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PREFAGE

This book was written as a textbook to be used in the standard
Amcerican university and college courses devoted to the theory of equa-
tions. As sueh it is elementary in character and, with few exceptions,
contains only material ordinarily included in texts of this kind. But the
presentation is made so explicit that the book can be studicd by studenfs
without a teacher’s help. O\

Everything that is stated in the text is presented with full develop-
ment, and nowhere is reference made to results that are beyond the
scope of this book. This accounts for the fact that the book} though
containing chiefly the same matters as other currentlymbigéd texts, sur-
passes them in size. A few topies that might be omitfed without harm
are marked by black stars. Numerous problems. are ndded after each
significant scetion. For the most part they are %im})le exercizes, but the
more difficult among them are marked by asfefisks.

In four chapters the exposition differs congiderably from custom. In
the chapter on eomplex numbers the supetficial approach so common in
many books is replaced by a simple ahd yet thorough presentation of
the theory of complex numbers. T]ie author’s experience shows that
students, almost without exception, follow this presentation without
difficulty., N

In the chapter on separaﬁ@l”of roots the author gives a very efficient
method for scparating of'zeal roots, much superior in practice to that
based on Sturm’s Thegre. He believes that no other book mentions
this method, \\-’hic].jl,{le invented many years ago and has been teaching
to his students foranumber of years,

In the chapfet\én nurnerical computation of roots Horner's method is
presented inthe original form, including the process of contraction,
which unfortunately has disappeared from American texts, Also, a
thoro&g\h%xamination is made of the error caused by contraction,

Determinants are introduced not by formal definition, as is usual, but
by their characterigtic properties, following Weierstrass. The advantage
of this is apparent, for example, in the proof of the theorem of muttiplics-
tion of determinants. Some elementary notions about the algebra of
matrices are also developed in this chapter.

Certain matters because of their intrinsic difficulty are referred to the
appendixes. Appendix I deals with the fundamental theorem of algebra,

i



vi PREFACE

The author chose as the most intuitive proof, and therefore most suitable
for beginners, the fourth proof by Gauss.

Appendix 1T gives the proof of & theorem of Vincent on which is baged
the method of separation of roots mentioned above.

Appendixes IIT and IV were added on the advice of Profossor 8. 10,
Timoshenko as likely to interest engincering students.  Appendix 111
is devoted to a simple derivation of criteris [or an equation to have all
roots with negative real part. Appendix IV deals with iterative solution
of the frequency equation. O

Appendix V gives an explanation of Graeffe’s method for gemputing
roots and is of particular value in the caleulation of the imagiiaty roots
of an cquation. L™

J < V) UspENsky

Sranrorn UniveRsity, CaLrv, _ ¢* 0

December, 1946 O

AN
The author’s explanation to the publish*ég"?:oncnrning the purpose of
this book has been made the Preface, forit secmed to fulfill the require-
ments and it expressed his thoughts, s
To Max. A. Heaslet of the Nativnal Advisory Committee for Acro-
nautics and Carl Douglas Olds afan Jose State College for the assistance
they freely offered and gave in“the editing and proofreading of this text
by their former professor " acknowledge great indebtedness, They
took on this responsibility] which normally falls to the author himself,
when they salveady carried heavy loads of their own, the death of the
author having ocgurréd just after the finighed manuscript had gone to
the publishers, N\

”éz\" L. Z U,
May, 10487
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CHAPTER I
COMPLEX NUMBERS

1. What Are Complex Numbers? In elementary conrses of algebra
the letters employed ordinarily represent real numbers, that is, positiy
and negative integers and fractions, including 0, which are called o~
tzonal numbers, and irrational numbers such as V2, V3, ete. Oxly)oe-
casionally, In connection with the solution of quadratic equitions, is
some mention made of fmaginary or complex numbers. Fok mstance,
applying the ordinary formula for the roots of & quadragiciequation to
the equation \‘

P*+r+3=0 \%

students are told that it has the roots N
—1+V=11  — 1 ST
v -

2 g

where the symbol v— 11 ig an imagin@?ﬁi.quantity since negative num-
bers cannot have real square roots. Stadents are taught how to perform
operstions with such imaginary numbers in a purely formal way, but no
adequate explanation is given of what lies behind blind operations on
symbels that in themselves’h}ve ho meaning. Perhaps there is some
justification for such a pécbdure on the ground that at the age when
first they encounter “iclljéinary” numbers students have not yet de-
veloped a sufficient faetity for abstraction to understand what they are
really dealing wii;h:,:a\nd that all they can hope to sccomplish 1s the ae-
quisition of somekkill in formal manipulations. But when the time
arrives to begirmore serious study of that part of algebra that is called
the theory 'of equations, it becomes necessary to refurn to a reexaming-
tion of i:mglgina.ry or complex numbers in order to lay down a firm founda-~
tion{omh Which all the subsequent developments will solidly rest.

;n\vha-t follows, letters a, b, ¢, . . . | ete., (with the sole exception
of the letter ¢, which will be used in a special sense) will serve to designate
real numbers. An ordered pair of real numbers

(¢,b)
of which & is the first element and b is the second element will be consid-
ered 25 a new entity or a new object of mathematica] investigation and

henceforth will be called & complex number. In order to be able to make
1



2 THEORY OF EQUATIONS

ordercd pairs or complex numbers an object of mathematical investiga-
tion we must extend to them the notion of equality, and we must also
define the meaning of the four fundamental operations

addition

subtraction

muitiplication

division
that will be performed on them.

2. Definition of Equality. Two complex numbers (a,b} and (&, d)

are egual if and only if & = ¢ and b =d. Complex numbers that dd not
satisly this condition of equality are called unequal. To denoté équality

the ordinary sign = is used. Thus, the equality O
(a,b) = (C,d) ” ("}ﬂ
means O
—e bmid

Aceording to this definition

(2.412) = (B VT -+ 43 +}/\[¥ 1V'3, 2v/3)
2=1V7+4v3+1 V~7—4\/§ (why?)
\/‘? 9V,

On the contrary, complexyRiimbers (1,— 1) and (— 1,1) are unequal,
and this is indicated by, Whiting

(]-a_ 1) # (_ 1)1)'

3. Definitions 0f; Addition and Multiplication. Of the four funda-
mental operaft'\bn's, addition and multiplication are called “direct op-
erations” afid*by means of them the “inverse operations,’” subtraction
and divisi}ﬂ” are defined. For the addition and multiplieation of com-
plex nimbers the following definitions are adopted:

”Deﬁmtwn of Addition. The sum of two complex numbers (a,d) and
ﬁs,d) is the complex number {(a + ¢,b + d} obtained by adding, respec-
tively, the first and the sceond elements of the two given pairs. To indi-
cate the addition the ordinary sign of addition is used, so that the con-
tent of the definition may be conveniently expressed thus:

(@,B) + (c,d) = (a+ ¢,b + d).

gince

and

For example,
1,-1)+2,1)
0,1+ (1,0
3,2)+ (—3,-2)

"

(3,0),

(1,1,
(0,0).

f



COMFPLEX NUMBERS 3

Definiteon of Multiplication. The produect of two complex numbers
(a,b) and (¢,d) is the complex number (ac — b4, ad -+ be). The multipli-
cation is indicated by placing the multiplication sign - or X between the
factors; sometimes, when there is no danger of misunderstanding, the
sign of multiplication may be omitted. The content of the definition is
thus conveniently expressed by writing

(a,b) - (c,d) = {ac — bd,ad + be),

or
(@,b)(c,d) = (ac — bd, ad + bc). .
According to this definition we have, for example, .
(2:3)'(1,2) = ("_ 4:,7), ’\"\,,’\
(1,—1)-(1,1) = (2,0, C
(0,1 (8,1} = (— 1,0).

4. Fundamental Laws for Addition and Multiplication. While the
definition adopted for addition of complex numbers\is readily accepted
by students as natural, they are puzzled by théyapparently artificial
character of the definition of myltiplication @@always ask for reasons
for adopting such a definition. Since complek numbers as ordered pairs
are new objects for which the notions of\eguuality, addition, and multi-
plication are not defined at the outsettih is our privilege to define these
notions as we please, striving only.;ﬁjéhoose definitions in such & manner
that all the fundamental laws efi3lgebraic operations on real numbers
retain their validity for compléx numbers and that, morecver, the com-
plex numbers subjected {gq"shch laws of operations exactly fill the place
of the meaningless “ilf\@gihary” numbers. The fundamental laws for
addition and multiplir}at-ion of real numbers are the following:

1. a-+b = b+ Commutative law for addition.

2. (a+b) W a+ (b+e¢). Assoviative law for addition.
. @b = bd.)Commutative law for multiplication.

. {ab)e="a(bc). Associative law for multiplication.

. ’(t\lt—j} b)e = ac -+ be. Distributive law.

o O

Tt} an easy matter to verify that thesc laws retain their validity for
complex numbers under the adopted definitions of cquality, addition, and
mulfiplication. This straightforward verification will be left to the
gtudent.

5. Subtraction and Division. Onec we have the definitions of equality,
addition, and multiplication, we can define subtraction and division in
exactly the same way as for real numbers. To subtract b from ¢ means
to find a number # such that

b+z=a
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Such a number—the difference of ¢ and b—is unique. The same defini-
tion can be extended to compiex nurbers,

Defindtion of Subtraction. To subtract the complex number (e,d) from
(@,b) means to find g complex number (z,y) so that

(¢,d) + (2,3) = (a,b).
Sinee by the definition of addition
(e,d) + (z,y) = (c+,d + ),
the unknown numbers z and ¥ must be determined from the equa”i}ons

¢t =g, d+y=58 '\:.\'
which have the unique solution . O
z=a—¢ y=bh—d. RO

Thus, the diffcrence of {e,b) and (¢,d) is a uni(_luely'titegérmined complex
numbor )

(a,b) — {c,d) = (o~ C,b"i\d)
.

In particular, we have O
(G,E)) - (a:b)z*“'(oro)
or o
(a,5) + {&0) = (a,b)
so that the complex number (N U')' plays the same role as 0 does for real
numbers. To define the division of complex numbers we can again
mmitate the definition of division of real numbers, 1o divide o by a
number b different from\) means to find g number & such that
¢ v bz = q.
By analogy we ,Sly:
Defindtion QJ( wiston. To divide the complex number (a,5) by (c.d),
different fL‘Qm"'(U »0}, means to find such a complex number (z,y) that
RN €, D)@, y) = (a,b).
Sizwe: )
N/ (e, d)(z,9) = (ez ~ dy,du + ey,
the unknown numbers z and y mugt be found by solving the system of
equations
w—dy = a, de+cy = b,

By eliminating first y and then = we find

@+ dYz = ac+ bd,
(& + dy = be — ad.
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By hypothesis ¢ and d are not equal to 0 simultanecusly, and conse-
quently ¢ + d* > 0. Hence, « and y have completely determined values:
actbd _be—ad
cz+d2’ y'“cz_]_dz
which, as can bg found by direet substitution, actually satisfy the pro-
posed system. Consequently, division by (¢,d) = (0,0) leads to a com-
pletely determined quotient, which, retaining the usual notation, will be

) _fac - bd be— ad '
(G:b) . (de) - (C?‘ _i__dz ,702+d2) \
or A\
(@,b) _ (ﬁt@.‘f_ ??_C:_G@). AN
{c,d) PR e . \.

6. Normal Form of Complex Numbers. Every go’lﬁple}c number
can be presented in a ccrtain normal form. In the ﬁpsf;\ﬁlace,
(@,0) = (2,00 + (0,0},
Again using the rule for multiplication, one e@ﬂ} verifies that
(0,) = (5,001
and go Ky
(a:b) = ({I,O) :F"{b,O)(O, 1);
which means that each complex nuxjf}"!::er can he expressed through special
complex numbers of the type {¢, 0 with the second element 0, and one
particular complex number (0%1) that heneeforth will be denoted by a
single letter 4, the initiallefiter of the word imaginary, When the funda-
mental operations arg applied to complex numbers of the type {(@,0)},
the following results.aze found:
O (3,0 + ®,0) = (a-+,0),
\~ ({I’JO) - (b,O) = (a - I),O),
N (@,0) - (6,0) = (ab,0),

A\ (a,0) : (b,0) =(go)

WPKQD}E(;, the following noteworthy conclusion can be drawn: If complex
numbers with the second element 0 are subjected to the operations of
addition, subtraction, multiplication, and division {operations called ra-
tional operations), each repeated any number of times, the resulting
complex number will again have its second element O while the first
element results from performing the preseribed operations on the first
elements of the complex numbers involved. And this means that com-
plex numbers with the second elements 0 behave, with respect to ra-
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tional operations, exactly as their first elements, which are real numbers,
In dealing solely with such complex numbers we may therefore identify
them, without fear of confusion, with real numbers—thejr first elomentg,
Accordingly, we shall agree from now on to denote a compliex number
of the type (e,0) simply by &. 1In thig manner, one and the same syrg-
bol ¢ will have two meanings: one as & symbol of a real number and an-
other as a symhol of 5 complex number (2,0). As long as we have a
formula involving only rational operations on such symbols, the formuly
will be true whether we Interpret symbols in one way or the ot-her.\ For
instance, in the identity
=8 = (a+bj(a—b) \\\

the symbeols @, b, a + 5, a b may be interpreted as syiwﬁmls of real
numbers or as symbols of the complex numbers (a,0) 050), (a + b, 0},
(@ — 5,0}, and the identity will be true in hoth cases.:’According to the
adopted convention every complex number (a6 ean be presented in

the following normal form.: O

(@,0) = a4+ iy
where ¢ stands for (0, 1) and a,b are the omplex numbers (o, 0), {b,0.
By the rule of multiplication we have \J

0,12 28 1,0)

ar, with the conventional notations adopted,
A = - 1

o

Again, observing that theiﬁ}mdamental laws of operationg holding good
for real numbery remdips true for complex numbers, we ean draw the
conclusion that in pétforming fundamental operations on complex num-
bers presented in‘the normal form We can treat them as algebraic bi-
nomials, taking. eare always to replace 72 when it appears by — 1. It
is custom ¥ 50 use the abbreviated hotation &7 for complex numbers of
the type ' b4, and in case b=%1 simply to write ¢ + ¢ instead of
@+ ligpa - 14,

A:fg\w examples will show the advantages of operating on complex
nisghers presented in the normal form,

Example 1. To find (1 + 3. We have

{1+z’)2=1+2i+z‘2=2£
and

1+d3=101 + 921 4+ 4 = 2i(1 +i)=—24 9
The same example can be worked out alzo as follows: We have

A +d8 =148+ 32+ 4
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But
#=—1, B=2.i=—
and so
A+iP=14+8-23—-5=_249

Example 2. Find the cube of the complex number

1, .3
w——-2-+¢—2—-
In the first place,
p=lyB, V8 1 3 V3_ 1 V3
TR Ty STy iy = gy

and further )
B 1 V3 1 VA 7 1y 3 R N
wmws (G 3 ) (b
Exmple 3. Reduce the complex nuraber '\‘K
B2 ~30 , 144 R4

Btz Ti—: O
to the normal form. We have \
(342000 = 9+ 12 + 4 = 5 + 125, ("
(5+ 120(1 — 3) = 5 — 367 — Jh=B1 — 3,
B+DP=9+6i 42 =8+ 6, NV
(8+ 6)(1 +2) = 8 + 12 + 22~'= — 4 4 22;.

s‘,.

To compute the quotient o
41 S
— By 22
we may, without changing it, multa{hg both numerator and denominater by

O™ 4 — o
this gives N\
4l -8 (4 {3(~4 220 _ - 230 —800i _ _ 23 80,
RS AN P VN 500 50 ~ 50"
Again, A0
3o 144 (L4ar
O T—i~ 2z =%
and so the ﬁual%sw ‘er is
— 230 — 3341
z"\.‘“
@ ) Problems

Reduf;e to normal form:
L7 —7{+{(—6+8)— (4+ 3. 2. (2 — 3.

1
3 24 01 + 2. 4, >
1474 144, 4
5——;—?1 6.—3.-4—1_?’
(2 4+ (1 — 2) {4 + 301 — 23
. g T T A
3—1 T—1
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S5 0 (l.ir_f‘ﬂ
p. L2 10. \@)
1, V3 i .
1 +4

18. Find real values x and y that satisfy the equation
A+d@+20) —B3—-20—y) =8+ 3
14, Find the real root of the equation
(T b ahe® + (1 2022 — (1 + 48z — 1 4 ¢ = 0. A
15. Find the rcal root of the equation N
(Lt D00+ (1 + 200 — A+ o — 1 — 20 = 0.0

7. Real and Imaginary Parts. Conjugate Numbergs\ Absolute Value
or Modulus. In a complex number o+ bi presomted in the normal
form @ is called the real part and b (not bif) t-hi?;}maga'nary part.  Real
and imaginary parts are usually denoted as fellows:

a=Ria+ b

b = I{a £,
where B and 7 are the initial Ietters™6f the words real and Imaginary.
Complex numbers with imagina§™part 0 are called real numbers on ac-
count of their cloge 1‘esemblanjé'é o ordinary real numbers, and numbers
of the form b7 with real part™® are called pure imaginaries. In general,
eomplex numbers with &n "imaginary part not 0 are ealled imaginary
numbers merely to ganform to usage and historical tradition, since com-
plex numbers asordered pairs are just as real as other numbers and
there is nothing fimaginary ™ about them,

Two compléx“numbers a + bi and o — b3 differing only in the signs
of their i{.u@é'rﬁary parts are called conjugate. If one of them iz denoted
by a sibgle’ letter, say 4, the conjugate number is denoted by Aq, or,
as is sometimes written, A. The product of two conjugate numbers

A=atbi, Adi=a-bi
\is“a real number
Ads=(a+bi)(a — b)) = at + b2

called the norm of A. The positive square root of the norm of A is
called the absolute value or modulus of A and is denoted either by the
sign |4] or by the sign mod A, and the use of one or the other notation
depends on considerations of convenience in writing or in printing.
Thus,

le + bi] = V@ + 8,
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or
mod (g + ) = Va? 1 B,
If ¢ is the sum of the complex numbers 4 and B

C=A4A+B8,
then,
Ch = 4y + By;

that is, the sum of the conjugates of two complex numbers is equal

to the conjugate of their sum. Similarly, if € is the product of complex,

numbers A snd B O
C=ARB e

then, ’ ¢ \ N
Co = AoBy; \ bt

that is, the product of the conjugates of two complex nu;njb:ers is equal
to the conjugate of their product. Both these propositions are verified
directly by comparing the sum or the product of tw somplex numbers
with the sum or the product of their conjugates,Jand from this it
Follows that the conjugate of the difference or 'q‘i{’dtlent of two complex
nuwbers is equal, respectively, to the différénée or quotient of their
conjugates, which, by means of the adogtp&éigns, is expressed as fol-

n X

lows: N .
AN A
(A —B)e =4, — {"?’a ) (E)o = F:'

By repeated application of théss rules the following general and im-
portant conclusion can be detiwed: If in applying rational operations in
finite number to the complex numbers A, B, C, . . . a complex number
X is obtained, then in.pérf’orming the sume operations on the conjugstes
Ao, By, Co, . . . the gegtlt will be X, the conjugate of X,

Real numbers ,Qb:i}lf:ide with their eonjugates, and, conversely, a num-
ber that is eq)@dsi) its conjugate is real. In fact, the equality

) at+bi=a—H

requirgs )
W\

N\

b=—1»b or b=0.

Problems

Find the absolute values of the following numbers:
1, .Vv3
1.4 2. - 2 + i
1—4
3 3+ 4 1. N
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#? — 1 4 2ix where z is real.
2x — 1 4 (25 — 22} where x is real.
28 — 22 -2 4+ 1+ (22 — 22K where z i2 real.
. What is the real part of the number (1 — 2)/{1 + z) f z = cos ¢ + i sing?
. Find a complex number ¢ such that |e| = 1 and R{e®) = 0.

10. What are the complex numbers equal to {@) the square of their conjugates and
(&} the eube of their conjugates?

® @ oo

*8. Theorem. The absolute value of a product is egual to the producl
of the absolute values of iis factors or, using the adopted signs,

4BC - - Li= Al [Bl-[0] - jzh O
Proor. Consider firsh the product of two factors ) \i\
X = AB. O
The norm of X is R ™~
XX, = (AB)- (4B), (O
but A\S;
(AB)y = Aoy RN
and s0 2

XX, = (AB)3By)
whence, making use of the associa@iyéénd commutative laws for muls
tiplication, . yia
XX, 2AA4,) - (BBo)
and, taking positive squareroots of both sides,
':\\P"ﬁXo =¥ AA() L BBD.

But \\

VXXa > iX|, ~AAdy=]4], ~BB,=|B]

and, conseqqsﬁﬁy,
PR

2 X1 = 14] - 8]
Or '\\5.;
X |A4B| = 4] 1Bl
'I\Lm.‘\: éonsidering the product of three factors
i X = ABC,
let us set
Y=4B
so that
X=YC

By what has been already proved
Y] =l4i-{Bl, |1X]=]¥[-{C];
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hence,
[X] = [4] - (B - |c|
or
|ABC| = [4] - [B| - [C].

In the same way the theorem esn be extended to any number of factors.
An Important consequence can be drawn from this theorem: [ fa
product of complex numbers is 0, then at least one of the factors is0. From
the assumption
ABC .. . L=0 &
it follows that A
M- 1Bl jef - - - ILj= o[ =0
and since the factors on the left-hand side are real, one o,ftlﬁafn must
be 0, say O
4] = 0. \"

But, writing 4 = a + b4, we have Q
[M=v?1?=m<}’

that is, a® + 12 = 0, which, with real a and\by/is possible only if ¢ = 0,
b=00rd=0+0{=0. The same copelision can be drawn from the
fact that the quotient is uniquely determined when the divisor is not 0.
Let the student develop the proof“gltiﬁg this line, %

L Problems
e

1. Prove that 1%’ = Jf;" \\

2. What is the absoluo.yhlue of (4 + 3:)(1 + 2)/(7 — 7

8. What is the abgaluté value of (1 4+ &)/(1 — 20} if 2 is real? And what can
be said of the absol‘uféw‘alue of the same number if x = & -+ i3 is a complex number
with § > 07 A&

4. Show tha\{\”;

R It~ % = i
lf .,,\\;' .
...\~~,' { = =7
) 1 + 2ir
and 7 is real.
6. If
;  —3r 42
"= Tir—3

and 7 s such a complex number that

|T_%|=}£)
I+ %l = %

show that
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*9. Inequality for the Absolute Value of the Sum. The absolute
value of the sum of complex numbers does not depend simply on the
absolute values of thege numbers; thus, there is no such precise theorem
for the sum as that in Sce. 8. Instead, we have the following less precise
proposition, which is nevertheless of great importance and usefulness.

TueoreM. The absolute value of the sum is not greater than the sum af
the absolute values of its terms, or

[A+B+ - Ll A+ Bl+ - +IL],

and the equalily sign holds only <f either all numbers A, B, N, Lare
equal o 0 or, in case one of them, say A, is not equal io 0.4aW Yhe ratios
(N

B I, A
are nonnegative real numbers. \
Proor. We start with the following obsepvalion: If A = a + bi,
then A\,

a = R(4) = g
and the equality sign holds only if b «=‘~0 und a z 0. Infact,

[4] = v‘a! +°
and cerlainly oY _
S VETE
ifé=0. I ontheotheghand b=0and e <0,
\k&h a, a < —a.
Finally, if b = 0,,;m.d az 0,
OV a= = |4].

. ,\’
Consider{hgw the sum of two complex numbers A and B. By the
definiti of the absolute value

S JA+BE= (A4 B)(A + B = (A + B)(do + Bo)

|4 + B = Ay + BBy+ (ABy+ AB) = |A2 + |B + (AB, + A.B).

Now the conjugate of AB; is AyB, and the sum AB, 4+ A,B of two con-
jugate numbers is double the real part of AB, or

ABD + AuB = 2R(ABQ)
By the previous remark
R(AB))  |ABy = 4| - |Bif = 4] - |B]
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since conjugate numbers have the same absolute value. Hence,
iA+BF§MP+WF+%M¢E=UAHﬁEP

But the numbers |4 + B and |4{ + |B] are nonnegative and conse-
quently the preceding inequality implies:

4+ B < |4+ 3.
The cquality sign holds here if and only if
R{ABy) = R(A,B) = |A,B], )
and this is true only if 4B is a real nonnegative number, Assugnihg\

A # 0, the product 44, is a positive number and 2.
A5 _ B O
Ady 4 AN

is a real nonnegative number. Conversely, if this equiﬁ&ih h;olds, then
AoB = (B/A)(AAy) will be real and nonegative. O
Consider now the sum of three numbers O
A+B+C=M+B}K}
By what has been proved N ‘
|4+ B) +C) = |Adk Bl + [0]
14+ B] = 4T |51

Henee, N

4+ B+ % 4] + 1B + [0,

The equality sign will hol@ihc}e if and only if simultanecusly

\

M+ Bl = 4] + |B),
JASF By + € = |4+ B| +|c].

Supposing 4 # tﬁp first of these equalities is valid only in case the
ratio B/A is realldnd nonncgative. If such is the case, the number

O A+B=AO+§)
is no‘t\(}}:ﬁhd
A% 1+2

is a positive number. The second equality requires that the ratio
C C B)—l
A+B_XO+A
be real and nonnegative, which in turn is equivalent to the requirement
that C/4 be real and nonnegative. It is clear that, if the reasoning is
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continued in the same way, the theorem will be proved for sums of
more than three terms.»

Problems
1. Bhow that
(4 — B| = |4| — |B| and also |4 — B| z |B| — {4l
HINT: Write A = B 4+ (A — B},
2. Ii z i2 a complex number with |z| = 2, what is the maximum of
T4+z+2+ 2 A\

and for what z is this maximum reached? A .
*3. If z and y are any two complex numbers, show that AN

'S
e+ gt + l2 - ul? = 2l + 20 NS

*4. Show that the equality A\ )
e — 2l = e — @l + = @\
implies \/
B2 — 5= 3?\.(21 - Zo)\'s
. . 9. \d
where M is real and vice versa. L&
10. Square Root of a Complex, Nubber. Finding the square root
of a complex number A is equ‘al‘mt to finding the solution X of the

quadratic equation P\
\ "' X2 4.

TetA=a4+biand X a%‘-i* ty. Then, the real numbers z and y must
be sueh that \
\ (x+'iy)2=a+bz'.
Now ‘..,’.“.‘

3
N\
£ )

‘ (@ + y)? = a? — y* + 22y,

conseq eij‘él%,f, real numbers x and ¥ must satisfy the system of equations
\\ -yt =q, 2zry = 0. (1)

‘Theidentity

‘C} " (= + yz)z = (z2 — yz)z + a2

cornbined with equations (1) gives

£+t = Va4 b
the root being positive, whence and from the first equation of the
system (1) 1t follows that

vait+b+a s Vi —a
—g ' ¥ @

zt =
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Those equations are necessary consequences of the gystem (1), but they
may have solutions that do not satisfy it. To segregate solutions of (2)
satisfying (1), the equation
2oy =5

must be taken into account, In cased = 0 the equation determines the
sign of i eorresponding to a chosen sign of x ; that is, z and ¥ must be
of the same sign when b > 0 and of opposite signs when § < 0. Ae-
cordingly, solutions of the cquation

Xt=g+bi

Xoa (\/Vcﬁ +262+a+3,\/\/d5-+-202—_0,) \“\,
:N.’S

in case b > 0, and b
P 6. (
B j:( Vi +b+a \/m—a)
. : : N
in case b < 0. Tt remains to examine the cafg,é\li.: 0. Since
Vai=a or A
aceording asa > O ora < 0, it follmf,sg:éhat
z=+ Vst y=0
if @ > 0, and then the equation ™
{m‘\\ X'=g
\\s,l
by X =+ Va.

) S
N W

Ifa<0, \}
o x=0, y=++v-u
x“\Q. . .
and in this,@se" the same equation has two pure imaginary roots
\ X==xiv—u.
2N\

Figallyy when ¢ = b = 0, there is only one trivial solution X = 0.

%his discussion shows that, once we introduce complex numbers, every
eomplex number has square roots.  The general quadratic equation

AX*+ BX4+(C=0

with arbitrary complex coefficients can be solved by means of the known

formula
— B+ VB2—44(C
X = 24

N\

are y 3
WA

has two real roots
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the deduction of which is based on the fundamental laws of operations
and on the existence of square roots.

NotE: When A is a positive real number, the symbol VA, according to custom,
always means the positive square root, and with this convention the law of multipli-

cation of roots: 3
VA NVE = vVAB

is valid as long as A and B are positive. When, however, 4 is 4 negative real or
imaginary number, there iz no way to attribute to the symbol VA, by means of a
simple convention, such a meaning that the Iaw of multiplication of roots will always
hold. In case of a negative real or imaginary 4 it is always necessary o speci{which
of the two roots the symbol VA denotes by an additional condition, as, for Jnslance,
that the root should have positive real or imaginary parts, Thus, V' #Wnay mean
either 2¢ or — 27, but i it is specified that this root must have a péEibive imaginary
part, then the symbol v — 4 will stand for 2., Notice that the rql&tﬂiﬁ of mapgnitude
cxpressed by the words greater and smaller is defined only for.:;éafﬁumhers and san-
not be extended to complex numbers with the preservation oQ]:ll’t.he properties of this
relation. ‘)

Example 1. To solve the equation \
Xo i O
- L&

Inthiscasca =G, b= — 1, V@2 ¥ I# = 1, and/h being negative,

_ T oy _ 14
= i(\g.’}.z\/;) - = 2

Example 2. To sclve the equat»ig');i’o )

L2 = — b4 124,
In this case i"\\
a=— fj'\“"b =12, Vo {5 = V168 = 13
{N\NV169 — 5 4 V1G9 4+ 5
N 5 =4, o = 9

and, b being posiive,

R0, X =2+ 3).
Examp\lve}é.”’: Bolve the quadratie cquation

= X2 — (242X -2 ~5=0.

Azp;jl"y\mg the formuls we have

24204+ V-4
X =0
2
and, taking v — 4 = 2, the roots are found to he
— 4,2~ 4
Problems
Find the square roots of the numbers:
. _ 1, .3
1. . 2. W = Q + 3-2—'
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1 3
35"{—3—'2— 4.—3—417.
6. — 13 — 845, B - 1+4+iVZ4,

7. 2% — 1 + 2¢i, x being real,

Holve the quadratic equations:

8.2+ x+1=0. . 9. 2. -3z +2=0.
10, 22 — 2+ 302 — 14+ 8 =0,
1L (2 — 202 — (11 + 9z — 16 + 6 = ¢,

Solve the equations:

12, 24 = 1. 18, ot = — 1,
14, i+ 4 = 9. 15, =t = 110 — 1205,

16. 2 — 1 =0, Noticethate® — 1 = (z — 1}{a2 + 2 + 1). SO\
17, 2% = 4, 18. x5 — 1 = 0. A\
19, 7+ 1 = 0,

30. 22 =141 Set x = o+ bi; then & — 3ab? = 1, 3a% — 1* =1 and, be-
zides, a2 + b = V3,
2l. Prove the following proposition: If a, b, o', ¥’ are rational, atm?bers but Vb i

not rational and
at+ V=« + \/—’ O
thenae' = q, % = 2,3
22, Tind all qua,dra.tlr, equations 1% 4- px 4 ¢ =¥ ﬁth rational coefficients but
without rational roots if (2) one root is a gquare of amnther () one root s & cube of

another,
*28. If ¢ 5£ 0, b 5 0 are two complex numbers such that the ratio #/a iz not a

negatlve real number, the square root Vab ap., an be chosen so that the ratio of the

“geometric mean” of ¢ and b RN
;Jz = \-" ab
to the “arithmetic mean? \‘
A)p = @ + b
\\

has a positive real part. Show that then also RE(b/a} > 0.
#24. Under the same, cqnthtlons show that
'\“ b — @] < LB — al.
:”\.s.
11. Geometric’Representation of Complex Numbers. Relations be-

tween compfex numbers and their handling are often made intuitive by
means_ of% simple geometric representation. ¥
Havi g sjchosen two perpendicular lines OX, OY
as coordinate axes, we attribute to OX a certain
direction indicated in the figure by an arrow and
then choose a direction on the axis OY so that
after rotating OX through a right angle counter-
clockwisge its direetion coincides with that of OY,
With reference to the chosen coordinate system
each point of the plane has definite coordinates, say @ and b, and with

Z=a+ i

@

axis

0a X
Real axis

Imoginary
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this point the complex number a + b is associated. Vice versa, to
any complex number we let correspond a point whoge coordinates
are, respectively, the real and imaginary parts of that complex num-
ber. In this manner between complex numbers and points of the
plane there exists a one-to-one corrcspondence by virtue of which
complex numbers are represcnted by peints. Complex numbers of
the form g + 0¢—real numbers—are represented by points of the sxig
OX, which for this reason iz called the real axis. Complex numbers
of the form 045/ or pure imaginary numbers are represcnted by
points of the axis OF, called the imagenary azes, It is custdnary
to denote the point representing the complex number z byAthe same
letter and to call it simply the poinf 2 Thus, we ean (spéak of the
point O (origin), the point 1, the point 7, the point 3 —24, ‘ete. Point O
together with z determines & dirccted line scgmenf;'Uz) or vector 55:
extending from the origin O to the end poing z.""bonvm‘sely, the end
point of any veetor 0z determines some compleX number. Thus, we
have another geometric representation of ,coﬁf)lex numbers by means
of veetors with the common origin ab &N Projections of the veetor
representing 2z = ¢ 4 b¢ on axis 0X anY are, respectively, o and b,
and the length of the vector O_z: onghe distance from O to 2z, by the
Pythagorean theorem is 4/%? —{—'bf‘ﬂarid thus gives an intuitive meaning
of the absolute value or the nadulus of z,

2

.ify\ Problems

" \ \\1. If the direction of the real axis is chosen as shown,

E W\ Joeate points representing the complex numbers: (a) — 1,
— 2L )5 () 14 () 1+, () — 8 — 2 (f) — Y42

| Real gxis ) 2. It B(z) = }4, what can be said about the locus of the

El & points 27

g .%" ’ 8. Work Prob. 2 if the complex numbers z satisly in-

TS stead the condition — 15 < R(z) < 14.

4, ] Bt is the relative position of points reprezenting conjugate complex numbers?

#B\What is the relative position of points representing the complex numbers
aNgbi and b + ai?

6. What is the geometric meaning of (a) l2] =1, ® 2] < 1, (e} 2| > 17

7. Where are the points representing z il — 14 < B(z) < 14 and 2| = 17

12. Angle between Directed Lines. The figure on page 19 represents
two directed lines { and I’ passing through a point § with their directions
indicated by arrows. DBy an angle between { and I’ measured from [ to #
which we shall dencte by (14'), we understand an angle through which I
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must be turned about S in order to coincide with  in position and dj-
rection, this angle heing considered as positive or negative aecording as
! ts rotated counterclockwise or in a positive sense, or clockwise or in
a negative sense. From this point of view the angle (1t') is not uniquely
determined but has infinitely many values, the connection between
which can be found as follows: Let ¢ be the smallest positive angie
through which [ is to be turned to coineide with 2/ in position and
direction. If rotation is continued in the positive sense, ancther coinei-
dence occurs when the angle of rotation is ¢ + 2o (measuring anglesvin
radian measure), still another when this angle is ./
¢ +4m, and in gencral ¢ + 2kx where k& is any ’5\
positive integer. Again, after rotating ! in the C
negative sense through the angle whose absolute ‘
magnitude is 27 — ¢ the lnes I and I’ coincide in 75
position and direction; and the same happens after g3/
rotation, in the negative sense, of magnitude 2% — BNy
where % is any positive integer. Taking all theseaingles negatively, we
may say that I’ forms with [ the negative anglés'é — 2ir, ¢ — 41, p — 67,
"Thus, the gereral expression for bieangle (I} is ¢ + 2%7 where
EF=0,+1 %2 .. . isan arhitrary in’tcgfe‘r’and ¢ is the smallest positive
angle between [ and 7. It is casy_to see that ¢ may mean any angle
between 7 and 7 and still all possible’values of this angle will be of the
samo form. Angles that differby multiples of 27 are said to be con-
gruent modulo 27 (an expregsion borrowed from the theory of numbers),
and the sign = is used to danote the congruence. In this sense we have
an almost evident conghyence
o @ =-a.
Again, if threqt{irécted lines I, ', I pass through the same point, it is
easy to veriff tHat

@+ AT + @ =0
whcne&’; by virtue of the congruence (1) = — (1'%}, it follows that

V @y = @y + @,
Despite the multiplicity of the angle (i) the trigonometric functions
of this angle

sin ({7}, eos (i)

have completely determined values owing to the fact that sin z and
cos z are periodic functions with the period 27,
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Problems

1. The sides of an cquilateral triangle are given directions as
shown. What are the numericaily smallest values of the angles
L) @), ) @), () @2
, 2. A squarc ABCD js inseribed in acircle
¥ anda point P is taken on the arc BC. What
are the angles (o) (Liz), (b} (Lk), (&) (Li:), formed by the
pairs of dirceted lines Iy, k, &, & shown in the figure?

3. Three dirceted lines I, ¥, I go through the same
point. If (D) = 230°, (I"1} = — 100° [ind the numerically
smallest value of the angle (F777).

4. If five directed lines I, &, Is, Iy, & go through the same
point and (b6) = 30°, (hl) = — 200°, (Lh) = 800°, (Iid)) =
— 90°, what is the numerically smallest value of the angle (7,4;)?

13. Trigonometric Form of a Complex N umber. / Refurmng to the
geometrie representation of complex numbers expl}uned mn See. 11, let
the angle between the real axis and the vectoG® be 6. This angle is
called the argument or amplitude of z. Tt 1 igdefined only for z = 0 and
has infinitcly many values differing from e&dl other by multiples of 27,

If 2 = a + bt, then e is the plOJeCtIOIl of Oz on the real axis, Denoting

by r the modulus of z,
from the definition of cos @ it,féﬁéws that
.f a=rcos d.
Bince the angle betweod the real and imaginary axes is 7/2, the angle

betwecn 0z and the imaginary axis will be (7/2) — 6, and the projection
of Oz on it will bey N/

A\ ¥
N b=rcos(?—r- )=rsin8.
\s
Consequ,e\{\t}v z = a + b7 can be written in the form
z=r (cos # 4+ 7 sin 6),

Wh}ch 15 the so-called irigonometric form of a complex number. It is
'tmmaterlal which of the possible values of § is taken: in practice, how-
ever, it is convenient to choose the numerically smallmt value of the
argument. To present & given complex number & + b3 in trigonometric
form find first the modulus » from the formula

r=Va:+ b
and then find the numerically smaliest angle 8 such that

a . b
cos 8 =15, gin @ ==
r T
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In general, it will be necessary to use trigonometric tables for this pur-
posc, and then it is always more advantageous to determine the angle
by its tangent. Accordingly, in case b/2.> 0 determine the acute angle
w by its tangent

tan w = é
o

and fake 0= wifa > 0oand f=w - a < 0. In case b/a < 0, the
acute angle w is determined by

—b
tan w =
. . L)\
andf=-~wifa>00=r—wifg <0, PR
\/
Problems & \Y

Present in trigonometric form the following complex numbers: :

1 — 4 2 i O

3. — 6i. 4.—1-4—3'.\/_ \

5. %——-?ﬁ%-g' 6. — 3+ i I

T V3 — .. 81— V’Eh{z(l + V3,

9. — 4 — 3, 10, — 2 &Y

11. 1 4 cos o 4 4 sin e, 12. oos\a, T cos B + d(sin @ + sin 2.

14. Muitiplication and Division of;l':;smplex Numbers in Trigono-
metric Form. De Moivre’s Formula® Rules for multiplication and
division are particularly simple 4¥hen eomplex numbers are taken in
trigonometric form, Let N

A =r(cos 8+ ?,sfh\\ﬁ), B = 1r'(cos & + £ sin &).
On multiplying and rea\i‘{{&ﬁging factors on the right-hand side, we have
AB f\iﬁ’{cos 8 + ¢ sin )(cos ' + 4 sin §).
But O
Y
{cos B8+ ¢ sg,jﬁ\)’(cos 8"+ 7 sin )
o508 § cos 0"~ sin 6 sin 6 + 4(sin 6 cos 6 + sin &' cos &)
and, ofy $h8 other hand,
cos B cos 8" — sin 0 sin 8 = cos (6 + 07)
sin 8 cos 6 +sin 8 cos 8 = sin (8 + §7);
hence,
AB = rr'[cos (0" + 6) + ¢ sin (&' + 6)],

which means that the modulus of the product is the product of the moduli
of factors and the argument is the sum of their arguments. By repeated
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application this rule extends to any number of factors. The product of
n factors

cos 0,4 sin 6y, cos Bz - ¢ sin fa, .., co38,+sind,
whose modull arc cach 1 18

(cos 0+ ¢ sin ) (cos 6, +7sin 62) + + - (cos 0, + i sin ,)

= CO8 (61+82+ L +6n)+38111 (61+ 92+ oo —]""Bﬂ).
In particnlar, when 6, = 6= -« - = 6, = 6, this [ormula gives im-
mediately an important identity O

(cos 47 sin )" = cos nf +4 sin nd O
A\

known as de Moaoivre's formula. Hoere, of course, A means & positive
integer. Noticing that “f N

1 cosB £ sin @ =:111 9

(cos @+ 7sin )l = —F———— =S

= cos B — ¢ sin B\éﬂ tos (__ &) +¢sin (— F),
and raising each side of the equatipn:i:}the power #, we have
(cos 8+ sin )~ <03 (~ nf) + i sin (- nf).
Thus, de Moivre's formula ho]ﬁs also for negative integer exponents.
Ag to the quot:ient of tv. 0 (omple\c nutnbers,
= r{cos 9\:1— % sin 6}, = 7r'{cos " + ¢ &in £,
it can be presentéel\thus

f‘_l: r{cos @ + © gin &)
OB v'(cos @' + i sin )

W/

= (cos 0 + 1 sin G(cos ' + 4 sin §Y 1,

//.

Buf,
\" {cos & + 7 sin B')1 = cog (— &) + ¢ sin (— &),

’”\

\ and 50 by the previously stated rule for multiplieation
% = Zleos (9 — 6') + 4 sin (8 — 0],
Hence, the modulus of the quotient is equal o the quotient of the moduli,

and the argument to the difference of arguments of the dividend and di-
visor,
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Problems
Pind the general expression for the following expressions (n being an integer):
1. (V3 + 9" 2. 1 + V3 +i(l — V3
3 1 4+ sind + i cos py* . . .
2 "—-—__.1+sin¢~icos¢ 4, [sin @ — sin & - i{cos § — cos @)]*
B, Setting :
A4z =p+pztpstt -,
where
2=1, ?1-':7—;’ pz=ﬁ“1,—_2-1—"'r
e binomial cocfiicients, and taking z = 4, prove that p \"\’
po_pz_l_.p‘—.-.:Z}éﬂcosﬂ_;r-, ":\..\'
I O3
Pl“Ps+P5"—---=2% sl - ..»‘:\"\'“
#g. Taking in the same cxpansion z = 1, @, w? where 4
S S
2 w7
find the sums AN/
@ pot ot
® ptpetptc &N
(& pphptpst . o

ol
\

Notice that 1 + o + @™ =0 if % is not’ symultiple of 3, but it is equal to 3ifnisa

multiple of 3. "\
v, Taldng # — cos 8 -+ 4 sin A3 the identity

show that M .
(2 g B0 (n— 240
1+ 2cos® T«E?QSQB 4.4+ 2c08(n = <o 140
.\”‘ . . __cos 146 — cos (n — 2400
’”\g\n 6+ ain28 4 -+ s (n— 18 = " %sm VT—_-B
+8, Psinlg an analogous method, show that
O costremst -+ (on — 109 = S22,
cos B+ cos . aod 5 5 8
1 — cos 2u8

sin9+sin39+---+siﬂ(2n-1)9=~—251n6

cos 3¢ through cos ¢ and sin 3¢

#9, By means of de Moivre's formula express (@}
Lrough sin¢; (c) o8 4¢ through

through sin ¢; (b) cos B¢ through cos ¢ and sin 5¢ t
cos ¢ and sin dg/sin @ through sin ¢. ) ‘ '
#10. Lixpress (a) sin® ¢ linearly through &in ¢, gin 8¢, sin 5eg; (B) sind  linearly

through cos 2¢, cos 4¢.
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15. Trigonometric Solution of Binomial Equations. By means of
de Moivre’s formula it is possible to represent all roots of the binomial
equation

where A # 0 is any complex number, in trigonometric form, Let
A = ¢(cos 6 + ¢ sin 6)
and take the unknown number X also in trigonometric form:

X = R{cos O +1 sin O). Q
Then, AN
X" = R"(cos nO + ¢ sin n0), \ ~
and this must be equal to A

7Ny
%

A =7r(eos 8+ isin B).

4
Since equal complex numbers have equal moduﬁ;\we must have

Rr = v, \\:
whence R is determined without ambiguity~as the positive nth rout of r:
R=5

Again arguments of equal comp,]égk numbers may differ only by multiples
of 27 s0 that N\

70 =0+ 2%
where % is an integer. ~Heénce, the expression for the roots X is

X :——\\"\'fr(cos —-—8 +n2k7r + 7 8in 6 +n2k1r)_

Here k can be‘é.\llfr integer, but the number of distinet roots will be oaly 7.

To obtaip\ﬂ'}éﬁl all it suffices to take in this formula k=0, 1, 2, . . .,
n — 1, Per if % is any integer, dividing it by » and calling the remainder
{, weshave

AN kE=ng+1

‘Q%Eére 0 =1 <, so that I will be one of the numbers 0, 1, 2, . . . .
n—1. But

9+2k7r= 9+2£W+27rq;
7 n
hence,
a8+ 2k 8+ 2ix
608 ————— = C0S )
sin 8+ 2kw — sin a+ 227r,

n n
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which proves the statement. On the other hand, the n roots obtained

by taking k=0, 1,2, . . . , »— 1 are distinct. For suppose that for
two such values of &, say & and £”, we find equal roots; then,
84+ 2%'w P+ 2k . B+2T . G+ %'w
cos = €08 , sipn ——— = sin ———"—,
7 7 n 7

and this is possible cnly if

84 2k W=8+2k?r+2?rq
n 7 A

where ¢ is an integer, or

E'—k =ngq. e \
But & — &’ is numerically less than n and cannot be divisible by nunless
it is cqual to 0; then, however, £ and %" would not be twg Ekﬂerent

mumbers as was supposed, <O
Thus, all roots of the biromial equation ”‘\
X" = r{cos #+ ¢ sin 6) O
- :'\ v4
are given by the formuls R
X = -%(cos 84 2kn + 7 sinf g—-—-——+ 2k‘rr),
n o\ n
takingmmith=10,1,2, ...,n—1 ’.
Example 1. Solve the equation N\ )
:53’\'= — 4,
Since PAN

-4 i—‘—’\&‘(coss * 4+ isin 7)),
the formals for the roots is
\'/F:A {:('os W-—~—+ e + i sin Tt 2k 2k1r) .
AN L
Taldng init k = 0, 1*,. . ‘3 we find the four roots to be
\" '\/_(cos 4 ¢ sin ) 144,

."\“' Vi(eos——i—ismg;—r): - 1414
on\"‘; 4

4 br . ., Br .
\/5_3(00&—4 -i—asm—4) = 1 -4,

T, .. I .
\/§(cos T -+ 4 sin T) =1-—1i
Example 2. Solve the equation
2 = — B
In trigonometrie form

8= s[cus (— g) +isin (- ’25)],
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hence,

T = 2[305 (4]1? _. 1)71" + ’i sin (4k —. 1}?!']‘
6 il
Taking here & = 0, 1, 2, we have the following roots:

Q(Cﬂsg—ising) = \/5*1',

2(cos ;—’ + 4 sin E) = 2,

2
iwo oL TEy o )
2 (ms b + ¢sgin ?) = V3 — 4, 2\
Problems 4 \\ :

.”\.
Present in trigonometric form the roots of the following equ:%tixms:

Lozt = — 16 2wt =144 N
3. 20 = — 2. ot =140

3 AN
5-r*=w,w=—§+é—23- 6. 2 = W)
F. xf = — 4, B, % .=\1,;+ »\/g + 01— VE};'_
9. Solving Prob. 4 algebraically, find expressfagis for cos 15°, sin 15°
10.

Do the same, solving algcbraically and trigonometrically the equaiion

L \V3
e
11. By solving the equation =5 ;fi‘%oth algebraically and trigonometrieally show
that =N

~

. Vaaevs e 1
cos 18° = T%’ sin 18° = e
VITe+ 805 V176 + 80V

On the other hand (sc&éc.. 16},
\ VB — 1 Vio+2v5

'5@1}118 =g cos 18°% = — 3

How can thss}éxpressions be reconciled?

16.2®.3§ES of Unity. The particular binomial equation
'..\‘:":; =1,

“defining the so-called roots of unity of degree n, is of special interest.
\Since in this case r =1 and 6 = 0, all the nth roots of unity are ob-
tained from the formula

2kw ..
cos?—}—z SII

2km

by takinginit £=0,1,2, ..., n—1 For k=0 we have an evi-
dent root z =1, and the other n — 1 roots, by de Moivre’s formula,
are powers

wh B=1,2 ..., n-1
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of the raot
= 0052—r+isin—2—5
n n
Since
2= l= (@ = p et 1),

which is verificd by direct multiplication, w, % . . ., w™! are roots
of the equation

Pt L a1 =0, ~
For some particular values of n this equation can be easily solved, alpe-
braically, and by comparison of the algebruic and trigonomet;pié.@lu—
tions in such eases algebraic expressions for cos (27 /n) and‘si,q}@r;’n)

L ¥

can be found as will be seen from the following examples: s

Example 1. The cube raot of unity, \x\\'\'
w = cos%-}-isingsf’ RN
satisfies the equation ¥ {‘.\
»+xz+1=0, j‘x\
Roots of this equation found algebraieally are . S
*
_1_1_ V3 ‘:':f_ ﬁ
2T A7t g

Binee eos (27/3) is negative and sin ,(2::1-’/".?:) is positive, it follows that
A va
Z_rr' ﬂﬁ’gﬁin 2_37r 1 3

A T gty

whenee \\
(Nerx 1 . 2% 3
Q:\f’f}ﬁs'? = - 2‘! sin 3' = —2—)

as it is known from:t;fgbnometry.
Example 2. \’I‘h‘g‘ﬁfth root of unity,

\ »
,..’.\ = cog gs?r—l—ism 2?71-.
satisfies ifh}; ;equat-ion
\. ?+rrt+24s+1=0,

Thiz equation belongs to the class of reciprocal equations of the type
azt + b +ex® + br fa =0,

and any such equation can be solved in the following manner: Divided through by 2,
the proposed cquation takes the form

a:ﬂ+ziz+x+i+1=0.
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Now take
Then,

2! 4+ 5,— =y — 8

and y has to be found from the quadratic equation

¥+y—1=0,
whase roots are
—~1++3 —1- 3 O\
yl = #, 3 = —2._.
It remains to determine 2 by solving the two equations R \' \}
+1- +1- >~
& 2 i, &£ z i :‘,"‘.
which are equivalent to a\ 4 4
#-pr+1=0 2 —yaf=10
The four roots found by solving thesc are A
—14+~35 | . VI0Y 2v3
+ NS s
! NV 4
— 14 VB s V10 4 3V,
4 v’:‘;’“ 1
—18WE | Vio—ov3
~ 4 +i— 1 ’
Q
.a’j‘;\—l—v’g V10 — 2v3
L\ Y - 1 ’

Now cos (2m/B),50bs 72° and sin (27/5) = sin 72° are both positive, so tha
necessarily A\

—14++vV5 Vid42vE
T i L

;\x;}u = cos 72° + £ s5in 72° =

whence™\
N co 7z = =1 VB Vo4 2

~\J
\The other roots in the order they are written are @', o?, w".

The divigion of the circumference of o circle
into equal parts or the construction of regular
polygons is intimately connected with the
reots of unity. In fact,if do, A5, . . ., dsa
are vertices of a regular polygon of n sides in-
seribed in a cirele of radius 1 and O 4, is chosen
for the real axis, then the angles that OAj,
Ods, 04s, . . . form with it are 27 /n, 47/n,

AJ'!-J (fb' H‘I)
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6r/n, . .., and consequently the vertices Ay, 4y, 44, . . . are repre-
sented by the complex numbers
L, wow, ...

where w = cos (27/n) + 4 sin (27/n). To construct the polygon it
suffices to construct the abscissa
OPF = ros 2r
n
or the real part of . The construetion with the ruler and compass wi
be possible if it turns out that the algebraic expression of @ is cdma
posed of only square roots, Thus, the probleru of constructing regular
polygons requires the algebraie solution of the equation z” = lyand the
investigation of conditions under which its roots are expressible through
quadratic radicals, This constitutes an important chapigr, of algebra
called eyclolomy, The reader is referred to the probl@p&'(e.‘for the most
convenient construction of regular polygons with 3,45, 8, 10 sides,
Problems ¢* 1\\'

4
1. SBhow that the 24th root of unity, cos 15° + iﬁi}j;\lﬁﬂ satisfies the equation
28— gt 11 = {),:‘,.’
and find the expression for the roots of this:ééiﬁatinn bath ie trigonometrie and
algebraic form, Notice that AN
P =1 = (2% — L - (et - o 1),

2. Show that L
2T ) 4 _ 5. 8w
el=2005?,‘ ‘i:e’?\=2-:os—7, 63—2(,067
are roots of the cubic equatign\g}—i- #—2y—1=0.
TINT: The seventh roets ©fyunity satisfy the equation
WO gt gt g gt by 1] =0,
Divide it by #* and €66 + (1/2) = 1.
3. Show that, ("}
AN 2 ar 8
“~,.‘é\1=2cos—g—rs Ez=2006§- e;=2c03T;I

are rogfs :o"ff:éhe cubie equation 32— 3y + 1 = 0.
Img'\: The ninth roots of unity that are not cube roots of unity satisfy the equation

24291 =0

4, Setting .
% = cos 24° - ¢ gin 24°,
3
w = -—%+£—2§’
1+ V5, V104 2v5
€="“—"—4-‘—+1——:1——:

show that 7 = e and express cos 24° and sin 24° in algebraic form.
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5. To divide & circumference into 3, 4, 6, 8 cqual parts the following construction
can be used: For the sake of conciscness a circle with the center ¢ and radius B will
be denoted by C(R). Points B, €, D, E arc intersco-
tions of the circle O(0A) with the cirelos A{OAY, ]
B(O4), C(0A), D(04). Point X is the intersection <
of the circles A{ACY and D(AC). Point ¥ is obtained
as the intersection of X (04) and 0(0A). Show that
AC, OX, AR, AY are the sides of regulur polygons
with 3, 4, 6, 8 sides inseribed in O(0A).

6. Keeping the notations of the procoding prob-
lem, deseribe ares C{OX) and E(0OX) that interscet
at Z, Describe Z{0A) intersecting G(0A) at T. Show
that AT and OZ are, respectively, sides of the regular
pentagon and decagon inseribed in O(0A).

7. Devise a construction of the regular polygon
with 15 sides.

N
17. Geometric Meaning of Operations on Complex Numbers. The
geometric representation of complex numbgers pxplained in Sec. 11 opens
the way to applications of complex nurabérs to geometry. It is clear
that a certain geometric const-ruct-iqn”ivil result as a counterpart to
any operation performed on complex-numbers,  Ilere we shall confine
oursclves only to the examinatignidf constructions that correspond to
addition, subtraction, mult-iglicé.’t;ion, and divigion of complex numbers
together with a few additionalfacts that may be useful in the solution
of the appended problems® Complex numbers are represented cither
by points or by vectors all having their origin
// *Oat 0. In what follows it will be necessary to con-
;;/ sider vectors with arbitrarily placed origins and
y to explain in this connection the notion of egg{)—
poZle_;*}ge or equality of vectors. Two vectors AR
and CL with origins at 4 and C, respectively, are
called cquipollent if they lic on the same or paral-
lel lines and have the same direction and the
T\ same length. In the figurc AB and CD are
¥quipollent vectors. On joining origins and end puintg of equipollent
vectors, in general a parallelogram is obtained. The addition of several
vectors, say of three voetors

a=A"§, b=07), c=§ﬁ,

is perfogr)md in the following way: At the end point B of a, place the
vector BG with the orig_i)n B and equipollent to b; taking & as the origin,
construct the vector GH equipollent to ¢. Then, the vector AH or any
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equipollent vector is, by definition, the sum of vectorsa + b +¢. From
the figure it is clear that the projection of the sum of vectors on any
directed line { is equal to the sum of projec-

tion of these vectors, each projeetion being B g s
taken positively or negatively according as % \
A F
LA

the direction of the corresponding line seg-
ment (like 4’B’, @'H’, cte,) is the same as /
that of 1 or opposite to it. Tt will be easy L
now to describe the construection eorrespond-

ing to the addition B

g
CeT of complex  num-

bers. The complex
numbers # and z,
being  represented
by the points z and
2z, add aeccording to
the rule just ex- O
) . — o - P o’ bt . -
plained for adding vector Oz to Oz:; the resulting Aector O { will be their

sum, and the point & will represent the complédtiumber z, + z,. In fact, if

7] Real axis

7= ay+ b, 2y = O Dt

the projections of Oz and Oz on thes teal and imaginary axes will be,
respectively, DN ’
ay, gz b, b
—_ A4\

hence, the projections of O AlB,

a1 ‘F\a! " and b1+ By,
and, consequently, ke
S8+ ax+ i+ b)) = 2+ 2,
Notice that the fitite Oz in general is a parallclogram unless the
points 0, 2), zadre collinear. Tn the triangle Oz { the side O is legs than
the sum of the'¥ivo other sides, which leads immediately to the inequality

.

O e 4 22 < Jar] + |eo]
proﬁc’lg‘d"thc points O, 2, z are not collinear. The same inequality
holds even when 0, z, 2, are collinear but # and 2 arc on opposite sides
of U; but if they are on the same side, then
o1+ 2] = lar] + [2a).
Now, if 2 and 2 are on the same side of O, the arguments of the complex

numbers z; and z; are equal and their quotient is a positive real number;
conversely, in such a cage the arguments of z; and z, are equal, 0, z;, 2,
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are collinear, and 2z, and z; are on the same side of 0. Thus, by means of
geometric representation we prove again and in an intuitive manner the
proposition established algebraically in Sec. 8. The geometric construe-
tion for the sum of two compiex numbers leads

z immediately to the corresponding constiuction

L of the diffcrence zs — #z. This differonee s ropre-

zig o z, sented by the fourth vertex of the paradlelogram,
three consceutive vertices of which are O, 2, 2.

ol ™ (Clearly the vector representing the difference

22 — 7118 cquipollent to tho vector zlz;:. Q)

The rule for the multiplication of complex numbers in trigonometric
form provides a simple construction for the product of.\]t-ﬁ-'o\ complex
numbers 2, and 2. Before explaining this construction W is nccessary
to explain what is meant by a sense attached to a tmaﬁole ABC whose
vertices arc taken in the order indicated. Gomgtf! om A to B, from
B to C, and from € back to 4, the mterior oif\he triangle i3 ‘w]h]*tt(,d
either to the left or to the right; in the formkl.(,ase we say that 1t hasa
positive sense and in the latter that it haf @ncgative sense.  Thus, the
triangle 4 BC represented in the figurethas's posi- o

tive sense, but the same triangle if\ifs vertices a8
are taken in the order ACR \\-‘ill.;]igive a negative /
sense, On joining the point zpX6 O and 1 a tri-
angle 01z, is formed. Now thl:ing )22 as the side
corresponding to 01, congbrnct another triangle
Oz¢ directly similar 501z, that is, having the 877
same sense and eq\x}l.anglos at corresponding
vertices. If ¢ afido; are the aDgIF‘b betwoeen the
real axis and tlle’ vectors (_’)_4)1 and qu it follows /%
from the comtructmn that the angle between the -
real am\_s\a.nd O§‘ 18 ¢ + ¢ps.  The argument of {
is thu.sﬁl + ¢, Mareover, denoting by p, 1y, 2
theldistances from O to {, 21, 2, respectively, it follows from the simili-
\"ﬁjdé of the triangles Olz; and Oz{ that

Zz

Q F

2_n

T T
whenee p = iy, the modulus of {. Thus, { actually represcnts the
product 2:z;. A similar construction can be devised for representing the
quotient z;/z.
Let the complex numbers 2, 2z, { be represented by three collinear
points. Then, as can be secn from the figure, the points O, { — &y
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7z — 21 are also collinear, and henee the argnments of { —2 and 2, — 2,
are either equal or differ by . Consequently,
g’ —Z = ?\(32 - 31)
or
§'= (1 — ?\)zl—]— P\Z’z
where A is a real number; and it is evident that
the converse is also true, that Is, if A is real,
points {, 21, 2 are collinear. The number A in
the preceding formuls has 3 simple meaning, Q.
Denoting by # the distance between 2 and 2z and by p the segment
21§, taken positively or negatively according as the direction of 3_1? “eo-
incides with the direction z2s or is opposite to it, obviously A I¥equal
to the ratio r/p. In particular, if X = 14, the point { ia t.l:n'e”iﬁid-point
of the segment z;z, and it is represented by the comp]g&mjmber
_ate ”
: D

The vector corresponding to 4(z, — z1) i3 pexpendicular to the line {

Joining z and 2, whence it is casy to sce that the complex numbers

{=a+\(z; %:le):

2

a and perpendieular to . 3

where A is real, represent points on the line through an arbitrary point

I }Problems

1. To eonstruct a triangle X\Qi given the mid-points P, Q, E of the sides XV, ¥Z,
ZX. \

HINT: Lot z, v, 2 be complek'riumbers representing the unknown vertices X , ¥, Zand
P, ¢, ¥ complex numbehs representing P, G B Then, 24+ y=2p, y+2 = 2g,
2+ = 2r. Forsimpligity of construction the origin ean be placed, for example, at P,

2. To construet(i\giiadrangle XV 2T given the mid-points 7, @, R, § of the sides
XY, YZ, ZF, PXN"The problem js possible only if P, @, B, 8 fulfill a certain condj-
tion, What-,iég,‘ the geometric meaning of this condition? This condition being ful-
filled, the piobler is indeterminate.

8. Five'glven points are mid-points of the sides of a hexagon; how can onc locate
the sigil in order that there shall exist hexagons with mid-points of their sides thus
located?

4. Points P, Q, B are given such that, they divide the sides of a triaugle X YZ i3 the
ratios

Xp _1 rg _2 Zk _ 1
FY - 1’ 0z~ 1 RX 2

Construet the triangle. Diseuss the condition for the existence of 5 true triangle.
6. The complex numbers z = a + (b — a}t, where @ and b are given complex
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numbers and  a variable real number, represent points of the fina th rough a and p,
Show that the two lines

z=a+4 (b - aj, z=c+ (d — e}
iz -o
h(g%f) = 0.

6. How can one find the point of inteesection of the iimes of Iroh. 5.f ﬂ’luy are ngt
parallel? The value of ¢ for the point of interscetion is given by A

arc parallel if

and porpendicular if

b 2\
— w f = ~ ~

T. If 2,, &, z represent the vertices of a triangle, .‘s‘m'ﬁv that the mediang pass
through the same point and find the complex number cbtfespon:ling ti this point.

8. The complex numbery 21, 2z, 2z represent, tho WCTtices of o triaugle 222, with
positive sense. If g, b, ¢ are lengths of the sides 2iEgN¥ey, 2azy anl A, B, C the opposite

angles, show that / \\J

a—=zn
3 — &g

= g (eos €'~ ¢ 5in @), Qf;l_% = g (cus A — Fain 4).
NN — zs

N./

Also, using the identity

{21 — 29 —l—,(fiz’ > 2) + (@ — z) = 0,
show thaf, SN’

80 sin B sine
—=_ T 2 _Hnb
a b ¢

A4

and N
b= a.ctg,(,}—{— ¢ cos A, ete,

*3. The geome’prﬁc}:can V22 of the complex numbers
£ and z; can be.ndnsiructed as follows: Draw the bisector
{ of the anglg’[}eﬁveen 0z, and 02 and through O the
line V' perpGutlicular to I Take 2 symmelrically to z,
with resgentto ¢, and through z, 2, 2, draw 4 cicele that
inter:ie;gs”z at the points { and — ¢, Thess two points
rcpr:e;eut two possible values of the geometric mean,
#NE0. On the base 4B = 24 construct a triangle ABX
“Nfowing the product of the sides AX - BX = m? and the
‘difference of the angles ZABX — ZBAX = §.

HINT: Let the base A8 extended he the real axis, its mid-
point O the origin, and X the complex number representi ng
the unknown vertex X, The conditions of the problem lead
to the equation 4 0 B

X’=a“—m2(cost5-z'siu5}

X2 = [a + m(cos g — 7 8in g):”:a — m(cos g — 7 sin g)]

The construction of X follows from Prob, 9,

or



CHAPTER II
POLYNOMIALS IN ONE VARIABLE

1, Integral Rational Functions or Polynomiais. An expression of
the form 2\
g +axld - - g,

in which as, 41, . . ., 2. #re given numbers (real or lmqgma{y\j' and
with # ag the variable is called an dnfegral rational Junction of v or a
polynomial ¢n x. The constants ay, ¢n, . . ., @, are Lalled ‘Goefficients,
and the single monomials R

agxt, & 2™ L L ., 2.

are called the ferms of the polynomial. If a # ﬁ “the polynomial is of
degree n and az” is the leading term. Terng \\th cocfficients equal to 0
are usually omitted while, on the other It ind bofore the leading term
it is permissible to add as mauny terms with zero coefficients as wo wish,
and all polynomials thug obtained ci.F(.? considered as identical. Though
strictly speaking a polynomial mu@t tnvolve the variable ¢, yet, for the
sake of convenicnee, it is customar v to consider constants, different from
0, as polynomials of degroe Q< A polynomial all of whose coefficients are
equal to 0 is called an ¢ wetally y vanishing polvnomial and is replaced
by 0. No degree s mptiibuted to identically vanishing polynomials.
Two polynomials agetetlled equal if they are identical term for term;
that is, the Lquahtv. ’
N

et s et an = bt bt e b,
implies A’%”'
.:':} sy = bu, I = bl, ey @y, = bn.
7
Offen o denote polynomials it is convenient to use functional signs
Sz Yelx), ¢lx}, ete., and even to omit z, writing simply f, g, ete., if by
so doing no misunderstanding can arise. The result of the substitution
of a number a for z into a polynomial f(x) is a number called the value
of this polynomial for x = ¢ and is denoted by f{a). Thus, for the
polynomials
f@)y =8 —2+2, gla)y=4—-2"+2z-1,
Riz) = V222 — (34 Vs + 4,
35
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we have

f=1)=0, g¢g)=3+3 Rr()=1

2. Multiplication of Polynomials. The addition, subtraction, and
multiplication of polynomials are sufficiently well known from clemen-
tary courses of algebra. In regard to multiplication, only one remark
of a practical nature may be added. Ii we want, for example, to mul-
tiply the polynomials

2-—zr+1 and 2z,

the usual arrangement of caleulations is as follows:

o AN
@z X (44 1) ~A
:t:4—:1:3+332 g"\,,.
2 — gty {4H

»r—-x+1 _-‘\\
* 4+ o + 1 v

This procedure, especizlly when the pol 5ﬂ.g)}\n“i::mls to be multiplied have
many terms, entalls a good deal of ustless work in writing powers of z.
This can be avoided by using the thethod of detached cocfficients. In
this method we write only sequentes of coeflicients of the polynonialg
we wish to multiply, beginni’n'gE with the leading ones and without
omitting zero coefficients. Then, the coefficients of one polynomial are
multiplied in order by th@\first, second, third, ete., cocfficients of the
seeond polynomial, apg:i‘;ﬁhe resulfing lines of numbers are placed one
below another in sueh, & way that each line is shifted one place to the
right with respect %0 the preceding line. Adding the numbers standing
in the same qqhiﬁfh, we obtain in order the cocfficients of the product,
and finally swe-restore the missing powers of 2z, For instance, the ex-
ample gg'{@g"&b@\fu can be worked out as follows:
O\

. 1 -1 1 X 1 1 1
AN v 1 -1 1
’"\\; w4 1 _ 1 1
N 1 -1 1
1 0 1 1] i

8o that the product is
2025+ 0x+ 1 =gt 22 1,
As another example let ug multiply
P+at~224+3 by 2pt — 3t + 422 — 1,
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In this example the caleulation is arranged as follows:
1 ] 1 -2 0 3 X 2 -3 4 0 -1
2 0 2 -4 9 6
-3 0 -3 6 0 -9
-8
0

4 0 4 0 12
-1 -1 2 0 —3
2 -3 6 —7 9 -2 —10 14 0 —3
80 that the product is
22 — 3x® + 627 — Tab - Gab — 2yt — 1073 + Idz® — 3,

N
O\
One line consisting of zeros obviously eould be omitted., A N
One further remark of theoretical importance should be added. If
two nonidentically vanishing polynomials f(z) and glx) ha&.‘ﬁe"fﬁe leading
terms agr® and bor™, the leading term of the product \}@{I&b’(}

a_ubu$n+m N
and the coefficient differs from 0; hence, f(x)g.(@;is a nonidentically
vanishing polynomial. Consequently, if M

J@g(a) = 0,0\
one of the factors must be an identicajjy".mnishing polynomial.

Pro,l:il:g‘n'ls
By the methed of detached cueﬂi“gienifs' mnltiply
Lotttz x+1by ahanat® + 2 — 5 4+ 1.
2. 20 — 32 4 5 — L by @ ghadt — 1,
8. o4 4a® — ba? — 2 by A" 4% — Bt — 2,
4, 5 — 3x*+x3—z.—j—31.‘l)y3x3+7x‘3—x+1.

"/ . e . .
3. Division of PBolynomials. The division of polynomials requires
more explanatient” Let

’\\” J@) ="+ a4 - - - +a,
.:' :"o g’(.’l:) = bofc'“ + blﬂ:m_l + o + bm
AN .
be Q&S@ polynomials of degrees n and m, respectively, so that ap = 0,
Bo =9, and assume that n = m. By choosing properly a constant ¢

we can obtain the polynomial

flz} — azr—mg(x) = fil),
which, if not vanishing identically, will have degree n, < n: for this it
guffices to take

=7
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Aslong as n; = m, a constant ¢; ean be found so that

N(z) — ez rg(z) = fafz)

which, if not vanishing identically, will have degree ny < ny. Ifpp = m,

the same process can be repeated. Now the degrees of the “partial re-

mainders” fi(z), falz), . . . form a decreasing sequence so that there
will be some first partial remainder Fiq1(x) shat cither vanishes dentically
or is of degrec ngyx < m. By eliminating fi(z), fo(x), . . . , Felix) from
the identitics A
flz) = ecxnmg () = fi(2), @
A) = awrrgle) = fi(a), O
............. N

Ju@) = carerg(z) = fiala), { "'}‘;

and setting for brevity '\"(.’
CprTm _+_ cpm—m + P + CLr™ ™ = g(_’,i‘:), \ 3 fk .‘-‘(R:) = ?‘(.'l-'),

we obtain the identity N

1) = glo)ate) #ald),
in which 7(z) has a degree < m or vaniislm%’i(lﬂnti(:all‘\-’. The polynomialg
g(z) and »(z) are called the quotigpfland the remainder in the division
of f(z) by g(z) and are found byvthe above deseribed process, which is
essentially the same as the ongbaught in clementary courses of algebra.
In practice again it is pwofitable to aveid writing the powers of 2,
using instead the methodlof “detached coeflicients.” For example, let

7

us divide &\
254 0 Bt — 1 by w3254 dp 41,

In writing thed&tached cocfficients one must not forgel the cocfficients
0 of the IIJis\&sihg'tcrms. The operation itself is arranged as follows:

s§ Dividend Divisor
LIWO 0 3 0 0 0 —-1p1-3 0 ¢ ;
L3 0 4 1 1 "4 12 32 82 quoticnt

J4 01 2 o
4 -12 0 I8 4
12 214 3 0
12 -36 { 48 12
32 —14 —52 12 0
32 -96 0 128 32
82 52 —140 —32 —1
82 -246 0 328 82
194 —140 —360 —R3 remainder
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Thus, the quotient and the remainder are

zt 1 4% 4 120% 4 322 4+ 82, quotient
1942% — 140z — 360z — 83, remainder
and identically

2 b2+ 32— 1= (2 — 325+ 4o + 1)(x* + 4% + 122% + 325 -+ 82)
+ 1942® — 1402% — 360x — 83.
If the remainder in the division of f{z} by g(z} is 0, that is, if

f@) = glx)gl=),
where ¢{z) is a polynomial, it is said that f(z) is divisible by g(z) on
that g(x) is a divisor of f(z}. Clearly no polynomial that is notgdeh-
tically vanishing can be divisible by another of higher degree{ “From
this it can be inferred that in an identity of the form N

f(z) = gl@)qu(x) + nlz), o\'l':

where ¢:(2} and ri(x) are polynomisals and ri(z) is cifhé;:’() or has lower
degree than g{z), qi{x) and rfz) coincide with tl@ guotient and the

$

remainder obtained by division. In fact, if \\
flz) = glx)qu(x) + nx) = 9(112)9?(&*’) + r(z),

A\

then,
g@lq(z) — g(z)) *~7'(x) = rilz),

which shows that +(2) — r{z) 18 dl.yl&ible by g{x). It is impossible that
r{z) — ri{x} does not vanish 1deyt1m]ly for in this case its degree is less
than that of g(x)} and it cannpt'be divisible by ¢(z). Hence, iz} = r{z)
and also qi(x) = g{x). N\

The following simpleremark will be needed later: If two polynomials
fand fi are dwmble by g, then for arbitrary polynomials { and [, the

polynomial

2 I+ b
will be dwlslgt by ¢. In fact, by hypothesis
\”.”' f=90, hHh=ga

w hai g ‘and g, are polynomials; hence,
F+hfi = gllg + han)
is divisible by 2.
Problems
By the method of detached coefRicients divide
1, "+ 83— 20848322~z +1byxt—x 4 1.
2 ot — Bxf fxf— B L Bt — 4t + 22 — Lhy 208 — B4z — 1.
8 r*—3*+ 6z —1lbye*+ax+ 1.
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4294 gt 1hye? + o 4+ 1.
B. z+1)"— 2"~ 1by (22 + 2 + 1)n

4. The Remainder Theorem. The remainder in the divizgion of g
polynomial by a binomial z — ¢, where ¢ is an arbitrary number, can be
found without actually performing the division by means of the follow-
ing theorem, important despite its simplicity:

The Bemainder Theorem. The remainder oblained in dividing f(z) by
z — ¢ 18 the value of the polynomial f(2) for x = ¢, that 7s, f(c).

Proor. Since the divisor is of the first degree, the remdinder will
be a constant . Calling the quotient 7{x), we have the idontity

F@) = (2 = &)g(z) + r. O

On substituting the number ¢ in place of « intqtfflis idcntity we must
get equal numbers, Now, since r is constan!:-;‘l‘t\fs nol affected by this
substitution and the value of the right-hatdN¥ember for 2 — o will be

A\
{c — c)q{c) +<‘5 s
whereas the value of the left-hand member is f{¢}; hence,
L= 7o),
which means also that iden,,t@jcafliy inx
B = (z — e)q(x) + f(e).
O\
It follows from thi\S'\ﬂ}éomm that f(z) iy divisible by # — ¢ if and only
if flc) = 0. P
Example LTt show that 7() = o + 2? — 5z + & is divisible by z -+ 3. Inthis
case ¢ = —/3\And thus we have to caleulate
.“\‘.
N =3 =-214+9+15+3=0;
hel)pé; Sz} is divisible by = + 8.
(“Example 2. To show that o — ¢ is divisible by z --¢. This is true since
\ &— ¢ = 0; the quotient found by ordinary division is
gl + camTE + cipn— _|_ L i

Example 3. TUnder what conditions js 2+ + e divisible by z + ¢? Tn this case
z = — ¢ must be substituted into z~ + ¢y the result of the substitution is

(e e =enfen =2 ifnis even,
(—el 40" = —er L o = 0if pis odd,

Hence, z* + ¢ is divisible by 2 + ¢ (for ¢ 0} only if » is odd, and for an even n the
remainder after the division is 2¢n,
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Problems

Without actual division show that

Loz + 32 4 32% + 3z + 2 is divisible by = + 2.

2 2F — 3z + 27 — %7 — 3 15 divisible by £ — 3.

3. If o and b are different and f{x) is separately divisible by z — g and z — &,
thow that f(xr) is divisible by (x — a}{z — b}

Without actual division show that

4. 2p* ~ TP — 22% 4 13¢ + 6 is divisible by 7 — 5z + 6.

B, 228 - 225 4 2t 4 26 4 22 4 2 g divisible by 22 + 1.

6. 2% + 475 + 3zt + 228 4 x +- 1 iz divisible by 2* + 2 + 1, ~
7. Show that {(x + 1}* — 2 — 1 iz divisible by 22 +z + 1 only if » is a.n odd
vumber rondivisible by 3, \

{ \

. soe N
5. Synthetic Division. The guoctient in the division by o~ ¢ can
be found by a very convenient process known as synthetic dwzszon Into
the identity of Sce. 4 O
_ ~\
fla) = (z — e)glz) +r $

g(x) = bt bt 4 - - - OB
where bg, by, . . . , Ba are coeflicients to be aetermlned Performing
the multiplication, we have « \J

{x = e}g(z) = bex® + (b — che)zt + gbg > cbl)x““’ + -
+ (bn-l - Cb amg}t — by,

let us substitute

v..
) 3

and N
(z — c)g(z) + r = bz + (I :r,ibn)a:““l + o
$ '\‘"': -+ (bn_l - cb,,_g)x +r— Cb.,..1.
Bince this pulynormal must be identical to
Nagr + gt + - -+,

10 detemljne'bé:;ﬁl, .. vy ba and ¢ we equate coefficients of like
powers of z,.getting the set of equations
b0=ao, 'j‘:".bl""ﬂbu:al, b2—0b1=az, c ey

’"\: \ b"-l = Cbn—ﬂ = dn-1, v Cba-—]. = y,

from’which it follows that bs, b1, - . . , e, # are found one after another
as Tollows:
by = a, by = a; + cby, by = a; + cby, s e

bra = aaa + cbn—-ﬂ, r =, + cha1.
The calculation is of a recursive nature and in practice can be arranged
more conveniently thus:
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¢) o G2 ¢+ @pey a,
bu{: 518 L bﬂ_gﬂ bﬂ__gl
ty = bu h1 bz N bn—l r I‘ema-inr_ler

coeflicients of the quotient

Herc in the first line all the cocfficients of f(x) are written without omig.
sion starting with ap. The third line begins with & = ¢, which is mylk
tiplied by ¢, the preduct placed in the second line and added to g
the sum b; is placed in the third line. Again, by s multiplied by ¢
the product placed in the second line and added to az; the sumsgs placed
in the third line and the same process is repeated until in thedlist column
and in the third line the remainder » is found. The irltpinedent exs
pressions for by, by, . . ., bay, # obtained Iy sllccessi'gej;‘;ﬁ[istiL11tions are
bo=a, bi=acta,  b=ad+ac+ a, D,

bu = auc""l“ﬂ?\alc”—” Tt
and \

r=aget a4 - J{\}l = fle),

which gives the sccond proof of the wainder theorem. Constdering
the sequence of polynomials O

.fﬁ = Qo, fl = xfﬂ + a, .f? = xﬁ‘%@r A 1 ffl(x) = .’.I-'fn_l(ﬂi) + ay
it is clear that ,j:’;‘ '
Jile) s’ + ar™ 4 - . 4q,
Hence, i~~}
b LR, t=0,1,2 ..., ,{~1
and, moreover, N\

Ji5) = GO+ ST+ - - fo(o)] + 10,

The a,bove,.@’xﬁéﬁbed process of finding the quotient and the remainder
when di@iﬁg flx) by & — ¢ is known ag synthelic division. Since the
remainder is f(c), the synthelic division provides a convenient meuns
fr{r @i}chlating the value of a polynomisl for a given value of the variable.
\ f}xample L To find the quotient and the remainder when dividing
3:r“-—7x5+5x‘—222—63:-—8byz+2.
_ The necessary calenlations are arrunged as follows:
-2 3 -7 5 0 -1 —§ _—g
—§ 26 — 62 124 — 244 a04

8 —18 31 —62  i23 —25%2 4m%
Ilence, the gquotient is

3t — 182 + 31zt — g2 + 123z — 252
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and the remnainder is
r = 406,
Exzample 2. To divide

baf — 72622 — 224+ 4byx — 1.
In this case the process of synthetic division is reduced to additions and can be
arranged in two lines as shown:

1) 5 0 -7 6 -2 4
5 5 -2 4 2 6
80 thai the quotient is

Bzt - Ba® — 2t 4 - 2 N
and the remainder is )
r = RSN
Similar simplification eceurs when ¢ = — 1 in which case the whole pmcg‘.sfu}onsists
of subtractions. (nf;'
Problems NS v

By synthetic division find the quotient and the remainder i the division of

12 — 62 + 722 —be+1byz + 2 N

2, — o+ T — 4 by — 3 ‘\\

3. 62 — 1022 + 5z + 3by = — 1.2.

4. 1009 — 222 + 3z — 1 by 2z — 2. QO

b.ot+ai— 4 Iby3z 42

6. 5z° — 6z*++ Lhyax + L N

7. (r— l}z* — mzv 1 4 1 by (x — 1320

8. Compute f{0.75) if f(z) = — 3z° 8 — z + 1.

9, Compute f{— 0.3) if f(z) = —iéx“ + 6 — 2?4 2.

6. Homer’s Process. S{nce ‘by the binomial theorem any power

m(m -1
2

7 =[e+ (z — c)]’” = c”%*f- me™ W — e} + = el LE SR

can be expanded \s powers of £ — ¢, ¢ being an arbitrary number, any
polynomial 0‘.\\’1J.§E‘. similarly expanded. Let

f(gl;— Ao+ Aiz — )+ doflz — €)'+« + - + Aulz — )™

Th ’ﬁ‘t{e;ﬂ\i(;ients in this expansion can be determined very conveniently
by répeated applications of synthetic division. In fact, writing

(&) = do+ (= filx), Al)=A+dlz-c+ - +Adfe—c)
flx) = A+ (x—o)fe(x), flz)=dsb - HAula— ™

it is clear that A, is obtained as the remainder in dividing f(z) by z — ¢;
4, is the remainder obtained in dividing the first quotient fi{a) by x — ¢;
Ay is the remainder obtained in dividing the second quotient f(z) by



44 THEORY OF EQUATIONS

& — ¢, ete. The arrangement of this process known as Horner's process
is best understood from examples.

Example 1. Expand in powers of  — 1
flz) = daf — 6zt 4 33 22 — 2 — 1,

In this case Horner's process is simplified and reduced to additions, thus:

1) 4 —65 3 1 -1 =1
4 -2 1 2 1 0
4 2 3 5 6 -
4 6 9 14 o N\
4 10 19 T A
4 14 - 2\
4 - e\
—— N/

The underlined numbers arce read downward and represent, i.lfé i‘ﬁ({tlested eocflicients
AD, A],, Ag, PRI '_Fhl.ls, # "\’..

Fx) =04+ 60z — 1) + 140z — 1)2 + 19(z — 1)3 ~P~1f43h; — 13+ 4z — 1)%
Example 2. Expand p \Y;
7z) = o — e n

in powers of ¢ 4 2. The arrangement of thenHorner's process in this exatnple is ag

follows: O
-2 1 BN -s 0 1
B2 4 4 —38
MN—-2 -2 4 —7
" =2 § —12
NPT -4 6 —8
O =2 12 T
N\ 1 -6 18
' —2
o 1 —8
PN 1

Hence, "\’:\'
x-a\\‘&'zurl = ~7— 8 +2 4+ 18+ 2 - 8 + 2 + (z + 2

i= thg}r%quested expansion.
Nt -

y n\ e
a\% Problems

\.’Expa:nd
L 2* —1inpowersof x — 1.
2. :55—63:3+m2—-linpowersofx+1.
3. -4m5+2m5-—x+1i11p0wersof:c+2.
4. 3z + 62% 4+ 2% — 1 in powers of £ — 0.3,

7. Taylor’s Formula. The coefficients in the expansgion of a poly-
nomial in powers of z — ¢ depend in a simple manner on the values of
this polynomial and its derivatives at z = ¢. While the notion of a
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derivative for functions In general is intimately connected with the idea
of a limit and therefore properly belongs to differential calculus, in the
special case of polynomials derivatives can be introduced algebraically
without any reference to limits. The derivative f'(x) of a polynomisl
flz) may be defined as the coeflicient of the first power of k in the ex-
pansion of f{z -+ 1) in ascending powers of an auxiliary letter k. From
this definition and the binomial expansion
—cthr=(x—c"tnlz~c)h+ .-
it follows at once that the derivative of (x — ¢)™ is n{z — ¢)*, and in
particular nz"~* is the derivative of 2. Furthermore, it is clear that on
multiplying a polynomial by a constant its derivative is multlplzed\by
that constant and the derjvative of the sum of polynomials is equg! to
the sum of their derivatives. From this it is easy to eoncluc}e.ihat the
derivative of K7,
F@) = ax + @™+ - o+ F Gl F Uy
Is !
F(@) = neg™ =+ (n — Do 4 -+ + o Slta .
Bince f'(z) is a pelynomial, we can consider,’it\k’Eierivative, which is
called the second derivative, f(2), of f{z). Similarly, the derivative of
the second derivative is the third dcrws,mue, Fx), of flz), ete. Now
take the expansion RS
flz) = Ao+ As{z — ¢) +Ag(ﬁ:—f:)2 s Az )"
and form successive derlvatl\re%\(Jf both members
fi2) = A1+ 24:(z — Ql\-l- 3Aa(x -2+ - - udu(e - o)
Fia)y =24,+3 288z =¢c)+ -+ - + n(n — Ddn(z —e)»2,
Fzy=23-24, +4 % 24,(x — c) +.
......... \
Taking here z =8 we find
: 7 1)
A"?’:f(\‘"’)’ A=y, A=y A=ipTy
and in«g'e}rei‘al
\ } f“’(c)

di=r53.%

Thus, the expansion of f(z) in powers of z — ¢ takes the form

1@ =50 +19 @ - + T e - +

f{ﬂ){c) _ “
tirgs. - w®9
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and presented in this form it is known as Taylor’s formula. Horner'y
process, which serves to caleulate the cocfficients in this eXpansion,
provides a convenient means for computing values of a polynomial and
its derivatives for a given value of the variable.

Problems

Caleulate the values of the following pelynomialz and their derivatives for the
value of 2 indicated:

L — 46 4+z—1forz=1.

2. 20 — T — 1022+ 22 — Gforz = — 1, o

3 402 -T2+ 8z +3fore = — 2, .

4 et — Ma® - Yot — Yo+ Lfore = — 14, AN
7NN ©

8. Highest Common Divisor of Two Polynomial's.,}‘ Two polynomialg
raay be divisible by the same third polynomiz}lgfwhich 1s then called
their common divisor. For instance, the polynbotials

A+ A — e~ 2= (2 + D@+ — 1),
2+ 200+ 20+ 82+ 33+ 2 = (z + AL + 2t — 2t 22+ 1)
R&

have the common divisors O
2+l 242 (GPDE+2) =224+ 3+2

Of all the divisors common todMwo polynomials, speeial intcrest is at-
tached fo the common digisor of highest degree. This cxpression is
called the highest commamdivisor. We shall see prescntly that the highest
common divisor is essentially unique and that it ean be found by &
series of regular Gperttions. let two given polynomials be f and fi.
Dividing f by fyNet ¢ be the quotient and f2 the remainder so that

\O f=fa +h

Hfis th\ah identieally vanishing polynomial, we may further divide
h by\fz\obtaining the quotient ¢, and the remainder f; so that

h=rfag+f

AN
““Afain, if fs does not vanish identically, the division of f; by f; leads to
another identity
fo=fas + 14,
ete.  Since the degrees of the polynomials fy fo, f5, . . . diminish and
operations can be continued as long as the last remainder obtained is
not an identically vanishing polynomial, we must come to some re-
mainder f, that divides the preceding remainder so thut we shall have
r identities
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f=la+fo
fo=foge + fi,
Jra= fr—lQr—l + fr,
Jraa =g
I'rom these identities it can be inferred first that £, is 2 common divisor
of f and fi, and, second, that any common divisor of these polynomials
divides f.. To prove the first point we observe that f. divides f._i,
hence, it divides also ’
fr‘—ﬁ =ff—lqr—1+ff- { ‘\
e

Again, since f, divides both fy and f, it will divide f,—;, and}‘ech-

tinuing in the same manner, we may conclude finally thatJy divides

both fi and . To prove the second point, suppose that drdivides both
&

fand fi. Then, as seen from the identity P\
fr=f =, \ ]
d will divide both f; and fo. Again, the identity (2w
(&

fa = fi ~ fatpa ‘/: }
shows that d divides both f, and f;. C-ont.i’n:ui fng the same reasoning, wo
conclude that d divides fr_; and f,, Sige cvery common divisor of f
and fi, as has been Just proved, dividés 7., no one of them can have
degree higher than the degree of f,:..' *Henee, f- is a common divisor of
the highest degree; and, if d igdahy other common divisor of the same
degree, it divides f. and the”cﬁlotient is a constant. Thus, there are
infinitely many common divisors of f and f, of the highest degree, but
all of them are of the ferm

PN fy

where ¢ is an gfPifary constant. In questions of divisibility, poly-
nomials differis g\"énly by a constant factor may be considered as not
esscntially different. In this scnse there is an essentially unique highest
commop\&i’{?isor of two polynomials for which can be taken cither f,,
as givenby the above process, or ¢f,, with the constant ¢ so chosen as to
ob’féh the simplest result. It may happen that f, itself is a constant;
in this case polynomisls do not have cornmon divisors in a proper sense
and are called polynomials without eommon divisor, or rclatively prime
polynomials. The process of successive divisions by means of which
the highest common divisor is found is similar to Eneclid’s algorithm,
which in arithmetic is used to find the greatest coramon divisor of two
integers. Hence, it is also called the Euclid algorithm applied to poly-
nomials,
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Example 1. To find the highest coraron divisor of

f=a5+ 225+ 2 + 322 4- 3z + 2
and
H=m+4z8  de? — 2 — 2,

The first step in the Euclid algorithm iz to divide £ by fi.  This division s performed
with detached coefficients as follows:

1 2 ] 1 3 3 2 |1 14 4 —1 ~2
1 4 4 -1 =2 i1 —2 4 -
—2 —4 2 5 3 £\

—2 —8 —8 2 4
4 10 3 —1 2 L\
4 18 16 -4 —8 N\
-6 —13 3 10

The first remainder is K7,
&/

fo= = 6 — 1322 4 3z hAON
Now we have to divide fi by i, This division will Jntrochuee fractional coefMicients

and, to aveid this inconvenience, we may multi,pk}»fl by 6; thereby f; will be multi-
plied by a constant fuctor, but this is of no i.m'{eortance for our purposes. The next

operation is thercfore the following: 2\
6 20 2 -6 -1 —6 —13 3 10
6 13 —3 —10 o8 [ -1 Tir

T 27 4l

Now fo avoid fractions agaip we b:uﬂt-iply the numbers of the last line by §; this
changes the final remainde%ﬁo that instead of f;, as given by the regular procedure,
we shall have f, mult-iplig"d; ¥ a constant. The operation continues thus:

N6 162 22 —m

N

O 66 143 =33 — 110
¢ i) 57 a8
Here all coéffictents have the factor 19; suppressing it, we can take for f
'"\5.
%w’ fi=at4+ 3z + 2.

&
Notige'that in the line where the coefficients of the quotient are written the numbers
nenlOnger represent these coefficients, But this has no importance, sinee we are not

\”\iint’ésrested in quotients but only in remainders and then only save for constant factors.
Now we have to divide f; by fz. This division

-6 —13 3 W] 1 3 @2
-6 —18 —12 =6 5

5 15 10
5 15 10
0

suceceds without a remainder. Tlence, the operations stop here and the requested
highest common divisor ean be taken s

%%+ 8z 4 2,
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Ezample 2. TFind the highest coremon divisor of
f=ab—pt— 2 pop
and
Jo=082' — 427 — 622 4 42 4 .

Here, at the beginring, all coefficients of the first polynomial are multiplied by 5:
then, the procedure continues as follows:

5 -5 —1D 10 5——5|5——4——-6 4 1
5-4 —6 4 1 T =1
MMuitiply by 5: -1 —4 [ i -5 "
—5-20 30 20— 25 O
-5 4 6 —4 —1 :«\.
Suppress factor — 24: — 24 24 924 — 24 \ N
1 -1 -3 1 Y
We may take N
fe=2—22— 2 41, A
Next, '.”\\"
B —4 — 86 4 1] 1 -1 =1 v
E —5 =5 5 {5 N
1 -1 —1 1 ':j\\“
1 -1 —1 1 ‘..x\"
0 O\Y

and since there is no remainder in this divisio L2

iz the requested highest common divisora %
Note: If all the identities in Buclid/s\algorithm applied to f and f, are multiplied

by an arbitrary polynomial g, it is cleatr that
A,
SO 0
will be the successive remaintlers of which the last, gfr, divides the preceding, #fr-1.
Yence, the conelusion: If theWighest common divisor of Fend fiis d, that of gf and g7

willbegd. In pa.rtdcular,’if‘ Fand f are relatively prime, y may be taken for.the highest
common divisor of g{}}nd’gﬁ. In Chap. XII reference will be made to this remark,

) '\\“ Problems
Find the Jﬁﬁhest common divisor of the following polynomials:
1, f=8ad + 220 — 30 — 25 41, o= 2 0+ 1L
2. Aot — 62° — 8z — 3, Ji=2"— 3z~ 2.
3.f=2x5+4z*+x3—x2+x+1, fi= 62° — 20 4 27 4 2% — 2 4 1,

4.f=2x°+3x5+x4+7:c3+4:52+4z+5,

fi=at — 2 —2— 1,

6. f =100 — Qo5 — 122} 22—z — 1, Si=db 28 — 713 — 82—z 4+ 1.



CHAPTER IIT
ALGEBRAIC EQUATIONS AND THEIR ROOTS

1. Algebraic Equations. Let f{z} be a polynomial, with real or
complex coefficients, or degree = 1. On cquating it to zero. &b get, an
equafion O\

J (x) =0, \\ -
which is called an algebraic equation. In this ct;uzg’ciﬁn x stands for an
unknown number that satisfies it, that is, \\-’hnn’?\gubétituted wnto flx)
gives 0 as a result.  Any number satisfying HE’ proposed cquation is
called ifs root. The problem of solving an dquation consisis in linding
all its roots. Roots of an equation f(x),jx\g are often called the roots
of the polynomial f(z). If the degl‘eepf‘\tﬁis polynomial is n, the corre-
sponding equation is said to be of debree n. Corresponding to n = 1,
2, 3, 4, ete., we have cquations of\ghe form

& + :,‘H,‘

@ + i Y a = 0,

at® e + a + a; = 0,

Gt aa® + aor® + agw + ay = 0,
L\ ete.

of degrees 1, 2\,’~;3,"4, ete., or linear, quadratic, cubie, biquadratie, cte.,
equations. The lcading coefficient a4 is supposed Lo be different from 0,
but no eendition is imposed on the other coefficients,

If c@a”root of the equation
...\’j‘:; f(x) = 0:
3 Tollows from the remainder theorem that f(z) is divisible by  — ¢
80 that

Jz) = (z — i),
fi{z) being a polynomial of degree n — 1; and, conversely, in case f(z)
has the factor z — ¢, the number ¢ is a root of this polynomial. If &

is another root different from ¢, so that f(c1) = 0, then, substituting €1
into the preceding identity, we have

(a1 — e)filer) = 0,
a0
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. . 4
whence, since ¢ — ¢ 5 0, it follows that fi{e) = 0, that is, fi(z) is di
visible by z — a1, or
filz) = (x = e)fela),
fa{x) being a polynomial of degree n — 2. Consequently,
flz) = (z — e}z — c)fe(2),

which shows that, having two distinet roots e and a, the polynomial
flx) is divisible by {(x — ¢){z — ¢1). Continuing in the same manner, we

may conclude that f(x) will be divisible by Q
—c)z—c) * - - (T = Cpus) O\
if the cquation f(x) = 0 has m distinet roots ¢, ¢5, €2, . . ., cm_;’\ ’

Two important results may be derived from the last, eonclusmn
Firgt, it shows that an equation of degree n cannot haac more than
n dlbtu’lct roots. For suppose that e, e, . . ., €2y a0 ew?z» Eﬁstmct roots
of the equation f(z) = 0; then, f{z) is of degree n and"is divisible by
{(z—¢){x—e) ... (& — ¢oy), which is also a pOQ(D()mlal of degree n.
Therefore, the quotient is necessarily a COnbt&kﬁ that is equal to the

X

lcading coeficient g of f(z), so that AWV
@=mw~@m—m31’&—qg,
and the product on the right-hand siflé cannot vanish for other values

of © except ¢, €1, . . ., €y Secphcf, if a certain number m < n of
digtinct roots ¢, ¢, . . . , Cu-yis known, the remaining roots will be
found by solving the depressed equation

¢ \s..' f(x)

L = 0
N C = I ey

of degree n — m. In\fi)rmmg the depressed equation it is profitable to
divide by the smg}e binomials z —¢,z— ¢y, . . ., T— &m M 3uCCES

gion, using .y\x{thetlc division.
Example~ sSolve the biguadratic equation
*) ot — bzt — 10z ~ 6 =10
haﬂﬁg the two rocts — 1 and 8. The caleulations to obtain the depressed equation
are arranged as follows:

-1 1 0 —5 —10 —6
H 1 -1 —4 —6 0
3 6 B
T2 2 0

The depressed equation is
24 2x+2=0

and has two roots
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Thus, in addition to the two real roofts — 1 and 3, the proposed equation has two
imaginary roots — 1 4 ¢{and — 1 - £ and, these four roots being distinet, there are
no other roots. At the same time we have the factorization
b - —b6= -+ 1)z —Bz+1+Hz4+1—19)
of the given polynomial intoe linear factors, two of which have imaginary coefficients,
However, on performing the multiplication we have
z+l+dztl-d=@+1P+1l=2'+2+2
and so the same polynomial 1s factorized now into linear and quadratic fzu:,t{rs but
with real coefficients:
2= 52~ 10z — 6 = (2 + 1}z — @ + 2 + 2). )\
L NY T .
Although an equation of degree n cannot have more than » distinet'spbts, sometimes

the number of distinet reots can be less than the degree of equation. Thus, in the
equations A

242 +1=0, o\
B —z 41 =0, O\
4+ =0, O

the first has only one root — 1, the second only x’(} roots 1 and — 1, and the third
two 0 and ~ 1. Notice, howover, that the ¢ddresponding polynomials

2+ 241 = (x4 Wz + 1),
W= — 4+l = ® 1)z — D+ 1),
SRR S FENCERS!
are factarized into 2, 3, and 4 ljn\ep{'. ffwtors, respectively, some of them oceurring
repeatedly. .

P4\

¢ \‘ Problems
1. Write a cubic eguation with the roots 0, 1, 2.
. Write a cubieydquation with the roots 1, 1 +4, 1 — 4.
Write a biquadratic equation with the roots 4, — 4, 1 + 4,1 —14.
- Bolve 2038< 302° 4 127 — 1 = 0 given that 4 is a root.
One 100t of the cubic 23 — (2a + 12?4+ ala + 2z — ae+ 1) =0Dise+ 1.
Find the\:é)ér roots.
6. S;t;lve - - 1T+ 152+ 9 =014+ v2and 1 — V2 are roots.
ZTQ’Find the polynomial of the lowest degree that vanishes for x = — 1,0, 1and
{{Lkps the value 1 for z = 2.
8. ¥Find the polynomizl of the lowost degree that vanishes for x = 0, 2 + ¢,
2 — v and takes the values 1and —~ 1 forz = — 1and 2 = 1.
9. Bolve 22 — 2(1 + )2® ~— (1 ~ 20 + 2(1 + 2} = 0 given one raoot 1 4 24,
10. Solve #* — (1 - 20a% + (— 4+ i)t + (3 + 602 + 3 — 34 = 0 given two
reots £ and V3.

=g P

2. Identity Theorem. From the fact that the number of distinet
reots of an equation eannot exceed its degree, the following important
theorem can easily be deduced:

Identity Theorem. If two polynomials f(x) and fi(x), both of degree not
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exceeding n, have equal values for more than n distinet valyes of @, then
they are identical,

Proor. Suppose that €y L2y . . ., Cn are the m > n distinet num-
bers for which f{z) = filer), that is, for which
fle) =hled),  fle) = filen), . . . s Jlew) = filen).

F@) = fz) - fi(z)
is not an identically vanishing polynomial, then its depree does ngt N\
exceed n. However, the equation A
Ke

Flz)=0 £\

has m reots ey, ¢y, . . ., ¢m, all distinet by hypothesis. Sinedm > 11,
the number of distinct roots of this equation excceds itg 'deéree:, which
is impossible. Hence, F(z) vanishes identically and the, Polynomials
Jix) and fi(z) are identical term for term. v/

The theorem just proved has useful applications, \\Here we shall show
only one application of it. RS

Example. By the bincrmial theorem, for any positiiré jr{feger exponent n the follow-
ing expansion holds; N\

Ao =1+Ts4 ——”(’1‘ : zl)xﬂw g — e ; _1;{_7-"3—2):53 o,
The ecoefficients N
A nin — Nzran — I}(n_—_2) L
‘UL 12§

are the binomial coefficients, In%x?dﬁcing the usual nolation

14 _ﬂU’:—”I) - (t_r_F_l}
(’").—C\f 1-2...¢ yiorr 21,

1

the binomial expansimi\;;aﬁ be written thus:
7\
\Y n LAV n
Ao =1y (l)x + (2)x +oeee (ﬂ)x
Write a simi-lar:éxpansion for another integer exponent m:

O ataro1s (T)x + (';)xu g (:i)z"’

and multiply them together. The coefficient of any given power 2¥ must be the same
in both members.  Multiplying the right-hand sides, this coefficient. is found to be

m m Yfn m Y/n . n
)+ G2 )0+ (o )+ 4 ()
and it must be the same as the coefficient of % in the expansion of the product of

the left-hand sides, namely,
(T4 21+ 2y = (1 + z)mtn,
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m + n).
("
Thus, we have a numerieal identity
m m n M n ny  fmdn
(R PRy ) R PR (4 Y Y I A

for arbitrary positive integers m, n, and k. Repluce now the inlegers m and n by a
variable x; the left- and right-hand sides of (1) will become polynontals

SRR Y EERER v

This coefficient is easily seen tc be

2z )
filz) = (k)’ N\
& N/
of degree k. For all integral values x = 1, 2, 3, . . ., b what has been proved,
these polypomials take equal values; henee, they are {r]g:ntica.l and therefore the

identity NG
z) x & A for
B G20+ 8- (5)
k - 151 7\ % k
will hold for sll values of = and nut only far,pesitive integers. In particular, taking
here = k and noticing that in general AN/

N

(J f"‘.:':.) _(k
A g

we find an interesting expression; for the sum of squares of the binomial eocfficients:
Ly

e R — TN A — DR — 20y (R MR D) - - 2k

Here, of course, & is :a.\{};bitixfe intoger.
By similar but '%Tightly mors complieated reasoning, it ean be proved that for ar-
bitrary = and Y <

ST - (1)

whm@eneraﬁzf“i (1). The direct proof of this identity, without resorting to the
ldep.trty theorem, would not be eazy,

,\. O
\ 4 Problems
Using the identities of this section, show that
HE—1 1.3

11+12k 177172 @ = Ok =3

kb — 1)k —2) 1-3-5 .

SR RT3 R e y Y oy
2. 4 6. -2k
~1.3. - (2k —~1

for any positive integer k. Takez = — 13,
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% 1. %2k-2 -
2t g3 st mosmogo
(2% — 2(Zk—4) 1.3
tEmosmosmomraet =2

for any positive integer & > 1. Take x = 1g.
-3 Taking x = — 2, prove that

14224 .. _Hse:ﬂiﬂ?w.
]

3. The Fundamental Theorem of Algebra. It cannot be sufficientlyd >
emphasized that not every mathematical problem requiring somethi
to be found is solvable. Tor instance, if it is required fo find, Q réal
number whose square ig — 1, obviously such a requirement is impbssible
to satisfy. Therefore, when an algebraie equation is given gfdwe seek
to find its roots, even admitting complex numbers for roats, it is not
evident » priori that the problem is solvable. In thi§ duse, however,
all doubts are removed by a theorem which, on a.cco%tk of its importance,
is called the fundamental theorem of algebra. 4D

Fundamental Theorem. Dvery algebraic equq.iz'bn with arbifrarily given
complex cocflicients has always af least one redloF imaginary root.

A great many proofs of this theorem e known, but none is suffi-
ciently simple to be given at this pl;w'e'.' Therefore, we shall take it
ag o basig for further development, jbi,fb' without proof. The proof will
be found in Appendix I. N\

Let f(x) be a polynomial \iuf:h complex coefficients, of degree », and
with the leading coeflicient, @ By the fundamental theorem there is 2
real or imaginary numbge o such that fle) = 0. Then, f(x) is divisible
by & — oy, and we call aet

o J@) = @ e,
filz) being a ;Ij;homial of dogree n — 1 whose leading coefficient is aq.
By the samg thcorem the equation
~ \ ‘ filz) =10
) 4
has axeal or imaginary root @z, and, consequently,
filz) = (& — a)fe(x)

where fi(z) is of degree n — 2 and with the leading coefficient ao. If
n > 2, the same reasoning can be repeated until we come to some poly-
nomial of the first degree, fu-(x), with the root ar, and the leading co-

efficient ap, so that
fai(@) = @z — an).
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From the chain of identities
J@) =@ -afilx),  Hl) = @— a)felx), Cey
Jodl@) = afz — ),
by suecessive substitutions, we find
@) =alz — o}z — ) -+ - (2~ a).

This means that every polynomial of degree o can be lactorized into
linear factors, the constant ap not being counted among them. Thess
factors need not be distinet. Suppose that ainong the numbers e,
&, . .., &, we have )

a numbers equal to g, O
8 numbers equal to b, N
------------- s '\',
A numbers equal to E\

Then, combining the equal factors, wo s‘thhat
Jz) = ag(z — a)*(z ——b)f‘ (= DM

The numbers @, b, . . . , I represent all the distinet roots of the equa-
tion f(z) = 0. Their number, May be less than n—the degree of the
equation—whereas the totalmumber of linear factors is n. To restore
the correspondence betywedh the number of roots and the number of
linear factors the notion ‘of a multiple root is introduced. A root a,
corregponding to Wgﬁch the linear factor = — a occurs « times, iz said
to be a root of\multiplicity a and is counted as o roots equal to a.
In case @ = 1 the'root  is called a simple voot; incasc e = 2, 3,4, . . .
it is called a'dotble, triple, quadruple, ete., root. If cach root iz counted
accordiggli}o"its multiplicity, the proposition that an equation of degres
n alwbys’has # equal or unequal roots is universally valid. If ¢ is a
rogtief multiplicity e, then, in the factorization of f(x) the factorz — a
oteurs « times. Hence, f(x) is divisible by (z — a)*, but not divisible
\"\by (x — a)*™. For the quotient

9@ = 0 — =B - - - (-
does not vanish for z = a, because all the differencesa — b, - + - , 81
are different from zero, and hence @(z) is not divisible by 2 — «, which
would be the case were f(z) divisible by (z — )@, The condition for a
root a to be of multiplicity & can be expressed in a different way., Ex-
panding f(z) in powers of z — a, by Taylor’s formula,
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5@ = @)+ 50—y 1 LDy

£(a) .
BT e R

it is clear that the divisibility of J(z) by (x — @) requires the fulfillment
of the following conditions:

fay=0, fl@=0, ..., jevga=g
and once these conditions are satisfied, N\
_ fe@(g) B 7™ (a) O
Mo =g gl art b o (F T AT
Hence, if f(z) is not divisible by (z — a}*+l it must happeg‘thai; ™ (a)
is not zZero. Consequently, the conditions for a root a_toybe ‘of multi-
plicity a arc that o\
J@=0, flay=0, ..., {fz\—;wd) =9,

%4

f(a) = 0. )

but

.

Thus, if @ is 3 simple root, O
f)=0  but \F(a) = 0;

Y
*

if a is a double root, N
@) =1'(@) =0 but  f'(a) = 0;

if @ is & triple root, ) {\\

floy=f@ =@ =0  but [a) =0

N\

’v

elo. )
Example 1. The eqﬁ;t.fon
D) =2 —ne+n—1=0, n>1
is satisfied by{s}x"'l. What is the multiplicity of this root? We have

fi{z) = nemt — g,
p ;'\;. f(x) = nin — L),
Henke, )
fAy=0, Fay=0 f1) =0

and 1 is therefore a double root. The polynomial f(z) is divisible by (z — 132 but

not hy {z — 1)3. ‘
Exampte 2. Can any other root of the same equation be a multiple root? Suppose
that some root a, differing from 1, is a multiple root. Then,

fley =a*—na+n—-1=0, fla)=mnfat—1) =0,

From the second condition
al=L a=a
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and, substituting e for @ in the first equation, we find
o —no+n—1=(1—nifae—1) =0

But this is impossible, since ¢ — 1 £ 0and s > 1.

Problems

1. Write a polynomial of the lowest degree that for £ = 0 takes tl
has the following roots: 1 and — 1 15 simple roots, 2 as a deuhle root,
root,

2. Write a polynomial of the seventh degree with 0 and 1 s
triple root, il for 2 = 2 the polynominl takes the value — 1.

Factorize into linear factors the following polymomials;
3. x' — 1, 4.0t — 1,
6 8~ 1, .o+ 1 L\
N
. 1T FAN ¢
728 — 4. 8 o — D
P\
9 ozt + 2t 4 1, 100 27 @& 1.
11, 2% — gt 4 1, 120 (LN + (1 — 20,

13, ¢ + 82% + 22 — 3z — 2.
16. (z 4+ 1)7 — a7 — 1.
*18. Writing w

14,

RN 3! — 200 - gt —

208 (27/n} + 4 sin (Rq¥a), show that

I A e T = ],E(z,—- whz —@®) - (& —
*17. Show that \\g

- I'w

2, (n

.. \ . 7
Bl — S1Nes=%+ - - sin -
no "

z2“—_1.

HINT: Set 2 = 1 in the,j\cibltity of Prob. 16 and take the absolute
members. W
*18. Show that the\:}ots of the polynomial

z{x — P\Jre(x ~ 1)(z — 2)

#\.J

w value 1 gnd
— 3 asa triple

double abots, — 1 ag

1,

mn—l) R

vitlue of both

oz ) . E— T - (= n 1)
R B R/l i e A 1.2-57 =
are 1, 2, 3, {87 n, and iactorize it.
*19. J{B}J) = 0and ay, ay, . -, a*are the roots of f(z) = 0, show that
~§\ =) = f(0) (1 — _:C_)(] - i) . (1 - Z,
"sv:' 23] [#4] [+ )

#\\#20. Find the roots of the equation
g (1 + 2" + (1 — )
and write the factorization of
(1 + xi)» +
2

(1 — i),

*21. Bhow that the only polynomial of degree # — 1 that vanishes for £ = I

Zs, . . ., T and takes the value L for z = z, is
BN i)
(z — zlg'lz)
where

ofz) = (2 — )z — 22) - . . {x — xn).
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*22. Tet 2y, 10, . . ., ¥ be » distinet numbers and
gle) = (& —xd{z — 2} - - - [z — 2)

Show that the following polynominl is of degree not exeeading = — 1:

glr) . glxl ol
x i e e
fxy = {:c — Ty {9:1) T — gt {ow) Yo r (& — Enly 7 (zn) Yo
and forz = xy, @, . . ., Ta takes the vilues i, i, - . . 4. Show also thatsuch a

polynomial is unique. This formula— Lagrange'’s interpelation formula—solves the
interpolation problera: To find a polynomial of the lowest degree that for » given
values of @ #y, @, . . ., 2. tukes the preseribed values i, s, - - ., Yoo -

4. Imaginary Roots of Equations with Real Coefficients. All pre;\«‘il
ously established results hold for equations with arbitrary rompléx ¢o-
officients.  Coneerning the Imaginary roots of cquations w 1th m@l coctf-
cients we have the following theorem:

Teroresm. If an eguation with real coeflicients has aw}magmary root
o+ bi of multiplicily o, ithas also the conjugate roolNONE bi of the same
multiplicity, or, imaginary rools ocour in conju:ga{p Qm ts.

Proor. Lot AV

flx) =+ + - - 3|—~€'zn =0
be an equation with real coefficients and }m} mg an imaginary root a + b2
of multiplicity ¢. Then, Y

flatb) =0, fla+bi)= "v:'.;‘.
ffa-—lJ (a_ + bg) 4, f(“’(a + b’t) =~ 0.
The first equality means _ ()

ala + b)ata{e + o1+ - o - Fan=0.

When each number indhe left-hand member is replaced by its conjugate,
the result will besaviumber conjugate to 8, that is, O agam (Chap. 1,

See. 7). Onliéyother hand, ¢, @1, . . . , o s real numbers coincide
with their Q&i’!\\?ﬂﬂj ugates; henee, the conjugute of the above equation is
oS wlo - bt ala =) - faa=0,
or N\
N\ fla — bi) = 0.
Similarly, it is proved that
fla—b0) =0, e fle=b{g — 7)) =

and it remains to show that
Fe(q — bi) # 0.
By hypothesis
fa g+ by =4+ B¢
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and A, B are not both equal to 0. The same reasoning as befare ghowg
that

J®a—bi) = A — By,
and this number is not equal to 0.

From the theorem just proved it follows that imaginary roots of reg
equations (that is, equations with real coeflicients) ocour always i
pairs of conjugate roots, and so their number is even. If the number of
imaginary roots is 2s and that of thoe real roots is 7,

r+ 28 = n,

7 being the degree of the cquation. In case n is odd, ranast be odd and
therefore at least 1, which means that a real equationof an odd degree
has at least one real root. In case of an even degide it can very well
happen that all roots are imaginary. D
To each linear factor \
x~(a+ijaj=x—g¥b£

N

corresponding to an imaginary root a-%—fbe", there is a companion factor
x— (a-b@)%sx—a%—bi
corresponding to the conjugate 'rciot' @ — bi, and their product
(z—a—b){x—a+ ‘Egal)f‘::’ ('r; —a)y 4% = 2% — 200 + a® + B2
is a quadratic factor with.’ljé.»;,i cocfficients. Hence, it is possible to draw

the conclusion that angseal polynomial can be factorized into roal linear
and quadratic factqra®

Exampie. The‘r}a}s of the equation

o\ #r+1=10
are A/
oy Ltd 1o -1—i 14
\& 2 2 V2 V3
Since%w’
L i LN, NG

.~\":' (:c 3 \/ﬁ)(z w/§+ Vﬁ) x V241,
R AT T A
V -+ vﬁ)(”@*v'ﬁ)‘z““‘@“'

the factorization of 2t 4+ 1 into real quadratic factors is
@+l = (@ = 2V2+ 1@ 4 2V2 4 1),

Problems
Factorize into real linear and quadratic factors:
Lot 4q 2. 2t 43241,
ot — 41, 4, x5 — 1,

B. 284 1. : L e i o R A N
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Solve:
Toxt — 2094 622 + 227 L. 13 =0 having the ront 2 + 3.
B, 25 — 3rt 4 47 — 4 + 4 having the roof 1 + 1.
9. 2 — Bub 4 At — G20 4 Spf — By + 2 = 0 having the root 4,

0. 74+2F— L2 -] =g having the root .
11, 2% — af — Bp 4 235 4 2120 . Oz — 54 = having the root v2 + i,
*12. Points representing the roots of the equation 323 + 42 4 8z + 24 = 0 are
on a circle with the center 0. Solve it,

*138. If p, g, r are real numbers and the roots of the equation z? + px? - g+ r
= 0 have equal moduli, show that p

Pr—g¢i =1 and (' — g}t = 440 y \\
¢\

*14. The equation 2¢¢ 4 2% — 2% ~ 8 = O has four distinet roots of equaladduli,
Solve it. \

*18. The equation 62! — 23 4 1022 — z -+ 6 = 0 has four distinct gtﬁffé‘of equal
moduli. Solve it. e,
S

5. Relations between Roots and Coefficients. BetWeen the roots
and coefficients of an equation there are relations thiad are important to
know. In order to discover them let us consideffirst the expansion
of the product \4

@ +b)E+b) « - - @ b

in descending powers of 2, beginning with the partieular cagesn = 2, 3, 4.
By direct multiplication it is found-<that

(x'l'bl) (I‘f‘bz) = 272:(“(?31'!'1)2)3:4-5152,
(@+b1) (2+bs) (2+bs) "\‘:fl-’(bl-!-bz-l-ba)x%(blbz—i-blba—l-bzba)x-l-blbzb;,

(o4-b0) (b} (x+HBy b, +{brt-betbiby)x?
oON + (bibatbibyHinba-Fbabst-boby+-babs) 2t
O\ + (brbabat-bibabs+b1bsbitbabyby ) x-+-bibubsby.
’\ oo

On examining thedc results we ohserve that

1. When #(=22, the leading term is 22, the cocfficient of z is the sum
of quantjtiés’”bh bz, and the term independent of z is their product.

2, ¥her n = 3, the leading term is 2%, the coefficient of 22 is the sum
of quantities by, bz, bs, the coeflicient of = is the sum of products of these
quantitics taken two at a time, and the term independent of # is their
product.

3. When n = 4, the leading term is 7, the coeflicient of 22 is the sum
of quantities b, by, bs, ba, the coefficient of 22 is the sum of products of
the same taken two at a time, the coefficient of 7 is the sum of products
of the same taken three at a time, and the term independent of z is
their product.
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It appcars that the general law for any number % of factors is the
following: Let

$1 be the sum of quantitics by, 6y, . . . s bo
8 be the sum of products of these quantitics taken Lwo at a time,

s be the sum of products of these quantities taken 7 at o time,

s» be the product of all of them,
Then,

P=@+b)z+b) - (x+ ba) = 2" + st + g ~\—|—\\ .

Rk s BRI o
To prove that this law is general we use the mot,-h}}::l of proof by indue-
tion. Agsuming the law to hold for n fa(:l‘.ol}?;..\sn shall prove that it
holds for n -+ 1 factors. Onee this is done, e vadidity of the law will
be established in general. For being trugsfer'2, 3, 4 fuctors, as we have
seen, 1t will hold for 5 factors, then aghil for 6 factory, ete. To start
the proof, multiply the assumed expression of P by & + b4, getting

Pladba ) =2y Jzndes, |:§:,’{"ff..—i-“- e T b
Foanl  Fbanig N b8y

Now

~

A 8+ bn+1

is the sum of all » —';J}]uantities by ba, . . . Dby, and sbay i3 their
product as i evidengdrom the definition of S Forl <¢<n+1

&+ bn+18i—1

is the sum of :p}odl.lc.t-s of quantitics by, by, . . . y bua taken 7 at 5 time.

In fact, inthis sum we can consider first the terms not containing b,;

their s@*&i-‘ﬂl be clearly s;. The terms containing b.., are the products

of b,H’:g by the products of ¢ — 1 quantities taken among by, be, . . ., Dn;

henet, the sum of all such terms js bniisici. Consequently, the coefficient
\”}_;f i

8+ bryasi g,

is the sum of all products that can be formed taking ¢ factors from among
bi, by, . . ., by as the law requires. Thus, this law retains its validity
in. passing from n factors Lo n + 1 factors, which establishes the proof
by induction,

Il will be convenient to introduce short and expressive notations Lo
designate the sums previously denoted by St 82, . . ., Using the sign
of summation X, we shall denote them thus:
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& = Eb1, 8 = Eb‘lbe, ey & = E[‘)lb? s b.'.
For instance,
Zb]b2 ot b;’
means the sum that consists of all terms resulting from the fypical term
biby - - - U by replacing the indices 1, 2, . . . , i by all selections of ¢
numbers taken from 1, 2, , . ., n. Since there are
C‘.:n(n—l) (n—a+1)
" 1- 2
such selections or combinations, the sum \
Zhby -« » - B y :\‘:\
consists of that many terms. O
Considering now s polynomial |\

f@) = s+ am 4 - e, (D
with roots on, ¢, . . ., . (equal or unequal), we' Haye
fz) = alz — an)(z — o} - (ae\\)a'n).

On the other hand, replacing in the e‘(mes?xo‘flb 81, &, . . ., &, the
letters by, by, . . ., ba by —ay, —ay, . . ” v a,, we have
(z—a)z—o) -+ {z— ) =2" 7"':%2—12&1 + 2 Eaan
& (e
Consequently, R\ -
- Clo—eﬂfl < al,
-+ an t}}a’z = g,

—‘Q\aalancxj =y,

..\)( 1)"agoucte « -+ Ot = Gn,
whence ﬁnally cbn’be deduced the desired relations hetween the roots
and coefﬁcm{t@ of an equation:

\ a
C’."\ Say = —
NS ag
r‘\)“, @
oo = + —
\/ 10¥p ﬂo,
(2
Zorceg ;= ("_ ])‘a—ﬂ’
a‘ﬁ
0y ay = (— 1)~
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These relations can be used to solve problems that are of the follow-
ing type:
Ezample 1. Solve the equation
3t — 162 + 232 — § = 0

if the product of two roots is 1. Let the roots be e, &, e; then,

a+b+e=164
ab + ge 4 be = 234
abe = 64 = 2,

N
In addition $o thesc general relations we have to take into comsiderugion Yhe specifie
condition that the product of two roots is 1. Letters o and b nuy cha'm-:m these roots

&0 that ¢ }
ab = 1. Ao
NN

Then, the third root ¢ is found immediately from the thisd rélation to Le equal to 2,

. &
and for ¢ and b we have three equations o\

e+ b= 18

¢+ b= LGN

ab = .1.,'\ ¢

two of which are identical; & and b will bey mio%x of the guadratic squation

zz—l%%fl:u,

2

which has the roots 3 and iq. ’l”lgug,",:’d;l'{e roots of the proposed equation are
NN 233
Example 2. Find the s..u‘n\%f squares of roots of the equation
\'\‘"}Qr — 8% + Gt — 3 = 0,
If the roots are g, b’fa d, we have

P\ Gtbtedd=35—24
,g&®=m+m+w+m+w+m=%=&
On the ottfehand,
m\ (a+6+c+d)"'=a3+b5—|-cz+d“+22ab=42,
whenhee
\»\@; F+¥tLeE+@E=16-—46= 10
3

Problems
Solve the cubie equations whose roots are a, b, e
1, :r3+2::2+3x+2=0ifa=b+c.
2. 2z3—x2—18x+9=0ifa+b=0.
3. 31:-"-1-2;;2-—19:1:+6=0ifa—]—b=—l.
420 -2 — B — 2 =~ Difab -1,
B. :::3—-7x2—42:c+216=01fc2=ab.
8. x3+9x“+ﬁx—56=0ifb=—2a.
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7. 9z% — 362 4+ 44z —~ 16 = O if the roots form an arithmetic progression
a—f aotf
8. 3xd — 267 + 52z — 24 = (0 if the roots form a geometrie progression a8,
o, afs,
9. 2x% — 62 4+ 3z + k = 0. Determine k and solve the equationife = 2b + 2.
10, 2% — 22 4+ kr + 46 = 0. Determine & and solve the equation if the roots
are in an garithmetic progression.
11, What relation exists between p, g, r if the roots of 75 + px? + gr + r = Qare
in a geometric progression?
12. What Is the relation hetween p and g if the equation 23 + pzx + g =0has a
multiple root? A
13. Bhow that {20 — p¥%r = (pg — 4} if the roots of 23 + pe* + gz + 7 =0

satisfy the condition ¢ = — ab, SO\
Bolve the biguadratie equations whose roots are a, b, ¢, d N\ \
Mo —-204222 —2—-2=0ifatt=1 By
16, 2% — 82 ~ 92 + 16z — 5 = 0ifa = — b, N
16. 2t — 725 + 1852 — 222 4+ 12 = U if eh = 6. ¢*¢
1Tt + 2 — 2+ 3z — 1 =0ifab = — 1. P\
18. 270 + 132 + 25:* + 155 + 9 = Difa = b. ’

19. 9r* 4+ Qe 4 20 — 4x + 4 =0ifa = 2h, N

20, 4xt — 4a* — g2 + 11z + 10 = 0 if the roots aréAn an arithmetic progres-
sion. Represent the roots by e — 38, & — 8, a + 3 &\-{- 34.

21. Determine %k and solve the equation 24 —Pazd + kzt — 30z + 8 = 0if its
roots are in a geometric progression.  The r00t~. may be represented by ef™3, af™,

ofi, afft
22. Find the sum of squares of roots fur fhe equatlons
(@) 2x4—ﬁxs+5m‘2~7x+1_0
() 375 — 303 482 + 3 — 1 = 0.

23. For the same equations ﬁr],d \he sum of reciprocals of roots; and also the sum
of squares of these reciproca \ ™

If between the roots of f &) = 0 there exists a relation such ag ¢ = kb or ab = &,
& being given, then f{z) a.ndﬁ(:c) = flkz) or fi{z) = z~f(k/2) have common roots thal
can be determined by @yltating the highest eommon divisor of f(r) and fi(z) to zero,
Solve by this methoa\

34, Prob. 6. \ 26. Prob. 3. 26. Prab, 4,
27, Prob 28. Prab. 15. 29. Prob. 19.

6. ,Disbovery of Multiple Roots. Performing only rational operations,
it 1§\p0531ble to discover whether an equation has multiple roots, te
determine their multiplicities, and to reduce the finding of the roots
themselves to the solution of equations with simplc roots. Let a, b,

,  be the distinet roots of an equation f{z) =0andlet e, 3, . . .,
A be their respective multiplicities. Since a root of multiplicity k of
f(z) = 0 is a voot of multiplicity &£ — 1 (that is, no root in case k& = 1)
of the derived equation f’(x) = 0, it is elear that f(z) and f'(z) are both
divisible by
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(- @)z —b)f1 .. (g~ pra

and so will be their highest common divisor D(x)., We ean, therefore,
set

D@@) = (g —ap-te — bt . . . (5 - IA1(z),

If ¢(z) is not a constant, the polynomial @ (x) will have some factor
Z —m where m is some root of f(z), say m = a. But then S (x) wili be
divisible by (x — a)2, which is mmpossible since @ is 4 root of multiplicity
@~ 1 for f'(z). Therefore, @{x) Is a constant and so N
R e L9

1s the highest common divisor of Fand /. This fact oiin e interpreted
in a different way, Lot X, be the product. of ,aﬁ lthear fuetors corre-
sponding to simple roots, X, the product of all&Rose that correspond to
double roots, X; the product of all those thatworrespond 1o triple roots,
ete., agreeing to set X, equal to 4 constantyuf the equation hus no roots
of multiplicity k. Then, '\‘;.\

X0
differs only by a constant factor 'fr'(i'r'n S}, and thus

DRX,XIXY - ..
will be the highest commom@ivisor of Sand £, Similaty,
N Di=xx ..
will be the h.ighest\é\éﬂﬁmon divisor of D and its derivative o,

Ke Di=X%; . - . |
the highest defrimon divisor of Dhand D}, ete. This sequence of highest
common {iﬁtzi’éms

'\lw: _D, Dl, Dz, Ce

of de}:reasing degrees ends with g term Dy, which is », constant. Then,
it5 clear that there are no roots of multiplicity higher than . Again,
40\ Y4

N h=fexx, .. x,
fom 3 -X ... x,
¥
fa= D_; =X, ¢ X,
Dm-2
m = e = Xm,
f Dm—-l



ALGEBRAIC EQUATIONS AND THEIR ROOTS 67

whence
A fZ S
==X = = X, ~ = Xn_ m= Am
T S v

The functions Xy, Xy, . . . , X, found in this manner lead to the equa-
tions

X1=0, X2=0, “ ey Xm=0,

all of which have simple roots. These roots give at once the simple,
double, triple, etc., roots of f(z) = 0. Naturally, if some X, turns oub
to be a constant, this means that there are no roots of multiplici@t}xk.

Ezample 1. To investigate for multiple roots: g :s..\'

%
N

f=ab~x =204 2 e — 1 =0. L\
2 i'"
The highest coramon divisor of f and f* was found in Example .2;,}age 49, to be

D=uxb—at—z+1. \
.’ \o/
We seek now the highest common diviser, Dy, of D anc( &

Y o= 3t — 2z — }::V:

W

The corresponding operation is: . Y
(Multiply by 3} 1 —1 —1 1 3%=22 -1 8 -2 -1 | 1 —1
3-3-3 3 L;, —1 3 -3 31
3 -2 -1 W -1
(Multiply by 3) -1 -2 4 1 —1
-3 -6 0
_ 3 %b.l 1
(Suppress factor — 8) AT 8
4 . 1 —1
A\

Ience, Dy =z ~ 1 hi'D; = 1, whieh shows thet the proposed equation does not
have roots of muleiplieity higher than 3, ‘Fo find X, X», Xy we lind the quotients
.’\.J_ _2_ . _&~ _
J}Fﬁ—ma—l, fz—Dl—-T« 1, fa—Dz—x i,
and, hente,™
w\’,“' X1=1, XzII—f-]., XYo=2—~1
go that the proposed equation has no simple roots, one double root — 1, and one
triple root 1, and in fact
J=(z+ 1)z — 1),

Example 2. To investigate for multiple rcots:
f=r- -4 —-3z-2=0

We begin by finding the highest common divisor D of f and f%. This operation is
exhibited in full as follows:
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(Multiply by 5) 1 60 -1 -4 -3 —2 5
5 O —5 —-20 ~15 — T
5 0 -3 —=& _—4d
{(Suppress — 2) -2 -2 12 "1
1 G 6 5

5 0 -3 —8 —3 L6 4 35
5 30 30 3 TF Ty
(Buppress — 3} =80 Dy g o 3
10 11 1y 1
0 6 6 & N\
{Suppress — 40) -9 49
1 1 1 Ke
......... ',.\ s
1 6 & 5 1 M
i 1 }_Tf\*‘:ﬁ_ -
5 5 5 0
5 & 5 ,»\\

)
Hence, D = 32 4 » + 1. The operation of ﬁn,dx{\r;lh is
{(Multiply by 2) 1

! —= N
2 2 2 [T BN
2 1 A N/
{(Multiply by 2) 1 3 .:::: ‘
2 4 o0
2 1N
3 \

Hence, Iy = const, and, wkmay take Dy = 1, so that there are no roots of higher
multlphmty than 2. I\Q\t/

and ::\w
O #
.\'\\ Xlzf_z=$—2, X2=f3=$2+$+1-

‘\ f1=li)-——-:r‘*—x2-—:c—2,
D
1

Co\naef;uent.ly, the propaosed equation has one simple root 2, and two double roots

L =1+4iv3 i = 1—iv3
) CTTTr e e tE

and f is completely factorized as follows:
R ) T R, +r—1=(r— 24r — W)z — w2,

Problems
Solve the follaw 'ing equations each of which has mnlt ple roots:
lxa-—'?:r"’-}—lﬁx—l?——ﬂ 29:3-—3x2—9£+27—0

3.2 -2 — 8 412 = 4 o — 5 — 8z 4 48 = g,
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2
B.sf—g——"_ =10, . ot — Lor U = 0.
z V5 6. 2t — lor + s
Toxt—1le* 4+ 182 — 8 = 0. Bzt — 2% — 2 — 4z 4 12 = 0.

9 ozt — 4zt — G2 4 36x — 27 = 0.

10, 2zt — 1223 4 19022 — 6z + G = 0.

1, 75— 2~ 203 222 42— 1 =10,

12, 25— 22t — 658 + 422 4 13z + 6 = 0.

13, 2% — B2b - 62 — 322 — 3z 4+ 2 = 0.

14, &%+ 2 — 8z — 1622 4- 162 4+ 32 = 0,

15. 9% + 9634 + 202x% + 48 — 5Tz + 256 = 0.

16, o7 — 3af 4+ Bab — Tt + 722 — 522 4 3r —~ 1 = 0. '&‘/\\
17.$5+x7—8x5—6$5+2lx4+9x3-‘223:*—41:4—8=C. (’};
"\
O
~N\*
AR
&(,
W
O
&
X\
Ko
QY
X
N\



CHAPTER 1V
LIMITS OF ROOTS. RATIONAL ROOTS

1. Limits of Roots, An algebraic equation being given, it is often
desirable to have an idea of how large ity roots ean beo Do Cases must
be considered. If the cocficients are real und we e only Boncerned
with real roots, it may be of interest to find & number Fupnssing all
the positive roots or a negative number smaller than all fosdible negative
roots. Two such numbers, one positive and another gm’;z;u.t.i\'u, ure called,
respectively, an upper fimit of the Positive roots aftbh fower fmit of the
negative roots. The second case 13 thal of aum?}l\mtirm with complex
coeflicients when all jts roots, real and imaghiuty, are tuken into con-
sideration. A positive number greater thahthe absolute values of all
the roots may be called an upper limit. 8 the roots. 1f this utimber is
called r, then the eircle with the cenber at the point & and radius #
will contain inside all points represguting the roots of tho e ination under
consideration. N

2. A Method to Find an Up}’abr"Limit of Positive Roots. et

J@) =aitaa—tt ... L4 _ 0
be an equation with l:eéilz\coefﬁcients of which the leading coeflicient g
may and will he suf}@séied positive.  Of the various methods that may
be used to find an' upper lmit of the positive roots wo shall consider
only one, 1\-']1iph§}:tﬁn})illes the advantages of giving comparatively low
values of thatNitnit together with ease in application,

When, ¢6nsidering synthetie division ( Chap. I1, See. 5) we cncounter
polynopmals

fo ::-"\I?‘D;; fl :xfu+a1: fZ = xfl+a&; L fﬂ = :r'fn—f._!_a“.!
“the last of which coincides with /. For any