mwl + (a;)Jm—

=

w

and enloulate in particular the values of Ag, Ay, Ag. 2N\
When z i3 replaced by its value from z + % + z = 0, the given functio‘n‘ W oon-
taing two varfubles, and the discriminant ia obteined by eliminating a:{ﬁﬂ?y from
N
a£]-= G and _D_E’_O' K 2\
8

der dy

6. Prove by elimiuation that J = 0 Is one sonditien .fo\rJthe equality of three

roats of the biquadratic of Ex. 2. P d
Sinee the triple root must he a double oot of O
N
Us 21 age® + Baya® 3:133:‘\&.}!3 =0,

|\

< R
and therefore a single oot of @2 4+ 2292 %3 = 0} and since it must also be g
single mot of wiwwdbraulibrary.org.in
s cxoxg.-t«'?slx +az =10,
K\
R\
Ui=2'Th + 25625+ 2anz + ag) + 502 + Pty + 0y

it follows from the identity

that the tripls vaot must .be;} oot common to the three equations

\ ’(/M aa® + 2me + @ =10,

N a1z’ + 2auz + a5 = @,
&/

\J/ do? + Dagy 4 4y = 0.

Hengs tige'\}ondition
LY : @y ay az

NN
a\" Y 7 s =J=10

/ 2 G @y

8. Prove that the discriminant of the product of two functiona is the product of
their diseriminants multiplied by the square of their aliminant.

This appears by applying the rosults of Art. 151 and the present Artiole ; for
the product of the squares of the differences of all the roots is mads up of the
product of the squares of the differences of the roots of each equation separately
and the square of the product of the differences fovmed by taking each root of one
¢quation with all the roots of the other.,
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158, Betermination of a oot common to two
Lguations.—1f £ be the resultant of two equations

U= o™ 5 ™ + oo 4ty = 0,
Ve b + by 4.0 4B =,
and e any eommon root, then A
\
ol JdR  JR A
v_(—{f_l,::ff_fzizi%::&o. i"‘f“x

i it dRi "
day  duy ity .\‘.;

To prove this, we first show that functmns\(p (#) and ()
ean be obtained such that B = Ug (#) + PANZ), namely, when
Uand V are niultiplied by ¢ («) and Q{z ), respectively, and
added, all terms involving o vanisli identically, Take, for
example, the form of R given forgbwe functions of the 4™ and
3™ degrees, respectively, in By, f? Art. 154, Multiply the
second column by , the ihusd by @, &e., and add to the first
column, thus obtaining T, .BU.? U, V &V, 2*V, &* ¥ for the con~
stituents of the first column The delerminant when expande.d
takes then the form \E}@ (#) + Vi (), where ¢ is a quadratic
function, and ¢ &bubic function of . This mode of proof can
be applied to &hy two functions; and it will be observed in the
general case that ¢ and ¢ are of the degrees n—1 and m — 1,

respectw,éiy ‘the degrees of U and ¥ buing m and . We have
ther

OrQ
,'\\ =0Ty + 11 ;
A an
'Wllence e = il + U i
day a’f p day
diR = g 4 fM; ;
(E(JPH drrpﬂ

WW W dbratfl"i]bl ary.org.in
and when a is a common root of the equations ¥=0, and V=0
we have, substituting this value for  in the preceding equations,

dlff dR

which proves the proposition.
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A double root of an equation can be determined in a similar
manzer by differentiating the diseriminant A.

‘When the cquations =0 and 7 =0 have two roots com-
mon, the first differential coefficients of R with regard to ay,
Zpn, &e., vanish identieally, and it is necessary to proceed to a
second differentiation. In this case the common roots are given

\\
as the roots of the quadratic equation A
& n ) “\‘ N )
_IE _9 &R o+ fsz:O, .&w}
eyt day ditpe detyn® AN

as is easily seen by differentiating the value of Réﬁiz}ve ’given,
when the first member of the equation last writ‘ﬂan is found to
bs equal to

& .
( PP S —?Pi)zn

dfz,, digidityn dapn®

(STt o 2y

S gy dipa’

an expression which vanishes when.elther of the common roots
is substituted for .

A similar proocess “'Ill“a}ap]@blguﬁhﬁggysgpgﬁhree or more
¢ommon rocts. Fa

The examplos whl@h follow are given to illustrate the
prineiples contdmed\\m the foregoing chapter.

A%/

O Exavrres,
x:\“'
L. Eli%ﬁ‘m'tb’x from the equations
L\ ar + e +e=10,
K
N xd = 1.

w\ j{ultlplj, ring the first equation by &, we have, since #* = 1,
/ dtexta=0;
and multiplying egain by %, we have
et ax + b= 0.

Eliminating ® and & linearly from these three cquations, the result is expressed
as a determinant
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If the method of symmustrie [unetions {Art. 151)

ba employed, and the roots of
the second equation substituted in the first, the resul

taut is obtained in the form
(@ + &+ 6} (ae® + ba + ¢) {aw + bu® + &)

2. Eliminate similarly = from the equations
ertt bt L fdube=0, #=1.

‘The result is & circolant of the fifth order, chtained by & process similar te €At
of the lust example. By sid of the method of symmetric functions the fivgfactors

can be written down. An analogous process may be applied in geue{a‘h.ff)x any
two equations of this kind. i:}

3. Apply the moethod of Art. 153 to find the conditiona that K&ﬁm cubics

plejma® that +oxd =6, ':’(,\

Yir) = B+ e e+ S AN

shonld have two common roots. AN
When this is the case, identical vesults must.bé:t;}'taiued by multiplying ¢(=) by
the third factor of Y (), and ¥ (2} by the thi@\\f;a}-}or of ¢ {#). We have, therefore,
W+ Ky (2) % Do+ )y o),
where a, # 5(«/,’ e é;"d i fb‘iﬁ'%‘ég‘(%‘fgﬁ{ iLiT_IfilieS. This identity leads to the equations
J\'q:»’; — ag’ =0,
R .{\‘b +op'g— A — i’ = Uy

, 280 At @l — Al — b =0,
A N+ ple —Ad - ud = §,

a
»

Wé =0
AN/ . inants
Elimipafing X', &', A, p from cvery four of thesa, we obtain five detarmlnan- >
whoseyoaxnﬁsh:[ng expresses the required conditions, There 2  convenient 1?ota.f101’1
in yghtesuxpress the result of climinating from 2 nunber of equations of this kind.
In\he present instance the vanishing of the five determinants is expressed ns
sdoltows :—
NS

PR -] & ¢ i o
)

N/ 0
a ¥ ¢ &
i o ¢ ¥ 4 &

4 & [

= B

the determinants being formed by omitting each eolumn in furs. It should be
observed that the conditions here ohtained sre equivalent to iwo Independent
conditions only, and it can be shown that, when any two of the determinanta
venish, the remaining three must vunish alsp,
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4. Prove the identily

a3 2af a*
wd  efta’8  BE = (of —a'8)%
| o' 248 a*

This appears by eliminating # and y from the equations
wr+ By =0, a% + B8y = 0;

for from these equations we derive )

(wr + Byt =10, {ar+8y) (a2 +BY) =0, ('z4By)=0. "\(’,/:‘

T]:LB determinant above written is the result of eliminating 2%, oy, and y& frbﬁ:l the
latter equalions; and this result must be a power of the d.etermmanf\dzmved by

eliminating #, y from the linear equations. \s
6. Prove similarly RS
o? 3a’3 8ap® B8

oM
e &*B -l 2un'B 2aff + B 92\13{..
g

oe'® &*8 4 Zaad' B 2'BE + aB’? Q\ﬁ.ﬁ'g
&8 o2 ‘Br a‘ﬁ.‘?‘ ﬁ's
6. Prove the result of Ex. 1%:\Bw58t;}38ﬂ¥15‘11&?{§:"517g i A 4y drom foar

equations

= (af’ — B

Aa ‘“ AB+
e = ' = B 'u &.B-

i’(&p" TAEt e

connecting the variables mskgnmgraphlc transformation,

7. Given ) U= Au? 4 20ue + 0%
', :"' V = AW + 2Bup + 08,
NS/

N7 w = az® + by + oyt

'S = ad® + 2y + I,
4
determis@%e resultant of ¥ and ¥ considered as funetions of 5, p.
i..éiﬁ('?e U = A4{t— at) {u— ),
o\ Vo= d'(u—dv)(u— B,

b 3

\ﬁ U and ¥ vanish for common velues of &, ¥, some puir of factors, ag u —av and
# — o'v, must vanish; whenee forming the resultont of @ — a» and # —a'¢ and
ropresenting the resultant of w and v by R (¥, ¢}, we have

Rix—an,v—av) = {a— aVPE(u0);
and multiplying all these resultants together, we find
Bl Vi) = A4 2~ a8 — B (e — BB - &) { B (m, )},
R(Tey Vo) = [E(U, FI1*{E{n, ) }%

ar
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§8. Prove ihat the equation whose roota are the diff

erences of the roots of 1 givers
equation f(2) = 0 may be obtained by cllmlmtmE x

Irow the equations

F@=0 fio) 1+ AT g+ 7 @) 5 3t &e.=0;

and delermine the degree of the cquation fn 4 ¥ (ef, Art, 44),

9. Eliminate 2, », z from: the cquations

e &\
2Ly+e=0, \\
ays + bax 4 cxy - e\
¥ 3 ."\\ /
aySa® 4 bt ety ), \/

Tuking the frat twa equutions along with un seszmed ]1;;‘\&; equauon with
arbitrury coefficients, viz., \\
\"
K7\
WA Bt et g (- jur-l (B—e SN (o—a-Hau=0, (L)
.\\ /
which must be equivilant to tho equation O

AT+ py + v = 0,

and climinating «, ¥, & we eusily ohtain

o\ - 2)
(A + wgn + JI’ZJ.! {'?\T«g Yoy vzg) = 0, ¢
wiw.dbraulibrairy.or g

where v1, w1, 71, 74, 42, 2 are the ot\H} systems of values of #, ¥, ¢ common to the
first two of the given equations, 8y b stiluting these values in the third of the
given equations, we have "\

E = (a3 +{éz P51% + exnty®) (agadagt 4 rlued 4 exstys®) 3

and reducing this vilue Bf B by meuns of the symmetric funclions determined by
the corparison o )’hev equations (1) and (2), we find

w\ 8 = 4p% 4 24 2Ty,
where i"é{' D=4 B o 2B - 9 2ah,
{\ 3 g =abe(e +b4qg),
...\’:::v ¥ o= qihlel,

~\.

A

W IEW, ¥V, Bare three given functions of # of the degrees gy m 4 — 1,
respectively, prove thut an identical relation exists of the form

RW = Up (o) + ¥y (a),

whero ¢ (x} and y {z} are functions to be determined, of tho degrees n — Tand m— 1,
respectively, and R is the vesultant of I and V.

11. Verily the results of Art, 158 by differentiating the value of B given in
Art. 151,
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CHAPTER XV.

CALCULATION OF SYMMETRIC FUNCITONS. SEMINVARIANTS ANDNM
SEMICOVARIANTS, A\

\
N
L 3}

159, Waring’s Giecneral Expressions for s, and p,,,—
The most fundamental proporties of symmetrio fuue@s\ls of the
roots of equations have been alrcady diseussed((}rts. 27, 28,
and Chap. vin., Vol. 1.}. In the present chayber we add some
miscellaneous propositions which may eften be used with
advantage in the caleulation of symmgtric functions. The
general expressions, due to \Variqg‘},)\eferred to in Art. 80,
will first be givon :— www.dbrdthibrary. org.in

(1) Geieral eaxpression fgﬁ‘fé; in terms of the eoefficients
Dy Doy o oo Pu Of G equativiiNof the n'* degree.

LN\
We have QO
4 | = *
Gar) - 3
¥

—logg(l+ply+...’l\ i (P + P+ oo + Do)
N =1

IR 1
= 8,y Tﬁs;ﬂé L A REPR Rt M UAh {Art. 79).

Now, making use of the known form of the coefficient of 4

in th@}xpansion of {(puy + Pty + » . - + Puy™)" by the multinomial

) ”t\h?éﬁ’ern, and comparing coefficients of 4™ in the above equa-
\Hon, we find

‘S'm:z («DyrmD e+ ra+ ...+ 1)

¥ L .. nr”
Dt ) D+ 1) oo D 0o

iz whioch Fid iyt et Py,
Pt 20 Bt .. B =3

and r, 74, ¥3, . . . 7y are to be given all positive integer values.
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92 Caleulation of Symmetric Functions.
ze10 Included, which satisfy the last of these two equations,
Also, ropresenting by »; any of these integers,
D+ =1.2.8...9,
with the assumption that I' (1) =1 when » = 0.

(2) General expression for any cocfficient py, in terms of the

snums of the powers of the roots s, 85, .« o . &y, ‘ {\
N\
We have O
Liptoet pmt/™ + o4 Py = a1, g%, eriV"%l“.;. J
~Jdert, 80Y.

When the factors on the right-hand side, ﬁf\}hi.s squation
are developed, and the coeficients of 4™ on both sides compared,
we find, employing the notation of the I{st- example,

RS PR €a s a T
(—I’,l z \'Q,\Slgé22>l-.{f’nﬂi

L) Tre+ 1) . NP + L) 27237

= =
o=, s
in which I ":&Bfa—uuﬁhpﬁm‘g‘giﬁﬁ‘.gwen all positive values, zero
included; which satisfy tharequation
o+ 2;::{ }‘31*3 Foua Wy = M
'\
160. Symugct@} Functions of the Raots of two

Equations.—INit be required to calculate a symmetrie func-
tion involvingthe roots ay, az, a5 . . . am  oF the equation

Q¥4
,'\:‘Mx) =ag”™ + 4™ @™ L+ oy =0, (13
alo&{t}'}ﬁ?h the roots 3., Bz, oy . . . Bu, of the equation
O
S B by by b0, Q)

ad
NS

wwe proceed as follows :—

Assume a new varizble ¢ connected with # and ¥ by the
equation

{=Ae+ uy;

and let y be eliminated by means of this equation from (2). The
rosult is an equation of the a% degree in # whose coefficients
involve A, u, and ¢ in the »* power. Now let # be eliminated
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by any of the preceding methods from this equation and (1}.
We obtain an equation of the mn** degree in ¢, whose roots are
the mn values of the expression Aa + uf3.

If, now, it be required to caloulate in terms of the cosfficients
of (%) and %(y) any symmetric function such as 2a?{37, we form
the sum of the {p+ ¢} powers of the roots of the equation
in £ We thus find the value of =(Aa + pf3)7*? expressed K\“
terms of the original coefficients and the several powers of X
and . The coefficient of APu? in this expression will, i.ﬂrms]l
the required value of Sa?3¢ in terms of the cogjﬁménts of
¢ () and +f (). ’

If it were required to caloulate symmetrie, fmldtlons of the
roots of three equations, we should assume

¢=Ar + py + vy \'
eliminate #, y, =, and proceed as befgre. This method therefore
applies whatever the number of eqﬁmuons, and by making the
cosfficients @, = b, = ¢,, &ec., wé Mall back on the symmotric
functions of the roots ofww’é\ﬁﬁ’l’é PR CRERAy caloulated.

161, €alenlation by Sums of Fowers of Roots.—DBy
aid of the following dxgmentlal equation, connecting a function
of the coofficicnts @nd its value in terms of the sums of the
powers, symmeta'le}unctmns can often be calenlated with great
taoility :— o™

d 5 1/dF  dF ar

P o Bs » v P} = (;’-E' +p1;(;2;;+ ot Pus @>

prove this equation, we take the equation (1) of Art. 80,
addh differentiate it with regard to 3. Comparing coeflicients
\3 of the different powers of y, we have

g1 dyw_ 1
r

r

tipg . _
& " 0, when ¢ <} T
and gubstitating these values in
a aF dp, dF dp, dF dp,
O A DA

we have at once the equation above wrilten.
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94 Caleulation of Symmetric Functions.

ExaxpLes,

1. Caleulate the value of the symuetric funetion  Saas®as®a®  of the roots
of the equation
4Pl f gt L L4+ py =0,

Knowing the order and weight of any symmetrie fun vtion, we can write down
the litoral part of its value In terms of the couficieuts. Here X is of the second

order and itg weipht ia eight; hence ~\
E = dupg 4 Oprpn + Lpepr + fapsps 4 fapdt, A \
& N ' 3
where fy, #1, £y, &e., Are numerical cocflicients to be determined. ~\

R e
Torms such as pepi®, paprivs. psp1?, &e., although of the ngl{t weight, are
of too high an order, and thevefore cannot enter into the expressi@’fb.r . Agein,
= expressed in terma of the suma of the powers of the m?ﬁa is of the form
- W -
{83, 34, 8q, 83) 3 for, In geneval, Sarastos . . ., Wllen'sqe}pressed, iz made up
of terms such 43 S, $p,q Spagirs « v« S, o . . 2l of Whidh N snmg of even powers
when g, ¢, v, . . . ave oven; therefore in this case nend but even sums of powers
enter into the cxpresaion for X, &
03 by a) . DF
Also, singe = = 0, and g 0, we have \%Lug the formula above given for —,
Juz Jsy 1\ LSy
fops + frpaps + tepape + talleps + 1) + 2apipe =0,
w wt\ﬁ/p(;ll_?_rg %1@ Ry org, i
From thesc equations we iuferjﬁ“;
Wt f1=8, tdhta=0, ta+t=0, H+24=0;
hut #y =1, since for qﬁlst\l-‘tﬁoz = p4®; therefore
&XLZ, =2, ta=—-3, t3=2;

+

And, substituting.th:gso values of &, #1, fs, f3, £,
ONSdiarastai® = 99y — 2prpn + 2pepe - Ipeps + pi.
2. 0&,&‘:1{1’};@’ Zm?afe;®  for the same equation.
\i“'} Ans. — 2ps + 2pps — e ps + pat. (CL Ex. 6, Art. 82.)

NE;\ Caleulate for the same equation the symmeteie function Zur"ws?az.

< ¥ Here the weight is siz, and the order three ; hence

S

Zatw’or = fops + 0501+ fapape + Lipan® & fapst + Esp paps + fepets
Also Z, expressed in terms of n, sz, s, &o., is (Art. 78}
8p8ps3 — 5185 — 8af — g8y -+ Dap.
Now, diffeventiating these two vulues of X with regard io s, and comparing
differcutial coefficients, we have

Drg L
ot L =_12.
ty 3o g 2, or iy
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Differentiating with regard to +;, we have
et hm=0an=—0m; . f1=T7,
Differentiating with regard to a,

Spat it gy tilap® = e =4 (02 - 2p);
whence

Ltta==8, f14tg=4;
f3==3, #a=4¢.

Again, & = 0; for X vanishes if n — 2 roots vunish. And we find /4 and ts bv \\
taking the particular ense when # — § roots vanish; for in this ease 28
)

and

N 3

Emartos = wiozas BmPaz = — pa (— pr s + 3p3) = pLowps — 3p, ;"";.

and thorefore #4=—38, ¢5=1; whence, finally, T
Fmates = - L2ps + Tor1ps + dpape — Spam® — 3pa° + pfapss

162. Fanctions of Differences of . Cubie,— The
propositions contained in this aud the nexffollowing Articles
are most useful in fhe caleulation of certain tlasses of symmetric
fauctions of the roots of cubic and biq&a@rutia equations; they
are also of great importance, as will appear in the sequel, in
reference to the determination of: $hie number of independent
invariants and covariants ofrtirésébferibrary org.in

Proe. I.—Every rational and tntegral symimetric function
b, 3, y) of the roots q,(\éke equaiion

at,:i{-k 3&193* +3ar +taz=10

which involves the differences only of those roots is, when multiphed
by ag, expressible’ in the form Flay, H, A), or GF (2, H, A),
according o8 }w an even or odd function of the roots, I being a
?'ﬁ‘ﬁﬂ?ar{!z}{{ad}?—mfﬂgi ul function of a,, K, A, and = being the order of ¢,

It 1% first necessary to prove the following Lemma :— Zhere
ems‘is noﬁmmma of I and & which is divisible by a,,  Torif there
_Were any such function F, (71, A), then, making «, vanish, wo
should Lave

F(IT', AY = 0, where [T =—a°, A =4a°a, - 34’4,

the values of 7 aud A when «, vanishes (Art. 42). This equation
is clearly impossible; for if we eliminate g, by means of the
equation H' = — a,% the resulfing equation will contain a; and
ay a8 well as I’ and A",
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96 Caleulation of Symmetric Functions,

To proceed with the proof of the Proposition :—Since pisa
funetion of the differences, we can suppose it to be caloulated
from the cubic deprived of its second term (Art., 86). We
have therefore

a’¢ (e, B, y) = Fla, I, G),

in which Fis & rational integral function, and », which cannot
be less than = {Art. 81), remains to be determined. Arranging
the right-hand side according to powers of @, we may wiife

arola, B,7) = Fylay, ) + GF\(ay, H) + GFola, HiP. ..

Since the weight of # is even, it follows tHfaf when ¢ is
an even function of the roots (i.e. its weight\e¥en), all terma
involving odd powers of G must disappeadyoend when ¢ is an
odd funetion, %, und all terms involvingleven powers of & must
disappear. Taking out G' as a factdr'in the latter case, and
eliminating even powers of G by npdns of the relation

G+ 4T oA, (Axt. 49)
we have \ﬁ{rg]xarle?luiﬁg@‘ lgf%rﬁl’gﬁpressib]e in the form Fla, H, A),
or GF(a, II, A), according as ¢ is even or odd.

It appears therafore that every odd function of the roots
of the kind here, e]ihéidered must have as a faotor

Za—-B%y) 2B -v-a) @y-a-B). (Bx 15, Art. 27.)

We ps{‘gﬁéﬁppose this factor removed from ¢, with the cor-
respopding value in terms of the eoefficients from the second
sionf" the equation; and it only remains to determine the
Qv'al\ue of r in the case of an even funection of the roots. Writing
:}i:he relation in the form
a4 p (e, 3, ¥} = Flay, 1T, A},
arranging the right-hand side according to powers of a,, and
dividing by e;/=, we have
F LA
< (U-, B: ‘Y} = j‘-['F‘o (am II) A) + 2 _"?”EN—)’
gl

where F, is an integral function of 7, H, A, and = contains all
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the fractional terms. Now, ¢ being a symmetrie function
whose order I8 =, a,°¢ is expressible as an integral function
of the coefficients {Art. 81}; aud since, by the lemma above
established, nove of the terms included in = ecan Dbecome
integral, the fractional part must disappear, and the equation
assumes the form

a"¢(a, 3,7} = F, (o, JT, A)

The proposition ig therefore proved. O
163. Functions of Bifferences of a Biquadratie: -
The corresponding proposition for a biquadratio is as folldwws :—

Prop. I1.— Every rafional and dinfegral symmeﬁa’éﬁmcz‘wn
dla, 3,7, 8) of the roots of the equation ,‘, '
agrt + da,2° + Bay® + dagz + @y Q“O,
whick tnvolves the differences only of the rg}?f&; i3, when smultiplied
by a7, expressible in the form Fla,, H;f:J) or GF(a, H, I, J)
according as ¢ @ an even or odd fuaarﬁw;; of the roots, F being a
rational and integral function ofeitey M, I, J, and = the order

ww i | Faulibr ary Jor g.in
o 4 R
The following lemma must first be proved :—There exists
no function of I, I, Jw}\c} 18 divisible by a,.  For, suppose if
possible F, (IT, I, J fefa Be such a function. Making g, vanish,
we have F,{H', I[N} =0, whore H'=—-a/, I'=~4da,a,+ Ba?,
J = Daatts ~ Qidf — 2 (the values of H, I, J, when a, = 0);
but no such/xdlation can exist, since it is impossible to elimi-
nate ay, &K g, tlg, 80 as to obtain a rolation between H. r,.JT-
alone. &
, Now since, as in the preceding Article, ¢ is a funetion of
the'differences of the roots, we can suppose it calculated from
}he equation deprived of its second term (Art. 37). We have
therefore
a7 ¢ (o, 3,v,8) = Fla, H, I, @),
in which F i a rational and infegral function, and » remains to
be determined. Proceeding as befors,
alpla, 3,7, 8 = Folay, I, )+ GF (a0, I, I} + G*Fy (a0, HI)+. ..
VOL. IL p:4
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Since the weight is even in the case of hoth the functions
H and I, we infer, just as in the preceding Article, that @ is a
factor in the odd functions; and, eliminating even functions of
G’ by the relation

G® = af (I1 - a,J) - 4H?, (Art. 37)

we prove that 4" is expressible in the form F(a,, H, I, J) or
Gy H, I, J) according as ¢ is even or odd. It appo\X},
therefore, that every odd function of the roots of the kmd

here eonsidersd containsg the factor { )

Bry-a-8Gra-p-9 (a+B- S
Eo Art. 27.)

Removing this factor, we procced to determme # in the case
ol an even function. Writing the relaQ'o»n in the form

@, (“’ B: Y, 8) = ’cE{am -H 1, J)

and dividing by ¢/, ws havq, a.s ‘in the preceding Article,

www dbrauhbl ary ‘thln o (H I J)
a0¢ o, ,'y, iau,HIJ; ——“—ap -

3]

Now sinee the rln\hbhand side must be an integral function
of the coefficients( Srt 81), and sinee, by the lemma shove
established, none})f the terms 111(,1uded in ¥ can becoms infegral,
we have

.~:\..:w l\a,B T b) = 1"0(@9,.&’ I J)
whwh\pl\wes the proposition.
\Izmtances of the use of this proposition in the calculation of
g}}ametuc functions of the roots of u biquadratic will be found

. \ yamong the examples at the end of the chupter.

s

) 3

\ 3
4

164, Seminvariants and Semiecovariants, — Let
a1, @ O3 - - . @y be the rooty of

?d-—l
a® + el + — ( ) @ =0,

the general equation written with binomial coeffcients. We
proceed to the consideration of an Important class of functions
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of = whieh may be derived from a given symmetric function of
the roots.

In the two preceding Articles wo have been ccoupied with
certain special kinds of homogeneous symmetric funections of
the roots which contain the differences only of these quantities
(ef. Art. 86). BSuch functions may be called (for a reason
which will appear in a subsequent chapter) semi-incariants, or, \\
a8 it is usually written, seminvariants. Being symmetric fun,e-
tions of the roots, they are expressible {(when multiplied b"jf L
power of a,) in a rational and integral form in termg~of the
coefficionts, K7, N

‘We may use in like manner the term semz‘comrian}a‘ﬁo denote
similar functions of the differences of the quantitigs T, tyy tzy . o Gy
such that, when they are arranged in powers’s b}?t the suoccessive
coofficients of # are expressible in a mm.hLar manner in terms of
tha coefficients. O

We proceed now to show how germcovanants may be gene-
rated, and then expanded m"pwfth'sayhb,t avlyon-gipressed either
in terms of the roots or in terms bf the coefficients.

Hrom any relation sug{*és

a” (@, @l & aa) = Fao, @1y @y - - « )y

where ¢ is an infefgial function of the order w, and F the cor.
responding exprgidion in terms of the coefficients, we may, by
diminishing, &leh of the roots by @, and consequently changing
any coeffident 4, into U, (see Arzt, 85), derive the following
equations—

'*;t.}fu’;‘ﬁ(ﬂt"% Up— &y o o ol — ) = F{Ug, Uls U;s ten U,;), (1)
Eus obtaining two forms for a semicovariant, one expressed in
terms of the roots, and the other in terms of the coefficients.

To expand these forms in powers of #, we have, for the first
member of the egnation, by Taylor’s theorem,

¢{C€1 =&y g =i, . (P:] + x3¢0 + "—'b ¢0 (2)

H2
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where b dla, ... ..},
py &

and -§= "oy + 2
Do&l 3952

et

il

Again, omitting all powers of higher than the first, the
sccond member of the cquation becnmes

o O\
lag ar + age, az 4 Rz &) N
FLENREE B LI ) 3 Iy = a o o€y + PRl p— 1)y A

2N\

or, when expanded, O
F, + #DF, + &o.,

where \ h

Ea = F‘(ﬁus Ty, gy« o o a'”-)’..'\x;.

nl' A .~- -+ naﬂ—ll‘

hb(]!s ban

4

Qi \\,

and jDEazﬂl + 2a, 2 + 3u
1y iy

ok 4

Comparing the two expanded forpd's), " we have
O\

o, .
@78 (any oy o ay) =%{F((40, Wiy v o o Do)y
ww dhraulibrary .org, ™ . .
and consgquencpf , by su%cessixtg" applications of the operators
¢ and D, 2\

a’-g"S"q& (m, [ P 4’.\aﬂ) = D’"F(ao, iy = = » ava,);
whenee we infer fl'QnQ(tl‘ie oxpansion {2)
2=

F(Uy Uiy dUs) = F, + ¢DF, + 55U Fs + &

X/

By the'and, therefore, of the two operators—gin terms of
the rooﬁ,»énd D in torms of the ccefficients—we can expand at
Pleagure either side of the equation (1) il powers of 2. By

_1eans of the successive operations of & We Obtain a series of
\'}‘ii'ﬁctions of the roots; and, by means ©of D, their equivalent
values in terms of the coefficients.

The results now arrived at are equally true if the fanotion ¢
involves the roots of two or more equations, & being the corre-
sponding value in terms of the coefficients of thoege equations,

and D and & being replaced by the sums ©f the siriiar operators
relative to each equation.
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It is important to observe that when 8¢, vanishes identically,
g0 also
8(8¢u} or Szfpg = 0, Saqbu = 0, &G-,

and therefore # disappears in the expansion of the first member
of equation (1), Now this ean happen only when ¢ is a function

of the differences of ay, @y, . . - 4y ; whence we eonclude that if ~
Flay, a1y« « + @y) 18 2 seminvariant \ AN
DF(a, m, @z . « . a5) = 0. A,
X \

This identical relation is often sufficient to dete;-mma the
numerical eoefficients in a seminvarisnt when thﬂQ)rder and
weight are known. If there should be two or\rnore gemir-
variants of the same order and weight, the dpvation of D will
not supply equations enough to determm}' all the assumed
coefficionts, as will appear from thes discusswn in the next
Article. If no seminvariant exists @f‘the required order and
weight, the coefficients will all VaIrISh

165. lletermmnﬂom%%ﬁmﬂgﬁw +~The problem
of finding the seminvariants¥f a given order = and weight « of

& guantio is the same ag{het of determining all such solutions
of the differential eqlrﬁt?rn

%

DD < 2 ;‘I: gy =0 (D
o solynﬁﬁh\is’..equatmu whoen possible, agsume
S M D Y WA (2)
whgrg\\cpl, ¢z « .- ¢ are all the possible combinations of
(;m;a;,' dyy oo oty Of the order w and weight k, and Ay, Ay, - .. A,

“arbitrary multipliers.

</

Now, substituting this value of ¢ in the equation DP =0,
wo have as the result
Lofi + Lo + oo o + Lyl = 0,
where i, e, a, + .. iy are all the distinet terms of the order =
and weight « — 1, and L, L, ... L, are linear functions of
Ai Agy ... Ay, which must all vanish when € is a seminvariant.
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To determine A, A, Ay ovv Ar, we have
Ll = Z“R, + zly'\g *...+ Zl"Af = 0,

L T
Ly =lphi+ bpda+ oo+ 0 = 0

There are three distinct cases to be now congidered :— N\

(1)- When r is greater then p, there are mot sufficien t

equations to determine all the quantities A;, Ag, Ay, . . 32}; but

any p of them can be determined as linear funcﬁogﬁ{the rest.

For this purpose we can proceed as follows :—Intetduce r~p =7
arbitrary multipliers defined by the equationy )

m]lxl + ?ﬂ-lglg L ??31,-%{\? AI’

MaAr + Mgda + . ., j\m?,?(; = Ayl @)

- - . . - . a{’\) .

WAy + MpA, + . aNE MpA, = Ay
Solving“ﬂ'fed%‘c'fﬁlsl.‘t%%léy(%}jgi{gd:’(4) for Ay Az ... Ay, and sub-
stituting in equation (2), we have the following value for & :—

o\
A(I) = A}Ej\‘i&Agza -+ Aszs L PR Ajzj,

3

and therefore &«
ADOEADE, + A DS, + ...+ ADS =1,
whenoce  ANSPI, =0, D3, -0, ... D3y =0,

since By &, ... A; may have any values whatever.
W’Q\co”nclude, therefore, that in this case there are v — p =7
linea?}y independent seminvariants.
) 2). When p is equal to » or greater than #, the equations
N/ L,=0, L,=0,.,.I,=
cannot, in genersl, be satisfied, and there are no seminvariants
of the quantic of the order = and waight k.
{(3). When p=»—1 there aro just sufficient equations to

determine the ratios of A Az ... Ay and consequently only
one seminvariant exists.
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ExiMPLES.

1. Determine for & cubic & seminvariant whose order and weight are both
threa.
Assume ¢ = Aagtas + Baymy + Ca®,

thess being the only thres terms which satisly the requirod eonditions. Tt is
evident from the form of B that the opevation is performed by applying to the §\
suffix of any cocfficient &y the sane [rocess as in ordinary differentiaiion is applied

to the index. Thus Duy = ram, and lherefora ¢\
o
D¢ = (34 + B) mes + (2B + 30) arae = 0. QO
Hence ,~,}.~
84+B =0, and 2B +3C =0; A0

and putting A4 =1, wehave B = -3, gnd € = 2: wh‘;(léé, finally,
¢ = wolag = 3eomiaz + Zayd = (7, v {Ses Art. 36.}
For a quadratic no such seminvariant can be formedi %

2. Investigate seminvariants of a quartic wh\osg"oﬁlm: and weight are both four.
O\Y

Assuming o N\
& = dagjeq + Bactas + (o + Dan®az + Bart,
o R o
we readily find wwwdbraulibrary.oc gﬁn
D = (44 + By ag*aa + (33‘-12&20 1 20) aptead + (FL' 4 4 Eyapar®.

We have now only three equ"@ions among the assumed five coeflivients, whose
ratios cannot conzequently WA ermined completely. Expressing B, €, and Din
terms of 4 and E, we Haye cieily

¢ = AaPlgpn — darag + 3m%) + Elwa’ - Qapa e + @il
viz., " ¢ = da] + B2
where 4 a.n,d\;E‘;nay have any values, We may say therefore that there are In
this case it’%g}'independent fundamental seminverianis of the required order and
weighl;;\ﬁz’ 27, a* and H?; and from these may bo derived an indefinite number
of sﬁig:}wariants of the same order and weight by assigning to 4 and & different

n&ﬁ;h&cal values,
e\ W
\> “"3. Determine {or a cubic « seminvariant whose order Is four and weight six.
Assume
P = Awytagt + Do + Caar® + Hintag® + Ergidaas,
whenee

Dy = (64 + E)arayet+ (68 + 2E + 20) womas® + (36 4 4D) m®az
+ {(8C + 8F) dom’®as = 0.
Now let A = 1, whence & = — &; alwo 35 9K =0, giving &/ = 4 and
8¢+ 4D = 0, giving D = - 3; and from 65 + 38+ 20 = 0, we huve finully B = 4.
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enee ¢ = @i | duged 4 detyr® - Bay2ay? — Cagttiages,

Cotnpare Art. 12, wiliere the value of ¢ is given in termg of the ronts.

4. Determine a semwinvaiant of g quintie whose order is thres and weight
liva.

It & easily seen it the only terts of the required order and weight are
aa'ds, dpnay,  agayy, ¥y, and  gegt, Procecding as before we find that the

ratiog of the assumed coutivinnty are determinate, and the seminvarisnt is fGﬁQ‘i
to Ls A

adus ~ Sagiiay Zagazan — Garaa? 4 Baray. (NS
5. Netermine for quartic & scminvariant whose order is three and weight six.
ad
Ans. wpsay + 2aymgay — agms? — rﬂ@ —\as® = J.
$ \

. Investignte for the general equatiun the sominvariantg\ﬁx}:‘rose order is three
und weight six. N\

Tt is cusily scen that {he only terms which can exnteyinto sueh eevsinvariants
widitional to thise whicl peeur in the preceding ef Ple are ae; and s as.
Woiting down the funetion @ Gomsisting of sm-unje?;hs with indeterminate roef-
ficients, and applying the operator A2, we firdl thdt there are only five equationa
anwng the assumed cooflicients, W obtaig Mherefore, ag is easily geen, semin-
variants of the form ™

www.d bré{ﬁi{ﬁf‘%ﬁr‘? %‘gfh’l‘i”?“ﬂ = 102 + w7,
in which A ang B vemain umieterminﬁc:l, their multipliers in this expression being
two fundamentai smninmriunts.'{f the required type,

I, may bo observed thige Jors — Saiay + 15anay — 10a2? i3 an inveriant of a
sextic.  This function e\ (beteadil ¥ found direetly by investigating seminvarianta
whose order is two and weight six. Invariants being, s well as seminvariants,
symmetric functions 6f Phe roots which contain the differences only are obtained by
the present method(df investigation ; and any function of the cocfficients so
obtalued which\(sqfn invariant fora quantic of one particular order will be 2 gemin-
voriant for qudntios (written with binomial coefficiints) of all higher arders. The
func[iou,}ﬂ’{t‘a:i'ned in Ex. 3 i an invariant of & cubie, and F is an invariant of a
quax{ia:\\lt must be carefully noted, however, that rost seminvaiiants, 28 e.g. thosa
obIQinf}ﬂ in Exs. 1, 4, are not ircvarianis for quantics of any degree, as will be scen

o{foyi the definition of an invariant and its proporties discussed in the next chupter.
3

1. Investigate for a ynartie seminvariants of order four and weight six,
The only terms additional to those of Ex. 3 are apazay and mmn®  Adding

therefore  Aeyiauay + #aoraer®  to the value of ¢ in Ex. 3, and operating by D, we

find, alter expressing the vematning coeficients in terms of A aad 4 » the following
value of ¢,

= AaPang — aprya® 4 Aa0ts® -+ dmgar® — 3att — dayaraans) + Aag,
where Az s the funetion obtuined in Bx. 3, vig. the dizeriminant of the cubie,
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Observing that the multiplier of A is the product of the funetions X and 1, and
substituting for As its vaiue HI — aoJ {Art. 42), we buve
¢ = NHI+ y'ad.

For g quartie, therefore, the functions HT aud ap are two fundsmental semin-
varlants of the required order and weight.

8. Invesligate seminvariants of the same order and welght as in Ex. 7 for

quanties of the sixth and higher orders.

1t will bo found that there ave in this case two equations less than would bdy

z

n . . . . . * N 2
reguired to determine the ratios of the assumed coefficients, and there will oeﬁse-"

quently be three fundamental seminvariants. It may be easily shownsy thaxt all
seminvariants of the required type can be represented in the form '\‘ \

P = Aag® (aoag — G185 + 1Daway — 101’;32) + ;H-HI-*— D‘ﬂ&{
9. Prove that any seminvariant of the equation \

(0 @1y« - o) (3 17 = 0 5
. . . . &
Is aleo a seminvariant of the equation \\ 2\

(aﬂrah--oﬂr-aoﬂ“}(x,{‘lj"‘._ﬂ

# being greater than . R ’.’

\
3

.

10. Determine s seminvariant of a #ex@’h whose order is three and weight
eight. wwmdbrauhbl ary.org.in

Ans. apzpes — aunsas + "ag{n; - aﬁas + Baifaas — d1gady — Ba2Pas + Baasyd.
NS

Prof. Cayley orjg?naﬂy enunciated the important theorem
which forms the shject of the foregoing Asticle, viz. —that the
number of 11neasly independent seminvariants of order w and
welght x is r\p, where » ia the number of terms of this order
angd wel 1‘t whwh gan be formed from the coeflicients a,, @, ... &,
and p the'number of terms of the same order and weight -1,
whi&i}{:éan be formed from the same coefficients. In the dis-
ciskion above given, it is assamed that Ly Ls, ... L, are
linearly independent; and it shonld be observed that if certain
linear relations connected them, for each such relation the
number p wonld be reduced by one. Cayley himself gave
no proof of the independence in general of these quantities;
but proofs have been supplied by Sylvester (Crefle, vol. 85,
p. 89) and by Prof. Elliott (Alyebra of Quantics, Art. 128
See also Note I af the end of this Volume).
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2
M= a{f ~ )3y — a)®fe - 8% a ~ )7 {B - &)y -8 = i 4l

whera m

We make use of the propesition of

= - 27

' - jile
Art. 163, and express the given fu

om of
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the roots, whose cvder is ¢ and welght 12, In terms of @, H, I, 7. From the
table—

Grder, Weight.
q 2 2
— ) \
s : N
J 3 i 0‘5}’
i \ 4

$
it is casy to ave that H cannot enter, for the terms of the sixth 01)&;;( ‘gontuining H,
viz, H%, HI, HI? have not the proper weight. Therefors I ttist bo of the form
1% + mJ?, where { and e are numerical eoefficients, )
Now put aa and e equal to 2ero, and 17 will vaﬁiﬁ, “singe in that case the
quartie will have equal roots; hence, employing\b},{e:;ed‘deed values of I and J,
0 = 7(3a22) + m (-~ aa%)?, and thierefre m=— 27

In applying this method to obtain the ){ﬂligs’ of symmetsic functions, the ruls
to be followed in every case is—Retain @gé’ terms of weight & whose order is not
greater than 77, and make the \%3@&10 E§ nlelaﬁagyﬁﬁﬁiﬂ?}ing terms whose
order is Jess than = by suitable ppw}a’m‘ of do.

5. Caleulate the symmetrjg,\h}nution of the roots of & biguadratic

(BB =Pl B

Sinca the order ofMhis*symmetrie function is four and its weight six, we may
PEETT AT AW,

MNof= (8 — )2 (y ~af (= — @) = LI + muol. {1}
The valuaai;’s;f“innd m may be found by putting ez =0, = 0, as in the pre-
reding e&ambl‘e, and caleulating the valne of the reduced symmietrie funetion (when

y = 0,30} in terms of the coefficients ol the gnadratic equation

* .’.\ ¥ =
NN\ apt® 4+ 41w + Bag = 0.
. W{if}'ing then this value with the reduced value of JHI+ magd, we obtain two
}%ﬁnple equations to determine Z and m.  Or we may proceed as follows by taking
two biquadratics whose roota ars known, and calenlating in each case the eym-
metrie function by aetually substituting the roots, and then eomparing both sides
of the equation when H, I, J are replaced by their vulues valeulated from the
humerical coeficients.
Fivst we tako the biguadratic equation 844~ 622 = 0, whose routa are 0, 0, 1, = L,
whenee
3=8 H=-6, [=3 J=L

Bubstituting in equation (1), we have 1728 = — 3!+ m.
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Proceeding in (), SN0 WaY with the biquadratie equation

At L 0, whose rogts are 1 1/:5_, 11,

we ling
I=768, H=_ 1, I=s, J=g:
whena
—-192 =274 ",
!.l]l[]
I=—2x 192, m=3x 192; .
and tinaily, o \\
@iE = 102 (- 2y . Bapd), N\
6. Uf a 8 T & bo the 1oats of the e uation (’,.:j:
-
it b Lyt Gaaz® o dagr 4 =10, \J

caliulato in Loy of @o Iy I, F the value of the symmutyig {uﬁaﬁm

iy (e - g — ¥ - 5% (38 e e a}“ (3 “6:‘%} - B}ﬁ_

This may be solvid by the same mothod s the b preceding examples, or wr=
Ry proveed as follows 1— \
a3 = 485 12—:32233\\"

Ry
€ v
where g, 2 %5, 21 aro the roots of the ¢ tadien

z4+GHz2+4G::+€J}f’1 3H:=1, {Art. 87.)
Hence, by Ex. 2, Art, 161 N
;r\iw_dbI:aUlibT‘al"y-OT‘g-jl},’j:“ Ans. 47— THY + gt HI - 4a®.T }.

T If Fiug, ay, . @) 18 2 somm {ﬂ{ﬁriant of the equation {ay, 1, . . f) {z, 1) =_0 i
prove that the same funutioﬁ’:of the sums of the powers of the roots, wiz.
Fs, 81 8n, , . . S} is ulggdsewinvariang, (Mz. M. Rorggrrs.) . 5

This follows by ope:léf.ip on the firat function hy B, and on .the secoqu Yt?-f :
and observing that I Ty and — By, = 7ir_1. W thus obtain results identical
in form ; aud i ong vahishes identically, so must the other.

8, Calculat{ 258 determingpt
W4

y :\'w’ an &1 &z [

i">‘ ’ A= g 52 o3 ‘

N |

- W\ 53 a3 LI

terma of the aoeflicients of quartis,

{ I . . i i

"\ By the preceding example, {hig duterminant is a function of the differences of

/ the roots; we may therefore remove the sseond term of the guartic befove calew -
lating it: and if the equation 5o transformed be

Pyt Pyt Py = &
4 0 _ap
4= 0 -2r, _3p = 4{8PP — 27% - §F7);
"B -3P  aprogyp, |
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but aiP =B8H, afPi=4G, alFi= aptf - 3H?Y,
Substituting for Ps, Ps, Py these values, we have

ao*A = 19% (— 2H[ + 3aed) ¢

the same result as in Ex. & (¢f. Ex. 7, p. 85).
9. It & B, 7,3 be the roots of the equation > ®
agrt + dara® + Bart® + dasr + ag =0, SO\
()
expross Hy Ly Ji, @ of the equation i:}
soxt - 45,28 ¥ Bogr® + dsaw 4 8y = S+ =0 N
0 i { ) x:\\ 3
in terms of H, I, J. &. R 1_ \’G’ g
. H I, 4#F*=4ad s .
Ans, Eg_sao_” @‘éT’ E=_3§'
oV
and by the aid of the relations ¢’
)
G+ 4H? = at (] — ad)y &+ 4\ = st (HoTu — tolsh
4
™ 192
AN Js = — (a0 — 2HI).
o~ AN £y
o™

10, When p is even, prove that w3
yw rdbraulibrary.org.in
Z —az)? = f{,&\palqu +3p(p — Dsaspn — &e.

Bince
¢.E\/ p =1
5(x~a}P=mf’\?ux;"1+p-—p2——szﬂ‘”-&c.. — % + o

3

changing # into ‘ch, ;fé: @3, « + « &ny 0 s0coession, and adding the resulis on both

sidea of the eq;(tjyns thus obtained, we find
-1
83%p-8 = « + = == B8iSp-1 + Eodpy

i"\,{’ ».
2%1‘ — aa)P = Spfp — P81Ep] + 1.3
.'\ *

\gﬁbéfé ali the terms on the right side of this equation are repeated except the middle

““drm. Thus
/ 2 (ar - as)t = aony — do19s + 350%

555 — Baysg + Ihsgsy ~ 10527, &,

Zm - ) =
where

11. Forn the equation whose roots are ¢'la), §(8): (1) ¢'(3),
@ By 7, 3 arve the roots of the equation
app (&) = agrt + doa® + Gerar? 4 dayr + ay = 0.
I 2y
— 2170 o,
dg

32@ 96 (2HT — 3and) ,, . 206
a0+ g { £ ) 2 5 200
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12. It B(a - B {8 PPy — )t (e~ 3%
when expanded, becomas

Kozt + 4K15° + 8Fua® 4 41 + Ky

prove that
Iﬂ.aﬂy+ﬁ;(ﬁy+ya+aﬁ)+lﬁ{a+s+y)+Ka +16J_
(B—7y—aj{a—g) a®
whers A= L2773, A\

12, Prove thet
WEB+y = =B (B-1){a— 82 = 102 (3T - 28D, ()

14. Prove thut N
BZ(B 4y~ a— B (B -y}t la — 8) = 512 (all? — m\ﬂsf\ + 12H).

_*

15. The quotient of & simple alternant {one, na.mely, i’ éshwh each element
is a single power) by the difference~product (see Ex, 8L p. 61) can be expressed
as a determinant whese elements are the sums of the {homogeneous products of the
quantities involved. ‘\

We take a determinant of the third ordar, ap} proposa to prove

af al g Itp n., o, ] |1 e o
raulibratry.org g i

ww%b b % Y} p—Ig g1 Hlea ] 188,

@ oy | ‘Q"‘? M2 Mz | 1y 42

where T, Ty, &e., are the &uns of the homogeneous prodnets of a, 8, ¥, 2s defined
in Art. 83, Vol. T. The‘i\\thod employad i3 perfectly general, Take the following
identity, which is easﬂ;( proved :—

i ¥ :’.}; & oy P 1 « &
AR O
#~a ."::'g\z—a @ oy g 1 8 g
xo\\’g; P _ 2 ¥ =z 1 v ;
“"‘.".'3, Y-8 2-8 | (a-a@—B)le—ily—a)y— By 71— -B)( -7
SN
Nz oy z
N e

write (# — o) {z - 8} (¥ — 7} as & divisor under each of the elements of the first
column on the right-hand side, (v — ) {y — 8) (¥ — %) under those of tha second,
end {z— a}{z ~ 8} (z — ) under thoae of the third, and substitate frem the follow -
ing and similar equations (Ex, 1, Art. 83)1—

x
;_...=]_+a.:€'+u"'x'3+...+m”x’*’+..;,
-
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N — T | (AN 1 1T L N &,
(- a}{x—~Blz—7 ¥ I T St

i 1 1
h [— = — = s
whars 7 o s Y £ z

The identity written abova becomes thea

1+a-":'+..-+a.?z’ﬁ+.,.| Lt e 4 Tha® 4o o+ TP oy .| (12 a®

1+p74, ..+ grap . = @ ST TP 1B 8YN°
S %S

g R R i ITT | Wby Tped®+ ., [1GY

where the sceond and third columns of the determinants here writj:t;.\\u;’be mup-
plied by replucing & by ¢ and £, respectively. Comparing coefﬁ}l’@nts of &'ry'edr
on both sides, we have the required result. It should be giaticed that when the
diffevence-produet determinant is written in the forin use ahova (viz, with ascend-
ing powcers in the order of the columns), the sjgn to he;aﬁst had to the product ia
always positive, sinee the product of the two &({:‘miisin“ wnts, containing the term
TeMgalleafy? must contain the term o234y Hh\e\a;lso. in applying this ealeuia-
tion to particular examples, that Mo = 1, ﬁ.awd%lj;}—"() when 7 is negative.

16, Prove, by the preceding axampla,,:i;:« )
1 & o |“ﬁa’~f}$§blnyl‘b ary-orgdh
1 8 8 “\01'11114 1 8 8
1.,3(\‘2:0110:13 1 4 %

The quotient, thg;i)fgra, of the given determinant by the difference-product ia
I3 — [Ty, which, na)_, e shown to he equal to Za®8 + 2287 + 23a3y.

17. PrOV"e\,‘ By the method of Ex. 15,

4
4
\ﬁl“ w o.avt ow® 1 o mPe..a]
a1 w @ttt oo 1 oz e2¥...os?
t\’“ -
L 3 == [Tmn4l +
a \¥;
\/} . e e e e e e e e

: 1 an wl..o? o™ 1 an en®e.. et

whers # = OF > %
This result may be devived directly from Ex. 1. Art. 83,

N

N\



(119)

CHADPTER XVI

COVARTANTS AND INVARIANTH,

v/

L 3

166. Befinitions.—In this and the followidg chaplers the
notution \\ )

(@ s @y« o a) (2, P

will be employed to represent the qugltie’
:0\ e

@™ + neng™ly + . = ’ﬁ;"_p&; v o A Y™+ gy,
L2 &Y

a homogeneous function t),f‘.‘z: and g, written with bivomial
coellicients, dDIFAMEEAEYLIGID | this quantio becomes U, of
Art. 35;: and the §alﬁ{§;110tat.itJn may be used to denote the
homogeneous quaufis’ wrilten in 2 and Y.

Let ¢ be, alSerninvariant (as defined in the preceding
chaptor), Of‘t‘hﬂe order @, of the roots a, ey a5 ... ap of the

equation .,u.'f)’gf = (thoy 1, gy« .\ @) [, 1)*=0; then,if
A\

g{\‘w‘ 1 1 o i
\:\, -2 4 —a &
N\ . ) .
,}Ee substituted for a,, ay, .. . @, respectively, the result multi-
e N Vplied by U (to remove fractions) is a ecoveriant of U, if it
\> involves 2, and an ineariant if it does not involve .

From this definition of an invariant we may iofer at once
that

a’ﬂ:l.(l{)(a"l:: gy Bay = = » CL:«;)

is an invariant of ¥, when ¢ is composed of a number of terms

of the same type, each of which involves all the roots, and each
root in the same degres .
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These definitions may be extended to the case where ¢ (the
function of differences) involves symmetrically the roots of
several cquations T,=0, U,=0, U,=0, &e., the roots of theso
equations entering ¢ in the crders =, @, @”, &e. . . . respectively.

. 1
We may substitute for each root a, 88 hefore, and remove
n—

fractions by the mulliplier U U, U~ . ... & Ii the result
involves the variable z, we obtain a covariant of the system of\
quantics U, Uy Uy, &e.; and if it does not, ¢ Is an 1nvam~¢nt
of the system,

167. Formation of Covariants and lnvarim\\w -—-We
proceed now to show how the foregoing tmnsfopn}atwus may
be conveniently effected, and covariants and In¥adfiants caleu-
latod in terms of the coefficients. With t{irs' object, lot the
seminvariant be expressed in termsg \of the coefficients as
follows :— O

a7 p (o, az,y . . . 2n) = T(@ﬂ,‘al, Aoy oo tin),

Now, changing the roots m,tl% .tﬁeu‘ remproeale end eonse-
quently @, into a,, &e., a,\.ﬂf;l)'%o al,il:,l VYRt Ik, giving the
guffixes thelr complomenfﬂ@r values), we have

a5 (au S - an) = Tty oy - -« o),y

where i is an inpegral symmetric function of the roots, and
Fthe corlespundmg value in terms of tho coeflicients. This
function is ca{l&ﬂ ‘the souree* of the covariant derived therefrom.

Agal shbstituting a1 —#, az—2, .. . ay—2 101 a5, oty - . - tny
and cQ \luenﬂy U, &ec., for a, &e. (Alt 35), we find

gl (=2, d=y .. ay—&) = F(Uy Upsy oo - Uny 7o)
\ "fhus, by two steps we derive a govariant from a funefion
of the differences, and find at the samo time ifs equivalent
oaleulated in terms of the cocflicients.

To llustrate this mode of procedure, we take as an example,
in the case of the cubic,

a8 (= B) = 18(a,* - ayt) 5

% Thia term way infroduced by Mr. Roberts.
VOL. 11. I
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wherce, changing the roots into thej
MU0y 01y, ay, thy, We have

@) Yt (ﬁ -~ -y)z =18 {a - ﬂ;&;).
Again, changing a,

r reciprocals, and Qyy By 3y thy

B, v into a-g, B -2, y-g and thy Bz, O
wto U\, U, U, respectively, we find
WEB ) -t 18 (G- m) O
The second menber of this equation beecomes when expanded
DU, -0z2= (eturty — @ty 4 (erorty — a) &+ (alaaz%}zg"‘):

This covariunt is ealled the A essian of Uy, \\W\a refer to it
as I, sinee 7 iy its leading coefficient. R ¢*{

As a second example we take the following function of the
quartie :— N

WP -y (a8 = 24 (@4 daa+3aY); (1)
\ .
whence, changing the roots jnto theiy reeiprocals, and dy, d,, s, ds, @
nto ay, a5, @, @, a,, wo have (§ +
www.ﬂhﬁ%[([i’b‘rfl(f}j’z-ésgﬂi)‘z.; 24 (g — dagt; + 3332)‘

Tliese transformat;io’l{’sf:’ therefore, do not alter equation gl) H
again, since in thig.{h\s\e b{a, B, v, 8) is & funetion of the diffe-
rences of the rgo 8.4 1s unchanged when g — z,B-x, &.... ;
ars substituted for B v, & Woe infer that Gty — i + Sag
is an invarjai}tfof the quartic &, )

We absatve also, in accordance with what was stated in
Art. 166> since

O a
Q= (B~ (@004 (3~ (B - " (a- 87 (y -,

.

“\.E}j'at any one of the three terms of which ¢ 1s made up involves
wezeb of the roots in the degree =, which is here equal to 2.

In a similar manner it may be shown that
W= B=8) = (a-B)(y - ) (e B) (y ~ ) - (B-1)(a- 33
X ((B=7)a=8) - (y~a)(B-8)j
= — 432 (a,a,0, + 2aauty — aaf — altay — ab)
in an invariant of the quartic.
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There is no difficulty in determining in any particular case
whether ¢ leads to an invariant or covarant, for if it leads to an
invariant, ¢ = & 1, that is, ¢ is unchanged (except in sign, when
its typo-term is the product of an odd number of differences of
the roots, 7.e. when its weight is odd) when for the roots their
reciprocals are substituted, and fractions removed by the simplest - O\
multiplier {aaza;. .. a,)". An invariant whose weight is odd isx
called a shew {nvariant, f

168. ¥roperties of Covarlants and Invnrigpﬁé‘;;—
Since ¢ is a homogeneous function of the roots, t-he:@i{riant
derived from it may be written under the form \‘

= @ @ @ \
_u"}':(p m—fv’ C{g‘—‘”w“,.'.d”-;ﬁ'.’ v

where = ig the order, and x the weight \Q‘Efq&
Also, since ¢ is a function of the differences, we may add 1 to

N s y .

1 ng ——. Again
dch‘@;t' l%lsul?]?ﬁg'}'gl.og win— © gl
multiplying each constituent by , the covariant becomes

L\
Uw ( (lirﬁ\\ sl X ay® )
¢ a\_'“?};;’ o)

each constituent, snch as

$2x

Fmploying now.the notation ', o, &’ &e., for the recipro-
cals of @, a1, dapy&e. ; and denoting by U’ the funetion whose
roots 818 &y @, - - .« €y ViZ:

\%’ Z 0+ i+ Gy 4+ 0 8 =0
. ."\’“' 1 - a-r
Sisqﬁ,ef - &
3 Qyp— &

ar =%

4
and U= e (@ — )@ —a’) oo (@ ~dn) =20,
the covariant above written is easily reduced to the form

N2 for 1 1 1 \.
et g G

whence it is proved that the covariant is unaltered when for
&, @y, Gz o - o On their reciprocals are subatituted, and the result
I2
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multiplied by (- I)a"= This transformation changes @, into
ftur, that is, each coefficient into the coefficient with the corri-

plementary suffix.

Now if any covariant whose degree is m be written in the

form
(‘BU) _B;, B!! Lt Bm) (‘E’ l.}m; (1} p
. 1 o \\
changing ay, @, ... @, , into @, @y ... 4, =, Wo ha\}e
w '.Qt.:
another form for this eovariant, namely, z"‘: v
. 1 i A N/
(_ lj‘w”m_zx‘fou: 01: 02} e Cm) (:"‘;’ 1):‘;\’\‘““.

and as this form is an integral fnnction of,a’o?\éhe same type
as (1), we have, by comparing the two for\ms, y

m=nw— 2, By=(— 150 . S Br= (- 1)Cpr;
thus determining the degree of t}}t\{‘gbmriant in ferms of the
order and weight of the function”¢, aud showing that the

conjl'@%,ﬁ%\ﬁiﬂiﬁé?y(éj@‘jﬁhﬁb‘g; equally removed from the
extremes) ave related in the Yollowing way:—

R

If Flag ay aa . .{\a,.) be any cocfficient of the covariani,
(- Ly Flan, apa, ﬁ,;.;é.,’j\... g} B8 08 conjugate.

This prope:gtj*\s characteristic of covariants, and is not
possessed by sémicovariants, although the two classes of func-
tions agreq hrthe mode of formation by the operator D, as will
appear, m&‘ﬁe Article which follows :—

]i\}(zmi the expression for the degree of a covariant in terms
ofe and x, namely, nw — 2, we may draw the following

. :"ﬁh‘portant inferences :—
\ ) (1). If a”¢ iz an invariont, nm = 2.

For, in this case ¢ and ¢ are the same funetion, and éonse-
quently their weights « and wm — « are also the same.

(R). AU the invarianis of quantics of odd degrees are ¢f even
order,

For if » be odd, it is plain from the equation ne = 2 that
w must be even, and « a multiple of =,
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(8). Al covariants of quantics of even degrees are of evon
degrees.
For in this case nw — 2« is evel.

(4). Covariants of quantics of odd degress are of odd or cven
degres according as the order of their coefficients is oddl or evei.

(). The resultant of two covariants ¢ ahoays of an even order \\'\
tn the coeficients of the original quantio. A

Yor, the order of the resultant expressed in terms g)'f; the
orders and weights of the covariants is N\

<

RS
@ (na = ') + & (ww - 2) = 2 (nwa — = -'\’Q}k)

162. Formation of Covarianis by tha ¢perator B.—
From Art. 164 we infer that the expansionxebﬁ'(ﬂ',;, Upry o U)
may be expressed by means of the D{ﬂe&*e{ntial Caleulus in the

\®

fOI‘IIl g’\\.
F+aDF +ie-I)“F+ -k—-L—f'- DE+...,
¢ ° 1.2 TN L 2.3,

. W\v}«;db'i'aul.ibr:al:y_;ﬁ‘ in
“where F, is the result of making « = 0 in FFU,,, Upy - -+ T
viz. 2\

,Eé.%‘}v{ﬂ:na Aty +» = an),

2 2 3 2
and D=g.— + 20, — + d@g—+. . .+ 01—
'E’m,ﬁ a, YR "Dty

In fo iyéa sovariant by this process, the source F, with
which \yeiéet out is altered by the sucoessive operations D, each
operation Toducing the weight by one, till we arrive at the
Quigi’nal function F(ds, a@y ... sy from which the source was

'~~f£c}rmed. Since this is a fanction of the differences, the ex-
/‘pression resulting from the next operation D vanishes, and the
covariant is completely formed. The corresponding operations
3 on the symmetrie function ¢ have the effoct of reducing the
degree in the roots by one each step, the final symmoetric function
containing the differences ouly. Thus by successive operations
we obtain two expressions for a covariant—one in terms of the
roots, and the other in terms of the coefficients.
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The degree m of the covariant is plainly equal to the number
of times 8 operates in reducing i, to ¢, i.e. equal to the difference
of the weights of the extreme coefficients, And sinee

11 1
\,(/g = (a1a3 e ﬂn)mt,ﬁ Ka'—l, ;;, e ;),

the weight of 1o is #m — «, where « is the woight of ¢la, agy vv0 2nfe >
hence the degree of the covariant whoso leading eoefficient 43
. r A W
4" is nw = 2, the same value as hefore obtained, Mo add
some simple examples in illustration of this method, \ .
N
¢
Exanmeres, K ‘\
1. Form the Hessian of the eubic
N
@2 + Sy 4 Sunw + gy 5\0
..\\
Taking the funetion 7 = quu — m?, g{‘ﬁnd, ag in Arf, 167,
ayfZa? (B — )t {“1‘8’ (“22 — @10},
Operating enthe buftHabdraitio. by @, 18id on the right-hand side by D, we obtain
— a*3%q {)B'«:-;')f}s = 18 (@102 — momg)
and operating in the seme W\ngain,
7 3
i\\%ﬁzw — )% = 86 (212 — apas).
The next operafion causes both sides of the equation to vanish, FHence the
required, covaria@:;i’é,’, as in Art. 167,
:‘{\"‘" (mas — 2% + (ayay — @1az) & + (maz — @) 2t

Nu& &t the same time the correeponding expression in terms of & and the
Y00

,“‘Jf. Form the Hessiar of the biguadratic
o~

\’\ v apxt + dayad 4+ Baga® + depx + a4 = 0.
4 . »
The covariant whose leading eoefficient is JT = wyag — &% ia colled the Hessian
of the biquadratic. Tts degree s 4, since = 2, aud x = 2 ; and .oon@ — 2.rc = %.
Changing the coefficients into their complementaries, the source of the eovariant is
4ea2 — ty®, and we ensily find

H, = {8 — a2)a + 2ty — @) @ + (aye, + 2,8, — 30,72t
+ 2{ay — apg)x - (@xty — @2).
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3. Form for s cubie a covariant whose leading coefficient is the sem-
invariant &.

Clanging the coefficients in & into their complementaries, we get the source
axag - Btaazar + 2as%, and operating with D we easily obtain the covariant in the
following form :— '

(4320 — Saaanar + 2as®) + B (moazeg + artar — 2ma’}
— 8{aemay + ata — 2mpua?) £ — (ao?ay — Sageise + 2a1%) 29, ~

In this the conjugate coefficients (Art. 168) differ in sign as well as in the inter- \\
c¢hangoe of eomplementaries, the weight of @ being edd. The stadent will haveaio N
difficulty in expressing this covariant in terms of # and the roots by the aid gfithe ™
value of & given in Ez. 15, Art. 27. \ «~

170. Theorem.—Adny function of the differences, oZQﬁe ‘roots
of a covariant or semicovariant is @ jfunction of the tifferences of
the roots of the original equation. \

.\\.,

T.et the covariant or semicovariant be %7
¢ @)= (@~ p){a-p) . W@ o)

Since ¢ is a function of the diﬁé;eiices of #, ai, tzy « -+ @ny

we have N
2 www dhhraulibrary org.in

3 3¢ =0, viz., ¢'(2) + E\(‘:;r’pg) (2—ps) o oo (@ = pg) 801 =0

Now, substituting f,er?sc\in this identica} equation each root
P13 P35 + » o N succession, “we have

¢’(Pl)(1 +..3|F?:19 =0, (p'(pg)(l + Spg) =0, &0y - 00y

whence P\%
Saixl =0, Sps+1=0,... S +1=0,...

and cons@ﬁéhtly
O & (pr— ox) = Oy
wh@l Pproves the theorem.

N

\“n the preceding pages many instances have been given in
\fhich the roots of covariants or semicovariants are expressed
in terms of the roots of the original equation ; and the student
will easily verify that the resulf of the operation of & on any
such expression is - 1. The roots of the covariants in Hxs. 1
and 3 of the preceding Article are given in Ex. 25, p. 67, and
Ex. 18, p. 88, Vol. I, respectively ; and roots of semicovariants
will be found in Exs. 10, 11, p. 87, and 12, 14, p. 88, Vol. L
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The theorem here proved is clearly trne also for any
funetion of tho differences of the

roots of two or more cova-
riunts or semicovariants.

171. Deukle Lincar Transformation applied to the
Theory of Covariants,—Hitherto we have discussed the
theory of eovariants and invariants throngh the medium of the
voots of equations.  Wo proceud now to give some account Of\@
dilterent and more general mode of treatment, by mesailus‘: of
whieh this theory may be extended to quantics homoﬁ}eueoﬂs
I move than two variables, such as present themgelugs in the
numerous important geometrical applications,ofythe theory.
Althongh this enlarged view of the subjeé@;\ioes not come
within the scope of the prescut work, weNthink it desirable to
show the connexion between tho methédyof treatment we havte
adopted and the more general mcﬂ\x@d referred to. With this
object we give in the present {-X‘jutlelo two important propo-
Sitions{vww_dbraulibl'ary.ot'g.inj:":'"

Pror. I.—Let any g-z:ag:f{z'ﬂ N

U, =a, (= {\:1:9’) (2 — agypj - . . {2 - app)
be transformed by, f&{:@bste‘é wtion
X “’l A +uy's g =N+ 4y

then if T a;w?;\f; be corvesponding thvariants of the two forms Uy
and U’y (e have '

z@fﬁ;ove this, let

ad
&

I'= O\ - NI

NY I=072(a—a)* (a2 —a5)®. .\ (o — )’

) each root entering every torm of = in the degrec w. When

any factor of U,, e.g. # — 4y, is transformed, we fnd

’ oz ’ Ju'/al M,
r—aiy = (A - Ney) (&' — o'1y/), where oy = A Va
hence  U'n=d,(& -~ /) (@ ~adop} - .- - (& = &nt)

where o= a{A-Na)A-Neaw) . ... (A= Nal
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Again, for the differonce of any two roots of I, we have

» Q= Nplep — )

R ) N
Meaking these substitutions for &', and for all the differencos
of roots in I7, the denominators of the fractions which enter by X
the transformation disappear, and we have finally A\
=0 =Xl )
Proe. IL—TIf ¢ [, y) be a covariant of the qamnji’{‘%ﬂ, the
new value of ¢, after lincar transformution, 8 \s\

A = Npp(@ y)- R

The proof is similar to that of the ,Pfé}eding propositiou.
We have {\\\\:

N

6 (2 1) = 4,2 (o — @) (a2 — @) s (@-ay)P @-ay)?. -

)
where each root enters mvjsw:'ﬁﬁ Brary.org.in,
Now, transforming, 2s,in the provious proposition, the value

of ¢(z, y) thus derivedt,;\'@nee the factors A — Ney, A — Az,
all enter in the sa.ma{lhg‘ree = in the denominator, they will all
be removed by thembltiplier &', and the transformed value of
q:'(w) ?f) s ) s’\':.zw , ,
) {\ (A’ - Npj ¢ (@ 9)-
T \stléterminant A - X'y, whose constituents are the
coeﬂi’gﬁnts which enfer into the double linear transformation,
',\is"t;filled the modulus of transformution.

. “ Without any reference to the roots of the equation Un =10,
we can suppose the transformation of @ and ¥ to be applied to
the quantie in the form

¢ (- 1)

)
U, = agt + ™'y + —7— O A S 3%

The propositions here proved with respest to invarients and
covariants regardod as functions of the roots will still hold good
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when these functions are expressed in their equivalent forms in
terms of the coefficients. Wo may therefors now restate the
I'ropositions in the following form ;—

Prov. T.—An invarignt ¢ 4 Junction of the cogfficionts of @
quantic, sueh that when the quantic s transformed by lintar trans-
formation of the variables, the same function of the new coafficients
s equal to the original Junction multiplied by a Dower of the modulys
of transformation, \ \\

Proe. T1— A cosariant is a Junction of the cocfiicients 9f
quantie, and also of the wrerteedies, such that when the {qinntic is
transformed by Hnear transformation, the same fu-ncéfm}&'af the new
variables and cocficients is equal to the original Suntfion transformed
directly minltiplied by a power of the modulus bf}fﬂ”‘ilfmiﬂn‘

The definitions contained in 1le precedidg propositions are
plainly applicable to quantios homoggneous in any number of
variables, and form the hasiz of theyhore extended theory of
covariants and invariants aboveQr‘aff}a\rred to. We give among
the folkgwiqagbexaubphgfmgaippﬁbdtion to the case of a gquantic
involving three variables. &

. “ExameLzs,
1. Performing the lineﬁl&t}ansformation

£

" ."\K;’J\X-!-FY, y=mX+ T,
et o+ 2ay + eyt = 4K + 2BXY 1 V7,
prove that

¢} AC— B = (Aur — M)t {ae — B9),

g, Perfprx‘g_in’g the same transformation, if

e, b; & 4, eHx, .V:]‘ = {As B, ¢ D, E) (X, Y)i'
AB—4BD + 807 = (\uy — Agu)d (a8 — 43d + 32).
“\‘.' 5 Performing the same transformation, if
\\ az® + by + ey = 4X? 4 OBXF + T,

/ and
4 @12 + 2By + oy = 4, X2 4 LB XT + OLTF,
AC + 4,0~ 2BB, = (ap, — ap)ae + @e — 250).
This follows from Ex. 1, epplied to the quadratic forms
' 2

(ot war) 24 2034 whil 2y + (0 4 rey) yt= (Atwdi} T2+ 2{B+ xB) X ¥+ {C+ul) T3,
by comparing the cosfficients of # on, both sides.

A&
prove,\-hét"
. z\}\

prove that
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Whenee we may infer that, if two quadratics determine a harmonie system, the
new quadratics cbtained by linear transformation also form a harmonic system,
For their roots being «, 8, and a1, S1, we have

aar{{a — a)(8 — 1) + (= — B1)(B — an}} = 3 (aey + @6 — 2bbn).
4. If the homogeneons quadratie function of three variables

gt + byt L es? 4 2fye + 290w 4 2hay
be trunsformed into

AX? 4 BYr 1 02 + 8F¥Z + 2GZX 4 2HXY . &\

by the linear substitution \\
=X 4+ m¥ 4 ng y=rI+um¥ +nd Z=-\3X+.uaY+V32;:I;~:

prove the relation NS ”

A H @ a ] g A w4

H B F |={ugu| 2 b 1 }\\ ’

&/
2 F L4 g f > ~l"3.‘x

where the determinant (Aipers) is the modulus of transformhtion.

This is easily verified by multiplying the proposed :({étef‘minaut of the original
eoefficients twice in successlon by the modulua\c{i: transformation written in the
form O\Y 4
IR
%’W\@brgﬁli fary.org.in

ol @
>

and comparing the constituents{df. the resulting determinant with the expanded
valnes of the coeflicients of X’*,:\lx, &s,, in the new form.
1t appears therefore{that*the determinant here treated iz an invarient of the
given function of thrge viriables.

172. Prajicrites of Covariants derived from Linear
Transformation.— We proceed now to ghow, taking the
secoud\%t%é‘ment of Prop. 1L in Axt. 171 as the definition of a
covarfant, that the law of derivation of the coefficients given in
.&{f 169 immediatcly follows :—that is, given any one cocfficient,

\”“éﬂ"t}ae rest may be defermined.
/" For this purpose, performing the linear transformation

zr=X+2Y, y=0X+1X,
whose modulus is unity, the qnantic
(o, Q1 @y -« » Gg) (@, y}* bocomes (A, Ay Asyoos ANX, Y)Y,

where
A= oy Ay=a,+wh, Ay=a:+2ah+ak, &e. {Axrt. 35.)
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Now, if ¢ (a, a, a, ... 4y %, ) be any covariant of thia
quantic, we have by the definition

P (o iy @y oo gy @, ) = $ (A 4i, 4y ... 4, X, T),

or
‘P (”0) ffy gy ou g, &, f/) = 9” (A-u: Al; As; Tew Am ﬂ.‘v—-}&_ff, .’f)-

Expanding the socond member of this equation, and con-

fiming our attention to the terms which multiply 4: ohserviné\\
also that %/f—‘" = rd,_; when terms are omitted which Wpﬁd“’be

(3
malliplied in the result by A2, %2, &e., we have \ 7
2B A
¢ + ?r-(—- y—f’s + ﬁrﬁ) + m( )+.. ML =9,
dx NO)
which must hold whatever value A may h@:e; henece
¥ % 3 ap L % 1
= l— — Qa- vt Ry g, )
_a'}aal + Zalbag + 3&32@;\% " laaru (
and, syl iintng don ¢ Shpralie)
(B B, ",*.?:,.‘:‘. : B*")(xa y)m,

¥ E,c

we have N
mBamly 4 ﬁ{@-— 1) Ba™ 2y + ., . + mBuy™

= DBam (&4 'mDBamy +veet DBuy™;
whence, compafing coefficients, we have the following eguations :
DBy&Y,” DBy~ B, DB, 2B, ... DBy~ mBua,

whic *‘f‘?ﬁérmine the law of derivation of the eooﬂieients. from
the&ouree By ; the leading coefficiont B, being & function of
..féfelﬂi{ferenees, since DB, = 0.
"\ The calculation of the coefficients is facilitated by the folf
\" lowing theorem, which Las been proved slready on different
priuciples :—

Two coefficients of a covariant equally vemoved from the extremes
become equal (plus or minus) when in either of them ay, Gy« « « Gn
are replaced by ay, @y, ... &, vespectively.
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To prove this, let the quantic be transformed by the linea

C\

substitution
2=0X1+Y, y=X+0%, whose medulus = — 1.
Thus
(‘109 @1y 2y =« - RIER y)" = (r,z,;, Hn1y Bngy =0+ au} (Xs Y)”a
and, by definition, any sovariant L

(s Gn-ts Bncy -+ o o X Y)= -1y ¢ (g, 1y Bay « = O K4 y)x
= (= L} ¢l 01y @3y « - - o Y, X); O

whenes it follows that the coefficients of the cov’agisq\ﬂt“’equaﬂy
removed from the extremes are gimilar in Eopn?\‘and hecome
identical (except in sign wheln is odd) whairTor the suflixes
their complementary values are substitqtaé@}“'

Tt is eusily inferred in 2 similaxf ma:iner that a covariant
satisfies the differential equation | )

ol ¢

.:s::; 2 ™
T— =y '1}6“ + Qﬂ'n—l‘iq‘i_“%:“gan—z_i +.o0F nal';“_qs" (2)
oy Pl - bﬁwzdbrauljb?'gpy%rg, in o
as well us the eqaationdly already given.
Agnin, if ¢ (¢, grﬂ\','};, ... &) be an invariant of the quantie,

the former transférmation of the present Article gives, employ-
ing the definition of Art. 171,

x\(plﬁ[};.al, fay « o+ ) = ¢ (Ayy Ay, TN P

and Qﬁzééeding as before, in the case of a covariant, we prove
thaf an invariant must satisfy both the differential equations

Ny 2 op 2 2
2\ ¥ a + 20, 30,20 44 Ny =0
\} %a, + ol + S, Y )
L % 2 ¥
e + 2a,. + 3a,. ] = G
Y o s RQa,

cither of which may be regarded as contained in the other, since
i we make the lincar transformation @ = Y, y = X (whose
modulus = — 1), we have from the definition of an invariant

¢(a'ﬂ! Qﬂ—ln an-—'z» L {Io) = (_' 1)"(,5((1-0, a’lz az; LIRS a’ﬂ),
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proving that an invariant 18 & funetion of the coefficionts of a
quantic which does not aitey (except in sign if the weight be
odd) when the coeffiients ave written in direot or reverse order,
Invariants and seminvariants, cova~
riants and Bemicovariants, is now clear, Invariants of the
quantie {u,, a, .., @n) l, Y satisfy both the differential eques\
tiong lust written, whereas semin variants of (a,, a, .., a,,}(:c,.i)"
sutisfy ouly tho fiyst of these equations. In like manner
somicovariants of (s ary . ., #n) (2, 1)" satisfy only §l§e}ﬁr3t of
the differential equations (1) and (2) above w:r@é’ﬁ, whereas
botl are sutistied by covariants, v

UHaving now explained the nature of Cevatiants and Inva~
riants of quantics, and the connexion batwaen the two modes in
whicli these fanetions may be discqsséd, we prooged to prove
eertain propositions which are of W\K&e\iapplication in the forma-
ticn of the Covariants and Im:a;-fant-a of quanties transformed
by a linear subsFiéuti_ondr ;Ehé;"student who i3 reading this
subjeot P fo AaLE thie WAY* pass at onee to the next chapter,
where the pringiples alrgﬁﬁiy explained are applied to the cases
of the quadratic, cubié, and quartic.

173. Proe. Lt any homoyeneous quantic of the n® degree
S @, y) become Xy v } by the linear transformation

QE- AT 44T, yonYe WY

afso let anﬁaﬁcﬁma ¥y 0f 5, y, become U by the same iransformation ;
then %ﬁa%e U sm

N\ A70U du e oL 1
& (G- -G - ) ”
éwz’fe?e M is the Modulus of transformation.
71 Prove this proposition, solving the cgnations

*=AX + u¥Y, y=XX + u'y,

we have
MX = p'g - M, MY = - XNz o+ Ay;
whenece
2X X L 0Y QY
M— = — = = M— =X M= =2
Hbéﬂ ? Mby # wa dy
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Again, w AX YUY 1(P’DU ,aU),

e 3w Tavee  M\PRR TN

E‘_Eb_}&rigal_l(_ B_UJF,\B_U)
- aX oy 3¥ay  M\T I T RYS

which equations may be put under the form

% 2 LD_DI) + (- lLU) ¢
- (757) *+ M X/ R\

w10 ,_}_aﬁ)_ QO
T (ﬂ'faY +‘“( M3X ’,\z} ’

A P

and since 8

FOX + ¥, NX 4 @'Y) = BEY),

. .1 N .
o R - j——, T ]1
changing X and ¥ info TP and \\Mf 53 respeetively, the

proposition is proved.
In an exactly similar m@mg&{ﬂh@gg%y&pg%l’ into
12, % 102

ﬂgﬁf‘ ~HX
it may be proved t;ll:ﬁt\
e B > d
P 2Ny =rF(, - 2\ 2
\ﬂ{y o ax)“ F(aY’ aX)U @

The,%iesﬁlts (1) and (2) may be applied to generate cova-
ria.nts}bld invariants, as we proceed to show.
o :”‘Sﬁppoae f(#, ) and u to be covariants of any third quantic #,
w:hgre » may hecome identical with either as a particular ease;
also, denoting by F.{X, ¥) and U, the same covarianis ex-
pressed in terms of the X, ¥ variables and the new coefficients
3t v after linear transformation, we have, by Prop. 1L, Art. 171,
the identical equations

MeF(X,Y) =7 (X, Y}, and Mlr = Ug;
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whenee, substituting from these equations in (1),

proving that f (Dy D_:) is a covariant of v,

And in & similar manner it is proved from (2 ) that \\

a B ‘"\ 5 3
f(DJ - b—:v)u s~y o

.‘

.//\

N

leads to an invariant or covariant of v, acc%d‘mg as u is of the
¥ or any higher order, RS

We add some applications of this method of forming ipva-

N
riants and covariants, Pils
O
x\\\ )
ExsmpPrES
N
1, + d yin the gnattic o, b, ¢, 4, &)z yi =L,
\\rw@'&ﬂbré‘eﬂ Elpgrbq lct)u ﬂfnrxan e 4 { bo nvar
and the resulfing opemtlomperformed on the quartic itself, show that the in
riant { is obtained, I\
We find

("*\ﬁcf o 5y —5,) U = 15000 — 480 +36),

2. Proye,’ Tsy performing the same oporation on Hay, the Hessian of the guartiz
L= 2, Art\lﬁg) that the invariant J is obtained.
ngqwe find

\ e -
\\ (@ b0 d, e}( 55) Hg = T2(ace - 2hed — ad? — ob® — o),

‘;3'1» 8, Irove that

WO M 3 Rt R .
\> - {w, b, &, d}(a—y, - EE) G = — 12(c?d? — Gabed + dac® + 467 — 3b%%)
where G is the cubic covariant of the cubie {g, &, ¢, d) (% ¥} (Ex. 3, At 189
4, Find tho value of
dunE D du gia)‘*
{ac — bz}(i}b‘) — fad — bc}a—y Y + (6d — %} e/’

whera %= {u, b, ¢, d) {x, )5
{ ) {0 g) e, — DI
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174. Pro®. IL—If ¢ (g, (s @y, + - Cy) be 20 invariant of the
Form (aq, @y, Gz, .« - @) (2, yy", and ooy quantic of the w* or

any higher degree,

TECRNL R TR
b.’l’;‘”" Bm“‘lay’ h_r;;u—-‘aayz’ - ayﬂ
is an invariant or covarianl of 4.
To prove this, let R
g=AX +p¥, & =AX + nY’, '\\}’“,
y= XX+ pY, y XX Y (L
NG

and fransforming, as in the last proposition, 3

R R LSO

AR CNS Y
8

also transforming u, we have U —= %;‘:;\vﬁcnce
2 v ety ) O
(X 3% + Yﬁ\ﬁi{{dh m‘%"y-&'&g‘ W, ( )
N\
and writing this cquati;@’g\\xhen expanded under the form
™ }
(Do Dy Dy - - 0 (X, V= oy s -+ ) (540
we have, frony ti}e? Jefinition of an invariant,
N
w{?‘pla Dzs - Dn) = -"-Mgﬁb{d{ia dl: 032: e dn):
sho\w'ix’yg\\that B{ds dyy dos + - - dy) 18 21 invariant or covariant.
, :"’\}z’hen %, y, and «’, y ure transformed similarly, as in the
“present proposition, they are said to be cogredient variables.
And, in general, for any npumber of variables, when the coeffi-
cients which enter into the transformation of one set are the

game as thoge which enter into the transformation of the other,

the two sets are said to be cogredient.
The functiops which oceur in the equation (1) are called
emanants ; the expression on the right-hand side of the equation

being the n'* emanant of .
vOL. L. K
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FxaMrpLEs,

1. Let the guadratic
@o® + 2e02y 4 ay®  become AgX® + 24, XY + 4,F*

)

We have then, as in Fx. 1, Art. 171,
Agdy — A% = M2 (agay — o). & xf
Now asince ,‘
P - Pkl . 0F07 - D i’ I'B
X7 2X7Y S L1 % +y
e T sy T Y = st %

it follows from the Iast result, considering X°, ¥ an(l}(, ' a8 vanahlea, that

27 g ( e U_) - 2 {g?\\g; (aa:by)}

DX \3xorY
Thia gives an invariant of a quadrati ,\@.l’ﬁ}a covariant (ealled the Hessian} of
any higher guantie, L 4 ,\

2. When « has the values N °
N

e, d) {z 'g} and (g, b, 6, d, &) (2, ¥)4
QLA dbl‘auflbral‘y (X{g ’

what, covariants are deri 1\2{ by the process of the lust example
\ {(Cf. Exs. 1, 2, Art. 169.}

Ans. (lk{af — ¥ 22 4 (ad — be)wy + (Bd — o2} yh

— 6%zt - 2ad — bo) wty + {me + 2bd — %) x?y*
C + 2ibe — cd} xy® + (ve — df) ¥t
N\

11'5\.PR0P HI—If any dnvariant of the quantic in 2, ¥,
\“' U+ kay — 2y

“bg Jormed, the coefficients of the d’eﬁemm powef;s of k, regarded as
.»\ ) komogeneous Junctions of the variables «', ', are covariants of U.

A% For, transforming U by linear transformation, let
(o @y, @y, + . . o0) (%, 4)" = (g, Ay, Ay, . . . ANX, V)
also, if », y and o', % be cogredient variables,

ey — 'y = MXY - X'Y).

Whence -
<o Oy) (2 )0+ By~ 2y

(a’l]s Ay, g, .
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becomes when transformed
(Ao, Ay, Agy + o o A) (X, ¥yr + EMAHXY - X'Y)"5
and forming any invariant ¢ of both these forms, we have
(‘ﬁ}‘i‘la Pgy - - - 55::)(1’2‘7)? = M9, DDy, .- - D) (1, MR,
proving that A\

A o
(JTS,.= Mg@,-, :’s..:
£\ ¢

or that ¢, i8 a covariant. . \
When (xy’ — z'y)" is replaced by (by, by, b - - :,{Qj’*{m, ¥i"
we have the following proposition, which is esf"f&biished in a

similar manner :— v
If dlay, @y, oy - . - Gy) e an snvariant p&(%, @y, oy - - - O)
(, y)™ all the coefficients of k i K &

O\
b (ag+ kbyy @ + by, O30y + EDy)
are inwariants of the system of two.Quantics
(aﬂs @y, s » - - a"n) (:I}, yln;‘::(bU! blr 62: A 6«:) {x: y)”‘;

o © wwandbraulibrary. i
or, which is the sqme thinge yerem

d N\ LAY
(boa—% + b,\ﬁﬁ R E‘;) b, &c., &e.,
are invariants of the system.

This propdsibion may be extended to any number of guantics
of the samé/@égree in any number of variables. I, further, U be
replacedh by a covariant ¥ of the p* degree, we may generate new
cmz@i;iﬁnt-s by forming any invariant of

\"\:\ ) V + k(zgy — 2'y)?.
/176, Pror. IV.—If (x, y) and $(z, y) be homogeneous Quantics
the determinent

L ¥ ¥
Ay
A P
Y

is u covarignl of these quantics.
K2
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For, transforming ¢ and y by the linear substitution
w=AX +uY, y=NX .7,

we have

D (X: Y) = ‘;b ($> ?1'): IF(X! Y) = llbl'{x’ y)’

giving A
2P “¢ P DF V4 N\
DT( + @’ WX ay \,::.
2 w A O
aY “aﬁ ”aJ aY “HT “@'\u;
Whence A
| 2@ f395#¢+>3¢'!
X oY ‘ b T \ Ay
! W m!; WM’ ‘ua;j;
| 32X Y | .‘\b Yy aa: ¥y
which reduces to ™D
www.dbr aullbralﬁfﬁé)lf_ % ?_"_.b)
WRy Y =

and the proposition iz fffoved.

This Eovi-riant :Ls\t’f@ ed the Jacobian of ¢ and ¢, anr.:i is o.ften
written in the foi:’nl\.f (4, ). The Jacobian of # funetions In »
variables ig a, de’ccmunant of gimilar form, and can be shown to
be a cov&rl*tn‘t by an exaetly similar proof.

177, «i’cri‘atlon of Invariants and Covariants by
l)in‘e\\enﬁal Symbols.—1f @, 1} o ¥ai Ts Y35 - - - Tn> Y
bea, series of cogredient variables (such as, for example, the co-
oidlnates of n points), the funetions (z,y, — 2.4,), - - - Ep¥e= T p)

" are unaltered by linear transformation ; and since are

Dyg’ Dﬂ'},
transforred by the same linear transformation as @, %; gsee
Art. 173), we derive a series of symbols of differentiation, which,
combined as above, give the following :—

22 _b_i) (}_l _ _D_l) &c.
(bmlﬁé}; Sy T,y Dy Wy
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These symbols may be denoted simply by (1, 2), . . . (7 )
&c.; and by their aid a complete caleulus can be constructed
for deriving and comparing invariants and covariants, For
example, the Jacobian of ¢, § may be written in the form

(1, 2) by ¢
where by =P (2, 41)s o= fs (s o), '\Q\

the suffixes being omitfed after the differentiation has been' Der-
formed. Similarly, expanding the symbolic form (1, 2)2$J§12, we

obtain the covariant N
o ?
gy v o o L
Sz oyt dwdy omdy | Y ARV

the distinction between the variables bg?@f removed after the
differentiation has been performed. \\\j v

In the investigation by this méthod of the invariants and
covariants of a single quantic, tha vesult is obtained under the

N

symbolic form w \y\f\r,(;mra ulibrary.org.in

(1,22 306, 91 (p, P TTTs - - - sl
where U, for exampl\e',}\s used to denote the quantie obtained by
substituting x, andy, for z and y In 7. 1t after this operation is
performed, atd y disappear, we have obtained an invatiant ;
and it is eady %0 see in this case that the figares 1,2, 3, . . . 2.4
must all’ @eﬁ’ur exactly n times in ferms such as (7, j)<. For
exar@ie;}the formula

‘..3.‘\ (1, 20U,

mj"g\ix;es a series of binary invariants for all even quantics, the order

\/ of the invariant in general being equal to the number of factors
U, Uy, &c. In like manner from the formula
(12)2 (23)2 (31)2m U, UaUs

we can derive a serjes of ternary invariants for quanties of the
degree 44n, the operation (12)% (23)* {31)* in the case of the quartic
yielding the invariant

Gollafly + Dyftathy — Qofis® — Galts® — ay>.
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F may be noticed that this mterchange of variables can be

aceomplished by means of a differential operator ; for instance,

d o\
(.ct St U S;f;,.) Uy=1.2.3... 00, &, &
The method here explained of forming invariants and 003
variants is due to Prof, Cayley. N\
The

above method of caleulating invariants and GOV@fj:ﬂ:ntB
can be easily extended to ternary forms; for, if ng1£}$zyzzz:
Tyyszy be cogredient variables, it appears readily by“the rule for
multiplying determinants that if we express B/D{l;bfb ¥y, 3/0Z;:
in terms of 3/3ay, 33, dfoz,, and deal simildily with the other

v

partial differential coefficients, tho follovii.ng relations hold be-

tween symbols of differentiation :— K1
. O

LI I AY 3 2

X, Y, 37, WNow 7
www dbrauli l'ary.c)l'g.in,"; e

LA ) Sl L2 2 |- mqss),

WX, Y, YA N Dy Dy, &y |
.'\\

> 2 » | & > 3
Xy Y, Z; ¢V drg iy 2
where M is the@iodulus of the transformation.

\ </

178. Xi&hﬁ“n of Aronhold and Clelmch.—Aronh?ld
and Cl{ﬁ%bﬁ have used with much success a method of forming
in{a@ts and covariants which is closely allied to the method
piven by Cayley. Tt is therefore desirable to explain their
WMotation, and to show the connexion of the two methods of
“procedure,

Aronhold denotes symbolically the binary quantic U of the
w* degree by a4 = (a + @s%y)".  The products a,a,? ate at
once expressible by the coefficients of I when p+ g=mn Thus,
" denotes the coefficiens of " in U, 4,71y, the coefficient of

N

N\
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#,"p, and so on; but when the sum of the indices p + ¢ m
the product @,fay? is not a multiple of #, no interprotation is
afforded.
Again, since
1 ? N\
U- .__——_( 22U - "
1.2.3....n 130 T 5, U = (o + 0ot
we may replace @, and g, in any homeogeneous function of AN
W

N 3

and a, of the n* degree by the differential symbols 2 andh 2>
iy (L 0T

operating on U, a numerical factor being disregarded. A\
Moreover, in place of substituting differcnt paiméi{}f variables
in U, thus forming Uy, Uy U - - -, 88 inQ&yley’s method,
Avonhold writes the guantie U under the varjons Tforms
(aym, + apTa)?, (BT + b2l {Cgy + Co%a)%’ D) ., where afa,"?
= bFh P = PO T s the coefﬁci%ﬁ% of zPe? in U, the
order of the coefficients of any inyariant or covariant being the

number of the symbols af. G dtna&f} its exgression. In the for-

dipadlibrary org gy 3 2
mation of an invariant the diferential symbol E

L\ D:I;l Dyz 3'1:2 Dyi
given in Cayley’s metxb.od\is now replaced by (ab) = (a1by — Gab1)
in Aronhold’s J:Lota‘bi'éqi:“x

Thus, for example, the invariants of the quarfic are, in Aron-
hold's not-emtioﬁ;.mﬁ'iitt-en thus : —

{.;;,\”‘ 9 — (ab)t, 6F = (bo)* (ca)* (ab)’s

and.ﬁ‘@\e “eovariants whose leading cocfficients are H and G as
fallpws :—
O~ O, - (@hagtby, .- (@ (ca) adsie
4

which expressions may be verified by replacing (ab), &c., by
(¢,hy — asby), &o., then expanding and infroducing the coefficients
of U, which is practicable since these cxpressions are homo-
geneous functions of the 4% (egree in each pair of symbols @,, .
This mwethod, like Cayley’s, can be readily applied o 2 quantic
U involving any number of variables.
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We now conclude this chapter with some examples selected
to illnstrate the foregoing theory. The student is referred for
further information on this subject to Salmon’s Lessons Intro-
duciory 1o the Modern I wher Algebra ; to Gordan’s Vorlesungen
iher Duvariantentheorie s and to Clebsch’s Theorie der bingren
ayebraischen. Formen, where a symbolic methed is adopte

: s X\
throughont. N
s AN
Examrrrs, o
)
No/”
L The diseriminant of ARy quantic is an invariant, A\

2. The reaultant of twe fquantics is an invariant of the

3. From the definitions, Art, 166, prove that all the iu?;\n‘.inta of the quantic
(ry’ -- 2y}l are covariants of £, the variable being whey’. .
Hence derive the covariauts of a enbic from thed invariants of & quardic

expressed in terms of the roots, K7, \d
4 IHn 1,1, . .. 1, be the same in\vajm}ut- for each of the quanties

S0 4@ bR @

T--a ¥ — a syl T T r — oy

of tha cﬂfc‘?"dﬁ‘;qﬁ{ﬁ% '&'f,"gi‘;}f"fr.g;j}&{! the roots of ¢ (x) = 0, prove that
r}‘é.&
N S Iz~ gy
O

i8 & covariant of ¢ (a;kxg\.xx

For example, using 1 to denote the J invariant compaosed of the four ro‘ots
2y, 3, a4, ag (Art. ‘I.S'f); with similar values for J,, J. 3r ¥ 43 15, we have the following
covariant of a guintic :—.

gy (z — qu{‘-‘{f J2 (e — AL 7y {x — ag)t + Jg {x — ‘14}3 + J& ( — '15]3'

5 T &s,}ﬂg, % -+« ay be the Toots of the equation
"\

R\ (Zos By 13+ . . &) (o, 137 == 0
andif :
o\ 4 BoBhyby o . . P = Fla,, s By » + . By,

\/ﬁhere % T By, are all the values of g rational and integral function of some
or all the ropts obtained by substitution, find the equation whose roots are the

0 values of — S%, given 82 — g, (Cf. Exs. 12, 18, 14, p- 88, Vol 1)

Ana. F(Uy Uy Upy o . Up) = O,

6. Express the jdentieal relation connecting thrce guadratics in ferms of
their invariants,
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Let U = axt + 252y -+ oy
F = gzt + 262y + o
W o= agp® L 2baay + gy

maltiplying together the two determinants

2 5y o 0 o, —2b 2 0
" b c 0 c. — 2b . 0
5 2 2 2 2 2 ¢ Q
g o by €3 Y s — 2 R 0 ) 3
yr —ay 2 0 & 2y oyt 0 i"‘f v
we have N -
In Iq Iy g ‘\\ ’
i (“
. 7 s .
4 12 EH 3 = 0, where 2Ipg = apjjt?g’—i-}agcp — 2bpby.
R 7 Tos Iy W 7
: "\\4'
| U v W 0 &

- . . \";\
Expanding this determinant we have \\ )

LT — L0 ol — In)V? & T =00 4 20l — Izl VIV
+ 2 (dgplye — -{29.131)1'Vp:”'ﬁ2 (Taadm — Feal 1) UT 520 (1
There are two particular cases W@gﬁ%mﬂif}&‘h?y.or in
(1). When the thres quadratics ate mutually harmanic.—In this casc o = 0,
I, = 0, I, = 0; and the ide@l equation assumes the following simple form :
G\ A W oy ®
-% " -:) o+ (.,___)
(N‘ o (-\J'III% M’fIaB
(2). When ope ,o_‘fits‘mt quadratics W = 0 defermines the Jfoci of the involution of
the potuts givend By the other two, U =0, and ¥ = 0.—In this case Jp; = 0, and
g =03 snfl/making this reduction in the general equation {1), we have
~~\z.
\i"; (‘7122 - 111122)“” = 133(1220'3 - 2IIZUV + InV’) H
but from the equations Iy, = 0, and Iy = 0, we find

[¢5

ill

N® ag = wfmbs), — 2b; = wlentyh 6= w (3105} 5
«(\fﬁénce
4 4 (gt — ba?) = 7 (& (mBy) (Byes) — (@2l'h
or

Tyg = % Tyl VTSN
and reducing, when & = 1, or We=J(U, ¥,
—IJ{D, TR =100 — ar,Uv + I, P2
7. Prove that
2V {ap o 0g) (8 — &)
is a covariant of a quartic, whers Viay, ag, « + + o) represents the product of
the squared dificrences of ay, ey + <« @
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8. Prove that the condition that four voots of a

n equation of the wf degree
shenld determine on o right line a h

armonic system of points may be expressed
by equating to zero an invariant of the degree § (n — 1) {r— 2} {n — 3

Do b luy, w0 L ay) be any serninvariunt of the quantic {u, a, . . . ay)

¢ . .
(r, 1), prove that _‘ﬁ_ 13 also & gaminvariant.
n

1 Prove that the seminvarianty
Qs — % @y — dage 4 Ba,%,  ayta, — Bttty + 200% ¢ Q
of the quantic (a,, s T o oLy (0, )™ give riso to covariants of th?@&g ees
' 4 $
2n — 4, 2n - 8, 3n — &, o\ o
. . . Madi the
L. Prove that the coefcient of the penultimate term in the equation of

squares of the differences of any quantic leads to a cova-ria{zf{ﬁ’ﬂ}ﬂt quantic of
the fourth degrreo in the varinblas, 05\

12. Prove that the product of two covariants pf‘th‘:e\a‘a{me quantic whose
mources are ¢ and ¢ may be written under the form. \ N

#i + 2D () + 2 b Bike. ..

" Mr. M. Roberts.
N\
{Sen Art{\\ﬁiﬂ:)
13. Prove in particular that the mtk paswar of the quantiec
H ale
www.dbraulibrar)mbrgl;m,zj.s..,_ . @) (z, 1)

way be represented hy N
N x? .
" b 2D (@) 75 D) + o DY ag™) + ko

Mr. M. Roberts.
ne . At
14, Prove fromxB\s@i‘ definitions of a covariant thet any covarient of a
covariant iz a cofariaht of the original guantic or quantics. . '
18, If ay, ag; /. G 80 By, B - . . By be the roots of the equations
T AW T ms (B by by v B (@ 1) =0
DE(GH,G,Z&{;...am)(x,l}mr-o,aﬂd Vs (By, by, by, 3 nrlest
it is requived to derive a covariant of the aysiem U and ¥ from the ;1;11: est
fu.uctké.. f the differences of their roots, viz., Zlog — fgt = nia — mZf.

(LI question will be solved if we exXpress

?

s,.:; dp — rgq
~O O e ey

%
\ / i terms of the coefficlents of 7 and V.

For this purpose we have

Ty — o 1 A 1 :
zfz_—ﬁ)(ﬁaq——g;)zzx_"—_azx»-ﬁ“zx—ﬁza"—ﬁ
und if &7

and V be written as homogeneous functions of o and A

i1 Qdleg o 2 o :__B]ogU’&c_
Zw-—}.?y“ ax * & — ay E)y
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Whenee, substituting these values in the last equation, we have

- “m‘ﬂa__za_Ua_V__a_U@_V.
U}}E(-‘v—%y) (z— Baw) 0w dy Oy o’

which is the Jacobian of & and V. It should be noticed slso that the leading
coctticient of J (U, V) in mn {aghy — tydo}

16. Prove that the commen factors of two guantics are double fuctors of

their Jacobian J (1Y, ¥), when the quantics are of the same degree 7.

Let I7 = Pé, ¥V = Py, where P = I + my. Forming J (T, V), we find Ra:rt \
of it: divisible by P2, and the part which apparently has only P as a factor.may.

be written as follows (using Euler’s theorem of homogeneous funct.inné,,fa.nd
4 =] X

%

omitting a numerical factor) :— '\‘*';‘
. AR
o 0B, 08 ([0, 0¥ o, Y [, 285,08
(“’ e ¥ 2y) (E % mﬁx) + ("" %Y Dy) ("’%w,?‘ay)’
and this is identical with (fx + my) J (b, ). ‘,\\' )

17. Prove that the 2 {n — ¥) double factors of I fd\- t]:LV, obtained by varying
A and g, are the factors of J (U, T} where U an\&{’)&.re both of the #tt degree.

18. Find the resultant of two cubics U,@‘.&d’i’ by eliminating dialytically

hetive 'hy
ctiveen www dba ulibrary org.in

WY . WP
y—o, =0, S5 —0 S0
19, Tf N\

Aﬁg\é«;, F: PR Ay) (=, )7,
N{Bys By, By -+~ Be) (% )

79 N
be two covarianthotll,, prove that the leading coeffieient of their Jacobian is

\;\ pg (4o By — A, Bo)-
20 Ii\‘..;
A\
g:.\. {4y 4, Ay v s -‘433} E S
"\i:\l ) (Bp By By o - By} {z, ¥i%,
N/ {Cp O, Cop + + + Cp) (3 9P

be three covariants of Uy, prove thaf the Jeterminant
4, 4, 4o
B, B, B,

¢, ¢ O

14 a4 seminvariant,

z

N
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CHAPTER XVII,

s &\
N
COVARIANTS AND INVARIANTS OF THE QUADRATIGGURIC,
AND QUARTIC, o\
O

179. The @uadratie.— The quadratic kas@a}y one invariant,
and no covariant other than the quadratic itself,>
For, if a and 8 be the roots of the guadratic equation

U=qaz®+ 2z -1—\\(:,’= 0,

the only functions of their f\iigfejréﬁce which can lead to an
invariant or covariant are powers’of « — B of the type (« — B)22;
the odd powers of ¢ — B nOﬁ:bﬁfrlg expressible by the coefficients
ina %?Mr@%ﬁmrarﬂé‘&l@ﬁé: expressing

.@&Z_L__ﬁi_fp

&\ a—-r fS-=x

by the coeﬂi&ie{ééﬁ we conclude that the guadratic has only thf;'.
one distinctuinvariant ac — 8%, and no covariant distinot from U

Iself, W
¥4

1‘39\:@“1‘4 Cubic and its Covariants.—In the present
A‘Q’.}\@é‘the covariants of the cubic will be discussed as exa,mI.Jles
gi'the principles already explained, and in the following Article
‘,,\‘fjthe definite number of covariants and invariants will be deter-
A\ niined,
A In the case of the cubic a covariant is obtained from & function
of the differences of the roots most simply by substituting

By + az, ya + B, a8 + yx for a, B, v respectively,
and thus avoiding fractions ; for, transforming « — 8, we have

LU By tam) - (ya s Bu)

b+ 59 ke, &e.,
=% BT @owBoapy o) ¥ ¥
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and when fractions are removed, we arrive at the above trans-
formation (the order being equal to the weight in the case of
either function of the differences H or &). This meode of frans-
forming functions of the differences will now be applied to the
covariants of the enbic.
(1). The Quadratic Covariant, or Hesston H .

TPransforming both sides of the equation A\
a2 (a + of + ¥y} (e + 0B + wy) = 9 (a,® — ts)s ”3':":‘
we have R W

a{{a + wf + oyl + By + oyt B} N 3
x {{a + @B + wy)e + By + wiyo + wof) =8 (U Uslh)s
thus showing that \ )
N\ -
Iz + L; and Mz + M, D {Arh. 59)
are the factors of \‘\\‘
H, = (ags — ¢:2)2% + (a3 ~ @) + (a0 — 05,
where O
L = Byt wya + (u‘!&ﬁ“;{;‘ihfguﬁbﬁ?‘y-mﬂgam waf.
Trom the form of the Hessian in terms of the roots in Art. 167,
or from the rclations of(Art. 43, wo conclude that when @ cubic
is @ perfect cube, eapk}f the coefficients of the Hesstan vanishes
tdentically. P
(2). The i Covariant G
We haxge; @& in Art, B9, '
ay® {( %’B—f—wzﬂ/]a-{- (a-+?Broy)?=— 27 (ag’ast 24t,3- Bagityle)-
Tra;n&‘fﬁ:zming both sides of this equation as before, We find
%3‘E(Lw £ L) + (Me + M)% = — 27(U2U, + 2US° — 3U,U.Uh
/ — 276,
where @, denotes the covariant formed from the function of
differences G operating as in Arf. 169 on the source derived from
@ (the sign being changed in order that G may be the leading
coefficient) ; hence (Ex. 3, Art. 169)
G, = (@205 — Byt + 20,%)8° + 3 (@ T @2 — Dep oty M2
= (@atay — Bagyay + 265%) — 3 (@oliofty + Betly — D2, %)
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Resalving (L« LY (3 4 M.)?, we may obtain the factoT=

of (/.5 or. more simply, since the factors of Gare 1 — 2
Vora—=28 a0 g - 2y, the factors of G, are
AL - N 1.2

== b _ _ ’ L
B Yor a-2 y_g g g -2 a-z -~z pp—
when fractions are remavel. N

We have obviously the following geometrical interprétation
of the equation ¢ .. 0. |t three points 4, B, ¢! detgn%lmied by
the equation & 0 he taken on a right line ; and \three poﬂilts
AV B sueh that A" 15 the harmonje co:pg'u@ate' of 4 with
regard to B and €, B of B will regard toQand 4, and ¢’ of C
with regard to A and B ; the points 4’, B are determined by~
the equation (7, = ¢. (Compare Ex.j.?}p. 88, Vol. L)

(3). Bupression of the Cubic as\efie ifference of tuwo cubes.

This can be effected by me;ayn%vof the factors of the Hessiar .

\Y

as follows 1— IR
www . dbraulibrary.or g-”},’ N

(Lz + Ll)“é;(ﬂ;h: + M) = 27U ‘-/-é

LN\ %"
For, as in Ex. %}x\llb’, Vol. 1., we have
IR = T3 B~ ) by —a) (a B
Transformin\g;t'ﬁis equation as before, the first side becomes
A (Lic + L) — (M -+ M3,
~
nd the’second sid
a \{@ secon _ e
N VT B9 o) a - B o —a) o B -

“\MBubstituting from previous equations, we have

4

U —— __UJA
(Lo + L) — (Mo M3 - 27&?~/G2.—' 1H3 =97 PN

(4). Relation between the Cubic and its Covaviants.
The following relation exists :

G2+ 4H,3 - AT
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For, from Ex. 6, p. 116, Vol. 1,
ol (B—y)Ply —affa— B =— 27 (G2 + 4H3) = — 2Ta"4,
and transforming this equation as hefore,
G (B—y)ly—a)(a—BY{m—a)a—B)w—y)?=—-2T (G 2+4H )5

whence A2 = G2+ 4H 2
This also follows at once by substituting U, Ups &e., for tg, 2, ~
&o., in the identity G2 + 4H? = a"A. N\
(5). Solution of the Cubc. RAY.
The expression Y
(UJE+ G+ (US/B -G O
is a linear factor of U. L&

For from the relations in (2) and (3) we have N4
2,4 L + Ly)? = 2T(U~/.& + {G}J,
gy + M)~ 21U B G ;
and since O )
(Le + Fy) — QMJ}%— M)
is a factor of U, the propc}gﬁiféi}ﬂ&mm?w-0"8-1“

This form of solution. of thé tubic is due to Prof. Cayley.

181. Numbey of ‘Qi).,\\ariants and Invariants of the
Cubic.—Before prodeeding to the discussion of the guartic, we
take up the problén:rreferred to in Art, 162, viz, the defermina-
tion of the numbier of independent covariants and invariants, for
which purpéss we have in the case of the cubic the following
propcsiti)irf«—

fkéWc has only two coveriants, their leading terms being
H :Eg}ﬁ G ; and only one invariant, viz. the disoriminant A, where

\} @A = G2 + 4H3, or A = a¥d? + dac® — Gabed + 4db® — BB

The proof of this can be derived immediately from the pro-
position of Art. 162, Let $la, 8, y) be any jntegral symmetric
function of the differences of the roots (of order @), expressible
by the coeflicients in 2 sational form. It is proved in the
proposition referred to that a® is of the form

GF(a, H,A), or Fla, H, A),
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according us ¢ is an odd of even function of the roots, It fOHOWSZ
therefore, in the first place that there cannot be an invariant o1
an odil degree in the rools, since GF (a, H, A) does not remalr
the same Tunction when a, 8, ¢, d are changed into d, e, &, 4.
respectively ; and the only invariant of an even degree must tfe
4 power of A, since if ¥ (a, H, A) contained ¢ or H besides A, it
eould not remain the same function when the coeﬂicients{\&re
stnilarly interchanged. A A
Again, the cubic has only two distinet covariants ; férit has
been proved that CVEry seminvariant a"$ is of one qfit,]ie forms=

S
T

Fla.LA), ov GF (o H,0);00

and therefore the corresponding covariaptidormed from the
seminvariant as leading term, mnst be %{J}'L‘Sﬁiible a8

F(U,H,A), or %(U,Hm,xﬁ);
that is, every covariant is expressible in g rational and 'mtegral
formriny ghyauliby H,UEAG,, @long with U and A; or, in other
words, there are only two g}jls’t-iﬁct covariants.

182. The Quartie{\lis Covariants and jlm’arial?ts.—
We have shown a;lr\'é{i\ly that the quartic has two u?va.nants_.
T and J (Art. 167§ \From the functions and & of the differences
of the roots wedean derive two covariants H, and &, whose
leading coefidiénts are H and @ ; for from the relation

i«i\’ 2’2 {a — B = — 48 (a,a, — 0,
we lkehfe by the process of Art. 167,
AR~ B (0 ) (2 = 82 = 48(UT, - Uy) = ~ 48H , 5
Q}iﬁd, expanding UU, - U, we have
Hy = (@, ~ a,%) 2t + 2 (ayq, — 1y} @2 -1 (g2 + 20,05 - 3a%) 2
2y — aym) 2 + (ag0, — ag?).
In a similar manner, since

= (2102&3 + 2613 — 3{30&1&2,
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we obtain the covariant
~ ¢, = U0, + 20U - 3UUU,
which reduces to the sixth degree; and if it be written as
follows :
(, = Aga® 4 A@® + Azt + Ag® + Ap?+ Agr + A

we find, by expanding the above, or more simply, by forming -
the source A, and performing the snccessive operations of Art\\

169, the following values of the coeficients :— R,
£

A= —ala;+ 30,0020, Ag= — a2y — 20050, — 60,705+ 9@ e,

Ay — Bty — 10857, + 15a40.0,, Ay = — 10aym" 4. 10ay%a,

A,=Baga,a,+ 100,20, 10agtaty, Ai=0o*est Dttty -6y B — 90 3s"5
Ay=agtay — dagnay + 20, \4

Here it will be observed that, when 4, ig) er;ermined, A, Ay,
Aq may be obtained from 4, A5, and A ¢ b SHanging the suffixes
into their complementary values, and aMering the sign of the
whole, in accordance with what wagvﬁr{)'\}ed in Art. 163,

We proceed in the foltowirlPesrtibrar Yo xtseuss the leading
properiies of these two cava-rizh;itg of the quartie.

183. quadratic F?{ﬁms of the Sextic Covariant.*—
As the quadratic fachord.of G, enter prominently into the follow-
ing discussion, we ,pfoceed in the first place to find expressions
for those factou®in terms of the roots of the guartic, and to

N\
frincipal properties.

deduce theirg

actors of @, expressed in terms of a, B, y, 8, are

Sincgh%?
K E+y~a—39, 'y-i—a-—ﬁ-S,' a+ B-y—28,

*

Oghé\;’fa’ct-ors of G, are obtained from these by substituting

\JLo1 1 1 . n
o T -_Fr-ya-% for a, B,y, 5 respectively, and multi

plying each factor by %T to remove fractions.

# Seg a Paper by Prof. Ball, Quarterly Journal of Muthematics, vol. ¥il., p. 368,
containing a full and valusble discussion of the various solutions of the biguad-
ratic.

VOL, IL L
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Whenee, denoting these factors by «, v, w, we have

N
O _xiy_xis)’ ,.xf:

which values of w, v, w, arranged in powers of 2, are

o Bty —a - )% - 2By — ad)e + Bylat d) \as?/sw)
vefyba— - 8t 2ya — B3)z + ya(B w5+ 2 B8y +a), ¥; {2)
W+ f—y— 82— 2af - y8)x - aﬂ&*{— 8) —ydla + B)
\\
and, consequently, 326G, — a®umw. Q
From equations (1) we easily ﬁﬁd

www dbra.LBh{n ar%@f{% mj{)"_ (ﬁ '}’) - a .:c B 8),
= fa— 9 $—)9)J? =) + (B~ y) (z - a) (2~ B);
and from these and %i‘mﬂar equations we have

1,2\_\1/'2 e .=4g, (3)
.#_v Y

A—p a
where A, ¥ have the usual meaning (Ex. 17, Art. 27); and
conqeq}m&

.\ (=i u? = - v}o? - (A - pulu?;
hence

v —(muwwﬂ 1) /A = v = wafA—p).

Since, as this identical equation shows, the factors on the
second side are both perfect sguares, we may assiume

vA - v+ waSA— o= 2ud
A~ v~ waA = %t
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we have, therefore,
walA — = 1 - wh,
DafA - v = w4 ut,

% \/‘u, — v = 2uyit, ;

from which values we conclude thab «, v, w, the quadratic factors,
of @, are mutually harmonic. )

For the geometrical interpretation of the equation G = 0D
see Arf. 65, Y

184, Expression of the Hessian by the Qgéaﬁratic
Factors of G,.—Since O ~
I .

—1825 = Dla = B o -y s

combining the terms in pairs, and noti\(ﬁqg‘t{fiat
S8 —y) (a - 8050,
Lo~ BPlz—y)z- 0 RN '
= Z{(B ~ y) (= oy Ry Prary 858 B) (2 - 7))

the guantities befween bra{kﬁtﬁ being «, », w, we have

A

K@‘B&cz_‘: = ul 4 0? h

which is the reqmired expression for H.,.
N4

185, Ex,pi-e‘ssinn of the Quartic itself by ihe Quad-
ratic aetors of ¢, —From equations (3) a symmetrical
value 38y be obtained for U; for, substituting in those equa-
tiqusf’iﬁ place of A, u, v their values in terms of the roots py, po. P2
‘of the equation 4p° — Ip 4 J — 0, we find

"4
a2 (0% — w?) — 16 (py — pg) U, 02 (w? — u?) = 16 (o3 — p1) U,
a{u? — %) = 18 (p; — pa) U,
from which equations, by means of the value of H ;in the preceding
Article, we obtain

(@) = 16 (0 — Hp), (a0 =16l = ), (&)
(@w)? = 16 (p, U — HL),

L2

{\



&
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We now make the substitutions

w? o A X2 v¥ = A2Y2 wh = &gzz
where AL A, A, are the diseriminants of u, ¥, w; thus replacing
w, v w by three quadraties X, ¥, Z whose discriminants are each
ecpial to unity. By means of this transformation the forms of
the quadratics are further fixed, and the identieal relation'(‘\h -

necting their squarcq (see (1), Bix. 6, p. 137) is expressed Wi its
simplest forn.  Caleulating their diseriminants, we ﬁml‘ )

A= By —a—8){Byla +8) —aS{B+7) :\xgy._aa)z,
with similar values of A, and A, ; whence Wt‘.i'}:jl ve
Aps = Q- b A=), A= — (e — W A Be = — (v - Ay — )
Making these substitutions, the pj\&gm}mg cquations become
(pr ~ p2) (pl A, b2l -l
W, dbraultblar O)l 101 ) V2 H — 010, (5)
(ps — pa)t B~ po) 2 = Hy = T,

from which are easﬂy\deduced the following values of U and H o,
and the 1dent1ca}\équatmn connecting X, ¥, Z :—
N H, = p2XE 4 p2V2 4 p 222
T mU=p XY 7 (6)
{”\\ v
N/ X2+ Y2+ 22,
N 0

vﬂiere as has been proved, X, ¥, Z are three mutually harmoniec
quadratms whose discriminants are reduced to unity in each

case. The value of ¢, may be expressed in terms of X, ¥, Z
a3 follows. Since 32, — a%umw, and

uphp? = (pn — ¥}y — ) (- - )R X272 %?E (I — A INXY2Z%,

we find
= 11217, XY Z,
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186. Besolution of the Quartie.—From the equations

- U = p, X2 + poY* + psl
0=X2+ Y24+ 27,
we find

U=(p1—p) Y*+{p, - pay 28, U= (os — pa) Z% + (pg — p1) X5,
U = (ps = p1) X2+ {pa — p2) V™ '\{\
where X2, Y2 Z? have the values determined by equations (B}
and breaking up these values of U into their factors, we Bave
three ways of resolving U/ depending on the solutipnjof the
K7,
Ap3 —Ip +J = 0. x\

\

equation

The resolution of the quartic has been presefited by Professor
Cayley in a symmetrical form which 111@1\ be eagily derived from
the expressions already given for Uand'®y; TFor,since in general
gt - 2oy -+ o)+l BRI, ) e+ 2+ )

is a perfect square when 3%
51 (g6 — byZ) e Tm (gt + ay0s — 2bbi) = 0,
X + mY +nZi8 ﬁ}.\ﬁ:erfect square when B + m? + n* = 0,

X, ¥, Z being;:im%ually harmonic, and the discriminants each
reduced to nAIby.

The Lesigﬂution' of U7 is therefore reduced to finding values of
L, m, )K%Eh that the general quadratic IX + mY + nZ, or

N
~ . J—

~O In/ps— psa/Ho—piU + ma/ps — p1n He— palU

\/; . + " "/Pl PN H, - PaU:

shall be a perfect square, and shall vanigh when U vanishes.
These values, corresponding to any root  — a, may be found by
taking any set of values for N2 —pa NPz P N p1— pg a0
a set of values for the square roots of H,— p U, Hy—poU, Hy—psUs
which are each perfect squares, so that the square roots have
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each the same value for z - a, and then taking for X, ¥, Z the
definite values

X Nor—ps NH, = 0,0 | oy = Non . Np1— e
with similar values for Y, Z, accordingly I, m, » have to satisfy

EJP2 Pz T ?ﬁ,\/}p‘_} P]_T??.J,Ol 0 FEIR [ X 4 ?3220\\'\

which equations are plainly satisfied if

N
LI~ py—ps es= i N py-py o= f N = P2

Al

Finally, the squares of the four linear factors Qf\\&' must be

2PN Ho—pyU = (o~ p)/H o —pU 2 (o> o) He—paU,
of which the product is A2 )
If it be required to solve the quart}, «U - AH,, we may
similarly select values of I, m, » so tQth + mY 4 uZ shall be a
perfect square and shall vanish thh kU — AH, vanishes. These

Valum les may ;]:c'ﬁn:fa(iﬂrbd bv g!mab 8 definite set of values for
VP2 P2 Vs — pu, \/p puh 4k, writing

o :\{‘\—PL{H ~ iy (el AHLY)

where py = p, (x\— /\pl) with similar values for H, — p,U,
H,— p,U, ss-]ec,’mng values for the square roots of
H, - (e NAHL), H, - wolwlU —AH ), H,— p(xU — AH ),

which aréséach perfect squares, so that they may each have the
same x”hue for a definite root o’ of £If -- - AH,, putting

Xvwz pa V= dpn V H, — (el = XH) [/ ¥ 53— o B
QO Vou—puVpL— po

with similar values for Y, Z; then I, m, n have to satisfy the
equations

PV pa~ps Vi~ dpy+ 1V py — po Ve~ dpm+ 1 T
'\/.FC—)IP3=0

PP+ m? g2,
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which are plainly satisfled if
1V ps —paVie == 1 Vs — 1V~ dp
=nf \/Pl pa VK = Ay
whence 1X + mY + nZ is the square of a linear factor of
U —AH, =0 ~
\
187. The Invariants and Covariants of U/ — AH 4 \
Employing the equations (6) of Art. 185, and dea;mt'lng
X2 4 Y2+ Z* by V, we may, by adding - i\— T to }cH‘

reduce it to the form R, X? + Rp¥? + BaZ%, “hGI‘F‘ & + Ry=
When this is done, we have the following rednced values of
Rl: Rza Rs

\ l
3Ry~ x(2p1—pr—pa) * éfw\— papr ~ 1Pz
3R, =« (2py ~ pg —~ pr} + f\(‘gpspl PP — Poshs
3Ry =« (2ps = P\wafébgau raly oﬁépa pip)-

On account of the sumlamy of the forms
. Lpgzﬁ and RX®+ ByY* + RZY,

which are of the éq\nle type, it is clear, and we may verify by
direct calclﬂatlog,; that XYZ are also the factors of the gextic

covariant of'x® — AH,, and that its Hessian is
x’\s.'
\O" Xt + RAYV? + RS2,

80 th\&}we may caleulate the invariants and covariants of «U—-AH ,
by ‘Slmph? changing py, pa, ps into By, By, R, in the expressions for
\/: the invariants and covariants of U.
Thercfore, since

I= %{(Pe —ps) (ps — 91)2 + {py — Pz)z}a J =~ dpypeps
and
Ry — By = (po — ps) (e — Apy), R, - R1_= {ps — p1) (e — Apa),
R, - Ry, =(p - Pz) (e — Apa)s
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we find the following values for the invariants of £IJ — AH
T Tt — 37 1+ Zpe
x4 = 4K* — adk TE 3

i® 1E ) 5% - ]38
— 3 _ - .2 a2 .. )3
J(K,;\) oI 8 KB + 1 KA 375 A3,
o &\
1f we form the eovariants Hi, .. and Gix, 5y o Q, where A\
40 = dic® — Jied2 1 J)o )

o
. ) . @)
{the rcducmg cubie rendered homogencous in i, A), weMind, as

M. Hermite has remarked, ::\\' :
Ty =~ 12H, 0, T, , = 4@-(&?\}1 v
Again, to caleulate the Hessian of xU‘—\&H 2 we reduce
Ri2X2 L R2Ye R_f,f\Z?\
by the substitutions Q}\’
pPXE + p YR p33ZE}§’;—' 3T,
w\p‘lﬂm'ﬁuﬁﬂlﬁf‘ﬂop%gflz HIH, + JO),

which are obtained from F-h’éleﬁuations

Pt = papy & ;U,\,Q\f = psp1 t #, pg? = pipg - 4,
by multiplying ﬁr&‘g\ Y 0 X2, pe Y3 pyZ% respectively, and,
secondly, by PPX% p2 Y2, p.2Z, and adding.
In this waglive find the following form for the Hessian of
KU — M, e
PN
O H A (e ] %) -0 (G1A - 1) |

»W\hil\,i'ﬁ may be expressed in the form
’ L7, 202 202
55 + U

which is » multiple of the Jacobian of xI7 — AH - and 2, the
variables being « and A,

Again, since J2 — 9772 16(ps — p3) (p3 — p1)2 (02 — p2)?,
and Go= I 9102 XYV
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transforming p,, pg, ps into By, Ba, R,, we find
T3 2) — 2T % 4y = $2(13 = 27J%), Glena = Q6.

We have therefore expressed the invariants and covariants of
«U — \H, in terms of the invariants and covariants of U.

188. Number of Covariants and Invariants of t!le\
Quartic.—We proceed to prove the following proposition, W]l'l?.\l‘{\
determines the number of these functions i— (\)

The quartic has only the two distinet nvariants 1 aﬂdi?ﬁs and,
two distinet covariants whose leading coefficients are H and "G

This proposition asserts that every invariant isAdational and
infegral function of I and J, and every covariantya rational and
integral function of U, H,, G,, I, J. The fallowing discussion
is founded on principles similar to those @lrcady employed in th.e
case of the cubic. It is proved in thl'e\pr\bposition of Arf. 163, if
¢{a, B, y, &) be any integral fungtion of the differences of the
roots expressible by thewc“g&ﬁ‘ij 111,?111:15 in a rational form, that
a®h (a; B, v, 8) may be exprassed by AT

GF (a, H,{I; J), or Fe, H,LJ)
according as ¢ is adder even.
Now, if F (a, H, I, J) be an invariant, ¢ and 5 must disappear,
" since if they‘w\x“t’sfe present this function could not remain the
same Wheryxﬁhé coefficients are written in direct or reverse order.
Similaxly))To odd function such as GF (a, H, I, J) can give
an ‘i;\i?sﬁﬁ-nt. It follows, therefore, that every invariant is a
fumgtion of I and JJ.

\'\; ~/ Again, the quartic bas only two distinet covariants ; for we
have proved that every function of the differences ¢”¢ is of one
of the forms

Fia, H,1,J) or GF (o, H, 1, J).

Now, considering these forms as the leading coefficients of
covariants, it has heen proved that every covariant is expres-
sible as

F(U,H,LJ) oo GF(UHyl JY;
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that is, every covariant i expressible in terms of H, and .,
along with U, I, and J : and this is the proposition which was
required to be proved,

Examrres,

I.H 7 be an ¥ etbie, and 7, ity cubic covariant, prove that the Hessia:noof
AU |- g, has the same reots as the Hessian of 7, A and & being constan{k\

2. Prave that any covariant of a guantic, whose roots are Gpr By LNty

. ‘O
satisfies the aquation i"\: "
L o ul
L A = . ad
2y, Ya wsh — x o A\

where @ s the degree of # in the coefficients of the qua-ntic,"a\-‘% &y = Za,
3. If a quantic have g square factor, provo that the sanifz)}luare factor enters
its Hossian.

4. If a quartic have square factor, prove t}mﬁ}fa covariant 7. has that
factor s a guintuple factor, and give the v lie\oT w, v, w in this case. (See
Art. 146} :\\\,

N/ .

5. If ¢ {x) and o {x) be two guantics of the #** degres, the roots of ¢ {&) being

Oy T, “Brrer, Fhr il they ,Hpgij?bﬁjin may he expressed as follows :—

Sr=n
SN i fay) 1 .
T (¢ i} = g% > E’(:f} (e —an?’
s \ r=1

and in particulsr preve thp:t}he sextic covariant &, of the guartic #(x) may be
written under the fornd, { ™
‘m\\ ) Ty _&_
O 192} (* ~ a)e
8. Prove fopa Quartic 7 that the sum of any two of the quadrics
D @B @y (@
O Hle) B(B) #(v} #'(3)
s a faet&}o‘f the sextie covariung of &7 expressed in terms of the roota,

j’},:If A be the discriminant of

a\Y, i) = ay(x ~ o)) (v — Al —ag) . .. (% — ay),
\F;‘OVe that the equation which las for roots tho » values of the irrational covariant

z (% ~ a )72

- VA
T #lay)
can be oxpressed in termos of the covariants and invariants of ¢ («) in a rafional
form when ,,/ -A_ is adjoined ; and show that the valies of z whon s = 8 and n— 4,
respectively, are multiples of the solutions of the cubic and quartic given by
Cavley {Arts. 180, 186},
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8. Applying the principles of Art. 188, determine withont ealeulation the
form of the sextic covariant of the quartio AL 4 pie.

9. Caloulate the values of H, I, G, J for the Hessian of a quartic.

34,0 — HI L J6 ., BaI—I®
Ans, H' == I'=73 ¢ =~ " J =318

1. Find the two conditions that the Heasian of the guattic wanting its second
term should be a porfect square, and show that both contain J as a factor.

Ans. JG =0, aJ@HI - Sud) = o\\\

11. A seminvariant of the egquation N
-
{tbps Ty thpy o v & ) (T =10 iw}
arranged in powers of a,, being x ’\'\\'ﬂ
p—1 <
d=Ay, + pdy s+ ilr-—i'lﬁ_—g A a,* + . K :”‘F\Aﬂﬂﬂp;

prove that Dd; — — ma,_; jA; 1, and heace show that (q‘{ iy, 2y, Gay - -+ Grh bER
seminvariant, so also is o (A, Ay, Aoy o ooyl 1 s il
12. Hence show how the final coeficient of the@ghation of squared differences
d .
can be found for any equation when it is knog‘ﬁsfor the equation of next lower
ozdor. wiww.dbhrfaulibrary.or gl in
13. It $lag) = (4o Ali{lé{ T Ag){ag 1V

o) = (Bm‘B;'z:Bs’ - B (A 1Y

be two seminvariants of I7, a@huged in powers of an, prove that any semin-
variant of the system ¢ (z) pn\gi\ (%) is a seminvariant of Iy,
s 2\J

4. I N\
R ’{«1 =(dg Ay, Ay -2« A (Epe 17,
NO I, =By, By By« « B (an 117

be two i.r]vag}(iaiﬁt’é'of Uy = (ttyy figy Bg -+« + ) (&, W)™, prove that the regultant of
Fiand 7 &h&n a, is eliminated is the leader of a covariant of U, of the degree
O\

A\ (n + 1pg — pma — m
,\mﬁthé variables, =, and w, being the orders of J; and I,.
\’ 4 15. Tf the discriminant of a higuadratie be written under the form
. (dp Ay, Agy Ag} {2y 1)%
prove that the diseriminant of this eubie is
2722A8,

where A, is the diseriminant of (g, @y, @5 25} (2, 1)+ and ¥nowing 4., find
A,, Ay, and 4,
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16. Form the equation whose roots are

$lah $ (2, $lag) o - . ¢ (),
where a, ag, q, . . ., a, are the roots of f(x) = 0, the resultant B of Fizyand
& {x) being given,
Change the last coeffioient by, of ¢ (x) into b, — p, and substitute this valte
for 4y, in the equation R = 0.

17, If ¢ (2) = {ag, a, @, . . . @y} (2, 1)% whose roats are ay, ap .+ . O
and if \\
Yix) = dofe - Bl = Bo) + « .+ (2 — Bass), y
& covariant of ¢ (x) of the degrec n —~ 2, prove that any symietric fu.nctmrﬁ of
the guantities \ N/
e ) | bl O
Flea)” @) e
can be expressed by invariants, o\ {HERMITE. }

Denoting hy R the rosultant of ¢ (=) and A () + off (:r} el}tpreqsed in terma of
the roots of ¢ (x), we can prove this proposition simplysbypshowing that the values
of A given by the eguation R = 0 ure not a.ltered {€xtept in sign) when for the
Taots @ and the roots f their reciprocals are wriflen; the inversion of the roots a
involving the substitution of a,_, for o, and\a}so the inversion of the reots g of
& (x)

rove\'{htell.lgl‘S'thaa}?y ex emﬁd n terma of w; and u, of Art. 183 arc
both nf the form
{4, B» AJ (® ug™)".
13, Prove that the quar fs\\\

\(\(x ) = (a, b, ¢, d, €) (=, g)*

may be reduced by a, ]mear transformation @ == AX 4+ u¥, y = VX + 'Y to
the form PAS ,
N XY XE 4 fla, ) ¥4 + 6pMAXITY,
where \/
‘::\ 48 —Ip +J7 =0, M =x" — N (SYLVRSTER.}

\
-
p

8\ A and the
20.\Ref:ammg the notution of the last oxample, prove that ¥ an ; are

pé’h;s of one of the factors w, v, w of the sextic covariant of the quartic {Art. 183},

\M\: 21. Prove that
4 4G,
dxs

the redueing cubie of Ari. 65 (ef. Ex. 5, p. 132, Vol. 1.}
22, Prove that
mPX? + pPYE FoPAR = Mp oMy My 0,

whero I, I, , arc soms of homegensous producta.

= 80 (T30, — U, 1,2,
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23, Prove
(2TJ% — Iy (Y242 -+ Z2Ye + X*¥9) = Jerre — B6JOUH, + 121/ ,5,

the second side of this jdentity being the Hessian of Gy

24, If U = £ + ot + 6mén?,
where ¢ dp oy n=Ne+py M= - N
prova that I= M1+ 3md), J=M(m— m?), )
gr 4 L3 g apgys — T(Mm) o+ =0, '\\\
I m— m® A
T Hp= w3 P A7
@, = M3 (1 — Im%) fn{§F — ) "

A\ *

25, Show (1) that there are two real and distinet ways of ;mﬁb&g the trans-
formation of Example 19 when the Toots of the quardi ?Va,ll real or all
imaginary, and (2} only oue real way when two roots are\s%- md two imaginary.

Calenlate the values of A, Ag, A, of Art. 185, and oblerve that in the firat
case the reducing cubie hes three real roots, and i thighsecond one real and twe

- . ,,\
imaginary roots. \\}
O

o\ ¢
s:‘s’g
\a\rw“f_:ﬂi’raulibl'ary.ot'g.in
AN
s,’\‘
Q
"\\
g\'\ w4
O
:.q,u,/
¥/
>
No/



CHAPTER XVIII, .

\
COVARIANTS ND INVARTANTS OF COMBINED FORMS, A ’\

‘A

189. Combined Forms.__Iy the present chaptéi;:we pro-
pose to illustrate the theory of the covariants an inyariants of
systems of two or more quantics (Art. 166) 'Ey.\the simplest
cases, viz.: (1) two quadratics, (2) quadratio’ and cubic, and
(3} two cubics. We give in cach case apyenumeration of the
forms which have been shown to be fundamental by the investi-
gations of Clebsch, Gordan, and Sf}\iir\(;ster, showing how these
forms may be obtained, but wiQtlyé'ut attempting the reduction
of all other forms dependent oirthem. Tn estimating the num-
_ber ofwmwzdﬁambibﬁ?ﬁf‘?ﬁ%ﬂﬁﬁﬁts of a combined system, the
mdependent forms Whiqh’ﬁe'iong to each guantic by itself are
counted among the tp'@l\number belonging to the system. It
will he Tound cony@i_ént to use the term specigl to designate
those forms which belong to the two quantics regarded as a
system (and w;h’fgr]f therefore contain the coefficients of both), as
distinguished Mrom those which belong to the quantics taken
separatelx (.

Inwdsfants and covariants are both included under the name
cogg&m-imnt, which is applied to any function whose relations to

\:é quantics are independent of linear transformation.
Y 180, Twe Quadraties.— Let the two guadratics be
Us=oaus 2oy 1 eyt Vo= a2 + 2byxy + ooyt
This system has one spectal invarians, and one special covariant.

The invariant may be obtained by forming the discriminant of

o

AU + 1V, which is found o be
A (ae, — b2) & At (@404 + ago, — 2b1by) + p? (40 — by2),
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all the coefficients of A : p being invariants (Art. 175); whence
we have the special invariant :

Oy0p + Gty — 2byby = 204, (EX. 3, Art. 171.)

The vanishing of this function of the coefficients is the con-

dition that the pencil of lines UV = 0 should be harmonie, the

rays represented by one equation being conjugate to those

represented by the other. N
The special covariant is the Jacobian of the system, vize{y
| @by bz+ oy O
: = J{U, V), \’.
| e+ by b+ ey D
which may be written in the form . ,\
: gt - ay | \

Y bl CQ\\P\,M

| )

o by " “.‘;‘C‘zﬁ [
obtained by eliminat-ingw&iw’ge:rjﬁéé;llybr‘ahg}_o?griﬁbies from the
quantics U, V, {zy — «'y)?, the form zy’ — 2’y being a universal
concomitant of all binapf quantics (Art. 175). This form for
J (U, V) can also be agr:}ed at by eliminating A and u from the
equations obtainad by* comparing the coefficients in the identity
AU +uV = (a:yf..i:,:z;’yF_

The Square}ifJ is connected with U7 and ¥ by the following

important\i:g}é:cion —

O
AN TN, Y) = LU - 2L UY + I (1)
whighvthay be derived immediately from the equation
Nyt ey | (a2 2z 42| |0 U T |
a’l bl (31 !. cl - 261 al | = ! U 2111 2I12
Gy by ¢ | 6, —2by @, ‘ | V 2L, 2@

Again, it is easy to see that J(UV) gives the double lines of
the system AU + pV, for when AU + u¥ is & perfcct square

AQI“_ =+ QA‘LLIiz + ‘Ufzjzz = 0,
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and eliminating A : 1 by means of the equation AU + uV = 0, the
double lines are determined by the equation

Ly U2 - 21,0V + I V2 = 0,
or J2(U, V) = 0.

Every econcomitant of a system of two quadratics may b
expressed in terms of the six forms UV, J (U, V), 1y, 1y, B:!}
all of which are constituents of the formula (1) writtenmabq'vc-
The resultant of {7 » V, for example, is 9

4 (Tl y, — 1122), fArt 150.)

which is also the diseriminant of J r, 1, %{nﬁ the dialytic

eliminant of T, V, J(U, V). N
191. Quadratic and Culiic.-?l“eig e two quantics be

U=(abedizy?, ¥Y,0) @00

the cowm«iaﬂts-anﬂlibhbﬂmgglbngtéﬁ'ag usual by H_and ¢,. The
system has one special cubietovariant, the Jacobian of U and V,
or J (I, ¥); and one s%@&l quadratic covarlant, viz., J (H,, V)-

In writing down the" remaining covariants it will be fou.nd
convenient to adopt the following notation. We use U with

suffix D to denotie ¥he result of substituting in U the differential
¢/ > 0,
symbols D?:\‘—...;Dw for x, y, respectively, where D, = v D, = PR

“\Q‘

hence \
R O\ LA X 2
Ui,'\E. (ﬂ-, b, C, d] (‘Dﬁ"’ — .D$)3, VD = (a 3 b 3 & ) (Dw - Dw) 1

'v\' $
“With a corresponding notation in other cases.
" There are four linear covariants, which may now be written
as follows :—

VD (U): -VD (Gm)s U_D (V2)= G,D (]72)
The first of these written at length is

(0" ~ 260" + ca’y z + (be’ — 2ok + da') y.
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There are three special invariants. The first is the inter-
mediate invariant of the system of two quadratics H, and V,
viz.,

(ac — b — (ad — bo)b’ + (bd — o' = Iy,

where the notation I, is used to signify that the invariant is

of the p™ degree in the coefficients of U, and the ¢ in the

coefficients of V. The second invariant is the resultant R ‘al\
U and V. It is of the second degree in the coefficients ol W,

and third in the coefficients of ¥, and may be expra&iﬁted n

many ways by the methods of elimination of Chap. XIV. The

general form of any invariant I,; of this type is ‘\\ !

123 = ZR + (a’c' - 5’2)121; \y/

! and m being any numbers, N

The third invariant (which is skey){isof the type [y, and
may be obtained by operating with E’b‘three times in succession
on the product of U and &, ; it ca;n be written in the form

W ,12’ ; wij!alary.mg.m

There are, therefore,.nine special forms belonging to this
system ; and if to thgse\'b\e added U and V, and the independent
covariants and imaaiiaﬁts of each, we obtain the complete list
of fifteen forms, ¥z., three cubic, three quadratic, and four linear

covariants, and’five invariants.
192. i’[‘ﬁﬁ Cubies.—Let the cubics be
’ 'w;E (6, b,¢,d) (, )% V =(a,¥0,,d) (2 9%
tl"tsfébva.riants of U being represented as before by H, and &,
~aod those of V by H', and &
/  Of this system there is one quartic covariant, the Jacobian of
Uand ¥, viz.,
J (U, V) = (a)at + 2 (o) 28y + {(ad') + 8 (bc)} 2
+ 2 (bdymy® + (ed) y*s
and two special cubic covariants, viz.,
J(U, H ), and J(V, H ).
VOL. 1L M
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There are four special quadratic covariants. If we form the
Hessian of AU + 1V, i.c. substitute Ma + pa’, Ab+ b, &e., for
a, b, &e., in If, we find

AH, + M, + ulH .
The intermediate Hessian M, here obtained is the first special
quadratic covariant; and the remaining three are obtained by

taking the Jacobians in pairs of H,, M, and H,. ’\\\
There arc six linear covariants which may he wntten 83
follows ; — ¢ ? )

Hy (V) Hy(G@'), Hp(U), Hy(G.), Up(ll'), My(H?).

It is easily seen that H,(U) and H,(G,) vanish ddentically,
for U and G, may be brought by hnear transférmation o the
forms ax® + dy®, and ad{aa® — dy¥), rLSpebtlx@ly, and H, to the
form adzy (cf. Art. 180). ¢

There are in all seven invariants, \ﬁv(e of which may be ob-
tained by forming the discriminant off\U uV, the coefficients
of Lhc\m&cﬁhmupémms og . ip; , hung invariants. If the dis-
criminant is N

AA+ 4A%LE &Aﬁu.@ + 4Aut@’ + piA,

we obtain in this way ‘th\r\ee special invariants @, @, @', the
extreme cocfficients bénla the discriminants of U/ and ¥. The
two remaining invasiants are of odd orders in the coefficients of

each cubic. Théyare denoted by P and @, and may be defined
as follows —{\“

o S/

\J P=1U, ( V) = (ad’) — 3{bc'), {1)
w\\\ 27Q = P3 (2)

whe’re R is the resultant of U and ¥ as obtained by Berout’s
‘xguthod (Art. 155), viz., '
= (ad')® — 18 (ab) (cd') (ad’) + 9 (bd') {ea’) {ad’)
+ 27 (ca’)? (ed') + 27 (ab') (bd') — 81 (ab’) (b¢) (cd').
Substituting this value of R in (2), we find
= Q = (b)? 1 (e’ (o) + (ab) (b} — (06)? (o)
= 3{ab) (b¢') (ed') — (ad’) (ab) (cd).
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Any invariant comprised in the formula IP? + mR, where I
and m are numbers, being of the type Iy, might have been
selected instead of Q as the fundamental invariant of this type ;
reagons will appear subsequently for the selection which has
been made {see Ex. 4, p. 164}

If to the special forms enumerated be added those which,
belong to each cubic, we have in all twenty-six fundamental
forms, viz., one quartic, six cubic, six quadratic, and six Jiﬁear,
covariznts ; and seven invariants. O :

Several of the covariants and invariants enume Eted in the
preceding Articles will be found expressed in te ridof the roots
of the two equations of the combined system aliohy the examples
which follow on the next page. RN

193. Combinants.—Combined fofﬁfs of the same degree
give rise to a series of invariants And covariants whose coeffi-
cients are expressible by determiigay}i'ts of the form (a,b,), such
as oceur 1n the remﬂtantmbt-aiﬁé&[hyb&a%ﬂuti@ method (Art. 155).
These concomitants are unaf{aefed, save by a factor of the form
(A’ — XY, when the q\’{a-ntics U, ¥V are changed into AU + uV,
AU =+ p'F. Buch ip{m}iants have been called combinants, and
the corresponding®\Povariants may be termed in like manner
combining covgiignts. Of the former we have examples m P and
€ of Art. 192.%/and the Jacobians of such forms are examples of
the latter Glass of coneomitants.

[ \may be noticed that the I and J invariants of the biguad-
ratleNin A:p of the preceding Article, viz., the diseriminant of

~ :?t‘i?% uV, are combinants of the system. of two cubics ; for, in

\ Jact, o linear transformation of A and p is equivalent to a trans-

formation of U and V of the kind considered in the present

Article, and therefore any function of the invariants A, 8, d,

&e., unaltered by such transformation, must be a combinant.

It can be verificd that thesc invariants may be expressed in

terms of P and @ as follows (see Salmon’s Higher Alyebra, Aré.
218) :—

I 3P(P®—94Q), J — — P+ 36P3Q — 21602

o2
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Examrrus.
L. If o, 8, v, and a’, 8" are the roots of the equations
U=ax® + 3b2? + 3ezx + d = 0, V=dazt L 2z +e =0,
express in terms of the coefficients the funchion ~
Y
(B= o= a)a— )+ (y — @B = &)B — B) + (o= By — )y B

N3

{..\ “

— @*d'$ = 9{a’(bd — o2) — b(ad — be) + o(ac — A

Deneting this funetion by 4, we casily find

The given funclion of the roots is an invariant of the sysben{,%r it involves
all the roots of the cubic in tho second degree, and all the :fao}a of the quadratic
in the first degree. If, in fact, we make the substitutions'efdrt. 166, and multiply
by U to make the funetion integral, the result w{ll not contain z, and is
therefore an invariant (Art. 191), ¢*{ .

The geometrical interpretation of the equabiofngs == 0 is that the quadratic ¥
should form with the Hessian of I/ a harmong'f}\ﬂ}'étcm.

2. Using the same notation ss in the fireceding guestion, find the condition
that one ppip of Absrtadi Bl ar B ohpuldYorm a harmonie range with the roots of
F _ X L ¢ '¢~

= R M
N\ *

N Ans. R+ 9(at’ - ¥, = 0.
LN\
3 Mo, B yand o, g, yf}b{a\thc roots of the cubies
U = ax? + 3b? 3&(\#(1. =0, V=az+362 +3%ztd =0

express the following funetion {when multiplied by ga) in terms of the cocfficients,
and prove that it ié:gﬁ'invaria.nt of the system :—

(o~ &) (B — BIY— ¥) + (a — Y (B — ¥}y — a') + (a — ¥) (B — o) r— )3

or, differ t]}}é’rraﬂged,
(e=al @Yy~ B + (@~ PV B— )y =)+ (e — ) (B= BV y—a);
N Ans. 3P, where P = (ad’ — a'd) — 8 (be’ -- bc). (Art. 192.)
N\ .
#\\4. Retaining the notation of the preceding example, prove thaet if « con he
\(hzftermined 50 a8 to make J + «F s perfect cubo, the following relation exists
among the roots of the two cubics (—

(B~ Vo) + (o — VHF + (« — VI =0,

where ¢ (z) = ¥V and a, 8, v arve the roata of &7 — 0 ; and prove that in this case
the invariant § (Art. 192) vanishes.

The relation among the roots is obtained immediately by substituting a, 8, v
for = in the identity U7 + £V = (kv + )%, and eliminating «, I, m from the
resulting equations, '
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Rationalizing, we have
(8 — )} + (v — o)*¢(B) - {a — B$ON? _
{ B —yily —a{e— B } — 274 (a) $(B) ¢ (¥} = 0.
Substituting for ¢ (), ¢(8), $(¥); introducing the relations obtained by com-
paring the different powers of A in the following identity :—

Bla+AP(B —»?=3{a+ N EFN +NE -0 - ale— B

and expressing the result in terms of the coefficients, we find N\
3PP — 2TR =0, or @ =0 (Art.192). R N\
We now give sevoral different forms under which the invariant Q pi-e{éa;ts
{teelf., ®inee U + «V is s perfect cube, we have (Art. 43)— O
R A .‘~.‘;~ ()

b 1w ¢+ we’ -+ ad ’::\\
Equating these fractions separately to — «', we find | AN
@ 4 wa’ + &b + &’ =0, v
b+ ub’ + Ko+ k'’ = 51,;\ - (2)
¢+ wt’ + w'd + pm:'X "\ﬁ:\,{},

and solving for «, «’, kx’, we may e]j_mirgs,fw them, and find the condition in

the form AN
fe b oo ‘ p wwydiraulibparyopgin ) b o 4
Q=| a & ¢ i b..\‘ﬁ." — | a b ¢ d ¥ ¢ |=0.
; p
b’a’d’:_lb.y\d b e d | ¥ o &

Again, eliminat-mg\k'\anﬂ «2 from the equations (1} without introducing «’,
we obtain another form'for @, viz.,
e — bt ad + a'c — 2607 a's — b
NE/
Q%» 7 ad — be ad’ + a’'d — bs" — bc a'd’ — &
\‘ b — o3 bd + &'d — 2’ yd — ¢
”'Ijhis form of €} can be readily obtained also by expressing the condition that
) @Hessian of A7 + uV (Art. 192) should vanish identically—a condition which
p\iwiulflled when AU + pF isa petfect cuba,
/  Finally, writing the equations (2) in the form
a-{-x'b_b-{—x’s e+ «'d

Tk Fire o twed

and eliminsting &* and «'% we have a third form for @, viz.,
{ab) (ac’) {be)
Q= (ac) A{ad)+ (&) (0)
(5¢) {6d’) (o)
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The constitucnts in this form are the same minor detorminants which cceur in
Bezout's form of the resultant ; and it may be easily verified that this value of
¢ agrees with the ex panded form written in Art, 192,

5. Vind the condition that the roots of iwo cubies should determine a system
in involition.

The eondition in terms of the roots is expressed by eguating to zera the pro-
duct of six determinants of the type

o. &\
| L a@+ a aa’ ‘ \\
e ),
| O

1 y + v o A

6. Express the condition of the preceding exampls in terms 95:@!@ coefficients
of the cubics. ‘\\

The roots of one cabic belng conjugates to the roots of the pther, the two are
reducible to the following forms :-—

U= ax® + 252° + 3o --J_.;ozﬂ,:;\
V = dx? | Bgep? L &N{;\:P,\I- k35
and writing the discriminant of pU + ¥in g}mera-l in the form (Art. 192}—
N7
A L 438 4 GafeN 487 1 A,
. www.dbra Lflﬂ:rarj(o . org.y{ N ¢
we find in thit case P\
@:»=\J;39, A= gfA
whence the roquired conditi{m:\
XA — Argr - 0,
7. Bxpress in f-e'l‘li‘l‘iz,,tnf the coefficients of the cubies of Ex. 3 the following
covariant of the dystem (—
@ IHE ~ VBT ) + 3B — )y — B) + (B—) (B — ) Hw — @) (e,
AN ’ . 1Y
Ans, 18{(&&"",— a'c — 20022 & (ad 4+ a'd — o' — beye 4- (bd” 4 B'd — 2ec’)}.
8. ’iﬁ;r}ducc the two cubics
AV T=@bod oy V@b, d)my)

P

\to\;hé forms
4

10 _13F
U=iyx V=i

by means of & linear transformation whose coefficients are o be determined in
terms of the coefficients of the given cubics.

Iz F—={A, B,0,D,E X, T},
and U={ab0,d)(z 4 = (4, B, ¢, D) (X, Y5,
V=it e, &g =(B 00 E) (X Y
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1
by substituting the differential symbols Dy, — D, for = and ¥, aud 0 Dy,

1
~ I Dy for X and ¥ in the Hessian of hoth forms of U, we find

n,® b, Dy N, o © Dyt DDy D
« b o =94 4 B c
I a | |z ¢ p | . Q
whenee, operating on both forms of ¥, we have A N
AR WA N
| | fo)
. & Y,
Ylw y) = i a b i | 2+ ‘ i1 b e ‘ y’,f};i—‘.
5 o a | | s ¢ 4 .?\\ ’
S'lmﬂa,ﬂy ’.(wx ’
@ b ) | b e \.\\Eb'} ‘ x

|
|y e d ﬁl(\ d

whete # and ¢ are covarients of U and V, J is the ternary invariant of F.

‘i'(x-?!)z.l- o B | %+ | o .’b\\“ ¢ | ¥=735
i. ‘ ’ M,

Again, since B\ u,“

$n=§(Dy ~ Dy) = “’“"dﬁ“‘”"s?"*" Y-OLEH, — D) = 15, Do

performing the operatlon p '“\

%sh’ﬂf ¥ or pub{® ¥k
on equivalent fonm \\hzwe

| & b g..; +.; [ S | a & o | A
\\¢ | | ! o . |
QE! o’ f{'iws’ | | e b ¢ |--| ¢« b ¢ | | a K ¢ |=E.
$
| h’}%‘ | b e & . b e d T o od
‘V;\are now in a position to prove that U, ¥ may be reduced to the reguired

for:ﬁs
.»\i> From former equations we have

\; | b & [ & ¢ & |
Qm.:! a b o |¢'—-| a ¥ |:,£r5m4f;-—m’¢.
s ¢ a | Ly o @ |

@ & | | @ b ¢ ‘
Qy=—|| a b & |4>—;—‘ o B o |g=-—IFlh
b e 4 s

1

§=lnmy, §=Uz+mY
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If, using this transformation,
U~ (A", B, ¢, D) (4, ), QY — (A7, B, 07, D) (e )%,
we have
A"~ amd — 3bm 4 Boml® — 4 — 30,
B = - amim’ - bt o+ 2bmml — 2emll — ol + diz
= mAl -~ am’y + Bmlfhm — ') - IHdl — em’),
Now if the Hessians i » ' of 0, 7 are equal to ~
E\Y
vt = Bry + ooy, ya - fay b gyt A \
respoctively, we have I’ = go + B oy, m = ba' 4 of o+ dy, mt&f sielar
values for I, m, and henen 9
O — am’ = (By") — a'm — WL, o — b — {ya'} = b'm — ¢, """»'
. dl — om’ = (@RY = c'm — d'L.
Henco B' = mBy) — 2mllya') + ') = 3y "I(H 09,
Bialso = — Mol
O = mw{am’ — WY + (el — bm’y 4 mUel" — by o Wiem' — di')

= mm{ 't + (ml - wD) (ye) — W ag = AV ob ol (HH),
By} + { i (ye') («%) 2 & € also = Lfnd 22U

..\\
D7 == (By') — 20 (ya') - 12 (af) = ﬂ,{aﬁﬂ, HY), DB alio = — }4,20.

Ne/

Similarly, -
wwrw dBraudtb By oruitga’) + I (af’) = B ’ ’
B = — mn(By’) JAmL + ) (ya') — W () = C
0" = m™ (By') —20 (ya') + V' (af) = D’
D= — %-qfw“}’:\
. \\
Hence, puiting -~
A =@ B o= a SQB, 0= 3= 0, D'=0" = @D, "= g5,
N F =14, 8.0,D, 4 40,

:.."M’ I 1
we have AN U=i%'qi_’ yzz_g_éf,

and we nof?"til’&.} 4, B, 0, D, E are invariants as they should be.

a. Debéxﬁ_’i’ne the invariants of J in the preceding exsmple, and hence infer
the fu;’;u\f the resuliants of two cubies,

Ao have, from the equations of Ex. 8,
ov\ N/ Q= J"'{Ms; B — (mr); Qg = Q;
aﬁd, substituting differential symhols for #, y and @&, ¢ in hoth forms of ¥, and
operating on U, we find
Pmad —a'd - 3(bc’ — be) = IjM? = IJQw.
Hence JE= G 7 = gsp
PN L | - QP — 274D,

from which it follows that when PY — 276, we have I3 — 27.J%; Dut t-he‘ last
relation holds whon F has & sguare factor, which necesstfatos I and ¥ having g



Ezamples. 169

commeon factor; whenve, it 2% — 27Q, U and ¥ have a common factor, and
therefore P? — 276}, being of proper degres and woight, is the resultant of the
cubics U and ¥ {cf. Art. 162).

10. I o, B, v, 8: &', §, ¥, & be the roots of the biguadratics
(o b6y d,e) (a 1)t =0, (@, ¥,¢,d,¢){m1)=0

prove
a’E{a—a) (- By -9 -8 = 24{ae’ + a'e — 4 (bd" + b'd) + BocTh
and show that this function is an invariant of the system. \\

11. Prove that the following function of the roots of & biquadratic:axjd
quadratic gives an invariant of the system, and determine its gectﬁgtﬁcal

interpretation :— A\
| 1 g+y By ‘ | 1 y+a ya | 1 1 a-{xfi\\a,ﬁ' |

1 a+8 a6 ' x:. 1 B3 B x| LYy » s¢
‘ R N T R

The geometrical interpretation of the oyhation q')x &0 is, that the two con-
jugate foei of some one of the three involut-iom\\t{e}ermined by the higuadratic
form along with the quadratic an hamonic‘sﬁ,tem.

12. Prove that the following funotiond 6f the roots of a biquadratic and
quadratic g;ivc invariants of thg,@yﬁ&g&];imitiﬁtgm% Ehﬁ}.lr values in terms of
the coefficients :— oW

agh? 3 (& ENE — B) (B — ¥ (B — B
LA H ﬁ)i‘{w — V(5 — By - B8 — )

13. If f{z) and ${z) b N\d'('g_uart\ics with unequal roots, the roots of f(#) being
a, B, ¥, &, prove that¥he condition that a guartic of the systam Af(z} + pd{z)
can have two sguafe factors may be expressed as follows :—

AN/

QO @ @ N
§“\on ' ,l'_“_ N
P S i
"‘.‘; 1 ¥ ¥* 'J‘f"(?} ;
...\" .
~\./ ‘ 1 & & NEd) ‘

Y
\" 14. Determine the condition in terms of the cocfficients that the guartic of
the form Af () + pd (x) may have two square factors.

In this case the Hessian of Af (#) + pd {2) = {Xf (2} + pé (2)}, from which
identity we have five equations to eliminate AZ, A, gt A, wp thus obtaining an
invariant I,,, of the 4t degree in the coefficients of each equation.

15. The discriminant of \U + uV, where U and ¥ are cubies {&, b, €, €)=, )%
{a, ¥, &, d) (@ )%, beiny written as in Art, 192, resclve into its factors the
covariand

(A 6, 9,8, A (V, — o+
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The leading coefficient of Lhis covariant s easily obtained by forming the
discriminant of a¥V — w'f7 directly ; it is

(ab")2 {4 {ab") (ad’) — B (ac’)?},
which may be written in the form 242 {PA +8(4C — B"‘-}}, where 4, B, { arc

the first three cocfficients of the Jaeobian ; and, consequently, the given covariant
ts expressed as follows -—

LIHU, VY{PT (U, V) + 6 Hessian of J{U, V)i ) %
16. Express the invariunts of the Jacobian of two cu bics in terms of P and ¢
Ans. 121’ = P2, 218J -- tﬁ:é s,
t'iﬁ N
« W
AN
4%
.\{"\t\
N\

»

%

&

N
www . dbraulibrary.or g.}\r\x\f} e

N

e

N
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CHATTER XIX.
TRANSFORMATIONS.
SreTIoN 1 —TScHIRNBAUSEN S TRANSFORMATIONS. ~\{\

194. Under the general heading of this chapter we prqusq’ )
collecting several propositions which could not have been\don-
veniently given elsewhere, and which are of im}:a ﬁié:ﬁc-e in
connexion with the subjects discussed in the fo;gsgciing pages.
We commence with a gencral theorem relating {o xational trans-
formations, A\

Theorem.—The most general mt-iong&élgebmic transforma-
tion of @ root of an equation of the w¥ ;E‘sg‘rée can be reduced to an
integral tramsformation of the degree ah~ 1 at most.

e saf uation
jabon oy o) SRRy T
N {an)
O ¥

where y and i are jn\ﬁ%ral funetions ; also,

x(ct..,)= ’(,:N;_ﬁ:(ai) s ‘,!’ {ar1) tlb (arl-l) s et 4’ (U'-n),
o) A g ) dla) P (@) (0n)
and the\{gﬁ({minator drag) P lag) « - - Play), being a symmetric

functign of the roots of f{x) =0, can be expressed as a rational
omﬁ?stfon of the coefficlents. 'Whence 3_{(;%) is reduced to an
4

4 l/" (U‘f)
integral form.
Moreover, the numerator of the former fraction is a symmetrie

f @)

function of the roots of the equation ———

=0, and may con-

-

sequently be expressed as a rational function of the coefficients
of that equation; thab is, in terms of o, and the coefficients of

J ().



7% Transformations.

Now, c'lmmting by F {a,) this mtegral form of zgzr;, we have
¥
by division
Flay) - Qf () + $la)) = ¢ (o),

where ¢ (a,) does not exceed the degree n — 1; which proves the
proposition. . Q

In the partienlar cases of the quadratic and cubic it )foﬁbWS
that the most general rational funetion of a root can ?gfrédlieﬁd
to a linear funetion, and a quadratic function (?fg that ro.ot-,
respectively.  Tn the case of the cubic this qua tatie function
may be reduced to another form which 1s often uséful, as fo]lowsi :
Denoting the quadratic funetion by & (8), and\dividing the cubic

J(0) by 6 (0) ,we have A
€7
F8) = (9, + ¢,0) i (SJ\Q'F'*;G + 78 =0,
Proving that O
R ne,

2
wowrwr.d braulibl'ary.Ol'g.LF\.t;:’ o -+ glﬁ
whence it appears that heshost general transformation of a root
of a cubic ey be reduced ¥o homographic transformation.

In connexion yith the proposition here established if is easy
to justify the rernarks made in Arts, 59, 66, relative to t}EC
solutions of the‘clibic and the biquadratic equations, With this
object in vigw et ¢ and ¢ be two rational functions of # quan-
tities ey, dgr. . . a, {Which may be considered as the roots ‘of an
una.ti@};} each having only p values when the roots are HCEtBI"
cha@g\ed in every way. Denoting these values of both functions
\Qb';;'a:ined by the same substitutions by

\'; ?513 ‘i!’zs ?5:1: e ﬁﬁw '
Pis o by - L

we have, for every integer 7
buf? + Pothed + dbd - ... oty = T

& Symmetric function of the roots, since it is the sum of all the
Ppossible values which ¢t can take.
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In this way we may obtain the system of equations

¢1 + by + by e by =T
é:4s + gy At PPy - bofs = T

Gt ottt b L SRR PR A
where T, Ty ... Ty are all symumetric func-t-ions':o.f
g, Ggs Oy« + G i"‘; K

Solving these equations, we find at once $, expresded as a
symmetric function of ¢, e, « . - fi g, SIDCE ADY ir}tpn\ehange of
thys ey - - » Py, Deing equivalent to an interchange-Qbdy, bz - - - Pur
does not alter the value of ;. This value, thepefore, is by the
present proposition reducible to 2 rational xs{ﬁx}l;int.egral function
of i, of the degree p — 1, since i has anlyyp values considered as
a function of aq, a5, - - + ¢4 NOW péﬁéfdering the special eases
referred to—(1) when p = %@Wﬁ%m%ﬂ%ﬂ?ﬁ%‘?ﬁl that & linear
rclation comnects ¢ and i in ferms of symmetric functions of
ay, 09 ag; and (2), when M3 and n —4, ¢ and ¢ may be
shown to be connected Bysa rational relation (sec Kxamples 5,
6, 7, p- 132, Vol. L. ¢ @x 3, p. 106, Vol. IL.).

195. Formafion of the Fransformed Egquation—
The transformation explained in the preceding Article was first
employed Ky»Tschirnhansen for the reduction of the cubic and

\

biqua afid. We may form in general the equation whose ronts

aref{::@l}, b (ag), - .+ ¢ lay,), where
O
\”‘} b)) =g+ @z +apt+ T By B

is an integral function of @ of the degree n — 1, by putting
é (¢) = ¢, and eliminating x from the equations

fl@y=0, y=a+ ozttt ..~ Ay @1

or we may proceed by raising ¢ {(z) to the different powers
2,3, ... n in succession, and redncing the exponents of © In
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each case below n (by dividing by f(z) and retaining only the
remainder), wo have

PP=by+ bz + bty ... + by,
=yt ez tomdt ...+ €L,

O
R R T A

Substituting for « in these equations each of the ot of the
equation f(z) = 0, and adding, we find, if S, S,, Sg ., denote

the sums of the powers of the roots of the reun—:ﬁ\equatwn,

81 = nay -+ ays, + ags, + . . SR

Sy = aby + bis, + bysy + . L .#xz’ st Snts
.\,\\\‘..
Sy = nly + bisy + L, s 7. L+ 1 s,y
W dbrauhbl ary.org.in &3
\ow eXPressing sy, s, ..j.f.:.' Sy 10 terma of the coefficients
of f(z), we have S, S,, N\ . 8, determined in terms of the
coeflicients of ¢ (x) an ){\(‘:r ; we are also enabled by Art. 80 to
express the cocffigigAts of the equations whose roots are ¢ (a;),
# (a), - - {ay }m}erms of 8;, 8y, . . . 8, and therefore finally
in terms of the ‘edefficients of ¢ () c];ﬂd J{z); thus theoretically

the tmnsfomatmn 18 completed,

196. ”ﬁmthel- Yiethod of forming the Transformed
l'All\ on.—There is another way of finding the final equation
. gb by elimination, which we now give. Since

\/‘ Gp— G+ @T+ag®+ . .. —a, 21 =0,

if this equation be multiplied by z, 2, . . . 2= !, and the ex-
ponents of & reduced below » by means of the equation f{z) =

we have in all »n equations to eliminate dialytically the » — 1
quantities, x, 22, . . . 21, We thus obtain the transformed
equation in the form of a determinant of the n' order, ¢ entering
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into the diagonal constituents ouly. Forexample, i f ey - L

we obtain the transformed cquation in the following form = -
|
g — P O ty - - Haa

|- o0. .
| R

P
« W3

~"\

6 e o . - G O

Although these metheds of performing Tschirnh z};@&f’% trans-
formation appear simple, yet if they be applied to” particular
cases, the result usually appears in a compligateéd form. Pro-
fessor Cayley, by choosing a form of the trqn&bﬁmation suggested
by M. Hermite, was enabled to take a\&y}iht'zige of the theory of
covariants, and thus to complete the pmﬁgfomatiorl for the cubic,
guartic, and quintie. We shall cefitent ourselves with ghowing
in an elementary way \‘h\?’){"’v'c@a{ﬁ’f&bﬁa'ﬁsﬁ&“for the cubic and

NS
$

quartic may be obtained. ™%

PA
197, Tschirnhaum.\@*ﬁ. Transformation applied to
the Cahic.—Lot tiké\éu’bic equation

L Onz® + 3ba? + 3ex + 4 =0
N\
be written ynder ‘the form
\\\ g 3Hz - 6 =0
and ’let\ it be transformed by the substitution
O
\"\/“” y=A+ 2+ 2%

If 2, 2,, 7, he the roots of the cubic, and ¥y, ¥s, s the corresponding
values of y, we have

Yo — Yo = (2 — 23} (K — 21),
Ys— 1= (2 - 27y} (e — zz):J’ ' (1)

¥~ Y= (01— zg) (& — 23),
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and consequently
2y — Yo - ¥ — {220 — 25 — 25) k + {2252, — Z5% — TZa)s
24y — 1y — Y1= (22 — 2y — 2)) & + (22584 — 2% — 2%), 2)

25— Y1 — Yo = (225 — 2y — 2) i + (2212 — 237 — 7))
Wherefore, if the equation in y with the second term removed be'&
+3H'Y + & = OB
we have from (:q_ua.tlons 1) and (2) {\;'\“x
-H, ¢=6, \+"
where H_and G_are the Hessian and enbic cov @fﬁlt of
B+ 3Hc+ G5 N }\
and the transformation is therefore complqted ginee ¥y + Yo - Y
can be easily determined. .\'\{

198. Mhe Tschirnhausen @kh’nsformation applicd
to the Quartic.—In this case, we do not attempt to form
dwectPﬁ“t’He%?hﬁMﬂi@ﬂ%&ﬂhc, but prove the following theorem,
which shows how this transformatlon may be resolved into two
others. Q

Tl:eorcm.—i"}ag \Tsc}m ‘nhausen lransformation changes &
quortic U 4nto o%e\ having the same invariants as U + mH,,
and thewfore’..m. general rveducible lo the latter form by linear
transformateody

To p;?}é"this, let the quartic

\\\ 4+ Pyt + pypt A psz + Py = 0
bé:fi&ﬂﬂfﬂrmed by the substitution of the most general expression

’"\f@r a root of a quartic.
Y = @y + Q% 4 agr? 4 a7,

If @, 2y, @5, 2, be the roots of the quartic, and ¥, ¥, ¥ %1
the corresponding values of 3, we have

— 1
Yol _ Gy + By (T + &) + @y (27 - 2%y + E5E),
Ty~ Xy

— Y

Iy — T

=y + ag (T + ) | g (3® + By + B
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From these equations we proceed to show that
(2= 9s) (11— %) _
(s —iz5) (m — )
where P, and @, involve the roots of the quartic symmetrically.
In the first place, we find

Py + Qo (2w, + 21%4),

s , O\

(@52 + @y + ,7) (0% + 0124 + @F) = Pod — PiPs T Pa— P NN
where A has its usnal value, viz., 2.2, + 724 5 and, second_iy,wsiﬁcjax

X% oy + By? = (Tg + W) — T, &O., ) &
we find again i :ﬁ\\ ’

{ig+Tg) (42 + gty + 042+ (o0 + ) (P + 25t $32)=}5;3>P1P2+?1)‘-
Finally, since the other terms in the produet)are obvicusly of
the same form as Py + @A, we have prgvg’d{t at

\ 3
(92— ¥a) (4~ ¥a) Q
Pttt Po L O (T + )
(g =) (ry —) o g AN
whence d’b I )
R LERTIAY rauliinr JOCEE L
(s - 5) (2 ~ Bl E WL TR B,

Now, mtroducing p]‘,'{e},\% in place of A, u, v this agid the
similar equations pre exyve their forms ; whenee, altering P, and
), into similar quantities, we obtain the equations

{yaldps) ( — 9a) = £ {ps — pa) (P — @),
'\(?}”’" 1) (e — Ha) = 4 (py ~ pa) (P - o)y
.x"fyx ~ 4e) (s — #a) = 4 {pa — po) (L~ Qpy),
whiph‘jbad at once to the invariants of the transformed guartic ;
,afd) comparing their values with the invariants of kU — AH,
\gi’ven in Art. 187, the theorem follows at once.

199, Reduction of the Cubic to a Binomial form by

the Tsehirnhansen Transformation— Let the cubic

ax® + 3bx® + 3cx 4 d
be reduced to the form y3 — V by the fransformation
Y=g+ px+ A

VOL. II. N
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If &y, o, @y be the roots of the given cubie, and g a root
of the transformed cubic, we have the following equations to
determine p and ¢ -

8 _
AT pE g =y,
By
R I T

I T
Tyt A PEy g = Wy ®
from which we find
2 AN
2 .2 2. 2 o
S+ W, 4 i 1 , N
— __l._,“_._%_j g=—3 (6‘2 TPSI)'.‘V}

T, Wiy + wiry, A\
Adding @, + 2, + 2, to this value of 7, We }:}a-’y‘{:\ ’
_ Tally + Ty MY ,1;52 .
T wily vwiny
it follows (Ex. 25, p. 57, Vol. 1.) that Ahere are only two ways
of completing this tr.ansformation,as:bhe values of p, ¢ wtimately
depend on the solution of the gp§sian of the enbic.

P 4Ty -

?{}(i!.mlizllmlaﬂmimynfgllpﬁii:tl-tic to a Trinomial F()l‘l'l'l
by Ts’c-llirnllausen’s @Qﬁilsformution.—Let the quartic
ax*{\éb;zﬁ 4 Bex? - ddx + e
be reduced to the fobm 4 +. Py |- @, in which the second and

fourth terms gre%bsent-, by the transformation

o\ W

R ¥ =4+ pr+ al
1f a:l,ﬁ,:\s:cg;’ “a, @4 be the roots of the quartic; also gy, ¥, t’WD
distind_yoots of the transformed quartic, we have the following
equations o determine pand g:—

™S

Y QE P+ =y 2t P+ ¢ = Yo
O T PE g = g BFF puyt g - Y

from which we find

T+ 2,2 — 2,2 — g,
R
And, adding @, + @, + 2, + @ to this value of p, we have
2 (w2, — 23%,)
By + Xy — Ly — by

s g= =1 (5t psy).

PHe e tayta,=



Removal of Terms from an Eguation. 179

hence, by Ex. 5, p. 132, Vol. 1., it follows that there are three
ways of reducing the quartic to the proposed form, the deter-
mination of which ultimately depends on the solution of the
reducing cubic of the guartic.

201. Memoval of the Second, Third and Fourth
Terms firom an Equation of the 5’ Degree.—We begm\
by proving the following proposition, which we shall subsequentl}

23

apply -— N o
A homogeneous function V of the second degree in ny va’}'mbies

By, Tyy By, - - - By cai be expressed as the sum of n sgtm?es
To prove this, let 7 arranged in powers of z, tak¢'the form

w

V = pore® + 2pyy + Pz\
where p, i3 a constant, p, a linear functloh\ and p, a quadratic
O

function of 2, @5, . . . Z,. A\

2
(@) If py does not vanish, V = pﬂ(cl + pl) Po— L , and as
Pa Lo

www‘dbt‘au library. or%ll n

Py — ?? does not contain :rl, e have reduced the question to one
0

of gxpressing a homog dedus function of the second degree 1n

n —'1 variables as a{‘um of # - 1 gquares with constant coeffi-

clents.

B If py = 0 and we wish to deal with x;, the coefficient of
the product oLrl and some other vari iable, say @, must not vanish,
otherwige ~IK would be independent of x,. Write, then, ¥ in the
form AN, + 2yt + Loy + 4% + 7y, Where @, ¢ are cobstants,
pl,q] Ninear functmm and r, 2 quadratic function of oy, 74, . . . .

Therefore

3

4 5
TV = @y (azy + o3;) + (a0, + ¢2a) *Z—l -+ (gl - -%) Ty + Ty

o

= Ayl + 7y

PYRIL P ¢ ST _ ¥
where Y=t oGt =g, fe=TE

X 2
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and 7, is a quadratic funetion of x5, 24, . . . @,
[#4
. - _ 2 2 4
.V:z(z] — 2+ 1y,

Tt 2 JTh
Ve’ V2
We have thus reduced the question fo one of expressing a
homogeneous funetlon of the second degree in n — 2 variables ai\
a sum of n — 2 squares with constant coeflicients. A
Note if 2, #,, . . . @, are put equal to zero, we have al:mn‘ged
the modulus of transformation between @, T,, and 2y, %50 that
it is equal to unity. ¢ \\A
Proceeding then by (a) or (b) as required, ue\fﬁiaﬂy express
V as the sum of » squares, for any one of the squares, say 0X?,
may be written (:\/aX x\ v

&
Now, returning to the original prgblsm, let the equat;on be
A\
@t + Pl 4 Pt N+ py—=0;
and, pliftiyiglbraulibrary.org.in N
y = ax 'ﬁ'ats L oyp? 4 80+ €,

let the transformed Pqu%t@n be

where 7=

Y+ lef“\ FQur 2+ .. + Q=0
where, by Art 1% @, G, . Q,, . . . are homogeneous
functions of the ﬁ:rst gecond, 7"*‘ degrees in @, B,y &,
Now, if @) }S’ v, 8, € van be determmed so that
\
D1—0, =0, G=

\blem will be solved. For this purpose, eliminating e
fmm ), and @, by substituting ite value derived from €, =0,
‘;Wﬁ obtain two homogeneous equations
d B,=0, R,=0,
of the second and third degrees ina, B, ¥, 93 and by the pro-
position proved above, we may write R, under the form

uw? — .U‘Z + wﬂ _ t2
which is satisfied by putting ¥ — v and w = #.  From these gimple
equations we find y = lo. - mf, and & = Lo + myf ; and substitut-
ing these values in ; = 0, we have a cubic eq uation to determine



Homogeneous Function of Second Degree, do. 181

the ratio B:a. Whence, giving any one of the quantities a, B,
v, 8, € a definite value, the rest are determined, and the equation
iz Teduced to the form

P QT QT+ L L e =0
In a similar way we may remove the coefficients ¢, @2 @
by solving an equation of the fourth degree.
Applying this method to the quintic, we may reduce it ’tQ\\
either of the trinomial forms O\
@54 P Q, »*+Px*+Q, i"‘; )

Ne

L 3
S
_

or again, changing # into i, to either of the forms: *'.\\ }
ws - Py @, %+ Pat+ Qx\
In this investigation we have followed 3. Serret (see his
Cours & Algébre Supéricure, Vol. L., Artd 1&)
Sgorron 1T.—HerMITE's AND~S%)RT'ESTER’S TEEOREMS.
202. ll.‘rlnogennco%\yjawg}'ﬁgﬁr of Second Degree
expressed ws Sum of QQIﬁlreS.—‘{Te ﬁave already shown,
{Art. 201) that a homogqnéd{fs function of the gecond degree in
the variables may be reduced to a sum of squares, no hypothesis
being made as to;t(e.ﬁature of the cocflicients of the funetion
considered. Weéwno¥ return to the consideration of this problem
when the GUE;[‘ﬁ?ié’fltS of the function are supposed to be all real ;
and we progedd to determine, in magnitude and sign, the coefli-
cients.of ‘the squares in the transformed function.
I&%txl, 5, . . . @) bea homogeneous funetion of the second
dggfée in n variables, with real coefficients; and let us suppose
~\that it is reduced, using the method (a) of Art. 201 slone, to the

\’}'orm

oy (g 1 Gy + Bg®g + .« -+ T By )
4 Py (X + byy + . . . bota)?

+ pafEs+ . o o T Cuta)?

+ PuTn’s

where all the coefficients of this new form are real.
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Making now the lincar transformation

Xl B ',' -l az"{’z 03 s H- &, 14 + ... + analﬂ,
Xﬁ - &y + bJ"CS bixd s T bﬂwm
X:! - -/3 | 64-1:4 ‘|‘ e .. T C_nx“,
Xﬂ — Iﬂmm \\
we have :~, \
N 9 2
F(z,, Ty Tgy + o v ) - X2+ PuX,? L P X2 -I—'pﬂX

Since the modulns of this transformation is e@w}al to 1, the
diseriminants of both these forms of F must be B}JSOIutPl}f equal.
Denoting, therefore, the discriminant of # b\A,, we have

\ ¥,
Ao = PP - - - R
and similarly, when the variables x, iﬁ‘ "L(a'+ & - - . @, are made to
vanish in bhoth forms of ¥, we haws, ¢

A dbrauhbraAy org;ﬁivp3 - P

NO“ giving 4 the V*\luet L, 2, 3, &ec., we find, assuming
pl - a \ A
Ak, A, A,

I S R IR A vt

and the coeﬁiui*sﬁts are determined in terms of the discriminants
of the origimdl’'quadratic form in » variables and the discriminfmts
of the fbi}ﬁa inn — 1, n — 2, &c., variables derived from the given
form ‘by causing one, two, &c , of the variables to vanish 1n
snscemwn in the manner just explained.

“If we have to use the method (b) of Art. 201 in expressing &
in the form ¥ = P X2 Xt 4 .+ p,X0 we note that
whenever we do so, say in dm]mg W 1t-h Ty, T4, We have

’\/EX3 =wy (1 +e)ay | agwyg+ . .. Fa,T,,
VX, = —a, b (1 =)y g+ . . . + b,

and that py = — 5,. We see then that the moduli of frans-
formation are still all equal to 1. ‘When, however, we make
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Fy, Ty . . . Ty vanish, X? — X, so that P X5t + P X P =0, and
Ay =0, but A, = — pypgps® and Ay = piPa - py2 = - AyfBg.
Generally, then, when A, =0, p, = — Prpas and p,2 = — By fAra
By this method we determine p,, Pria 10 absolute magnifude, but
nof in sign. It is important also to note that if A, vanishes, A,
and A, ; have opposite sign. o &N

Again, although F can be reduced to & sum of squares in, AN
great number of ways, it iz most important to chserve th‘m:: i
whatever way the trangformation is made, provided it 18 -{é{dﬁ the
number of coefficients (affecting these squoies) which km@’a given
sign is always the same. This theoren, which i dﬁéé'to Jacobi,
is easily proved ; for suppose the contrary posgble, and lef
F=pX?+p. X2+, + 7. X% = G Yy° ,‘l‘?géyzg oo+ G YA
where the number of positive coelbeiiEy‘on both sides of this
identity is not the same. Maling all the terms positive, by
transferring those affected with pagative signs to the opposite
sides of the idenfity, we ﬂwﬂ@f@ﬁbﬂw of-fguares identically
equal fo & sam of m squares, ‘where w is greater than . Now,
substituting such valueaf\\for &, Ty, - - . By Phat each of the
[ squares may vanjsh{%ﬁich yoay be done in an infinity of ways),
we find a sum of\p Squares identically equal to zero, which is
impossible. 44"

203, AH¢rmite’s Theorem.—The principles explained in
the p sding Article have heen applied by Hermite to the
deteﬁtﬁination of the number of real roots of the equation f () = 0

m&é’ﬁ:ipriscd within given limits, The special form of the equation.
\_F which he makes use of for this purpose is

Tt 1
2 (g + apre + o2y + oo F a, 12,8,
=1 G =P

in which @, %, . . . %, are any variables in number equal to
the degree of the equation ; and r takes all values from 1 to »
inclusive, the roots of the equation being ey, as, -+ « @3 also p
is an arbifrary parameter.
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This form is plainly a symmetric function of the roots of the
equation f (2} = 0; and as the coefficients of this equation are
supposed to be real, F will be also real, when expresged in terms
of these coefficients and p; provided the parameter p be given any
real value. If the roots q,, Gg, Ug . . . &, are not all real, the
agsumed form of F will not be obtained by a real transformation s
but it is easy to deduce from if, as follows, another form th(?h\

will be so obtained. R,
. . . ’ £ b 3 .
If g, and a; be a pair of conjugate imaginary roots, we may
write N
N

ap = 7o (Cosa - esina), @, — 7, (08 mgdsin a).
N’

Denoting for shortness x, - &y + affé\\‘—J V.. +at e, by
$ Y2,

Y, and substituting these values in Y, ar we find
"N

Y
Y= UiV, Y& -1V,

where U and V' are real ; also pntling
wiww.dbraulibrary org.ins3®

oAl 1 . .
—— =7 (Cos ¢+ %gl\n‘qS), g r{cosd — isin ),

Oy~ p -
N\
the part of the furgct{&iﬁlhﬂ depending on a, and a,, viz.,
) ,\ Y2 Yzf_
\&" o—p ag—p’

becomes ¢ '{\”'
N v
£\

AN\T4 2 g N
’ {(GS% e Si“%) (U+iV)p <cos§i —i 3111%64‘) (U—-ﬂ/)ﬁ},
“which may be also written as the difference of the squares

\/
‘ ¢ A PV cos 9_5) ?
2r (U oS — v 5111—2) - 2--3'({7 sino + V cos 5)
proving that, if p is real, two imaginary conjugate roots introduce
mnto ¥ two real squares, one of which has a positive and the
other a negative coefficient.
We now state Hermite’s theorem as follows : Let the equation



Hermite's Theorem. 185

fley=@ ~a) (€ —ag) . - . (& — ay) = 0 have real coefficients and
unequal voots ; if then by a REAT substifulion we reduce
V.2 2 2 ¥.2
I NI £ I L (1)
G —p Gg—p Gg—p In—p
where Y, - 2, + aty + a0y + . o o+ " By "

to @ sum of squares, the number of squares having postive corfﬁgie-&
awill be equal o the number of pairs of tmaginary r00is of Qla\é -
tion f (7) = 0, augmented by the number of veal roots gfe‘a{e%th(m P

The theorem will be also true if (a, — p)™ I8 spﬁaﬁ"buted for
a, — p, where m is any odd integer, positive of négative.

The theorem follows at once from whatMtay preceded if we
consider separately the parts of the funghibu’ (1) which refer to
real roots and to imaginary roots, for Q‘b}fiémly there is a positive
square for every root greater than g3)and we have proved that
every peair of conjugate imaginargiroots leads to a positive and
negative real square, wit.hout,ﬂélﬁécting the other squares inde-
pendent of these roots. ww,{w{;’dBl'aulibral'y.org.in

The number of real 260ts between any two numbers py and p,
may be readily estinfatéd. For, denoting in general by P; the
number of positive'stuares in F when p = p; by N; the number
of roots of the squation f(z) = O greater than p,, and by 2I the
namber of \:'tryﬁginary roots, we have

07 PNt L ReeNod
whefice N, - N,=P, - P,

.. (proving that the number of real roots between py and p, is equal
\_'to the difference between the number of positive or negative
squares when p has the values p; and ps.
The nuwmber here determined may be shown to depend on
a very important scries of functions connected with the given
equation. In order to derive these functions, we consider # under
the form (@), Art. 202 :—
A
A

?.ng + é‘s".st 4+ ... F iﬂ" Xﬂ2!
1 AE

AXE+
e Aﬂ-—l
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in which it ean be expressed if none of A, A, . . . A,
vanish.

The number P expresses the number of coefficients in this form
which are positive, or, which is the same thing, the number of
the following quantities which are negative 1

» <\
A A A A 2)\\
I’ A) Ay AV ( )
We proceed now to calculate A, A,, . . . A, . . . Adterms

of p and the roots of the equation f{@) = 0; and aF\t‘he method
Is similar in every case, it will be sufficient to cdldnlate A, i.e.
the diseriminant of the original form of F whaf all the variables
except ¥, €. @, vanish. )

Writing for shortness v, = i “xiitlg.xve In this case
T l

Fy = 2v, (1 ‘f‘dﬂ?ﬁ“’ a,%2s)%

The diseriminant in this form s

wiww.dbr aUllb]“E11 }Zorg 11 Q?av S ‘
Ay = fgtw 2o Zady ‘ ,
2o Zob Zab |
which may be,uf]:‘i,tt-en as the product of the two arrays

1 x\':],\'... 1 ” Vg . vnl
\Qla Oy« . . &y oy oy o P I S
‘%.’; a? a® .l al [ ayy v .. O-ﬂ?'Vu'
»\{iﬁ}i - equently
~ ‘11 1| . : -
By = Zywgry | 0y ay ag | = 2((12(“ aji})(:?___a;; ((E:l_;;? .
2 2 H

0" dg ayT|

In a similar manner we find

Viag, ay, a5 . . . )
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where the notation V (a,, ag, ay, - - . @;) is employed to represent
the product of the squares of the differences of a,, a5, a3, . - - @5
Hence the quantities Ay, A, . . . Ay, . Ay are all determined.

Now, multiplying the numerator zmd denominator of each of
the fractions in the series (2) by f (p), each value of A i3 rendered

integral, and the series becomes O
oV Voo T GO
7’ 'I,'IJ 1;2, D Vﬂ_]: }“' N3
where LV
cfpa)lp-ad - (a0

Vi=Z(p—m)lp—ag) ... (p- ﬂn),,,'\'*'
Vo= IV {ay, a5} (p — @) - - - {p— b’
Vy= 2V (0g, 09 a5} {p — @) - - :-‘@J— i)y
. X \ v
V,=Ale 0005 . - - 0 }'\"

Since negative terms in the serick 63) correspond to variations
of sign in the series V, Vi ¥y &’Eg;ﬁuhbl -abyoitgiiproved that the
number of variations lost in the series last written, when p passes
from the value p, to the cilite ps, 15 exactly equal to the number
of real roots of the eq akion J{p) = 0 comprised between p; and py.

As TV, Ty, Vs S . are derived from 1, A, Ay, - . . AL by
multiplying the latter by f{p), and as when A, = 0, Anyy and Ay
have opptmt&slgn we note that when ¥, vaniches for a value of
P nO‘r Pqua1~£o a root of f{p), Ve and V,_; have opposite sign.

be observed that the funetions ¥V, ¥y, ¥, &c., here
a,rrwé& 3t have the same properties as Sturm’s functions ; from
'Wh \h in fact they difler by positive multipliers only, as was
EBserved by Sylvester, who first published these forms in the
Philosophical Magazine, December, 1839, In order to establish
the identity of the two series of functions, we proceed in the first
place to prove in the following Article an important theorem
connecting the leading coefficients of Sturm’s functions and the
sums of the powers of the roots of an equation.

904, Theorem.—The leading coeffivients of Sturm’s aualiaiy
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Junctions (i.e. f' (2), and the n — 1 remainders) differ by positive
Jactors only from the following series of determinants —

| 8 51 sy 85
S5 S1 8y ‘31 5, 8y 8

lse s | 18y 50 8 | Sy S5 8 Sg O
_ ‘ | N\
S A Tl I I A Vi P A 3\;@;,:.

Using the bracket notation, we may write these detgrmihants
in the form s,, {%y%), (S5 53 8;), &e., the last in t@ geries being
(30 Sufly o o Bapn 2) &

Representing Sturm’s remainders by B, Rg,‘z R, ... Rp
and the successive quotients by @, Qz{\gs, &ec., we have (sece
Art. 96)

¢ \\ \\
By = Qf'(2) - f (w), \"
R QzRo “‘f (Qle llf Q2f($

\ I dbl aullbrala{) arg.i m

R, = Ry = (6 >Qa Qs)f () — (@ — 1) {fa), &ec.

Proceuimg in this manner, we obgerve that any remainder £;
can be expressed i 2 the form

SRy = d,f ) - Bifto) M)

The degree ~m‘ R;is n— 5; and since @, ¢, &c., arce all of
the first degxec in x, it appears that the degrees of 4, and B, are
=1 %ggl J — 2, respectively,

timing therefore, for R; and 4, the forms

A\ ) Ri=rg+ 72+ n2?+ . ..+ 7,7,
2 \¥/ dy= g+ Az - xR+ L+ Al

\/;

and substituting in (1) any root a of the equation f{z) ~ 0, we
have

. n—3
To+rat+rel s .., b ga

)lu - I‘l|0‘. + )(gag"‘l‘ e }lj-_laj_] = f:(a)

Multiplying by «, a2, ... af™%, o/~ in succession; making
similar substitutions of the other roots; and adding the
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equations thus derived, we obtain, by aid of the relations of
Ex. 4, p. 172, Vol. I, the following system of equations i—

Agfo + AgSy o v+ T AaSia T ApaSio = Oy

Al]sl + }\18-_;_ + ...+ )\5_285_1 -|- }l;_lsj = 0,

)‘osf—2 + ')‘13:5-1 P Af—a“"‘lf—-‘l + Af—182§—-3 - 0, '\\\
Agfyoy = MSit o o0 T ALSes AjuySoi—z = Tn—i :

From these equations we have, without difficulty, | O

%
%3

. . . p “'
‘ 8y 818 ‘ ‘ 8 8- §'}. S5.1
[ s X" S5 Sy
. sy 85008 1 t AW T
n-f = Vi y Ap=ysl o S '
::\ w/
I' | S it « - o Saima S20

N\ L
. -2 ped -1
C 1 g... a2 at

"

841 85+« - Sz

the valuc of y; being 50 far arbit-‘i;}ﬁ?. It appears, thercfore, that
the coefficient of the high@@:p@ﬁﬂrbﬁiry(jpg_& differs by this
multiplicr only from t o, determinant (sesasa + - - S952). WE
proceed to show that the sign of y, is positive. For this purpose

we make use of, t}}q\fdilowing relation connecting the snecessive
values of the fubtions B and 4 —
N/ ,
4 \V " ARy~ Bende = f{&) 2
T 1:'{?;){% this, substituting for BpuRs R, their values In
ternisof 4 and B in the relation Ry = @uliy — But, W derive
:"\:‘; Ay = Quds - Apys Bra— Q.Bi — Bras

O
\/ by aid of which we readily obtain the following relations con-
necting the successive functions :—
Ak+lBk ~ ABra= AeBra - Ak-—lBk = .- = AIBU - AoBl
= 1,
Ak+1RIc . AkRk+1 = AkRk—l - Ak—lRJ‘c = oee e 7 AIRIJ - AD'RI
= f (&),

in which R, =f'(z), By =flm}=2"+ npa T+ o T P
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Now, comparing the coeflicients of the highest powers of x in
{(2): ulmzr'\-’ing that +* oeeurs only in A, R, and -making wuse
oF the determinant forms previcusly obtained, we have

Vi (5g8my . | . Sor_s) V3 ($p8284 . . . Spp-2) = 1,
. + —a
o ViYirr o (Se%u8y oL L sy ) A
. o . N\
Also, ('.-.;LI(:uth-mg the valie of £y in the ordinary NMANREL, W

N

eastly fingd O~
| Nl

1 1s s A\
Az"—' 52 | .0 ! N
5 1 < |

- . K
whenee it is seen t]iat the valie of v, is —

It follows, from the relation just esthblished between any two
successive values of v, that g, yfl?\\\s;.\: - 75 &oc., are all positive
Squares, and therefore, finally, that'r,_,, the cocfficient of the
highest power of 4 in R;, hag the’ same sign as the determinant
(Ssasy i dbgglfprory org in 33

It should be noticed, that there i only one way of obtaining
a tunction of z, of thp'\&e\gree % = j, in the form 4f" (z) — Bf (2),
where 4 and B a;<&f the degrees 4 — 1 and 7 — 2, respectively,
and f (z) of theydogree n; for this function being in general of
the degree » 1}— 2, 1In order that it may reduce to the degree
n — 9, t-he'QJ:;”Q highest terms must vanish, and this js exactly
the 2wokdr” of undetermined quantities in 4 and B at our dis-
posal,{inc’e 1t is the ratios only of the coefficients we are concerned
Wl'tbb} Sturm'’s remainderg may therefore be obtained in this way

Mwijﬂi an undetermined multiplier,

) The functions Ry, 4;, and B; are functions of the differences
of v, 0 a, . . . x> 20d 30, in other words, are semicovariants of
S (@), a8 may be seen by putting & + p for % and ay + p for a, in
the identity p, A;f(z) - B, f (2), noting that f(z) and f' (z) are
unaltered, and henee that B, 4, B, must be independent of p
as they are uniquely determined Irom f(z}, f'(x) when J 18 assigned.
Their actual XPressions in terms of the differences of z and the
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roots can be readily inferred from the discussion in the following
Article.

205, Sylvester’s Forms of Starm’s Functions—We
make use of the notation employed in the preceding Article, and
propose to show that the Sturmian remainder B; differs only by
the positive factor y; from the function ¥V, We have

¢ {\
R, = 4,f(%) — B;f (), D >
where ) A K 7 g, x:‘;
A= Ay + A+ AT 4 .. Ay PNY

By i @+ et e ok a2 30
M Hy H® A

also from the value of 7,_; above given we have inpmiediately
\¥;
’i"ﬂ_j = ijV(al, o, Dgy « -« ',‘% 4
)\ :
showing that the leading cocflicients irgkyand ¥, differ only by
the factor y,. We now proceed to prgve that the last coefficients
in these functions differ onlyw/hipidhdineneg fagter  For this pur-
pose, dividing the identity (Ipby f (), substitoting in it from

the eguation QO

f’(’\
F G SR A LRI

and comparing\thé coefficients, we find

x:\w’
\i""l}ﬁg — XSy FAS FASp b - As_1Ss s
§\ [T W A;i8ys-
{ N .
Q ) fryg = Aj—sSor

4

Also, putting » = 0 in (1) we have

To = AgPna1 = MoPr>

and substituting for y, in terms of Ay, Ay, Ay, &c.,

,?.
- p_u == }108_1 |- )\130 - )“2‘51 + ...+ )\5_135__2 H
n
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whence, giving 1o Ay, A, ... A, the same values as in the
caleulation of 7,_,, we find

G L ‘

8 8 A
Ty = (" ])jjpn)’: * ! t | .

.\\\
(\ }

Now, referring to the caleulation of A, in Art (23, and

| Sz Bjm1 Sp e . Spjg

putting p - 0, or v, ~— ;’, in the value of A tl:w)ee Yound, we

,
find for the determinant just written the valus

EV_(QI, @z, O, - .’::\tf,;};
Qlatly . \/&a

then, expressing the determinant {I’;}%ﬁnu product of twe arrays,
and giving p, its value in tcun‘t-,‘(of the roots, we have

www dbraulibrary.org.ing

g = (— Iy 3}»}Z‘V(alga*2, By« « « Bg)0spBieg » + » Gs
which was required tl\l{é proved

Now R is, as we\ & semicovariant, and

EJ Gy — 0y — B+ o o Gy — @) ;

therefore :rn (alag ... a,); =0 R, is dertved from 7, by sub-
StltutlIl&a,. - for a,. Also, y, is a function of the differences

of thg\gdots
N ,Rf = (= 1)"7y; 2V (@, a0, - - - ag) (ggg — 2) (@gye — @) « « -
M\j“; (a'ﬂ - 93)
By =V,

Exayerms,
1. Using the notation of Arts, 204, 205, prove that the quokient of A; by vy
can be written as & symmetrie fonction involving # and the roots: e,

S BBy - @ia— B - ) — B) (& )



Reduction of the Quintic, de. 193

2. With the same notatiou prove that

8y & A
£y e Sy v 0 8
_B’ = y} i i . . . »
Sjs  %im & v v Sy . \\\
0 T, Tyo o - Ty (:’..7:’
where T‘," = gna;f—l + 815(’:3._2 + Szxj—s + ...+ 2y i"\}
3. With the same notation, and denoting by I/, N
A
E(P — et e+ oapty + -+ el 13}43
=1 ‘

prove that the diseriminant of Uy may be determined by}if; equation ;= Aj,
and show divectly that i#f 4; = © for & certain va]ue‘e"  Ajy end Ay, bave
opposite signs for the same value of a. \

\l

Secrox ITT. -~—1\Im‘ELLANEOUS THEOREMS.

o

206. Reduction oftwwﬁhmilbmxn@gsam of Three
Fifth Powers.—This redu(ftwn can be effected by the solution
of an equation of the tkixh dogree, ag we proceed to show.
Let ¢ & \ 7

N -
(a‘ea Qy: g, g, Gy, {35) Eg!s y)s = bl (:‘E - )8134’)5 + E32 (T - ﬁ&?f)a
‘,:\,} + ba (Z— B3y)55
where £, Bz,ﬂrére the reots of the equation

O
Now\ comparing coeﬂ"lumts in the two forms of the quintie,
~\ 'au by thy by —a =8B b b
N e = biB® + BaB,? 1 % — ag = BB, 0uBy® + by’
g = b8yt BByt -+ bofist, — s = By S + Bufy® + byt ;

whence

P#? + Pt + Pz + py = 0.

Polto — Patty |- Patty — Patty — G,

Por — Piffe - Patty — Poita = 0,

Pty — Pofty + Paty — Pyt — 0.
VOL. 11, 0
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When these equations are taken in conjunction with the
equation
Po + Prz + P2+ pgz® — 0,
we have the following equation to determine £, 8y, 3 -—

‘— 1 z -z z3
s &\
\
Y a4y Gg s ‘\
O = " = {, EN)
o a. &, @ &\
‘ 1 2 3 4 \J
ay a3 &y &5 x:\\

When 8, B; B, are defermined by Ot}%iéo\équa.t-ion, it will
follow that any values of by, by, b, which satiéfy three of the 8ix
equations above, satisfy the other thr’eg,s\aind 80 by, by, by may be

found from the equations e\
by b BT -a

by + bgﬁ{a}:;ﬁ by = — o,
www.dbraulibr&qﬁléng%ﬂ o Byfs? — g,
and the solution t-herehsr"'t}mlpleted.

This important. ftansformation of the quintic is a particular
case of the fol Is@lng general theorem (proved in an exactly
similar manner) due to Sylvester :—

Any hofabgencous function of z, y, of the degree 2n — 1, can be
reduced, :&éwé?m form

\Qii(};_ Byt b by (w — B+ L bl — By
by\t e sofution of an equation of the n'* degree.
M\\ * The cubic, C, in 2z, when written as a homogeneous equation in
N & y {called the canonizant), equals

P (& — Byy) (& — Bay) (@ — Bay),
and must he a covariant, beeause if the guintic is expressed in
the form % + v -+ w5, when transformed it is w0’ + % + w’8,
where w', o', w’ are the transformed valnes of u, », o, but the
transformed quintic is uniquely expressible in the form

Hog

w04 "8+ w''s,
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and so ", o'/, %", formed from the transformed equation, are
equal to «', o', w', directly transformed from w, v, w, formed in
a corresponding way for the original quintie, and therefore uvi
i3 an absolute covariant. The canonizant is also easily seen to
be the J invariant of the quadratic emanent, and so obtained by
substitufing in J, o &\
2T WU 2T C\
uar’ Wy T m":”"
for ay, a5, . . . @, where U is the quintic, or oter\\lqedt is
seen to he the covariant whose source is obtalned f'@m J by
altering a,, a,, . . . a, to a5, a,, . . . a,. 4
When the cubic € has a root equal to mﬁmtv using the
forms 4 — Bz, i -+ By, y — By, we get an egQLatlon for By, Ba Ba
of which one root is zero.
When the cubic C has two equal 1001‘}& ) B1 = 5, the reduction
to three fifth powers is not povmble M8 we cannot satisfy any
three of the equations fc}r (ﬁu ’b@h or the 1nv0h»e by, by in the

form b, - &, only. Puttmg ‘Sz‘. +I'a€1 v s = By + 7, and golving
for by, by, by in terms of 8, ., 1, and wrﬁ'ing u, # — ¢y, ¥ — 7y, for

x- By, @ — Bay, ® Bg’y\WL get in the hmit »\hen ¢ = (), that
the quintic may béexpressed in the form Aus + Bu'w -+ Cvo.
Further, when the'eanonizant has all ita roots equal, we find that
fhe quintic ma;f;ﬁe"éxpressed in the form Au® + Bu®®, by getting
the limit of/the lagt form when 5 = 0.

If ¢ *E&Eﬁonizant vanishes identically, we can find ¢y, 41, ¢a

50 thaf >
{ v Jotto — it - Galts = 0, Goty — 1@y + Gatty = 0,
\} Golbs — Gutts + Golty = 0, Golhy — G1t + oty = 0;

and if we take 8, 8, equal to the roots of g, + 4,2 + g,2° = 0, we
can express the quintic in the form b, (x - fy)® + by (z — Buy)®,
or ag the sum of two fifth powers. Following the same method
as for the quintic, if we try to express the quartic as the sum of
two fourth powers, we get J = ¢; and if we try to cxpress the
sextic as the sum of three sixth powers, we get a determinant = 0

o2
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whose rows are {ag, @y, s, @), (2, 0y, G, @), (Gs, 05, @y, @),
(e, @tg, g, 56}, and s0 on for a quantic of degree 2, we express as
a determinant the condition that it may be expressible as the
sum of 2 n** powers of n linear functions. All such conditions
are invariants for the corresponding quantics, as may also be
verified by performing the general transformation 2 — Ia" + ma,
y = Ve’ 'y, by the successive transformations - ki
Yo Bihy T=Gab Y Y1 Yas Fa— %, ga—y + dakand

noting that if I is one of the above conditions, O

I' -1y =1I; = (af)L ’x',\\ 3

207. Quarties and Cabies '[‘l'unslhl'ln:f}l)le into each
other.—If two quanties I/, U’ can be Q&ﬂsfo:l’med into each
other, it is obviously necessary that Jofrcsponding invariants
I. I’ should be connected by the sdlation I’ = M1, where « is
their weight and M the same‘qoistant for all such pairs of
invariants, and also that if aftys covariant vanishes identically

Wt Abradli rary.org.y?‘« Y . . .
for U, the corresponding ghet for U’ also vanishes jdentically.
These conditions are sufficint for cubics and quartics.

Two Cubies.—{a) M does not vanish, and so the cubic U has
not a square factdpfthen by the method of the preceding section,
or of Vol. L, page 111, assuming that a, is not zero, U may
be expressed &s the sum of the cubes of two linear functions
u, v. AspAdoes not vanish by hypothesis, neither does &', so
U’ similarly = +'3 + o2, Hence U may be transformed to 'y
by #dwi', v = 6, or u — w¥', v = 6, where w® = 6%~ 1.

...\n‘ Note if a, = 0 for a quantic Uz, y) we ean transform U to a

\'\; form in which @, does not vanish by putting z =X, y = X + 17;
where [ is chosen so that {(1, ) does not vanish. Thus a cubic
U for which «, vanishes may be transformed to one for which ¢,
does not vanish, then by the method of Vol. 1., page 111, expressed
as the sum of two cubes, and by putting X -z, ¥ =y~ I,
the original eubic is expressed as the sum of two cubes.

(b) If H, vanishes identically, I/ = u% and as by bypothesis
H', also vanishes identically, and .-. U’ = »'%, U/ may be trans-




Quartics and Cubics Transformable, de. 197

formed. to U’ hy taking u = wu’, where ® = 1, with any other
linear relation between «, y and &', %"

(6 IE A=0 and H,5:0, U is of form w?y, and as A'=10,

H/::0, U also =%, . U may be transformed to 7 hy
W', U= 00, where 2= 1.

The three C]dbbCS of cubics, such that all cubics of the same
class are transformable into each other by a linear transforma’rioﬁ\\
are distingnished by () A = 0, (3 H, =0, () A =0, H, E}_O

Two Quarties—I{a) IEA = 1? — 2772 2 0, go that the qlmrtlc
U has not a square factor, using the method and i\tf&thTl of

section 183, and assuming @, does not vanish, \
4g=u —t 1 [duu? _“{ul + %)) \
g A—p A-plp—v —vﬂ’
1 N LZ)t T 1
- 4\_\__,____ 2y, 2
eI ){ul |—fe«a2 - |
(;{.03 %Mﬁg -H];j;" 4 6 %, 2 }
= L
64 (ps ~ pu) (o1 — Ba) POy
Now as A" + 0, U' may Bo similarly expressed, and as by
hypothesis I = M4, J' LM, .-, the roots of 4p"® - I'p"+J" =

are equal to the coméspending roots of 4p® — Ip + J = 0 multi~
plied by M2, and 2 pi" [ (p's — p's) = po [ {p2 — pa)-

Hence U 1% be transformed to U’ by taking w) = wu,,
Uy = iy, Ot mua’, ity = B, where wi = 81 = g% | Mia,®.

Wh elther @, ot o', vanish we can proceed by first transform-
ing U &e{% ag above to a form for which @, ot @, does not vanish.

Beveﬁmg now to the notation in which we regard «, » as
Imear functions of x, %, we sce that all quartics for which

— 272 4+ 0 can be expressed in the form wuf 4 v+ GAup?,

where A is the same for all quartics which have the same absolute
invariant I® / J2, an absolute invariant being one which is un-
altered by linear transformation. For all such qua,rtics A is the
same, because if I® [ J2= I3 [ J'3 taking I' = M4/, .. J* =
Mgz - J = + MSJ, and if the negative sign occurs, put
— M2 for M2, . I' = MM, J' = M.



i 198 Transformations.

¥

LTS and 80 {7 may be transformed to U’ by takmg W= i,
where o)1 1, a,]nng with any other arbitrary linear equa‘rlOD
‘ between z, , 27, 4.
(¢} If A =0, I, 2= 0, I must be of form u2v {(4by - 6ew). For
such fonmn writing  for » and g for v, I =3¢, J = - e,
(= 20225 (b + 3oy). Q\
It AOH_|_01¢0J¢0G40Ulboform
1% (4(m + 6cv), where b + 0, ¢ + 0, and U is of sarqe‘iorm and
. U may be transformed to T’ by taking v = lu/,gh= mo’, where
Z%n—b’/b Pm?=¢ [ e K7, \ I
(d) It I=0, J=0, H,=£0, G, =0y t}:en c=0, b +0.
WU~ dbuty, U = 4%, and U rnav be” transformed to U’
by taking u — fu, v — m’, with Pm = p\fb
et A=0, T =0, J + 0,\\32__0 &, =0, thene = 0,
b=0. ... U= 6ou?, U’ = 6¢/sf & and U may be transformed
t?/ o wla’yw; {m ﬁgraly drg m?m;‘ or w == v, v = mu’, with PPm? =
¢ N
Thus guartics may be dwlded into five classes, and quartics of
the same clagg may be transformed into each other hy a linear
transformation,  if ‘cérresponding invariants and covariants are
connected hy the relations given at the beginning of this article.

208. \l\mlwl of Absolute Invariants of any Quan-
tic.. —“\Q proceed now to examine how the number of absolate
nvs "‘gl‘lis of avy binary quantic is conmected with the number
of & {11*“3’ invariants, and how far a limit can be determined

{@%ither of these numbers, Transforming the quantic

‘ (B) i N, =0, I7 -~ ut, and as by hypothesis II', = 0,

e A

\y’: {ty, @y, @y, « . . @) (2, )"
" by the substitution
= AX +pu¥, y=AX+uY;
if the new form be
(dg, Ay, Ay + . . A,) (X, TP
we have by the comparison of coefficients n + 1 equations ex-
pressing Ay, Ay, . . . A, as follows —
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Al}__ (a’m @y Bay e ) (ha N)ﬂ: et ‘1-:?‘: I#Qﬂ_j‘&"” e
(‘n:' ¥
A, = (g, @y, Gy - -+ Ba) (o TR L
2 P . .
he; A= 4 A — o= 1273 =1.
where ADH{ADH»” Dy =123 ... Iiy=1

Now, eliminating A, g, X', p’, we obtain, among the new and old
coefficients, n — 3 independent relations, which number is theres\
fore a superior limit to the number of ahsolute invariants. B
if (A’ — Xp) be admitted when A, g, X, i are excluded by
climination, we must add the cquation Ay’ — Ap = Mito the
n + 1 equations given above; and when the eliminftion is now
completed, we have n— 2 independent relations. We will
asstme, as suggested by our previous investigahions, that these
relations can be reduced to the form O
iAo, Ay, Agy o oo Ay — Mid(a ag,\q; .. ap); (Art 171)
and we have therefore n — 2 independent ordinary invariants
. . T T E\l’lgmn Hing %ﬁf‘ wo obtain, as above stated,
n — 3 relations ('.Olmec.t-ing\%hejﬁgnl LYol Boeticients, and this,
therefore, is the numbep of " independent absolute invariants.
Tt is not true, in geneyaly that every invariant can be expressed
as a rational Eunction%\f‘:chc invariants ¢y, ¢o, Pas - - - hrz; and
consequently we fave not obtained a superior limit to the num-
ber of ordina.;y\iﬁ{raﬁants by this investigation (sec Note E).
209. Ni.l}l‘:bﬁl‘ of Scminvariants of a @uantic.—
Kvery, oé@i‘ﬁin\raria.nt can be cxpressed rationally in terms of
2y ,a” w— 1 functions of the coefficients which are gither
..iléﬁgﬁr’iants or seminvariants. For, removing the second ferm
N\Jjrom the equation
U, = (g Gy B9 - » - @) (& =0,
the new coefficients are easily obtained by substituting for A its

value — ;ﬂ (Art. 35). " As these coefficients, when divided by
0

@, aTe Symmetric functions of the differences of the roots, they
must be invariants or scminvatiants when multiplied by a power
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of a,; alse, every other symmetric function of the differences
of the roots must be a rational funetion of the same quantifies,
but not necessarily 2niegral when multiplied by &,% ; consequently,
we have not obtained a superior limit to the number of indepen-
dent scminvariants {or, which js the same thing, covariants) by
this investigation. It has been proved, however, by Gordan t}l\at
the number of seminvariants of any quantic is finite. N

As an illustration of the preceding, we give the Y&IEESS of
Ay 4, A, Ay, Agin a reduced form— O

“ds = H, a?d; -G, 0,04, = al - 3H, \'\""»(Am. 37)

@il — a2F - 2GH, ' \
@A = 45003 — 1Ba 2HI + 1062 + RN
where  F - a2, - Baga,a, + 200,04 %\ﬁ'alaf + 8a,%ay,
Iy = agmg — Boymg + 15a-2?4\\*{\:]0a32,

F being a seminvariant, and I\an invariant of the sextic U
ixs ‘e haye that ever

(Lx?. 3{\{ 5, dﬂ‘a&%&-y‘.‘g‘ﬁg‘lﬁ‘w’ therefore, 'proved Y

semmvariant of the sexticsdan be expressed in the form

aoﬂ{#(a’u: Fa G} H; I: IZ)S
where ¥ is a rationaland integral funetion ; and, consequently,
every covariang when multiplied by a power of Uy may be
expressed as/follows —- :
N4
x\ V(U Foy Gy, H,, I, 1)

Welcbnelnde with the following important obscrvation :—
W.}”‘?’;\af rational and integral function of several se-m?}m,'a-rif:r,-nts
’b&fﬂf‘mpd s0 that the result is divisible by a,, @ new seminvariant
\m i€ obtained which ts considered distinet from the others.

’ 210. Hermite’s Law of Reciproeity.—TaEOREM.

A quantic (ay, ay, . . . @,) (x, y)*, of degree n, has us MEnY covariants

of the order oy in the coefficionts as a quantic (ay, 6, . . . @) {z, y)%,

of degree w, has covariants of the order w tn the coefficients.

This theorem can be shown ta depend on Cayley’s theorem

(Art. 165) as to the number of distine seminvariants of given
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order and weight of any quantic. When for & quantic of the
n'* degrec an infegral homogencous function of the cocficients
is formed containing all possible terms of order o and weight «
which can be made out of the coefficients &y, &y, @s « « - @ 1P
can be proved that there will be cxactly the same number of
terms in the corresponding expression of order » and same weight
«, which can be formed for a quantic of degree @ from the coefs\
ficlents @, oy, @y . . . o, For this purpose Mr. Ferrers:}igﬁ
employed a mechanical method of transformation term byl tetm,
which will be readily understood from a particular a 1i‘agation:
Let us suppose that an expression of order 8 a d';.\weight 22
of a quintic contains the term a,%e.a5%44; {which we write
010 Gofhasttattytis) ; and let the weights of the shiccesgive factors

be represented by points arranged horizonté}lf ag follows 1 —
SO
O

N/
LY

&l ¢
< 3

. * :. g
W\:rw.dﬁgtiau library.org.in

N

o)
¢ ’\\ -
1f now theypGints be counted in vertical in place of horizontal
order, we obgai the term ayrgasraa, of order 5 and weight 22.
Tt is cleaf that two terms thus derived from one another have
a]way@@qual weights, since the total number of points counted
in.ﬁhbﬂl cases is the same. We see therefore that to any term
\bf rder 8 and weight 22 derived from the coeffictents of a
quintic corresponds a term of order 5 and weight 22 similarly
derived from the coeffcients of an octavic; this relation is
reciprocal, so that for each term of cither function there exists
a corresponding term of the other, and if one list of terms be
complete, the derived list must also be complete. In applying
this transformation it muat be observed that if the term to be

transformed does not contain the coefficient with highest suffix
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of the corresponding (uantic, the order of the derived term
will he deficient, and the factor a, with proper index must be
supplied, this of course not affecting the weight. Since therefore
the two corresponding expressions thus derivable from one
another contain the same number of terms, we may represent
this resnlt by the notation o N\
N (m, x, n) =N (n, «, o). \,::.x
The same is true for similar functions whose weight i€ dne less

a

in each case. We have therefore N\
9.\
N (o3, e, n) - N (g, 6 - 1,n) = N (n, ﬁ'}) - I(En k-1, @),

from which, by Cayley’s theorem (p. 105)) i*Tollows that the
numhber of seminvariants of order w an@“fewht x« which ean
be made out of ay, @y, @, . . . a,is eqml o the number of order
% and weight « whichk can be madd mlt of @y, g, Gy . . . Qe
Hermite’s theorem as to (*(‘xvarlants follows immediately,
since the corres ndm sem{nvanants can be taken as leading
coeflicients 0?00\'&]3{3111 § ) and‘, 0reover, since niw — 2k =mn— 2k,
the degrees of two cowe&p@?daﬂg covariants are equal. As a par-
ticular case, also, we sce that fo an invariant of one guantic
coriesponds an a-?gw-?m.nt of the other.
‘ BxampPLEs,

1. Show that the terms written with Iiteral coefficients only which occur in
the rz,au]f:aqt& a cubic, by the iransformation above described, supply the
liferal t&@s Jof the cubic invariant of the quartic.

2 \lrom the seminvariant of a quintic in Ex. 4, p. 104, derive the Titeral
teg;ms Bi the corresponding seminvariant of a cubic; and show that to the
q-{ulntlc -covariant of the former corresponds the product of Fjand &, of the
\ gabic,

3.—8how that quantica of the degree 2m alone have invariants of the second
order in the coefficients.

For the only invariants of a guadratic are of the type A,,, whose order in
the cosflicients is 2m, A being the discriminant.

211. Reciprocal and Orthogonal Lincar Trans-
tormation—Contravariants.—When the coordinates of a
point arc transformed by a linear transformation, the tangential
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P
vy ow
both transformed by the same new linear transformation, which
is said to be reciprocal to the first.

Let the linear transformation be

coordinates of a line and the operating symbols are

r=a,X+5Y + ¢,
y— X FBY + el
z=a5X+-b3Y+CSZJ ¢

N .
whence any line Az + py + vz becomes, by t-ran%qrﬂmatmn,
3

LX + MY + NZ, where A
X “x\o
Lo +agu + a0, | S8
M= DA+ boga + bps g\ (2)
N-—ed=rcou + c,_q’j\Jt”'
also P PR S
- X TX w o aXivy X Y
™
1 WRER aulibrary.org.i
or, substituting for ba—aX-, %,fg their {Ya.(l)\llegs:n
S NI I
SR 5 T gy
and similarly ()
N/
2 ) d 3 D 2
Sy T\‘l?\a*x: + b, 2 + by 5 3 0 5 + 6oy + 65 s
'\‘:]\1@133;‘.,\1;, M, N and the symbols a_?X DlY a—az follow the same
N 302 D

i) ) .
\}a-’fvs of transformation, and consequently A, p, v and 3 3y 3%
also; in fact, from equations (2) this transformation is
AX = A,L + BM + O/N,

A = AL+ BM 4 OoN,
Av = AzL + BM - (4N,

A A
where A = {mbyes), Ay = 27, B, — X &e., &e.
.
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This Jinear transformation is said to be reciprocal to the
Iransforntation (I} whose modulns is A, its coefficients being

F3A 124 124 &c
Adu A Ade T
are said to be contya-
AN\

grodient to each other, for & linear transformation of '1:,4{,{ leads
2 30 e,
oz’ i Dz

although not the same, is connected with the ﬁr'g’hn the manmner

The varinbles o, 4 = and 2. 2. 2
; i b R J, ~y HLI0 -a_;{j’ ay’ -‘}z

fo o Tinear transformation of the symbolg

already explained. SO
We next define ** orthogonal » tra.nsfprlhation. If, in the
cquations (1) above written, we have, among the coefficients the
relatlons QO
C\Y
@t ag® -1, bR+ 62?;:.1‘-‘.2‘552 =1, e+et+cl=1,
ab -!-Mg,dhf'gzﬂﬂibl{ar)ﬂgd'g‘ﬁiiﬁ;é; + @85 = 0, b6y + byty + byty =0,

the transformation is_siid to be orthogonal., These conditions
are fulfilied, for exafiiple, by the direction-cosines which enter
into the relationsetween the coordinates of a point referred to
twvo different dats é rectangular axes in solid geometry. In such
a t-ransfonr;z{ﬁoﬁ it is clear that we have the relation

x\ @yttt = X2 ¥Ry 72

N\

and.@;af- the new variables are expressed as follows in terms of
tha bld -

X-awray rap, Yobatbytbyr Z=ezt ey

Also, if the modulus of transformation written as a deter-
minant be squared, cach of the elements contained in the principal
diagonal is equal to unity, and all the other elements vanish.

When a quanticin x, ¥, 218 transformed, any funetion involving
the coefficients of the original quantic, together with other vari-
ables which are transformed by the reeiprocal substitution above
explained, i said to be a contravariant it it differs only by a
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power of the modulus of transformation from the corresponding
function of the transformed coefficients and variables. The
condition, for example, that a line Az + uy + vz should touch a
conic given by an equation in trilinear coordinates iz a contra-
variant. The theory of contravariants can be included under
that of invariants by considering the combined system composed

of the given quantic and Az - py + vz, For instance, in Prop. LLL NN

of Art. 175, if we substitute wA = g + 2v for 2y — 'y and U jy
quantic in , ¥, z, we derive by the method given thure caira-
variants which arc called evectants. AN

It may be observed that in the case of bin;lryiﬁ\lz'i.x1t.ics,
contravariants and covariants are not esseptially(distinet, as w
contravariant may be changed to a covariamt by substituting
x, — y for u, A respectively, or vice versa, ifi's way we have fre-

. NS .
quently used, by substituting B_Dy smdi.\_\b'— for z, y respectively
bk

in a covariant. ™’

The treatment of q11E§H0‘HsC‘hT79¥E§$'§ﬁy 9¥&iMtated by the esnvenlional
rule that when a suffix cecurs twicwi?l:"a product, the product is to be summued
for all values of the sufiix fron?™k to ». Thus a linear transformation from
HgaTas o o v Ty 10 @7y BTy ety B exprossed by wp—lagrg’, where as B ocaurs
twite %, «— lagzg” stands fo fomm Ty, lass’ & o0 b fan®e T the deter
minant (g}, called the mu ulus of transformation M, il Fgq equals the inor
corresponding to f,g divided by M, the inverse substitution is expressedt by £,
= Lﬂﬂxs. The pol’xdj’tion that the transformation should be vrthagponal s
Loglay = 0, umleg 32 v, when it equals 1. Thus it an orthogenal transforimation
®a%a = Logtalkindy’, where a, §, y are each gummied for all values frum 1 to e
kecping B\:‘V"'ﬁxed and summing « logle, — 0, unless B -y and then it
equals_ 1,\ Ty = gy Moreover, in an orthogonsl transfurmation, mul-
tipl'y.\rs.,:& lag®s’ by Ly, and summing, lpta -= laglayrg = y's < bay Frya-
#\Ib the general transformation, if £, represent a tangential varia 1‘_»I=-, s Uhat

B = Ea'ls ot Eaa = Eolapra’ = Eg'Eg 80 {g' = Lagéegives the reciproval sub-
stitution. Also —b-— e ] —-b— 80 2 is cogredient. with £o.  Inan arthogonal
dea Pmy T .
transformation £y, £, - . . £, are cogrediont with zp, @ 0 - - T

Again @,grattg, taking cag=rgs represcnbs & homogeneous funetion nf the
second degree, and its discriminant A is the Aeterminant (fag). Ifwe ”““ﬁf””"
by the general linear transfurmation above, fag¥as = toplay gsry @3’y < Myl
Baglaylas Now the product of two determinants (bagh (€ap) f“luul:*'lﬂfﬂ?r‘ :SY]II:'::
{byatyp} ot (Bayeyg) according as we multiply rows by rows, or columns by [.‘j ‘;( ™
or rows in {bag) by rows in{tzg) after altering rows tu colnuns. Henee A7 ==

~N
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(e'y8) -= (taglay - Igs) = { Zaglay) . (tgs), where B is not summed, = (ag) () Bat)s
where n, § are not summed, = A M2

Similarly o homogeneous function of the third degree in # variables is
expressed by g, r,2g2,, all the values of @ap, obtalned by permuting afy being
assumed cqual.  Similarly one of the fourth degree Uy = aug,5000g%,05 Whers
all the values of fagyyr obtained by permuting fy8, are assumed equal. To
find ¥/, /Du,, we must observe that as a4 f, ¥, 8 are to be summed for all valucs
from 1 to », the suffix a will occur in the place occupied by every suffix it
fagys Thus 3T, fdz, = LagysTa%y Ty T tgaydTgty s + Bgyas%aTyts + A3y badigty s

=da,ay52g07g.  Similarly W)
200, Xt )

£ )
=4, 3 o fysTy ¥, =4,3.2, Bhapyis, “’

Bx;ﬁxﬁ D“:caar.-ﬁaxy
d o = 4! d for h eﬁxt\ ti f
a - - ! RTeeTarey (Aunctions
an Yy Gagydy ANd 50 on for homogen .e‘\s I

X

variables of higher degrees, -

MiscrrLaNuoms EXAMPJ;..EQ\.’;
1. Every quantic of an odd degree has q\g_u{}-d_r‘xi-‘tic covariant of the second
order in the coefficients. AY )
¥or every quantic of an even degrcpsbék'a.n invariant of the second order
in the coefficionts (Art. 177), which ma;y be written in the form p(U) or
{1, 2 {%::\i;ﬂ]ﬁ@va@liﬁbi‘awﬁﬁﬁ*gfﬁl’ﬁhe quantic whose degree is 2m will be a
seminvariant of one whose degféebis 2m + 1=n. The covariant therefore
which has this sominvariant as leader will be 2 quadratie, since azm — 2x = 2
«being=n—1and w =”'2i\
2. Every guanticcof ‘aw edd degreo 2m 4- 1 = » has & linear covariant of
the degree » in theoeMdients when n i greater than 3.
For, if 1(x, y)?,: be the guadratic covariant of the preceding example, we
have N\
‘ \ TRU) = Lyx + Ly
a linear ¢G%wariant, the order of Ly and L, being n, It is here assumed that
Ly a-ndri}‘éﬁ'e not identically zetro, as they are for the cubic.
9 33 Flvery quantic of an odd degree has an invariant of the fourth order in
thé cocfiicients of the form dw,? 4 28a, + ¢,
<\; " The diseriminant J {, )* is the required invariant.
4. Bvery quantic of odd degree n has a seminvariant of the third order in
the coofficients which is the leader of a covariant of the nth degree,
For, differentisting with regard to g, the discriminant obtained in the
preceding oxample, we have, for the resulting seminvariant, & = 3, «x = n, and
consequently p = na@ — 2k = u, which is therefore the degree of the covariant

of which D—L\ is the leader,

Oty .
The scries of seminvariants obtained in this way for the odd quanties is
important, the order in the coeficients being low.
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5. Quantics of the degree dm have invariants of the third order in the
coefficients.

For cubics have invariants of the type A®, of the order 4m in the coclficients,
A being the discriminant. This and the next four examples are immediate
deductions from Hermite's Law of Reciprocity (Art. 210).

6. Quantics of the degree m have ag many invaviants of the fourth order as
there arc solutions in positive integers of the equation Ip 4+ B3g=wm A
quintic, for example, has one, a sextic two, a septimic one, an octavic W0 5

and §0 oo \\
Tor quarkics have invariants of the type IpJ4, which is of the order
N 3
2p + 3¢ = m in the coeffictents. ~

)
7. Every quantic of the degree 2p - g has & covariant of the E;gggnﬁ’order
in the cocfficients, In particnlar, when ¢ = I, every quantic pfodd degree
. x &4
has a guadratic covariant of the second order iz the coef’ﬁclem.{(ci. Ex. IL.

Yor quadratics have covariants of the type AP, whith'is of the order
2p - ¢ in the cocficients.

8. Every hinury quantic of an odd degree grcq,téi\\ha-n 3 has u linear co-
variant of the fifth order in the coefficients. \ v

For a quintic has an invariant 1, of the fmu\th order, the discriminant of
I, also vovarianta of the fifth and sevnnt‘h.'o‘ljders, ¥in. oy (Bx. 2)and My =
Lpl,; from these we form the cova-rigm,iér J 1, of order 4p+ 1, and
Ip23f,, of order 4p — 1; bﬁfﬁ\’éﬁﬁ(éﬁ{'&dﬂibm}imﬁg_ﬁi the form 4p L 1.
— HERMITE. X QO

9. Every quantic of the d%ra(: 4p 4 2 has a quadratic covariant of the
third order in fhe cucﬁicients.\

For & cubic has a qua,t{@tin covariant of the type ATH,, of the order 4p + 2
in the coefficients. N\

1. When theg qﬁﬁtlc (ttgs @y fhgs fgr g ) (¥ ) hES B triple factor, prove
that the covarignt, I, is o perfect square, and the covariant J, o perfect cube,
the linear fa...gtcﬁ's\éemg the triple factor of the quintic in Loth cases.

11. W\}se;x the guintic has two double factors, the remaining factor is a
singlegi’s;c}or of ..

\‘]é' If U, = (ay oy, G« - - ) (% yP prove that the resultant of T, and
#he/covariant G, is the diseriminant of 7 cubed thatis, B (T, Gl = QAL L)
) -
and prove also £{T,, Hy) = kA*(Ug)

RExpross H, and ¢, n terms of the semicovariants [y « - » Dpopy Un U

13. Express the combinant £* of two cubics in terms of the other invariants,
p. 162. Ans, Pt 165, — 4Ig = © + 24110
where Iy, Trqs « . . &0, are lhe invariants of the three Hesstans of Art. 192.

14. When the quintic has a triple root, the tollowing symmetric nnctions
of the roots vanish :—

Zay — 2P V(gp 9 a5k Ela, — ) V{og 2p ag)-
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I3 Two quadraties, U, ¥, in m, # may be expressed in one of the forms
(1) Aw® - Bo?, A% L Blw. (i) wo, ww. {iif} T = kV,
where %, 1, w are linear functiong of .

Putting 17 = ap® 4 2b,2y 4 a3 = A {x — ayf + B{x — fyh
Vo= by ok Whyay + by = A (z —~ aylt + B (z— Pyl

o= A4 B byp= A’ + B
—ay, « Az + BB — & = A'a + BB {1}
tty — Ada* + Bp? b, = A’e® 4 BB A\
If a, § are roots of pa? 4. goy + 12 =10, Py — gay 4 va, = 0, pb, %:gberr
rhy s Oy and L o, B are roots of ‘:\
2 gy e o’~:’;
K 0 >’
= q iz 44 = { &/
2 1 a i ~“x\
b, by By, g

If the roota of K =0 are different, weget 4, B, 47 NE2rom the first two equa-
tions of cach set (1) and estabiish the result {i). P«ft{e’}lg B =a+ ¢in the values
of 4, B, 4°, B and finding the limit when ¢ S\t *the forms assumed for I, V,
we got (H). When K = 0, a, — &by, @, = kb, = kb, and U = k¥, We see
that K = J (¥, {7}, and its factors are Upth

1637 vhel bbb 32 OF fed Buadpatios

2= + ey + af, bzt ké?;lxy + B oy L 2oy - ot

be connected by the relation .'\\

prove that t’l{"wéy be in general rednced by linear transformations to the formsa
N A4,X 4 BT, 4,004 BYY, A,X:L BT

Thavdeterminant here written is the condition that the three quadratics
s];LoQ}(f determine a system of points or iines in involution.

'"\} V17, TH U, V are two homogeneous functions of the second degree in n
\v’a.ria.hle with real coefficients, and # ¥ is positive for all real valucs of variables,
prove that the discriminant of ¥ — AV has all its rocts real.

Using the ecnvention that when a suffix cocurs twice in a term, such term
is to be surimed for all values of the suffix from 1 to 2, we write I = Bag¥aTs
V = bygrazg. If A = {a,5 — Abyg) = 0, we can find values of 2% 2,/ . . . 2y,
80 that aggug’== Abgrg’, for if all the first minors of A = O, two of 2/, 2,7, . . - 2,
may be tuken arbitzarily, because any values which satisfy n — 2 of the equations
Gag¥p’= Mb,grg’ satisfy the remaining two. This may be seen by taking n — 1
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of them, multiplying by the 2 — | minors of the second order formed by the
coafficients of any n — 2 variables and sdding. The result. =, as the coefficient
of any variable is either a minor of the first order or a determinant with fwo
columps identical. Thus unless every minor of the second order vanishes there
arc at least two linear identical equations eonnecting » — 2 of the equations
- of which the cocficients of #» — 2 variables form a minor not = 0, with the
other two. Similarly #f all the minors of the third order vanigh, three of the

~

variables may be talen arbitrarily, as there are at least three linear equa,t-ions\

connecting # — & of the equations of which the coofficients of » — 3 variables
form s minor of the third order not == 0, with the other threc. And s oi&:
gencrally, Hence we can always get values of %, =", . . . %, which dq :ﬁ.@t all
vanish to satisfy @pzs” = Abugty’s I A Is a 100t Of (g — Mag) = Oiny

If o+ dp is a root of (oag — Myg) = 0, and the corrcsponxd'@g\ values of
%y'= £z -+ iy, which do not all vanish are substituted in 7678 ﬁ(p T i) bagrg’,
wo get \NJ

teg (g + tyg) = (u + v} bog ({p ‘ij\‘Q?f)-

and therefore, as a,g, b,g are real <
N\

Gagfs = ihupls — eghooe’
bupig = ibagny -+ Vagts:
Henee I_nultiply the firat by n, atn\(':;f.‘r %_-I}\c?\’ satl%gé{l ﬁ‘ﬁ;{“aaf%(d gtﬂg){iﬂ'ﬁcting and summing,
we bave N
_ #{bagnays Pbagbate} = O
But bygian, and bugf,£g arc by l{zpothesis each pozitive and do not vanish unless
allthe #sand all the 5's = Q,é.hd this latter is not the case 28 we saw, .. » = {,
and .-. all the Toots of A%rsreal.

18, If U, V are {wp homogcoeons functions of the sccond degree in n
variables with real gc@%ﬁ&ieuts, and ¥ is positive for all real values of the variables,
prove that T aﬂ,gj" may be expressed as sums of squares of the same = real
linear functig;aéj,. ith teal coeflicients.

Transi’s{m.f U = aggrgg and V= bagratg by the linear substitution z, =
245 g, gelling
O 8aliTayt'yigsts’ = Gugtartorty™ + Maptp@ap®s ¥p| + ApgBprte Tgss s
O \ud (P @ e 5 = 2 to R}

\ﬁ’ = baglayity Tasts’ = bagtu@a® + 2bapgPaiPap®y 2y’ & bpgpreTr ity -

Now X being any root of (.5 — Abgp) == 0, by the last example A; is real
and we can find real values of ,, £y, %o, « » + Ty 10 92bELY @ogre = ADugTar
Assume as woll arbitrary real values for all the other coofficients in the substita-
tion, bt so that the modulus doss not vanish.

Mubtiply 2eamp-=Abysta by @y and somming, and by #qp and summing, we
get bagha s = Mbug®oiTer, Gaglaay — AiDop¥p:Tay- Therefore the coefficients
of 2, and x,"xp” in T equal A, times the corresponding coefficients in ¥. Also
noting that begs’e,b’g) 13 positive and does not vanish, and denoting it by & we

VOL. II. P
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get, if we put X;= k4 %bﬂﬁxﬁlx@%’, U= X2+ 0, =7+ V', where

U’, ¥ are functions of "2y . . . 2/ and ¥ is still positive for all values of the
variables, sinee U’ == U for any values of BT« o v By if % 13 found from
X, = 0. We now proceed similarly with U7, ¥, having reduced the variables
to n— 1, and g0 step by step we cstablish the desired result.

If finalty X, = fageg, and (lag) = B, we have the discriminant Aof O—aF

N R S S N R A
50 that Ap Aw - - - Ay a7e the roots of A=0, S

We may further note thab if A has two roots =A, the discrin}ipa,gt * of
the final form O — AV, huving lerms only in the disgonal, is sieh fhab for
A=} all minors of firab order vanish, Hence as A is ubtainéd..}rom A’ by
multiplying by a determinant 4 = M2, and 50 any first minoQ‘E’ﬂf is the produet
of two arrays formed by n — 1 rows of A and » — lrows £PA¥, and so is & linear
function of firat minors of A’, and s0 vanishes for)l;-z\}i.\’ Similarly if A= A
is a triple toot of A —= 0, when A = A, all the minobs vfthe second order f A=0,
and so on generally. .\\';

19, Express in general three cubies U fo, W, by means of three cubez.
Putting [/ -= 4 {x — ay)*+ Bz — BP0 (w — vyl = 49" + By 4 Cu?,
we have gqqg=A + B+ 0, — & = ot BE + Oy, ay=da®+ BE+ OV,
— ay = de? -k BB+ Oyt and ao,jg‘;:i, 8, y are roofs of pet® + Pty By +
oo, peiyw flreplibrarymeged).  Similarly putting Ve Adwt B
Cwd and W = A47u8 4 B”e}%’}:}i’C”w”, we get poby — Puby T P — Paby == 0,
Puls — 0 T Paly — Pl \‘Henee a, £ y are roots, and u, v, w factors of

Kodlds ey w7
."\’\,.3

iy @y fty aii ‘

N\ )
Q
e D | by b, by by
AN/
\ | C3 Cq y ey i

;Ti”;r%ding then 4, B, ¢, 4', B, ¢V, 47, B, £ from the first three of each of
LN drece mets of four equations, we obtain the desired Tesult when g, B, ¥ aT®
R different, or K of form nvw.
. 76 N Potting f=a+ & y=o-- €+ 1 gotting 4, B, O, and finding the limit
\ V™ when ¢ = 0, we got that it K ig of the form u®s, U, ¥, W arc each of the form
4 Aud 2 Bu®r - v, Further, finding the limit when 7 = 0, wo get that when
F is of the form %?, = is = factor of v, W.

I K = 0, there iz a linear relation hetween U, ¥, W.
A similar methed may be applied to express in general quantics of the
ntk grder in terms of n nt* powers,

920. Prove that the three roots of a eubic may be expressed 48

ESL & {xih 8l (o) = g (xl}!
where
Iz m

b{z) = 'z + w’

and 8 () = =
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This follows from Art, 60, Vol. T., or from the faet (cf. Arf, 206) that
any cubic may be linearly transformed into itself, but it may be proved in a more
elementary and satisfactory way by finding I, m, I, m/, from the equations

gy — gL my—m=10,
Vpn — by = mfa—m =0,
Faf—la - m'g—m=10.

Assuming a, B, y unequal we easily find that we may take V=ac— B .\
m—lmad—be,m +1=+ —-;.3 m = c? — bd, and we note that (Im’ ——-l’m)\
emem FA = (m A I (\A

This example is a particular case of a general theorem of Abel's, yiz-\ It
the m roots of an equation of the m#t degree arve a, 8 (a), 8% (a), . . 6“’“1 {e},
where f {#} it a rational function such that when the operation ﬂ\la“;epmt.ed
m times §™ (z) -~ x, then the solution requires only the determi iion of a primi-

tive root of ™ — 1 — 0 and the extraction of the 4 root of nown quantity
{see under Abelian Equations),

21. 3ivon a hinary eubie ¥ and its Hessian IJ. o tthubm being satisfied by
the ratios »: y and " : ¥"; provoe that

BH:G E’hﬁ
J__ﬁiﬂFﬁL
VA J ==

is an absolute constant, A being;ﬁh{;{cm@pggﬁlgpglcg( Q]..g in
This expression is absolutely unchiinged by linear transformation, since

Hx, \\)1 H, A= MSA,
and .
X ¥ ’ I
B, y ! D gD gD R
! X v \ = ,E“’ 2 yr " X’ DX + ¥ BY Dz + ¥ Dy'

%
Re{luci.ng I{ o the sum of two cubes by = linear transformation whose

1 -
modulus = I éhe constant may be easily shown to be T— "This ia another

form oi\gﬁe homourapkuc relation of Art. 60,
"\‘22 Prove that a rational homographic relation in terms of the coefficients
wcon.n‘ccts any two rational functions of the same root of & cubic eguation ; hut
\‘gﬂat the relation is not rationsl when the roots are different.
23. Transform the quartic
{a. b, ¢,d,e) {m 1)*

into one whose invariant I shall vanish.

Assuming y=u' Zgr+ L,
and making the invariant 7 of the transformed equation vanish, we have
Zipy— p) (b — P =0, it

where ¢ is a known quadrgtic function of 4, not invelving L.

P2
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Expanding {1), we have
-3+ L =0
12 ’

which determines $, and conssquently », by means of a quadratic equation ;
and { may have any value.

By a similar transformation J can be made to vanish,

24. Prove that the most general rational transformation of a quartic f (x{\
may be reduced to the transformation

4

—_—— Q * ~"\\
p—z g% \J
When P = Rf (5)f” (¢) and @ =— Ef (9)J" (p), show tha:tﬂﬁe‘z.;econd term
of the transformed quartic is absent. P :\
25. Prove that the transformation g ",\
ar? 4+ 282 + ¥ )
= e o i
U= gt 4 26 +n .
may bo aceomplished by the threa succesa\qie‘;\t-ran.aforma-tdona—-(1} a homo-
graphic transformation ; {Z)a tranaformafioh of the roots into their sguares ;
{3} a homographic transformation. A\

z
N

3=

N

2608 b AREETy BOERAS
(9 — 51 (2 =) _
1(3‘:1 - 252) (;{\‘ 34)4 - Zo + (xlxa + :‘33\1} El,

where I, und I, are 'sy;{ﬁ:}t.ric functione of =y, T, Vg, Ty3 Prove also that

(6 () < D) (8 () — 8 (a2) _ Bo+ Zy(oamy + 20%)
¥ {53;):':';';‘ (2,)) (#{2a) — # (=) 27 2t 2y}
(Seo Art. 198.)

where 5y, ZgE5% X, are symmetric functions of @y, g Tgr -

27.:1{ ’é\(;, y) and ¢ (. 3) be two covariants of the binary form

,%w' U = {2, 0y, Gar « + - ag) {2, )"
of’jhe degrees p and g, Tespectively ; and if
e N
Q ) ( X_I_B_'i'y X Eﬁ."’y)
\/ A qy yx+ g0

be expanded in the form
(Vo Vi Voo o o0 VpH(X, T3
prove that Vo, ¥1, Voo o« - Vp are covariants of 7. (HERMITE.)
Expanding, the coefficient of Xo—§ ¥iis

(— i (w D .an);‘#

i 2.35...5\ o# 0z

dy 0w Oz 0¥
The modulus of this transformation of ¢ is # (%, 7).
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98, When in the precsding example n = 4, and ¢ {z y} and ¢ (x, y) are
replaced by ¥, find the values of ¥y, ¥y, Vo ¥y Vi
Ans. (17, 0, Hyy Gy IU? — SHZ (X, XTI

29, Prove for two cubics IV and V

!; J-'(1.1 IB]. 131
@=16 | I, TIn Iy . L\
i \\
Ly In T | A
whete Iy, Iy, &c., are the invariants of the throec Hessians, and £ has t.-h\e\'sa:mé
sipnification as in Art. 192. \ WV

%
~
R

{ ™R

30. Eliminate @ from the equations ¥
7= (mz + o) @ + (@93 + Sayw’ - 2a2) ¥ (G0 Hy On & (&5 1 =0,
Ana, 2+ 3Hpgz + Ggy = 0.
31, Transform the quadric {a, b, & f> ¢, A} (= 2, z)%q;X, Y, Z, where
X=agedfyt+rs Y=ext ¥+ ng"\” == agt + fy + va*
. N
Oy Oy 1'{};:\' X
Iz LEEP :,"f«‘n'.;s Y
ﬁglww,@l{aulﬁﬁary.grg.i
‘ X Ny oz 0
where » )
Ty; = Ao+ B8, O g B Bvst+ Biv ot Glypayt o)+ He bt a;fy,
and 4, B, ¢, ¥, ¢, Hhare‘the cosficionts of the tangential form of
oY tes B, & fo 90 BY (2 9 2%
AN/
32. Provgytba,% the quartic {a, &, ¢, d, &) {x, y)* may be transformed into

2\

A by (48 — InP + o)
by the Q\e itution
":‘:; §=I.x+my, 'q-:"x—-—-af,

"\gﬁer’e a, B, . 5 are the roota, and
) 3
4 120 —— aZ (o~ 5} {8~ 3}, 12m - aZa{f—B){y — B
in which the summation is with respect to o, 8, y. and L is a funchion of
a, B, y, 8.
33. When U, is a quartic, and Ky s Hessian, prove that the factors of
UzHy — UyH, are v — y and the three quadratic factors of G, {Art. 183) when
oy replaces 22, and = 4 ynreplaces Pz,

34. Prove that all quartic covariants of £, whose rools are rational functions
of tho roots of €/, are included in the formula

(b4 31 — 20p + 5 T Uy — (4p* — Ip+ J) He (M5, BUSSELL)
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How is this example connected with the preceding ?

ars p x—a T—B -y, 2y, —
35, Prove thats — +6—;9 + S_yma.fn,ctor of 12, — 187 H,

whore lp=(x—a)(z~ B) (& — p}{z— 8}

36, [f I, and IFg be two quartics whieh have the same absolute invariant,
prove that

IFH Uy — I'TH 0, \{\
may he resolved into four factors of the form OV
Q 3
Az¢ + Br 4 C¢+ D. (M. ROgsecL.)
37. Tf the leading coelficient of o covariantinvolvesthe cegciﬁnls of several
the degree of

quantics in the orders @, @, . . - @, and weights «y, o o I
the covariant is 5

RS
Rty o Mgy b - v . By — 2 (kg o Ky SN K (ATE 166
A8, If for every difference ap — ag, in the ;Ee'}}“{mn of & seminvariant ¢ of

an equation I7 = 0, we subatitute "\\

\S
I {an — Q\

{x — ah) fz — ag)’
proveifar ﬁ@%ﬁm?i'@'fﬂe‘]ﬁﬁcﬁ&t ‘b the covariant whose Teader is ¢ by 0<%
where & is the order and « the twugilt of .

39. When T iz a qumti\\mha.t are the invariants of the quartic emanant

O 700 402 )
¢, <™\ == 4
S\ (#5+7; Y ’
¢ Ans. The quadric and cubie covariants Iy’ and Jg'

)
N S/
of any

4 szed)he relation connecting the covariants Hy, Gu In i ;
quantic Uo\w Ans. — O = 43 — UPHplz + U3 T,

“)ow how to transform a quantic of un odd order so that all the new
COE‘ 1ts shall be invariants.
Ang. Take two linear covariants for the new X and Y.
{ :; 42. Find the relation which conncets the coefficients of two quartics (if any)
* when their roots are connected by the relation

|1 @ e aa’
1 8 & BF
Ly ¥ o d
1 3 & 88"

Ans. B — 782 = G,
(Cf. Bxa. 13, 14, p. 119, Vol 1)
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43, Transform a cubic U into it cubic covariant G bylinear transformation.
Making the transformation given by the equation

» 32 ¥ Mz _ g the result is AGy"

D dy
44. Transform a quartic U into itsclf by linear transformation.
It Ue=d izt~ y®) + 2Ba%,

the quadrstic factors of the covariant G, are zy, & + ¥ 2° — 7 ; now, making A

the transformation determined by the cquation x’g—‘i + y’g—i = 0, where g i?\\
N\
i“} ..
45. Prove that ithe quadratic factors «, ¢, @ of £, expressed iq{c}{‘lﬂ% of the
roots are unchanged when for #, o, B ¥ § their reciprocals are xsf\Q)atitu’ced and
fractions removed by the multiplicr (— 1) 2%afy8. RS
It appears, thercfore, that ey, d, G M2 v separatel¥ e regardod as co-
variants, if the vational domain, which before included wily the eoelficients, be
regarded as extended by the adjunction to it of the/Teots a, B, 7, 8. (See Art.

168.) R A\
46. If three quadraties be mutually ha,rm\é}\i\c: prove that they muy be To-

duced to the forms

any one of these three factors, U is transformed into T

.‘:.’ %

s )
AX2 4 R .éﬁﬁ"aﬁl l%g’t'y%‘r’gg}i—i n
47, Form for a quintic a semingerinnt whose order is 4 and weight 8,
The terms contained in t-h{mmplcte grudient * 3, 5 a6 o8 follows :—

" P 3,
Gy%t®, )0ty Oyfly Bty 'a“giﬂ?\‘loazasﬁ, g2t g fotg, oy tlitgtls oftafTafiss By Fe
Cperating with D, snd ﬁ@kfng DGy g = 0, we find geminvariants of the typo
»
N
" I8 4+ wml?,
A/ .
where I has th¢ dsual meaning, and
o
$
8= f-‘uzaq"‘{‘\&!-uatas% — dagrlay -+ dagtym® 4 B0 0ty T Ba el — Bty
/ 4
O\ . + Bast — a5 {1ty — Gyt + 2a,%).

—
M~\

.n\".‘.* “The term ** gradient "' i3 used to gignify the sum, with arbitrary multipliers,
#\ofall possible terms of any assigned order and weight.
' 4
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SECTION IV, —(GroMETRICAL TRAKSFORMATIONS.*

212. Transformation of Rinary to Ternary Forms,
—We think it desirable, before closing the present chapter, to give
a brief account of & simple transformation from a binary to a
ternary system of variables, wherehy a geometrical interpretatiom
may be given to several of the results contained in the preeedmg
chapters. The applications which follow will be su{ﬁitzlent to
explain this mode of trangformation ; and will cnableithe student
acquainted with the principles of analytic gepm\try to trace
further the analogy which exists between tha\sst?o systems.

Denoting the original variables, i.e. the” variables of the
binary system, by x, %, we propose ta *t}anbform to a ternary
system by the substitutions \ N

X =z I’—Zasy, Z-—y,
a form to which the general guadratlc transformation may be
brought ¢ by qﬁ'ﬁ@ifrﬁa‘ﬁé‘?ﬁ}hmtmn of the ternary variables.
For example, taklpg\ the simple case of a quadratic whose
roots are a, f3, viz., s\
¢ LN\
8= (@t )y + afy? = 0

and tran&forming, we obtain

,\~ X—~Le+PRY+afZ-0. 1
\Ve{h&ve also the eguation
Ny 1XZ - Y2~ 0

This is the equation of a conic, which we uniformly call X,
and (1} is plainly the equation of a chord of this conic joining
the pomnts a and B, the point determined by the equations

* Bre Quarterly Journal of Mothematics, vol, x., p- 211, 1869.

T X'— ax® - by -|- o, ¥/ = a3 -} 2how + ey, B = a.2° | 2hyoy
+ ewf solving for a2, wy, 37, on the assumption (o, by, cy) 4 0, as if it does
all points lie on & line, we obtain # = (AX’ 4 A4, 7" L 4,4 {tyhyes) = X
with similar values for ¥, Z,
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X Y
F %
being referred to as the point ¢ on the conic K.
When o = 8 the quadratic becomes {x — a)*, i.e. the square
of a factor of the first degree ; also (1) reduces to X — «¥ -+ a?Z-0,
which is plainly the equation of the tangent at the point @ tn\\
the eonic K ; whenee the line corresponding to a quadratic 3 with
distinet roots is a chord of the conic K, this line becommg 4
tangent when the roots are equal. |
In further illustration of this method we con&d,ez:‘hle “binary
sextic and quintic, so as to show how the trgfisformation is
presented differently according as the degres b the quantic is
even or odd, In the former case we have )"

— Z, where ¢ =

':-tilﬁ-‘s

u = (2 - o) (&~ agy) (@ - o5y) (:v ~\ a;.;}?) (x — agy) (@ — o),

which becomes by transformatlon
o \Eww dbra'u,.hbralg
12654856 CigfBalas 1="’~’3cr bats

or some other of the ﬁ.ﬂ‘\é&n similar productq of chords, where

1e=X — Ha, -+ a) ¥ £%64 0, 4 is the chord 1, 2; and ¢y, Csqr &0,

have a like algmﬁcaﬁrum Tn the second case, viz., when the

degree of the bmm-y quantic is odd, we must square before

making the, Qnansformatlon Thus if # represents the product

of the s’t §ive factors written above, u® becomes when trans-

furmec(\tl ofstits, where t; = X — ;Y + 2,2Z is the tangent to K

at \the point a,, and #,, f, &c., have a like gignification. As,
"huwever, in such transformations we may replace 4% 2 hy 4XZ

ot by Y? = 4XZ - K, they may be effected v a variety of ways,

but we see that two such tra‘n‘;form ations differ by an expresgion

of which K is a factor.

213. The Quadratic and Systems of Quadratics.—
The only invariant that a quadratic has is ite discriminant ; and
this is aleo an invariant in the ternary system, its vanishing
being the condition that the line corresponding to the quadratic
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should touch the conic K. We now consider the system of two
quadratics
ax® + 2bry > ey®, a'z? + 2wy + ¢,
which we call I and m.
When transformed they become two lines N
=aX 1 BY +¢Z, M =X +¥Y + 02N\
Now the condition that the line whose equat10n~1s AL TuM=0
should touch the conic K is \
Aac — b%) + A (ac’ + a'e - 200°) + ,w (b\’ b'%) - (2)
All the coefficients of this equatlon are invariants in both
systems : we have alrcady seen that phis is true of the ﬁrstt and
last coefficients; and the 1]1‘tf_,1‘1;[1éﬂl:ltb coefficient which is the
harmonic invariant of the b{}ia,ry system is an invariant in the
ternary system also, its vzmmhmg expressing the condition that
the lines L, M should hé donjugate with regard to the conic K.
Thig" “5\111%15“]] %e}ﬁmﬁe& the tangents which can be drawn
through the pomt\pf ‘intersection of L and M to the conic K.
When this po,mi\ is on the conic, the tangents coincide, and
the discrimindnf of the quadratic vanishes. Whence we obtain
geometrigally the following form for the resultant of two quad-
raticg &/
DT R=d(ae - 1) (a0 - %) ~ (ad’ + oo — 2HD);
%Y if L, M, and K have a common point, the original quadratics

‘f Q! must have a common root, and the condition is in each case the

same.

Again, the pairs of points or lines given by the equation
AL + M =0 form a system in involution (cf. Art. 190}, the
double points or lines being determined by the equation (2);
and in the ternary system the corresponding pencil of lines
passing through a fixed point determines on a conic & system
of points in involution, the double points being the points of
contact of tangents drawn to the conic from the fixed point.
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Tf we consider next the three quadratics
@yt + 2bazy + oy, agE? 4 2bgy + ey og7? + 2byxy + o5’

it 3s seen that the determinant {a;b,c;) Is an invariant in both
systems, its vanishing being the condition in the binary system
that the gquadratics should determine an involution (Ex. 16, ~
p. 208), and in the ternary system that the three corresponding\\
lines should meet in a point. S,
As a final illustzation, we consider a system of three qu&dfatidé

connected in pairs by the harmonie relations ) \\.

G0y + A0y — 2B3by = 0, &o. | '\
Transforming the quadratics, we obtain threeNines L, M, N
which form a self-conjugate triangle with fefard to the conic K.
The theorem relating to three mutl}ﬂ‘idj?: harmonic quadraties,
viz, that their squates are conmected by an identical linear
relation (see Ex. 6, p. 136), is suggL*sa:féd by a well-known property
of conies; for K maﬁ’%&"é‘fﬁf«’g’gﬁﬁﬂﬂm-%ﬂrﬁs of L, M, N in the
form QA »

L M N

whencs, restoring.tjle original variables x, ¥, K vanishes identi-
cally, and L, Ilf{, N become the original quadratics, each divided
by a factor Gwhich may be seen to be the square root of its
discrimi\n@% (see (1), Ex. 6, p. 136 ; also Bx. 18, p. 209).

Z}Eé,\'l‘lm Quartic and its Covariants treated
Mge%’m'letrica.lly.—It will appear from the investigations in
\ }Hé succceding Articles that in applying the transformation
now under consideration to the quartie u = (a, b, ¢, 4, &) (z, ¥)*
the term 6ca?y? should be replaced by 2eXZ + ¢¥? so that the

quartic will be replaced by the two following conies :-—

U = aX?to¥2+ el +20YZ + 202X + 2bXY,
K =42X - Y?,

the form of U here selected being connected with £ by ah



"

) Y
4

220 Transformations.

invariant relation. The invariants.of ¥ and K are invariants
of the original binary form, for the discriminant of U + pK is

4p — Ip + J,
and hence the invariants of the ternary system are
A=d =0, 8~--1I A=J; ~

. . ) R\ Y
where I and J are the invariants of the quartic, the d;ac-ﬁ}mnant

of U .- pK being written as usual under the form ™)
O

A+ pO + %0 + %N\
Let the conics U7 and K intersect in the’;p\}lnﬁ 4, B, C D,
these points being determined by the equations
X Y ‘Z‘“
¢
when ¢ has the four values a,‘%\ y, 8, the roots of the binary
quartic ; and let the pomts of intersection of the common chords
BO, 4D (4 BD . y%j_ OD be E, F, G, respectively, where
EFG is thc triangle st’slfccon]ugate with regard to both conies.
Now, denoting by hﬁ) — 0 the equation of the line 4B, and
using a similay llfh‘ﬁtlon for the remaining chords, we have by
the theory of conies

U+ pK ﬁy} (@8), T+ pK = (ya) (BS), U+ pK — (aff) (3),

Where\el,‘ pg, ps are the roots of the equation 4p® — Ip + J = 0.
On restoring the original variables z,  in these equations,
anishes identically ; and we have u resolved into a pair of

quadratm factors in three different ways, depending on the

solution of the reducing cubic of the quartic. Whence it appears
that the resolution of a guartic into its pairs of quadratic factors,
and the determination of the pairs of lines which pass through
the four intersections of two conics, are identical problems, each
depending on the solution of the same cubic equation.

We now proceed to show that the sides of the common scll-
conjugate triangle of I/, K correspond to the quadratic factors
of the sextic covariant in the binary system. Since the side FG
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is the polar of B, the coordinates X', Y, Z' of E are found by
solving the equations (By) = 0, («0) = 0; we have, therefore,

X v 7
Baeh-d By @@ Fry-ard
and, substituting for X', Y, 7’ the values thus determined in

the polar of B, viz.,

Yy

X7 —
2

+X'Z=0, ¢\J
3

we express this equation in the form A\

.\\ 3
Bry-a—3)X—{(By-ad)Y+{Byla+?d) - B3 () Z=0.
On restoring the original variables @, ¥, this\i@seen to he one
of the quadratic factors of the sextic covamiant (Art. 183). 1t
is therefore proved that the points\\}vlie§é F@G meets K are
determined by the quadratic equatieny™
(B+y—u-8)d—2(By —ad) gk By (a+8) ~ad(B+v} =03

wyw.dbratlibray -
and consequently the sucwpg Ny on KY WHER correspond to the

roots of the sexfic GOV&l‘iﬂ-ﬁf are the points where this conie
meets the sides of Hre\common sclf-conjugate triangle of U
and K. K~ _
To determing the points on K which correspond to the roots
of the Hessigh,&e caleulate for the conies U and K the covariant
conic F (Sahuion’s Conic Sections, Art. 378); thus finding
 FENde - B%) X2 (b - )Y 4 (oo 0% 22+ (be - DYZ
N\ © (ae — 9bd + ¢?) ZX + (ad — bo) XY 5
. @ﬁd ‘on restoring the original variables, we have

) 2

/ H (o 9)t =~ 1f;

also, since the conic ¥ intersects 77 and K in the points of contact
of their common tangents, we see that the points on K corre-
sponding to the roots of the Hessian are the points so determined.
Conversely, transforming the Hessian U, Uy — Uyg? o the ternary
variables, it becomes

(aX + bY + cZ) (X +dY + eZ) — (bX + ¢Y +dZ)* = ~ 1 F
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which is the envelope of the polar X'U, + Y'u, + ZU, for all
points on K. This determination of F is duc to the invariant &'
of I/ and K vanishing.

215. We now give some general transformations from the
binary system to the ternary, which will be useful in comparing
the concomitants in both systems.

(1), Linear transformation of both systems. ~\\\

If the binary variables he linearly transformed, #he new
variables expressed in torms of the old being N 7

= Ar sy, ¥ =XNe+py, AN
the new ternary variables will be expressed intb}rnis of the old

as follows :— X0
X' = 22X + Y + p2Z, (N
Y = 20X + O + N B s 22,
Z' = XX+ Xp'Y w2
and, consequently, {
v dbshl it ary B gy — Vp)? (AZX - T9),
showing that the form oj”ﬁaeﬁxed conic is unaltered by the above
particular linear traxiormation of X, ¥, Z, which conversely
leads to the geﬂm;aé’b:e&r transformation of the primitive binary
variables. The\modulus of this ternary transformation is
(' — Xp)® (Ree Eix. 4, p. 89).
(2). Trahsformation of Partial Differential Coefficients.
It 3"*{0, %) becomes U by the substitution of Art. 212, we
£ 3
h?i,s\,..

™
N

du o7 2y
—+2y

:~\"" PRy ¢ Y’
\“and therefore

U 22U 22T 2T 20U U
a_:cf_gfxw(xm+YaXaY+ZaXaZ)"4Z(aZaX aYﬂ)
2 2 YA Y /4 2U
—437{(}(5—)2—%YD—Y~rZa—Z)—25-X—4ZH(U),
o 32

where I7 is used to denote the operation X T
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Hence, the degree of u being #, and therefore of U being &n,
we have

a2u D U

aE 2 (n—1} S &l 4ZIT (U}, and similatly

2% AT ,
sz(n_l)ﬁ;+2YH\U), .
hi ! 4

W =2(r-1) aZ_eum(U). O\

i

Tf the transformation be such that II(U) vanishes idqn‘piz‘oa‘lly,
we have, for the transformation of the second diﬁege@iéﬂ coef-

ficients, the following simple values :— R\

o 20 % U W U
O -1y ¥ _9m-1) = W2 (g — 1) e
da? (- 1) X7y = 1) BY’/{%_’ (n=1) 1Y/

From these values we find casily 3% D

N\
17,73 3\ 50 W W

= —_ e NN 1 Y S5+ 2 =)
2(1; ks Ty Dy) u \\’&%\’.dbtﬁl'&}%.;'g.inby N dZ

showing that the second e-ma-n-a,i:z]f"“(.;ht-. 174) in the binary system ts
transformed into the first ; Blgdr in the ternary system.

To return to the ‘i{;’ﬁeration of the connexion between the
binary and ternary, variables, and to show that the fundamental
propertics of the fluémt-ics correspond in the two systems :—

Suppose .Wé;\h'éud three equations in general gonnecting the
variables , ~ :

OX =gy ey, Y=dalmy) Z=hln9),
mwhfg’howe saw may be reduced to the form
\/ X-zt, Y=2ay, Z=y,

we may by elimination of xy obfain an equation in X, ¥, Z, and
we have another relation between X, ¥, Z from the fransformed
binary equation, the roots of which will plainly be represented
seometrically by the intersection of these two curves.

The analogy between the two systems of representation,
being points on a line and on a conic, will be apparent to a
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student of analytic geometry, so we give an example where the
analogy is apparent. We show how a double root of u leads to
a quintuple root of the sextic covariant (Ex. 2, p. 236), for two
of the sides of the polar triangle of U/ and K touch the comic at
the vertex of the triangle, and the pole of the third side i1 a
point on the tangent.

(3). Transformation of the Jacobian. XA

The Jacobian of any binary system w, v, is transformed\mto
the Jacobian of U, ¥V, K, where U, ¥ are the transformed walues
of #, v, the transformations being not necess&nly“ Such that

(T =0, IH(V)=0. TFor we have ':j\\
du ‘ AN

J (u, v) dz dy _ 1 t ar + by bxr + ey
W W (n —1) (' a'z+ by bz + oyl

Wy \\ )
n and »’ being the degrees of @ mld v, respectively, and @, b, ¢

being-psed mdemt@egsgpond differential coefficients ; whence

we have

,\’:’:a 30 20 U

A\ X ¥ 2Z

’x\\ a b o WX 2 b

'1\“' t ? ? BV BV ..D;V

it e Yo 1 L Bl > > G/
2, y -y @ 2K K K

2 X 3¥ 3Z

the\\Last determinant being obtained from the preceding by using
“t;h\e transformation in (2), adding the last row multiplied by
“\ Y 4IT (U) to the first, and the last row multiplied by 417 (¥} to
the seeond,

{4). The Hessinn and other concomitants.

For the transformation of the Hessian we have

2%y D% %\ 2
2 (n— 12H =———(—)
n? (n— 1) (u) vzt Dy 2 DY

W LU alN2) _
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which proves that one curve into which the Hessian may he
transformed is the locus of the poles with regard to U of fangents
to the fixed conic.

The line corresponding to the binary eoncomitant

(xy — o'y s XZ' - }YY + ZX,

which is the polar of X’, ¥', Z with regard to the fixed conic K. ¢

if the quadratics A N

2. Qbay - ey?, aad A 27wy - €yt ' "

become, when transformed, the lines L, M, the Jaﬁ‘gai)ian
J (L, M, K) determines the polar line of their mtursec‘bl n with
regard to the fixed conic K. '

When [T (U) = 0, II (V) = 0, the carve GOKeSpﬂﬂd_lnD' to the
eovariant {1, 2} u,v, is plainly

W ¥ 2V ia\a a_[
@ 0% | 0z 2 Loy oy
which equated to zero 15 THe EhRY ’t!fra‘ YiHE4le polar lines of a
point with regard to U7 and W should be conjugate with regard
to the fixed conic. This do¥ariant may be written under the
form T (UV), as IT (T30 and IT (V) = 0.

216. When thetran usformation of Art. 212 is applied to a
quantic f{(z, y) of even degree 2m, it is plain that the roots of
this guantic wilhBe determined geometrically by the points of
intersection. of\a curve of the m?* degree with the fixed conic K.
If the dagxee of the quantic is odd, it must, as already stated,
be squ&%d before the transformation is effected ; and the roots
B&QH"\bhen be determined geometrically by the poinfs of contact

\qi the corresponding curve with the conic.

In transforming the quantic « (z, y) we may obtain, as we
$aW, & number of ternary forms by varying the mode of trans-
formation ; also, if U be one of these forms, U + ¢, oK (in
which the coefficients of ¢,_, are arbitrary now) would be a
transformation of u (x, %), since this form would, on restoring
the criginal variables, return to the quantic « (%, y). Moreover,

VOL. il. Q
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V, W, &c., combined with K = 47X — 7% Wedenote

corresponding sets of variables by 21, 25, and X2, X3 Xg and

variant differential operators

] D;e .D;,

&, s
w g | Pl Pmd | DA
Dy, Dy

(1) (e B, )UYWy

i

| dydg,  dids,

"8y — Dng—1)(ms—

1 XNV

= D) (g md) O -
where #,, %y, 1y ar€ the degfg’es‘ of , ,

(2) (G‘: ﬁ:‘ V) U"-V K{
R\

T L)tz = 1)

P,
::\sv
N W

N

w@e A, — 2yds + 2yl

\” V' (3) Similarly, we can easily see that

. &

{a} ﬁ: y)UﬂK.BKT i

As the operators on the right
(3) are invariant operators, 1t

\
al'e
N
3

8
(7 —1)

|, A 03t
‘ ady, Sd ol

dody, iy,

ards,  didh,

4:315651 - 45{3?;,
1

corresponding differential symbols by d, d; and D, D3 D We
also denote u (22, a%) by %, U (X5 X, X2y by Ue,

and the in-

Dy &
g | by (B
| O

deds &

‘H-a"b‘}gw.}.

15 (@, B)e, 7B, Yt

w, respectively.

dzds
dgdi | s
4oz

1 A ArgloBuets

T (g — 1)

(8~ P38yl

_hand side of the equations (1), (2),
follows that the product of any

number of symbols of the form {a, B, v) transiorms into the

product of invariant

operators in the binary system,

and so all

concomitants of the ternary system are concomitants of the

binary.
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thut

Ul concomit

i : 1tants of

are also concomitumnt« of the ternary, we gh
- s ow

of variables are all tiide the sanie, the produc o after the Sets
operators of the form {a23) 1=

equal to th ¢ of any number of
rqual to ¢
of the form (a8y) w © Product of operators

the bina]:y system

}lt‘rc bl i;:, LSS0

ciated wi Bl
& numerical factor, with K, mult?qihed by
BY @) (o B )0 5. UL, V, VK 2, A
1 ' 4

1 N
e g(af )(E_—l)—(n——z_l)ﬁﬁiqﬂga’(yS)uau\mﬁy&_
The operators on ithe richt may be taken i'r}‘ta’ﬁyh’order as there
is no differentiation with regard to the vargiables with affix e or Z.
Taking then A us there is no subsequiehl differentiation with
regard to the variables with affix 3 oi\g, and as finally all sets
of wvariables are to be¢ made the \sia,\h:ie, in A, § may bf} l.nade
equal to 3 and therefore A may bexeplaced by n, ~ 1. .S.:)Jiﬂllal‘ly
treating L\gy, A DL we get t-l.l"Q:E Hdfter the sets of variables are
finally made the Sn.Incwww.dbl:aulib’ral'y.org_in

IOy e

- ”. T _ S UtV
(2. B ©) (- . ) ULV oV oK B = (aB) 9) watytns
: GulNissumed that e is not equal to y,
In the above we hoyg s > ual to v, nor
1 } lesired result we never take
g to 8, and to obtain (i desire 5
then, we talke a W

(afie) (adl) U. qu‘l\'i?,h',[\ < _1__.__ A;ﬂﬁﬁ(aa)u.,va
N4 Aadealay) G T Ty (e — 1)

N
Ny =) (e 1) 3) watp¥s-
(gu, 1 5 AuaBialdepligs - (aB) (@ ) o
— =\ T ey 1 Mg 77 - —_ E an n
" - 3y (e, ) ( ch repla-ced by 7z 1 S and
Y mayv be Lﬂ-l ¢ may be replaced b(Y 3)
ledd € and {rey — 2) Pa 7
be replaczcrlldbsﬂl se;as of variables

@ib’éfore, A D
sy it s e Xl
A Dea after et
so the product _L,,_ o
- , g Tations 28F 1 o

o afu: thenwl tle riy_{l;t—hand side
de the sa . ‘ -
. ny 2 (af) (@B) Ua¥s"s

- 1
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Tt is now clearly seen that the final result of any number of
operators of the form (off) gives the same result to a numerical
factor as the product of the corresponding operators of form
(«fe€), where ¢ is associated with K. and no two values of ¢ are
equal, Hence all concomitants of the binary system are also
concomitants of the ternary.

217. Combined System of n Quartic and Quaqi'h}ic.
—Transforming this binary system, we have a ternagy.system
composed of two conics and a line ; and for simplicity ‘we shall
suppose the conies referred to their commo “gelf-conjugate
triangle. Denoting, respectively, ternary fc {49 of the quartic
and quadratic by U and L, and remembbering that we trans-
form so that I7 (I7) = 0, or so that)the result of putting
differential symbols in the tangefitid]l equation of K and
operating on U vanishes identi;’:ﬁ‘ll}\’r, or so that the coefficient
of p in the discriminant of,;'L?.‘if— pK vanishes identically, we

havewww.dbraulibrar y.or g..tﬁ' v

U= aX?+ bY2% cZ2, @-+b+c=0,
K=X2+K2+ZQ, be + eca + ab = I,,
L = aX®BY + 2, abe = I,

To obtain the lihear covariants of this system, since a, B, y are
the coor@iy.’é.tés of the pole of L with regard to K, the polar of
this point)with regard to U is aaX + BRY -+ oyZ = M, the first
covafignt ; and treating M in the same way, 4a, bp, oy being the

'§dﬁnates of its pole with regard to K, the polar of this point

’“\C With regard to U is a%aX + b2BY + *yZ = N, which is a second
) covariant (see p. 223). We cannot derive any more independent

linear covariants in this way, for the next one so derived is

a%0X - b2BY & yZ = a (be — I,) X + blca - LY pY
+e {ab — I5) yZ,

which can therefore be expressed in terms of L and M in the
form I,L — I,M. But three more linear covariants L', M', N’
may be obtained by taking the peles of L, M, N with regard
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to K, and joining them two and two. This system may be
expressed by the Jacobians

J(M,N,K), J(N, LK), J(&ME).

We have therefore obtained six Hnear covariants, viz., L M, N,
and I/, M’, N’ ; to which all others may be reduced, for example,

. o &\
T, = "X + b8Y + w7 AN

= an2 (be — I) aX - b0 2 (ca — Ip) BY + v (ab - I%)gjz'::

= IBT‘R—-S — IzTn_z 3 ‘:‘
also AN

- 2 . 72T, 2 . \} ’
B22aX + 2By + atbtyZ = I,2L +~ LM To\i'@, )

sInCe NN

be—at+ I, ca=b 11, ab=eArl,

Similarly, brctaX + cta"BY - a*byZ ms‘ﬂff{}:e reduced to the
form AL+ BM + CN; and otherg weductions which present
themselves impose mo difficulty. o«

These six linear cowﬁmtg;g{ﬁéﬂ;;g,migmged give six quad-
ratic covariants in the binarjisystem.

There are six invariaghs, but only three are special invari-
ants of thiz sysfem, x\% obtain them, let the condition that
AL + pM - N shotld touch K be

DAz .\Dgpé + Dp” + %Dy + 2Dph + 2D\ = 0
whence wq\zaﬁta.in five invariants, Dy Dy, Dy Dy, Dy, where

D, Ex{‘g.\ll pn@2 + ™2, three of which only are independent,
for &

D= a2 (o — Tyo? + b2 (on — L) B+ o2 (ab = 1) o
\} = IS‘D'R—S - I2D-n—2 s
whenece

Dy = 1,Dy — IyDy, Dy = I,Dy - LD,

and thug we obtain no more than the five invariants I,, Iy, Dy,
D, D, the two last being special invariants. D, vanighes when
T and M are conjugate with regard to K, and D, when L and N
are conjugate with regard to K.
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quadratic L,, = I, (u); for, by treating these as a combined
system, in the manner of Art. 217, we may obtain all the forms
of the binary sextic as far as the fourth degree.

Transforming the sextic u = (ay, 61, @3, ty, &, 5, ) (& ¥
we have the ternary cubic U, such that II{U) = 0,
U=a,X%+a,Y% + agZ? + 63, XYZ

+ 3{a, X?Y + 0, X°Z + 0, Y2 X + 0, Y?Z + a, 22X +EIETZ;}7}

Now, forming the discriminant of A\
O

! ’ ’ &:’A
(X x Y aY *Z ) v _;@ ‘
or of (Uss, Uz, Usgy Ung, Uy, Ua) ‘Xxi,&{}s 7'y - MK

we have 4 - IU)A + J (W),
where I (U) = UpUs — 4U0‘§23 + 3T

J(U)=, 21 U22 Uss ‘

www . dbhraulibrary.oxgin

",“ ) Uy Up Usm |
hqundmgl’(U{xﬁtheform (1, tog, Ty, Gags Gayy Gz} (X, ¥ Z)
we find ¢ .\
@y = Qlty L}alaz,, + 3457, 205y = G0g — Ditahy + 250y,
g =,a'ia';§ = dayay + a5t 2y = org — daymg -+ 1oy, — da®
aaié\d;}zﬁ — daagg | 30, 2ay = Gols — Sl + g ;

a&;w}{'
~\ Do+ agy + a2, Gy® + Gl  gF G% o+ gl T a2 1-.1
4 n\’ >3
\\ VT (U= am + agy + a2, QB + gy o+ 042, 6T b G T @2 |-
) ;

Qo + QY + @y%, OoF + Qg + G5z, HT + G5Y + B2 |
Operating with 77 on I (U), we get
I, — ag — bagays + LBage, — 1057,
viz., the quadratic invariant of the sextic ; and therefore

D) + MLK) = 0.
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Again, if we form the diseriminant of
I(Uy 4 LK — MK,
we have 4A% — T A+ I,

where I, and I, the invariants of [,, are invariants of the fourth. Q
and sixth orders of the sextic, the gemeral form of all sngh
invariants being

& W3
U

= mle, WA+ ml? 4 nls

o

The invariants which Salmon (Higher Algebr, @&BQ) selects
as fundamental are the invariants — § and 7' of\phe cubic curve
U (Higher Plane Curves, Arts. 220, 2215 Srdpid).

The condition that the cubic andegwic should touch is
expressed by the vanishing of an inva;iiiﬁ‘ﬁ 1,,, and this invariant
is the discriminant of the sextic. ~3%°

The condition that whmﬂvm%iﬁmMIy_dp%_ﬁhe six points of
intersection of IF and K showld meet in a point is expressed
by the vanishing of an in “Ariant 7,,; this is the skew invariant
of the sextic, and p ¥ be obtained as the invariant Ry.s of
Arf. 217 for the combined system

Ny + LK, K, I (D)

The cpvi;i;z;nt I, may also be obtained from the curve
u.u, ;&2‘2‘, which transtorms into H,; for, reducing by the
relg{,ﬁjﬁ Uy, = Uy, we find _
OO, - U2) = Unlly ~ AUl + 30 = 1 (D)

The covariant Ly may also be obtained by substituting
D,, ~ 2Dy, Dy for X, Y, Zin I (U), and operating on U.

210. Geometrieal Representation of the Jacobian.
—Tn this Article we propose to find a curve which infersects the
fixed conie K in points which represent the roots of the Jacobian
of two quantics ¢ and ¢ of the n'* degree.
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Resolving % into partial fractions, and then differentiating,

we have

r=ﬂﬂ{’ {ar) 1

I 9

Now, passing to the ternary variables, J (¢, ) transformed

beeomes A\
r=H 1 A
Jen (T T. . .. TyS Bl (O
( 1+z+8 )Zlqs (ar)ir i:} ~»
where T,=X-aY+a?Z and$(a)-0 N

The curve J plainly passes through all & ¢ dttersections of
the tangents to K at the points ¢ = 0. Morbover, interchanging
é and i, this curve passes through all tHe"intersections of the
tangents to K at the points  ~ 0, Jeonly changing its sign by
this interchange. This curve, tbgi'(;fore, passing through the
n (n — 1) vertices of the two cirgﬁ’fﬂsaribing polygons, intersects
the comiewdiinnd {rary bieiwts determined by J (3, $) = 0-

It is important to notige that the eguation of the curve J
does not alter thn.{gb + 1 is substituted for if, proving that
there are an infinipe,number of polygens circumscribing K and
inscribed in .f, ﬂ?e\'j:aoints of contact of their sides being deter-
mined by thelequation Ad -+ =0, where A may have any value ;
also the jegwve J of the n — 1% degree is completely fized by

9\ -
the%{vgm 1) Jacobian points and the ii%_(ﬂ_g_-'f) vertices of one

O\ _ B L9
‘pi'r.}umsc-ribing polygon, since it is determined by (1) £2) 1)2(n H2)
R

\'“; “arbitrary points.
) ExXAMPLES.

1. If = quartic » have a double factor, prove geometrically that this factor is
a double factor of H,, and show that two of the quadratic factors of @, have
renl roots when the roots of w arc all real or all imaginary, also that only one
factor has real racts when two roots of % aro real and two imaginary.

2, I a quartic have & square factor, prove geometrically that this factor is
a quintuple factor of the covariant @, ; and construct the paint on the conic K
which corresponds to the remaining root of the equation Gz = 0.
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3. Prove that the quadratie factors of the sextic covarient of the quartie
é (x) expressed in terms of the roots may be written in the form

(@—a) | @&— o
¢ {2y) + &’ {az) » o
Let P=X— ¥ + afZ;
we have then
P, . P, Ty, Ti _g by Buler .
St e T i T e = R theorem)s | N
(Ex, 4, p. 173, Vol 1} A\
but the sides of the self-conjugate trisngle oorresponding to the points ap, E‘éa.“'sg
ay on K are the diagonals of the quadrilateral formed by the tangenty Ty T
Ty, Ts, and the equation of one of the sides is therefore \ >

T T g o g b g P\
oy e ¢ (o) | s L\

Beturning now to the binary system of variables, weBawo'the required form.
4. Besolve the quartic as in Art. 186 by finding ;bhq\téngents to the conic K

where T meets it, U and K having been expressgdiassums of squared.

5. Determine the econdition that Au -+ m{\'ehbﬁld have two square factors,
where % and v are binary guartics. N\
Transforming to ternary wﬂ%}&-ﬁf‘?&ﬁ%}? in ,thxi'ﬂ caie
NU 4 ¥ £ K eed ¢ B
consequently, every term in t-he,tahtgu;ltial form of MU -+ pV + »K must vanish,
giving six equations to e].in;ix@bc N2, i, % prs PA A hence the required ¢on-
dition is determined. L)

¢\
6. 1f », v, and waIa\three binary gquartics, prove that four quartics can be
found such that . ()
:‘:\..Z}m 4 g 4 v = (a2 + 28xy + yyi
Passing tojgh;a\t:émary variables, we have to prove that four lines can be found

such t‘:}h{*“;
..\\ AU A+ pV AW+ pK =X + BY 4 yZP.
‘”{r"f'hesa lines are the common tangents to two known conics (see Salmon’s
m\O‘gﬂics, Ex. 3, Art. 373).

\/} 7. Apply the geometrical transformation of Art. 212 to prove that the
Tschirnhausen transformation, 2 == {ax® + 2Px + y) o't + 28y + v}, trans-
forms a guadric into onc having the samoe ahsolute invariant as » quartic whosze
TOOLE 810 K, Pyr Pr P OF in fact to prove the theorem of Art. 198.

Make the numerater and depominator in the expreasion for z homogeneous
in #, y: replace z by —2, snd transform : the Tachirnhausen transformation
becomes

L4+ AL =10,

where L= aX + BY +y2, L=aX+ Y +vZ
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1t X, ¥, Z be climinated from the equations L + ALY =G, U=0,E =1,
we shall have the transformed quartic in A, which, eonsidered geomstrically,
determines the lines drawn from the point of intersection P of L and I/ to the
points of intersection 4, B, €, D of U and K. Again, if x be so determined
that the conic U7 - «K pass through the point I, the anharmonic ratio of the
lines PA, P 8, P, I} is equal to the anharmenic ratio of the lines 7.0, D4, DE,
530, where TD is the tangent to I7 & »& at IF; that is, of the lines

Pty Lo pot, E4 pits t4 pib,

where ¢ and (" are the fangents to ¥ and K at D.  As the anharmonk\\atm is
the same, the absohite invariant is the same for both quartlcs, s*lz. the given
quartic and the quartic whose roots are «, p;. po pa- :m “

8. Transform a quartic into one having three roots in Sotnmon with its
redueing cubic, ' «

This transformaiion is suggested by the last examl}c und may be efiected
by putting I = ¢, I’ = #', where &, " are the t&ngeﬁé‘to {7 and K at the point
of intersection J} corresponding to 8,  As & P\YY, § — put’, £+ pot’ are the
lines joining the point corresponding to 3 to,the points eorresponding to a, § v
respectively, transforming to the binary sysitem, we take

¢ t b:r + ¥ 3,5,?) Uz I (Bab + aay) Ve
il

by

= — = ........_.*.a__ ==
F=n s 97 5 (- opF

w“{h.r dBirait H—bﬁbﬁ’y}-oﬂigﬂ ﬂ.xe,.r (bag 4 208 4 ) - yE (08 + 206 1 &}

2° N {x — dy)

which iz satisfied by ;puftﬁng gl =py ov py or py and fy=aor for y, e

spoetively. Dlwdmg\both numerator and denominator by & — Sy, we take

®=x- 0y and &

f_—§w¥+ék+qx—,@ﬁT2m+an2w&+%ak)k
=— el (S —a} (5~ B .o+ halad - BB~}

where thgksu‘mmatlon is with respect to a, 8, ¥

This fransforms U, to kg {48 — I8g* + u°), where

's

3

:"‘1:"1;'-3: =— (5 — alf{d— BE(3—y) (See Ex, 32, page 213)
. {%Q‘] Let three points a, b, ¢ be taken on the couie K given by the equations
pr=d4% py=2 pr=1,
..\3:\ the values of ¢ at these points being a, §, 3, the roots of a cubic U ; prove the
\ 4 following constructions for determining the points on the eonic corresponding to

the roots of the cubic covariant @ and the Hessian Hg:—

1°, Let tangents be drawn te the conic X at the poinis g, b, ¢, forming a
triangle 4 BC; the lnes Ag, 85, Oc meet the coniv at points e, 5, ¢, correspond-
ing to the roots of &,

2°. Tf tangents are drawn to K ab o, ', ¢/, forming a trizngle A* 80"
the four triangles abe, a’b’c’, ABL, A'BC* are homologons, and their axis of
homology mesets the conic X at the points corresponding to the roota of Hy,
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3°, From the foregoing constructions, prove that Uy and @y have the same
Heasian H, and that the roots of [, are imaginary when the roots of U/, are real.
— Dublin Exam. Papers, Bishop Luw's Prize, 1870, “

Let the tangents ot the points a, 8 y on the fixed eonic K be T T Ty
wo have then

pTe=(d— ol pTp=(d— 8P ply—=1$— y¥i
whence, climinating $, the equation of K is

_ o . O\
(B— VTt iy — @ VTg+ {a— B VD=0 \
Now the equations of the lines 4, BA, C'c are ) ¢ C
(v — af Py — (a— pP Ty =0, &0, &a., O

N/

and the points where 4 meets the conic K ate given by the egu £lon
r— i (b= B = (e ARG = 2P (O

Solving ¢ = u and (B + vy — 2a) ¢ — 2By — ye S84
the sacond value of ¢ being the root of G eorrespondiu{é harmonically fo a.

Again, the polar of the point of intersection of (}a.’,' BB, Cc is the axis of
homology in 2°, and its eguation is NS -

{B= yFTet (v — of Tsﬂa‘—’ BPT, =0,

which lino meets K at the points determided by the equation

(8 — v (6 — aF lpw-dbiR Gl Ry bp i) (6 — 7' =0

and this is the equation of the Hodsian of 7.

10. Resolve the skew i \'rbr\mut of the quadratic and euble into three
factors, in terms of the roofs)and give its geometrical interpretation.
The skew invariantis\expressed in the form
C V(U g (Art. 19L.)
Now combiningthéfactors of ¥, and G which eorrespond harmonically, Ualiz
cen be expresfudvas the produet of three quadratics I, m, n, where
N S/
WSty — 2a)at — 2 (By — a¥) wy + o (2By — ya — oB) Y
witll.ahn\ﬂar values for m and n.
Now we can prove Vp? (fmn) = E¥pl. Vom. ¥ pn, whore & is a numerical
o fltiplier.
,/  This is more easily seen by employing the ternary system of variables;
in that ease, if

Fpo=a? — (p + vh oy -+ poys
6V . considerod as an operator on LMN transforms to
wrby + (g + 0Dy + Dz = Y,
because, as wo shall sce, ITILMN =1, and hence
Y (LMN) = 6YL.YH . YN,
L being I transformed, &c. .
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Now,
at 2a 1
r{L)= wy pt+v 10,
By By 11
which vanishes when o determines a focus of the involution of the peints p, v
and 8, y; or again when ¥, and ! determino four harmonie points on a line;
ob again when one of the lines Aa, Bb, Cc, in question 9, and the line corregpend-
ing to F,, are conjugate with regard to the fixed conic K; the skew invawant
also vanishing in these cases. 2\
<\
That IE{LMN) =0 Y
is now eagily seen by transforming as in question  to the y{(ﬁﬁleﬂ
$
X' = (B— yPTa= (B~ yF(X — «E R0}, be,

then L fransforms to (¥’ — 2’} f (B — y), and II to

X'\ e
¥ S | 2 .
(B— ¥V {y — af (o — BF (W\P SZex T 3XOT Y’) H
W%
whenee IE(LMN} = 0. Q

11. Tweo triads of points are t.a,k«t}rf;ﬂh the conic & determined by the roots of
two cubidy W-dhl‘iﬂiiﬁmismgimféfomed by the tangents to X at these points,
prove that tho conie circumat&ﬂ'}ing these two triangles touches the conie K
when the combinant @ of the two cubics vanishos, and that their combinant £

vanishes when the circumhc‘}ibing conic meets the conic X in four equisnharmonic
£
points. ¢ '\\..3
12, Determi'rw‘the condition that any two quedratic factors, viz.,

AN @—ae— By =)
of & quaft{i}; should form with o given quadratic As® + Zpzy + vy° a system in

invgl\ioh.
& Transforming, the three corresponding lines must meet in & point, which
point is one of the vertices of the common pelf-conjugate trisngle of the conics
. “\Lf and K. The tangential equation of these points is J (&, Zr, &) = 0, which
\ Y "is thersfore the Tequired econdition, the tangential form of pU 4 K being
pPE + p® + Z (Art. 217).
This condition may also be put under the form

¥, ¥, FVe oo
(Aayg QPDsz_I vbf) ==

as we proceed to show.

D g, B L
I "1‘-—/\.aT"2 2’“2}@33]4 v
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and @ = kmn when resolved into its quadratic factors, we have
Y3, = BYL. Ym . Ya,
for transforming o tho ternary variables,

2 D hj
r—6(ad -2 + o5y
when applied to a function ¢ (X, ¥, Z} such that Iié =0. Xow {, m, n become
three lines, L, M, N, which form a sclf-conjugatc triangle with reference to K, ~
and TILHMV = © in the case of any three lines which are muinally conjugate ;\\
whence s : N\’
Y3, N reduces to 6Y L. YH . YN, i"‘;
and YT = 0 is the condition that the lines AX 4+ p¥ + »Z and {&‘gh()‘fl’ld be
conjugate with respect to K, or that AX + pY + +Z should pa,xsﬁﬂgrfmgh the
pole of L, or the condition that two quadratie factors of ufk@ﬂ form with
Me® 4 2uxy + vy® 8 aystem in involution. QS
13. Prove that the gquartics W) .
v = (ay0? + 2By + i) (nar® + 2855y + vab®) — o+ 28y + vy (1)
# = (a2F 4 2oy - agy®) (0® T 2yery + Ys?@l\%‘ﬁlmz + 202y + Ba¥F (2)
have the samc invariangs. Y
Transforming (2) to the ternary ayst.s,:m',‘;g-'e“hu,ve the conic
(0 X 4 ¥ + 0 7) (1, X + vJWmd@%ufﬁbéfgkﬁ{,;g;jp;zr + x(4ZX— ¥,
where 3x = I, — 7,5 has been fOup:&’f,c'; that WE = 0, and « is the same for
U and V. ~ .
For shortness, we write '\
Lz aX + oY -+ apf, A :\E”:BIX + 8Y + 5% Ne=pX+pnl+ vele (3)
Forming the discaimihant of
U 4 M82X — 7% = LY — M2 + (c + N (42X — T,
(W — 2MB - Dy 4R+ E=0

xo

\p¢~ Nag— 2MBy+ Lyy— 2(A+ 1) Y = 0 o)
O Nog— 2MBy+ Iy +4(A+ ) X =90
and ei:}:’nmating X, Y, Z; or eliminating the six quantities XY,z LM, N

\pieans of the thres additional equations (3), and putting A+ = A, the
\I‘géultant is obtained in the form

| ay B " 0 0 + 4V
‘ ag Ea Vo 0 - 2% 0
] Ea 1] +4N 0
= A (V).
| ] 0 -1 ay [ ay
I o +4% 0 B B B
[—1 0 0 i Ve Y
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If we had operated similarly on the quartic {1}, we should have obtained the
game resaltant A (A), the form the determinant takes In this case heing obtained
by dividing the first three rows of A {X) by —4X', multiplying the first thres
columns by —4d’, moving the last three columns to the front, and theti the
Inst three rows to the top.  Whenee it follows that the invariants are the same
in both cases.

To expand A (A7) we replace L, M, ¥ by their values in equations (4), {nd

then elminats X, ¥, Z, thus obtaining \\
l In Ly Fat £ ,?‘~
' &« W3
I I, Iy , where 215y = op¥e + a,ﬁe% Y 2B, P06
‘ Tt 2X Iy Iy ' 'N:’“.
.\\

This determinant becomes, when expanded, '\\
NS Iy T Iu |

40 g (Jrzs"}15)Xs"{-rnlas_lgm‘]“i(ILaIzz_;\}{‘!}s}}“"'}" JTln 122 Lza |
.'.{‘ 115 I-zs Ias |

W\

Note when A + « is substituted f&)\l\‘:‘\‘, ‘this equation has no gecond term,
and every coeflicient must he the smé’fcr both quartics, as may he verified
directly. (See Zeuthen’s solut;ifjn;.’j’mceedings of the London M athematicnd
Soctefg, XMy Byrabi i]bgl?é}‘y .on é@ﬁ

14. Determine the condittn that three quadratics in terms of theirinvariants
should by linear trausf{m tion be simultanecusly reducible to the forms

£

¢.&\J B i i

B S Yo
p ) Ans. Ty — 4lule + L + 2lula = 0.
o 2,y = apyg + ogvp — ol
15.;}‘;;)1:0 {hat the condition in Ex, 14 is the same for the following two sefs
of‘(iuaﬁratics — )
‘.\ a2+ 2y + i, o+ 2By + Yoty T+ 2Byxy T Vel
o N and
\M\‘ u i + Bayy + gyt BF 28,7y + Bt yr 4 Zygry - vl
/ The condition in Ex. 14 can be put under tho form

(122 - 113)2 + IJ.lIBE - Ilsz + 4 (113122 - IIQISS)’

which is at onee expressible by the coethcients of A (X'} in Bx. 13,

The geometrical interpretation of thiz condition is that a friangle can be
sngeribed in the harmonie conic of ¥ and X and circamaeribed to K.

For, replacing L, M, ¥ in Ex. 13 by U, Us i, as supposed in Ex. 14,
where

U=lao0edeb) X Y. 2%,
U, 05— Uf= Iy Lo T T Lo 1,3) (X, ¥, Z¢
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becomes the harmenic conic F of T and K {Art. 214) ; also if the diseriminant
of AK + F or A (A) be writlen in the uznal form
AR+ Y 4+ 9+ A,

the condition in Ex. 14 may be written thus—

8t~ 4A8, ~ 0,

which is the well-known invariant condition that a triangle san be inscribed in\<\
one conie and eircumscribed to another.  {See Salmon's Conde Hertions, Art, 3’;5.)’
16. I 7 and V be the ternary forms of two biquadratics » and v, f\
their harmonic conis, prove that I (#) = © is the condition that » and ould
be two first emanents of a binary quintie, .<‘\3\
4
{
X%
O
»
\/
25\
»’\{/
O
)
™
www . dBraulibrary.org.in
\\
%
AY

R2
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CHAPTER XX.
THEORY OF SUBSTITUTIONS AND GROUFS.

QporioN [—SUBSTITUTIORS IK (GEXERAL. \{\

990. Pefinitions—Notation.—Tfz symbols 2, gy He ) -
x, be given, and if each symbol be replaced by some oni'eim} other
from the same sct, so that the result is a new AL angement of
the same n symbols, the operation of passing,,&i’)m the first to
the second arrangement is called 2 substitution. The symbols
iy, Tgs + -« Tn arE to be regarded as enfirely independent quan-
tities, and are referred to a8 the va-?"{@lcjs,{or the clements affected
by the substitution. QY

If the Eglgeriiiun be denote;l‘:hy's, a substitution § can be

W, 3 N

represented as 10

. fg%‘?ﬂ%‘"ﬂf.lk ’
TR Y

Ty iy Ty T
S =\ .
Lo O g Ty - T

where the twozhprizontal lines contain the same set of »n letters,
and the operétion consists in replacing any letter in the upper line
by that ,\ﬁbiéh stands under it in the lower line. The operation
mayHesipposed to be applied to a function ¢ (Tg, T - - - Eig)
of~,‘bi;1\e variableg, in which case the resulting function 8¢ will be

,.@Eﬁained by replacing #; by Za wherever it occurs in ¢, %z by s

;"ﬁnd so on. In the case of any Jetter which is not displaced by

the substitution tnder consideration, the two symbols in the
game vertical line will be identical. Since the suffixes of z admit
of only 1.2.3,...7= N permutations, this is the total
possible number of distinct substitutions. In this number is
included that arrangement in which the order of the suffixes is
the same in both horizontal lines, viz., that in which no letter
is displaced by the operation. Such & gubstitution, which
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affects no element, is called the identical substitution, or the
substitution unity, and. may be denoted by 8§ = L.

It will usually be found convenient in practice to denofe
the symbols operated on by single letters @, &, ¢, . . ., of by the
numbers 1, 2, 3, . . . simply, the symbol © being omitted.

991. Cireular Substilutions.—The notation above ex: N

plained admits of simplification, Consider, for example, the
substitution N\

P

abodef PAY Y
8= : o
bedefa L&

in which each symbol is replaced by that which {plows it in the
first line, the last letter f being replaced pythe first. Such is
called a circular substitution, and is denqj:e@ #imply by the letters
of the first line enclosed in a bracket, t;l}u‘s'r—

S = (abedef).

It is clear that S c&wbe@@ﬁtlénrdu‘ymﬁgeml different ways,
and that any of the letters Involved may stand first, provided
the cyelical order be pregetved : thus

8 = (bedefa) = {rﬂ@fab) = (defabe) = (efabed) = ( fabede).

Now it is casy o see that every substitution can be resolved
into one or ma-xe’gxci;ou-lm substitutions. For, in effecting any sub-
stitution § F Y letter ¢ in the upper line be found replaced by b,
and & iﬁ\i‘ssfiurn by ¢, and so on, in continuing thiz process, we
comghetessarily to a letter (A, say) which is found replaced by

) a-,"\‘f]?fle result of the operation so far is the circular substitution
{abe . . . k). Tf the letters be not all exhausted by this process,
we select a lobter from those which remain, and form in gimilar
manner » new cireular substitution ; and so on, as long as any
new symbols remain,

¥t we denote by €y, Oy . . . €y the diiferent substitutions
obtained in this way, we may write

8=000,...0,
and S may be said to be resolved into its circular factors. These
factors ate called the oycles of S. Cycles which contain two
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letters only are called franspositions. As an example, we take
the substitution

(1 2 3 45 67 8)
S = .
8 61 275 43
Sterting with the symbeol 1 in the upper line we obtain
immediately the cycle (183), and proceeding in a similar manper
with ¢ we obtain the cycle (26574) ; hence A N
8 = (183) (26574). i..‘f D

Tt is clear that the order in which the operations ate conducted is
indifferent, since no cycle affects any of the elgarxk‘eaiﬁs contained
in any other, and therefore the order in \vl}iéjh;the factors of 8
are written s indifferent. v

If all the clements are involved insghe’ first operation alone,
the substitution is itself circular, egy v

12 3 4 5 &7
S = R\% = (1374526).
www.dbra ﬁn’aﬁ'ry.arg{'ﬁnﬁ:ﬁ' 1 4

[f the position of anjtelerent is unaltered by a substitution,
this clement may be’\‘enclosed in brackets by itsclf when the
substitution is exfiessed as a product of cycles, or it may be

emitted a]toget‘h}r, e.g.,
2 3 4 5 6
s 2N© = (134) (26) (5) = (134) (26).
:'{\“' 364 15 2
Hm@:(f)') being the identical substitution = 1 may be replaced

kb}:x\lmity. Although an element constituting a cycle by itself
“esn be replaced by unity, it is often necessary to retain it 1n

order to show that this element was amongst those which were
subject to the operation.

A circular substitution S can be repeated any number of
times on the same elements, and the guccessive operations
denoted by &%, 83, &e. We have, for example,

abcdef abodef abcdef)
8 = , S = , 9% = )
bedefa cdefab defabeo
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Proceeding, we find S° = L. T, in general, p iz the lowest
integer sach that §° =1, the substitution S is said to be of the
order p; it is clear, therefore, that the order of a circular sub-
stitution is equal to the number of elements it displaces.

For two elements ¢, § we have (af) ~ (Ba), and (af)® = L.
For three clements o, §, v we have (aBy)® = {2vB) (@B)? = 1., ¢
. N
992, Produels and Powers of sabstitations,—I1 Fpa
or more substitutions S, S, . - < S5 be operated in snccession QR
a given set of elements, the result is A new arrangemen‘ggvﬁmh
might have been arrived at by one single subst-itutipjj\\ﬁ. » This
substitution may be calied the product of the {orrmzr}.et, and we

may write S = 8,8, -+ - S5 the cornponent lactQus Deing applied
in the order Sy, Sy - + - » ViZ, TROM LETL fJ;:b QIGHT. When o

substitution s resolved into 1ts complefient cyoles, as in the
preceding Arficle, we saw that the otder of the factors is in-
different, no element being comrg&)ﬁ’.:td any two of the cycles.
But, in general, in a ﬁ”f&%&f‘ﬁf@ﬁﬁ%ﬁﬁﬂfg}m where the same-
element way oceur i bwo ox Tibre of the factors Sy, S « -« - it
iz most important to obséi§e that the commutative law of alge-
braic nuﬂdaipl31(’..34131011'.diiésx not hold good, and that the order of
the factors must be'greserved. With three elements, for example,
the student willlcasily verify that the product (12) (13) is a2
Aifferent substitution from the product (18) (12). While the
commu’.’m{ﬁﬁg law of algebra fails, the associative law holds good,
viz., ;E;\\% T A S 8, changes any element o into
) b?&n‘ﬁ S, changes b into ¢, which again is changed into d by
\\mﬁ"zéns of 8, the substitution of d for ¢ is the final result whether
this be supposed effected by first changing o into ¢ (by means
of 8,8,), and then ¢ into d, or first changing @ into b, and then
b into d (by means of SyS;).

The result of operating the same substitution 8 any number
of times, p, in succession may be represented by S7; and we have
clearly the cquation SP8¢= 572 — S987.  The inverse of a given
substitution § is one which reverses the order of procedure in S,
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and is denoted by the symbol §71. Thus, it

4, €y fy . . by by by . b
gn(h % wx) f_1E(1 z B . by
g (bl by by . . DS 5 @y g @3 -« - av,)’

we have clearly S§8§1=838=1.

Since the total number of possible substitutions is limited,
some repetition of S must reproduce the original arrangemens
of the elements. If p is the lowest integer such that 8 - 1\\\
§ is said to be of the order p, and the series of substitutioud\is
limited as follows :— o\ 7
1,8, 8888 ... 8L, AN

The extension of this mode of expression to*;&gaﬁvc ex-
ponents may be obtained by writing S in(the form Skaz,
where p is the order of 8, and consequently S’"‘P’: 1. We have,
then, SpS—P — SpStwv - G - 1, and thesubstitutions 57 and
S~7 cancel one another. O

Any cireular substitution can_ bé;represented as a product of
transpositions, for it is clear t]iaﬁ"the operation (abedef) can be
conduted -Hhr E‘ﬁ‘f&@’iﬁ.’ﬁe&’&ﬁdﬁ@iﬁg s and b, then interchanging
@ and ¢, then ¢ and 4, a:nd'éﬁ on. We may write, therefore,

(abedef) = (ab) (ac) (ad) (ae) (af),
from which it app:e@r’s; that any cycle can be resolved into a
product of trauspositions, in pumber one less than the number
of elements‘@,ﬁ‘baiﬂed iu the cycle. The order of the factors
in any syolproduct is important, these factors not being com-
muta e amongst one another. It follows immediately that
ewg@\}ubstimﬁon can be eopressed as @ product of transposiions,

:R)'r:éach of its cycles ean be so expressed.

W If a substitation S affecting » elements contains k cycles, it
can be easily inferred that S can be expressed as a product of
# — k transpositions. It should be observed, however, that the
same substitution can be expressed in a great variety of ways
as a product ol transpositions. Tt will appear in the sequel
that, however varionsly expressed, the anmber of transpositions
in any given substitution prescrves the same pority ; that i to
say, if once even, it is always even ; if once odd, always odd.



Examples. 249

ExsmPLES.

1. Resolve into its eycles
g (a.l Hy My #y @5 Oy @ %2 Za fuw dyp By Gpp Ta1 Bas
o= .
dy By Ty Tga @ O Bz 1 P e dp fa T e %
Ans. 8 = (dy gy Mo Gy Ty B2 Pr P a) (2 g 28) {P1s Fua) G
The appearance of the factor (65) = 1 in the Tesult shows that this element * ®
was amongst those subjest to the operation. A

K
9. Express as a produet of transpositions i'\: “
1 2 3 45 867880 A\
&= \
*-'—'K3359240517)' O

in

Ans. 8 = (13) (16) (14} (19).{2@‘(’25) (70},

3. If a cireular substitution ' be multiplied by a trspﬁposition T, one of
whose elements is contained [n € and the other not, foh‘cl:}esulting substitution
OT is circular. \\“\,\

Taking ¢, as the common clement, we May (ﬁﬁé'

O = (a8 -+ - ag}}::‘f = (%)
www.dhriulibrary org.in
i

N

The efiect of € is to Teplace the arrangemient g, e - Gy a; by 4y, U - - -
@y thys Gy and of T to interchange 4 ai.t{d“a:,- in the latter. We bave then

o7 = (al fa \\h_‘ ﬂ"_; aj) = (o by « » - @il

1, gx"\',.‘ a;  f5 %y
4, Tf a cirenlar subititution ¢ be multiplied by & transposition T, hoth of
whose elements are anfgaﬁxed in (!, the resulting substitution T is the product
of two eycles havigp o common element.
W TN
e m&yit\a;i%\
,\\“"C = (o g - .- B lby o by, T'=im B
Pr&p'eeding as in the previous example, we readily find
P
& \d OF = (g 03 « -« @) (1 By v - byl
7 5. T nanbstitution 9 be multiplied by a transposition T, whose eloments are
contained one in ¢ach of two different eycles, G, ¢, of &, the produet COOT s
one unbroken cycle of all the clerents in ¢ and .
This follows at once from the last example by multiplying both sides of the
resulting equation into T, since = 1.

6. If any sunbsiitution 8 is the product of v transpositions, and U it he
multiplied by a trangposition 7', the product 87 will eonsisk either of » |- 1
or 7 — 1 transposifions.

/
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1f 9 affects n elements, and contains k eycles, we have, as stated above, 7 =
n— k. 1 #introduces two new elements, we have one additional transposition,
henco » 4+ 1 in all. There are three cases remaining ; aceording as (1) T' intro-
duces one new element only, or (2) two elements already contained in the same
eyele of 8, or {3) two already contained in different eycles of 8. These casesare
discussed in the three preceding examples ; and it is readily inferred that the
number of transpositions in ST ia always r + 1, except when both elements of
T ocour in the same cyele of 8, in which case = is unaltered, and & hocomes
k- 1; v therefore becomes o &

N
?L--"(k-l—l}-'r:-nuk—lz'?'—l. .

Tt appears from this example, that however S be expressed as & pfoﬁuj}b of
transpositions, the effect of multiplication by a single additional traripsition is
to change its purity, viz., from odd to oven, or even to odd. /G

7. The arder of a substitution S is equal to the least nor{ni \xnﬁltdple of the

orders of its cycles. v
Let §=0C00...Ch- 3
and g be any common multiple of the orders of Q,’Q’g,' v ... Bince
84 = O Cp L. O, and Gy Lopr=..0p=1
we have 8¢ = 1; and if p be the least vérlue of gy 8P =1; whenee p iz the
order of & A
Hence we infer that if the eycles (‘}1,:(3‘3, Cy + - . are of the same order, this

order’ i?é’Eﬂg‘ébﬁ?eul‘)'llﬁ'éi‘réf‘%‘.'g‘ki}ﬂellt:substitutions are called regular, the same
number of letters occurring i.n,,é?;&’.h cyele.

8. If a cirenlar substituﬁon 8 containa p letters, and if pis prime to @, then
S# s iteelf cironlar. N

9. If a circular sm;@it-ution 8 contains pg lefters, then 8P ig a regular sub-
stitution consistinfof b eyeles of g lefters each. Tf, for example,

§ 2(173456), §° = (135) (246), 89 = (14)(25) (36).

10. Evci'é yegular substitution is a power of a circular snbstitution.

Tal;a'bi}s in example 7, with the fuctors

NS bty o ) Oy = (bt - oo l) e O = 0 - Lk
i e.,j&g\h that the same number of letters are involved in each cyele. If now we
write down the circular substitution

N\
2\ C = (aytatty - - bbby - 0 85 o Lty . - Bk
\ / whose first j letters ate the initial lotters of the § aycles, the next set the second
letters of the guccessive eyeles, and 5o on, it is casily verificd that the g% power
of € breaks up into the produet of the § successive cyeles &, Ca o+ o ¢ C;; hemnce
8= i,
11. Exzpress the regular substitution
§=(l 3 5 12(2 7 6 11){¢ 8 10 9
as a power of a eircular substitution.
Ans. S=(12437856101211 933,
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12. Every transposition of the clements X, ¥y, Ly + - - Tp AN be expressed
by transpositions from the following series of » — 1, viz. :—-
(y@)s  (Tymsh (2% - - - {37 1 b (@l

For i can be easily verified that, if #a, Tp are any two elements,

(xd.srﬂ) = (x!,a"a) (rlmﬂ} (7315!’3“_}.
13. Every substitution which can be resolved into an even number of trana-
positions can be expressed by cirealar substitutions of the third order. ¢ &K
The given substitation is expressible by products either of the type {‘hﬂ)\
(ay)or (aB) (¥3) ; wehuve {aB){uy) = {sfy) and (af) (3} = [6By) {edy) sDIEN
(afy) (aby) = (afly} (yad) S
= {aB) (ay) (va) (+3) N
= (aff) (uy)* (48}, and (mf)g'x\l y
14. Show that any circular substitution of three of the e‘l’dl_;%nts Ey, Bgs -+
x, can be expressed by means of the » — 2 cirenlar substithions
{27 )s (oygig)s « « v - (a3 3% n-1}4 ;\b-’fxaxﬂ)-
Retaining for brevity the suffixes only, we progeédyto express {ufy) in terms of
(), (), and Ogey). O
(afy) = (af) (o7} o
_ {af) (TR sy (exg i 1,
= (af) {ahy) B8 ’
— (Aaf) ().
Now making uso of t-‘Jg'Lg\ilua.’r.i(m to bring a new clement g in a similar
manner into cach of thg (Qr\:}és on the tight-hand side, we have
(aBy) Fpda) {(uBX) {phy) (pol)
.\”;“(Apa}ﬁ (Mef) (Apy)® (Apea), the required expression.
The fo].lxcnéug mode of expression can also be easity veritied :—-
OF (e = Gna) (g Quf) Opee)
NN .
L0223, Similar substitutions.—Two substitutions which
“\etontain the same number of cycles, and the same number of
7 elements in corresponding cycles, are said to be simalar.
Two substitutions S, 7 are said to be conunutative when
ST =1T8S.
The operation represented by the substitution 78T is
called the transformation of S by T, and the resulting substitu-
tion the conjugate of S with respect to 7.

Any substitution is similar to 1ts congugate with respect 1 Ry
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other substitution. To prove this, let 8 be transformed by the

substitution
abe . . 1 .
e (e v L)
and let (abe . . . 1) be one of the cyoles of 8. The efiect of the

operation T—% is to replace &’ by @, which by the operation of
is replaced by b, which again by the operation T is replaced b3
». The substitation 77187 therefore replaces a’ by b’{,nbf by'e,
... I'by o ; and to the cycle (abe . . . 1) in S corresponds the
eycle (a'b'c’ . . . I') inits conjugate. O 3

The transformation of § by I' is completed\by replacing 1n
each cycle of § every letter by that which &taids under it in the
substitution 7. The resalting subst-itqtipﬁ'{s therefore similar $0
8. Reciprocally, it iz clear that, i‘&two”substitutions S, and S,
are gimilar, a substitution I' can béffdund which transforms one
into the other, o’

Thﬁﬂpmdﬁmﬂmb%l@mié‘}ﬁlﬁhich are in general different, are
always similar, since ST 28T (rs) 1.

The conjugate qf&hh\e product ST with respect to 2 third
substitation U is¢equal to the product of the conjugates of its
factors, for wahave U= (ST) U - U™S gu—ry.

If two §1{t§5ﬁitutiuns 8, T are commutative, their conjugates
with res;pécﬁ to 7 are commutative, for if ST = T'S, we have

O UsUUeTU - UBTUUST.
O

s\ Beorion IL—MULTIPLE-VALUED FuNoTIONS AND GROUFS.

8 3

N\ o/
) 2

Q

294 Definition of Group. symmetric Groap.—
According to the number of values a function of By, Tay « - - &a
assumes under the operation of the N possible substitutions,
i is said to be one-valoed, two-valued, . . . p-valued. A
syrmstric function of these elements, being unaltered by any
transposition (Art. 27), and therefore hy any product of traps-
positions, 18 a one-valued function, If a fmnction be not
symmetric, it has two or more values which may he derived
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rom the one supposed given by the process of substitution.
Consider, for esample, the w0 rational functions of three
elements—

@, = r.%, + T, T Ty, WA= (3~ ) (3 — Zg}{Te — Ty)-

Tach of these is two-valued. Of the six possible substitu-
tions, Viz., N\
1, (123), (132), (12, (13), (23), O

the first three leave @, unaltered, while by each of the lagh tﬁrt‘:e
it is changed into its second value 7,22, + Tg'¥y + 2y = Po-
In the same way +/A also i unaltered by the ﬁr:;st’ﬂixée, and 1is
changed by the last three into its second valuess VA. Asan

example in the case of four clements, considefZihie function
N

\ 3
= Txy + XTON
There are, in addition to ¢y, tWO ot-hé}j:‘w‘ahles: ViZ.,
www,d {:j'

o = Ty¥y T TPy MG ’L%?rél‘xigﬁg#m'ﬂ;z;
the function is therefore thpee-valued.
Tt can be easily vgri’ji\?:(;\t at ¢ is unaltered by the following
cight substitutions i— )
1, (12), (34), Q'gi(m), (13) (24, (14) (29), (1324), (14230,

and that anyfthe remaining sixteen will change ¢, into one oT
other of tEgi’two remaining values. The cubstitutions which
1eavc~a\'t§nction unchanged constitute a growp. it is clear that
any\’céfnbiuation by multiplication of two or more members of
a]‘,e"'éruup will itself be a substitution contained in the group.
\qe give therefore the formal definition of a group as follows —
A system of distunct cubstitutions is said to form ¢ group when
all powers and products of these substitutions form part of the same
giystenn.
The number of substitutions contained in a grovup ig called
the order of the group-
The number of clements operated on is the degree of the group.
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Tlhewronp which leaves a function d (2, @, . . . 2,) tnakere]
vl e gronp belonging to ¢, or, briefly, the grouy of ¢. .
The todal nomber of & Hllet-itUtiOl‘lS, of COUTEE, COmStifyte
verenp This s called the sipnmetric group, sinee all its members
leave sy svtnnieteie funetion unaltered,

Cne oty nay contain all the substitutions of another oy
acidirion Lo ethers peenlioe to dtgelf. In such a ease the iz}ghﬁ«\tl
gron)y iwoenlled s subgrowp of the former. "\::“‘: )

The svinmelrie group containg every other group.as a sub-
crepe Ay substitution whatever, with all it&\'\dﬁﬁn@t POTELS,
conaitate o urotp contained as a sub-group it the symmetric
sronp. Next o importance to the syththelric is the alfernate
reanp, which we will now define. W

PRI I

05 Alternante Group.—Leh 16 consider in the case of

. . 5\
o vhewents the rational hlnctk{m"

ey ) Ly =) (‘L{* EAN O B fry -l

* R —_ 7
ol — e o — 2y 0 - (i )
www. dbraulibrary.org.in i ) (2 o ’ v)
NN P/ ) SRR ¢
\ (25 — @) {25 -
L\
0
, 2\J (xn-l._ el
X\ : lemerds
consisting nf}m product of all the differences ?f the é.en 1-'11{'
The squide of JT is the well-known symmetnc {um{wnj elr‘i
) i 1 nometr-
Jdiseminant A and therefore H_’ has two \:dhlB:v e{lli(ivo-valuﬂl
m{?} with opposite signs, viz. 4/A and — VA 'bu;'l ' that an
Gadl . . FO .63.1' | clbl]
WPunetions are called alternainy fu-?i-ﬁ’-m'o'ns' ’(? 1:}1((; tr&n%PUﬂit'lUﬂ
AN . ) - g conslder the trabspts
SN {ransposition alters the sign of I7, for we, so that

#

: . it val
A\ . . dthout altering its va .
\/ (o wgh und rearrange 1. with the sign in fron® heing

F g

iy occupy the same position as @1, Tigy e e S eoepositin
Lot necessarily positive.  In the new torm'orﬂlE 1o,
(¢a s9) alters the sign of the first factor 10 -er pr P
int res the remaining factors of the upp ¢ the
interchanges th z et ay ©
fictors of the second TOW. It does 1ot o prdc N
‘ ‘ 5 - 3 oF 1

factors in the reriaining rows hence the missﬂw S adeter
altered.  This follows also obviously by expresstie
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jinant whose firat Tow I8 a?lx i o w,}, and whose
siher rows are gimitarly formed in order from %, P - c Lo
v second transposition restores the original gign ; hence the
i'ﬁi:"ﬁt, of the produst of two, or any even number of, transposi-
{ions is to leave /A unaltered, and the efiect of the product of

any odd number is 0 change 4/A into 8 gacond valie - VA,

ar — A/A into its second valne VA,

A substitution can be expressed in many different ways ag\)

a product of transpositions, but, however variously expregsed;
the number of such fuctors must be always even 0F abwoy odd ;
jor it is clear that the same substitution canpot ab thg{ame time
clunge the sign of A/A and leave 1ib anchangedyvSince the
product of two even snbstitutions is itself an gyed substitution,
i+ follows that unity, along with all substi@tibﬁs which are made
up of an even number of transpositions, é’on‘s%.itutes a group, and
that VA and — A/ A are hoth functions belonging to this group.
It is called the alternale g-?ﬁﬁ%fﬁ?&?%%%’é&f’%iﬁwestigat-e its
order. Let the alternate gyouii"of n elements consist of the
following substitutions :— &\\

S,=1, &8 Ss - - - - s, (1)
andl lot the remaining substitutions of the symmetric group, all
‘f‘nﬁi%‘lng of anfetld number of transpositions, and therefore
distinet fr?@{\&”e former, he

A s s 8L o 8D @
;u\‘?\’lrselcct now any transposition T, and form by multiplica-
""l}un the two following series »—
/
S, T, 8T, 8T, - - .- 8T, (3)
s/r, ST, 87T, . ... ST 4
h‘ui;iz’t;ubstituti?n in (3) is comp.OSed .of an odd number of
sitions, and is thercfore contained in (2), and every sub-

stitution i .
hm:t‘(‘“ in (4) of an even number, and ig thereiore contained
V(1. It follows that r < ¢, and aleo r Z 5 hencer =3 and
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since r + £ = N, we have finally for the order of the alternate
group
r=EN.

226. Conjugnte values of Maltiple=valued Funetions
and Conjugate Groups. Theorem.—The order of any group
is an exact divisor of N, the quotient being the mumber of distingt
values of the correspondung multiple-valued function. N\

Tn establishing this important theorem it is convpgﬁ:enfﬁx first
to find a function ¢, which is unaltered by all the ,‘sﬁbétitutions
S, =1,8,8, ... 8 of the group @, whogsig‘i:ﬂer is v and
degree n. To find such a function, wel take 2 function
Y1 = TOPTE L T where @, b, ¢, Sl are all different
integers, and therefore x, assumes HN\ditferent values for all
the substitutions of the symm@t@igj roup. Taking xa = Sexa
w3 =S8sxy, and so on, we shall provevthat ¢y = x; + xa+ -+« T Xr
is unaltered by the substitutions of Gy, Lqually well we might
take o oSBT T BEESLAL §dhny powers of xp Xa - - Xo which
would be a particular ~c'.s§s’:e: of taking a different set of integers
tor @, b, ¢, . . . ¥ \Taking, then, i =% + Xa T -+« Xr =
(S + 8+ - ¢ A8, xp, it we multiply by any substitution Sa
of G, we get S, = (S8, + 8,8, + .+ . 88 xu. Now, i
Sg. Sy are, sibititutions of &y, SpSa is by hypothesis a substitution
of G, and moreover SpS.x; is not equal to 8,8uxy, for if it were,
multiphying by S.7% Spxa = Svxw and therefore as x; has N

yalues, Sz — Sy The efiect, then, of multiplylng Xy, Xz - -+ Xr

R “by S, is to reproduce them all in some order, and accordingly
J ¢, is unaltered by any substitution of Gy. Any substitution T

which does not belong to Gy, alters ¢, For if Té, = ¢y, we maist
have Txa = Xp» = SalX1 = Sax1, -~ ST =8 38 X1 has N
distinet values, .. T = 8738, - T belongs to the group (£
To proceed now with the proof of the general theorem, let
X', be a substitufion not contained in ; and which therefore
alters ¢, to a different value ¢q.
Multiplying the members of G, by X, we have the following
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series of substitutions all belonging, of course, to the symmetric
group i—
8,2, SpZ, Sy .o 8,2,

The members of this series have the following properties :—
(1) they are all distinct from one another, for if 8.2 ~ S,
multiplying by Z,t, we get S —Sp! (2) they all change ¢y
to ¢, for 8, leaves ¢, unaltered and %, changes it to ¢s; and:l’\\
(3) there are mo other substifutions in the symmetric grouph
possessing this property, for il 7' is any substitution chgﬁging"
$q 10 ¢y, T'Z,71 leaves ¢y unaltered and therefore beloglgé""tsp Gy
hence TZ,~3 = 8, and . T — 8.2, O

We now form another row by means of & subistightion X, not
contained in G or the series So2. Such a sybstitution will alter
$, to a new value ¢, for if it leaves $, utialtered 1t belongs to
@,, and if it alters ¢, 10 ¢, it will be in th gecond row. Proceed-
ing in this way by selecting at each Dew stage & value for 2 not
contained in the rows p}iﬁ:u&@@h}é@ﬁﬁm%rgfnexhaust the N
substitutions of the symmetriggroup, arranging them 1n & table
of p rows, agsociated with s;@ic-h‘. are values of ¢, viz. ¢y, by« e i
which are all different, %ym morcover contain all the values of ¢,
as the table indicatcd.the effect of any substitution on ¢;. We
thue obtain the. $llowing table, in which 2 is written for
symmetry instead of 1:i—

W

O
\:“ 8,2, S SgZis + v - 8e2y,
{\ ' 8122: 82223 SS 1‘3’ L Sr‘gﬁs
'"\‘::" S:[Ea, nga, Sa).:a, . P S,..Em
N 8.5 S35 83Za o o - SiZa

This arrangement of the subgtitutions of the symmetric group
by means of the substitutions of G, might be established without
any reference to ¢, by noting that if, say, 2, is not contained in
the previous rows, then 8.2 is not equal to S or SgZ,.  For it
8.2, = Sg, Zg= 8,78, and .. Ty is In the first row; and if
8uZy = 8By By = 8.18pZ5, and therefore is in the second row.

VoL, I, s
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Similarly when we take a new substitution X, of the symmetrie
group pot contained in the first three Tows, we obtain a new row
none of whose members are in the {irst three rows; for if 8.2, —
S or 832, or e, then Z, — S, 185 or 8,825 or 8.718:2%,
and therefore 2, isin the first or gecond or third row, Proceeding
in this we exhaust all the N substitutions of thesymmetric group,
arranging them in the above table which consists of p lines of %
pach, and hence it follows that rp = N, and the theorem is proved.

Y 4

On account of the similarity of the different valuegs\\

‘}!)1! ﬁf’zs L Sék oo 9'!)9‘ P
of the p-valued function ¢. it is evident, & przo}?? that each of
these functions will have a group similar $¢&he group of . It
can be readily shown that the group of any ‘inction ¢ is obtained
by transforming (Art. 293) all the $abstitations of & by the
cubstitution X which alters ¢, vy In fact, any substitution
T8, %, leaves ¢y upaltered,\for Zz* changes it 0 ¢y, which
is unal %;?_%%I;bgh; ?a%niggﬂfiégtiénﬂy changed by Z to ¢z The
group of ¢y 18 thcretgre. N\
28,20 ggls;zk, 208, Z o 2550
where each substifition of G, is transformed by Zj. This result
may be rcprgsélhed briefly by the notation
Q> Gy — T

Gl,\:(‘f-é,' Gy, . .. G, are called conjugale groups, and the
carresponding functions ¢y, bas s -+ - B, cOMJugate functions.
QO 't ig clear (Art. 223) that any fwo conjugate groups consist of

AN “yemilor substilutions.

What is proved above as to the relation between the orders
of @, and the symmetric group is true, more generally, of the
relation between the orders of & and any wider group G, in
which G, is contained as a sub-group ; that is to say, the order 7
of (fy is an exac divisor of the order 7' of Gy which contarns G
as @ sub-group, the quotient m being the wumber of distincl valies
of u multiple-valued function wnaltered by the substitufions of 1,
which are obtained by the substitutions of &y
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The proof, which 18 similar to that given above, consists n
arranging the v’ substitutions of G 10m rows, of which the first is
made up of the substitutions of G, the sccond of these substitu-
tions maltiplied by 2y, & substitution of ;" not contained n 4,
the third by a substitution 2, of &y not contained in the first
two rows, and so on until all the substitutions of ¢ are exhausted.

The table shows the effect of every substitution of Gy’ on ¢y, ¢

either leaving it unaltered or altering it £0 by OT by OT . . - OT P

so that in fact ¢y + dgt « -« « T P ig & function unaﬂlte,rcgmt’)j)ﬂx

the substitutions of Gy. We thus obtain, in additign ™"t

ro=1p = N, that ¢’ = mr and .. p—=mp'. \,\\
ExaMPLES. v

\/
1. Construet, for four clements, the conjugate grmi.p}eorrespondjng to the
different values of Lhe function ¢, = :x T %L ™
Tt is casily seen that there are only three Lﬁg‘.ifxﬁct values of this function,
wiz., o) ¢

Al
dy = @ity - Tply ﬁéﬁwwﬁgi.arg}m_ & g.’tf}lmﬁ + waty
and each has therctore a group of orden 2.
The group of ¢, consizts of the»{dllowing eight substitations :—
6=, (12, (4, JABD, a3 eEs, 0nEs), (132 (1423)].
If we take any substitution, e.g. (23), which changes by b0 by, nid nony other,

say (24), which chaufes"$, to dx and form the table of the foregoing Article,
we obtain all the tw‘ent.’f,v-[our substitutions of the gymmettic gronp &s follows :—

1 apsUsy  anes  03eH (14)(23)  (1824)  (1423)

{23) (1&‘5} " (234) (1342} {1243) (14) (124) (148}
(245)\’"(142) (243) (1432) {(13) (1234) (134) {123

\ :' The first row is the group Gy ; the gther Tows nob constituting groups, but
being sach that the members of the second {and no others) all convert ¢, into
$,, and the members of the third {and no others) all convert ¢, into ¢ The
gronp €, corresponding to ¢, s obtained by transforming the substitntions of
@, by (28}, and this is done by simply jnterchanging 2 and 3 in the substitutions
of @, I this way we find eagily the groups of ¢y und gy, a2 follows : —

Gy=11, (13), (24), (13)(24) (12)(34), (14)(23), (1234}, (1432)].
G=(1, (14), (23), {14)(23) (13)(24), (12)(34), (1342}, {1243)1.
82

\\'\
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Tt will be observed that none of the circular substitutions of the frd order
ate present in any of these groups, and the three groups have certain substitu-
tions common. In fact, the substitution nnity must be common to all eonjugate
groups; and here Gy, G, Gy have she thres substitutions (12) (34}, (23}{2¢),
{14) (23) common, in addition to unity, these four substitutions forming &
common sub-grovp of the three conjugate groups.

9. Verify that the substitutions of @, in the preceding example form a
closed group; that is to say, any multiplication of two of Ha members always
reproduces some member of the gronp. > {\

Répresenting the substitutions of €, in the order of the preceding exa{np}l&
by the symbols 1, 4, 8, 0, D, &, F, G, we have the following multipheation

table, which the students will easily verify :— )
1 A B a b g
Y\ -
1=1 1 | 4| B oo BN &
B S Rl B
{(12y=4 A 1 o B C @ D
[ NS A N4 \NY | I

My= B
W\-Sw,)d'ﬁrauljbrary.o Fin 4

(12)(3) = ¢ o | ~BY 4 1 E

._._<\L.—— | ——_—] -

(13 =0 LD P G E i B

4@y =S| E | ¢ | F | D ¢ 4
N [ U R M

gssf=r | F | D | E| G| B4 c |1

W\ (1423) = € el sl p| F|4a] B |1 ¢

~O°

) In effecting the multiplication, the factor from the first golumn is to be

placed st the left-hand side of each symbol of the upper rou i furm
1t will be observed that ¢y containa the sub-groups

[, 4, B C), (LG D, Bl LG F G
all of order 4, and several alsc of order 2, &g [i, 43 1, ¢

3. Construct the alternate group & for tour eloments. The substitutions,
which consist of an even namber of transpositions, can cagily be selectt?d i}'om
the twenty-four given in Ex. 1. They are, in fach the four substitutions
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1, (12) (34}, {13) (24), (14) (23}, along with the eight cireular substitutions of the
third order, ‘T'hese we arrange in three rows, as follows :—

( 1 (l2)(349) (1324 (1428
& =1 (132) (234) (124} {143),
l 1142) (243) (134) (123)

To this group belonys the function VA Ieach suhstitation be multipliet? _
by any transposition, say {23). which changes 4/A to — +/A, the Iemai.ni_ng\\
twelve substitutions of the symmetrie group are obtuined. If each membgt o»fx
& be transformed by {23), we abtain the group of — +/A. Itis easily wogified
that this coincides with & the group of 4/A. For example, (12} {%&)}béﬁbmes
{13} {24) by this transformation ; (14) (23) is unaltcred ; (123)@%«1 ( 132) arc
interchanged ; and so on. The two conjugate groups therefcr:s'\cbincide in this
case, 4/ A and — 4/A both belonging to the same gronp. Thejsame is true for
any number of elements (Art. 225} AD .

The arrangement in three rows of the Elubstit-utipn‘wf o illus‘t-rat‘cs W.ha;t is
proved at the conelusion of the foregoing Article. "I;‘he’fuur mtbstitutions in the
firat Tow form a sub-group of ¢ ; the four in the ¥etond row are obtained from
these by multiplication {on the right-hand ‘gi'dej"by {132), and t.-he 1&:’1 Efom‘ dioy
multiplication by (142) ; the order 4 of 1 “suh-group being & divisor of the order
of G’.P To this grfjup,}whiuh we mwﬂ,yﬂﬁ?}{,av'ﬁ]? rarx"y -org.in

Ho={l, (12) (38 (13) (26, (14 3)
belongs the function <

. N\
A (2, + :!’sxﬂ};'flj‘\ﬂ (y2ty + Walte) T O (myy -+ 2aa)s
in which A, B, ' are any aﬁ)itmry esonatantsd,
This funetion héﬁ six digtinet values for the substitutions of the symmetric
group, vin, W
40y + Bk Ody  Ady+ Phat Cho  Adot Bt Udy
Adﬁ:}ﬂéa 4 Oy Ay -+ By + Oy Adat By 4 Oy
Théss, ’é,’ve all the same groap [, the six conjugate groups coinciding in
this dede ; in fact, any \ransformation of the symmetric group operated upon th‘e
- gn’bﬁ:ﬁtutions of H will reproduce the same four in some order. Huch a group 18
\c‘,tﬂed an invariaat sub-group of the symmetric gronp. The alternate group 18
also an invariant sub-group. .
4. Prove that the group derived from the n — 1 trangpositions (12), {18%
. « . {1n}, is identical with the symmetric group.
Every substitution, heing expressible by frangpositions, call he repr -sented
as a product of members of this series (Kx. 12, Art. 222).
5. Prove, for any number of elements, that there is only one gre
1N, viz., the alternate group.
Let the group of order 3N be

8 =1 Sas By v vt S}N

ap of order

(1
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Multiplying this, first at the left side and afterwards at the right, Dy any
substitution T of the symmetric group not already contained in it, we have the
two series

78, TS, ... TSy (2
P, 8T, ST, ... Syl (3)

Fach of those must consist of the 3N substitutions pot contained in (1}
henee the two scries arg identical, and whatever ¢ may be, we have for HO‘D\{\
vahwe of j the relation a N
T8, = 8T, or ;= T28T; m\ )
and since also 85 = 87185, it follows that for any substitution & whatsoever
8, =T8T, and hence the group (1) contains all subst.it-ut.ip@iimi‘lar to any
one contained in it. Hence (1) cannot comprise any single &ransposition, for
i it did it would contain all such, and he couseguen ly identical with
the gymmetric group {Ex. 4). \

It can now be shown that (1) contains as :ai\éu’ostitutdon the product of
any pair of transpositions. For this purpose, .@p ose 1 in the series {2) to be
any transposition, The eilect of multiplyingyhoth (1) aud (2) by any second
transposition I7 s to interchangs the twa sevics (1) and (2). Ibis proved there-
tare that TT must be one of the suhsls{ﬁﬁ‘tfons of (1,85 §; =1 is onc of them,

FomudhitiF APt gﬁpﬁgﬂ\{fﬁ(mar&lué;d Funetion belongs to the alternate

R

group, sinee this is the unfy graipawhose order satizfles the equation 2r = K.
S

6. The alternate g’rou{&ﬁlmdes a1 cirenlar substitotions of odd order, and

none of even order. | & 3

7. Prove thaha group which contains all the cirenlar gubstitntions of the
third order iz gitﬁer’the alternate or the symmetric group.
Use Ex A3 Art 222,

8. :Blf;t:‘l}e that a group which contains all the citcular substitutions of the
ﬁ.fth,k!:\rlci' containg also alt of the third order. For

RN (acdeb) (ached) = (ube).
e N
\’”\3 /@, The order of a group is s multiple of tho order of any one of the substita-

/" tions of the group.

10, If » is & prime number, every group of order n is composed of # powers

of a cireular substitution of order .

11. If twe groups have common anbatitutions, these themselves form &
group, and their number ig 2 eommen divisor of tha ordera of both groups.

12, 1f the members of a group are all transformed by the same substitution,
the conjugates thos derived themselves form a group-
Use the telations given at the end of Art. 223



Funclions of a

given Group. 263

997, Formailion of Fuanetions of & given Group-

he Galois Funetion.—We

take up again the problem of

finding rational integral functions of # variables, 7y, g« + - Tws
which remain unaltered by the substitutions of a groop &y, which

we dealt with at the beginning

of Art. 926. We select for Py

the following different type of function having N distinet values
for all the substitutions of the symmetrie group =— A\

SO\
Py = e,y + e 4+ oagry + o oo T Gadne R\

in which @y, g « - » Gy BTE W digtinct arbitrary const bl © This
funetion is called the Galots Function. As in Art. 29B)obtaining
by, g, « - - by DY The substitutions of &y, any sytimetric function
of ¥, Pey oo - Pr will be unaltered by the Qubstitut-ions of Gy.
In particular, ¢y —~ (7 + ) (y -+ ) - ;Ey} ) will be un-
altered by the substitntions of &) and{’sﬁtéred to a different value
by any substitution nob contained ju . The function ¢, is not
thercfore unaltered by the d‘%lb’és’c’iﬁht-ions of any wider group

. W ODEE
containing Gy as a sub-grops

. %ﬁ%ﬁﬂﬁ{fﬁ in powers of ¥,

although some of the (:Qs{ﬁcicnt-s of the powers of y may be
unaltered by the subsiti}utions of a wider group, all are not un-
altered, and so onctol them will. provide & funetion unaltered by
the substitutioné of G, and altered by those of any wider group.
Noting the s of expression of the sum of the powers of the
roots of,.agr}%quation in terms of the coeficients, we 3¢€ that
inst-e-ai\'cff the coefficients of the powers of y in ¢, we may take
Squﬁ\)f powers of fhy, Py, - - - fr, up to the #h, and deduce that

\

. one at least of such v sums of powers will provide a function

\/unaltered by the substitutions of &, and altered hy any otber
substitution of the symmefric group. We add a few simple
examples to illustrate modes of inding functions of & given group.

i xanTLES.

1. Form a funetion of thres variables which shall be unch anged by all the

enbstitutions of the alternate group, vit.,

(1, (i23h

(132



\ *g, The order of a group is & raultiple of the order of any one of the substito-

N
h

"4
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Multiplying this, first at the left side and afterwards at the right. by suy
substitution T of the symmetric group not atready contained in i¢, we have the
two series

T, T8a, Pl - - Ty (2}
T, &7, 8T .. 8T %)
Each of these must consist of the 1N substifutions nob contained i (1);

hence the two series aro identical, and whatever i may be, we have for some
value of j the relation ’

z

N\
TS?: = SjT, or Si = T‘ISjT; P ¢

& W3

3

and since also g = 8,715, 8y, it [ollows that for any substitution T vyﬁtli;s‘oa\'er

;= T8T, aud henee the group (1) contains all sabstitutions gitilpF to any
one contained in it. Hence (1) cannot comprise any single I ogition, for
if it did it would contain all such, and be consequently “dentical with
the symmetric group (Ex. 4). N\

It ¢an now be shown that (1) contains as a substibution the produst of
amy pair of transpositions.  For this purpose, supp(%?e 1 i, the series (2) o bo
any transposition. The effoet of multiplying\pnth {1} and (2) by auy second
transposition I is to interchange the two sexied, ™) and (2). Ttis proved there-
fore that T must be oue of the Rubst.it-u‘g‘i.on’é “of (1), 85 §, = 1 is one of them.

Froamatlb faeBHSHT _%ttrgsfi\}:tv t-xggi-\?ajﬁled Funetion helomgs to the ulternate
group, since this is the only group)y)}@s’é order satisfies the equation 2r = N,

&, The alternate group -L{lill\l[fe.:s all eirenlar substitutions of odd order, and

none of cven order. »
o)

L\ o
%. Prove that a growp which contains all the circular substitutions of the
third order is eithep'the alternate or the symmetric group-

Cae Ex. 13,.\,‘5112‘6‘.’ 222,

8. Proy %t o group which contains all the cireular substitutions of the
fifth o%ﬁ‘(ﬁm‘cains also all of the third order. For

#

O

ol
+

{acdeb) (zched) = {ahc).

} tions of the group.

“10. 1f = is o prime nmmber, every group of order n is eomposed of n powers
of a cicular substitution of order .

11. \IQ two groups have comimon gnhstitutions, these themselves form 2
group, a.nd\their number is & common divisor of the orders of both groups.

12, Tf the members of a group are all transtormed by the same substitution,
the conjugates fhus derived themselves form a group.
Use the relagions given at the end of Art. 223.
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227. Formation of Fnuetions of a given Group.
The Galois Function.—We take up again the problem of
finding rational integral functions of » variables, @;, #5, . . . T,
which remain unaltered by the substitutions of & group ¢, which
we dealt with at the beginning of Art. 226. We select for o
the following different type of function having N distinct valueg,
for all the substitutions of the symmetric group :— A AN\

. ' . . \ )
(}11 = @) T Ggls b Oty + . L. B Oy, "% N

In which e, a5, . - . @, ate n distinct arhitrary cons n§s.  This
fanction is called the Galois Function. As in Avt 828) obtaining
$y Py . . . i, by the substitutions of 6}, any spmmietric function
of 4, 1b,. . i, will be unaltered by the\snbstitutions of G,.
In parhm}lar, o= (y 4 3 {y + b)) . Sy + ) will be un-
altered by the substitutions of G, anc{‘&lﬁred to a differcut value
by any substitution not contained d s G, The function ¢, 8 not
therefore unaltered hy the %ubsi;ltutmm of any wider group
containing G as a sllﬁfmwl,@natﬁﬂ;mngw%rﬁl in powers of y,
although some of the coeflitients of the powers of ¥ may be
unaltered by the substiihtions of u wider group, all are not un-
altered, and so oné t\f\them will provide a function unaitered by
the substitutionghof U; and altered by those of any wider group.
Noting the Eonms of expression of the sum of the powers of the
roots of al\equatlon in terms of the coefficients, we see that
instead ©f the coefficionts of the powens of y in ¢, we may take
suznh\c)\f powers of by, iy, . . . i, up to the % and deduce that
"Bt least of such r sums of powers will provide a function

f \unaltered by the substitutions of G, and altered by any other
W, substitution of the symmetric group. We add a few simple
examples to illustrate modes of finding functions of & given group.

EXxaMpPLES.

1. Form a function of three variables which shall be unchanged by ull the
eubstitutions of the alternate group, viz.,

L, (128),  {132)],
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Ly Lo t - sl T e Lralog fon
ol It e suhsbidat lena on the Galoi fu ctinn W
13

R i
W g ket S oagr,

@ have

i, Ay b ary e e,

[} . .
[T S N P R N .

Lo e sbple i e
Y7 ans lidh symmeteic Ta oy, 7, 2 Bob by mesans either of

1 L e i 1 i i
S g e ean ohtadn e unsymmetric functions

P
-y LERER B

,
s R 4 e L
s and B 4 o3t 4 oatrg, * \\

wihechonant bl to the wiven group. IF these functions bE ealitd

el i i faet asily vertfied that »\\":x
v . . P . . . i 4
Ll LR oy vty - 3 (DB, + Q’-_r:il’g’}'.”'
Cre I, e g et @ = agfng + eyl '\0"*31;“1

T e sl e remnhly ohitedned by neing the met-hq@f{@.fv\rt-‘ 230 and taking
’ P @ ’\’\'z
20 L dicade funeiions of four variables ‘ik{:l} shall belong to the group
T P23 (13} (143230
Woritineodowrn the values of the [011&%@})15 functions as follows ;(—
oy = oy -k “g‘ré’L a7y + 8%y
e upfy »1*3@:’111 = agity T Ay
AN ,
www dbraulibrary . ofg:ingd$i @ + oty — 84Ty
g “{qﬁ - aury o @ty T %T
bt that Biy® is nob so. From

b By - O of Ex. 3, Art. 226,
£,y @g ¥y 88 I B 1 of the

»

v Gnel that Xy s h_\;m»@*fric N ¥y Hay Ty Ty
. £ - -

che baroer e reakilg Sblain the funetion Agy

Ay v by reprogentie the same functions of ¥y,

ISR rl-.e-r[;:;ti"!;:. W have, in fact,
P D s
A :'2?::'-"—&2 4 (g LA 4 (g + a0y ¢yt 4 {og3y 1 02857 B0

1
" ; i helong tespec-
'i'}'x.;\l\r]‘i\'i'n[]l!‘tril‘ funefinng oeouTrlLg here, viz, ¢p dar Bar £ o
O wi g, t7, of order eight. The sum of these w10
riv;\ﬂf. tine wider gronps fny, ry by g ; . alued function.
\ . . P . iy o six-valne
.{r\}-:n-\' coefieients helongs to the gven group H,and
. k

RN . . the gron
A% g Tnvestizate fanelions of four variables fot graup

O K 324 1423)):
N H.un(mxummLUMMLUQmLu@L(QE
. : four values of ¢ in the preceding exarpis

Taline, along with the

additional four

: 2 Ly,
i, = oty 4 oty + 23 + tafp
L
h{-'u = ah + ogity + agly 2T
0 = oy + aat e b o

g
= a,ry + og¥s T 2F -+ o

=
i

wie easily verify the following relation = Yoyt ‘lf”frl'xz}fx*'l"r"::
) (g, ey b !
.‘..‘._-’;1:_-_2Ea."’Z:c']2-{-R{a;aﬁ—0;;64}(3'13’3"r""’3$4} - 2{ay 2l
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whenee the fanetions @@y T Lafa and {z; -+ %} (#a - @) wre obtained, both
velonzing to the given grouyh, since there is DO wider group osvept the symmetric
B Zi = =

o which &, 18 contained as a sub-group.
Tt is clear that this method may he used to discover, by meanté of the
cvmuraetric fonetiens of higher orders, an infinite varicty of fanetions corre-

sponding #0 & given group

998, Wheorem.—buery integral symmnetric function of the

Tistinet values of @y integral matlsiple-valued Function of n elements
is tt symmei-ric_fu-n.ci-ion- of the elements themselues. SO\

Althongh this proposition appeats sufficiently evident fr@if;;

the similarity of strucfure of the conjugate values b1s o (fm;,\‘. (ﬁ)p
of a p-valued function (Arb. 226), we may give a for {&} proot
s follows. Yet F (b $o + o - $,) be any ratjonal integral
svmmetric function of the p-values. Any substitupion whatever
S faficcting the elements) applied to thesc p;vé.lués ither leaves
any function unchapged oT replaces it ihyssime of the others.
Yo two of the resulting values can he agual, for i S¢, were equal
to S, it would follow, by a‘.ppﬂg%gﬁg?ﬁfé"ﬁf@%ﬁ'ﬁ&%n S, that
4, — &;, which is contrary to .b;jffot-hesis. Consequently the
ane p values of ¢ are repro@ucea by S in some order or other.
The HI}-'mmet-ric function & therefore semains unchanged by any
abstiention, and is.cohdequently a symmetric funotion of the
rlements thcmselvcé:,’ i )

?”’m this g derived immediately the following gorollary —
f’-f?‘-f"/i?;:;.:g‘f?ﬁ%th;m?t va-luesj' of any i-ntegmll multiple.-mlued
e fanction an_equation awhose cocfficients are integral
e\ rions of the elements themselves.

\'m,m:ri;ie:amlﬂf dOf f-his we refer to lix. 4, Art. 39, Vol L.
ranbe soacily I;z:z;d :;1;6]1 rlfgar(‘l to mtiorfal integral functions
or ot : fOr.m::y fm:tiou all rational functions, whether infegral

n may be converted by the method of

Art, 194 into i
, an equivalent Thos . . .
I the elements, quivalent form whose denominator 18 symmetrie

229, The . .
. (,(In-em.—T wo functions belonging to the same group
wnally expressed ench in terms of the other.



N/

,\ﬂ‘mrp To T Ty - . . are all symmetric 1n 2y, %, -« -
o : . .
ﬁ)the solution of these equalions, we refer to Bx. 1, p. 3
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This important proposition, to which we now apply the
principles of the method of substitution, has been discussed
hefore (Art. 191) from a somewhat different point of view. Let
¢, and iy be two functions belonging to the same group

&, = [1, S, 8. ... S0

of order r and degree », each of these functions having p distingt
values, where vp ~ N, Any substitution not containpd\m &,
will convert ¢, into another of its values, say ¢, and af e same
time oy into . By operating all possible qubstltutmm, p pairs
of values ¢y, 3 o bt o . . o, s aze obtam{d y Now, in the

first place, the rational fuu(fmn \~

EPP = i AR i 6

is clearly a symmetric function of f}u,\ei'(‘m(‘n‘rs for it appears,
by the sume reasoning as that nf\tlw preceding Article, that any
substitution whatever ﬂf}ﬁctmﬁ\ﬁle elements will reproduee in
htl[]li‘\'\i)\z‘{{\!\:‘agl}}f[’lﬂ E’-Il\l:“y%fl,;{hb ém*m viz, Zdipd, which is therefore
a symmetre function of ‘sh{‘ Plemr'nts If, now, we take § =1,
and assign to ¢ all the Va,lues 0,1,2,....p—1in succession,

we obtain the fol fov{hﬂf ciuations llnear in :/: oy « - - P
4!&\ L L t[}p —
‘5?’1‘!’1 ST bt =T
a . 9
: \® ‘56125{‘1 sz“‘ﬁg s =T [ (%
»\{ Ce e
\\ bbb o b
x,. For
38, and

Ex. 3, p. 105, from which it will be readily inferred “ﬁha-t P (fa-n
he expressed as a rational function of ¢, in the following form:

Sy oo b) = g = AT AP_DA
-1

where ¥ has the same meaning as in Art, 203, and dg, 445+ %
are all symmetric in zy, 7, . . . &,

1t follows, conversely, that two rational functs
cach can be expressed rationally in terms of the other helong 10

joms such et

the
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same growp ; for since each remains unchanged by all the suh-
stitutions which constitute the group of the other, it follows
immediately that the two groups must coincide.

230. Extension of Theorem with CoroHaries.— Fven
when the groups of ¢, and ¢, are not identical, but one of them
is included as a sub-group in the other, it is still true that the
function which belongs to the wider group (and which has con-\\

a group ¢
sequently the smaller nuniber of distinct values) is expysgéibie
rationally in terms of the function of the narrower group, \J

Let ¢, belong to the group Gy of the prec-e-ding:o@ﬁ%le, and
let 3, belong to the wider group y :\

Gl’ == [-[, Sg, e 'Sﬂ Sr+1! TN Sf’}'

We have (Art. 226) the relations \\“

p — -:-"p' - N; = }L"‘T.}‘;\P = kPI :

there arc, as belore, p distinct valu@s‘bf ¢ bub the values of b,
ViZ, fhy, ey iy o . . i }}wm&d}éﬁfﬁhﬁﬂaﬁ‘jﬁ%l%.ig‘b so that only
p distinet values remain. "fl:f,,"Is still trne, however, that the
cxpression (1) of the pregediﬁg Article is a symmei.:ric funcfion
of &y, 4y, . . . 7,3 for asy'substitution applied to it will reproduce
in some order the Wistinct terms of the series. The equations
(2) therefore can(De solved as before, and an expression obtained
for i, in termé,‘ofﬂfll- Tn the final expression for ¢, in ters of
b1, ¢y may Pe replaced by B, or ¢y or ete. OF ¢y, Where thess are

the V&h\é‘:‘s;’o% ¢ all associated with iy, in such expressions as (1,

and oy derived from ¢, by substitutions which do not alter Elfl-

.\]’:f\:it' be attempted, however, to express ¢y 0 & gimjls:.r form 2
\ $Tms of 4, the solution fails, on account of tlfe equality O.f bwo
or more of the values of i ; for it is implied in the solution of

these equations that no two values of ¢ are equal (see BX. .

P. 38). What we can get by the equations 18 an expression for

b1+ ¢y + ete. - By, in terms of P which would 2lso follo“f'

immediately from Art, 229, as they both belong to the group 0

. The theorem as cxtended was enunciated by Lagrange : 1t

may be stated as follows :—
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Lagrange’s Theorem.—If two rational functions of any
set of variables are such that one vemains unchanged by all the
substitutions of the growp to which the other belungs, the first 4s
expressible by wmeans of the second in the form of an integral
polymomial whose coefficients are rational symmetric functions of

the variables, a
From this proposition may be deduced important consequendes
which are contained in the following corollaries -~ Ly

Cor. 1.~-A function can ahways be found in terms qf@?&icﬁé oy
number of given functions can be rationally capresselhy

The groups of the given functions have ﬁ];x}ays one sub-
group common to all, for the identicalNgubstitution S =1
at least is common. Accordingly, the fimctions can all be
expressed in terms of any one of the ffhctions peculiar to the
common sub-group. If ¢, 4, ¥, s} are the given functions,
w=ap + P+ yy+ ..., Wl;é;e a, 8, v, . . . are srbitrary
constanfe, s one ABek-fancsiod {01 the common sub-group ; for
any substitution which leayas 1 unaltered must leave ¢, o, x, . .«
unaltered, and so must be cdmmon to the groups of ¢y, ¢y, xu - -

Cor. 2.—Any ratlehal function whatever can be rationally
expressed in te-rm,s"\bj"’:a. Junction having N distinet values ; in
particular in tepms of the Galots function.

For the group of an N-valued function, reducing to the
identieal'sﬁbét-itut-ion, is included as a sub-group in every othe‘r.

Cox_ 8 —The variables themselves can be expressed rationally it
te-rm{§' the Galois function. _

'»\‘f ‘The group to which «,, for example, belongs confals
“NV. 2.3 ... (n ~ 1) substitutions, including, of courss, thn? sub-
N\ group unity. The # values of this function are the n variables

Ty Tgs « - .+ &y, and each can be expressed rationally in terms of

the Galois function.

The proposition contained in this corollary was stated
originally by Abel without proof. (alois has given a P_m‘]f of
the proposition founded on clementary principles, which we
think it desirable to add, since it shows how the caleulation 13y
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be conducted and the required rational expression for any one
of the variables obtained.

Let f(z) - 0 be the equation whose roots are &, &, . . . s
all supposed unequal ; and let i, be a known value of 2 rational
funetion ¢ of the roots which has N distinet values.

If all the roots except @, be permuted in every possible Way,
weobtain1.2.8 ... (n — 1) = p distinet values of ¢ given by\\

4

the equation R
FOpy = G — ) (@ - o) <o - (= ) =0, D
The coefficients of this equation when expiuded are
symmetric functions of g, %3, . + « T, and, q&ﬁ\fherefore be
expressed in the terms of the coefficients of v
f(ﬂ’) . 0’ ."{.\\J
o=y \\'\:
and will involve z, in a rational for;ni:gi\ong with the coefficients
off(z). Xftheexpanded equa.t-igrﬂié represented by F (i, #1) = 0,
we have F (J,, 2,) = 0, sinte s-dbumtlilieat shyrgin ofy 5 we have
also f ()} = 0, from which. iMollows that the equations f (¥} = 0
cand F (g, 2)= 0 have.{(\common root. It is easily scen thab
this is the only roof, sﬂé}n"mon. 1 therefore we seck the common
measure of f(x)dand F (f, ), as all the remainders vajmsh
for z = ), in ﬁ@fﬁcula-r the remainder of the first degree .111 x
gives for Ty a\ia'tionai expression in terms of i, and the cocflicients
of £ (z), iflywhich expression ¢, may be replaced by e OF i OT
ete, q{%’"without altering its value.

N 3

~ "\Ex For a cubic equation

\¥

N flmy=a®+pat b ot 0= 0
. . ipt i d
if 4 be taken equal to the Clalois function sz, + ag¥s + a¥u 0181 ‘?adllg Prc;:ﬂ
that F (i ;) involves z, m the gecond. power, and the prob%cm 13 e ucet.0
finding the greatest common measure of & quadratic and cubic. sfhe ques 1“ :
is simplified by teking the special Galois funetion z; + wiy -- @ ; "ﬁlnle i
find in this case that the coeffcient of z,® vanishes, and x, is obtained 1t
ately in terms of 4, as follows :—

_gat—puhy + P
o= By
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Cor. &.--AU the values of the Galois funclion can be exprossed
rationally m ferms of any one amony them.

For all belong to the same group unity.

231, 'I'wo=valucd Functions. Theorem.- --Bvery two-
valued wnteyral function of » variables is of the form 8, = S,vV/4,
where Sy wud S, are tntegral symonetric funetions, and A\}ﬁe
diserisminani, ¢\

A fwo-valued function must belong to a group Uf’ﬁrdef
The only group of this order is the alternate group (E‘{ 8, Art,
226), to which the function V”L\. belongs.  Tha's \u)rcm there-
fore follows as an immediate consequeneg 4 the fundamental
theorem of Art. 229. On account of its Whportance, however,
we give the following independent preo{? -

Let the two values of the funcfiap be denoted by ¢, and $,,
and let &, and &, be the correspgniding groups, cach of order V.
In the first place, these two grdwps niust be identical ; for if any
substitudiond K- ﬂﬂiﬁ}iaﬁgeneg’é.iﬁ r:hcméc $, to its second value ¢,
then 571 would change ¢:1 nto ¢, ; but this is impossible, since
871 as well as 8 belmxg% to the group G;. Every substitution,
therefore, of G, Mhist’ belonfr to &y, and vice versa.

To show now that these groups coincide with the alternate
group, copsidﬁf the function ¢, — ¢, = . Any substitution
which belongs to the common group leaves this unaltered ; any
othcs\\ﬂl change ¢, t0 ¢; and ¢, to ¢, and will therefore change
the\shgn of ; some {ransposition, (z,zs) for example, will have
»11}115 effect, for no group can include all transpositions without
Q) "commdmg: with the symmetric group. 1}t is casily inferred
that ¢, — ¢, is divisible by «, ~ #z; and hence by the product
of all the differences, since 2 is symmetric.

The quotient of ¢ by V/A is symmetric. To prove this, lef
(v A)"‘ be the highest power of 4/A which occurs in #. The
quotient of ¢ by \/A “ s symmetric, since, if not, it would be
an alternating function, and would again contain v ‘A as a factoh
which is contrary to hypothesis. It follows immediately that
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m is an odd munmiber. and that the guotient of ¢ by VA 18
symmetric. Writing therefored; — ¢y AVA, and ¢, ¢y = B,
where A and B are both symmetric, we at once derive

$ = Sy 1 SeVA, by =8y - S,VA,

where 8, and S, are both symmetric functions of the \rariablcs\

Ty £y . .. 2. It s, of course, also evident that the gmup\g:t%;

and &, coincide with the group of A/A, viz. the altcrnate group.

259, Theorem.—The allernating  functions a:,-;,w@‘ffze only

unsymmetric funciions of n variables of which g gower can be
O

symanelric,

The theorems contained in this ands \fhe next following
Articles are of great importance in congé}t\i&l with the problem
of the general solution of algebraiea}\équations. It will be
sufficient to prove the theorem fofpiime powers; for if there
exists a function F {x,, «a w\;f“‘&;ﬂ sui:,}lg that Fre is symmetrTic,
. . vty dbraylibr ORI
P being prime, then there issalso a | Ilé-gfo){lof;‘ﬁzmﬂ gnch that
¢7 18 symmetric. Let t 3re\fore

<f>?”:§&:5',’:a symmetric functien.
, cannot contain

Rince the gz:oiip’of é, which 18 unsymmetric, _
osition which

all the trang é’s\lfions, let o = (o) be o TrANSP
CONVErts i{;«iﬁxo ¢, ; we have

“\’\\ ¢ = ¢7 = 5,

..alfs};fherefore ¢; = wd, where w I8 a P
™ o ~ b = b

and, operating again with o,

a¥d = wod — Wi ;

t poob of unity. Hence

bt o — 1; hence w? = 1, and consequently p = 2.
Since therefore @2 is symmetric, é is an alternating function,

and the proposition is proved.

N\
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233. Theorem. - For any number, n, of independent elements
there is no multiple-valued function of which a power is two-valyed
when n > 45 and when n = 3, or n = 4, if there is any such power,
i 1§ @ third power.

Confining our attention as before to prime numbers, and

supposing that ¢ is a multiple-valued function whose p* power
is two-valued, we have (Art. 231) R N
¢~ 8y + SVA. O W

The group of ¢ cannot contain all the ecircu ?:‘allbstitutions
of the third order, for if it did this group wonld’ ¢oincide with the
alternate group, and ¢ would he two—va,lueﬁi%{Ex. T, Art. 226).
Let ¢ = (x257y) be such a subst-itutiagl.not contained in the
group of ¢, and suppose o¢ — (ﬁ:,-.o’::}’mm the equation (1),
since §; + S,V'A is unaltered bx‘%,\\ive have

BN b7
dbrayljbrary.org.jin . . .
hence %y L wgp, where 6 1ap? root of unity. Operating agsin
twice in succession with &, we obtain readily
N\
OV b - o,
N o - wog -,

N\ '3"3‘#’ . w:ao.?g, . w3q6 ;

N

whencepgince o® = 1, we have w?® = 1, and therefore p — 3.
’g%tiﬁ, when the number of elements is greater than 4, there
§rp’\}ircular substitutions of the fifth order, and these cannot be
~all contained in the group of ¢ (Ex. 8, Art. 226). Lt 7 be one of
<‘§ “those not contained in this group, and ¢ = ¢;. We hs.n-e,.as
before, from the equation (1), by applying this substitution

{which does not affect the right-hand side),

# — g2 = 8 + ByA
Hence, procecding as before, we have 7¢p — wg ; and operatitd

again on this and the succeeding equations with =, we réd fir
find 75 — w’p; whence w® = 1, since 79 = 1, and it is prove
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that p — 5. Now, this vesult being inconsistent with the value
of p previously obtained, viz. 3, we infer that when the number
of elements is greater than 4, it is impossible to find any multiple-
valued function ¢, & prime power of which will be two-valued.
That there are actually, when # is not greater than 4, multiple-
valued functions, a third power of which is two-valued, will
appear from the following applications to the cases where n = 3

and # =4 ;— )

L To find a multiple-valued function of three elements whose thirti:fpwer
is two-ralued. We sxamine whether the problem admits of solut-in;‘k.k}Y means
of the simplest linear funetion, viz. x'\ ’

é— a.xl—i- B-’G;-"F‘?%a

that is, whether the constants g, 8, ¥ cah be determined sq a8 tb ma.ke ¢ fulfif the
required conditions. \\~'

Taking o = (iy2,), snd identifying o with adinhere w®= 1, we have
ary + fuy + vy = w (ot f.}?xsi—k yEs) 3
whence N
y = wa,wﬁ\e.gj;y;iéfal by org.in
and immedigiely N
4= a{x;" L ol 4 wig)
Taking o = 1, we infer that a f\k\t,tlon of the type &
conditions of the problem. » This function is six-valne
{compare Art. 59, vol. 1))

The student will ¢adily prove, in a similar ma
type .

+ iy - wy satisfies the
=, and its Luhe two-valued

nner, that any function of the
AN/
o o wiy™ 1 @ 2z,

supply a solution of the problem.

. T
Tod Vostigate a similar function when = = 4. Tn this case it is clea
without making

th&t 110 l\lear function of the type ar; + Baa + o5 + S, cmn, donb
8= 0, fulﬁl the condition of being multiplied by & factor when operatt ]i , ¥
»bhé sibstitution o = (z,2%;). We take therefore the function next in simplicity,

HZ one of the type
¢ = azx, - Brgbs + ¥5¥ T 5 {a'ey + B%
The function obtained from this by the opevation of ¢ is
b5 = amye, + Bty + YoM 4y (a'r + B Loyl ‘
Identd-ymu $j with wd, and replacing By B ¥ by their values in terms
of o, o', we have

P = ooz + orl
VOL. II. T

N./

Whure m iz qn&iintcrrer, will equally well

+ g

. Lty )
4 ez} + a’ (g T 0 + @ ‘)

N

2.3
& W3

"\
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Operating again with a different substitution of the third order, say r = (

. £12,7, ],
and denoting =¢ by &;, we have

b (it owtrgy b ergw) & oo {1 + elaay 4 witgr, )

Identifying, as before, ¢ # With 8¢, whero @ is some cube root of unity, wo
find at once # = »%, and a’ = w¥q, the remaining relations being all eonsistent
with these. Wo have therefore, taking a . - 1,

$ == mzy g, + w (T Egy) F wl g, o Tegh e \{\
This is & funetion of the requived kind, having itsclf six values, buthgnly two
values when cubed (compare Art. 66, vol. 1., and Fx. 3, Art, 22,&)? e
)

N
N/

%
~
N
¢ N}

Seerton II1.—Tae Garors REgéLveN.
234, Galois ltemrl\-cnl—(}rl-ouq of an Equation.—
Let o® \ f

Fa) =2+ pant 4 @E’\‘;ﬁ Lo Ep,=0 (D)
be an equation whose 1‘.039‘3‘;3':" supposed all unequal, are
%, i-‘?mrww_db?‘w[fbﬁ-dl-y'b,é@&{i;ﬁécﬂicient-s are regarded as known
rational quantities. Iftherc are irrational quantities in the
coefficients, they apé Nassociated with or adjoined to rational
quantities, and sl “yhantities obtained from the combination I?y
addition, subtraction, multiplication or division are regarded in
the following Miscussion as rational and called rational. They
may also\be described as being in the domain of the irra-t.ion?l
quantifies contained in the coefficients (see Art. 236). The Galois

\

ﬁ@ﬁi{m
’*'Z;\ ¢’1 = Gy ¢ gty b L . L+ GuT,
~O - ; the N
V" bhas N distinct values ¢y, oy, . . . 4, corresponding to t

substitutions of the symmetric group (Art. 227). The equation
of the N* degree whose roots are these N values, viz.,

FRl=(—d)e—dy) . .. 2~y =0 (2

is called the Galois resolvent. When this equation is expanded,
the roots z;, @,, . . . @, will enter it in a symmetric form ; hen""{z
the coefficients of z in the expanded equation can all be expresse
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rationally In terms of gy, pay + - - P In general, this equation is
irredneible : that is fo sav, it cannot be broken up mto factors
of inferior degree with rational coclficients. We proceed fo
Zstanees it may become reducible.

examine tnder what ciroun
an itreducible factor of

For this purpose, suppose ¥ () to be

the #% degree, with rational cocflicients, contained in ¥ (2}, and

let &

N

V() =z ) =) - o (B o), (\,?‘)“x

where iy, iy, . - . s, are derived from ¢ by means of the substitu-

tions S, 85, ... 8, The following propositions can b?%fébliShed

in reference to these substitutions i— CO

(1). Kvery function ¢ of the roots which 1§ uﬁéanged by the
substitutions 1, Sg, Sy, - - + Sy con be expressed yationally 7 ferms
Gf P1: Pas « - < Dp- . \’

By Axrt. 230, Cor. 2, ¢ may be expg'e\ésé’d as a rattonal function
of 4, and the coefficients, say f () - Now, under the operation
of the substitutions S,, Sgyrwgradﬁiﬁﬁﬁm%%ﬁ&%%ange& but ¢,
becomes in suecession d, gt - 5 bence

) = = ) = L) e S

mmetric in the roots of ¥ =0
o coefficients of this equation,

2" £
S

but the latter expreésion heing sy
can he rationally; expressed by th
which are themselves rational.
(2)- E’Ué*‘y function which is rationally expressible will be
unchagpged by the substitutions 1, Sy g -+ v By
"\slg‘b’ﬂ ¢ be a function of the roots which has a rational ex-
~Prgssion, say R; and let f () be the function of gy by whick
N4 can be also expressed (Art. 230). We have, then, / {91) = E;
whence the equation f (s} — B = 0 has a root ¥y 1D c(?IIL}'ﬂOﬂ
with the equation ¥, () = 0; but the latter equation is itTe-
ducible, and therefore all its roots must be common to the two
equations (otherwise by finding the commion measure of ¥ (2)
and f{z) - R, we would get & rational factor of ¥1{2)): and

consequently f(¢y) 18 unaltered when is replaced by
2T



N
h
4

with rational quantities other irrational oneg in addifi
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s, ¥y, - . .1 that 18 to say, ¢ is unaltered by the substitutions
which change i, into i, ¢, . . . ¢, in suceession,

(3). The substitutions 1, S,, Sy, . .. 8, form a group.

The effect of the vperation of any one of these substitutions,
say 8,, on W, (7), is to leave the function unchanged, since its
cocfficients are rational, and therefore by (2) unaltered hf(&a;
the new values, therefore, of iy, ¢y, . . . i, derived by thig=ub-
stitution must be identical with the first values, therapder only
differing ; the effect of a seccond of the given subg{gétﬁ%ions, say
S, is to reproduce in some order the same valy g-sjstf_\gb.’ Tt follows
that SuSgfy = ¥y — Syfy. and . SeSs - Syasgh 1s an N-valued
function ; and the proposition is therefors proved.

The group developed above is (:aﬂg.d:‘%h'é group of the equation.
This group is unique, for if Wafz)\were another irreducible
rational factor of ¥ (2), the groupLas‘sbciatcd with it would leave
¥ (2} unaltered, as ¥, (2} is ;3:@3‘(5-31&1@ expressible, and so each
of 1its \gm\;{é‘%ﬁ%%l()llll:&'srex'ggiﬁ{ﬁfél%”cOntaiucd in the group of ¥ (z);
similarly, each substitptiéﬁ‘of the group of ¥; (z) would be con-
tained in the groul}&b.f ¥, (z), and hence the groups must be
the same, and therefore also the degrees of W, (2) and ¥, (?) a-r.e
equal. Furtheﬁnore, ¥ (2) divided by ¥, (z) is rational, and if
irreducible i\tfi dégree must be 7, the same as ¥, (z). 1f its degree
is greated than #, it must be reducible, and must have an re-
ducible,factor of degree ». Procceding in this way, we sce thab
F 1s composed of irreducible factors of degree 7, Whif‘-h .&H
har\e the same group associated with them. By a-ssoclatuii

on
those possibly involved in the coefficients, we may possibly
break up ¥, (2} into factors of the same degree regarded as
rational, and their common group must be a sub-group of the
original group of the equation, since they would not alter ¥ {2)
The reasoning will apply also if any N-valued function of the
roots is taken instcad of the Galois function. In fact if #3
ate sational irreducible factors of the equations lor two N-valned



The Galois Resolvent. 277

functions g, ¢y, as the coefficients of ¥, are rational, ¥y 15
unaltered by the group of @, and similarly @, is unaltered
by the group of ¥,, and thercfore the groups coincide, and
the degrees of the factors are equal. Furthermore, if7Tisa
substitution not included in the group of ¥, the coefficients of
the equation whose roots are Tifs, TSupys TSl + - - T84 are\\“
rational as they are unaltered by the substitutions of the groupy
for if S, changes i, to fy it may be written 8718y and 50 a{teiﬁ‘
TSaly to T'Spfy, and henee So affects the same c-han}g@;iﬁ: the
arrangement of Ty, TSghy, - . - TSap, n anys, ction of
Ty, Tuby, . . . TSy as it effects in the arrangement of Y1,
s « . . 3, in the same function of ¢, s, - - dur The N values
of ¢ can thus be arranged in N/r sets, sug ?hfat any symmetric
function of the values in any set is unaltéred by the substitutions

of a group of substitutions of order 7, (hether resolvable or nof,

the N factors of the Galois rcspl\;éilf ocan thus be arranged in '
the same group of order 7-

Nfr factors of degree r having each
This arrangement of the N vales iy, s, -« - iy of any N-valued
funetion of ay, z,, . . - gsk\’,orresponds to an arrangement of the
N substitutions of th‘:g{'yﬁqmet-ric groups into Nr sets in 4 manner
similar to that in &wg. 226, but instead of multiplying the meml'}ers
8, =1, 8, .58 of the group &, of order” by Z, we @ulmply
2 by 8, Sgo . S, Associated with Sy, Sgy - -+ S 38 2 st
Syfsy, S, o) Sy of r values of # such that any synmetric
functigingt them is unaltered by the qubstitutions of G Asso-
G%%éédﬁvith_ the set 59, 28, . .- 25 is u set of r different V&lllt?s
&f &, iz, 28y, ZSebys - - - 8 by, such that any symmetrzc
fnction of them is also unaltered by the substitutions of. (-
It is to be most carefully S{b\ge“r’i%lar?ﬁ ipraandratiner discu?glons
that in this hook the order of & product of substitutions 13 left
to right, and not +ight to left, which in many ways would be more
preferable. The group of an equation may be any sub-group of
the symmetrie, according to the special character of the grven
eqnation. The number of such sub-groups, bosever, among
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which the group of the equation is te be sought, is limited by the
following proposition : —

The group of an irreducible equation 1s transitive,

A group 1s said to be transitive when it containg one or more
substitutions whose effect is to replace any element whatever
by another arbitravily chosen. A transitive group, t drefore,
has in it substitutions which aftect all the clements ANow let
the group & of the equation be, if ])0“«‘:1})1(’ not L{&hqﬂnve, and
let it affect only the elements wy, @, . . . x?,,(m,K #). The sub-
stitntions of ¢/, altering only - 1m011g Lhenhebﬁa}. the positions of
these w roots, will leave their summtm‘ﬁmt tiong wnaltered.
These symmetric functions, thercfore, axe mt’eonal’lg expressible,
and the function ¥ () will admit a mb@nai divisor,

S o)

and will become reducible (ontrarv to hypothesis.

() (- =

www.d brauhbrary.q:‘g’ m‘
L \ ExXavPLES,
\\
1. To form ¢ \\?vy{tw equation whose roots are the six values of the Galais
function
.:,.‘ oyl T @y® T+ 63T,
and to e:\préss its coefiicients in termsa of the coefficients of the cubiea (4, &, ¢, d}
{x, 1V¥@Ardta’d'c’d’) (=, 1)2, whose raats are @y, 2y T3 and ay, ag o3 rospectively.
The'roots @y, 7y, =3 of (g, b, ¢, d) (%, 1)* = 0 may be expressed in the form

£
.\'\\” ary+b=pt ¢ av, + b= wp + oy, e+ b= «'p+ of

Owhere
4 ..\’ >3
;n\’ s ':

\/;

- s A,

e H = — @ 20— — @ xR Al — 6z eV

ri _ b2 % P 293__"&*&‘/&

Expressing o), wy, ag similarly, we obtain |
r ’ -] s

3p = ol + o+ wny), 8¢ &l + oo, 4+ e, 3 =6 (g elytetk

3¢ = @ (ay + wa + wlog):
Hence
Qpg” s o (fy - wly + whly), 9p'g < aa’ (P b 0™+ erfish
where
P = oy b ey + ey, e = oy + epwy + oage, = (182)

II&S = ¥y + %3 4+ ag¥y = {123) 1;&1-
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Hence
3ipg + pg + B8 = a'py B leipg + wp'qg+ )= by
Putting 3 (wpq’ + @%'7 + B} =¥
e S — & p .
da— S = B2 A(pg + PO, 2= 2 2+ Spgp (p + 2'D)
— 106G £ aw’ VDA + BHH %
::lc-ncc i s&?-isfies 2 3HH'z — {0GF + ar’ v AA’) = 0, and the process usea\\
ows that it is also satisfied by th, ¥ Hence if @’y — 36b = 3z, & )

By — ) (g — o) (g — ) =27 & — SHE 2 — & (66 3 gai’v}AE)}.

?B;L; i]; Tf : 1: L\. Alia a porfect. square, the equation in z i3 ra,tim:al,zm(i*the Galois
o, as a rational factor, whose group iz the altemf“"? %@"‘?’ viz. 1, (152}
The other factor is found by finding 29", 9¢” ﬂnd\f'bta-i‘;iﬂg as nbove
3 e e . s . ks /] ; - .

(29’ + qu + bb) = aa'yy’s 3{e’pp -+ etd Y= ety

NG lapy’ + wlgd + )= aa'dy'y

where " = (23 : b
e 4 (23, = 1) g SSA12) gy, and thersfore pucting

: f‘bl - Sbb_ — 3z, we obtain as abovessh SHilz — (G0 F wVBA) =0
;hlch equation is also satisfied by AN .'.{’a!-

ence, putting an'y = 3 (z + B&’ﬂ%@mmﬂy Org.in

1 . . ~ , —
@ [y — ) (g — ') (g Sl = 27 o7 — SHEE — HEEF NG

The product of the twp faetdrs is Now
@A - G 4 4FE NPT g = (p — @ wp — P

rational, and gives the Galnis resalvent.

— gl

: 811 {2, — #2)* 1 275

s of the cosfficients isa perfect sqUare,

X/
an e N v/ )
d henee if {3 — 5} expressed in term
a, are givel, the similar

the Ga‘lofa{‘?_? Ivent has s rational factor. A8 oq; G
valne S8 WA’ is rational.
N\ the alternate is the only transitive 8
) c“?"f bf three elements, the above is the only ¢
@\ third degree having a redneible 3alois resolvent.
24th degree, whose ooty are the
4 oagry + dets T @GP and, secondly, t0
ved into rational factors, expressed

ymmatric in the

ub-group of the s
nations of the

laas of irreducible eq

4 2, To form the equation of the several
values of the Galois function %
determine the conditions that it can be resol

in terms of the coefficients of the quaa’tics
{a,b, o, d, €) (w, 1} and (a5 by £0s s &1} (3 115
s 2y (3 Td respectively.

whose roots are @, %y T 4 and
e in the form

The roots @, *p, ¥ Tg DAY be express

az, 4+ b = /3 -+ VY + Ve axa"i‘b-—-—'ﬂ/yl'i“\/yz"\/ysl
ars + b= V- WY — Ve av, + b= "\/?h‘"\/.':"s+ V¥
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where v/ 504 = — L &, and ¥, 7., w, 2re ooty of
¥ 3HY R (I — ety — =0, (I

Expressing ay, a,, ay, o, similarly in terms of 4/8,, A/ By 4/ Buy where 8,, 8, B, are
Tools of 4 similar equation obtained by substituting dotted letter for undotted,

and /8 v/ .4/ Bs = — §F, we obtain
o =ale - mt o —ow), Ay = aly toa — Ty — ),
- Win=aln ~n—x ‘{Yﬂ;
AV = a (o — oy + 05— ag), A/ By = o' (o Ay ag = agh A \
4\/183 =a'{a; — %gs';“qﬁ’{— agh
Hence X U
6 By = an’ {dy — do + &y — o), I8/ v/ By = ua’ ’;:{_ s — dy—sh
163/ 4o/ g = 0a’ (§y — dp — ¢+ &g)s 1680 = uu’ (%% et ¢+ o4
where NN
$1= @@ + apty + ag¥y - agry, ¢y — (1,2 (3, &y, . = (1, 3} (2, &) ¢,
‘x;\" é.;: {1, 4) (2, 3)&1'
Hence 4 (43114781 -+ v/#00/ Bu + 4 Mo BQ:{'"&N}M= e’ gy, with similar values for.

Par B35 $os the corresponding signs being £,

\.\{_\)'_r "| : +y TTa T TI Iy +l +‘
Putting aa'd;, = 4 (kb - z), \ o

= 4 a,.\',' 4ord Ba 4 A Uev By
www.dbl'aulibrl:al'y?o#fg{i% :’__,V_.J—‘V_'g‘ T VB
2% El‘l‘fl';l'”} ZEV Y B e Bas
ol — Zy Bt = ABH BB, + S I v ey Py BV B 2
Hence, if '\\
= gy & %Szx + e and oy w280+ 126 1 WA
et 2z® — 206" — gyt f 2y, 0= 0,
which by the pﬁo:g;sa nsed is also satisfied by du do due
Now By ¢he last example y, is a root of a cubic equation invelving the
irra,tionai],g;u.a’nt-ity
H(Ki—“:ﬁé) = (v + Ve (Vn — o) — Uia (5 — ) da b = %)
A\ - — asTT {o, — ) f 64,
and'is obtained by caleulating #,, @, for the equstion (1), and Hy', Gy for the
oo O \plmilar equation with dotted letters; and so putting yy = 3 (HH 4+ ) the
\\, “equation is
4

) P ada’ . ., 5o {2
T - 40 PR __ =t
w = ety ~ o (217 £ VDD =0
where
T2y — 2}t [ 642 = 1L (g, — )2 = — 27 (G4 + 40,%)

eab (13— 2TJ% ] 16 = a5} 18
and .-. D is the discriminant of the original quartic. The oguation thercfore

involves the irrational quantity +/ D only, as v/ 7 is rational for o oy Gy iy
arc glven,
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Now y; = 3 %F:* + Yo BT -+ 3378, being a gix-valed function of wy, ¥ ¥
is by Art. 229 cqual to a rational integral function of i, whose degree is 5, and
which may be reduced to onc of degree 2 by means of the cubic (2) which
o = 3 (HI + w) sutiufies.

Hence, putting aa'¢ - 4 (66" + 2, ¢y $1r fy 6y a7 YOOLS of
2t — izt — 266z 4+ Py - Qi + E =0, (3)
where P, £, R involve lincarly the irrational quantity VO

Eliminating o, from (2) and (3}, we obtain an equation o

in z involving \/D, which therefore, if D is a perfect square, provides a rafional
O

~

f the 12th degr \\

factor of tie QGalois regolvont. )

As the other Toots, i, ¢y, of the cubic (2} for ¢ are (3htainedd@§;tﬁ‘e enb-
stitutions (152), (123) operating on g, considered as 8 function qu{é\, tfat Y 8l
as the alterations of g, to ¥, #; 10 ¥ ¥ 10 ¥ in the cxpressipi{s Gor /v A Y
A4, in terms of @, =y, 2, ¥, are ocgquivalent to altéxitions of ®, to %
&, to 1, 7, to z, respectively, the other values of éy do Do Ps
s 1y arc obtained hy operating with (234} and (323 on biy o o Por thus
Obtaining 12 values whose group is the alteruafg-geotD- Similarly, the cubic
for ofy’, &', &y, obtained by changing the sign: of 17 in {2), since i’ ¥ '
are derived fram o, by the alterations of 3 %0 ¥ ¥s b0 Y W1 to ¥ respaclively,
is azsociated with 12 values of & nbta’irjcd:’by operating with (24); (34), (23}
O yy By e by IV Dis adjoiped fog o ratignal domain of the coefficients the
group of the guartic becom(jls ﬁ%g?gaatgigggﬁy‘?{%mmn & oot of the
egnation for i is adjoined, tl%, group becomes I, (L 2] (3, 4} (L, 3} (2 4),
{1, 4) (2, 3); and we note ghus, as the values of ¢ cad be exprossed rationally
in terms of any one vl '}&1 {Art. 230, Cor. 2), the other ratiomal factors af
tho Galois Resolventtare the five obtained by substituting e Yu A ﬂf{s'
for 4, in (8); anddixther we verify that the group of each of those factors 18
Lo(1,2)(3,4), (N2, 4}, (1,4)(2,3) a8 this group is pnaltered when frane-

assoviated with

forwed by angysubstitution. '
3. To détérmnine under whatb conditions the Galois resolvent breaks up into

factora uibh‘é oage of the guintic
valued function instead of the

Tf}j&nd these conditions we may use any 120-
GEL]QE’S' function ¢ — oymy - g2y + ®fs - gy T GTar .
#uge,the form of i obtained by replacing & by a, o being an imagm
of unity.
The function ¥ hag 120 values; and whe
condition g® == 1, the Galois resolvent takes the form
(F— ) (P — ) -+ - O ) = 03
tor, i , is a root, so alao are atdps 2% &My, atifty

We now put % = & and from the valucs of 8 select the following
fy — (om; + aft + a’r, + o'ty + #Ys
0s = {a% + adxy + oy -t a’r, + 3‘5)_5’
33 = (a-“xl + oy +- atey + el -F P

#y = (0.4.‘".‘1 + ats, + adry L oty + x5)%

and In particu]&r rany
ary fifth root

n o s put in place of ay, with the

four :—



,

N\

N

) Y
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of which the last three are obtained by substituting in suetession o, a® alfora
in 8,, and redueing by the equation ot — 1. It should be noticed that, since fisa
prime number, if in the serics o, e, a2, at we replace o by o, tho same roots
are teproduced in a different order.

From 8, &, t, 8; the 24 values of § can be obtained, in six sets of four, by
the six pormutations of w;, @y, 35 for @y, huving all the multipliers possible
viz. a, af, 2%, o', noed not be permuted.  Every symmetric function Of 8, Oy, 3, By
has six valucs obtained by the same permutations.  The resolvent ia thereforo the
product of six quartics of the typo \\

g |- 46 - pf2 L B - 7= U, ¢\
8 O
Again, since 2 55,.’\1-_,!‘ is the sum of all the values ¢—\7F‘ CATL g.sgt%me, it iz un-
1

changed by any substitution, the order only being aﬁeutéc}} it iz thevefore
expressible by the coefficivnls of the quintic; whence, ngRifg p = 1, we find by
Art. 220 that ris a rational function of ¢, The same isfele ¥or allthe cocfficlents ;

. \/ S ns
therefore if one is known, all are known.  Nowy, le;%\p 2.0, then Z'd," ia known,
/ 1

and we can therefore form a sextic for dcterm\h;i}\g ¢ 3 and by adjoining one roob
of this sextic the equation for f {and ,tﬁ‘ewfom all eguations for 120-valusd
Fncion i i PG wiongup it
combining the group commor tq‘%;,‘ﬁg, By .0y ¥iz. 1, A, 47 4% 4 where
A = {54521}, with the group L, %5 "2, B3, where I =: (1342}, and B, B% B
transform 8, to 8, #, to 8y, aod &, Yo 8, tespectively, or ity trunsformation by one
of the substitutions giving the five permutations of &, % Z3 .
Thus the solutiongsf the quintic depends on the solution of & ‘SF:XfJIC,.}LR
Luagrange has poiptcdhbut. The analogous methed was smecesstul in E‘tolf‘mg
the cubic, by redfiding it to a quadratic in % In the case of the sepbimc :"
similar treatugdutsof the Galois resolvent would reduee it to 120 sexties I ¢

"\w
%\t‘:ﬁ]r}ﬂ IV.—TuE ALGERRAIC SOLUTION OF EQuATIONS.

W ) :

23335, Application of the Theory of Substitutions tof
AN _

\Ahe Algebraic Solution of 'l*}quatious.——The Pmblem 0

the solution of an algebraic equation may be stated as follows :—
Erom the given values of the single-valned functions, Py, Par - °
viz. the coefficients of the equation, to {ind the value of an
N-valued function, viz. a root of the Galois resolvent ; for e
bave seen (Att. 230, Cor. 3) that each of the roots Fy T ot
can be expressed rationally in terms of any Galos function-
Althongh the actual determination of the roots in terms of the
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oiven coefficients 1
yet the statement

s not facilitated by this mode of proce

283

dure,

of the problem in this form is important in

reference to the question of
algebraic equations generally.
The kmown solutions of the cubic and bigquadratic may
thig point of view be presented briefly as follows :—
(1). In the vase of the cubic equation
F® - pyp? + P Pe T 0,
valued functt

- eyts BY

we have to find {rom the given single-
a six-valued function of the form a;%; + %ale
In the fizst place, all twq—g&al}léﬂ fone
Art. 229) in berTud of the tw
oV
<!
'_:w\g)st:‘f’% - 373),
g with the
ofdhr 4

o gix-valne

extraction of roots.
can be expressed rationally (
funetion

\/Ea -+ (y — T2 (1

and therefore in terms of Py Py P alon
gbgpelivients

of a known function ot th
Now we have found {A_tt-‘.:'i’-?)B, Ex. 2)
. = j{ﬁ{}se cube is two-ve
& by means of 2 cube Toot 0
dition to the square Io
A gix-valued fu
§ the equation is theor

Squa.r 153
9, Vol

T, + Wiy + W
fore can be express
the coefficients jn #
duced (cf. Art/ 59, Vol. L).
thus obtxa'i@et{,' the solution ©
completd;™

@) Tn the case of the
) gt 5 pa® + P TP

higuadratic equation

N g Pa T 0,
»\\

$

nd a 94-valned function of the form

+ agly & Gaba

v we have to &
0,%; T TR

from the single-valued functions Py P Po P4
of roots. ’

As in the pre
expressed rationally in ®

two-valued function A/ B

o-valued function ¢2
P along with
{ these coeffict

ceding case, any Tw
errag of Py P2 Par
and hence in terms O

the possibility of the solution of

from

/A
ne.
&

N

£ )
ons Py P P

the
tions

o-vajued

root

L)

d function
lued. 1 jtzelf there-
¢ o function of
ot previously intro-

netion having been
etically

by the extraction

n be

the
ents
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along with the square root of a known function of the coefficients
(Kx. 15, p. 126, Vol. L). Now, reforring to Art. 233, ix. 2, we
find the six-valued function

¢ = 3@y + Wy, 1w (@ Ty} — o (@2 + Tgg),

whose third power is two-valued ; & will be expressible therelore
by the aid of a cube root of a known function of the coefficiends.
We have now to find a means of passing from this f;i}g' valued
function to a 24-valued function. The group of ¢> 5 )Ex. 3,
Art. 226), \ N

Ho=[L (1238, (13) 24, (14 3), b r =),

and a second function belonging to the SEPNNTOTD is

o/

=, 2y — 0, — 5\ S A ALY
£y = @y — 2 4&@"?' plly

This function is rationally eXpr &dible in terms of ¢ ; and the
value of 6 thercfore is ob’rame'd \n terms of the coefficients by
the aid of an additional squarg Toot. The group of & is

[, (N (o~ 12, - 2),
to wlich the follcm&ng function also belongs :—
B {og (@ — ag) + g (g — )}

Yt is expre{sib\l'é in terms of 8 ; and finally o, which is a 24-valued
ﬁmct n“\m obtained by the aid of another square root.
process Ulustrated in these two cases may be described
a8, t‘he suecessjve ngctlon‘ of the group of an equation hy the
”‘“E]Uﬂctmn 0% defintte tadicals to the rational domain of the
/coefficients. The symmetric group is in cach case first reduced
to the alternate by the addition to the known cocflicients of the
square root of the discriminant. The further reduction depends
on the mcluded sub-groups of the alternate, till finally the group
unity to which the Galois function belongs is reached. If the
solution of the quintic were attempted by this method, we could
proceed no further with the reduction than the first step, sineé
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as has been seen (Art, 233), there exists in this case no multiple-
valued function of the roots of which a power is two-valued. It
cannot, however, be inferred immediately from this that the
algebraic solution of the quintic is impossible. Before making
this iuference it will be necessary to examine closely the algebraic
character of the formula which is the possible expression of a
oot of an algebraic equation; and hence to show the propﬂ@ty"
of the application of the theory of substitutions o the prglbfem.’
For this purpose we proceed in the first place to explair the
distinction between quantities which are to be xr@aﬁie& ag
rational and those which are to be regarded as frzakional ; or, in
Kronecker’s language, to define the rational dprivetin.

236. Definition of Rational Dom}?ﬁﬁ.——Aﬂ guantities
obtained from certain parameters £, RQ,;R'” . . . combined with
integers, by the operations of additionjsubtraction, multiplication.
and divigion (including, tl1eref?;é,::réjsing to integral powers),
constitute the rational dorg%ﬁ.‘ra;ﬁ 1 ;’r. ] 6)1-0f_ iR’, R, E™ o

The extraction of roots will, in genergI, Had o quantities
outside the domain. We Tnay, however, limit ourselves to the
exfraction of rooty foprime order, since an (mn) root can
be replaced by ab, % root of an ## root, and all numbers can
be resolved :in{(:-: prime factors.

T{ the sthdent refers to the expressions given for the roots

of the qﬁﬁd“ratic, cubic, and biguadratic equations in terms of

theiz &a flicients, it will be found, when the roots are substi-

tutdh in place of the coefficients, these expressions become
/~gational functions of the roots involving the cube roots ?f umty;i
“Ahe rationa] domain consisting of the roots of the equations an

the cube roots of unity, . .
tly if any algebraic formula which

It will appear subsequen . . whioh
i3 an expression for a root of an equation of & higher eghr
exists, it must become a rational function of the‘ro.o.t-s (w in
they replace the coefficients) involving sev‘eml‘ primitive ro}t: :
of unity; and finally, the theory of substitutions proves ‘t 8
functions of the roots do not exist satisfying such conditions,
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and that the algebrajec solution of the higher cquations is
impossible,

237. Form of the Roots of Equations algebraically
solvable.—If f(x) =0 be an equation, the coefficients of
which are included in the rational domain (R, B, R, . . .), we
say that this equation is solvable algebraically when it is posmb\i'&
to satisfy the eguation by substituling for ¢ an expression
formed of elements within the domain (R, R", .} byf\jttehns
of the following operations of algehra, viz. addltmn, aulrhactlon
multiplication, division (including therefore ramQ«g Yo integer
powers), and the extraction of integer roots, the\pumber of such
operafions being finite.

The value of z thus determined is desl}gnaf(d as an algebraic
function of the domain (£, R", I’\:' KA

The building up of this algebm}é functlon may always be
completed in the following manmer :—

1°. Form & rational functlbn “of the elements of the domaln,
www dbraulibr ary. 015 in

vig.
K\{Rr Rrr RH! )
2°. Let V be déﬁmtely one of the p quantities satisfying the
equation O
‘\ 'Vp"IF (Rf, R”, R _),

where ) ~lb a prime number. We also suppose that ¥, is not

an ofa %t p !5 power, for if it was, ¥, would be included in the
rlmltlve domain,

;3e. Ad]cﬂmng ¥, to the primitive domain, form =z rational

\’ functlo L(V,,R',R”, R .. ) in this cxtended domain, and
let V, be deﬁmtelv one of the p,., quantities satisfying the
equ&tlon

'V'P,,..l - (-V Rr RH B .)}

where 7, i5 a prime number. We also suppose that Fo_1 18
not an exact p..#* power, for if so, ¥V,_, would be included in

the domain (V,, ®', R, .. .).
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4°. Adjoining ¥,_, to the lagt domam, form a new rational
function n this new domain Fy_o (V.5 Vo, B R, .00, and zo on.
We can therefore tepresent the formation of the algebraic
function #, where f (z,) — 0, by the following chain of equations :-—
V> F,(R,R", .. )
;P ; ' 1 o O
Vv F, (V. RLR, .. ) N
Vs~ F, (V,, V, B, B, .. O m:(:A):x

v-1!

~
s
i

VP By (Vs Vay oo - Vo BLRY a0
gy =Fo(Vyy Vo - . - V), B, R’,’,;;}\.‘.),
where the functions F are rational and 't@} siumbers p prime.
Before proceeding further, it it} pe@sary to express the
functions F in an integral form, i’f\\‘tﬁney are nob g0 expressed
already ; and to fix our ideas we shail take v ~ 3, the method
being the same in every cas&}‘:'éupposing F, not an integral
fﬂnc‘t‘ion Uf TFE &Ild VS: \veﬁﬁ;ﬂmmiBﬁry_orgjn

b Vs V)
AR T

¢ L\ i
¢ and i being yafignal and integral functions.
From the,chiin of equations we have in this case
yi S¥(R), VE - By (Ve B), R=(BE-)

Y N\
AI-SOQJE;\&E'be a primitive root of the equation 2 — 1 = 0,

%3(3&1’3) (Vs V)t (@2V g, Vi) o - (" 2Vy Vo) = (V2 V-

factors, omithing the first, i8 10

2N\ .
~\J Again, the product of these
does not

\/ the rational domain of Vg, Vi 88 when expanded it X
contain w. Now, eliminating V’: by means of the equation

V? =F, (Vs R, ¥, (VZ’, V) becomes w, (Vs B)-

. . . . 3 ction
Treating ¥, in a similar manner, it is converted info & funct

of the form W, (V5. R), the multiplier being in the rational
™ ¥, becomes P (R)

domain of V,; now eliminating V,

ich
Finally, multiplying the pumerator ¢ by hese fackors, whie
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were applied to 4, &e., &c., the value of F, is nnaltered and
the denominator is a function of R = (R, R", R’ . . ). Thus
F, is expressed as a raftonal function of V,, ¥, in an integral
form.

And therefore, in general, we are enabled to write any rational
function of the V’s, viz. F,_,, as follows ;—

o O
Fas Vo, Varg - Vi By =g+ diVa = JoVEo o+ d _lT"\ ;
where the functions J are integral functions of V4, V«t‘b:\ 4V,
and fractional only in £, B”

It will be necessary now to PIove a fun&amurtza,l theorem of
Abel’s of which nse will subsequently be madp\

238. Theorvem. —If the cquations /N
fart s a3 - 0, (1
B F ~ 0, (2)
where p 1§ adgnmfbnambﬂrgm‘e eanzaaltfzneozfle satisfied, either
Jioforfon o foall mmbh ogelse one of the roots of the equation (2)
can be expressed mtmnaﬂfy\’m terms of f1, fo - - - fp and F.
Kor, suppose the~ N)}fﬁcwn’rs of equation (1) not to vanish,
then the equatloi\é\?l y and (2) have a greatest common divisor
9:"—*!}13:" + g g =0, (3}
the coeﬁiciey%s of which are rational functions of F', f3, fa. . - o
Now if-mf{be any one of the roots common to the cquations (1)
an{i \(Q‘},” the other roots will be of the form

N e, wPe . . . wherew? — 1~ 0;

P B )
Again, since p is a prime number, we can find two numbers B
and %, of which one is negative, such that mp + #p = 1. Also
g = ™™ = o, ),
p
and thercfore by (2)

? T .
mnﬂxl . Qme ;
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therefore w""z,, which 18 a root of equation (2), 18 expressed
rationally in terms of F, fi, fo, + - .

939, We proceed now to make a further reduction in the
form of

By = dg v I Vet Ve i dp PP,

so that J, may be equal to unity.

Let J, be one of the coefficients Jpdo o o-
vanish, and putting N\

TV W,

na@utive, such

7
W

<
which does ot

N 3

there are integer numbers m and #, of which one is
that A
v/
Hw + BPy = 1;

whence 0,'{\\;
; i — e N\ T -
T = SRS

therefore, we have W\

v, = Wridiabraitierarl g in
Hence ¥, and W, can be expressed the ope ‘n terms of the other
and the elements Veyyolases - - - Vo0 5 th
(VEJ -Iro..l,l, P Vw: &R”, .- .} and (W'a} Va-{—l’ N

at the rational domains
LV R R,

are equivalcnt,3:;
Again, there is no power 0
. . & Nod . .
m this Qﬁg}mm. For, if
Y

f W, lower that Pe which 1s rational

) o\w~ Wg- - @ (Va.vt—l’ Vﬂ_}_z, .o Vv)’
where 7 < pu,
O Jiv:q - & (Va+11 Irﬂ+2! o V”) ;

&
/' but iq is not divisible by pe, fOT Pa being a prime 1l :
dividz x or ¢; but bo{hpare less than p,, and hence i‘_lt}tlmi
kg = mpa + v there iz & POWeEl rof V. . less thautf Pa ;V 11'3\ o
rationally expressible, but this is impossible, P being the lo ; |
power of ¥, which is & rational funetion of Vargs Varrr -0 77
Moreover, by raising We to the power Pa W€ have
e = JouFs = W (Vas Vs v, BB
VOL. IL u

ber should
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whence we learn that W, like ¥, is given by a binomial equation
of the degree p,, and we can replace the one by the other in the
chain of equations connecting the V.

1t follows that we can introduce W, in place of ¥, where it

oceurs in the functions #,_,, F,_,, ... F,.
Theref. i
erefore, in Q

Foy=dot JVat LVE .o+ d, Ve —1. N
when we replace J hVi by its value J, (F gkw’“‘, this
function s of the form L, Wf', where mh = Ipey ?5,, and L,/
is a rational functionof V., Fare ... Ve, Whj{,{h\ ah be rendered
integral by Art. 237. . x\

It should be noticed that when #\is given the values
1.2,3,4,...p,— 1 in the equation :rg\z‘ Ip, + ', &' has for its
values 1, 2 3 P — 1 in sonig Grder, since all its values are
digtinet and less nha.n Pa; alsg dizice mw + np, = 1, x is the only
value of % {for which the 1emamder =1

Wonweer therauhikary on gm

Foi=Jy b u N LU A WET

where the L's hav\been rendered integral and L, = 1, and we
return to the ON notation by putting V, for W, and Jy= 1
We have then) finally, the important result

P4 _ . 2,1
Py GV Ve Ry = Jy e Ver TVE 5ot Ty Ve
Wth’e expanding the function
.~:.\ PV, Ve o .. VW RLR .. ) =0u,
£\

/& root of the equation of f () — 0, in powers of ¥y (the ¥ with
lowest suffix), and making the {oregoing reductions, we have

711
— G+ Vi + Vi .+ G Ty

N

\/

240. We proceed now to apply this theory to- the solution of
equations which are solvable algebraically.

For this purpose, forming the diffcrent powers
taking care to teduce the exponents of ¥y, V- - -

of Ty 311(1
so as o be



Form of Roots of Solvable Equations. 291

respectively less than g, p,, . . . by means of the chain of equations
which define ¥,, V5 ... we shall arrive at the result

Flo)=Hy+ HV, + HVE <.+ Hy, V3 =0
by hypothesis, where H,, H,, H, . . . are integer functions of the
Ts.
By Abel’s theorem Hy, Hy, . . . Hp_; must all vanish ; for if'\\\
not, the equations O
Hys HyVyt oo+ Hy (V=7 =0, T = Fy(Vy, Vo Vi R BQY),
would be simultaneously satisfied, and wonld }\;}r\%ﬁ.‘.exact
2% power in the domain (Vy, Vg, - - . V), which i éentrary to
bypothesis, \%
In a similar manner, expanding H, in pp@ers of ¥y viz.
& _
;= K, + KyV, + K, V3. -x\j";Kﬂg—l Ve
N\
the coefficients K, Ky, - . . sho_ulglzggﬂ vanish for exactly ana-
logous reasons. But if V, beiihsent, expand in powers of
V. &o. &o \-.?w;y..g}bl‘aullbral‘y,org,jn
B2 gl A ,:.’ \Y , )
If in any case the coefficients of these successive f.unctu.ms
do not, vanish when arpangéd in powers of V,, their indices having
been reduced as nfgob as possible, it is @ proof that we h_fWe
neglected to sccutéythat each function F in the chain of equations
is not an exs){at\pb“\?ver, or that the number of the elernents ¥ has
not been ';re;i{tced to a minimum. _
We {ave an example of this deficient rcduc’.sl _
of thegithic equation which we insert now, as an illustrabion.
Bet f(z) = a® + 3Pz — 20,
"‘\‘ w4 E— ____...—-:5
\/ &“-1=\§KQ+\/Q‘Z+P3+\7Q—\/Q‘+P3'

The chain of equations is as follows :—

on in the case

Vol.I,p 45

Viogra Py PRe@eVy Vim@-Ve O
2y = Vl + Fas
2.
whenoe L1F (@) = PVy+ (Vi+ P)Tat Vol

) vanish
the coefficients of this equation, P, Vi + P Vs cancot
U
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identically, which is a proof that the functions J° have not been
reduced to a minimum number ; and we proceed to show that
¥, is a part of the rational domain (V,, V,, I, ).
From the chain of equations (a),
(V, V)3 = Q> — V2=~ P3; whence V,V, - — P.

r PVE  @-VaVi.
Hence, F,= ol _Q+‘2V3._. P23 2. ‘\\\

PR ¢

and so ¥, is a part of the domain (V,, V, P, Q). § )
The chain of cquations (4) is therefore reduce (1 té
(R LPE V04 V.. __.7____»"'\ {Q__.V)_W
Q'}1V2 Qi":ssxl -[2 I \T} P

2

A
N,

The other two roots are obtained by putting wV, and w?l,
for 7, the last element of the chain (ajyind therefore are
0
www.dbr aullbral ry. Qrpg Sir Q V3 V2
2t Pz

Resuming the gen{ml 1nvest1gat-mn we have
Gg+ Vi GV + GV, 1)

f(:rl} _\H ¢ H T, LV 4 H3V3 =0,
the cocﬂime%s H all vanighing, )
I\ov&'\ﬁubstltutmg in (1) for ¥y, oV, @ I1; . =V
buf\eavmg ¥, Vi .. . V, fixed, we obtain thc xalues of
;1:’3\1:3, ... x,, where w® — 1 = 0, from the system of equations
'\\&‘I+1_Gﬂ+wl V]_"FGQCUEKV:... (K=0, ].,-l,---_'p;__]')
Y and finally, from this system of cquations we have
- LS ®

whence we eonclude that the irrational function of the coefﬁclenti
V, is a rational function of the toots when the primitive root ©
unity w; is adjoined to the rational domain.
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, IL}F a Snm!r}r way by keeping fixed in (1) any set of values of
w Voo ..o Vo, and for 7, substituting w, Vo, @2V, - w 'V,
expressed as Jinear functions of the

roots rational in the domain formed by the roots and the primitive
posed that (1) gives &

rt?ot w;. 1t is not necessarily to be sup

different Toot for cvery combination of values of Py, oy o oo Vo
The FOULS may oceur in cycles, the same cyele of % roots beinQ\q
obtamcfl for every value of one or more ofv Vi Var v o - v,.. 1o
the cubic we have Vy, Vg with pr = 3, P2 = 9, and the Samé"&,r(;éx
I0.0‘tS oceur for + ¥, In the gquartie we bave Vo, {2,“ VS, V.
with py =2, po— 2, ps= 3 P =% and the same'\é:v}}e of four
roots ocenr for every value of Vs or T.. O

+ ‘There are PPy - - - py values of Vi s, t}tas calenlated, butb
hey may all occur I cycles, all the valuésbeing I‘eproduced for
all values of some cne or more of V ok 3}\ V..

_ We thus derive that every onegf-the values of ¥, is expres-
sible as a linear function of theapptifiy, These values of ¥, form
all the functions obt-ained.ffﬁ;ﬁ one,l ::giuyéoﬂ%;hi)efmuting the
roots in every way, for le };roduct- (- Vy)of all the velues
of & — ¥V, got by gitid V, every possible value, is equal 0
IT (@ — V1), singe' V, is a value of ¥, so is also w V1 @iV

LT and 1T (¥t — V7 i¢ rational since it i for
ent of the values of Vo | |
expressible as 3 homo-
o domain formed by
guch that wll = 1,

we get all the values of V,

similar :rea,s\oln% ‘independ
Now toldee that Vs would be similarly
gﬁnem}&‘fhnction aof degree P1 rational in th

thexxoots and the primitive roots wy W
N i;‘pﬁ = J_ 7
\ \ 4 y 1
L O Vy - Le V2.t Lpps et

.V, fixed, and substitute
ase the corresponding
dy obtained, we geb

keep any set of values of Vg Vo -
Va, sV szg, Ce w;’"‘lez, and in each ©
. of V¥, a8 alrea

values, say, ¥, Y= - - Yp
1

Ve = -52 Wy Vi We thus see that all the pePs -
2

pressible as stated, and as We chowed for ¥, we may

.. Pu values

of ¥V, are ox
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also show for ¥, thut all the values may be derived from one
value by permuting the roots in every possible way. We now
see as the equations (a) are all of type
Vo =do+ Vau+ Lo Vo - oo+ 0, o Vhan™?

that we may successively express ¥, V,, ... ¥, as homogengous
functions of degrees pp,, pipups, &e., of the roots, ratidval in
the domain formed by the roots and the primiti® roots
wy, @y . . . wy, and that the values of any one 7, affe derived by
permuting the roots in every possible way. "‘}‘»'

Summing up the results arrived at, we h '\fé,\}he following :—

Theorem.—If an equation f(x) = 0,8k coefficients of which
are rational functions of the quantities RONRY, . can be satisfied
by an explicit alyebraic function  ((

"\
2 F(Vy Vo 005 BB, ),
the quantities V are rationab@hd integral funclions qf the rools,
and of e BrOIRIERE RS ity ; they are, moreover, determined
by & chain of egua-timm\éf the form
ViV, Ves - Vo BLR" L)

wherein the im?i&s p are all prime numbers, and the functions F
all rationaly ™ _

This:ﬁ@ebrem makes it possible to apply the theory of substi-
tut-ipni&o the proof of the proposition that general equations of
deﬁl@e higher than the fourth are not algebraically solvable.

+The proof is as follows :—

Tt has been shown that the first irrational function ¥, is the
.1 Toot of a function rational in the domain (B', R . . .), and
as ¥, is a rational function of the roots wuch that V% is symme
trical, it is, by Art. 232, the square root of the digcriminant &,
or of the form Sv/A, where § is a symmetric function of the
roots. Consequently, p, = 2.

B we adjoin /A to the rational domain, we include all ?he
one-valucd and two-valued functions of the roots. Proceeding
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ancTthe‘r step, there must be a rational funetion of the roote ¥,
which is 2p,., valued, and of which the p,_* powez 1s two—val;(;dl ,
but mo such function exists when %> 4 (Art. 233). Consei
quently the process, which should have led to the roots, ¢ b
be continued. o

. We conclude, therefore, that the general equation of degree
higher than the fourth cannot be solved algebraically. R\

In the foregoing investigation we have fo]lt;wed closely ,tiie~\

Systerpat%c treatment of this question given by Netto iii‘t.hi“s;"
Substitutionentheorie. The principles on which the iny i‘;igﬁ%ion
rests are due to Abel, who was the first to establis {ma rigorous
manner the impossibility of the algebraic soluticn uf equations
of a degree higher than the fourth. The ﬁmd\&meﬁtﬁl theorem of
the present article was stated by him ine the Tollowing form :—
If an, algebraic equation is solvable a-lggb\r’!ﬁ\é?&uy, we can akways gie
to the root such o form that all the algebraie functions of which & i5
composed cun be exﬂ‘essyw%czﬁgﬁdﬁ’jbin terms of the rools of the

proposed equation (Abel, Eupies omp‘l.aé{%;of%iﬂ Vol. I, p- 75)-

The mapner in which thds fheorem 18 a.pplied in the proof given
y Wantzel,

above is a modiﬂgajﬁi\tip\of Abel's proof introduced b
to whom the propos}tinns, in the theory of substitutions, of Arts.
Qerret’s Cours @’ Algébre

232 and 233, appear to be dne (see
Supérieure ¥oL. IL, p. 484).
_ For: .:[pﬁher information relative
the 2 der is referred to The Theory
‘},If'j?'umSide, Cambridge, 1911, and The Theory of Bquations:
, \ Professor Cajorl, New York, 1904
\/ We think it desirable to add 2
as the Galois resolvent or any equ
values of any rational N valued function ©
of an equation f (%) = 0 can be seen in & variety of ways ta be
of such type, and hence their solution made to depend oD the
solution of equations of degrees lower than N, in addition, of
course, to depending on the solution of fiz) =9

4o substitutions and groups

of Groups, by Professor
by

section on Abelian equations,

ation whose roots are the N

f the TOOtS Ty Tor + * T,
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SECTION V.~—ABELIAN EQUATIONS.

241, Definition of Abelian Equations, The Galois
Resolvent is Abelian- An Abclinn equation is such that its
roots may be arranged in m sets of p each, and that the toots
Ty, Xy, « . . I, of each set are related as follows ;— ~

. AN\
zy =0 (1), X3 = ¢ (wy) — 62 (LF!_), ry— 0 {mg) — 08 (), « - O
Ty = 83y q) = 071 (1), @ — 0 (-fm}} 0¥ (),
where 6 (z) is a rational function of «. A\

For instance, the N roots of the Galois resolyent; or of any
equation £ {$) ~ 0 whose roots are the N yaues ¢y, s, . . . .
of any N-valued rational function of the mrdots By Ly . . g, Of
an equation f(z) — 0, are so related.'.;ﬁ\l‘ﬁ in such a casc the
division into sets may be effcoted inawariety of ways. To prove
this we note that if 8 is any substitubén whatsoever, by Ars, 229,
8¢y —~ 8 (¢,), where 8 is a ratio;lé}:ffa’nd integral function of degree
N — 1, which is the same foR every pair of roots derived from
¢, and S8, b Ty SRELAMEcA T, so that STd, — ¢ (Tg,). This
lagt result follows als{(by regarding 8¢, = ¢ ($,) as an identity
involving z;, #, , «{r, only, obtained by substituting for the
coeflicients of f (é)\t}leir symmetrical expressions in terms of the
roots, and hente’as Sb, - 6 (¢,), STS, = T0(d,)~8(Td,). Now
some power NS equals unity, say S? =1, and accordingly
arrange-{he roots in sets of p, each of the type

O ThST STy, ST,
.xg}:lé’te we take T = 1 for the first sct, and for each subsequent

et take for value of 7 a substitution which has not been used

N\ up to that stage. We proceed in this way until all substitutions
have been used up, just asin Art. 226. Now, as ST, = & (T¢s),
taking 877 for T, we have §7+17¢, = 8 (S™T4,), hence along with
S8Td, = 6 (T4,) we have

82T, = 0 (ST} — 62 (Thy), $3Th, = 6 (S%7'¢,) — 8 T),

and so on, ending with Td, - S7T4, — 0 (S-17¢), and hence the
equation F (¢) = 0 is Abelian,
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242, solution of n General Abelian Lquation,—The
roots of an Abelian equation may be obtained by solvinﬂl an
equation of degree p whose coefficients are rational intzgral
fl11f1t:.tions of a root of an equation of degree m. We shall prove
this by taking a particular case with p = 3, m = 4, and 1t will be
easily seen that the theorem is true generally. AN

Let ¢, — ¢ (#y, g, 73) b6 8NY rational symmetric function of,\
the threc roots in the first set, ¢, the same funetion of Jol1:agt§o"c-§rx
Ty, %z T I the gecond set, and so on. We have A0\ -

1 = ¢ (%1, To Ta) = g {21, 0 (21); 6% ()} — 5‘9"\(""?}
where ¢ is a rational function of (¢;). Also as g;isxa symmetric
tanction ¢; = ¢ (2o Zsr £1) = ¢ T & (7 v} = ¢ (). Simi-
larly, ¢ = ¢(wy) B = T () + Ty + b (@)} Similarly,
fom 116 () + () + 4 (o)} and, dodvich similar volies for
3, G, W have ) N

=+ g1 gt Q‘{;“g.‘f%f*@ ff) b gh{ol gin - - +hl@n)}
ficients of the equation

Tn precisely the same

~

and .. Xy, is a rational ﬁq’{iction of the coe

f () = 0, whose Togfig are o3, % - - - Thg-
7, 24 X} are cational functions of the

way we prove that
o coefficients of

coeflicients of f\(.x,) Now expressing th

oy —q) -y

by N. '*Pk\'taﬁ’s formulze in terms of sums of powers of g1, gz T» Gar
Q -
an equation of the fourth

fﬁgfdérive that gy, gz Ga Ga 816 1008 of :
»degree whose coefficients are rational functions of the coefficients

\of £ (z).
Furthermore, if 1, 72, T
function of the roots in the four sets respectively, we see in pre-
cisely the same way that Zry, 2190 Zrg; and D) are rational

functions of the coefficients of fi), and hence by Ex. L, P- 38,

74, Tay ¥, ¥y 8T rational integral functions of ¢u, 92 fa» 14 respec-

tively, which functions are the same for all four pairs.
Hengce putting g, = %1 + %2 b @y = Yy WE S8 by giving 71

r, denote any other symmetric

the
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values @y, + #3%y + @@, and myxr, that the latter are rational
integral functions of y,. Hence @y, w, @, are roots of a cublc
equation &3 — 4,22 + & () © — ¢ (yy) — 0, where ¢,  are rational
integral functions, and we note this cubic equation is Abelian,
The cubics for the roots in the other sets are obtained by substi-
tuting gy, #a, ¥y for 3, and as we see by the above discussion,
Y1, Y2 ¥as Ya are the roots of a quartic whose coeﬁicientS\N}
rational functions of the coefficients of f(x). The same\,rf“te’ghod
clearly applies when p and m arc equal to any othef)mtegers
whatsoever. PAY -
D

243, Solution of a Particular lbclihﬁ’qumtiom
When m — 1, so that the n roots of an Abelign equation f (#)
consist of one set only, the equation carg%é solved by radmals

In this case all the roots may \b@ \prresqed in terms of any
one toot %, as follows :— . QO

Zae b d oy ofin (71, with 87 (@) = 21
Take i, (2,) = {&, a’&(’zf)+a°”92 2+ .o+ aTHTe g,
where « is a special or\pnrmtws, root of z* - 1 .- 0, go that the
other roots are o?, ¢%)a%, . . . a7, and if m i3 less than n

‘.ct‘” Nea™ 4 a4, L L alnlm s ()
Substltutmg any other root x,,, ~ 02 {z;) for x,,
by (%4—1)\’ {07 (@) 4 o 877 (@) + o 677 (2) +

,\\ foalr 2l gn () - L+ aln— l}r gpm Iz}

,“:‘;\ — {a" P (2} + 0’ 8 () + 0¥ 02 (@) + . . .« DTN 2"
O =@

) =z =L 0 L = e (3,) = l— :‘J e (g) = - a rational

integral function u, of the coefficients of f yand o
Takmg nt roots, we derive n equations b} giving r the values
0,1,2,...5n-1,all of the form
£y B @) b ¥ B (o) + ..+ oL 6 (o) = A

, .
where ~ #, 18 some one of the ™ roots of u,.
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( 11%)r 7 — O the lelt side becomes @y + ¥ + T | bz

coe. - " add

fooct u;ut of gn~1in f(x))/ (coefficient of 2™ = 4, If we add
sides of these n equations, remembering that

a® b oo™+ a4+ & ginlm = ()
H

we obtain nay = 4o -+ Sy + Mgt .ot 7,
-1 &
If we multiply the equations by of, o™, a2 L. a—(n—nm\\
respectively and add we obtain A
i"\ N

Ny = O™ (2,) = Ao + a™ J'ul 4 g ‘s/uz

+ a“"""}}”‘ s/ W1

The value of the radical ~/ 1, which has 150 be taken with
by NES ﬁf\F“A (&/w,Y, where

il
%, in these equatmns is given
for

A, is a rational function of the ooeﬂ"le}en‘ts 0f f(z)and a,

Y, _nrodio sl AT a0 )

(Huy  {wtad@) ey SO A o)y
WWW dbv 5.111].1]:»1'3.'j

Yiithget for @, In

NOW we saw above thatlfwj, R
z, o at (@) a?'\Qx AR afntr g1 () = = w21y
the result is a(“ P% (a"l)
\J al#y wr(ml)

‘_‘XV‘ [xl)'

e (TN e e
“J‘\‘}) ey
\X‘r m1) = Xr(mz) = Xr(ms) =T Xr(-"'"n zx" )

coefficients of f (%) acnd q, Henoce the

ot Zmpr T2EY be written
R
Hence Abelian

e Tatmnal function of the
general expression for a ro
Ry i1 = Ao+t A+ - -

which has 7 values onty.

where ¥ = —m iy
re solvable by radicals.

equations of the above type &
Equation

fsolving an Abelian
and when

ts form one group-
chortness W€ take the

9244, Sccond method ¢
Flz) = 0 when 211 e roe
also the degree 7 of f{x) = WP —For
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case when p - 3, m =4, and the general method of proof follows
obviously.
Arrange the 12 roots in 4 sets as follows :—
Y=y Bk oy = B () + 68 {ay),
o T+ g+ T = 0 (@) - 65 (@) + 6 (),
Yg = Ty o+ Xq + Ty = O () + 85 (2y) + 0 (xy), s &\
Yo — &y + By i Typ = O3 (2) + 87 () = O (). \\
As in Art. 249, taking 8 for 6, 7, 6% (zy), 6% (o) are r({m’s o
cubic equation whose coefficients are rational functmnwf Y, and
Y15 Ya» Ya, Yy aTE TOOLS Of A qumrtw whose coefficic ntaksre rational
funetions of the coefficients of f (). But in thl@ﬁ&bu the quartic
Is also Abelian of the same type, for we shall prove w; — b ().
Yo = b (), oy = & (43}, 11, — & (94), where gb\i‘% /o, Tational funetion
of the coefficients of f{x}. 1f ¢ is &nxx}«teger we have
Yoy = (Xp + g+ a0} (B + %5 3:\9}331) + 83 (@) + 6% (2,)}

1 5
www.dbraulibrary. org m {£1 + 04 (xy) 1O (9"1)}

= x {7y R\

= (g | Tag+ o) (5 g + - @) = {0 ) + 0% {25) + 99(“3')}
™ fy £ 04 (ag) + 6 @)}

= xlm) K87

Rimilarly yzy, = x (xg).
In the samé"{\ ay Yy’ = x (L) = x (Ze} = X (%)

Yalfs = X"@%) = x (%) = x (@), y¥d — X (Za) — X (zg) = X {@12)s

a8 i, @e Tatber case 2, = 8 (1), @5 — O (1), 35 — 8 ().
que
P + o  wars + yas = Hoe () + x(@) + - x (@)= To

where 7', is a rational function of the coefficients of f ().
Taking » = 0, 1, 2, 3, we have

Yot Yo+ Yo+ = To

Yo + Yl + Yalfs ~ U= Ty
Yals® + Yalfed + Yoyt + iyl = Lo
Yy + sl + yays® + it = T,
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1 hence s in Atk 226, g5 = () 1o = ¢ (e 92— 9 L)
L é (y4), where ¢ is a rational integral function whose coeffi-
ents are rational functions of the coefficients of f (). Hence
he quartic foT ¥y, Yo ¥a ¥a s an Abelian equation of the same type

s f (x), and similarly the equation of degree m whose roots are
he m sums of the roots in cach set of p is Abelian of the same

ype as f ().
od the solution of an Abelian equation A
actors, be madeAOn -

Generally by this meth
f this type may, if » can
lepend on the solution of Abeli
ind lower degree. Thus ifn=
lepend on the solution of an

be broken up into £
an equations, all of the same'b¥Fe
24, the solution may beade to
Abelian equation of dogree 12
vhose coefficients depend on the golution of an Akglish quadratic.
The solution of the Abelian equation of degréeyl2 may be made
to depend on the solution of an Abe].ia.n;}e’}gtic’ whose coefficients
oin 1d Iastly the

depend on the solution of an Abelian ‘guad.mtic, a
tlnd ‘of an Abelian cubic whose

solution of the Abelian gexfig on i

coefficients depend on the sb{ut{élil oF Yy SFelion quadratic.

245. Solation oi‘a'}i}nomiul Equation &~ 1=0 when
X3

p is a prime numbeR
0, all the rootd

If , is any rdot other than unity of #¥ — 1=
2 g1, and so the raots of

are included ih.$He series 1, & 0y - -~ 7 ]
(¥ — ])/(3—\1) 0 are ay O -1 (Vol. L, Art. 49). Now
we shaiz\'pfove that we cab obtain an integer & such that the
r“ﬂ%ﬂ'ﬁ.}]ers when @, a?,8% -+ gt are div ided by p are 1,2,...p-1
der howevet of 71 heing Wity Hence

b1

if{?bine order, the Temain ng W
he roots may be writhen in the form os% oy M
. for o), they Ta¥ be

and so taking 0 {¥) =% ; _
written in the form s 8 (), , .. 8 (,), Witht
o1 () =

Hence the equation (a? ~ e -1~
which all the roots form one group:
In the following proof of the ahove statement, all letters

= a;l'
0 is Abelian of the type 10



302 Abelian Equations.

denote integers ; p is taken to be a prime number ; all functions
of z are rational and integral with coefficients which are integers,
the coefficient of the highest power of z being unity ; and the
symbol = in f(z) = & () denotes that the remainders are the
same when f (z) and ¢ (z) are divided by p, and so in particular
f(z) = 0 denotes that f(z) is divisible exactly by p, = being of
cotirse an integer. Such quasi-equations are called congmcncj,esQ

(@) If @ less than p satisfies f(x) = 0, z is called a ropk o
fl{z} = 0. Any integer a + mp elso satisfics f(n = ’Q,s"s’rl'lce
a* = (@ + mp)™ and ... f{a) = f(a +mp); but the t-gsngﬁfbot of
f{z) = 0 is restricted to the integer which is less t@n“ﬁn

Now f{#) = 0 has not more roots than its deégree n. For if
@y is a root, f{z) = (x — a;) f{w} 4 B,, and a3 fle) =0, R =0,
o f(3) = (3 - ay) fi(@). If f(2) has a scednd root @y, We must
have f, (@,) = 0, and .. as before f}\(a) Y (x — ap) fo (z). Pro-
ceeding in this way, if f{(#) = 0 of degac's has n roots Gy, @y, .- Ons
we obtain f(x} = (& — a,) (& — a0 2. (z— ay), and so f{z) =0
has no other root, as no othe;:‘\fafﬁe of z less than p can satisty
(&~ a) (z—ay) ... (%—axi= 0.

{b) If f(z) of degre(<€@ can be broken up into factors f; (z}
fo (@) of degrees I, and - I respectively, and if f(z;) =0 has %
root, as each roof st satisfy f,(z) = 0 or fo(z) =0, fi{®) = 0
must have exaeply’l roots and f, (x) = 0 must have # — l.

(¢y If 1 2;?.’ . p - 1 be multiplied by any number @ less than
P, the remdimders when a, 2¢, 3¢, . . . (p — 1) a are divided by 2
are all@ﬁémntgllamhhhmgsbdgeiﬂ, 2,3,...p— 1in some ordet,
forhhot Iz — ma — (I — m)a would be divisible by p, which is

o«il'—.'l'l.}P(.)SSib].B as I and m are each less than p, and p of course is &
prime number. Hence the product of a, 26, 3a, . . . {p-1ea
— the product of 1, 2, . .. p — 1 is divisible by p,

21,85 p—D(et—1 =0, a7t -1 =0,
and therefore the roots of #2=1—1 =0are 1,2, 3, ... 7~ L.

(d) If we take any numnber a less than p and therefore of
course prime to it as p is a prime number, some one of the re-
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mainders must recur when a, @?, a3, ... are divided by p as there
are only p—1 possible remainders, and so 87" =¢’, . ¢ {a-1)=0,
g1 =0, o =0, the first » — 1 remainders recur
n the same order perpetually. Now by (e -1=0
n—p—1oris less than it. If it is less it must be a divisor of
p-1. Forifp-— 1 = mn + 7 where 7 is less than n, as @* =1,
o qrmgt = 1, b @™ =1, 88 gnee g =1 . @™ = 1, and hence \‘
Hoar =1 as ™t =1, 00 1, .. n 1s not the least integer for
which a* = L. R\

When @ is such that it 18 2 roop of 2% — 1 =0, and 3}91; % 100t
of any congruency 2% — 1 = 0 where # is less thanxn\{it; 3s called
a primitive root of 201 = 0, and is such thqt.’l;hé‘ remainders
when divided by p of a, a, ab, . .. oV a2 w1l different and
different from unity. The theorem themwhich we have to
establish is that x#7'-— 1 =0 has .prim'f;ive roots.

(¢) Bxpress p— 1 by its primé;;fidtors, gy p-i- grms",

where g, 7, § are prime numberss o As 28 1 is a factor ofxrt—1,
LS

by (b) it has ¢ roots, afﬁi‘@g};kljmﬁith mﬂ{t,-s&]gg l_slatisfy #F-1=0,
where & is less than ¢, & by the same regsoning as in {d) puust be
a factor of ¢; a,nd\'@so s o~ 1 =011 g ~1=0al such
oots mush satigff -1 =0 A9 g1 is a factor of p - 1,
2 -1 =0basd ! roots, and so there are ¢ roots of #-1=0

and .no mor}y “which are alse roots of binomial oongruencies of
‘ -1 primitive rootsof £ -1 =0

lower dégpee, and .-. there e ¢—q
VTE @ is & primitive rootofz® -1 =0 andboneofe” -1 = 0,
th@ ab is a primitive root of a™® —~ 1 = 0, if m, n are prime 0
s~each other.
9, “ TLet s be the smallest integ
. oambm =1, but e =1, -
Qimilarly s 13

&b ~1=0, :
oust be a multiple of @, - F 5 a multiple of %
multiple of m#. But ()™ =1

a multiple of #m, - 8 is &

mn is a multiple of s and ... 5 = M- . ;
Ifnowaisa primitive root of @€ — 1 = 0 which we prove
and b one of 7" —1=0 it follows that ab 18

o1 =0 I further, ¢ 18 & primitive

4
« M3

er, such that faby 1= a, -
. opw=1, oM

¥

N

must exist in (¢}
a primitive root of
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3014 Abelian Equations.

root of #¥ -1 =0, it follows that abe is a primitive root of
z#7t —1 =0 when p - 1 = ¢%™s". Proceeding in this way, we
prove that #7~1 -1 = 0 always has primitive roots, and so we
establish the theorem that a number @ can be found such that
the remainders when «, a? a® . .. @?~! are divided by p are all
different and that the last remainder is unity,

An important example of the theorem at the beginning ofthis
Article is when p = 17, The solution, therefore, of the binomial
equation 217 — 1 = 0, or of the problem to inscribe a .pfﬂ}“rg’on of
17 equal sides in a circle depends on an Abeliam auation of
degree 16, all of whose roots form a group, and hxeq“&e’ as 16—-24, it
depends by Art. 244 on the solution of quadrabi®equations only,
and so on extraction of square roots only. NHpfee the geometrical
problem may be solved by drawing lines'add circles. This equa-
tion is given in Vol. I., p. 102, a-q({tﬁe‘mmngement made there
of the roots arises by using the ifiteger 3, which iz & primitive
root of %% — 1 =0 for p— 19y and grouping the roots as in
Art. 244, taking 6 (z) = 220\

L QY

246, If one ro l;of an irreducible equation is &
rational fune iii:ll of one other root, the equation is
Abelian.—If f (%} = 0 of degree = i3 an irreducible equation, and
if one root s,\s a rational function @ of another root w, so that
Ty =0 (z ), all the roots are so connected, and the equation is
Abeliani > To prove this, we transform f (x) — 0 by the substitu-
bionW= @ (), b0 40 Saton o, the same degres ¢ (y) - 0. As

Y@ = 0 has a root — z,, it must have all its roots the same as

(those of f(z) =0, and in fact be equivalent to f () - 0, for

otherwise by finding the least common factor of f{z) and ¢ (%),
J(z) would be reducible. Hence all the roots of ¢ (y) = 0 are
also roots of f (¢) = 0, and hence every root «, of f (z) is connected
uniquely with some other root xg by the equation g — 8 (%)
Starting then with @, we have a, = @ (2,), then take

iy = 0 (x5) = 0% (),



\ 4

(churse, no two roots of f @

o §
h
3

Condition that an Trreducible Equation is Abelian. 305

and so on until we get @, = 07 {&1); and thus obtain a cycle of p

roots. Now as #; = 67 (x;), the equation = () is either g8

identity or has a root x, comumon with f(z) = 0, and theréfore
as f (x) is irreducible, as above it must be equivalent to (@)= 0.
Thus in either case z = 67 (%) is satisfied also by 2y, Tp & \\, N b
we start, therefore, with a root Zsy not in the c-yclé;\Btained, and
find Tpra = d (w)H—l)! Y g (931:4-2): and so on, {]{l}& new cy cle Tust
end with #,, = 07 (@), TOT Tpia ™ 8e (w, \;{]z. Were it to involve
g roots only, and so involve the equation 2p41 = 0(Fpst) with ¢
less than p, then as before all the.;‘g&‘bs would satisfy @ =8 (ﬁ),
and the first cyele should haveented with 7, = gt {zy), bub 1t
has been assumed not to do 50, and therefore g = p for it cannob
be either greater or 1ess'\’tha:n it. Proceeding it this way, We
divide all the m.;.t.s,i@b m eycles of p each, and we must have

# — wmp, and theeduation is Abpelian.  All the cycles must contail

different rootsy as if w0 had one common the next in order 1

each cycle Ghotld also be comrior. and so proceeding in ordez
all theil'ééks in the fwo ‘“é}fél’egtéf@ﬁ'lﬁbbemmgﬁqad so the rood
wit \\\‘hwh the second cycle Was started would bave 00CULT

’ d not o be the case. Also, of

‘eviously, which was assume case. "
: — 0 can be equal, 38 it is irreductble.
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MISCELLANEQUS NOTES. AN
Page 4. The numher of inversions of order consist of ’t-hEn'umber
of suflixes in front of the suffix 1, the number in front of Band greuter
than it, the pumber in front of 3 and greater 'th«"t’li’\i . and o om
Yhus the number of inversions is equal also to thc’h}mber ol conseeu-
tive transpositions required to bring first the su:ﬂi}:: 1 into the leading
position, then 2, then 3, and so on. ’x\\“

Page 17. Laplace’s developmentyof g determinant. We re-
present a determinant by (e, bs, efy » - ), implying that the first
TOW IS tte, By Cagyp . .l,,]glge secqnd‘g}g,’bg, €, . - ., and so on, so that
o bg oy A (1:3 I('ﬂg.gglorllgf“\éé?ﬁ}%{gnd a, B, %, . . . the standard order
of suffixes, which need not b§3~l,“2, 3,.... Weshall prove Laplace’s
development of a deternd ant in terms of the minors formed from
any number of rows or'cbiumﬂs by showing that A == (&, b, ¢, dye5 fs §7)
can be expanded f'tcfms of the minors formed from the first three
columns, and thd\nethod used will obviously apply generally, Take
any combingfion of the 7 suffixes taken three at a time, attach any
such triaxd\izl"order to @, b, ¢ and the rest in order to 4, e, f, g, thus
getting! §&y, ay by cq. dy ey fy g7 The number of inversions in this
tery%ﬁue to suffixes attached to @, b, ¢ being greater than suffixes
aftached o d, e, £, g, and in this case is 7. Now permute the suffixes

2, 5, 6 attached to a, b, ¢, keeping the rest fixed. The additional
/ inversions so introduced into any term, say ¢ by ¢q . iy €5y §rr 37O

also the inversions in ay bg ¢, considered as a term of (@, bg G 1
this case 2. Attach the sign (— 1)® to a by ¢y, and we have a term of
(3, b, ¢4}, Doing the same to every term arising [rom a T)e-rmut&t-ioﬂ
of 2,5, 8 and adding, we get (— 1)7 . (4, by, ¢g) 4y €3 f3 g7 Now permute
in every possible way the suffixes 1, 3, 4, 7, leaving (a,, b5, £y} UD-
altered, and in a similar way the terms of A so0 arising will give us
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(— 1)7(ag, by o) (dys 0 S g, Every combination of the T suffixes
talen three ab & time will give rise to a similar product of two minors,
and the sign to be attached to the product is (— 1)™ where m is the
number of inversions owing to the suffixes attached to &, b, ¢ being
greater than those attached to d, &, £, g

Page 28. That a determinant A writben as in Art. 141 is the
product of two determinants may be seen as follows : We note that C
as are multiplied by as, s by &8, and 50 on, and we shall call a vertioa]
column formed by terms such as byBo, baPla B2z 2 vertical col.uxﬁr’l of
similar terms. When we take a column of similar ve:;dqal%érms
from the first column of A, we must fake with it a djsgi@ﬁf.column
of similar terms from the next column of 4, and thierba eolumn of
gimilar terms from the third column of A which\js dissimilar to the
previous two, and so on gencrally. We note\ the determinant so
formed which contains (&g, by Cs) 88 factorahultiplied by 8 term of
(g, Ba Ys)» that every inversion in ardes of columns considered a8
columns of {@y, by €5} 18 aceompanied-by @ similar inversion in the
suffixes of the term of (a3, By ¥ab 80 that the number of congecutive
transpositions of eolumus o obtain (a1, by %) is precisely tha
required to give the proper W dbraudibranmcofy(in. Bo vs) Bvery

term of {ag, By ¥s) Wibf{\proper sign ariscs I this way multiplied by

(g, By, €3}, a0 wé\‘se‘e that A = (81 D2 eglog, Por vy), and that a
gimilar methodhof ‘proof applies gencrally.
. ¥ = 0 have two 100t &, § common,

Page 87 >When U = 0 and
\¢ g_}?_zo

&> R R OB B
a8 a,ﬂfi - , and ﬁﬁf— = m, therefore (o 8 34,

N ou, 08
’y.,,.: ;R p+1 ? 3R s a?ﬁ_ ) R ’
’Dhm‘ ore 3o~ = 0, and therefore Sa =0 i, s
~O
N NOTE A.
DETERMINANTS.

matter of Chapter X1l
s ** by Cauchy, this name being adopt,e.d
(tauss, who had applied it t0 certain

viz. the discriminante of binary and
5 had observed in 1683

the solution of

THE expressions which form the subject-

were first called determinant
by him from the writings of
special classes of these functions, > dhs
ternary quadratic forms. Although I:lelblllff
the peculiazity of the expressim;{szwhlch arise from
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linear equations, no further advance in the subject took place until
Cramer, in 1750, was led to the study of such functions in connexion
with the analysis of curves. To Cramer is due the rule of signs
of Art. 128. During the latter part of the eightecnth century the
subject was further enlarged by the labours of Bezout, Laplace,
Vandermonde, and Lagrange. Tn the nineteenth century the earlisst
cultivators of this branch of mathematics were Gauss and C‘-atgchg};
the former of whom, in sddition to his investigations relative\to\the
diseriminants of quadratic forms, proved, for the particulaispasés of
the sccond and third order, that the product of two déterminants
is itself a determinant, To Cauchy we are indeb#@d or the first
formal treatise on the subject. In his memoir op {I’Z?m:-ﬁa-te Functions,
published in the Jowrnal de I'Boole Polytechnigdaol. x, he discusses
determinants as a particular class of sugh ¥dnctions, and proves
several important general theorems ICIE}I-QIZL,(;{ t6 them. A greatimpulse
was given to the study of these expreshions by the writings of Jacobi
in Crelle’s Journal, and by his mem‘pii‘é published in 1841. Ameng
many mathematicians who have ,a’}}’\fz;n ced this subject in more vecent
years may %\,@p@ﬁi:&]&@%@;ﬁ%@d&in'H_ermite, Hesse, Joachimsthal,
Caylcy, Sylvester, and Salmon. ~There is now no department of
mathematics, pure or.,ﬁg\plied, in which the employment of this
caleulus is not of grdat-assistance, not only furnishing brevity and
elegance in the damohstration of known properties, but even leading
to new discoveridy in mathematical science. Among recent works
which have rén\t{ered the subject accessible to students may be men-
tioned Bpottiswoode’s Elementary Theorems reluting to Determinants,
Londety V851 ; Brioschi’s La teorica dei Determinanti, Pavia, 1854 ;
Balﬂz}r’s Theorie und Anwendung der Determinanien, Leipzig, 1864 ;
" Dﬁ:’s.tor’s Bloments de la théorie des Déterminants, Paris, 1877 ; Scott_-’s
\\:Tkeory of Determinants, Carbridge, 1880; uand the chapters i
Salmon’s Lessons Introductory to the Modern Higher Algebra, Dublin,
1876. For further information on the history of this subject the
reader is referred to Muir's Theory of Deleriinants tn the historical
order of tts development, London, 1850, In Salmon’s Higher Algebra
there are short historical notes on Wliminants, Invariants, Covariants,
and Linear Transformations, as well a5 on Determinants.



NOTE B.
COMEINED FORMS.
We give here, as an Appendix to Chapter XVIII., an enumeration
of the concomitants of two quarties ¥ and V. For this purpose it is
convenicnt to use the notation (¢, ¢)? for (1, 2) Gy, when the
distinction between he variables is removed. In this notation we_
have the gixteen concomitants (U, V)" (U, H % Ve H% A\
(H,, H',)?, when p hasthe four values 1,2, 3, 4, viz. twelve covariants’
and four invariants; but of these Bylvester has redueed (Hé,:ﬁ',}"
and (H,, H';)% so thai only ten independent covariants sobtained
in this way; we have, however, to add the foui:'\ uadratic
covaniants (G, V)% (Fw U (Ho @)% (H Gyt Theso are
the fourteen special covariants of this systen (Gordan, Math. Ann.
IL. 275). To this list are to be added the fwg"Torms helanging to
each quartic geparately, viz. Uy, H,, G and Vo, Hp G IV i’

Hence there are in all twenty-cight fotpis made up s follows :—
eight invariants, eight quadrina.}aé‘yen quartie, and five sexbie
covariants. The theory of two.tb’irié,r}' quartios may be reduced to
that of three ternary qﬁiﬂ{ﬁ?@?ﬁliﬁﬂiwﬁmmc. See Quarterly

Journal of Mathematicsy €L . P- 339.
The Table which zﬁéﬁbws gives the number of forms of the com-

bined syatems frofnl, L to IV, IV.:—

N

s N/ [__"_—_'___'_ !
AN© 1 | L | I IV
A I P I i e
o) L s | s B '.
\\ 2 ___|
R\ e ——
NS I 6 | 15| 18 |
L 26 | 61
' v 28 |
fﬂ_ﬂ_______ﬁ
NOTE C.

T QUINTIC AND 17§ CONCOMITANTS:
t coneomitants a3 twenty-

§ indopenden ,
D o toll firat fourteen, Vi four

Ay fixes the number
s d as follows +—the

three, which may be derive
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invariants, four linear covariants, three quadratic covariants, and
three eubie covariznts come from the covariants I, of the second
degree and J, of the third degree considered as a distinet combined
system in the manner of Art. 191, One reduction, however, in the
number there obtained (viz. fifteen, the number of irreducible forms
of the combined system) occurs in this case, for the resultant &\
I, and J,, or R(I.J,), is the same as the diseriminant of Jy, or
A(J,), both leading to the same invariant of the twelfth ogg'ei‘r;’ln
addition to the fourteen thus obtained, the remaining, nire con-

comitants are defined as follows, K, being used to denot{‘the Hessian
of J,: &

Quartic Covariants: Ip (H,) =@,, &4 ;.ny) R
Quintic Covariants : U, J (Um, I. ]\\ g0, K)o
Bextic Covariants : H,, J (
Septimic Covariant : J{H,

Nonis Covariant : J{U, ):\..

\

The foregoing results are collcotcd in the following Table, where
p signifies thwﬂ’ogld_’@r‘ﬂublb@amm‘igelﬁ, @ the order in the coefficicnts
of the quintic, and N the g]\nmber of concomitants of each degree :—

P\
A
D '\ w N
— : [ | I —_—
N0 4 8 12 I8 | 4
SO |
O 1 | 5 7 11 13 4
N\ :
) 2 2 6 8 .3
...\’ Y ———— _— ——
a \ 3 3 6 o S8
QO R
4 4 6 2
5 1 3 7o 3
G 2 4 P2
7 5 : I
5 — —
9 | 3 f | 1
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Adopti_ug tjhe definitions of the invariants given by Clebsch and
G-orda.n., and implied in the following equation (see Arb. 190), the
connexion between the four invariants of the quintic is estahlished ag
follows by Gordan i(—

- (Ia'-: K,) = Iq.sz - 2ISI-J:K.¢ * 112132;

also pJ)=L.= Lo+ Ly ¢ \"

Now, substituting L; and — I for = and g in I, K., and ;in,\
J(I,, K,) we find S Ig=FlyIs Lo o\
since R (L, L) =130 - 167ds A\

O
R (K.'L’} L)-= 182 - I-!,IIZ' '\x‘\
Thus I is defined, and its square expressed I tarms of the other
invariants which are mot skew. N
€
' O
NOTE )
THE SKXTIC ANDY ¥S CONCOMITANTS.

Tae first sixteen of tm%w%mﬁow_ﬁ %]?‘Fi gextic come from
1, and L, treated as 3 e({ﬂsbined systern (Art. 217) Ir this way wo
obtain all the invarialits. quadratic covariants, and quartic covariants.
There are in gené‘rz}} éighteen forms in the combination of a quartic
and quadratig ¢ ‘put, in this special case, owing to the nature of the

coefficientahihe invariant Dy, whick i an invariant Iy of the sextic,
is expréguble in terms of the invariants Iy Iy 1o 1M the form
732 £ I, is reducible to

I -—-\él’f gL also the covariant gextic ©
thos which ocenr in the enumeration which follows. Tt should be

:“\’Ir;(;t-iced that all these forms até even in the variables, »%0 — 2k being
) « eyen for the sextic.
v The following is & complete epumeration of the covariants —

Quadrics : L.,=1Ip (0, M,= Ipll), Nc= Mpil)
J(Lg Mah J(Ly Nob J(M ., Na)

Quartics : Lo H(L): J, L) J(Ty Mok Sl No

Soxtics: U» Iw HU, L) J(U, M) J(J o L)

Octavies: He J(U, L) J(Hy Lo

Decimic: S ol

Duodecimioc : G
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These results are collected in the following Table, in which p is
the degree of the concomitant, @ the order in the coeflicients, and
N the number of each kind :—

! |
» | w N
0 2 4 6 . 10 5 [ & A\
‘ 20038 8 7 ‘ 8 ‘ 10 | 12| s (M
R D e _ - —_ i
4 2 a5 7 g ;7 O
| .
N = L
R | 3 4 6 6 s
TR e | ‘ N
i N
8 2 | a !l s ‘ 3
- | B— — S e —
10 4 | 1
! O\
|_ —_— e e — - _%\'. =.
Poig 3 . ANV 1
! | ! % }"

The skew \awmxibnﬁulﬁlp{mﬁzlsﬁgﬁiﬂ of the combined system
I, and L,, being the skew inwatiant I, of the sextic, its square
can gimilarly be cxpresqed'\{h terms of the invariants of an even
degree of the sextic. e

It will be noticed t’h%s there are two covariants of the sixth degrec
in the variables, and of the sixth order in the coefficients ; this is the
first instance imwdich there are two irreducible seminvariants of the
same order aﬁd “weight in the binary system.

It ms b}: observed that if the ternary form of any three of the
qu&draj&@\covarmnts be taken as lines of reference, the sextic will be
rcl?;gé’ght-ed by a cubic and conic combined, such that every coeflicient
il\;thia equation of cither curve is an invariant of the sextic.

"4

NOTE E.

I illustration of the principles of Art. 208, and in order to account
for invariants which being linearly independent are not algebraicaily
80, we add here some examples taken from various parts of this
volume,
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. (I.): Tn the case of two cubics (Art. 192}, we have nine equations,
including A’ — A'p = M, to eliminate A, p, A, p': henee five in-
variants, which form a list algebraically complete, since the com-
binants P and @ of Art. 192 can, when squared, be expressed
torms of the five which are of an even weight (cf. Bx. 29, p. 213).
1t is seen therefore that, although there are seven linearly independent
invaziants, only fve are algebraically independent. A

(2). In the case of the quintic (sce Note ) there are seven™
squations to eliminate A, p, X, p', giving three algebraically in{ibigep-
dent invariants. Of the four linearly independent invarianfsione 1s,
when squared, expressible In terms of the others, for 3 -

Iii=F (Is Lo L) \x 1.\

(3). In the case of the gextic there are eighd aguations to eliminate
A g X,y giving four invariants algebral My independent. The
sextic has, however, five lincarly indep&;n’dsnt- invariants, these being
conneeted by a relation of the form v

It = F (B To Too)

wheze I,; is the skew mmaﬁﬂbvhd:hﬂge«grﬂ}b@,eg gystem of the quad-

ratic I, and the quartic ﬁ; {Note D), whose square has been ex-
t5 of an even weight (Ath. 217.

pressed in terms of theother invarian ;
It is instruct'\.ai&jso consider the aheolute invariants of a binary

quantic froma 'ge metrical point of view. If then roots he

“\:'“ a, }85 b P Posr 0 Frn-3

there & — 3 independent anharmonic ratios whi

sented “as follows :—

ch may be repre-

Aa, By v pu-)-

ly expressed in terms of
ltexed by any linear transformation
3 independent, irrational, ahsolute
er, be implied by the 2+ )
@, and
es of

All the anharmonic ratios can be rational

these, and, since they are una
(Art. 38, Vol. 1.}, they are % —
invariants, These resulfs must, mMoTreoV :
equations connecting the old and new coefficients &g, @ -

Aoy Ay - - A, since they embrace all the genersl gongequens
every linear transformation of the quantic, however expressed.
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two quadratics, 158
quadratic and cubic, 160-
two cubics, 161
potes on, 309
(toncomitants, 158.
of the sextic, 233
Continuante, 63.
Contragredient, 204,
Contravariants, 204.
(lovarients, definitions,
formation of, 113.
pmpert.ies of, 116.
formation by operator n, 117
theorem relating to, 119
double linear transformation &p-

plied to, 120.

quantic,

112, 122.
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Covarianlg—
properties derived by linear trans-
formation, 123,
propositiony relating to their for-
mation, 12§, 124, 130,
derivation by differential symbols,
132,
of the cubic, 140,
their number, 143,
factors of sextic, 143,
of the quartic, 144.
number for the guartie, 153.
special, 158.
Cramer, 308.
Cubie, transformed by Tachirnhausen’s
method, 175,

Determinants, definitions, 1.
propesitions relating to, 7-28,
minor, 12,
development of, 12, 17, 18, 20,
addition of, gl dbraulibrary.g
multiplicalion of, 28, 307.
reciprocal, 41. \
symmetrie, 43. .’\\
skew and skew-s ymmct.rixe;}(}.
miscellaneons examples(ingy' 52-64.
note on their histony, 3607,

Dialytic method of elithiphtion, 75

Diseriminants, 8308 ¢/

Dostor, 308. \~

PN
£\

Eliminati{ﬁ)\ﬂj.

bytsymmetric functions, 71,
;]hjlér’s method, T4.
\ B¥lvester’s method, 75.
7 Bezout's meathod, 76
other methods, 8),
Elliott, 1035,
Emanants, 129,

Equations, linear, solution of, 37.
linear, hemogeneous, 40.
Euler, method of elimination, 74.

Evectants, 205,

"s
)

Index.

Functions of differences of cubie, 95,
of biquadratic. 97.

Galois funetion, 363,
expression of any rational function
by, 268.
expression of variables by, 268,
resolvent, 274,
(Fanss, 307,
Gordan, investigations on fu_ndam;cntal
concomitants, 158, i
seminvariants ﬁmte, O’*
covariants of two q‘l.ta\.rf.lca, 309,
concomitants ef q\lmtlc_. 311,
Group, definition eh, 253,
order and degree of, 233.
symmettic, 254,
su}g\grtm P, 254,
a.ltehla,te, 254,
* Eudet of alternate, 256,
T,g.]]iu)rquga,te, 256, 257.
formation of functions belonging
to, 256, 263.
invariant sub-group, 261.
theorem relating to two functions
of same, 265.
extended theoFem, 267.
of an eguation, 274,
its properties, 275-277.
tranzitive, 278,

’\\

£

3

Hermite, theorem relating to limits of
roota, 186,

his law of Reciproeity, 200.
Hessian, of cubie, 114, 118, 141,

of quartic, 118, 144.

its form in genarsd, 130.

of quartic exprossed by factors of

aextic covariant, 147,

Homogeneous, linear equations, 40,

quadratic expressed as sum of

© squares, 170,
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Indez.

Invariants, definifions, 112, 122,
formation of, 113.
of guartie, 114, yé2,
" gkew, 115.
properties of, 116. '
modes of genem-{-iun, 128, 132,
of cubic, 143,
of the form »T — AH, 156
abeolute, 197.

Jacobi, theorem, 18.
Jacobian, defined, 132,

IKronecker on rational domain, 256.

Lagrange on reduction of quintie, 282.
Taplace, development of determinant,
17, 306,
Linear eguations anlved, 37. N
homogeneons, 40. "\\ g
Magic agqunres, 25. ¢ N
Method of least gqiljg.g‘éé‘., 69,
Minor determinants, 12.
Modulus, lximia(s; transformation,
Multipj;\.\(&mea funetions, 252.
conjugate values of, 256.
" ‘«"Q’l’ieorem relating 10, 272.
; ) whose third power is two-valued,
/ 273.

7
Multiplication of determinants, 28, 307.

121

Notto, 205,

Orthogonal transformation, 204
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Quantie, binary, 112.
(Juartic, covariants and invariants, 144.
expressed by quadratic factars of
sextic covariant, 147.
regolution of, 149,
nnmber of its covariants and in-
variants, 163.
transformed by Techirnhausen,
176, 178,
two inter-transformable, 198,

A

Quintie, reduction to trinommial forméiw':

AN\

181, o)
to snm of three-fifth powerdy 104,
Lagrange's troatment of ‘5@‘2“
table of its concom! 18,310,

Quotient, when one{ polynomial is

divided by anothel 1
forms of jpgfficients when one of
even lefgree 18 dividod by &

quédztic, 64
O

N
@?&Fzﬂ domain, 283.
iprocal BBt minants, 41
linear sransformation, 202.
Rectangular arrays, 33
Removal of three terms
hausen transformation, 179.
Resultant of two equations, 70
properties of, 72.
Roberts, on s0uree of covariant, 113.
on product of covariants, 138.
multinominl theorems 138.
Roots, cominon to two equations, 86.
Routh, examples i determinants, 6.
Ruagell, examples 00 eovariants, 213

214,

by the Tachirn-

Salmon's Higher Algebra, referred to.

66, 136, 308,
Sernicovariants, de
formation by opera
theoram Felating to TOP
how differ from covariants,

fined, 99.

tor D, 100.

ts of, 119
126.
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Seminvariants, defined, 9,
caleulation by operator T, 101,
determination of, 101,

Cayley’s theorem on, 105,
compared with invariants, 126.
number of, 199,

Serret’s Atgebra referred to, 181, 245,

Soxtie covariant of quarbie, 145.
principal concomitants of, 233.
table of itg coneomitants, 312,

Skoew determinants, 4.

Skew invariants, 115

Skew-symmetric determinants, 40,

Bource of covariants, 113,

Sguares, least, 69.

Sturm : leading conthicients of his fune-

tions oxprossed as determinants,
187.

Sylvester's forms of hisremainders,
1al.

Bubstitutions, defined, 244,

products and powers of, 241, :'."“”

o

identical, 24y dbr aullbrary
circular, 243,

order of, 248, ’\\

as product of tmn.spomko\ 248,
ragular, 250, \\

similar, 251, O\
commutative, ;25:1’."
transformation 0?, 251.
Lon]ugate,?}&o'f

a,pphe{tc) alzebraic equations, 282,

Indez.

Sylvester, method of elimination, 75.
referred to, 158,
forms of Bturm’sre mainders, 151,
reduction of gquintie to sum of
throe fifth powers, 193.
Symmetrie funetions, applied to elimi-
nation, V1.
of roots of two equations, 92.

N \\'\
¢ O
Transformation : linear appliédte co-
variants, 120, \ o
theorem relating t \:1;
the Tachirnha 'LLISQ t {panslormation,
173, N
reometrical, 216,
of bma.ljy\\o ternary forms, 216.
I‘schlrnhm{séﬂ transformation, 173.
]ged Lo cubic, 175,
N éo‘quarLLc, 176,
A wiof eubic to binomial form, I77.
of guartic to trinomial form, 178.
g_m)f guintic to trinomial form, 181,
Two-valued functions, 270,

Unique ternary form, 225-227.

Wantzel, 295.
Waring, expressions for suma of powers,
1.
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