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PREFACE

Ter Vector Caleulus has in recent years aequired such s
prominence in the equipment of the mathematical student,
that it is now as indispensable a tool as are the Differential
and Integral Caleuli. The object of this book is to provide
on the onc hand a clear account of the abstract theory, and ™
on the other a brief but broad survey of the applicationsg
the theory to various hranches of pure and applied Mathe-
matics. The book is, of course, designed for the uge bf the
undergraduate and it is not intended to competewith more
specialised works, many of which are listed\iu\he biblio-
graphy. I have, novertheless, endeavoured ‘40 be as com-
prehiensive as space permitted, but obvidudly completeness
is unattainable in a work of this giweN\“According to the
needs of the student, the book can &rve as a textbook for
a course specifically on Vectors, gk, «whero such a course is
not available, it may %é"‘ﬁs‘é‘aﬁl’%‘é@*ﬁﬁ}i&ﬁ&o‘k‘ of reference
throughont a scries of courses™

Many friends have givém me assistance and advice for
which I am very grateful,Mout in particular I wish to thanlk
Dr. C. A. Conlson, J“,\G 8. Rushbrooke and my wife for
offering many v;}@ﬁb]e suggestions and for reading the
proofs. N\ D, E. R

8. ANJ{R:E\WS, June 1939

&

A\ PREFACE TO THE SECOND EDITION

Axithis edition the chapter on Mechanics has been rewritten
mend considerably extended. Elsewhere smaller rovisions

‘and additions have been made amd it is hoped that the

usefulness of the book has thereby been increased.

D. E. R.

ST. ANDREWS, November 1942
v
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CHAPTER I

VECTOR ALGEBRA Ko \
N
§1. Wz are all familiar with the fact that if B is two mﬂes
from 4 and if € is two miles from 73, then C'ia not neccsasanly
four miles from 4. Ounly in very special circumstdnces are
distances compounded according to the ordinary arith-
metical law of addifion. Actually there are,many other
entities which behave in this way ag dl%ia&ces rather than
as ordinary numbers; the study of sm\h entities leads to
the caleulus of vectors.

A scalar is a quan@t;y\\mggpbuhg%};c‘t}agpgme but which
is not related to any definite dizgction in space. A scalar
is completely specified by a numther. A vector is an entity
which obeys the same law ot addition as a distance does.
It has a magnitnde anditalso related to a definite direction
in space. 1t follows<that any vector may be represented
by a straight ling &ith an arrow head whose direction is
that of the vector and whose length represents the magni-
tude of the wyeetor according to a C-onvenicnt scale. We
shall denote\véctors by Clarendon type, e r. German
textbooka\ué-xually use Gothie type to denote vectors, A
vector ©f zero magnitude can have no direction associated
with('3#t: Such a vector is called the zero vector and is
dénbted by 0. The magnitude of a vector is called its
(ength. It is frequently convenient to denote the length
‘ :of a vector » by 7. A similar convention is used when
vectors are denoted by other letters.

"Two veetors are added in the same way as two distances,
50 we define the addition of vectors by the parallelogram

i B



3 VECTOR METHODS

law. If a is represented by the divected line OA and b
is represented by OB, then a+d is defined as the veelor
represented by OC where OACB s the completed parallelogram
(fig. 1). OC is the sum or resultant of O4 and U, AC

. 1

, ¢ ;\\:/
has the same magnitude and djrectjdglg\as OB, s0 we may
alternatively choose 40 torepresentd” Thus, the resuliant
of 04 and AC is OC. If a +b=iD}ie. if O and ¢ coincide,
then bﬂuwat-dlﬁfﬁﬁéibl'%ﬂfs?ﬁg%getor which has the same
length as a but the opposifeidirection. If a is represented
by 04, then —ais repragented by 40.

. 1% is evident fﬁea’h definition that the commutative
aw £ N/

\\

N\ a+b=b4+a,
and the qssﬁﬁétive law

o>
A& at(b+e)=(a+b)+c=a+b+o,

AN

heth hold for the addition of vectors.

”\,:';5; The vector a +a is naturally called 2a snd is a vector
) I the same direction as & but of twice its len gth. Similarly

\/ & is & vector in the same direction as a but of length ma.
Evidently

s

m{na) =n(ma) = nma,

and (m+ n)a = ma +na.



VECTOR ALGEBRA 3
Also from the similar triangles in fig. 2, we see that

mi{a+b)=ma +mb.

m(a‘b) Ve

Y
L+ ]
+
&
o
4 A
7
W
7'\
N S,

Fra. 2 &N

If a vector r can bo representod a ’z}sum of vectora
a+b+ ... +d, we say that r oaﬁ\he resclved into
components a,b,. . ., d, Itis 1mp01tant to realise that
any vector can be resolved intg\th¥ee components in any
three given directions which a‘f'e‘not coplanar. If r is the
given vector, we can P@ﬂ%tﬁﬁ%’ﬁllﬁ‘iﬁaﬂélgﬁlﬁbd about r as
diagonal, whose edges a1e~pa”rallel to the three given direc-
tions. Thon r=a+h{e, where a, b, ¢ are the vectors
indicated in fig. 3. F\ther, this rosolution is unique, for if

}"'\bl‘H’z—r =8, + by + ¢y,
then ,’;-‘-1 —ay=(by~ by} +{cy — o).

Fiz 3
Now b, —b, is in one of the given directions and ¢, - ¢, is
in another, so the sum of these two vectors is a vector in

the plane of these two directions. This cannot be in the

-
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4 VECTCOR METHODS

direction of a, — a,, which is in the third direction unless
a,=a, Similarly it may be shown that by =by and ¢, =c,.
Thus the resolution is nnique.
A similar argument will show that any vector lying in
a plane may be uniguely resolved iato two components
in any two given directions which are parallcl to the plane.
We choose rectangular axes OXYZ. Lot 1, §, k he,

three vectors of unit length in the divections OX, € ¥y, ()K...\'

rospectively, Now zi is a veetor of length x in the Ox
direction, #j is one of length v in the OF direction/angd =k
iz one of longth 2 in the OF direction, so if P he/Phe point
(%, %, 2) and r is represented by OF, then (hgéh

r=ai+v4f+zk. )
4l \\

—— "y A

hwdeiltiy =T o8 a, =7 co3 B, z =rcba Yy, where ¢ =X0P,
B=YOP, y=ZOP. co0sa,cos B, caly'are called the direc-
tion cosines of the line OF or f any line in the direction

\
"l a
www . dbra uTb rarorg.in
PR

SN g

A
L}
7
'\x..t : e

LY r

A\ H
N\ H zh
AN/ QU el .
K/, 3 ’
\..:’ >
\’\ . I
MY X

Tia. 4
of OP The direction cosines may be denoted by 2, {t, v.
It is .uaual o denote the components of a in the three
coordinate directions by a4, a,, a.k. Thus

A=ad +a,j+ ok,

&



VECTOR ALGEBRA 5

§2. We dcfine the scalar product ¥ of fwo vectors a
and o as ab cos ¢ where 8 is the angle betwcen the direc-
tions of the two vectors, We write

a.b=ghcost=b.a . . (D

AVe notice that the sealar product of two vectors is not a
vector bub a scalar, and that scalar multipiication is eom-, {_ Y
mutative. ¥ two vectors are perpendicular, their scalds
product s zero since cos §=0.  In particular \

A
[

i,j=j.k=k.i=0. . . /> )

If a and b have the same direction, a.b=ab \In par-
ticalar

Poisf =k k=1 AN, . @3)
Since a . b is the length of a multipliedh By the projected
length of b on a, it follows that ()Y

Y N

a.(bsci=a.hia.c,

for the projection of BY ¢ &’i‘é“’hﬁ‘h & e projections
of b and c on a. Hvidentlyy"

mia . bﬁ)%%ma) .b=a. (mb).
From these 1'03111’55\1;:;"5';08 that if
a=dirajtak, b=bdtbi+bk,
then ) :‘:,\ /
a. gu\’;:(,:;; i, Fak) . (BA+bj+bk)
O b itabi. i rabd . Erahd . itabg.d
A\ +ab.i.kteb Xk ivabk . jrabk k,
) a.boabetabytab. . . . (4
Hence
cos O={ab,+ab, +ab)fab =AM\, +pats +vars, (D)
where (Apwve) and (Apeve) ave the direction cosines of
* See footnote T on p. 6.



& VECTOR METHODS

a and b respectively, for Ae=w./a, o=/t Ve =a,/a,
and similarly for A, s, v )

a . a denotes the square of the length of a and is some-
times written as a®

§3. A rotation may be represented in magnitude and .
direction by a line whose length is proportional to the _anglle; O
through which the rotation is made and whose direction-as
that of the axis of rofation. We must, however, a@ppﬁa
convention as to how we represent rotalions about the sgme
axis in opposite directions. We adopt a riﬁrhuha-ﬂ(_led
gystem of coordinate axes and represent a positilve rotation
through an angic =2 from OX to OY by a lihe'in the same
divection 8s O%. A rotation from O¥ to ,OX\Wmlld therefore
be represented by a line in the directionvof Z0 (fig. 5).

@a:liy: I

74

)
L\ - Y1z, 5
The vectorproduct of two vectors a and b is the vector
ab sin # cgWhére fis the angle between the directions of the
two veétors and ¢ is a veetor of unit length perpeudicular
to htid & and b and in the same dircction as the line which
represents a rotation from a to b.  We denote the vector
Jproduct T of a and b by axb. It follows from definition
WO that

\‘," axbh= —bxa. ; . R )]
* Finite rotations cennot be added like distances and so should

not be regarded as vectors,

1 Various conventions are employed by other writers to denote
sealar and wvector produets. Among thoese ruay be mentioned the

use of (ab) to denote the sealar product and [ab] or aab to denots
the vector produact.



YECTOR ALGEBRA 7

Ii a and b arc parallel, then a xb =0 since siw /=0. In
particular a x a =0 and

ixi=jxj=kxk=0. . . . (7

Also from definition

ixjok=-jxi, jxk=i=-kxj, kxi=j=-ixk (8-
£
It may further be shown that O
ax{b+c)=axhtaxc; O

for, let b', ¢ be the projections of b, ¢ on thstpl\slne per-
pendicular to a. Then b’ +¢’ is the projection*of b +c on
this plane. Evidently N

¢“C
axb'=axb, axc' =axg, ax(b"z\—c’)=a><(b+c}.

But since a is perpendicular to b afid ¢’, a x b’ lies in the
plane perpendicular tovayisdifredihney wiar febiyth of b’ and
is perpendicular to b’ ; als“o{é:& ¢’ i3 in this plane, is of &
fimes the length of ¢’ and ie\perpendicular to ¢’. It follows
that a xb’+ a x ¢’ lies i this plane, is of o times the length
of b’ +¢" and is per Ret}\c{icu]ar to b"+¢’. In other words

‘a\}f +axc' =ax{b +¢),

whence we pb’tié.'ih the required result.
It folloWw®irom the preceding that

Aok = (4 +ak) x (b +b,] +b.%)

’..3.'\ = (0B — @B+ (B — aeb.)j + (@ by — 2.0k

o) N 7 7 L ()
be by b,
ij k

Some writers define the vector product by equation (9)
and deduce its other properties from this formula,

-



8 VECTOR METHODS

§4. If a, b and © be three arbitrary vectors, then the
scalar product of axb with ¢ is called the triple scalar
product of a, b and ¢, and is wiitten {a, b, e].

axb.c={ab, - b, +{ab, — axbx)cv + (a-,b, - abo)e.,

"
£0 [a, b, cl= o &y Op P )
2 N
be b, b (W,
@ Uy Uz N
Ca Cy Cx W
N

It follows from (1) and (8} that

A\
la,b,¢]= b, c al= [c, a k)
=-[a, e, bl=-[b,a, ¢]=— [c,\h;a].
From fig. 6 we see that [a, b, ¢] represents the volume of

the parallelepiped which has a, b and‘efor concurrent sides.

TR Y

RN

www. dbpdulibraryecarg.in
T E W
. N

N
-

W Fic. 6
P\

Fm:‘s,\‘*,a's =ab sin § p,where p is a unit vector perpendicular
tqq\a-nd b, So

M\:\' [2, b, c]l=absinfp.c=absinf ¢ cos ¢

9, =areq of base x perpendicular height,

1t [a, b, €] =0, the volume of the parallelepiped is zero,
Hence the condition that a, b and ¢ be coplanar is
[a, b, c] =0. We observe in particular that if any two of
the vectors a, b, ¢ be equal, then [a; b, ¢] =0,



YECTOR ALGEBRA 2

§5. We can evaluate the triple vector product

a x (b x o) by using the formula (9) twice over. We find
that ax{bxc)=fa,lb.c,—be,) -a.lbec,—be )i
+{a'2(b'y(,z_ scv} - ft(b’“cl‘— Oz )}j

+{a(bc.—b.c.) —abe.— bk O\

=(a;c=+a,,c,,+a-zcc](b,; +b,j+b.k) o\

~{abatah, +abcd e +ek) N
So ax(bxe)=(a.ch—(a.bc. \]‘.,\'1’;. an
The order of vector multiplication must bsshown by
brackets for, as is easily verified, \
Ny
ax{bxe} * {a xb} &cs
We obtain the identity ;‘

ax(bxel+bx cxaj*—%cx(axb) 0,, . (12
for by (11) the left- han&*gfaedigﬂ““b‘ avy orgin
(@a.c¢)b—(a.blc+{b, a’;e {b.c)a+{c.bla~(c.ab,
which vanishes 1de:1twﬁy

§6. For pu]:pxes of reference we shall evaluate two
Other productfa ‘edch involving four vectors.

(axb) \{c‘xd =~[a, b, exd]=[b, c xd, a] v
) =hx{cxd).a={b.dje-(b.c)d}.a
\“ ={b.d)}{c.a)-{b.c)d.a). . . (I3)
Tu.};}rtlcular
o) (axbPR=b2—(b.a)2 ¥ . . (4

M
N/ whlch merely slates that o®2 sin® # =a®® — o cos® 8.
Again from (11}
{(axb)xcxd)=(axb.djc-(axbh.c)d
=[a,b,djc—-[a,b,c]d . (15)
={exd)x{bxa}={c, 4, a]b -[c, 4, bla.

-



v VECTOR METHODS

So we have the identity

[a, b, c]Jd={d, b, c]la+{a, 4, clb+[a,b, dlc, (16}
showing how any vector d may be expressed as a linear
combination of any three given non-coplanar vectors a, b, ¢.

§7. We may have variable vectors with variable com,
ponents along the coordinate axes. Let a=da.d +a,j +a
be a variable vector, then 8a = (S )i + (5,)j + (6 )k if

fi,, Gy @ De functions of a variable £, then &
da_da. da, da, M'\'ﬁ.f
P R Y Rl
is also a veetor,  In like manner x.\\;
d d ) &/
gi@ - Py =glab, +ab, +ab) N Y

b, dbz, e, de, da,
W ctBrau?f’hftaryMll:t be di thig dt b'_dt'

~(=-%) fa )

B

0, da., N, . 2
@, _ b,)1+(%b %j;b) + ‘f;‘ du, b )k

§8. Examples

(1} Prove that if «0P < 807 + yOF +808 =0 and a + B+y+

8 =0 wherc a, 8, y, § are not all zero, then P,
b . B, § ars co-.
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\/

YECTOR ALGEBRA ¥

{2) ABC, A'B’CY are two trisngles and 7, 7 are their
coutroids. Prove thar 447+ BB’ + 007 = 3G,

(3) Fvaluste (a2 +h), (a-b) in the casc where a=b and
interpret geormetrically.

{4} t, m, b are three mnotually perpendicular nnit voetors
and their componeuts are all functions of a singls scalar

variable, 8Show that ¢/, n’, " are coplanar, where the dash~

denotes differentiation.

{5) Prove that ax{b xe}={a.c}b-(a.blc by a metmad
which doss not invelve the resolution of ‘bhe veetorivinto
conponents.  [Provo first for the case a=5b.] >

{6) ¥ a+b+e=0, prove that axb=b x cw\-\k a, and
interpret geometrically.

{7) Four vectors ave proportional to the areas of the foue
faces of a tetrahedron and their di]‘ec‘tiODle‘ﬁ the outward
perpendiculars from the respective faees‘,'\Show that the sum
of those four vectors is the zero vectofh \J

(8) Bhow that [a xb,a x ¢,d] = (a\.@)[a, b, 9].

R
WW W, ;dbr:a ulibrary.org.in
APPLICATIONS 70 EREMENTARY GEOMETRY

§9. The position x@Betor of a po'mt P iz the vector
drawn from the ongm‘@ to P, If P is a variable point we
dencte the Va&mb@bmhon vector by

x“' r=xi+yj 42k,

= 9 2 meo' the coordinates of the point P. Let r, be
the pogitien vector of any fixed point on the line whose
du’c nis that of the unit vector t with direclion cosines
A,, f, v, The position vector of any cther point on this line
¢ 1& then of the form

r=y,+kt. . N ()|

As kb takes different values, r determines different points
on this line. (17) is the vector equation to the straight
line and represents three sealar equations

w=xy+EA, y=yotky, z=z,+iv,

N



12 VECTOR METHODS

which give the well-known equation to a straight line

T T YHeE "R (18
S . v (18)

In the same way, if & and % are variable scalars, then
r=r,+hs+kt . e Imy
. . 2NAD

is the vector equation to the plane through the pointery «
which contains the directions of both & and t. Thgi}hm&:
scalar equations are O3

x=0,+hs, + b, ye=y,+hs, +ki, z—zu+ﬁc§a‘,‘+h
On eliminating the parameters & and & from the%e, we get

(@ —a9) (4~ (z—(

82 8y )
£ b
or gs b t.) O . . . (200

W dbrauhbl ar§ orgiin

as the equation of the pline. sxt is in a direction per-
pendicular to the plang\so its components are proportional
to the direction cosmés; {A, i, v) of the normal to the plane.
The equation t0\§\e plane may therefore be written as

) A(m ~T) -y +r(e—2) =0, . . (21)

§10.. .Pﬁ show that the medians of a triangle are concurrent.

Le&t»he triangle be OAR and choose O as the orvigin,
Le;li\ OA be a and let OB be b. Let OD, AE, BF be the
‘med_lans and let AF and BF meet in 6. Now AB=b — a,
s;;\so AD=ib-a); hence OD=0A+AD~ =a+}{b—a)
) =Ha+b). Further, OF=1b, so BA- a-1b and the
equation to the line ZA is r=]b+k(a-1ib). Hence
OG =ka +3(1 - —E)b for some value of % to be determined.
Bimilarly 06 = ib + (1 - h)aforsome valusof . But these
two resolutions of OF into components in the directions of
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a and b must be identical, so k=31 %) and A=1{1-1),

whenee h=k=4 and O0F=l{a+b). le., OG=30D, which
means that OG will pass thmugh I and that O = 30D.

§11. To show that the lines joining the mid-points of the
opposite edgas of a tetrahedron OABC are concurrent and
bisrct oneé another.

Choose 7 as the origin, Let D, B, F be the mid pouﬁs
of 04, OB, OC and let K, L, M be the mid-pointy of
4B,BC,CA. LetOA=a,0B=b,00=c, thon AB=b-a,
BC=c—b, 0d=a—-c. Also OD=}aand OL2%b +c), so
if W is the mid-point of DL we have G2 3 {a+b+e).
By the symmetry of this rosult it is evidend that W lies on
and bisects both BM and FX& , which pm\és the theorem.

S\

§12. To prove that the aIt'&t’Rdeﬁ of « triangle are con-
currend,

Let the triangle be 4BC a{ﬂ%i ey the¢ hrlg.ll.}pb through
B and € intersect in 0. et OA ~ =a, ()13 b and OC =g,
then AB=b-a, BU-c<b and CAd=a-ec. Since OB
and €4 are perpcndu,ular we have

b,g&i}*c}=o or b.a=b.c;
and since OC and" 4B are perpendicular

,C\NC"-(D—a)=0 ocr ¢c.b=c.a,

Hencf,j\i\'“ a.(fc-b)=a.c-a.b=0,
shniing that 04 and BC are perpendicular. This proves
thentheorem.

§13. The Orthocentric Tetrahedron* A tetra-
hedron does not in general possess an orthocentre, but it
may do so, and we shall consider a tetrahedron ABCD
with an orthocentre 0. Suppose that the altitudes from
A, B, 0, D mest the opposite faces in H, K, I, H respect.
¥ H. Loh., Math. Gazette, xix. (1935), p. 102,
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ively. Let 04 =a, GF—b, OC'=¢, OD=d, then BC=
o and CD—=d—c. Since 04 is perpendicular to the
plane BOD, we must have a. (¢ ~by=0anda.{d-c}=0

S0 a.b=a.c=a.d.
Similarly b.a=b.c=b.d,. . .22
and c.a=c.b=c.d. N o

oA
So all the scalar products arc equal (=o say). In other *
words A\ bt
(0A)OH) =(0B)(OK)=(0C)OL) = (OD)(OI‘l}ﬁk.—} o
R W
Two edges which do not meet are perpendi cular},\e' 2.,

(b-a).{d-c}=b.d-b.c-a dta.c
N\
=g-og-F+o=1}
..\Q

X 3

g0 AB is perpendicular to CD. AW
Again BII is in the plane Q4 B’so BH =ha +kb where
h, E havwﬁﬁhrﬁﬁlﬂﬁﬂarﬁ@f&. in
(ha +/b) . (d- c)j—;i}ié' —ho+lko —ko=0,
ie,, BH is perpendigilar to CD. TIn other words, the fect
of the altitudes a}‘*gﬁhe orthoeentres of the faces.
Let € be th e}csiir’eﬁmcentre and lct & be the radius of the
eircumsphereN 00 =gq, then
»da-2). (g-a)=R*=(q-b). (g-b),
whenc,e':\’w’ 2q.(a-by=a?-0b%

Si{{i{%ﬂl’y 2q. (a—c¢)=a%—c%,

S¥rom (22) we see that g=4(a+b +¢ +d) satisfies all these

“\\
3

?gga-t-ions. If ¢ be the centroid of the wvertices, then
O =3(a+b +eo+d}, so ( bisects 0F. Further
B=}{-a+bic+d). {-a+b+c+d)
=Ho? + b+ P p df - Bo 1+ fig)
=HaA +0%+ e + d?).
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& 14. Examples

(1} ABCD is a parallelogram and # is the mid-point of
AB. Prove that DF and A€ triscet one anothor.

{2) Prove Desargucs’ theoremn by veetor methods.

{3) Provo that the perpendicular bisectorz of the sides of
o triangle are concerreit,

(1) The position vectors of the focl of an ellipse are o

and - ¢ and tho length of the major axis is 20,  Show that the (Y

equation to the ellipse may be written N
N/
a-airi+ e + (c.1T)E= 0. ,~"
+ (5) SBhow that the Pqu,d,tlou to the perpcndmulw &om the
point b to the line r =a + &t is
r=b+ htx {{a-b)xt}h
{8) Show that the two straight linesr = afplandr =b + iv
interssct if [v,b, u]={[v,a,u] and thap i‘he point of mter-
section ia P v/
[_a by v] ] or [a,’h u]
[V. a, “]www db.l au’tl‘brlar}}]or g.in

+ (7} ABOD iz a totrahedron) and O 19 any point. A0, BO,
00, DO moct the oppcmte fabos in B, F, G, H respectively.
Prove that

A0 AR BO}W GOJ0G + DO|DH = 3.
{8) Prove Ceva’ é\ﬂmorom by vector methods,
(%] Prove Menslaus’s theorem by vector methods,
(10} Provo ¢ fh,ﬂ:ﬁ triangles with equal areas on the same
base and on tI‘ue} satne side of it lis between the same parallels.
{11) SHot that the plane through the points r), vy, Ty

has the\e‘(ibaf don

s.‘;\ T, ry ryi--|r, Ty, [ I rj = Lrp Cgy I‘3].

N/

%

O
N

N\

~\\
\

£

2N\



CHAFPTER II
DIFFERENTIAL GEOMETRY )

TWISTED CUBVES N
§15. Tgp parametric equations of a curve, m' three.
dimensiona)l space may be written o\ X

x '_x(%)s Y= ?}(u); z= 3(“‘); . . (1)
where % is a variable paramoeter and ';\zJare rectangular
Cartesian coovdinates. If we chmiua  from the equa-
tions (1), we get two equations, ga:y )"

v Aol iy G gl ¥, ) =0
representmg two surfaces, all or part of whose intersection
is the curve (1). ~

If di be the elemerd of length, then
N\

il (5] o (o

The length, of Ahe arc measured along the curve from some
given p01n1s #, to an arbitrary point « is

\\;"\r\"z;jg di= [ AGT + (Y +(E V. . @

* Thls equation expresses I ag a function of w. ¥ we can
N *solve the above equation for # in terms of 1 and obtain say

™ w=F(), then substituting in (1) we have the equation of
v the curve in the form

w~all), y=y), z=z()).

From (2) the necessary and sufficient condition that the
16
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parameter » be the are I measured from some point on the

curve is
du ,dJ\- dz
(32_{./ \dy) +(d’u> =1. ' ' (%)

Let » =i+ yj +2zk be the position vector of any point «
on the curve. We write r=x{l} to denote that the coa_.
ordinates «, y, z are cach functions of the parametcr{ 2
Using a dash to denote differentistion with respect i{}l
we sce that the components x', ', 2’ of * are pr001LGJJ the
direction cosines of the tatlr:rcrlt to tho curve at the Jpoint .

Also, ' is of unit length, since () + (¥} 4, (?\}3‘— . We
call ¥’ the unit tangent. The equatlon ofLhe tangent to
the curve at the point r; is therefore N

r=r; + I’ 1, \~

where k 18 a variable sealar. €N\ \%
On differentiating the rel mon r". 1" =1, we have
,W\%ﬁl‘]?_l ﬁullb_{'al y.org-in
S e

ghowing that ¥’ is perpe;i&icul(lr tor'. M the curve isa
straight line, »' is a sGhstant vector and therefore r'’ =0
for all points on t},m\urve If at & point r; on the cutve

’,%0, then tRréeg“consecutive points on the curve will
detemune a plane, called the oseulating plane.

Let P, anP be three neighbouring poinis on the curve,
We may t&ke their position veetors to be

N\ —

'\\w. OF =r,
O\ OF, =+ '8 1+ 30" (80¥+....,

ol
S

”\ “\ $ 0P2 =r+rdl+ir”@0 ...,

N/ where §,1 and 8,1 are eloments of length measured along the
eurve. It follows that

Tty

PP, =0P, ~ 0P =r'8,l + " (8,1 +
PP, =0D, - TP =x'8,0 + 1x" (8,00 + .
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Now the plane PP, P, mugt contain the vectors

PP, _2_[PPy PP,
57 ond 7611—323{ 51 07|
which may be written
z +%r”8‘2+... and r+ "Gl 4., O

N\ ©
respectively, In the limiting case when 3 and 8,0 \both
tend to zero, these vectors tend to the values »™and v’
respectively. At the same time P, and I, move:up to and
coincide with P so that the osculating planegt P is simply
the limiting casc of the plane PIMP,. Ww¥mn this it is
evident that the osculating plane at BNig parallel to the
vectors v and " formed at P. Welconclude that the
equation of the osculating plane ab{a) point whose position
vector is ¥; may be written WV

www.dbrfu l-i{niatr}wcfis‘,‘g:ﬁrf ‘3=0.

Evidently the normali6 the osculating plane is parallel
to ¥’y xx"”), The nermal fo the curve which lies in the
oscnlating p]ane’gf}he point where the normal meets the
curve is called%%@'principal normal at that point, Since
r''y is parallpl t0 the osculating plane and is perpendicular
to the tangent, its direction must be that of the principal
noE'mak‘Hence the equation to the principal normal at
LeREIES SN

r=r +kr',

~,w’%re kis a variable sealar,

*The direction of r', x v/, is perpendicular tor’, and so a
line drawn in this dircetion through r is & normal to the
curve, This normal is called the binormal, It is per-
pendicular to the csculating plane and its equation is

r=r;tkrxr’y,
where £ is a variable gealar,
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$16, Let us denote the length of v by 1/p, then pr*’
is o unik vector which we call the unit principal normal.
Also »' x pr'’, ar pr' x =", which is in the direction of the
binormal is & unit vector, since r* and pr'' are both unit
vectors and arc perpendicular to one another. pr' xr'’is
called tho unit binormal, It is convenient to write t fon
v, n for pr’’ and b for pr'xr”. We have now at cac}
pomt of the curve three muﬁually perpendiculaz,. \umt
vectors @ viz., the unit tangent t, the unit principal nermal
n and the unit hinormal b, Thla configuration is(Calicd the

moving trihedral. £
We have 1 o\
t’=r”=f—)n. AN (5]
o\\,,

Nowb .b=1,80b .b'= 0, showinghat b’ is perpondicular

to b, Further, t.b=0, =0 tA “Dit.b’'=0. But the

first term vanishes sincen . b= 0y hcnce t. b =0, showing

that b’ is also perpemhcular follows that b’ must
i

be parallel to n. § Bruli 1a1y 8

N\ 1

“\' b = ‘—;n- . . . . . (6)
Now \'\X\; n=hxt,
B0 .f’,:zb'xt-}hxt’:—lnxt—;-!bxn,
¢ g p
1 i
or \:\ n=+b-t . . . . (7
AV Tf
{S), (6) and (7) are known as Frenet's formulae. They
may be written as
, 1
t'= + 1 ,
P .
n'=- It +=b,
IO T
b= - %:n .
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displaying the antisymmetric matrix. The value of ],-I’p
at any point is called the curvature, and the valie of 1/7
is called the torsion.

Since b=pr'xr",
hf:pfr.f x r’f+ pr(f >< r’f + pr’ x rf”.

The middle term vanishes, sc that

ljt==—-b’.n Q’
=—(pr'xr" + s’ x ¥y, {pr'") :‘,‘}‘
=—pplr,r”, o) - p?[x’, ', ,':

whence 1/7=p?[r', v/, v'"], - "’\ . (8

§47. The vector equation of a sphegg\\of rading & and
centre q is €7
{r~qP=a? \
The points where the curve r=’r(3)"§ntersect-s this sphere
will be obtained by S(ilging thecegation
www. dbrauli rary eRg.In
A= S - a2 =0
for .. The sphere will intex:s“ect the curve in three coincidont
poiats at =1, if the equntions

f@\’éﬁ, Fly=0, f)=o

are simultanec),}ts}y true. Wewish to find the spheres which
meet the ¢V in three coincident puints at the

UL point r,
In DI‘dCI: ,ngt this be s0 @ and q must satisfy the cquations
s"\,.:’ (r-qP-a? =0,
& r.(r-q) =0,
N\ e g e =g,
\“These may be resritten in the form
' (c-qp=e, , | e ®
t.e-qg=0, , , < (1w

Rr-q=-p , ., , (1)
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From {10}, {x — g} cvidently lies in the normal plane at r,
£0 we may suppose that r —q=~hn +1Ib, where % and k are
scalars which so far are undetermined. From (11}, k= —p
and from (9}, k= & (a® - p%)t.  We see that ab any point of
the curve there arc in general two spheres of radivs e,
provided @ is not less than p, which intersect the curve
at the point in question iu three coincident points. THe)
centre of such a sphere is the point S\

v

g=r+ pn : (g% - p¥)ih, P Y

Theradius ¢ is still at our choice. If we chooseg&-‘- p, then

gq=r-+ pn,

so that the centre of the sphere in thidoCaze lies in the
osculating plane at», Infact, it lies ol the principal normal
at r. TFhe osculating plane cuts the\gphere in a great circle
of radius g called the circle of ‘edrvature. The centre
of this circle is called the centre of curvature and p is
called the radius of cum'&uﬂb: aulibrary.org.in

Again, by making a Smtable choice of g, we can arrange
that the sphere \Ull mter%(,t the curve in four coincident
poinis. The addlﬁiﬁﬂ\dl condition will be f'{I)= 0, or

\u ( —g)+n.t+p =0,

or {— {lf‘p)!’, {1/7)b} . { poE (af — pfibl 4 pf = 0,
or P\ % F(a? - p?)ifr+p =10,
e, O it st
In this'case
g=r+pa+7pb.

N,

\Thls point is Lthe centre of spherical curvature and the

radius {p% + 7%p)¢ of this sphere is the radius of spherical
curvaiure.

§18. We shall now prove the theorem that all cwrves
whose ewrvadure dnd forsion are the same functions of the are
aré congrucnd. In other words, apart from location in

r
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space, & curve is completely detcrmined when its carvature
and torzion are given as functions of the arc I measured from
a fixed point on the curve.

Let the two curves be denoted by r(7) and r*(l). We
translate one of them so that the zero points !=0 on the
two curves coincide. We now rotate one of them about
the zero point so that the moving trihedrals of the twa. .
carves coincide at the point I=0. Now by Fren,e\t'k.
formulae \J

N
¥
s
77N

g@.t*+n.n*+h.bﬂ (

7

(4,
n* b * 'S
R ] tn-.n,(_wg*)i;@)_n*
9.\

-b.0_-Z b R
Further, the right-hand side is .'z:er'o gince by hypothesis
pr=pand r¥=7. Hence 3N
www dbraulibracyterg.in
t.t*+n.n¥xb. b* =constant,

and the value of thi§“Neonstant is 3 since t=t* n=n%*,

]ﬁ:b* when 320;{"1—* follows that for any value of I we
ave &\

\} »

N t=t% n—nx bL_p*

From t _-t’\?‘, Wwe have »'=1* apd therefore r=r*4a

where AdsAa constant vector which is evidently zero since

r=r¥ab [=0. Heuce r=r* for all values of I, This

prgi\r*\cs“the theorem.

\\ The equations

\' pZP(ZJa T=(l}, . . - (12)

) which spectly the curve, are called th
or natural equa_tions of the curve. Tt can be shown
further ‘f:-hE.l-t, provided we restrich p to have Positive values,
& curve exists whose intrinsic equations are p = p(l), T=T(),
where p and 7 are given continuous functions of I,

e intrinsic equations
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§19. The position vector of any point x(f} on a curve
may be expanded in powers of { by using the vector form
of Taylor’s theorem. Thus

l r 32 £ 33 J.r.r
I‘{E) ‘-‘-“-I‘(U} + I!r (0) -+ 211' (0} + 3—| (0) +ories I\
I Pa(0) Py t0) p'y 0:;(0) (0) "\:\.’
= 0 —t 0 o T ” ‘—(“"—
I‘( )+11 ( )+21 Po +d| Pﬁg pi} POTD)+‘ }\
. 1] "“g
for v ln and =o r”’=-l-(—-1t+1h)~92n. ,I:I’:no\'v we
P P X ‘\ ‘

choose the point 7= 0 to be the origin and Hie directions of
t,n, b at the origin to be the axes OX,\@'Y 0%, then the
parawmetric equations of the curve ta.kq‘thc form

¢’ ”

x=1I -—611—‘3;34-....,
] wwwdobrauhbrary rg.in
— L&

= r R ’."PUP .3 " L] - 13
y= g8 ”Gp (13)
O L,
W tpoTo

<
'\

These are calh:n} the canonical equations of the curve,
§ 20586 will be useful at this point to illustrate the
prc%ﬁ;ﬁg theory by applying it to the helix

x=acosf, y=asind, z=¢ftanq,

“here f# is the variablo parameter. Now f=(z/a) cota,
50 the helix is part of the interscetion of the two cylinders

2= g? x=a cos [{z/0) cot a].
Alzo

4P = da? 4 dy? + dz? = a®(sin® @ + cos? B + tan? ojdf? = a? soe?add?,
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so if we measure [ from the point where & = 0, wo have

I=| N o sec adf =afl sec a )
Ju
whoenee
8= {l/a) cos a.

The helix is therefore represented by p f\ N
.,.\\ @
N
r= & cos (I— €03 a)i +  @gsin (Z cog a\;i Hdwinal,
a X+2 / \ S

and
l \\
r'= - sn( cosa)cosai +coaL 003a>cbea]+smak
$

i cos? o, coqz
T’ = —cos (Ei cos a) ——-1 ~sin ( Q}s ----- j,
- . (1 cos® a, (:083
"= gn el -—1 vqos (,oa a) —-

The equatiqn $o ﬁm.g@pgipﬁkﬁbigam

# —a cos [(I/a) cos@l, N _y-esnfio)esal 2-lsina

-sin [(lja) cos a}bos a cos (/o) cos ajeos o sina
or \\

@racosf _y-asinf z-aftana

.‘\; T sind cosd T tana
Tl}e\’é\\s\mi&ting rlane is

%J | x~acos®, y-asinh, z-afitane '=0,

=\ 5‘ —sin 4, cos 0, tan o

ALY )
) cos §, sin 4, 0

/ Further 1/p?=r" | v" ={cost o)/, so

p=asec? o,

showing that the curvature of the helix is constant.
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Again [l‘.", I"”, it
= —sin 4 cos a, cos f cos a, sing
—{cos § costa)fa, ~{(sinf cos?a)fm, O

(sin @ cos® a)fa?, - (cos § cos® a)/u?, O
={(8in a cos® o) /a?,

50 1jr=p¥r', v’ ¥ |=(sin a cos o)fa, O

N

showing that the torsion of a helix is alsoe constant,, S Sifnce
o’ =0, the radius of spherical curvature is o '\\

§21. Examples \\,
{1} ¥ = f{x) is a plane curve, Show tha'\t‘the exXpressions

.r,,'\/{l dJ }dx and I-_;Lun'\/{dd: g;}

are identieal.  Show also t}mﬁwb&blﬂmﬁﬁb}:ﬁdﬁ@l‘g in
b}
Lip?= (?i_za:_yz) / {1 GM J and 1/p*=r", r”
\

7

are identical. )
{2) Bhow that t’hg\radr us of curvature of the twisted curve

ﬂlogcosﬂ y=logsin g, z=26/2

at a point 9 43 :\/2a sin 20,
{3} Pr m\s “that the rading of curvature of the twisted eurve

i&a&(:} —-t%), y=3att, z=af{3I+¢), «=constand

a.ba ﬁmﬂ, t is 3a (1422,

\ ) Tho twisted curve

\\ N z=uoos ¢, y=—asing, z=ccosh (ngfc)
lies on the eylindor z?+ y?=a% Prove that the oseulating
plane ab sny point of the eurve makes a constant angle with
the tangent plane te the eylinder at that point.
(5) Bhow that r=e0 is the condition that a curve be a plane

turve,

\» 4

N
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(6) Show that the necessary and sufficient condition that a
curve should lie on a sphere is

4 d_ ;Yo
;‘l‘ al{lﬂ 7’) =0
(7y If 5 is the locus of the contres of spherical curvaturo

of a curve (0, show that any tangent to § is perpendicuiar to
the corresponding tangent to G,

O\
NS ¢
BURFACKS A
§22. If we eliminate the independent parameters u and
v from the three scalar equations RS

w=aln,v), y=ylu v 2=2lu, QN . (14)
which are the components of the vector cguation
r=r{u,v), \N. o . . (15)
we obtain in general a single eqnation)of the form
bz 9, <
which rcprcs\’ft‘ftﬁ"Qbéifﬂlafgg.afg)fﬁﬁ%lls to say, the equation
(13} represents a surface, for*the point (w, ¥, 2} will lie on
Bix, g, 2) =0 for any valtes of % and v, 1n particular all
points on the surface40e which u has the constant value u,
form a curve whieg{li'es on the surface, for the equation

N

= r(uli ‘b‘}

is of the sam€ type as equation (1), since it involves only
one parameter ». We have thus an infinity of curves for
which anie a constant and similarly an infinity of curves
for whith v is a constant. These arc the parametric lines

of }t:-he surface, w and » ate the curvilinear coordinates
~0fva point on the surface.

or .
The vector gq}, will be a tangeut to the parametric line
v=coustant. We shall eall this veetor r, and we denote

or
the fangent vector i Lo & parametric line %= constaut by
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r,. The veclors r, and v, are not in general unit vectors.
We sappose that r, and r, do not coincide in direction, so
that r, xr,=:0. Now the equations

u=uft), v=muit)

determine a curve on the surface, for z,u,2 are then

funetions of a single parameter £.  This curve is L\
= ' N\
r=r{u(f), v()), O
and its tangent voctor is :u:‘

dr  dudr dvér _du dw \\
di " dbbu e de T AN
Also, since

Py .P,XT,=TF,.1, xruz—\&,)
this tangent vector is perpendieulap. thi' x¥r,. Hence the
tangent vector 1o any curve on théssutface pussing through

rjs perpendicular tor, x 1y, 50 that T, ¥ r, 15 a vector which

is normal o the fangent \Pl%%f’fr%P aﬁhbr'gbg‘ Bg.ggﬁnt plane

at a point ry on the sur face bave the equation
r=I; —P?a-( whHEEL . . . (16)
where h and k are w\}mblc scalars. The equation to this
tangent plane nx*\ o be written
) [I' i (ru)) rw ]:0-
Now by ‘('i”(]’i) v

ATy xR ek (v = HG - F2,
uhewv
N E=r,.r, F-r,.r, G=r,.r, . (I7)

bf)}he length of v, x v, is (£ —F3)!. 1 o be the unit normal
“\ “to the surface, thcn

V e=(r,xr)jEG-F . . . (19

H dl be the clement of length between two points whose
position vectors are r and » + dr, then

@2 = {dr)? = (v, du + v de)?,
or dif = Edut 5 2Fdude ~ Gt .« (19)
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(19) is called the first fundamental quadratic form.
When the surface is a plane and « and » are the rectangular
coordinates & and y, {19} reduces to dI? =da® + dy?, which is
simply the theorem of Pythagoeras,

Again, if (%, »,) and (& +du, #,) be two points on the same
parametric line v =»; then dI*=PEdu?® since dv iz zero; so
the element of length in the direction of a parametric ling
v =constant is di = Btdu. Similarly the elemeunt of lengfh/)
between the two points (u,, #) and (21, v +dv) is g,wer;l\by
dl = Gdv,

The length of », 18 E* so the unit tangent \ector i the
direction r, is £-ir,, and the unit tangent ve(,topm‘the divec-
tion r, is Gir,, If the angle bet-ween theltwo parametric
lines through any point he « then - \

cos w=(E{)tr, . r,= ]\21{19(;)}
and sin w = (BG - P2 (EGHE.
Consider a smajl quadr’ﬂa,tera:l .Who.:::e vertices are the points
(w,v), wosw .ﬂdv;’@}{,ﬁ?@@,‘?)’%%@)}" (# +du, v +dv).

To a first approximation the opposite sides are equal
and we may regard“tdic fignre as a parallelogram whaose
sides are of lengti®y Eidy and Gids. The area ds* of the
small quad rilaﬁb@x]“is therefore

ds = EIIGd BG - P (B — (BG - Fdude.  (20)
AY¥

§23,\I'be vector e is not & constant vector although it
is ofednstant length.

N —dr.de= — (v du+r.dv) . (e du +e,dv)
QN = Ldu® + 2Mdudy + Ndv?, .2h
) where
L=-r,. e, 2M=-r .e,-1r,.e,, N=_v,. e,

{21) is called the second fundamental quadratic form,

* Bome anthors use ds and 48 to denote clements of length and
surface respectively,
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Sinee e r,=0and e . r,=0, we have

o,.r,te.r,=0, e,.r,+e.r,=0

e,.r,+e.r,=0, e,.r,4e.r,=0,

Hence
L~e -rtlu:[rur Ty r\au],"{(EG*F‘z)k, ;“\°
A =e.r,,=[r, v, r,J/(EG-FD . :..(2‘2}
N=e.vy=r,, v, 2, ]/(HG-F3) A\
N
§24. For any curve on the surface m'\"\i"
t.e=0, g
Differentiating this relation with respe'g’k\t'o ! and applying
Frenet’s formulae, we have \ v
dr de ) dr . de .
R G
or ww.dbraulibrary.org.in

1

‘n

P

L, o L+ 2 Mdude + Nav?
p \"_ Edu® ¢ 2Fdude + Gdv? "

The right-hand sl’(j(}\of this equation is a scalar function
depending only\u}_on the position {«,#) on the surface and
upon the digdtion (given by dujdv) of the curve through
this poing, {In other words,

W ‘n.e
P

“hﬁs the same value at any point P for all curves on the

o\ wiurface passing throngh P in a given direction. Further,

) B.eis the cosine of the angle § betwcen the osculating

Plane and the normal to the surface. Consider all plane

sections of the surface through a given tangent line. If@

s the anglo between the osculating plane of the curve of
Wterseetion und the normal to the sucface, then

cos f/p =constant.
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In particular, if R be the radins of eurvature of the normal

seclion, which is the section for which cos 8 =1, then
p=Reosd. . . . . (2B

From thiz we have Meusnier’'s theorem that the circles
of curvature of all plane sections through the same line element

of o surfuce lic on a sphere. O\
From the foregoing equations we have i\
U Ldw? +2Mdudy + N A\
B Edu® +2Fdudy + Gdu?? Ky
whence ~N

(RL — E)du® + 2{RM — F)dude + (RN X é)cl};z =0, (24)
giving two dircctions dufde for a givep:}*}lhe of B. These
will coineide if (24} has a double rog witU which case

(RL ~ B)du + (RH -ylv =0 } (25)
and (RM - Fydu + (BN Ghdv =0)"  °
which can onfy’ B’e%ﬁ?}l’}{Pfélf y-org.in
(RL - E)(RN - @) =(RM - F)3,
ie., if m<
EYLN - M 2)@3{23}.&' - LG - NE) +(EQ - F2) =0,
This equatiomgives at any point on the surface two values
R, and R, which we call the principal radii of curvature

at that point. Eliminating B from (25), we find that the
principal directions at any point are obtained from

£\

B ME)dw? + (LG ~ N E)dudy + (MG — NF)de? =0, (26)

WAMine of curvature is & line whose tangeut at any point

¢~ has a direction coinciding with a principal direction at that

\™ point. (26} is therefore the differential equation of all lines
of curvature,
We write

K =1{R\Ry= (LN - M%) /(EQ - F?),
and  2H =1/R,+1/R,—(EN - 2F I + GLY/(EQ - F?),
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K iz called the Gaussian curvature and K is called the
average curvature.

§25. The vectors v, and r, depend only upon the
position {u, #} on the surface at which they are caleulated

du ancd j; on the other hand depend upon the direction af\

dl - \)

du dp
dl. If w0 ar 1€ 24
curve Y, then the unit tangents to these two,.durves at
their point of intersection are LV

22 p B ana 5,0% 3R
udg'r "dﬁ Tl uSZ .'\{-.

fer to a eurve €] and 88%;, g%} refer ta a ge:ea?hd

The eondition that ) and , cut opt}}oﬁgfmally is that the
sealar product of their tangent veebers be zero, ie.,

i 8 d 8 3 »:8._ “C.Z"‘\, . do S
(e my gy + e w) Gy malf =

or «y
du Bupm oiduw By |, .
E oy Qg *5@) LO=0. . . @D
O
Now if du and ?:h—’\l\)e the two roots of (26), then
v oY
du 5N = NF du Su LG -NE

bbp” 1rTarn Y v, T TLF T
."\‘o
These'walues satisfy (27) since
O\ EMG-NFY—F(LG - NE) + Q(LF - ME)=0.
“Hence the principal directions at any point are perpendicenlar
and therefors the lines of curvature form an orthogonal net.
. If wo choose the lines of eurvature as the parametric
lines, then p =r,.r.,=0 and the differential equations
of the lines of curvature are du=0 and dv=10 so thab
(26) takes the form du de=0. 1t follows that LF-ME
=HF-~XF--0. Since £, F, ¢ are not all zero, we muab

N\



32 VECTOR METHODS

bave M =0. Hence the necessury and sufficient conditions
that the lines of curvature be the parametric lines are

F=M=0,
§26  As we have said, the unit tangent vector to a curve
r(l) is O\
v du . dov N\ ~
var e O
#nd the unit tangent to the curve » = constant ig ~‘ )
E'ﬁru. . »"\ &
If 8, is the angle between these two cur»ss‘,
] x'\ v
du dy (Gatte  duy f
— . iy FTh e BT Y l.
cos ), (r"'r“dl +r,,.r‘,{ﬂ)/}i"} Edﬁ .ng)/ﬁ
Similarly \

S o
= r’, S 1k
w\\rwgﬂjsl'lgﬁli r%ad}ﬁtragg@} / G '
If B, and R, denote theradii of eurvature of the normal
sections through theenives u=constant and ¢ =constant,
then since duzﬂ,f\t:ﬁ} the curve % =constant and do=0 {or
the curve v=cdnstant, we have from (24)
1 N 1 L

P\ -G B "w
W)je}%he parametric lines are the lines of curvature,
th;g\ﬁ={), 80
*.\ €03 90=E§§u, cos fl, = G'ldt?;
AN i df
V™ also cos f,=sin 8, since the lines of curvature form an

orthogonal net, In this cagse R, and R, are the prineipal
radii of curvature R, and Ry, 50

cos? § sin® @ Ldu?+ Ndp?

BTTR T g
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where 8 is written for #,. But since in the present case
M =0, we have from (24)

1 7du? + Ndo?

R e~
N
Combining the last twn equations we obtain Euler's
theorem, viz. oA
1 cos®{ sin?f O
RR TR, G

27N
< %

which gives the curvature of any normal section’in terms
of the principal curvatures at that point and)the angle
between the curve and the principal divectiofwhose radins
of curvature is ;. K7\ J

4

§27. It is evident from the cquativn

1 L oMduls Nd?
BT "w‘ifrsfﬁ-jﬁmﬂrbra‘l'y,org.m

that 2 bas the sanie sign®as Ldu?+ 23/ dude + Ndw?. If at
any point LV = M2, then ™Vt has the same sign for all direc-
tions and the ccnt;‘eﬁ,\f curvature of all normal sections
at (#,9) lie on tHe wime side of the surface. Such points
on the surfaceMare called elliptical points. If on the
other hand J4¥ > 172, some of the centres of eurvature will
lie on one side of the surface and some on the other. Such
points 'a{fe.\ca]le{l hyperbolic points. Points for which
LN =i&ure parabolic points.

At'any point, the divections for which Zdw? + 2 M dudv +
AP =0 will separate the curves with positive curvature
Adrom - those  with newative curvature. These arc the
asymptotic directions at the point. A line whose direc-
tion is an asymptotic divection at cach point of it is called
anasymptotic line. The differential equation of all asymp-
totic lines is therefore

Lidu? + 20 dude + Nde? = 0. .. (28)
D



™

Q .:Then

O

34 VECTOR METHODS

In gencral there are two asymptotic lines through each
point of the surface and we shall show that the angles
between them are bisected by the lines of curvature. To
ghow this we take the lincs of curvature to be the para-
metric lincs.  The value of du/de for any curve will now be
(G/E)} tan 6, where @ is tho angle between the curve and
the line of curvature u=constant. The asymplotic lindg)
now havo the differential equation Ldu? + Ndv®=0 sothhat”
dufdy= L~ N/L}*, showing that the two as&q‘;j}p)c-’ot-ic
directions make equal angles with the linc of furvature
w=constant. In the same way they ma-kemc‘\qiléd angles
with the curvature line = constant. N
From the cquation (28) we find that feian asymptotic

line . N

n,e=0,unN

P $

3
NS

If p+ oo, then e is perpendicularto n as well as to t so
that the tangent plane is théNosculating plane. If p=uoo,
the line is stl%éifgﬁg fﬁf%‘!ﬁ@f}?ﬁ?t%ﬂ%f%n; }’In)lanc through the
line may be taken as the' osculating plane. We may in
fact take the tangens{Plane ag the osculating plane. Hence
the asymptotio Z'in'-e{shf a surface are the curves on the surface
whose osculati%g@atanes coincide with the langent planes al
each point ofthe Curve.

§28.M¥¢€ shall illustrate the theory of surfaccs by con-
siderinigythe paraboloid of revolution z=2?+32. We may
ta&'—:}?}ié parametric equations to be
N\

T=ucory, Yy=usinwy, z=ul

r = weoswitusineitulk,
r,= cos i+ dinvj-3uk,
r,=-—usnovitucosei,

whence

E=144u? F=0, G=u?
and (EG —Fo e (] 4 dub)t,
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Further Tyy= 2k,
r,,=— sinw i+ coswj,
r,=—wcosy I-usinvi.
So
[T vy 2] =23, L=2/144u)}, N\
{ru: 'y, ruu] = U} M= 0: £ ‘\\.
[Ty, Ty, ¥op ] =23, N =20u2/(1 + 4ud)b, N\ -
- . 3 ‘\‘,/
Binee F=1{ =0, the lines of curvature arc « =c0nst;mji€ and
t = constant. e\

The asymptotic lines are given by .d;u‘ﬂji—%.zdv":{).
These are imaginary since LN =32 Ali’Paints on the
surface arc elliptical, A

2%
W

§29. Examples,’ C”x\

{1) Find the lines of curv&ture,'o:n.{he surface
x =alte +v), &\iﬁ&(@%t%lib"rﬁiaﬁ?{org.in
[log ( ++/a* 757 +2%) =thlog (v +4/a* 7 5% + 0% +log c).

8how that tho paramet&ic: lincg are the asymptotic lines, and
that thesc are straight lites.

(2} Show t-lla.t’\t-\lrlé’é.sylnptotic lines of the hyperboloid
Z=n ggigs:ﬁ gecd, y=hsindsecy, z=ctand

are given hing f+_ i == constant,

(3) SHpsv” that the differential equation of the lincs of
ourvatlire'orl the cylindroid 2(x? +y?) =y is dré + 2r fan 28 drd?
- ("‘%\f’i‘ cos® 28)d0° =0, where #* ={2* +4?) and # —tan? (y/z).

- QN) The parametric ecquations of the helicold are

. ;'\;; w=weost, y—=usine, z=cwm
\ / Bhow that the asymptotic lines are w =constant, v =constant,
and that the lines of curvature are u + /2% +c2 =de7?, A heing
aconstant.  Show that the prineipal radil are 2 (u? +e?)fe.
{5} Bhow that the prineipal radii of curvature of tho right
conoid
T=—ucosy, y=usne, =z=fv})
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are given by tho roots of the equation
FRRY fuf7(u? +fNR - (uf + [P =0,

(6} Prove that the principal radii of curvature at every
point of the surface z =y tan (zfa) are equal and apposite, and

that they have n constant value at all points on the surface

y
“
<

which also lie on the cylinder »® +2% =c%,

(7} Use equation
sphere.

surfuce of revolution.

surfaco

(20)

to find the arcas of a circle and of Q”}\

N\
{8) Deduce the formula [2xy(1+y2)ide for the area d¥ a

(9) Show thabt the portion of the ecurve u=v 1{1’}}«5; 0}1 the
\ "4

x=wucosy, Y=wusinwv, z=w-’$\:\%\1
which lies between z = 0 and z = 24/ is @gth 2 sinh't I,

www.dbrauli br:eg(iﬁfér g.in
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APPLICATIONS TO MECHANICS

§30. SUPPOSE that a particle is at the point P,éhpse
position veetor is r, at time # and that at timer24%¢ the
particle is at P’ whose position vector is #§8r. Then
r+dr=r+PP’, so that PP =5r. Now-\the velocity
vector of the particle is AN
i T2 i ST
>0 OF  s>0 O )"
where the dot stands fordifidbmtiabionywithisespect to
the time 2. The components of the velocity vector * in
the coordinate directions afedz, ¢, 2. In the same way r
is the acceleration vectn and its components in the co-
ordinate directions asg\%, ¥, £. In §39 we shall obtain
the components ~o{‘€elocity and acceleration in other
directions. It .folﬁws from the preceding that velocities
and acceleratiegis/obey the vector law of addition,
Newton’s“second law of motion may be stated in
the form/EZp, where p iz thc momentum mf of the
Pﬁfmi@f’maﬁs m, whose position vector is r and which
is g upon by a resultant force F. Since m is & scalar,
i’ﬁ,féllows that p and thereforc F are vectors, This indi-
... (8ates that forces which act on a particle are compounded
)by the parallelogram law. It usually happens that the
muss of the particle remains constant during the motion,
in which case Newton’s law takes the fawmiliac form

F=mi,. . . .+ o« (1

or Joree =mass x acceleration
37
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The single vector equation (1} is equivalent to three scalar
equations .
F.=m¥, F,=mj, F,=m3,

and the integration of these equations where F,, F,, F,
are known functions of 2, ¥, 2, 4, ¥, 2 and ¢, is one of the
major problems of elementary mechanics. \¢
£ \

§31. Two forces which act at the same point P(of s’
rigid body are equivalent to a single force at P which i is the
vector sum of the two forces, but two forces whxth act at
different points of a rigid body are not necessariky ¢ equivalent
to & smglc force. Torces are in fact localiged vectors,
That is to say, a foree is associated with\h definite point
of application. Forces combine aceoffliniz to the vector
addition law provided that they act, a"mfhe sare point.

If w be & localised vector, » itg\peint of application and
a any point in space, then we d,eﬁné the moment of w about

a to be the VCCP% dhbr auelbvaS}\;-OT g_]]'[

The moment of w about the origin is evidently rxw.
From our definitionéf*e vector product it follows that the
magnitude of the” ﬁoment of w about a is pw (fig. 7),

where p is the{perpendicular distance of a from the line of
action of w, )\

L >

.’\.3

x'\
\~
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We chall see in § 36 that the motion of a rigid body is
completely determingd when we know ¥ the vector sum of
all the forces acting on it and Gg the resultant moment
about the origin of all the forces acting on it. Now F and
Gro will be unaltered if we replace any force acting at some »\
point of the body by an cqual force acting at some other N\
peoint of the body which is on the line of action of thé )
force. 1t follows that the motion of & body will beyun.
affected by displacing any force along its own line of action.
We may therefore concl ude that two forces whose(liftes of
action intersect in a point P are equivalent to a gfigle force,
the vector sum of the two forces, whose lino@f betion also
passes through P.

Apart from the exceptional case of aytelple mentioned
below, two parallel forces with Jiffergfit™hines of action are

‘0
equivalent to a single force as we shall now show (fig. 8).
Let the forces e fL F and &,F and let r), r; be points on
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their lines of action.  We can introdice coual and opposite
forces h(r; —r,) at v, and A{r, -y} at v, without altoring
the circumstances in any significant way. The lines of
action of the resultant &yF +A(r; — r,) at r; and the resultant
EF 4+ h{r, —r;) at ry will intersect at a point P unless these
two resultants are parallel; that is to say, unless & =~ kb,
which is the case of a couple. Excepting this casc fof )
the present, the aystem is equivalent te a single fewde ©
By 2 h{ry - p) +5pF +A(ry — 1)) or (& +5)F at P. Ibds riob
necessary to find P itself for it is sufficient to loéats any
point on the line of action of the resultant (ke &NHF. To
find the position vector ¥’ of such a point, wo"b}serve that
the moment about O of the resultant must eqiiad the resultant
of the moments ahout € of the original foxdes. This follows
from the fact that moments being defiuéd as vectors must
be added aceording to the parallelggram law., Thus
v % (b + k) =y 5 P x, < 5F.
Evidently one wolttibhi ot thideq @ ddn is
i+ Ry
“r R

Two forces ¥ a;;ti,\— F with different lines of action form
what is known age Couple. Ifr bea point on the line of
action of F apd r, be a point on the line of action of —F,
then the mpent of the couple about any point a ia
{ry—a) xE{r, —a) x F, or

N\ (r, ) xF,
I"r(%ﬁb be observed that this vector is indepondent of the
choice of a and that its magnitude is pF where p ig the
¢ Perpendicular distunce between the two lines of acticn.

§32. Consider a forco F at v. Introduce forces +F
and —Fat 0. Since thesc are equal and opposite we have
not altered tho existing state of affairs in any way., Now
+F at r and -F at O are equivalent to a couple rxF,
bence a force F at r is equivalent to a force F at O together
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with a couple v~ F. 1f now we have a system of forcos
F, at vy, F, at r,. ..., these are together equivalent to
forces F,, Fy.. ... all acting at O together with the couples
r xF), r,xF,,.... Hencee the system of forees is equiva-
lent to & single force XF, at O together with a single couple
Yr,xF,. Thus any system of forces is reducible to a foree I\
whick acts at an arbitrary point O together with a cople. X

Let us write F=YF, and G=2Xr,xF, It may of S,y
eourse happen that one or both of F and G are zero. Ky
F=G=0, then the system of forces is in equilibrito.”
F and G will not in general have the same directions \NThe
angle between them is given by o\

cos 0= (P. G){FG, . N b1

As we choose our origin O in different plzpq\}é, F will not
alter but the corresponding G will chabgt. Suppose we
chioose a new origin Q" whose posit:‘;or}‘{'ector relative to
(is r; then the position veetor of\(relative to 0 is -7
Now ¥ at (0 is equivalent t& ¥Pwad Baud ety ovighra couple
—rxF, so the system may beséduced to a force F ab o
together with a couple G —{® XF).

We now wish to find(¥hether therc arc any points O
for which the resultagiteouple has the same direction as
the resultant fo11ae‘.\\1'1’i otlier words, are there vectors T
for which \

N G - (rxF)=AF,

. AN Lo -
where A is a\qg,alm' multiplier ¢ 1f so, then

:"}z' G .F-rxF.F=AF.F
and X&G . F)/(F. F) for (r xF. F)=0; 50
AN rxF =G -{(G . F)/(F.F)F.
“Hence (rxF)xF=GxF

since FxF =0, Using §5 (11), we have
(F. F)r — (F.x)F =F x G.

There are many solutions for ¥ but if in particular F. £ =0,
then r=(F x G}/(F. F) so that r is perpendicular to both
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Fand G. The most general solution is

= FT +EF, . . . (3)

k heing an arbitrary scalar. We have therefore a line of
points whose equation is (8}, at any of which the resultant
force and the resultant couple have the same direction,,
'Ihe direction of the line ia that of F and one point on itda.h

=(F x G)/F2, This line is called Poinsot's central dxis '
for the given syatem of forces,

A foree acting along a line together with a coupl’e about
& parallel line constitutes o wrench., We have&bewn that
in general a syalem of forces is equivalent $g’a wrench.
The pitch of the wrench is the ratio of ‘r\a couple to the
force, which in the case just considered i@\ "or (G . F)/F2

In the two-dimensional case we iny a,m‘bly have G . F =0,
8o that a two-dimensional system of\forces always reduces
fo a single force unless ¥ vanishes, if"which case the system
reduces 10 & singhe mthxpldﬁrariftangymappen of course that
both F and G vanish. &N

§33. We now consifler a system of » particles of which
the ith has mass mg‘and is situated at r, at time /. Tis
velocity and ac IQI‘&tIOI’l are respectively ; and ¥,. We
denote the tota,lﬂ}:%s of the systom Zm, by 3 and define
the position $\of the mass centre or centre of inertia by
the equatmn 7 e

\eoqm that the velocity and acceleration of the mass
cepieure given by

ME=%mp,, MF=Tmif,.

That the position of the mass centre  does not depend
upon the origin chosen will be clear from the following
argument, Let a be the position vector relative to 0 of
a new origin O’ and let us indieate all position vectors
relative to O with dashes. If the position vector of the
mass centre @ relative to ¢ be ¥ , then
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ME = Nmar' = Xmr, —a) = Smr, - Ma=¥(FT-a)
Hence ¥ =T —a showing that € coincides with 4.
We shall smnetimes have occasion fo choose the mass

centre as origin. I! p, be the position vector of the mass .

m, in guch a case, then p=0, from which it follows that

Sy = mgpe = 2 =0. . . . 5
P

We may imagine that cach particle of the eystem acts

on cacl other particle of the system. According to Newe
ton’'s third law of motion these forces are equalyand
opposite and have the same line of action. If F,, denotes
the foree acting on the mass due to the mags @, then
we play express Newton’s law in the tollowingécguations :

Fo=Aglr -3, A=A
These may be expressed lightly ::Iiffep(—;f@ly in the form

Fir’ - F“ FO”t ":. . . . (G)
(ri— %‘llﬁﬁﬁﬁghbrary .org.in

Combining these equations wevhave immediately

o xFade, xFu=0. . . . (0
Tn addition to the forgéaust mentioned each particle may
experience an cxterfiy force. 1f we denote the external
forcc on the mas&sn; by Fy,, then the equations of motion
of the » particles become '

% X/ Ej‘Fif :??E‘-i;(, 1= 1)23 MY (T . - (8)

Adding«th}éé n equations together we obtain
D SF., = Imi = ME.
i f i

{Blﬂ? by (6) all the forces in the double summation cancel

“In pairs with the exception of the cxtornal forces and ZF;,
is the total extornal forec F which acts on the system.
Thus we have the important result

FoME . . . . - O
which states that the mass ccutre of @ system of particles

"

N
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moves as if all the mass were concenlrated at that point and
as if all the external forces acted there. We may also express
(M in the form Fup . . . a0

where p= /¥ = Xm T, is the total momentum of the system.

§3%4. ¥From (8) we find that A
oA

ng XF;_;=miI‘; Xi‘.‘, £ -’~=1,2,. ity Y
3 A\

and adding these n equations we obtain (5}(‘
Y xFy=2mr; x B " :
(% i N\
By (7) all the terms on the left-hand side epleel with the
exeeption of X, x Ty, which is simply the er]t-ant mement
i 9 \d

Gy of the external forces about 0. Sinee &, x+,=0, the
right-hand side may be written hy, whete
hy=2r;x (g{h-::‘;).

Evidently ho ivthe ddwalthbt sp@bienf the momentum of
the system about 0. Tt follgws that

Go<hs,. . . . . (1
which states that the €esalliant moment of the exiernal Jorces
aboul any fixed poisd O is equal to the rate of change of the
total moment of tomentum about 0. We now show that
this theorem ig also true if both moments are taken about
the mass ¢éntre @ which may of course be in motion.
Choosin,gr,{fh"er mass centre as origin we write

8 r,=T+p;.
NQQ"ZI‘; xFu=2Z{F+p)xFyu=F xF + ZpsxFyy,
wlience Go=fxF+Gg, . . . . (12}

i;\;here Gy is the resultant moment of the external forces

o

} about the mass centre.  Also

s xmk =T (F +p,) x ma(F + )

=¥ X ME+F x (Tm,p,) + (Emaps) x £+ Spy x iy
Now by (5} the second and third terms on the right-hand
side vanish so that
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Sr, xom Fow T x HE + 2Py % MPey
or ho=F x T +hg, .. {13)
where hgis the resultant moment of momentum about the
mass centre. This statcs that the moment of momentum
about any fived point O is equal fo the moment of momentum
gbout O of a particle of mass equal to the total mnass of the

system placed at and moving with the mass cenire together
with the moment of momentum about the mnass centre. Com-¢\JYy

bining (11}, (12) and (13), we have O
GQ-}-fo:&:fXﬂfﬁ-i-ﬁQ. “(""g
Applying (9) this yields the result which wo setlout to
prove N \/
G’Q =hQ - - . L} (14}
NY;

§35, The kinetic energy of 2 parl@ of mass m and

velocity # is defined to be Jmi . By (It follows that the
Linetic energy 7' of a system of papticles is 1and . By
With the same notation asdw§ Ab&ella¥ey org.in

T =¥mi,.0;= SylE + pi) . (F+P4)

= MF , ®+2(8ap) . T+ Zmpe - Pro

The middle term vanisQCs as before so that

247 = Ale '\ﬁ-‘tz E?ﬂ:f}‘); . ég. . . . . {15}
Honce the kinetis entergy of o system of purticles is equal to
the kinetic cnepgy of o mass cqual fo the fotal mass of the
system plactdhat and moving with the mass centre together
with t?e’e“\'?;‘-}nefic energy of the system relative 10 the mass

cenlrés N/
QD

2336, So far we have only dealt with systems of particles.

{(Before we ean apply curresults to rigid bodies we must make

i

an additional assumption of some sort.  The assumplion we
shall yuake is hnown as Boscovitch’s hypothesis which
may be stated in the form : So far as the imotion of a rigid
body is concerned it muy be treated s though it conststed of @
sysiem of muterial particles rigidly connected together. This

QY
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hypothesis enables us to apply the formulzae (9), (11), (13),
{14} and (15} to rigid bodies as well as to systems of particles
but it should be observed that when dealing with rigid
bodies we must replace summations by iutegrations. In
particular M = [dm, MT = [vdm. In §§ 40-42 we shall show
how expressions of the typo [rx®dm and L[P . Fdm may
be evaluated. A

Now the position in space of any rigid body is detor \J)
mined when we know the coordinates of each of three nfr
collinear points of the body. Thesc nine quantities grﬁ}ﬁnat
independent but are connected by the three rclat:-ipr;g which
state that the lengths of the lincs joining the thtee points
are invarigble. It follows thut the position ¢iawrigid body
is determined by six independent quantitieg.\

To determine these six independent qudntities we require
six independent scalar equations, Th&;'&?ﬁr’e supplied either
by (10 and (11) Fop, G =h(;, \
or by (10} and (14) dFranibrepyetgin
In either case the first equaﬁbn determines the motion of
the mass centre and the second determines the rotational
motion of the body. KA

§ 37. Tinite ro m.ioﬁb about different axes, although they
can be represehted by straight lines in magnitude and
direction, aresmet commutative and may not be added
according tbythe vector law. Infinitesimal rotations on
the othgr':ha"-nd may be represented by weetors as we shall

now sHow.
,C&ider an infinitesimal rotation through an angle $4
ahout an axis through the origin spocified by the unit

(¥ector e, A point whose position vector was originally =

N

will take up a new position *+dr and it will be seen that
8r is perpendicular to buth e and v. The point will move
through a distance r sin ¢ 86 where ¢ is the angle hetween
e and r. This follows since the radius of the infinitesimal
arc of the circle along which the poiut moves is r sin P
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From these facis we conclude that
dr=ole xr,

and that - limn §\r =fexr=wxr, . .. {18)
i >0 O
where w denotes the veotor fe.

We have scen that i a peint r is subjected to an
infinitesimal rotation 86, about an axis e, the point will A .
fake up a new posilion \ N
r,=r+dfe xr. d
If this rotation is followed by another infinitesimal rotation
86, about an axis e, through O, the new positiof of the
point is given by \J

Ty, = (T + Bl e x 1) + B, x (v + 8,e009).

2%

Neglecting 88,6¢,, we deduce that L&
v, =T + (3fe, + 8e,) X MSLy,
showing that infinitesimal rotationg are commutative. The
same is true for angular \-’c%\ﬁfﬁcg‘p?'iﬁuﬂﬁ%a"yﬂf g-in
#=lim 22T Q(@lel +Bye,) x 1
>0 Ol -
If we now represent thé\ghgular velocity #,e, by a vector
w, and 0,8, by a vc{{é\ﬁ:ﬁ, we have
A\, T =) o) xT,
which is equivalent to the effect produced by a single
angular velodity cw, +w, We conclude that angular velo-
cities areadded according to the vector law and may be
resolve,%'m{o components in the usual way.

838. Let OXYZ be a set of rectangular axes fixed in
~gpate and let OX’Y'Z’ be another set momentarily coin-
Ngident with OXYZ but rotating about O with angular
velocity w. Consider a moving point P whose position
vectors relative 1o OXYZ and OX'¥Y'%Z are r and ¢
respectively. At the instant, which we may call £=0
when OXYZ and OX'Y’Z coincide we have r=r', It
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does not follow, however, that £ and £ are the same, az we
shall presently see. At time 8¢ the point P has moved to
a new position r+ér relative to OXYZ and fo a unew
position »" +6r' relative to OX'Y'Z" but, owing to the
motion of OX'Y'Z', r' no longer coincides with r. An
argument similar to that of § 37 shows that at time &¢

v o A o
' =r+wxrol, ’.\\
’..\\ o
P W

\ Fre¢. 9
As will he ,seﬁ:rf from fig. 9 we now have
N\ \ .
O &1 =81 L x v,
wheped =i teoxr,

Ao@ﬂar argument holds for any vector a and the rate of
«thange of a with respect to axes fixed in spaco is

) . .Lan

§39. Using the value of # given in the formula
=% twxr

as a in (17) we have a formula for the acceleration. We
find that

O\
\
}

4

a=a"twxa’, .



N
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d.. .
¥ ma(r’ +ex¥ )+ x (I +wxr)
=¥ +dxr + 2 xP +w x{wxr)

In the two-dimensional ecase (2'=w,=w,=0) the com-

ponents of the velocity f in the directions of the moving

axes OX and OY' are A

~e

& - y’w) Z}r +$’wr NS

and those of the acceleration ¥ are

¥ -yo-2w-zw, ¥ +a:w+2xw—,y€u5

If we now take OX' to be the direction o r,\uc at once
obtain tho radial and transvorse componenta of volocity
and aceceleration by putting ¥ =#' 5?\::0 z'=r. The
radial and transverse Lomponcntb \Qf‘ the velocity are
evidently PN\%

f and T’

respectively, while those Qﬁ&hﬁdmﬁm.wcﬂ%am

F—ra? ~and r@ + 2w,
The transverse compgnen.t of accelevation may be written
in the form i g— 'rz&u"]‘\ A particle which is acted upon only

by a force whichMs always along the radius veetor from a
fixed point, c&n have no transverse acceleration and so 2w
is & constdud; which we call 2. Now the area 84 swept out
by thﬂzﬁiuqu vector in time & will be 1?38 where 8 is

t-hekém’gle gwept oub in time 8. The arcal velocity %j

\ d s
Jistherciore %—f%ﬁ? =1r%w =1th. This in fact affords a mathe-
A 3

“ matical verification of Kepler's second law, which states

that for a given planetary orbit, the area described by the radius
drawn from the planet fo the sun is proportional to the time
tnken.
Again, we may express the acceleration vector in the form
VWAV,
E
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where v is the velocity relutive to the moving axes. Tf we
choose OX' to be in the direction of v we sec that the
tangential and normal components of the aceeleration are
¢ and ftw
respectively. Now in this case
G Bl O
dt di di p NS ¢
where f is the angle which the tangent makes with 0X
and p is the radius of curvatare. ({The formula p‘: Al is
given in textbooks on the differential caloulygh) ¥ We con-
clude that the normal component of aceglesdtion in the
direction 0¥ is ¢3/p. O
Lastly, in the two-dimensional ,éase with constant
angular velocity the components Qf)lr:celcra.t-ion relative
to fized axos coinciding instantaneptsly with the moving

axcs are “er ) ' G Py - '
&2 T dutbrady 5~ Y e
If ¥, and F, be the comprehts in these dircetions of the
force on the particle of*miss m at P, then Newton's Law
ives W,
BV mE S, + 2my w +maf,
oy =F, - 2mi'w +my o
If an observey assumes mistakenly or willingly that the
moving ax€s OX'Y' are at rest, that is to say, if he azsumes
that &’ apa # are the components of the acccleration he
will notrbe able to account for the motion of tho particle
upless’ he invents the following fictitious forces acting on
fhe* particle : (i) the centrifugal force with components

S’ w? and my'w? which is a force of magnitude mra?® act-
' ing outwards along the radius vector ; (ii} the Coriolis

force with components +2mi'e and -2mi'ew. The
Coriclia force vanishes if the particle is at rest relative to
the moving axes,

§40. Consider now the case of a rigid body rotating
about & fixed point which we choose to be the origin with
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an angular velocity w. We have seen in § 37 that the
velocity & of the point r is @ xr. Substituting this value
in the formula for the moment of momentum vector about
0, we find that

h= (r x Bdm = [r % {w x r)dm =J(r . rjcadm —J(r . eojrdme.

- o

We readily verify that O\’
J-( W+ dm:|w, - [J-xydm ety —]: (a:zdm]w,. \ O
W’mtmc N
A= J( Y +2)dm, Be|(2+dhdm, = J(xz -t-gq?f‘m

D= J-yzd/m, E= J zudim, 5 )Efq/dm,

we have
b= +Aw,—Fw,~ B, hy= ~Fw,,+Bw,, - Dy,

ho= "E%rwgﬁ)mﬁl%a: y.Org.in

ar in matrix notation oW

The guantities 438, O are callcd the moments of inertia
of the body gtbmlt the coordinate axes OX, OF, OZ and
D EF a;e\called the products of inertia about the same
axes. G
Bm@”the body is moving relative to the fixed axes
0X IA the moments and pmducts of inertia about these
K88 are continually changing with the time and their rates
\”‘of change enter into the formulae
Ge=he=d{+ dwy—Fu, - Eew,)dE,
Gy =hy=d{— Fo + ,Baw, — Du,)/dt,
6=h=d{ — Hw,— Dy + Cea,)/dt.
To aveid this difficulty we choose moving axes 0X'Y'Z’
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fixed in the body and momentarily coinciding with OX YZ.
In accordance with (17} we have
G.=d{dw, —Fo, - Ew)ldt+ o, - Ew. - Dw, + Cw;)
~wi{ —Fw, + Buw, - Dw;)

and two other equations like it. In this formula the
moments and products of inertia are with respect to axecs,
fixed in the body. These are constants of the body and.)
can be evaluated by integration. If we choose the prmcu;}%l
axes of inertia at O (sce § 41} as the moving axes OQ,{ ¥ z
then the equations of motion become K7

G =A% +(O* F)wrmx) "",\\

Gy = B, + (A% — 0w 40 1, ¢

G, =C%a, +(B% - *}wx@\ )
These are Euler's equations of mgtién. In the above
formulae G., Gy, G and ., wy, dpdénote components of
G and o about the principal axeg ofinertia at ¢,

The foregoing Mghﬂagn{ﬂﬁﬂi%ylyrgoj s#he motion of a rigid
body about a fixed point Q% Exactly similar arguments
can be constrracted for thémotion of a rigid body about its
mass centre @ if the gexresponding modifications are made
of the meanings attulsbed te the gymbolg employed.

§41. The re\aa?{br who is familiar with the theory of
matrices will @ppreciate the following method of evaluating
the momergts' and products of inertiz about any set of
rect(mg&{a.r axes OX'Y'Z" through an origin O when they

are linown about a given set of axes OX ¥Z with the same
ongm“o We write

A\ Ho|+d-F-& s He|1 4" —F -1,
~F+B-D —F B - D
—E-D+( B D+

r=| & l, ¥=|
Yy Yy
_z_,._ _—li’....._
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As we are nsing a dash to denote quantities associated with
the axes OX'Y'Z', we shall use a superseript T to denote
transposed matrices and voctors. We obscrve that
H =kl- J.rr T dm, k =Jri’ r dm,
H =kl - Jr’r”‘"{l-m, r =Jr’Tr’dm,

where | denotes the unit matrix. Now since the trau}-
formation from OX¥Z to OX'¥'Z is an orthogogalidne,
we have K7, N
¥ =Pr, ¥T=rTP? PPY=P*P A
It follows that v
l'\\‘;
E= Jr’Tr'dm = Jr’TPTPrdm — faTrdm =1

\
N/

L

W=k - P( [rr?dm RE Qﬂﬁj}« T T = PHPY.
Hence, if N
2 = Mty + 0z,

s Mol + phlf + a7y
\\‘z’ =X + pglf + Va7,

then
+A'"E"T"’;Ef =l +A"F“}f;— A s
_F’tﬁf}_]_)' )‘2P~2V2 -Fr+B-D f fto Mg
_%‘"}‘D' +O' }\3 i3 V3 -l -D+0C vy Va Vi
A .- —_ — -l —
T

AN 4 oA 2 A4 B 02y D - 20 M E - 20 T

D = —Aghd — piope B vavCi(pigvs | voptg) D
vy F A B+ (Agpgt pads) F
and similar relations hold for B, ", &', F'. Now for any
symmetric matrix H it is always possible * to find an
* Aitlen, Determinants and Matrices, p. 89, Bx. U,

L3
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orthogona! matrix P such that PHPT takes the diagonal
form .

A% 6 0
O ns
0 0 o

The coordinatc axes OX*¥Y*Z* thus defined are the prin- Ke ‘\'
cipal axes of inertia of the hody at the given point G
aud A*, B%, (% are the principal moments of mert.fa
at this pomt 0. N
§42. If 7 be the kinctic energy of a rigid bC-EN Whlch
1s rotating about a fixed point O with angula,t velocity oo,

then T=3[f . fdm ¢ \\“
=1Joxr). (@ ><J:')<i‘mf
I [eo, v, 0 x r]dm

wwwElﬁ}[ UI EI a{‘ Of g &n

_2m

=L . h..'g

Substituting the valucsy for b By, B, found in § 40, we
obtain \

T= _,Aw +Bw\(¢0w- s — 20wy, — 2B 00, — 2Hwawy)
= Lot A?t"—i—Bp: + O —2Dpr — 2EvA — 2FAp)
i
P

X

A\ ¢/
where A, g\ are the direction cosines of @ and I is the
momen;r\(if inertia of the body about the instantaneous

" axis station.  If @ be the angle between e and h, then
T ,(.uk cos ¢ 80 that
e N h=el sce §.

) In the two-dimensional case  and h are always parallel,
from which we deduce the useful formula

h=wl.

The foregoing arguments apply to the motion of & rigid
body about & fixed point 0. Exactly similar arguments
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can be constructed for the motion of a rigid body about
its mass centre @ if the corresponding meodifications are
made of the meanings attached to the symbols employed.

§43. A forceissaidtodo work when itg point of applica-
tion moves. If a force F is applicd to & particle and the
particle moves a small distance 5t, the work done by F
in this digplacement is defined to ke

F. 81 Y

Tt should be noted that F. 81 is the work done by F wh,etl}(;i'
or not other forces are acting on the particle. A\may
happen that the other forces make the particle ove in a
direction dircctly opposite to that of ¥ in whicl\ease F . 81
will be a negative quantity. SO

If o system of forces Fy, Fy, ... ac , Ot 5 particle and
the parlicle suffers a displaccment izthen the total work
donc on the particle by the different{forces is

F, .31+F,.81 +wey d (EfByary .org bl

Hence if the system of ferdes be in equilibrinm, then
SF,=0 and the total wetk done is zero. This leads to the
prineiple of virtual '\gm.}k for a particle ; viz., if @ particle
is in equilibrium dader o system of forces then the total woerk
done by these fopses in any infinitesimal displacement of the
particle is z¢rd?," It can be shown that the principle holds
good even ,{-‘l}en applied to a system of rigid bodies.

44 When a particle subject to given forces undergoes

a ﬁ,ni}’e displacement, the total work done is found by

‘h%‘ie”gra.ti ng the amounts done on it in traversing the various

~Jelements 1 of its path. The particle is said to move in &

N\ field of force. The work donc by a variable force F
when the particle moves from », to 1y i3 *

r F.dl

* Integrals of this type are explained in § 48,
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Certain fields of force havo the property that the work
done by the forces of the field in a displacement of a particle
from one point to another depends only on the initial and
final positions of the particle, being the same whatever the
sequence of infinitesimal displacements by which the finite
displacement is effected. Fields of force of this type are
called conservative, The gravitational forces of attraca
tion and elastic forces are examples of conservative forcé§‘~
but friction is a non-conservativo foree. \

The potential energy I at any point r is the Work
done by the conservative forces of the field when tho parhcle
moves from its position r to some standard. pocutwn Ty
Thus if F represents the resultant conser vatipedoree acting
on the particle the potential encrgy of t]\e‘partmte when

atris
v-[" F.d1;~'::\

It will be noticed Shagines & a’? fll%e}r} ative, V is a fune.
tien of =, %, z the (,oord_lnoste he partlcle Fis a

function of position and to, dcnote this we write
K= V(s: i, 2).
Points with the qa&ﬂe potential energy will lie on the

surtace
Y \\V(x, 4, 2} = constant.

The workydone by the conservative forees when the
particle moves from w; to r, is
D r,
A& [ F L
\\“ ST
anﬂ since this does not depend upon the path joining =,
ko r2 we may choose & path passing through r,. The work
\ “done may now be cxpressed as

Ta T
J‘ F.ci’.1+§_‘ F.4,
r, H

W Ty
or Vien om2y) = Viwe, s, 2).
Thus the work done is the decrcase in potential energy,
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In particular, choose xy=a +8, 4, =121 +8¥, 23 =2,+062 and
write V,=¥,+8V; thenF.dl=F.8z + F.3y + F .3z and the

work done is

J"’F,dx + Py + Fude=F 8%+ 1,5y + Fdz= — 5V

Hence
—Fa= E»)')V Fv': _GTV', FIZ“E-I-_\E)

dx eiif (54 £\
and so O

_ BF’ aV, _Q_Vk “z“«.

B ij] 0z ¢
We shall diseuss vectors of this type in more dcteu] in § 47.
The work done in & small displacement INS3V and by

the virtual work principle this must be zoeo”if the forces
are in equilibrium. We may thereforo. s‘iate that the con-
dition for the equilibrium of a parilclc is’that the potential
energy have a stationary value I% theorem may also
be applicd to a rigid body.” ™™ rau tbrary.org.in

§45. We consider now wsingle particle of masg s under
the action of conscrvatixg\forces only. As it moves from
the peint r to the pg)m\b r +98r, it moves through a small
distance 8r and the‘work done by the conservative forces
is F.or or -0, where V is the potential energy. Its
kinetic energyd isNincreased by an amount

. D d

Thusy %F a partlcle moving under conservative florces
3{’{* 2 ¥V)=0; that is to say,

i \~ T + ¥V = constant.

\ Thm is the theorem of conservation of mechanical energy
for a single particle. Since it is true for cach particle of a
gystem of particles, it must also be true for a systen of
particles provided that all the forces between the particles
are conservative ones. Now we may assume according to

8T =d{ Laik 1mib . F)8t=mi .28t =F . r= -8V,

”é

.
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Boscoviteh’s hypothesis that a rigid body is composed of
particles rigidly connected together. This means that the
distance hetween the 4th and jth particles is constant, or
that

(r, ~r;)® =constant.

Hence (v, ~r,). {8r, —8r)=0. But since F,=Ayr, -1y},
we deduce that F,, . 8r,-8r;) =0. It follows that O\

Fiy.0r,=F,;.0r;= - F, . or, o ;:\

From this we conclude that during the motion of "zi.ﬂrigid
body no work is done by the internal forces afd’that no
change in the total potential energy results frdfnjthe internal
forces whether or not these forceq are consorwative, 'Thisis
in fact D'Alembert’s principle. It follows at once that
the theorem of conservation of mechahtcal cnergy holds
good in the cage of rigid bodies provided that all the external
foroes are conservative.

A eareful (ﬁ%iﬂéﬂiewﬁihﬁﬁl}i&ﬁm between this theorem
and the physical principle. % conservation of cnergy by
which energy cannot bedestroyed but can only be con-
verted from one fornyg another., This distinction helps
us to comprehend thégiature of conservative forces, When
conscrvative foroe é@ only are acting, kinetic and potential
encrgy may be §11\ rerted inte one another but neither can
be transformed/into any other sort such as electrical energy
or heat. AFrivtion must be a non-conservative foree since

it giveymige to heat and sound.
"\NW

N
\‘ 3§46, Exarmples

{1) Two forces of magnitudes P and § act respectively in
two straight lincs the shortest distance between which is # and
whose directions are inclined at an angle §. Show that tho
piteh of the equivalont wrenclh is

Pgr gin 8
PriQi20Q ¢cos 6°
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(2) The dircetions of two non-intersecting forces, whose
magnitudes are P and ¢, are perpendicular.  Show that the
distances of the central axis from their lines of action are in
the ratio @2 P2

(3} A forco of magnitude F acts parallel to OX through )
the point (0, G, 1). A second force of magnituds 3P acts N\
along a line throwgh the point {1, §, ) with direction cosinos,

0, §, 4. Show that the pitch of tho equivalent wrench is O 18\

{4) By solving {he equations N\

N
Fopwt=0, Hw+re=0, 3

show that there is uniform motion in a straight lmo Ni them
is no radial or transverse aceeleration.

{5) If the tangential and normal compozlents of the
acecleration of a particle moving in a plane arg Both constant,
show that the particle deseribes a logarithpigespiral.

{6) A particle P moves in a plane W(Dh constant angular
velocity w about 0. Tf the rate of increase of its acceleration
is parallel to OF, prove that ¥ = drei)

(7 A thin rod OF whose end is fixed is rotated in a
horizental cirele with conoth\ﬁcﬁ%ml FH]Q} A bead
of mass m is free to slide gi'the rod and 1= mlt%ﬁ Rr at rest
relative to the rod at distarce ¢ from Q. Show that the
horizontal pressure of fhidrod on the bead i3 Zmw?q/(z® - o)
where « is the distangelef the bead from 0,

(8) Find the pofcntial energy of a particle acted on by an
elastic force —k;\' \ere & Iz a constant, (Choose the origin
ag the standardippsition.) [$1krE.]

(9} Tind, #4418 poteniial energy of a particle acted on by an

: \.7 ~k .
inverse gQuite force T where & iz a constant. (Choose

N\
9‘=<\Ir\s’the stundard position.) [k(é - ;) .l
\ 310 Prove that if the resultant momoent G of the external
o (Yorees about o fixed point O is perpendieular to the angular
\ Y “velocity e of a rigid body which is rotating about O, then the
kinetic cnergy 7' of the body is constant.
Show also that if G i8 peorpendicular to the moment of

momentum h sbout O, then A 15 eonstant.



CHAPTHR IV

THE VECTOR OPERATOR “¢™ N\

N/

§47. THE equation $(z, ¥, 2)=C represents a swface in
threc-dimensional space. If we vary the valu of ¢ we
obtain & family of surfaces. One surface of $his family will
pass through any point (z, ¥, 2)- Tt is showdhin texthooks
on coordinate geometry that the direciidncosines of the
normal at (x,¥,%) to the surface th;:@‘xug‘h that point are
proportional to g—i, a—{‘ﬁ, riqf The'vi{c‘t(‘)r
wiwrw .d E yaui)i‘brﬁy Brﬁ in
Gy G

OB, G@ 9Py ., . 1

B:t:lf* 82;] * oe (1)
s therefore a vector in{the same direction as the normal to
the surface at {x, y)izj,\ Let dn be the element of length in
this direction ; thén the direction cosines of the normal are

g‘z, %, 2:13 and the magnitude of the vector (1) is
O de dgdy Bpdz 0%
~ b cxdn’ 3y dn oz dn on’

6 .
wh%}a P represents differentiation along the normal. In
.\ [4

>ether words the magnitude of the vector (1) is the rate of
\* change of ¢ as we move along the normal to the surface.
The vector (1) is called the gradient of ¢ (written grad é).

A convenient method of writing grad ¢ is y¢é, where §
(pronounced ** nabla ') is defincd as the vector operator

0.2, 0
v;]‘aﬂ‘-} g ]a_y + k-ézo . . . (2)

60
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We observe that

V(0 + ) =pf+ v
and V) =0(vd) + (v

v is an example of a field vector, that is to zay, v . O\
has a definite value at each point of space but at d:ﬂ"omnt
points it may have differont values. The velocity vectoR N
of a fluid is another example of a field vector. At ¢ich”
point in the fluid the velocity of the fluid has a deﬁnltc
magnitude and direction but the velocity may bg. d_lﬁhrent
at different points in the fiuid. R4

§ 48. The integral Y,
J fle,y, 2 rﬂ \‘

is called the curvilinear mtegral." ‘or the line integral
of the funetion f along thewr'uf e L.  That is to say, we
svaluate f(z, ¥, 2} at the c]ema‘f"’ch ‘E,r of ‘Eﬁ}aagr\ﬁ(\)f‘egﬁnmuitlplv
by the lcngth dl of the e’le'ment and integrate from the
beginning to the end.of the curve. A two-dimensional
example will mako\ this clear, We shall cvaluate

'ﬂ—dlfl-L‘ the smallor portion of the cirel
L(x ) ‘ch‘{é\ is the smaller porlion of the circle

5:2+y2=(12 thc:}r begins at {a, D) and cnds at (0, 2). Now
for this cubwédl =adf and 3? ~y =4® cos® § —a sin , where §
has thc miufﬂ gignificance. Thus

\J: {22 —3)dl —’P {@% cos?f — o sin Hadd = i @ —al.

W\Z\ In general the value of the line integral of a given
\ } function, between two points, depends upon the curve
chosen hetween the initial and final points, but in certain
important cases the value is independent of the path chosen.

If d1 denote the vector representing an element of a

* Cf. Gillespis, Integrution {2ud edition), p. 53.
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curve, and a be a field vector, then

o dx dy dz
a.dl =a.dx+a,dy +adz= (a""d_l + Gy i + “‘*Zﬁ)dﬁ
or

a . dl= (Ao, +pe, +va)dl,

where }, 1, » are the direction cosines of dl. Thus the line Y

¢ W
%

N,
N

integral !| . (M@ + v, +va,)dl may be written O

7
4

7

i a,dl \
L A &

and is called the linc integral of a along the ¢utve L. If L
is a curve boginning at 4 and ending at B{\’g}len

- 7

' a ;di\, v

J a.di=— I
4z JBA NN
f)(;r- a;;'e alter the signs of A, . v lvg{hg}:ggw;ﬁ reverse the direction
§ 49, We now wish to dorive from a given field vector a
a certain other field gector, but we shall begin with an
illustration. The ﬁ,aIEl;\'ector
\\‘..

N A= —owyl+wrj+0k

reprosents dh€Aelocity of a fluid which rotates like a rigid
hody withyanigular veloeity « about the 2z axis. The lino
integral ¥ this vector taken round any simple closed curve
in tﬁ&ry plane may be shown to be 24w where 4 is the area
@ﬂb]osed by the curve. Ho
N
) ( a.dl
i 12 94,
A0
If wo evaluate the corresponding limit for a eurve in the
gz planc or the 2z plane we find that it is zero. We thercfore
derive from the velocity vector the vorticity vector which
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in the above example has the constant value 0i +0f + 2wk
for all points in the fluid. Wo now proceed to generalise.
Yrom a feld vector a we derive another vector called
the curl or rotation of a {(written curl a or Tot a) in tho
following manner. The component in & direction n of curl a

at a point P is defined as O
J a dl L\
Lim 22—, QO
s A W\

where I is & simple closed curve surcounding P inf ’E‘no piane
through P which is perpendicular to n, where 23 the area

o \ ¥

QO

h
) 3

~

r JoErY aNF
’\ Nt
y=y'-58 \ =y
4 N L
W }fi,\&;,dbra wlibraryg.org.in
NS -y o

enclosed hy(L"and where the integration round [ is per-
formed A bhe same sense as a rotation represented by a
line deated in the direction of n. It may be shown * that
thistoes actually define a vector, and that the Limit is inde-
pendent of the shape of 4.

3" Our next task is to obtain an analytical cxpression for

Jourl a. We shall ovaluate the @ component of cul a at a

point (#, ¥, 2') by taking A to be the area bounded by the
intersection of the plancs y=y'+fB, z=2+y with the
plane z=¢". (See fig. 10 in which the plane of the diagram
represents the plane x=x".)

* Abralam, Becker, Blectricity and Magnetism, p. 35.
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By the mean value theorem
J- a‘d1=']-l Aoy + B, 2z =2ya. (o', 4 + B, 0,
MN v

where ¢’ —p<{<2' ++. In tho same manner

] e SO\
Lu-, a.dl=—2ya.fe’,y - B, {); & -y<{ <+, ,.Q\‘"?

« \/

Ldl= -2 ¥ ’: : "+ H f— £ ’5:"' ’}
L,Pa Bau(a’, .2 +y); ¥ - By b{ﬁf"\'{is

&
L‘Ma Ldl=+28a,0, 9,7 —yh ¥ -8 <xﬁ¢\2}\y’ +5.
Also A=4 Sy, so the & component of curi\é"}s

m lim 2pla.(e’, ¥ +B. ) ak ¥ =B
>0 350 T

28{a, 2’ & a (x —
~ lim lfgz\f hbrﬂ?ﬁq‘y‘%ﬁ%—#} 3

i %l Y B aule, ' ~ B, )
B30 \ 28

~-lim 2 (x »S{’, ") a7, -y'_,_z' -y
b all \) 2}’

0 .‘ P ot g [ ]
= y\()‘m",y,.o)—ga,(x,y,z).
Hence x’\' R R R
\@fa (”‘""—5-5“’)'+(‘i‘ i \;+(%’j'; i‘*jk. (3)

0z 6w, cy

In'other words,

~§

curla=yxa,

\
/ for by equations § 3 (8)
8 2 .
vxa= ( +18J+ cz) x (ad +a.f +a.k)

(G (e (e
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We obscrve that our definition of curl a is independent
of our choice of coordinates, hence the expression yxa
does not alter in form if another set of rectangular cartesian
axes be chosen.

It iz casily demonstrated that

vx(@at+b)=yxa+yxh.

. . . 2 A\
If ¢ xa=0, the field vector a is said te be irrotational, .8 N

s M

§ 50. The integral T
[Sf(x, 4, 2)ds \\ )

iz the surface integral® of the functiog Jiz, ¥, 2} over
the surface 8. That is to say, we evaludbe'f(z, ¥, z) at the
element ds of the surface, multiply Jbx\the arca ds of the
element, and intcgrate over the shrface S. The actual
evaluation of such an integral will ifivolve double integra.

tion, and some textbooks W&Eﬁ&ﬁbmlgﬁ%gﬁc integral
JJ fle, y, ©)ds. Except it :éﬁépter viII, we have reserved
th; symbols ds and dsAQ ¥epresent elements of area so that
no confugion will arigeyif we use only one integral sign.

A3z an illustrg,t\m\n ‘WB shall evaluate { zds where S is the

)

hemisphere,of3*+ ¢ +22=a> for which z 15 positive. Using
spherical polar coordinates, we find that z =g cos & and
ds = g? gitd@ d0dp. The limits of integration for ¢ arec 0
and .%',\\;—;;\k-'hﬂe those for ¢ are 0 and 2=, So

ay

oY L eds = a.aﬁ” (J"“eos 0 5in 09 )d ~ma’.

1]

A planc ares may conveniently be represented by &
veetor whose length is numerically equal to the area, and
whose direction is that of the normal to the plane. We
must, however. make an arbitrary choice of the side from

¥ See Gillespis, Tntegration (2nd edition), p. B2.

N



86 VECTOR METHODS

which the vector is o be drawn. Having made such a
choice, we shall refer to this side of the surface as the
positive side. In the same way we may arbitrarily choose
one side of a curved surface as the positive one * and then
represent each element ds of the surface by a vector ds
of magnitude ds and drawn perpendicular to the element,
ds on the positive side of i6,  Wo shall adopt the conventigon)
that in the case of closed surfaces we shall always choosd the
outside as the positive side, A\
Now e\
a.ds = (Ao +pa, +vadds,  L©
where A, p, v are the direciion cosines of the wormal to ds,
g0 the surface integral ( S(Plar-a= + pacty + y-:@"dﬁs\may be written
X }
Il.ﬁ a.ds\J

o8 N

and is called t-}i‘éws‘ﬁl‘f(jfﬁéqﬂf?{gﬁi‘aﬁfﬁf&inver the surtace S.

§ 51, We now defingthe’divergence of a (written diva),
At a point P,itis
&\™ [ a.ds
\ N\ lim =5
oy 7
where S {5 " gimple closed surface surrounding P, and V
is the, dalime contained by 8. It will be observed that no
direk%i@ﬁ is associated with diva and that the divergence is
therfore 8 scalar.  ¥rom definition, div a is invariant under
Lo thange of axes. Yt may be shown that the limit is inde-
W pendent of the shape of V.
/ We can find an analytical expression for diva at (x'y'2")
by taking V to be the volume bounded by the planes
g=x'ta, y=y 2B z=21y (fig. 11).
By the mean value theorem [a.ds over the face
* We are not concerned hore with what ure known as © one-sided
gurfaces,”’
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z = +a, which is simply fr.ds over this snrfare, is rrpnal
to 43va e’ +a, b, 1), w here {x' + «, &, &) Is some pomt Iyine
in this rectangular face. With a similar netation fa . ds

o * T, 1 10

over the fuce w=a"—a IHn ’i’-aﬁ‘iﬂiﬁr o din the sign
being changed since ds is now‘ rawn in the Opprwte direc-
tion. We proceed in the'same mannet for the other faces
Also V=8afy. Hem\e\
div a=Jim Hm lig \J
a—e () B=2=0 3l

4/8}){12 (' +a, ?307; —a C —a _?L f")‘ -+ 4'y{1{ SRR L ]qg,_ L)

AN/ ‘SaB}J *
The ﬁI‘St‘f{-}l‘fﬂ is

% Ilm {]_im lim am(a:_'__-{-_q,,__h;fi)_—— o.{’ LS _;.‘i.!’ LI}J

a0 L fA=pef] =l gy
~ R ‘0 r !
LY =lim Ll e,y )~ — 0,y )
\\ " a0 Sy
4

a ! . r
=2z a (', y, 7).
By rearranging the order in which the limits Aro tﬂ,ken,

the second and third terms are scen Lo be ,; and ©
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Hence
div a= aa, + C(—{-Y + di'. PO 1]
oJ G2
and we may evidently write
. diva=y.a.
It is easily demonstrated that Oy
S y.(at+b)=y.a+y.b. .‘:3 )

If . a=0, the field vector a is said to be solen,oﬁda,l

§ 52. We have seen that the vector opefaﬁ‘qr v provides
a convenient shorthand for writing the following expressions:

\
¢
grad ¢ = QB af ——kx\‘ =y, (1)
or.  Can Ea, w,,
ourl & = ( oy S‘ﬂ“w 1‘@11[1131:3»1%( oruds Gy k =vxa, )
oo da, & g, 8, -
diva= ax 'BJ + s =y.a (1)

We now establish thq"\mportant identities

VX (V) = (”%\\-8?""’) (220N (T 20

oJaz Cr oy Seor dwdz) cxoy  Gyox,
= . . ... .. )
v <v\>ﬁ%>>f;%‘;* F9R ay(if!’-?) a( %)
R Further . . . . . . (B)
> RICT R SR Fe SN

This is an important expression which is often denoted by

vi¢. Thus
g @
¥ 0
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The following identities may be verified by the reader
by writing both sides out in full :

v-@a)=g(y.a)t(yd).as . . . . . @
vx{dal=d{yxa)+{gpxa; . . . . . (D
vx{gxa)=ygy(y.a) -v%a;. . . . . . 19
V. .{axbl=(yxa}.b~-a.(ygxb)y; . . ., . (1)

vfaxb)~a(y By -(y. A + (. Va~(a. v (12 Oy

v@a.bj={a.yb+{b.yja+ax{yxb} \

+h x(gxa}); ,‘(\13

where $Pa means (Yo + (¥, )i + (Ve )k and a, V»IS the
¢

vector operator a.:?x ft, 8_;+a‘§'

§53. If we make a transformation fronff\r Y, 2 to a new
got of coordinates ¢, go, ga, then we may\s rite
T=2(g;, o G5)s ¥ =¥(g5 T2 Ga)8) z=2{qy, Jo )
8o that S MW “Bﬂbl‘afﬂll]pgral y-org.in
d.,u: d‘g agtdq + = %, 3
and we bave similar mpr esstons for dy and dz. It follows
that the element of Ien&fh df is given by
dl? =da? + dy?
"9’11d9'1 F»Q’ Ty +935df[’5 + 2g24q,d9; + 29nda.dg,
+ 2019004,
whoe N0, G oy dy B s
s..\’;:,\g” N T T =l
Sinqe&s‘z\i’: z arc independent,

TN - B
"\\; G.'L' _CE_," ]

.

dr oy oz

o oy o
o0 ;o

4
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whence none of ¢4, 040, ¥y are zero.  The element of length
along a line g,==constant, g,=constant iz ol = /q,ldgl

With a similar notation, di,—=+/gude, and @, =+/g,.dq,.
Ve shall ind it convenient to write

= e Vi ha= G

I we assnme that the coordinates gy, g., g, 8re an orthogona} 2]
system, then the clement of voluine muast be . O

dv= klfaﬁhndgldbdqg, PR
and the elemont of area on the surface ¢, =co.n€ft~&§ri'i'i is
dsy = hpftodgdy,.
The components of g in the dir e(\iQﬁs of dg,. dqs, dy,

N/

op op o \
are E_E s a'! l , Or ¢ :’
wiwsk d‘b‘ig’aulllgrgéf B4 11,1 (14)
h’l Cj]_ h“& t"{ fdgs )

To obtain an exprcsslmkfor Vv - & we evaluate

’\ a.ds
s ) lim -8 §
\\ 1’—130 v
when 8 is t\he recta,ntrulal box bounded by the smifaces
d1s Gy +0q,1§q2, Go + 835, Ga, 93 +8¢,.  Over the face q
”\" fa . ds— —ah,30.0.59,,
Wh&{% 2, &y, @y are the components of a in the directions of
5:31, Do, By Similarly, over the face ¢ + 3¢,
© - \ .
; | a . ds = +{2hadqphi0g,) + G—(a,lhgbq2h38g3}8ql.
J )
Hence over these two faces together,

[a-ds = 2tapasasa,
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We proceed in a similar manner for the other two paira of
faces. Thus

J- a.ds= (alh f0) 5 (a Aok + )—(a;ihlhe)}Sqng.,Sgg;
l 43 )

turther ¥ = fe,lfb fa-38q18q28q3, S0

N\

a O
v.an, M lf)gl( ahiha) 4 o (aghl) + 5 (aak P }.:85‘) )

X

It follows from (14) and (15) that N

[ choby 8N | 8 chghy O QLAY
V= 751}"73 10(11'\ by A Hrqn( By 61)4“613 why O 6'513)j

(16)
To obtain an expression for yxa Vge:’e}ralua.te
: a. dh\/
im 10
v i S aulib
LEA) Tayli
where A is the area lying inglie qur?accr?l,}r rgn(?cd by the

surfaces g, gy + 5, G, ¢ +3%. Along g,

Tﬂ dl = a3hads,
and along g, +9g, , { :
\

[a~ :ﬁ— ~ {agh8q5) ~ (a oD )0y

Vo D
Henco aulontT Fthese two poriions of L

o

o
\“' :Ia Ll — —q—(ﬂ-- 2P:2)80:8¢5,

A Ifle along the other {wo portions of L we {ind
NS 5
d fa L=t -852(&3?1-3)0@35!3.

Now A =hyh.8¢,59,, so the component of ¥ xa in the diree-
tion of dy; i

ic ; & ph 17

kz ¥ gz(“'a b5} a'q's{fi‘-a o) e . - (17
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Analogous expressions may be fonnd for the other com-
ponents of §xa.

§54. For future reference we shall apply the formulas
of § 53 to two imporfant cases,
(i) Spherical polar coordinates r, 8, . A ¢
We have R \J)
Al =dr® 4+ iR + 12 gin 20dy?, O

N/

g0 by=1, hy=r, hy=r sin §. The components of “ﬁ;";}d‘e

8 18p 1 3 n"
o raday oy o U8
And, ‘\\J
N N P A &1 _8 1
VA= a oy, (a2 win d) + aﬁ(agr smh\ T+ ) a.r)J R £1))

2 I 2 ¢ o 1
Vb= Tt S_In_f?{waﬁu‘ dsblrnaﬁﬁﬁl %ng":r? o@) c¢(blr1 g cj)

(quft 2 dgﬁ R “cot 0 ']q& 1 S%

ety et 83”' a0 T e g Vel (20)
The components o{ v\X a are
{ ‘ﬁﬁéin_ﬁl:“é(a"’['rszinﬁ) z,& (uﬁr)f’
‘.”\,‘) 1
(N rbmﬁ'LE'a}; ar) = a.;,rsmi?}f,
N\
\/ |
”\\\ r{ar(aufr}—é@{a,)j. C e . .Y

( NS (i) Cylindrical polar coordinates r, 8, 2.

t We have
Al = dr? + 9282 + d:2,

80 Ay=1, hy=r, h;=1. The components of Vb are

o 1ép 39 _
C.f '; E:‘_:g, Ez"v - . - (22)
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Also
’ 1 J 0
A a=;{§r( EB(&9)+-—{H.,-?-)}. . (23
i/¢ a1 o o
it ?"Lcr( "% >+cﬁ( 09> < 82)}
"2¢> 154 16% % I\
T trw et 0 0 B
The componcnts of yxaare \ \J)
173 Vo8 8 179 G
r loﬁ(a) {a-g-r)J ' 183(a 5 ”)} 71 3 ::&‘5@'}}'
O e

§ 55, Consider now any smooth closed cupye z spanned
by a smooth simple surface 8. We ca;inwlde 8 into &
number of very small areas AS, AS,,. & ¥with perimeters
Ly, Ly. ... The sum of the line mtegl*&lé round Ly, Ly, . ...,
all in the same sense, of a field vector a is the line integral
round I.: for all the otllerwpgrd;glgﬁﬁh?allntt&rals cancel one
another, Now for the curve -fm

~ r{' a.dl
cur @—J L?).%‘ -+ e,
where ¢, tonds to\sem with AS,, and where curl, a is the
normal compol}en't of curl a at some point in the area AS,.

Hence P\
’;ﬁ" a.dl=(curl, a}JAN, — A8,
Oy
'\\“ = (el a) . AS, ~ AN,
5o\
AN J a.di= {ourl a) . ASy — Se,AS,.
"‘\ o/ L

N\ 'Proceeding to the limiting case where Ly, L,, . . ., areinfinitely
small, we obtain

-
J‘La.(ﬂ:[ (curla).ds:JS(an).ds. . {26)

JE
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[
This is Stokes's theorem, which in non-vector notation
reads
[ & dx + ady +a.dz

. j"@ax_aa,,\ WG AP *
B

- LR N CJ} ds \~
where A, u, v are the direction cosines of the normal ot d}

In the same manner, if § be any smooth closedsllgface
containing a volume ¥V, we can divide ¥ 111t0 D ,nu_mber
of small volumes AV, AV,,.... with surface.a\bl, g et
The sum of the surface integrals over S, Sy . of a ficld
vector a is the surface mtegra,l over §. Alsp'for any point
inside S, 25\

RE
J a.de\\)
diva=-g’:,ﬂ., Ntep

rw . dhbrauliby orgin
where €, 1s an mﬁnlteblm‘iL ‘ﬂé‘;lteg

N

dlv alAV, - AT,

50 .{

Jr

]’ s = 5 (div a) AT, - Sed Ve
Proceeding\] ‘Is(“! the limiting ease where &j, 8,,.... are in-
ﬁmt013 ,sma:ll we obtain

\ J a. ds— [ (div a}rﬁ?,::.r (v . a)de. .« (27)

\f}_ub is Gauss's theorem,* which in non-vector notation
; reads
za,,

L (Az. + pa, +va )a’s_ r (88 :

£
E T }t’lb

where A, p, v are the dlre(:tmn cosines of the normal to ds.

* lu many English textbooks this s known as Green’s theoram.
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r
|

The evaluation of | (¥. a)dv will involve triple integration

Jv
and some textbooks show this by writing the integral

JH’V (v.a)v. We have reserved the gymbol dv to repre-

sent the clement of volume so that no confusion will arise

if we use only one integral sign. O\’
Our proofs of Stokes’s theorem and Gauss's theorpid

follow from our definitions of curla and diva. Some

writers define.curl a=¢ xa and diva=vy . a, in whith gase

the above theorems would require diffcrent proof{I D

N

§ 56. Let ¢, and &, be any two functiongwhich in the
region considered are finite, one-valu ed and dohtinyous and
such that their first derivatives are co@iﬁuoua. Then by
(tauss's theorcm N

[ICACRES '

= b+ | (V). (e ©3)

¢’ N

+ (b ehe )
..' w?vwggggf{f?ibral'y.org_in

Similarly R

[obavil. '&éé’l bovido+ [ (v - (vhode.
Subtracting, @ bbtain

g}(\fw%&z — eVl = JS (15 — oV} - ds.

2 & -~

\ b

L v N e
R ds ey
\'“\3 “direction of the outward normal to ds.  EHence

[ rid, e
[ it dwsito= [ (b 50 -0 T2 @0

on on
Both (28) and (29) are known as Green's theorem.

ds, where on is the line element in the

* Cf Gillespie, Tnfegration (2nd edition}, pp. 38, G
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A number of special cases are of importance.
(i) If ¢y =cp;=¢b, then (28) gives

L ($vé) . ds= L $viddu +JL, (vgpde. . (30)

(i) I ¢, = constant, ¢,=d, then (29) reduces to

N

- AN
ogdv= [ i, O °
vaq’: ¢ J[.s o s N/

which is simply (Gauss’s theorem in the case w}xegr}e ak= .

If further g% =%, we have A\
o, _ ¥
gm0 OV - @b
(i) Tf yih = v'ds =0, then (20)giclds
[ g2 f\ g s, . . . 3D

Wit bll'aﬁﬂ i h}féil’}rs_'or g_cﬁli
which is known as Green's reciprocal theorem,

(iv) As a particular™ease of (32) take ¢ =1/r, =5,
where r is the distaute of ds from a fixed point P. It may
be shown that, %’%cj}‘r) =0 except at P. Thus (32) will be
true for any suface S not enclosing P provided v is zero
everywhere Within 8. We may take 3 as a surfacc en-
closing £{F “we cxclude the peint P by an internal
boundagy formed of a small spherical surface Z with P as
centrel Then from (32} we obtain

\\r 2/1 a1 124 136
s (ﬁgﬁ(\;)ds + L ¢ aﬂ(\;) ds= (5 ;s J;E; o ils.

:f

) On the surface 2, 8_(1) = -a 1) =—1.3 and ds==ridw, where
on ¥

T GF AT
dew is the element of solid angle subtended by ds at P.
Hence, neglecting infinitesimals,

-L ¢ ai@_) ds=4nd o
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aud by (31) :
l1ch, 1[ e,
J‘:; -E??,JS = ;j}-ends =0
Hence
-1 o 1(1¢g
b= iz | Seal s ) [ % . 3

ch
I'is is an important result showing that the value at a point A
1, of o function ¢ which satisfies VP=0 everywhere withim, ™
a closed surface S enclosing P, may be expressed in tgsfriaiﬁ

of the values of ¢ and g% on the surface S. &

LY
§57. Examples v
€1} Show that v¥{r*)= nin+ 12, wlyas@.:r’ =x?+yi+2l,

Deduce that v3(1/r) =0, except at r=0. { &

(2) 8how that if v3f(ry=0, thenl fi(r}=ecfr+es whers
rt=g+y2+2* and e, and ¢, are constents.

{3) Show that if v¥{E)=0, a\f{K)=rc, log B+¢,, whereo
R*=xt +y* and ¢, and ¢, af brary.org.in

(4) Show that ror is an irpotational vector for any value of
a, but is solencidal only if a3,

{5) Bhow that if (wydPeel +yoj +2ok) is irrotational, then
either b =0, or a= — La\

(6) Vorify equ t@m’(a, (9), (10), (11}, (12), (13) of § B2.

(7} Show thgt sho volume enclosed by a clesed surface

§is %-fsv(rz) ,\'(Zgz"
~/(8) Pr gethat v . (v x ) =0 where &;, ¢, are arbitrary
functiqugg @, Y, 2.
. (%V’érify Stoles's theorem by evaluating La .d1 and
2 S
’\L;'('v xa} . da in the casc whore S is the hemisphere + =¢ which
, \ JHasg z everywhere positive, and whore a=r » k,
\% (10) Show that ISa .ds=12xR* where S is a sphere of
radius B and a=2% —‘Py’j + 2%k,
J'Il) Use Gauss’s theorem to prove the resilts —
védv=| ¢ds, j (v x c)dv= -'f e x ds.
¥ 8 v 5
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POTENTIAL THEORY

§58. WE now ask an important guestion. Underwhat
conditions can we represent a given field vecgorda az the
gradient of a scalar function & ? S

If a =g, then by § 52 (5}, v xa =0, sathet a noccssary
condition Is curl a=0. We shall showpybhat this is also a
sufficient condition. If yxa=0, thed by Stokes's theorem
the line integral of a taken roumdd eny reducible closed
ourve is zoto. zanbhe od cnpve to be OAPBO whero
) is an arbiﬁ-&@%%%%%ﬂ%ﬁﬁ%‘?s the point {z, ¥, z).

Then R
[ aayl a.d-o,
hence Joaw N o
[..,}\;\a /AR ( a . dl
2N A P Jage
(ee

In other words. IN a . dl has the sawe value no matter what
N\t OF

path is choseh for integration between € and P, (all the

value QNJhiS integral ¢, Evidently ¢ is a function of the

eoardinates (x, v, 2) of P. ¢ will also involve the coordinates

of O\ Dub these are constants. ‘Take a point P’ neigh-
.,<3356u1'i11g to P and let ‘0' a.dl be b +3p. Then
N Jopr

\.‘,z
' +8d =

henee,

.f

Ldl;

_ T [ "
a.dl= Ja.d1+'JHJ_a.dl—<,{~+JP

: a
Jopr .ol e

Sep == .LF a.dl=a.8l=udz +ady +a.bz
78
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Tt follows that

E_n "
??:ar-s ;‘f =y,

ox -
In other words a = yi.

We have now shown that 7xa =0 is the necczsary and
sufficient condition that a function ¢ exists whose gradient
is a. If we had taken a point O instead of O we should

have obtained a different funetion ¢,. which differed from ),

¢ by an additive constant only, for ¢, —d= a.dl and N

0,0
the right-hand side s a constant. N
More generally, if ¢ and ¢, be two solut-ionxqf b =a
when v xa=0, then vip-d)=a—-a=0and 3
Pigmg= 2 (=)= =0
o U= oyt Y T e .*f@'— '
Tn other words ¢ — ¢, must be a constant, since it does not
involve x, 7 or z. Hence, two solutigns of y¢—=a differ by
a constant only. www . dbeaulibrary .org.in
If a is irrotational we canyind a function ¢ such that
a=vye¢. It is equally eagyedo find a function ¢ such that
a= —vé. ~
If a iz irrotationaMand reprosents the gravitational
field vector, then wewrite a= +y¢ and call the function
¢ the gravitat{o}ia\l potential.
If a is irfopational and represents the electric field
vector, orpagdt is more often called, the clectric intensity,

then wesmbite a = —y¢ and call the function ¢ the electro-

statio/Potential. .
A";%i is irvotational and represents the magmetic field
veetor, then wo write 2= —y¢ and call the function ¢ the

/“Magnetic potential.

o/

It a is irrotational and represents the velocity vector
of a fluid, then we write a= —y¢ and call the function ¢
the velocity potential.*

* Some authors write a= + ¢ and call the function 4 so obtained,
the velocity potontial,
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§ 59, A field line of a ficld vector a i a line such that
at every point on it the direction of the line coincides with
that of a. In diagrams we attach arrowheads to the field
lines to indicate the direction. Omne field line will pass
through every point of the field. Two field lines cannot
intersect except at points where the field vector vanishes,
for this would imply that the field vector had two directionga
at the point of intersection. Thé~,\
differential equations of the fickd
lines of & vector a are N

The reader is.probably familiar
with diagrams Qf ines of magnetic
force. In this dase certain field lines
of the magretic field vector are
dbraudthedlyedeghihited by scattering

iron filings in the fleld. Again, if

a heythe velocity vector of a fluid,

4thefleld lines are the stream lines
o the fluid.

The components of a may be

functions of the time as well as of

Fre. 120) position, in which case the field

7 lines vary with the time. A vector

whose compénents do not involve the time is said to be

steady-ob/stationary.

field lines through the points on a simple closed

cu:fve enclose & field tube. Each tube will have a direction

sassociated with i, and, as in the case of the field lines,

\“one can indicate the direction with arrowheads (fig. 12).

Consider the volume bounded by the walls of a field tube

and by two cross-sections o, and ¢, The surfaces ¢, and

@, close 8 portion of the tubo at its ends. If within this

volume y.a=90, i.e., if the feld is solenoidal within this

volume, then by Gauss's theorem
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f‘qa e =0,

&

where § is composed of oy, 5, and the walls of the tnbe.
Along the walls of the tuhe a is perpendicular to ds and so
a.ds={ Hence

J. a.ds+|r a.ds=0, '\:\

Fn "\

where ds i drawn outwards in each caze. It follows ’t-h}a;t\'

i & . ds =constant m'\'\'
for all cross-sections o, provided ds be drawn\orl the same
side of o in each case, With the stipulatiOn'‘that ds must
always be drawn on the same side of alas a, we call the
above constant the strength of the \ube., A unit tube
is one of unit strength, and a line drawirdown the ‘ middle ™
of a unit tube is sometimos mllqbggéﬂylwm. e difficulty
in using this Jatter ferminolaggis that it 1§ awkward to
imagine a fraction of a unitiline, while no such difficulty
arizes when we speak of alfvaction of a unit tube.

¥We may imagine that all the space throughout which
the field vector a isédefined, can be filled with field tubes

of a so that | @\ds over a closed surface § gives the

eXCess strengﬁ} of the emergent tubes over the entrant
tubes. I:gi'\a, closed surface 8 in the interior of which

v.a =4Q;wé have J- a.ds =0, which means that in a sole-
& K

ngi&;ﬁl Feld the same number of tubes enter § as leave it.
m'g‘};\&t i3 to say, field tubes or field lines cannot originate or
\Jerninate at & point where ¢.a=0,

§ 60. A point at which fleld tubes (or field lines) originate
may be called a source and a point at which field tubes
terminate may be called a sink.  We have just scen thut

G

.
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the divergence of the ficld vector cannot be zero al sneh
potnts, A souree at which tubes of fotal strength 4mm
oviginate is called a source of strength sn and a sink at
which 4mm unit tubes terminate i3 a sink of strength .
We also regard a sinl of strength m ug being a sonrce of
strength —m.

If we suppose that the feld is everywhers ':olenoid;ﬁ\
except nt a given source of strength m, then for any elmerl
surface § &urrmmdmg thiz souree A
N

|
LAds =4dam ¢
iga s ", ...,’\\
for 4mmn represents the excess strength wi'the emergent
tubes over the entrant tubes. More gpn@ally

‘-.s a . ds =4 (total source rength within 8),  (2)

This equatmwmwdbmuhbma&y@ﬁga&a s law.

It might be well at thisqpoint to give a fow examples of
sources and sinks wherelthe field vector has a physical
significance, -

If a be the ve 96}1:3 vector of a fluid, then a . ds will
represent the v h&\me of ﬂuld flowing thmucrh the clement

ds per unit tige, and jga .ds represents the volume of

fiuid flewghg-out of the closed sarface § per unit time, I
the ﬂmd\b“e of constant density and the surface § contains
Onlxhe souree of strength m, then fluild is created at the
sofirce at the rate of 4mm units of volmme per unit time.
W' know of course that fluid rannot be created at a point
\m the interior of a volume of fluid, but we have u close
approximation to this when fluid emerges from a pipe
whose outlet is in the nterior of a Huid. A hydrodynamical
source i3 & point where fluid 1s created and a sink is a point
where fluid is annihilzted.
The gravitational attractive field due to a material
particle of mass m situated at the origin may be repre-

) ¥
4

\
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sented by the field vector —(m/%r, where the field is
measured in attraction units and r is the position vector
of the point at which the ficld is measurcil.  This Is mnerely
a statement of Newton's law of gravitation. I we
take —{m/*r ag the field vector a it may be easily shown
that v . a=0 everywhere except at the origin. That is to
say, field tubes can arise or terminate only at the origin
where the particle of mass m is sitnated. 1If we evaluate’ .

[- . s where S is a sphere of radiug B and centr(, t‘he
S’

origin, we find that a has the same direction, ap'rl’o fwm
sign, a5 ds at every point of the sphore, that the n{&frmtude
of a at all points on the sphere is m /A% and thabthe magni-
tude of ds is Bidw, where des i the sohd {nt,le subtended

by ds at the centre. Thus AN
“ O ~N\
| = 2, —_L N/
Ia.ds s j,QR dw Amm,

Js

We see from this that a pﬁ\r‘wciﬂﬁlﬁuimhsmw asgghivalent to
a ¢ink of strength m. for ab siich a particle field tnbes
of total strength 4mm torminitte.

The electrie intensity(in free space due to a point charge
+e at the origin is +(Nr r by Goulomb s law. Hence
in free space a s@rcle of charge +¢ 18 equivalent to a
source of ‘itrengt}ﬁw of the field lines of electric intetsity.
This will not/be-true if space is filled with some medinm,
We shall diSenrss later in § 69 the medifieations which are
required when a medinm is presernt.

Wa h)ﬂe not so far considered wagnetic fields because,
as we\tnow, lsolated magnetic poles do not exist, Equal
anfdopposite poles always occur together, The N pole

" (.bII‘C“:pO[ld‘-l to a source and the & poie to a sink, The
Jhine drawn from the sink to the source of a rectilinear
magnct is the axis of the magnet. If the strengths of tho
poles be s and —m and the distance between the poles
be I, then mi is called the moment of the magnet. A
magnetic particle cousists of an infinilely small magnet

-
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with a finlte moment. The terms “ doublet ” and * di-
pole 7 are used instead of **magnetic particle” when
dealing with similar configurations in vector ficlds other
than magnetic ones.

If the closed surface § encloses a dipole, the dipole

will contribute nothing to a ds hecause the totg]\ \
algebraic source strength of a doublet is zero. ) ‘\
§61. Unless we are dealing with the mo]ecutai strne.
ture of matter it is usnal to treat matter as bcmg.ﬁ{)ﬁ‘bmuou:
From this point of view it is necessary to ogusider volume
distributions of sources, sinks and dipoles. (Jfwe denote the
volume density of source strength by p,vhmeue in general p
is a function of position, we obtain N\

¢‘ N

a.ds= 417»'r pdi?-
W W é’aU[le'aIy\GI'E in

NN

Jsa.t.f o :;.(V{V - 8,

<
’\Sf""(v ca —dop)ly =0,

where ¥V i3 any “volume. 1f we take § and therefore ¥
to he mﬁru‘tély small, then we have, at any point in the
field,
\“\;" v.a=4wp. . R 3]
Ifp represen’os the mass density of matter, then this formula
takes the form
\W V.a=—dwp, . . . . (4
sinee a material particle corresponds to a sink.
Suppose now that a is irrotational, i.e., §xa=0, then
it a is the gravitational force vector we have

V.a=-4dnp and a="+y¢,
whence V = ~dmp.

But

80



o

POTENTIAL THEORY 85

If a be the velocity vector of a fluid or the electric infensity
in free space, then

g.a=tdrp and a=-yd,
whence Vi = —dwp.
In each case !
s g2 A
vih= gf: +§5(£ + E;; =—dmp, . . BIN
N\ .

which is Poisson's equation. In the absence .of -any
source distribution, ¢ will satisfy Laplace’s equation

cap nag AN
0g - 00, 00 T4 30,
veb—wﬁayz ; 332—0.\.‘ v . (B)
Laplace's equation is probably the mq%‘i.:t}ll;ortant equation

in all physios. \S

§62. We know that the chatge’on an electric conductor
resides on the surface of "EH’&’ éﬂ:ﬁ'&ﬁ%%&"a[@mﬁ.iﬁt is there-
fore necessary to considervanriace distributions of sources.
Let the surface density of the source strength, i.e., the
source strength per dnit area, be 0. In general o is not a
constant over the sugface of distribution. Let us draw per-
pendiculars to the surface at every point on the boundary
of a small elemient of area ds, these perpendiculars extending
a small distanice on each side of the surface. We can close
the cyli;«iribal sutface so formed by two small plane areas
cach egnal and parallel to ds (fig. 13). Applying Gauss’s
lawatathis eylinder, we bave

.\~: Ny J‘__a .ds - 47:'] o8,

bl =
where £ is the area of the sarface distribution enclosed by S,
If we take the height of the eylinder to be infinitesimaily
small compared with the area of cross section, the above
equation takes the form '

a, . ds -2y . ds, == dwods,
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where ds, and ds, are normals to the surface of distribution
and are drawn away from the sides 1 and 2 respectively, and
where a; and a, represont the flield vector very near to the
element ds of the surface distribution on sides 1 and 2.

We observe that ds,= —ds;, and that the sense of ds, is
from side 2 to gide 1. The last equation viekds
@h=@)=dwo, . . . @

where (a,); and (a,), are the components of a in the dize-
tion of ds; on sides | and 2 respectively. In other words,

‘~

i 7 '\"
sede 1 T surface distéibdtion o

ds,
.i:‘.} Yre. 13
™
as we pass fret side 2 to side 1, the component of a normal
to the su'rfs;c':e"i'u the direction 21 inereases suddenly by an
amounbedas.

‘Tendrold misunderstanding we shall recall that if a is
thesletiric intensity, then only #f no medium is present, are
.c}J:aI’ges cquivalent to sources ; so the formula

. ‘:\ (Sa . ds =47 (total eleciric charge within 8),

where a is the electrie intengity, will hold only in free space.
It follows that equation (7) will hold only under thesc cir-
eumstunces,  We again refer the reador to § 69 for a treat-
ment of the ¢ase when a medium is present.

/~
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If ¢, and ¢, be the potential functions of a on sides

1and 2 of the surface distribution, then in the case a = — e,
we have

8‘?51 f.;’z .

Yon e T 7o, o 8

where da is drawn from the side 2 into the side 1. We
obtain the same cquation in the gravitational case, bPr‘a,uv@\ N
although a= 4+ ye, the surface density o represents a ri,l&-
tribiution of ginls. \

1t may be shown that if only surface and volum‘f:- dis-
tributions of sources are ]:ueqent then the p toptial ¢ is
contintous but the proof of this is beyond the ¥cope of this
book.* One might expect this re~,ult hoskever, from the
faet that a discontinuity of potential “oultbamph« an infinite
force or an infinite fluid velocity, acogkding to the meaning
of 9

¢‘Lct P and @ be two polnt:. ¢lose together on a surface
of distribution or on a swj@%rauﬁﬁ)ammon between two
media.  Since ¢ is :,ommut)ua,v we have

§£’1t1'J—‘rb2f’PJs ¢1(QJ ‘,152(91-
Tt follows that i..,\’
3

Ko - i) _ beiwr - tag
N, PQ re

or 70l

N \ /
by _ Dby
x'\ el R (N

th% /1 is a Hne clement lying in ds. Tn other words the
JLoniponents of a tancentml to the surface, at points very
"\near the surface, are the same on cithor side of iti,

§ 63. We have already seen that the field vector due to
a source m at the origin iz {(m/r¥r. It is easily verified
that this vector is irrotational so that a sealar potential

* Bee Kellogg, Foundalivns of Potential Theory, pp. 1581, 180,
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will exist and we now proceed to calculate this. We have,
in fact, in the electrical and hydrodynamical cases,

- =T
% e
sing spherical polar coordinates we obtal
Using sph 1 pol linat btain
h OV
dr 72" o\ N

N
since ¢ cannot involve & or o on account of spheriga:]f;g-;_ym-
metry., Hence A

",
i) )
$=""0 . . AN L (0

if we take the constunt of integration «to\%é zero, in which
case ¢ vanishes at an infinite distdfice from the source.
Thus in the theory of electricity a éharge +m gives rise to &
potential +m/r and in the theoryaf* hydrodynamics a source
of strength ¥ EitREHEO T § BBkAial + m/r,

In gravitational theory,we'find that

~, ™
Q Ve = “ah

3
which is the Saniﬂ‘éﬁfﬁ&tion as before, In other words, the
potential due Pe a particle of mass m iz +m/r. We observe
that althoughy a’material particle corresponds to a sink, yet
the potentitalis +m/r, not —m/r, the reason being that the
field vedhoris e, not - y.
The potential due to a volume distribution of density p
is evidently
e _ pdu
‘:\ X J"' r’
v/ where p represents the hydrodynamical source densily, the
density of electric charge or the mass density, and where
r i3 the distance of the eloment dy from the point at which
the potential is being evaluated., The integral is taken
over ali the space oceupied by fhe distribution.

1 0§

N\
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Similarly the potential due to a surface distribution o is

Jo_a's. O ¢ b4

7

We are now able to construct a vector b' required in
§ 67, which has the properties §.b'= —dwf, yxb'=0.
Comparing the first of these A\
cquations with (3), we see .
that b’ is the field vector due
to a volume distribution of
sources of density -8, so that
the potential of b’ is
b
$=- 2.
Having evaluated this integral P\ 2 o
we obtain b’= —yp, which D Fie, 14
gatisfies identically the con

tion yxb'=0. The rc&u%%@&%%rﬁr%%ﬂ:@fb%

! N (Jtdv

§64. A dlpole ﬁuv be represented by a vector whose
length is the moﬁent of the dipole, and whose direction is
that of the axi®. We shall consider the potential at the
pomt P, mth’ coordinates (%, ¥, z), due to a dipole w at
NS JThe dipole may be regarded as the hmltlng case
of sourtdd m and — m, distant v apart, where dv is measured
fro Ktﬁe sink to the source (fig. 14). The potential at P is

! =",
'\“\ (‘ﬁ_""r r+8 SVLTPS?‘ T /8
\;

r+8r

In the limiting case when v hecomes infinitesimally small,
the potential becomes

wale) o 5 20 3 o) e ()
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ginee v involves &, y 2 bu’o not ¢, ¥, . Now the direction
A

4

cosines of ware ., — and
oy’ o o
g/l 1 3@ . {l%
EE’(%)“ 5 g&k_(ﬂ? -2F (Y -y (2 -2)
2 (z'-x) -z A
VI it I \D

27"\

£ 3

asly z-z

Similarly o ( ) and _S'z’r'-\'r') =-—?61. The p@fé{l&&[

at (z, 9,2 )due to the dlpole w oat (&', y", =) 15 thu&s%n to be
wal@ — )ty =) + .z ~ 2N NS,
r N
w.r \\

——y " N

¥

where r is thg\)epa@y g}ﬂgﬁ,i ‘Fj{zhrf dipole to the point P,
Sometimes it is more convc.mént o choose r as the vector

from P to the dipole, in whl@h case the potential at P is

or

w{ O &)

Thus if p be }he resultant dipole moment density of a
volume disty 115}&‘1011 of dipoles then the potential at £ due
to this disgaibdtion is

O o A 25

T

the\}tegr&l being taken over all the space which is occupied

"\by“the dlqtl‘lblltlc}ll and r being the vector drawn from P
\ “\do the dipole clement pdv.

Now
p.ds_f Ly
.[S - = Vv.(rp/;d@;

¥

- o — | i1
_| 0 - - 3 do.
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So the potential at P duc to the dipole distribution is
[ p.ds “ vV-P
"

5 ¥ r

dv, . . . (1)

W/

where S is any surface enclosing all the distributions. When
p is discontinuous on surfaces 8, the first intcgral in (15) is

. N
replaced by a sum of surface integrals taken over S and 4 N
where each 8 iz taken twice over, once with the nmmcﬂ )

in each direction. This ammmtc. to adding a torm

p.ds w\
5 ¥ .»‘j\i‘

to the formula (15). where P'=D in.de SN putside 5

If we can choose 8 so large that p vanighes on S, the sur-
face integral over S is zero and the pof\orltlal at P becomoes

JISJME“JV-_.P‘” N 1)

r ®

the volume integrni b{.mg,mvtw.aihr‘auhbuéh spencg.in Comparing
this result with (11} and (12) we see that if there is no dipole
distribution at infinity & dipole distribution p may be
roplaced by a volugfe “source distribution —vy . P and a
surface source digttibition p', (the component of p’ in the
direction of ds \ﬁ\lthout altering the potential or the field
vector at any(Peint. This has an important application in
the theory &F dielectrics (§69).

A suifaee distribution of dipoles whose dircetion is
everymiere normal to the surface is often referred to as a
magnetic shell on account of its application to cleciro-
magnetie theory. If 7 be the dipole strength per 1nit
Jarea, then a small area ds of the surface gives rise to a
dlpule 7ds. The potential ¢ at P due to this cloment is
—{+/¥"} ds . r, where r is drawn from P to the clement ds.
If # is the angle between r and ds, then

$=— Trds coa_ﬁ’:_rﬂ“w =—qdw, . (17)

.}-5

%
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where dw is the solid angle subtended at P by ds.  The
potential at P due to the whole shell is therefore - [rdw
or, if the shell be uniform, the potential is

-70, . . . . - (18

where (2 is the total solid angle subtended at 77 by the shell,
In these results we assume that I’ is on the negative or sink
side of the distribution. Otherwise the negative sign isl ™)
replaced by a positive one.  In view of this fact it will he)
evident that the potential due to an element of a magnalic
shell increases suddenly from —2mr to + 277 as e pass
through the element from the sink side to sowncs side.
There is, however, no sudden change in the‘patentisl due
to the rest of the shell. We conclude thezefore that the
potential due to a magnetic shell increa{ég\by 47T as we
pass from the sink side to the source side,

65. In_ hvdrodynamicy we gsegquire the potentials of
two§dimcnsi‘gﬁ%fs%buﬁ%ilrg}ﬁf ﬁo%ﬁgg A th_reg: dimensional
gource of strength m is one such that, for any small surface
surrounding it, [a,ds=4mm. In tweo dimensions a source of
strength m is one such tifas, for any small curve surrounding
it, Je.dl=2mm, wherd g, is the component of a normal to
ds or dl as the ea?&\nay be, Taking the small eurve to
be a circle of ra@ilgs r and whose eentre is the source, we have
NS -

'\:“' —2wrf§é =2mm,
W4 ot
when o8, ) :

O d=-mlogr, . . . . (19

bs(;a}:ioosillg the constant of infegration to be zoro.
“\* Again for a two-dimensional dipole w the potential is

\

¢ =mlog v —m log (r +87)

&r
= -z log (l +?>.
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If we now proceed to the limit as Sy~ 0, then

= _mdr_ m{-8veosf) wcosh
oy T T Ty T T Ty

= . . . . o . {20)

where r is drawn from the dipole to the point at which the)
potential is to be evaluated, ) O

§66. Wo are now in a position to caleulate the p@ter‘itial
due to peoint sources, volume and surface distribitions of
sources, point dipoles, volume distributions of\dipoles and
also surface distributious of dipoles in thich the dipole
denwity is everywhere normal to the surfage,™ The potential
due to two or more of these being pregesis together is simply
the sum of the separate poteutials, forv’

V(?Bl\jr_ ﬂ)_ﬁlegséiﬁv%_OI'g_in
and we know that the fieldswitetors wa, and v, due to
different distributions arengdded according to the vector
law to give the ficld vegber due to the combination of the
distributions.

If we know q}a&iaﬂ points in space we can connect all
those points which have the same value C' for ¢ by an
equipotential sulriace d{x, ¢, 2) =C. For different values
of ¢ we geb\diflerent equipotential surfaces, one of which
passes thfaligh any given point in space. Az we have
already BHown in § 47, the field vector yé (or —yg) is
evergwhore normal to the oguipotentisl surfaces.

AWe shall now illustrate by an example a method of

.. (@yawing equipotential surfaces in certain cases. We shall
Jconsider a point source in the presence of a uniform field ;
e.g., a unit electric point charge placed in an clectric field
which has the value 6k at each point. The potential &,
due to the point charge is 1/r and the equipotential surfaces
$1=1,2,3,.... are the spheres r=1, £, 4.... The dia-
gram {fig. 13) represents the plane y=0 and these spheres

-
- '
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are represented by circles in the diagram. For the sake
of clarity we have only drawn the first six of these circles.
We may take the potential ¢, due Lo the uniform feld to
be -6z for —\T{—GZ):L‘)k, and the cquipofentiaf surfaces

(;52——6 -4, -3, -2, -1, O, 1, 2, 3, 1, 5, 8 are the
])JdIlCS Z'—‘I, P :;’ ﬁ’ T 0, — '_;-:7 U! T’ t:J -1

which are represented by siraight ilIle in the diagram. I
we connect up all the points for which ¢, + afjo—oonstarrt\
by a curve, this curve will represent the intersection of ¢he
Plane y = 0 with an equipotential surface. In our d,laaraln
we hm ¢ drawn with dolied lines the curves ¢, - R N 1,1,
3, 5. The equipotential surfaces will be obta,‘_med bv
rotating these curves about the Z axis. Weblmerve that
the curve ¢, + ¢, =35 is in two parts, one of 3Mich is a closed
curve surrounding the point charge at t%ej@rlgm

§87. We now consider & problem‘w hich bears a certain
resemblance to that of § 58, What are the necessary and
sufficient conditions thyty- Ql&b%%béamﬁ“ BdNveprosented
as the curl of another vector g Ifa= -V xb, theny.a=0
by § 52 (6). Thusa neccc;-ial‘u condition is that the diverg.
ence of a should varish{\Let us assume that

K\ =}
\66\?,, Gy | O,

WO+ 2 =0,
N Vox oy oz

and cOILEIidEI‘ ~1E-He'"curl of the vector

?J’ ayilz ~ Bz, y) 1T( J adz)] Ok

flhe x a,nd % components of the eurl of this vector are

:Ngmebtn*ely @, and a,. The z component is

[ (e B g B ) T, B
gr ooy oy o 02 2y

- o c6(x, y)
-—a,(x, ¥, ~) - (x} i zo) + ay
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This will reduce to 1, if a function 8(z, ¥} can he found such
that gg —a.(x, ¥, %) for all values of w and . The required

function is evidently

eyt
0w, )= . e v, )y
Vs A o
2\
we can therefore take O
2 "y PR ™
h= (J ada, y, w)de - | aule, Yy, zu)dy>i -+ ( - ( alery, z}dz)j
£, < Y o ?m\

w0V . . (21)

. . ~ \J/
as a solution of a =y xb. In this for ’Lﬂh #g and z, are the
y and z coordinates of an arbitrary\iked point.
For such a solution the divergeigge‘of b will not in genaral

vanish. Suppmdhﬁmiibﬁi%@ﬁip so that ¢ is & function
of z, y, 2. ¥e have secrgvf’ff§ (3 hew to consiruct a vector

b’ which satisfies the conditions ¢ xb' =0 and ¢ . b’ = — 4=l
If we write b°=b tli’, then

\Q\;ﬁ°=vxh+Vxh’=a;
Ny by bty b=0

Hence b itself o solution of a=¥ xb® and it satisfies

the a”(é(j}tibnal condition ¥ .b°=0. The vector b” thus

obtaineéd is called the vector potential * of a. It is not

whitiie but is indeterminate to the extent of a vector whose
"\.fgiivcrgencc and curl are both zero.

S X

\™ ® in inost textbooks on physics the veetor potential is given as
\ -
b= L l_imaﬁ{
47 | 7

This resalt should only be used aftor verifiention that it does in furt
sapply a veetor whoso curl is the vector a. In partienlar this
formuls eannot bo used when a represents s uniform field, as the
reader ean easily verify.
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§68. Space does not permit of more than a very rough
discusgion of the natnre of matter but we shall give a
brief account of its electric properties. An atom of matter
consists of & nucleus and a number of circumnuclear clec-
trens.  The electrons are the clements of negative electricity
while the nucleus has a positive charge which exactly
neutralises the totsl negative charge of the circumnuclear
electrons. An atom in its normal state has therefore nal ™)
charge. Imsulators or dielectrics are subsiances whdge
atoms normally keep all their cireumnuclear electronswhén
in an applied electric field, conductors those whose alegtrons
drift away when the substance is in an electric fifld The
drifting of the electrons produccs an electrie.current.
Atoms which are stripped of their electronbwill have a
positive charge while those to which the gléetrons drift will
acquire a negative charge. Thus w’ht%}‘a, conductor is
placed in an electric field certain electfolis will move against
the field lines until an equilibrium, pésition is reached, in
which some parts of t}fé“ﬂﬁ&ﬁfék@. Y e positive
charge and others a megati¥es charge. The equilibrium
position will be attaired almst instantaneously. In an
equilibrium position therc ean be no force at any point in
the interior of the ’Qolg\iuct-or for otherwise the cireum-
nuelear electrons dE$he atoms at this point would begin to
move away fromihelr parent atoms and the position wounld
not be one of @guilibrium. Since there is no force at any
point in a sonductor the electrostatic potential of the con-
ductor mustrbe constant throughout, and the surface of the
condubt}br" be an cquipotential surface, so that the field
linesfust outside the conductor are cverywhere normal to
thelsurface. Again, since ¢ is a constant throughout the

»«@Q?ﬁduct-or, V¢ =0 within the conductor, showing that
there is no net charge on any of the atoms in the interior
of the conductor, Charges have, however, been built up on
the surface of the conductor and the field in the interior
is due to these induced charges as well as to the external
clectric field, so charges accumulate on the surface, of an

H
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amount which will produce a figkd in the inferior which
exactly cancels the oxternal field.

§69. In an insulator the circummuclear clectrons can-
not leave the atom; but they may rearrange themselves
inside the atom when the atom js in an electrie ficld. The.
result of this will he that the atom becomes polarised,
It will have a negative charge at one end and a positive/)
one at the other, “and may he regarded as a dipole. (Blie’
direction of the dipoele will be L\clbﬂY that of the j‘ua}.d Tine
passing through the atom and the strength may be, expetted
to be proportlon'ﬂ to the electric field.* Tl;tq;‘whcn an
insulator is in an electric ficld we find, et p in it, &
polarisation or dipole dcnsit-y P, where Dyis proportiona,l
to the electric intensity v which we shallPptw denote by E
We have seen in § 64 that & is unalt\oled ab, any point 1f
we rep]ou:e the polarisation p by B ¥ource distribution of

density — \? dpithin }J}E}E‘ym Wlator, and a surface source
distribution ot strengthp non the surface of the insulator.

We suppose that thero sl ahefa,d_y a source distribution
present specified by p and v. Hence as far as the intensity
is concerned we hd\B Asource distribution, in free space,
specified by p - Vx‘p}and g+, We may therefore apply
Ganss’s law a-nd’\qht'aiu

J- E¢ ds Jf-| (p—v.D)dv+ 4= :| (@ -+ 3" p)ths,
S

8N
where :Sﬁ\'élenotesr surfaces within & on which there i3 a
surfa{:c ‘distribution o +p/,.

W Tn certain crystulline hodies this is not the case.
W We define tho electric intengity within a polarised mdinm as
& \t.Tu., ficld strength mensured willin a Jimnitingly smafl needle-shaped
\ envity cut from the medium, in the dire Ltum of the ficld e, Thoe
\ shape of the cawvity is Jmportant: in o spheriend cavity the field
strength wonld he E+iop, while in & “ penny-shaped ™ cavity, ot
aorned to the field line, 6 would be B+ armbignity dusg
not arize in the definition of B within o sou: ibution without
dipoles. For a complote disenssion of this point, see J, G, Leathem,
Volusive and Surface Integrals used in Physics, and . H. Livons, The

Theory of Eledrivily, Ch, V.
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Hence
J. (B +4rp) .{Jrsﬁdcﬂ'[. pdv—!—ﬂtcr( ads.
& Jr SN

If we now definc the electric displacement D by

D=E+4wp, . . . . {22)
then
( D . ds =4 (total electric charge within 8). \ \J
Thiz vector D satisfies Ganss’s law whether or not a med,mﬁa
he present. If, as usually happens, p is plOpOItIO’Tl&l to B
then D is proportional to E and we may Wntem\

D —~kE,

where « is the dielectric constant. # i evidently unity
when the medium is a vacaum, W’e O’b..ervc that, if =0,

=D .d :lf D)y,
a [P b= wg\!w d%l il f%]’ AT yr{)l]' "H- in
g0 ¢.D=dnp in all mrcum‘a‘tdnccs whence if x iz In.
dependent of positien,
S B=dmpic 0 0L 2D

Also, since E=_— ‘4 we find that when ¢ is the electrostatic
potential, equamon (5) takes the form

Tip=0040 ‘/’ fﬂ_ff: —dmpix. . (24)

iz

The; }\equa,tlons will reduce to . B=4mp and y?b= —dup
invree space, gince  is then unity.
The vector D is independent of the presence of a dielec:

”"f'tllf‘ medium, and iz therefore equal to the value of B,

when no dieleetric iz present. It follows that the dis-
placement due to a point charge +e at the origin is {e iy,
s0 that a partiele of charge +e is alwuys eqmva]eut lo a
gource of strength e of the digplavement vector. Further,
gince D =«E the intensity due to a point charge e at the
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origin is {efrer?)r. This is a modified form of Coulomb’s law.

Formula {7) now takes the form

(Do - (D) =470,

or
o (FL), — (L), —dwa,
whence
a - £ N ¢
#; ,:’{-’1— Ky Tf& = —d47a, . . . 425D
o ch N\

wy and w, being the dielectrie constants on s:ides\sni}(‘and 2
of the surface distribution ¢. Equation (28)>replaces
equation (8) in the electric case but equation.(8) holds good
under all circumstances. \%
At a surface of scparation between twb dielectric media
on which no surface distribution is p{é&@\lb we have
o Py, OB

PR

www_dbr‘aulif}@ﬂ'y.qt'gﬁﬁ
th 2 i
j‘}t:; ’ Et !

. . (28)

showing that the fieldlines are refracted on passing from
one medium to anobler,

\\

§70. o~ Examples

A\
(1) Show that the feld lines of ¢(«* - »?) are rectangular
hypf;l:@oj e and that those of g{tan (yiz)} are circles.
%)) The velocity voctor of a fluid 18 {zyz)r. Show that the
w’}tex lines lic on spheres and also on certain cubic surfaces.
N 7 (8) Show thut the strcam lines due to a two-dimensionsal
" dipole are circlos.
) {4) Find a vector potential for (1/7%)r.

O S U PO I N __._1__._.)- ayf 1 _ __1,,_)
Sr(i}‘-’ LT +z2)1 * 3?':-\@;2 Pt T ey R (32 +at 24yt x

is & sypunctrical solution.
{(5) Show that, for the system consisting of two peint
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charges +de and -e, one of the equipotentisl surlaces is a
gphera.  Sketeh tho equipatential aurfaces [or this system,
{6} Sketch the eguipotential surfaces of § = +r,, where
r, 7, are the distances from two fixed points. Sketch the
eguipotential sucfaces of ¢ =+, ~ 7, on the same diagram.
{7} Bketch the equ_lpotentlal s:ufauas of ¢=y +tan? (yia)
{8) Show that the potential of a uniform eireular dise of
radius @, at a point on its axis at distance 2 from the diae,

is 2ra{4/a? +at ~ 2). Ko \

{9} Deduce from the last problem that the potcential of\
uniform sphere of mass M and radius @ is given by qS,,a _JI—?'
Preo =M {B0® - r?) /207, "

(10) Deduee from the last problem that the potm’mal ‘of a
uniform spherical shell of mass A7 and radius_g r\}_{wen by
Brmg == BT, deaq =Mia.

{11) Show that tho electric intensity duobo B uniformly
c¢harged sphere at pointe outside is the ﬂa,;m%»as if the charge
were concentrated at the centre, while &btvpoints inside the
sphera it is proportional to the dmtanee Erom the contre.

{12) Show that the displacement{ _pnt cutside & conductor
ig 4re, where ¢ is the dexmtoywnﬂbhmm{@pgr @-}:&H i

{13} Calculate the potential ﬁuo t0 a uvuiforinly polarised
sphere. Bhow that the electr,le mtensr‘ry at any point in the
interior is ~ 4ap, where p is thdpolarisation,

(14) A rectangular blgek has uniform polarisation p paralled
to ane edge.  Show ghat‘the intensity and potential are un.
altered if we replace the polarisation by a smface distribution
of density p on, osz\faor* and a distribution of density - p on
the opposite fagey,

Y4
N
»



CHAPITER VI

HYDRODYNAMICS O\

£\
§ 71 I~ this chapter we shall denote the veloeity 374@-61561' of
a fluid by u.  Wo shall confine our attention to,fickionless
fluids. In such a fluid it may be shown thaﬁ\tih"e pressure
pis the same in every diroction.* We shall\{enbte the mass
density of the fluid by p and the source (Folume) density
by 7. Thus, at an element of val Mg there are drrdv
units of volume and darpdy unity of\aiiass of fluid created
per secoud. It F, the externabferce per unit mass, he
conservative, we can write F'— - YK .where K is the potential
energy. ﬂ%%ﬁ%%ﬁbgfl@?'{? Bl is irrotational, s velocity
potential ¢ will exist, foraiwhich u= —y¢é.  If the motion
is rotational a velocity, patential will not exizt, but there

will be a vorticity veetor w defined by the equation
NN
)

It iz evident fu-}}b}w Is & solenoldal vector.,
The differ@attial equations of the stream lines are
\¥;

W=7 KL

O dz dy d: (1)
»\J SI=ta ot . . ,
°L u ., U
i»\,' Fd i H
a hose of the vortex lines are
AN ~ - d_yﬁ = Lkn__ (@)
“\/ r;'s.t,_z € _r_r.u G, _ouz _(;'1{ v CHg
v cy d2 &2 r % ey

It should be ohserved that, unless the motion is steady,

* Seo H. Lamb, Hydrodynamics, p. 2.
102



. HYDRODYNAMICS 103

the paths of the particles of fluid are not neccasarily the
stream Nnes. The dilferential equations of the paths are

dax dy dz .

@t TYe g T gt - - )
We see that there are & triply infinite set of paths, one in
fact for each particle, but only a doubly infinite set of
stream lincs, one throngh each point of any given surfa,c,e\ \
which stretches across the fluid. N\

s N

§72. Consider now a particle of fluid which al time ¢
is at (2, ¥, 2) and abt time {45 i3 at (x +8x, 2 J-I-/SQ, z +8z).
If H {2, . 2, {) be any property of the particle, & f\r example
its density, then

The rate of increase of If mth rpqpegt to the time is
de el -’?’% PH JINGH  oH
dt o o lirargre.n

ar ‘v
g
WLl P 2l
C?..\ Gl oz ot
Thiz last ex Jleé@m is uwsually denoted by DH and it
* 1 ¥ .Dt

denotw dlﬁerenﬁia,tlon following the motion of the fuid.

Thus glcnotes the rate of change of the density p

’ J)t\
of a,éq’rtack of the fluid, but Q‘O denotes the rate of change

Of‘p\ af o porficular point in ap(z(,r Evidently

"‘\‘ w4 D}I CH
O e TR T8 SN O
in particular, by §62(13),
Du e ol}. 7 = EE - :L 2 5
_I_)E at ( V}u i at . 2?“ (Txu} u. . (‘))
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§73. Consider a closed simple surface § drawn within a
fuid. The mass of fluid flowing out of & por unit time is

J-S pu.ds or JV V. (pu)ds,

This flaid may be accounted for in two ways. Firstly, a + £
decrease in the density p of the fluid within S will cause an, .

mass <\
op ®)
—_ ( o LJ’E.-‘ Y N/
+F ot (N.’S
per unit time to flow outwards. Secondly, a séurce dis-
tribution r will contribute a mass \::\\
I \
41?‘] - P'Td’t’. ) ‘1\\"
Hengce, x\ v

X
a7

P 1. [t :
4ﬁJ‘V pridy - J.F Eg—fl:u K ﬁ”v . {pu) dw,

.dbraulibrary.og IFI .
It follows that a6 any pomtbfl@%e fluid, we have

I
of e o) =4,
which may be Writ@}

N

) D
)”; D.f tpy. u=dwrp. . . (B

\X.
If the flujd e’ incompressible this last equation vields

i"\. W _
%“, v.u=4d7r, . .. .
and §f it is also irrotational we have Poisson’s equation
O : Vip=—4dmr. . . . . (8

’"\q.'
v/ For an incompressible fluid in the absence of sources
(7) takes the simple form

V =0, . . . . . (9)
Eguation {6), of which (7), (8} and (9} are special cases, is
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known as the equation of continuity. It expresses the
fact that holes do not occur in a fluid.

§74. We shall now obtain the equations of motion of a
frictionless fluid. We do this by considering the forces
acting on an element of fAluid whose volume is 82848z and
whose mass is p8zdydz. There will be a force on one end ina_ .,

the direction OX of magnitude péydz due to the pressure, én~)
this end, and on the opposite end a force of ma,gjmtu e

(P+8p bx)SyS? in the opposite direction. The :esu]_tant
force in the OX direction due to the p:es%u\‘e will be
ap SJJS 432, The external force in this (\ilrectlon will be
,prS y8z. The acceleration of the element) in the 0X

. . Du,
direction will be -

prSySz W (xﬂgﬁgﬁgl_hﬂzérmwl

In this manner we deduce Euler s equations of motion
DuzzFa"l E'jfr ~\-L)uv FU_} _ap3 D.uzze 1 ip)
Dt pEE ™ "Dt poy Dt p oz
which may be’sombined into the single vector equation
:’l\j -Du_.F__l_ ¥
x'\"' mE W e

X X

Hence O

(10)

I b};{ “extcrnal foree is conservative, then with the help
of\(§) this may be written in the form

o) fu 1

i V“2+(V><u) u= —VK‘;] vp. . (1)

In the case of irrotational motion we have

yxu=0, u=-vf, 5=-vy
and {11) takes the form

n
a a
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v( — %Qf = Ju? +K) + :_-'Vp =0.
on forming ihe scalar product of both sides with dl, we
obtain -
d( LSRN K) B
ot o

from which we obtain Bernoulli's equation

g ; ,
- ?f) +iut+ K +J__f-rf=¢r X O
where ¢ is a function of the time, since we have into'g?éﬁt-ed
along an arbitrary path in the fluid at o given ingtamt. In
the case where p is constant and the motion ds(sfeady this
equation takes the form \

WP+ K +pip=1,. ’x’,\\" . c(12)
where o is now a constant, This states})ﬁ:&t- per unit mass
the kinetic enersy Iu? plus the patbitial encrgy K plus
what we may call the pressure cncrg‘, p{p has a constant
value i at APPSHIRECH TN REEND

LEquation (12) can alse bg :étit:&ined for the case of steady
rotational motion provide®that (y xu)xu=0. That Is,
provided w has the samhetdirection as u at each point of
the flunid. In such’a"f.él-se the vortex lines eoincide with
the stream lines. %N\

In problems™n aerodynamics the variations in K are
usually so sp(é{}l"’that they can be neglected, so that we

ecan wri te ,\3 D
o touttp=p, . . . . {13

whet:e\po is the préssure when Lhe fluid is at rest,  We see
that'in such circumstances the prossure diminishes as the
~\gelocity increases. Aeroplanes are fitted with instruments
\/ for meazuring p and p,, so that the velocity of the machine
relative to the air can be determined.
In the case of steady rotational motion of an incomnpressible
Huid, (11} can be written

N |
(. vjut g+ yp=0.
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If we form the scalar product of the above equation with u

we obtain
u. gy ta, TH4-u. op=0
But ‘%? =u . A if the mation is steady, =0
i ] . p\ L N o
j—)i{\é"l‘}k'i‘ro)——o. 2\
O
Hence, integrating along a stream line, we have G\ bt
w P "f’? g
s QG @

where ¢ is & constant for the stream linedn question. Tt
should be noted that (14) has a f'{ifl'e.x&hﬁ meaning from
(12). In (12) o is a constant througlieut the fluid, but
in (14} ¢ may have different valuég'for different stream
lines although it is a constant fonevery point of 4 given
stream lnec. As we hawevwsetinyliheaglorgame value for
cach stream line if the motigitds irrotational or if the vortex
lines coineide with the styéam lines.

§ 75, We have se€iNin § 59 that since w is everywhere
solencidzal, vorlgx tubes or lines cannot originate or ter-
minate at any ﬁ‘u\it in the interior of a fluid, Tt follows
that a vortcxMne must either form a closed curve, as in
the familiar€xample of a smoke ring, or else it must begin
and cncxloxgn‘ the houndary of the fluicl, as in the case of a
whirlpook

KLAgain, J w.ds hus a constant value for any cross-

ssection S of a given vortex tube and, since w =y xu, thia
e\ .
/ Integral can be cxpressed as ( u.dl by using Stokes’s
L

theorem, where L iz any simple closed curve drawn on the
walls of the tube and surrounding it. The integral

J u ., 1
L
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is called the circulation round the closed curve L and
measurcs the total strength of all the vortex tubes passing
through L, provided that the curve L can be contracted to
a point, without any part of the curve passing out of the
fluid. It is possible, however, for a circulation ronnd L to
exist even when the fiuid is cvcrywhere irrotational, Thid
may happen, for example, in the case where there is &
infinite golid eylinder passing through ;. The solid cvllkdr:fp
can in fact behave like a vortex filament in an othopwize
irrotational fluid, We shall treat this in some degfilin the
next paragraph. \:

§76. The case of an infinite cylindern'a fluid whose
motion is everywhere perpendicular gdJthe axis of the
cylinder, may be discussed by mve-uf\g}a,tmrr the nature of
the two dimensional potentlal X\

Kg » \
www.dbr aé{l:br Emy or*g ET tan J . . (15)

We observe that this potentm.l is not defined when r=0,
and that elsewhere #N\is a many-valued function of the
position in the plane@X ¥. The existence of such a potential
means that the{motion is irrotational except along the
axis 0Z whdre no potential iz defined. Also, the stream

£ % -
+ R . . . [ .
lines ar& tohcentric circles gince — ,\? ={, and the velocity
" oo C v

CN\Y | . 16 P .
'osf'&e fluid at any point is therefore — For Of g The

o . f . .
Sacireulation ¢ u ., dlround any circle of radius @ whose centre

J L
is the origin is

J’n §'}'ﬂ—1ﬂd9 K,

indicating that there is a vortex filament of strength «
lying along the axis 0Z. It follows that the potential {15}
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represents a single vortex filament of strength « in an
otherwise irrotational fluid. We can now replace this fila-
ment by an infinite cylinder which encloses it. In this
case the motion is everywhere irrotational, but the potential
is only defined outside the cylinder and there is & circulation
« round the cylinder.

The potential due to an infinite circular cylinder of A
radiug ¢ whose axis at the instant under consideration j\é N
the line 0Z, and which is moving without eircnlation in‘an
infinite oecan and with velocity V in the direction OX;may
be shown to be * D

. A\ N
Va? cos @ N\

p , (r>a).

AY;
If we superimpose a circulation « rour@ dhe cylinder, the
combined potential is O
_ Va2 cos 0 89
www dbraulileery org.in

Whence, N
_1 24 VaPsinf e B Va?cos @
ree” T RAN 2 Tar T T &
and \

ug\xyga-" , 2V ac sin d <2

v + - i
AT 2wt dorty®

That is to .sa}; }
> Fa? K Vu

5

P
Gy = oy U a oz =
(\\;}_ +m T TE T gy M -T2 T

[T}

K
3

il

=

I

ghowing, as we would oxpect, that the velocity is yreater
(¥here 6 = -+ 17 than where § = —47. From Bernoulli’s
equation ¥ we deduce that the pressure on the eylinder
must be less where § = +3» than it is where § = —{m.
This result has some important applications, A rotor
ship has revolving funncl-like cylinders which induce a

* Of, lix, 6, p. 122,
t To evaluate the actual pressures we cannot use the simplified
equation (12) as, with the abuve choice of axes, the motion is not
¢ steady.

o’
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girculation. The combination of this circulation with a
transverse wind produces a state of affairs similar to the
case described above. The pressure difference which arises
is the force which propels the ship.

If we neglect the end-cifects, the wing of an acroplane
may be regarded as a cylindor moving through the air in &
direction perpendicular to its axis. The cross-scetion of
the wing is so designed that the frictional forces sct W)
cireulation, with the result that the pressure on the fuider
side of the wing is greater than that on the upper t—ude It
is this difference of pressure which balances gpavity and
keeps a heavier-than-air machine in the air, ™

Y
§771. Examples“‘\ &

{1) A source-free fluid of consthyt” density is evorywhero
irrotational within the surface 8. Usc Green'’s theorsm to
www.dbraulibrarysesg.in "

show that the kinetic energy gfght: Miid within S is 3 o |

P
| d,-f—%ds.
\ jy e
Using Bx. (11} § 57, proweg,alzo that the mormrntum and the
moment of momentaafiNaboul the origin of the fluid within S

are respectivei}-:—.,’:.:“ } dils and. - p|  drxds.
S 5

{2) A splie bF radius « moving with velocity ¥ in the
direction (FNE —r cos 6) through a liquid which is at rest at
infinity e petontinl ¢ =3 ¥(e’fr?) cos 4 al the instant when
the cefihle of Lhe sphere is at the origin.  Show thas tho
kineatieenerey of the Lguid is M V34, whoro M is the mass of
tha\HOid displaced. Show also ihat the total momentum of
the liguid is zero.
% (8) Prove that the resultant moment of momentam about

' the eentre of the fluid contained within a spherical surface

vanishes if the fuld is irrotational. soirec-Tree and of constant
density at cach point within Lhe surface.

{4) If the stream lines of a zource-freo hoid of constant
density ave the interacctions of tho snrfaces f, = eonsiant,
e = conslant, prove thak

u = Ffi, Ll vfixX v he)
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§78. A FURTHER discussion of Laplace’s cquatioh. isieces-
sary. If ¢ be any continuous one-valued funétion which
ratisfles 26 =0, and is not infinite in a gi¥en region, then
¢ cannot have a maximum or a minimdm at any point
within this region. For if it had, ifg,}vbnld be possible to
draw a small surface surrounding,gueh a point for which
Jvp .ds=0. This would impl\yidde=0, in contra-
diction to our supposition that Y{g = () everywhere within
t-he regi.(_).tl. W\\-’W.‘FI :lfaU 1bFary . org.an

It follows that if ip=b everywhere within a closed
boundary, and ¢ has alfonstant value on thiz boundary,
then ¢ must take thig®alue everywhoere within the boundary.
Otherwise it wowkd\fave a maximom or a minfmum at
some point \m-'itl\fm'fhe boundary.

As we Haye'seen in § 47, the magnitude of the fleld
vector whose’ potential is ¢ is O¢jon (or —8h/dn in the
electrical\#fid hydrodynamical cascz). It follows that ¢
increateg™(or decreases) steadily as wo move along a ficld
ﬁlﬁ“\fﬂ'encc the field lincs due to a single-valued potential

@unot form closed curves in a simply connected space, for

this wounld imply that ¢ had a series of values ab a given

It follows from this that if 8¢/0n be zero at every point
on a closed houndary within which §i%h=0 at every point,
then ¢ must have o constant value within this boundary.
For, no field lines can cross the boundary, no field lines can
begin or end within the boundary, and field lines cannot

111



112 YECTOR METHODS

fornu elosed curves within the boundary. Hence there are
no field lines inside the boundary, which shows that
d¢/on=0 everywhere inside. In other words, ¢ must be
constant within the boundary.

Further, if a region is enclosed parily by surfaces 2
over which ¢ has a constant value. and partly by surfaces
Z, over which o¢/dn=0, then ¢ is a constant within the
region. For no field lines can cross X, and nonc can com{éét.
two points on X, none can begin or end in the regiom.nor
can the field lines form closed curves. There are ghercfore
no field lines and so ¢ must be a constant within this region.

Let ¢ and ¢’ be two continuous solut-ion,s«b{\Laplace’s
equation, both of which are finite and ¢nd.-valued at all
points of & given region which Is enclosed ‘\partly by surfaces
%, over which ¢ =¢’ and partly by surfates X, over which
ch/on=04'/tn. The function @& -’ is finitc, one-
valued and continuous at all pointgbf the region. TFurther
@ has the constapt value zerg ®t all points on the surfaces
S, and 0084 LA USRS on the surfacos 3, Wo
deduce that ® has a constant value at all points of the
region and that this gonstant is zero unless there are no
surfaces X, present.{t follows that at all points of the

region, e 2\ ,
i K =4
except in the{case just mentioned, when ¢ =4’ + constant.
This is theldmportant uniqueness theorem which states
that if adsefich point of the boundary of a given region etther
& or fddion is known and if Laplace’s equation is safisfied
at jedelt’ point in the region, then there is only one function b
u}l}ich sotisfies the given conditions, unless ¢ is not known at
\any point, n which case ¢ is indelerminate to the extent of an
"\ additive constant.
\
§79. The potential at P due to a source m at O is m /0P,
and the potential at P due to a source m at 0" is m/0'P.
The difference of these two potentials is

m{O'P — OP}J(OP)O'P),
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and the sbsolute value of this is never greater than
m{00") [(OP)(0"P), so that as P recedes to an infinite dis-
tance from ¢ and ¢, this difference eventually vanishes.
It follows that for distributions lying entirely within a
finite closed surface, the potential of the distribution
approaches more and more closely to the potential due to a
single point source as we move further and further away
from the distribution, the strength of the point sourcef
being the net algebraic source strength within the surfade)

§80. We shall now gather together the ip]pf)rt-::int
properties of the potential . ~*

(i) When only surface and volume distributions are
present, ¢ is continuous. ¢ has a singularity at a point
source. N....§62,863

$

(ii) ¢ is discontinuous across a magnetic shell and
bi— . =g > ....§64
{iii) %‘f is continuouﬁ,‘ﬁ%’e@ﬁﬁm@mmfgﬂe distribution

or a surface of separation of two media is crossed.
A ... .5 69 (26)
{iv) At a surfg.g’é,\dist-ribution or at a surface of
separation X\

R B

where d@t\ib"in the direction of the normal to the surface

S

awhjoto side 1.
{x)* At a surface digtribution or at a surface of separa-

(%)1 - (%f)z vl §62 (9)

where df is tangential to the surface in question,
{vi) If « in independent of position, then

V= —dupl ....§ B9 (24)
I

dr
tiant

N\
WA



il4 VECTOR METHODS

(vii) The potential ¢ of a finite distribution tends, at an
infinite distance from the finite distribution, to the potential

due to a point charge. 479
{viii) For given houndary conditions there is only one
solution to v =0. .§78

The corresponding conditions in the gmvitational and
hydrodynamical cascs are obtained by putting x=1 m\
({iv) and (vi). PR

§81. We now consider the following problem™ «If we
arc given the potential at all points can we imd a source
distribution which will give rise to this potenf\l In the
electrical case we suppose that the valueN\ot“he diclectric
constant at each point is also given. . Jn*the other cases
we put k=1 in the fo]_lowmg forqu ac, The volume
density at any point is given by 4 X))

ﬁ - _" 2(;5 . . . + (1)
www.dbr aullbr ary. or &.in
Surface distributions, Wlll be found at peints where

1{ 0 jén) has a disvontintity., The surface density will be

_< 17 e (,fjuz .
L4 47T<K tm Ten ) -2

&>
Peint sources, e\an only occur when ¢ has a singularity.
The strength et such a source is found by applying Gauss’s
Law to &' Ntlall surface (usudlly a sphere) surrounding the
singuldrity. Thus ;
:"\ W ?_l)
\.. = — | ands, . . . (3

Jwhere m represcnts the cha.rge or source strength or mass
Y as the case may he,

Magnetic shells can be found on surfaces at which ¢ is
disconfinuous. The dipole strength per unit area is

1
7= 4%{9'51’“?{’2)

the source side being the one with the greater value of ¢.
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The distribution corresponding to a given potential is
not unique if we admit the cxistence of volume distributions
of dipoles. This will be clear from § 64.

We shall apply the above to the following example.
Suppose that the gravitational potential is given by

by = 2m(bE - a¥) if O<r<a,
2 2a® ' N
= QEe _ 8 S i - 2\
¢ 37r|:\35 2= ) it a<r<b, "\\.
4 s . ) ~..} "
(‘53*371'\—? —) if f)m?’. R (:
We ohserve that ¢ bas no singularities} .”SQ\ ;io point

charges are present. Again, since it is easily verified that
¢ is continuous, we conclude that no Ixng,rietic shells are
present. v

Now ¢, =0 since ¢, is a constdnb. Also Vi =10 for
wo can show that v(1/r)=0. Now ¢ih,=v* - §m?), for
the other terms vanish, and ngz =6, 50 Vdy= —4m. The
only volume dist-ribut-io“r’l\"i%“fggsxgegr@{ﬂéy Hetitric spheres
r=g and =56 and this is&distribution of unit density.

Tt is easy to sec that

- - o\ A
ih_g P '2.3(_ 2a% By _ & fba_”.'*’?)
AR NG ) o 3\ /S

Hence the sgf;fai:e digtribution at r=g is

Rl CB OB

a:’ga,&he surface distribution at r =14 is

R

Hence there are no surface distributions.

The answer to our problem is that there is matbter of
nnit density between the shells # =a and =5, but that 1o
other matter is present. The fotal mass present is there-

. - *
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fore 4m(h®—a®). The potential of a particle of this mass
situated ab the origin would be im{(b?-¢3)fr. This is equal
to the given potential at infinity, and so we have a check
on our result,

§82. If we know the pature and location of all the
distributions present the potential may be caleulated frofh,
the formulae of §63 and § 64, but if we are only t-old\t}l"e
magnitude of a charge on a conductor we do not know its
Jocation and the above method cannot be appliedy The
gencral problem of electrostatics is as follows,>We may
expect a number of diclectrics to be prea—seﬁt}and that &
is known for cach. A number of conductgréunay be present
and for each either ¢ is spocified, opsthé total charge is
specified, i.e., 7;_1 ]’K g%)ds is known, ;’fhé’magnit-ude and dis-
tribution of fixed charges are sx;ﬁp’osed to be known. The
problem “'lll» &%‘5%%%}}%%%% };}ﬁggﬁiﬁon of Laplace’s equation

v

Fra. 16

or of Poisson's equation which satisfies cerfain conditions.
The methods available for finding solutions to Laplace’s
equation will be illustrated by the examples of the following
paragraphs. It will be observed that these methods are
only applicable when the solution can be expressed az a
product of functions each involving enly one variable.
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§83. Consider a very long strip of metal of breadth =
with insulated sides. Let its two cdges be kept ab zero
temperature and let one end be kept at known tenipera-
tures which are given functions of position on that end
(fig. 186).

Tt may be shown that when the flow of heat is gteady
and the conductivity and specific heat per unit volume ape
constant, the temperature o satisfies ¥?¢ —= 0. The bouids)
ary conditions are ¢ == 0 when y = 0 or =, and ¢ <50
when # — 0, where f(y) is defined in the range 0-gyl7.

We try to find a solution ¢=XY where X isfayunction
of z cnly and Y is a function of y only. [f e & solution
can be found, then by the uniqueness theofeh'it is the only
one. Substituting ¢=X7Y in $2% =0, \?:({\lgave

XY+ ¥Y'X =’0§ &
g0 that XX = - Y.
Now X'’ /X cannot im’ol\g@,quﬁ@gm}yl)gﬁwmnvolve 2 80

both of these quantities mush be equal t0 a constant which
we call n2.  We have thus\bwo equations to solve:

X :{2X=0, Y 4 ntY =1y
whence, apart fm{i.,(,‘onst-ants,
X =gr=VNor ¢™, Y =cosuny orsin ny,
The most. gq\éh‘c‘r.al solution is therefore
9&;%} {d,e" + Be ) (O cos ny + Dysinng) o (4)

7\
But\=0 when y=0 so all the ("s arc zero, and ¢ =0
whetl ¥ =, so » must be an integer. Also ¢ is never infinite

st:' the A4's are all zero. Thus

96 = Ea'ue-n: sin w3
putting x =90, we obtain
ooy = 2ty SiLL BY.
The values of the a's may now be obtained by comparing

this funetion with the known function (). We have only
Jo exprews f{y) as a Fourier series in sines of integral multiples
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of ¥ and the a’s can then be determined. K.g., if wo are

gn en fly) =sin ¢ +2 sin 3y, then ¢, =1, a3=2 and the other
@’s are zero so that the solution is ¢ =e™® sin y + 27 sin 3y.

§84. Tt is important to obfain a solution of Laplace’s
equation which js symmetrical about an axis, If we choose

this as the z axis, and choose spherical polar coordinates N

then the potential ¢ will be independent of the coordmabe\
. Laplace's equatlon then takes the form

.\

GS'J’) I{smﬁ Eﬁ) 0. ) ~< »

cr\ or Yaind 30\

Try ¢ = RO, where Ris a function of r onlyand ®i3a function
of § only. Then \
{ \(:f@

08 1 a7 o4
R EJ?'( ) T @sing é’e@’w 'as)‘
The left-hand side cannot mvolve ﬁ‘ and the right-hand side

cannob mw],\c@dbls@hg‘ql&@d@,s itst he equa] to a constant
which we shall write as n(n +1 “for convenicnce. We have
now to solve the two equa’cmns

B
-—%|<2%T> n(n+1)Rn—‘Q ,%(bmﬂ ?)+n(n+1)®sinﬂ=0

The solution of tx ﬁrst is
27 BR=As+Bam,
The seco@t&"équation takes the form

$)
s\" {(1 2)—}+n(n+1)@ 0,

{ :\vhen weput i =cos#. This is Legendre’s equation * of order
3 n and its solution is

®= Oﬂpﬂ{lu‘) + DﬁQﬂ{Ju”)!
where €, and D, are con stants, P is the Legendre function
of degree n and @,=P, J’ ﬁ The @, solutions can

* Ince, Integration of QOrdinary Diferential Equatwns {2nd
editinn), pp. 119-124, ,

-
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usually be discarded as they have singularities on the z axis.
Tt is well known * that P, is the coefficient of #* in the expan
sion of (1 —2ut +2)4, so that

Py=1, Py=p, Py=1(3p-1), Pa=3(5u*-3u)....

and it can be shown that these P’s arc linearly independent.
The complete solution is now

=S (A + Bar “UCPu+ DR (8

and to this solution we must apply the COI’ldlt]Oﬂb gn e'n in
any problem.

We shall apply this to the case of a dlclcctrm\apl}ere of
radins ¢ in a given uniform field of intensh . Let ¢,
be the potential inside the sphere and 5/33 potentizl out-
gide the sphere. The conditions whicl( e have to apply
to the solution (5) are (i) vy, =Q)inside the sphere,

Tehe =0 outside the bphere (1111 py = —~ Fz~ —Frcos @
at large distances from, the 3} e?m —-Q!J when r =g,
(v) &(CchyfOry=CehyfOF whe\hig—%g b{\qeglaangdmcald the ¢,

snlut;ions 20 We assume ™

>

él_ 11'1? +_B r f“{J)Pm (62 = Y"{ r* - D .r'{ﬂ'?'l‘r) 2

From (iii) all thC\\S" S must he zero except Oy Also
can have no singnlarities within the sphere, so al] the B’s
are zero, Heénee
“\*'&1"——5 S ApP,, ¢y=CP + SDa P,

Frorrt{i‘v)

o\ Ol + 2D g= P, =X A.9"F,,
."\.. 3 g e n
‘But since the F’s are linearly independent,

Olq-i-D / ‘_Alg: . . . . (6)
and DnQ"m"'D = Aﬂqn; (ﬂ' + l,} . . (T)

* VWhittaker and Walson, Modern Analysts, chap, xv.,
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From (v}

CWPy = Zn 4+ ) Dog P =k End g™ Py

whence

O -2D,/* =xd;, . . . . {8
end —(r+1)Dg " =wnd g™, (m&l). O

ne.Y
From (7) and (9) we see that A, =D, =01 n=+l, N N
From (iii) ¢, = — # so (6) and (8) become \ N
_F 4D, =4, F+2D = —rAyon
v -
g0 on solving these two equations "‘\
_3F _apleal)
1= " o Dx—gaim-

We have now determined all the OGnaﬁa.ntS and the solution

I‘eqmred 1Swww dbraulibrary. oﬁgxln

3F ki
P = - s cos f = ¢+2’
- _ g {K_— l))
qu—-—Freosfhﬁi ( e Jcosﬁ —F,,(l r< 13)
§85. The w\mre equation *
\<&" 1 3% 2%
AN 2O Wt Oy

fo fl},}e”vibrations of a stretched membrane bears a vory
alo'}e resemblance to Laplace’s equation and may be solved
“by similar methods. An investigation of the problem of a

',: circular membrane of radius ¢ ﬁxcd at its rim will throw

an interesting side-light on the previous paragraphs. In
the above equation ¢ is a constant and ¢ represents the time.
The membrane is stretched in the X ¥ plane so that 2, which
ia & function of 2, y, and I, represents the displacement per-

* An extensive treutment of this equation is given in {oulson,
Wuves, chap. i.
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pendicular to the XY planc of any point on the membrane
at any instant. We change to polar coordinates so that the

wave equation takes the form
1o 9%, 10,1 8

EoE rt ror Pl

We assume a solution z= ROT, where B=E(r), O =0{(9),
1= T(t). This done, we have L\
1 1 _ £F 1 : _! " Z\.\
L 1RO =OT(R"+ )+ zRT0 O

ol
T
4 %

177 _RY PR 107 D
or 24 R rR 7O m\
Since the right-hand side is independent ofEYit must be
a constant which we shall take to be —m%" (We take the
negative sign because we cxpect 7' 1o He‘periodic.) Henee
RH RJ P\ X @U
i PR I P B Sy
As before we seo t-hat“i';\f)ﬁl ! ,e[,'l's aigrgcﬁiﬁ l1?0 a constant
which we call k2. We hagg therefore thres equations to

solve, viz. 2R L4R + (n%2 — ER =0,
Q" +EO FQ\ T+ 2T =0.

The firgt of t-llese\b\lﬁesacl’s equation and its solutions are

Bossel Functidns.* If we choose the time origin and the

initial line Suditably, the solutions of these equationz are

respectiyely

R=AJL )+ BY (nr), 0= C cos (k8). T'=D cos {cnt),

wlhp% Jofnr) and ¥{n) are Bessel functions. J, is finite
bt ¥ 15 infinite when v=0, so we may usually discard the

S\ .:Y. term. Hence

\

5

R}

[

N t=2n, iJi(nr) cos (k8) cos {enf). . . (10)
n, B
We notice that 2 must be an integer in order that cos (k@)
¥ Whittaker and Watson, Modern Analysis, chap. xvii, and
Ince, Imfegration of Ordingry [Xfferentiol Eguations {2nd edition},
pp. 124-124,
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=cos (k@ +2r); alsoz=0 when r=a, for all values of £ and
g, hence
Tonay—0,

This dotcrmines the values of » permissible for a given
valne of k. BE.g., if k=0, then na/m=.7653, L1.7571,
2.7546,.... We have still to determine the values of the

conetants @y, from the value of 2 at ¢ =0, but this is beyond(" )

the scope of the present book. \
Other wave equations may be treated in a 51mﬂar
manner, PR {4
'\'\
§ 86. Examples )

{1) Find what distribution gives rise Q yBhe potentiala
g == daz /73, ooy = (30 + daz — 3ri)ad, [prg‘,\:'(), Pres = 3/ 2ras,
a=58(2z — a)[2ras.]

(2) A dicleetrie sp‘here (constant] m), which has a point
charge +e atl its centre, is situated, indree space. Show that
Prma =&y ey = (e/e}1fr + {x - I),fq}~%&’h(-¥ra a iz the radius of the
gphers. www dhraulibrary, o1y an

(3} A spherical conductor o radivg o has a charge ¢ and
is situated in free space. Shew that trpg =efr and §, ., = ela.

{4) A condenser cofsists of two coaxial and infinito
cylindrical conductors ai radii ¢ and b, {a = b) which arc kept
at potentials ¢, a d\éb Show that

¢h<r(a —{ﬁl’b 10g = ‘;}u log b 4'(‘350 - ‘35 ) log ?'}.'J(log o~ 10?’_-? b)'

(5) Solve tho cquation - o ?‘Tf _g " gubject to the conditions

Dy = (,47'\;-—0, éyp =sin® (zz/), (—) =0. (This is the pro-
i—n

bles fmdmg the wave motion of & taut string fixed at

tw() snds and initially at rest.)

\ [¢ =23{3 sin (w21} cos (ret/l) — sin (3mwl) cos (3nctfl)]]

ot

(8) The problem of finding the velocity potential due to &
sphere of radius @, moving with velocity IV in a straight line
through a liquid which is at rest at infinity, reduces to solving
v¥¢ =0 under the following conditions (i) ¢ does not involve i,

.. a .
(ii) ¢, =0, {ili) (a—":)’ﬂ: - Feozd, Show that the stream lines

are r=csin®# and that ¢=(¢*V cos 6)/2r3,
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FOUR-DIMENSIONAL VECTORS O\’
o\
§87. T this chapter we shall extend some of ,ﬂ[},c‘ﬂeas
which we have developed in the previous chaptersito the
four-dimensional case. We shall nse rectangdldy Cartesian
coordinates @y, Ty, T, T and take iy, i, 1, 1, toDe unit vectors
in the four coordinate directions. Wesshall use cursive
type to denote a four-dimensional vectd x'or a world vector
as it is sometimes called, so that.df\ the world vector oAd
has components a, ¢y, &3, &4, tht;n:wfa may write

o

ad =a,i, + i a,gi3 +ai,

. . rww dbraulibrary, org.i .
Qince the coordinate &reg:.i; ons aro mutundy perpendicular
we have R, \ N .

i 4,=181 . L=0 (j+),
g0 that

C'A:m?i\:a-lbl—'ra.gbz raghytads. o (L)
Returning forf foyoment to the three-dimensional case, we
remark thagha Xb has three components which are more
accuratc]}i’described by pairs of suffixes than by single
oncs, We'Can write in fact

$
\"\' & Co5 = thably — Aghp = — oy,
{\ ey =M — @by = - Gy,
RN o gp=ayhy —ah = —6yy,

.n\‘;
"\ and arrange the ¢’s as the elements of the anti-symmetric

) 2

\ matrix
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where the element in the jth row and kth column is
e =0:by — by, In an analogous manner we can define
the vector product ed x B of two world vectors as an anti-
symmetric matrix of four rows and columns

g
ed xB= [ . fpp Cyg Cua , . N {2)
€1 - tay Coy 4
Ca1 Gy« €y 'S
< N
i Gap fyp . AN
- | N

and it will be observed that only six of the ¢%§ afe inde-
pendent. 4 x B is not therefore a world vector)

§ 88, The frequent use which we hqvp}aﬁeady made of
the operator ¥ leads us to consider\ the world vector

operator AN\
N R
www;ldﬁg%mtéﬁgi%lﬁ » +1, oy

\ .

If @ be a scalar function o’f*i?;,?xw ¥, ,, then

060, 20, ob, 20
ad @ = Od > + - i o TR T 2
Furth i x"‘(fk Byt Gyt g T B @
urther \\ v
) ~ -
div e 0 g0, 00 Oag B0y
so that <" oy 0Ty 0%y oy

T NEW RV L IR )
C}l{:‘él'ad (I) = qu] = .8&312 + 5:22 —E}xaz + Ei‘;‘z. . (5)

™\ . .
Theexpression for curl e will, however, be an anti-sym-
metric matrix and in fact
»0\; “,’

carled= Oxed=[ . by, by by, (6)
bﬂl - b23 62(
bfil b32 b3=l
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where
bua'_"'—aak a'qi . . . . (7)

- 8331 axy
It follows that all the elements of
curl grad @ = O x { O)

4

are identically zero, just as all the components of yx (TN

are zero. Corresponding to the identity o\
« N\
V-(an}EO: (":g‘
we have four identities '\'“
by by Bby o by Chy 3513 O
Ty Oxg  or, | Oxy E‘:r8 ?
Chgy by Ty g Gy G f»bn\ 8512
Qxy Oy pry a;rl 8:1:2, &g

where bj; is defined by (). dbl‘aulibrary or

Tf wo regard the kth 1wy, bes, kaﬁ)“ of an anti-
symmetric matrix as a woﬂt}vve(tm ‘B, then we can define
0. (0 x e4) as the vcc{or

(0. B, 4 (.\K[;\Bz)inr (0. Byiy+ (. B,
Now the kth cqm\p%nent is
8!’3‘31:\'"2;5;\_-2 T ’_(?b_ka abk‘i

0. B =41 < A
ALy or; 0y C'*r 1

_“\,8_ Oy _ 00z day ity 3 (fay Co
. ;'{\ A oxl) EJ:::2 o arz) ta (aj«k z 1’3)
AN 9 fdm, Ca
* a5

(8al+ca2+8a3+6a4) (8 a,  Pa,  ay Fﬂ%\
o;k O, O, Bxy Omy/ PR Gyt dxgt dul)

axk( ia. C‘/‘I} - Dgﬂ-t.
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Hence
O. (Oxe)=[HO.cNH-D0%A4. . . (B

§ 89. Huclidean geometry requires that the value of
da? + dy? 3 dz*

remaing unaltered if we replace the axes OXYZ by anothen {
unltzuy orthogonal system. The speeial theory of 1elat1vrtg~
is baged on the supposilion that the value of PR

dic? + i + de? — cAde
i invariant under a unltd,ry orthogonal transfmmatmn of
axes. In this last exprebswn t represents the'time and ¢ is
a constant which is identified with the\pelocity of light.
We are thus led to consider a four- dlr@mlona] world with
coordinates R
€y=x, =Y, xa—z, ) 2y =i,
such that
Al =dx,2 +d€f¢&x 2 +dz,2

www.dbraulibrar ¥ 1g.in
In the remaining paragraphs we shall describe how some
of the more important ldws of physics can be formulated in
terms of this four-dimensional coordinate system. Space,
however, does nohpsumlt of more than a cursory investiga-

tion of thcse lQ(

§90. The Jreader who is familiar with the theory of
eIeetrmty\m I recall that in the Lorentz form the equations
of thmlectromagnetm field may be writton ;

\s
‘S;QE“:%,D,. .. (o) VxE=—%dT]?, .. (1D
~"\'"V.B=o, N € b)) VxB_—(4FrJ+a];J>, (13)
V A+ ; OT.E =0, . . (].4:) V L J 4 2? 20, . . (15)

1 A 4
VA-azg =0 (18 vé- “r,? —4mp, . (17)
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where

10a

B=yx4A, ., .

(18) ‘E—~V¢—E-—.

at

127

(19)

The significances of the symbols employed are as follows :

A =vector potential,

¢ = sealar potential,

B =magnetic induction, B =electric intensity,

J = current density,
Evidently we may write (14) and (15) as
O.ed=0, O.7=0

respectively, if we define «4 and § by
ed=d.4) + A3, + A4, +idi,y,

p = charge density.

F= A+ 4, +J 4, +icpd ,‘qj\;rjc.

If b,; are the elementz of the anti-gj@imctric matrix for
O xed, then it is cvident from aquations (18} and (1%),

which define B and E, that N N

by =B, wxgﬂéghﬁhbmy&_g—gg,n

. "Q‘ N N ’ [
614: _-Q.Ex, &2:;': ‘_%Ew; b34= _I-FL'z-
"

Hence N
Oxed= KA B, -8B, -iE,
¢ o\&..}Bz . B, B,
M B -8B, . ik,
The identit"rés (8) now take the form
0; \*;(@E ) 2, 4B rrﬂ (*Lv
oy oz wet k cif £ ;
"\0‘_ (aL )+ (i) . ¢ -B,) _ 1._: CE, _oE,
\/ f Er ot - Ex)
\ 0= a(zﬂ) (?,Ex_)_i_af.?, mn%l:fCL,_CE Y
dr T gy Ticdt \ ez oy
Sfi 6B, BB

C-r * aJ az B.

I+E o |

I oR
o
1 ¢hB,
¢ ot

),
')

188,
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These identities are therefore summed up in the eg
=0, ¢v.B=0,
which are precizely equations (12) and {11},
Houations (16) and {17) may be combined intod!
equation 2 N
d DPed= -7 AN
Since O . ed=0 it follows from (9) that
O. (Oxed) =FN
This is simply a combination of “(i()) and (13) as

now verify.
The divergonce of the firsbrow of Oxedis
INY

O TP | /PN |

B 5~ BaNGy ( ~ A = (VX Bl
The divergenees ShiR SIS g hivd Foe 0

o, 17 1¢
ivx B). - Eﬁfﬂ"’ (vxB):- EEtE"

while Fk@"divcrgence of the fourth is

e ~

’\“ i _G; _a__ _a b o

K {&Efk LB+ B |-iv.E

/By (13) and (10) these are respeetively 4—5.1 o ‘%;J

idsrp, which are the components of 7.

§91. Tn Newtonjan mcchanics we have
=x-Vt, o=y, ==z
where X' Y'Z’ arc axes parallel to OX ¥Z which a
with uniform velocity ¥ in the direction OX relat
fixed axial system OXYZ., For such a transf

however,
d% = ot dyft + A — cPdl?
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is not invariant unless df be zero.  Tn the special thenry of
relativity we use in place of (20} the Lorentz trans-
formation

=5V, y=y 2=z : :a"-"j':__": — e (21

where B=(1 - ¥2/c9)3. Tt may be verified that this trans.

P : TE e SO\
formation leaves di? invariant. If we wrile \\\
da; el . = A
P2=gp BT T N

da’ ey’ , e L& g
o =" = E— A &Y
bx _dta, 1‘&' dtr: .L“’ d‘tm N/
for the components of the velocity of':a!}tﬁox'irng point P

relative to the two axial systems, BJuiy be shown that
v = ylos V) v =B Y v Bl
where y = (l-w, I-",-'.g?}—1w\arw;d‘fni;§‘ulibr‘al'y_or‘g_in
With these formulae, \ﬁe:ﬁ,ﬁd that the law of conscrva-
tion of momentum, evensif' it hold for the axial sy=tem
OXYZ, will not hold ferthe axial system (/' X' Y'Z.  Nineo
a law of nature canpaldepend upoen our choice of the axial

system, we ml1@6(ii£y’ our conception of riomentun
Instead of ta,k.ing

Q7 0 mdy dz
o dee de g
let us tgﬁb”
\J dx  dy dz
R '§ mds’ mdg: mdé’
' \iﬁaﬁ“t-he components of momentum, where
\"

1
Aot =P - eyt ) = L,

Tt s found that wit

: h this definition of maomentum the
a

: law
tonservation of momentum holds good for all a

xial
K

L

4
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gyetems moving rvelative to one another with uniform
velocity.

Now i dx dt di
" dds ot
where
dt d
M =1 == d—i =mf{1l ~2?[c?) =ma,

so that we may use the old definitions of momentum pro’-‘“
vided we replace the rest mass m by the relative mags!
The rest mass m is a permanent constant but the gol&twe
mass M increases with the vclomty v. We obgépye that
M=m when v=0. There is no apprcclable\cfﬂ'er ence
between M and m when the velocity » is fuall compared
with that of light. y
We now consider the momentum w{lﬁ‘ vector

A ) dx
M= m(dllﬁ it . ‘313: @,
wiww dbr atklma iﬁ“&ﬂﬂxaﬂc j

When no external for-{:es."are actmg the first three components
are conserved. On exadthination we find that the fourth is

.. .
also conserved, ¢ '{?;&3 fourth component is temmo OF 1o,

Hence the cehgervation of relative mass is the fourth
component ot the conscrvation of momentum. The con-
servation of bi5g UILphes the conservation of m {1 —e?jc?)t, or
of m(Lge/c®) if © is small compdred with ¢. DBut m is Y
pcr;h@nem constant and so Jme? is conserved, Ilence, for
erdall velocilies », the fourth component of the conservation

of* momentum  reduces to the conservation of Kinetic
./
\¥

S1ergy.

§92. If we define foree as the rate of change of momen-
turm, then the x-component of the foree is

_dy dw ds 4oy _ @ de

£= dl. al,s) " ds) md_s(\d_-s)°
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The world vector representing the foree will he

if v is small compared with e,

work =rate of
eonservation of energy

change of kinetic energy.

d da‘\ d d?l Ldds of i .
’FEu_lm[ dé‘) t dsl ri's.- rr’.s‘l'- dy T
the fourth component of which iz proportional teo e
of change of relative mass. Let the velorty woral e
be dx_ . tlﬂ,f rr’:_ . r!! <\
U= 1; - ‘"\,
Then ds'L T st Ty ar Y
_fdedyde, dydody, dod de i '\I }
@'F"{iﬁﬂél‘-dej s dsds) Tdsds dst T rfm’\ﬁ( ) L
¢ 2 du ezt rr’f \ 4
=1
2 ds'kl\ds, ds) +kda " ifs \
d (H 2 {l
=1 L Wiy Sl
2t d‘gld‘g) h N Vl\
o wwwQ}ﬂ}"ﬁullbr‘al'y.or‘g.ln
=0. ‘::’;w‘
But ,& N
id) dy | 4 2 dt dM
= (Y ds & 3) “s af
af odn Sty e A
o c%% ey
SO \ ’\’,:
P n’J dx d
s/
7 d
vl‘;\\ =dt{m62+?_}me.‘-‘+....),
N
N/

S

(ime?),

That is to BV, vt nf o,
It fnl tws thag gt

thearem ig expressed by the i

.lt-mn_'x'
U =0,
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N
Aceelcration, components of, 37,  Curvature {confd.}— (‘Jg
44, 50 radius of, 21 ’
Angular velocity, 47 spherical, 21 ‘4%
Asymtolic Hnes ; directions, 33 Curves, gcometr}r.ﬁf,,\iﬁ
Axiz, of dipole, 89 Curvilinear intagral] 61

of magnet, 83 \
D’Alembclgfﬁyﬁncipla, 53
Bernouili’s equation, 108 Thclectrid, 87
Besscl's equation ;  functions, cogbtant, 99
121 Dipyldy ¥1, 59
Bigormal, 18 . distributions, 90, 91
Loseoviteh's hypotheais, 45, B8y BF -dimensional, 92
Boundary condttions, 1]4‘?\’]?'&\7,@}?{@%%@{ YoSEsITE
119 O\ Displacement, 99
U8 Digtribution, due to 8 given
Caenonicul equations, 23 A potential, 114
Central axis, 42 N potential due to a given, 83-92
Centrifugal fovee, 50 {"‘,\ Divergencs, 66, 124
Cireulation, 108 € '\"' Doublet, 84
Cowponents, 3 \
Conduction of héas, 117 Electromagnetic cquations, 126
Conduactor, 952, Wicetrostatic problem, 116
Conservatiofhof snergy, 57, 130, Filiptical paints, 38
131 :,\',,.’ Knergy, conservation of, 57, 130,
of mpmeéaturn, 129 14l
Consdrwgtive field, 36
Confimrity equation, 105
Cgbritinatos, eurvilinesr, 26
“seylindrical, 72, 121
J orthingonal, 70
gpherical, 72, 118
Coriolis foree, 50
Coulornb’s law, 83, 100
Caoupls, 40
Curl, £3, 124
Current, 97 . ;
Clurvature, average; (Gaussian, 31  Fourier seres, 117
line of, 30 Frenet's formulae, 19
principal radius of, 30 Fundaemental quadratic forms, 28
133

-

kinetic, 43, 5t
potential, 56
Equipotential surfaces, 93
Fuler’s equations, 52
Buler's hydrodynamical  equa-
tions, 108
Fouler’s theorem, 33

Ficld, line ; tube, 80
of furee, 52
vector, 61
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Clauss’s law, 52
Gauss's theorem, T4
Gradient, 60, 124

Gravitation, Nowton'’s law of,

8.
Cravitational field, 82
(reen’s reciprocal theoramm, 76
Green’s theorsm, 75

Heat, conduction of, 117
Helix, 23
Hyperbolie points, 33

Insulator, 97
Intensity, 83, 98
Intrinsic equations, 22
Trrotetional field, 65

Kepler's second law, 49
Laplace's equation, 85, 111

special solutions of, 117-120
Legendre’s equation ; funetions,
11

Natural equations, 22

Newton's law of gravitation,
83

Newton's laws of motion, 37,
43

Operator, “¥,” 60, 68, 69
0, 124
QOrihooentrie tetrahedron, 13 /A
Osculating plane, 17 ¢\
NS *
Parabolic points, 33 ¢ ™
Paraboloid of rev olumcmf, 34
Paraliclogram law, i, 37
Parametric Lmefs,'ﬁﬁ
Piteh, 42
Pl&nc cqua,tlon of a, 12
Poinsot’s scmtbral axis, 42
Poisson’ssgruation, 35
Pola;m&ﬂ.rtlon, 98
Paositiom vector, 11
Potential, 78
Hue Lo a dipole, 59
tlue to a magnetic shell, 91

Longth of a,\n(:wmﬁlbraullbrary m'g idue te a source, 58

Line, cquation of a, 11 O

mt.egru.l 61 RN

of curvature, 30 N
Laoealised vector, 38 4
Loreniz equ.a.tlons L2B\
Lorentz transformation, 129

Magnetic, pa.rtmla\, 83
ahell, 91
Mass, u,ntrQ, 42
relativé Hrest, 130
\Iausmelxg theorem, 30
Mommt of a couple, 40
ideriia, 51-54

.f\ n magneh, 33

y of momentuon,
b4
of a vector, 38
Mormentum, 37, 44
congervation of, 129
moment of, 44, 45, 31, 54
Motion,
52

Newton's laws of, 37, 43
Moving axes, 47-52
Moving trihedral, 19

44, 45, 51,

equations of, 37, 46,

due to speclal distributions,
48.92
due to a vortex filament, 108
electrostatic, 79
evaluation of, 116-120
gravitational, 79
magneatic, T4
of & conductor, 37
properties of, 113
vector, 96
veloeity, 79
Prineipal, axes, 54
dirccetions, 30
normal, 18
Products, of inertia, 51-54
of vectors, 5-9, 123, 124

Relative mass, 130
Relativity, 126, 129
Rest mass, 130
Resultant, 2

Sealur, 1
produet, §, 123

Rink, 81

Holencidal, 68
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Bonree, 81
distributions, 84, 88
strength, &2
two-dimensional, 92
Stationary field, 80
Steardy feld, 30
&tokea's theorem, 74
Btream lines, 50, 102
Btrength, of & source, 52
of a tube, 81
Sum of veciora, 2
Qurluce, distributions, #35, 89,
a1
ntogrul, 65
Burfaces, geometry of, 20

Tangent, 17
plane, 27
Taraion, 20
I'riple products, 8, 9

Uniqueness theorem, 112
Vnit, binormal, 19

Tnit (eontd.}—
principal normal, 19
tangont, 17
tubs, 81

Vector, 1
field, 61
localised, 38
potential, a4
produet, 6, 124

potential, 78

wveebor, 61, 78, 82, 102 .,::‘\s
Virtual work, 55 3
Yolume disbributiona,‘@ 8, 90
Vortex lines, 102\
Vorticily, 62, 14 7

Wave equzLLLQl\\,l il
WWork, 55 .’(,
World g(eebqr, 123
Wrendh,\¢B

g 3

»
Zeid, w;:ectnr, 1

W \a\r_(izatf'éu! ihrary.org.in
e

line, 31
N
N\
N\
¢ N/
)
L)
o N/
N\
»O
O
&
Nl
™
AN
N
o’

A s
o™

\\a

o
R\

X

O

Valocity, components of, 37, 40\
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