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Detailed Project completion Report 

1. Title of the Project: Study of Quantum Neural Network (QNN) for 

Pattern recognition. 

2. Department Involved: Department of Computer Science 

3. Name of the University Involved: Dr. B.R. Ambedkar University Agra 

4. Mob. No. 9319102434 

5. Date of Implementation:01/07/2015 

6. Objectives Originally Proposed and Approved: 

In view of the  new emerging  fields of Quantum Computation [1], Artificial intelligence [2], 

Quantum Information Processing [3], Entanglement [4] and Distillation of Quantum states [5], 

Purity and Fidelity of Quantum Channels [6],Quantum Dense Coding [7] and  Quantum 

Cryptography [8], the main objective of the proposed study in this projecthas been to use the 

orthonormal complete set of our newly discovered Maximally Entangled States ( Singh-Rajput 

MES) [9] for developing the consistent and reliable theory of Quantum Neural Network (QNN) that 

can give us completely new computational capability for tackling problems which cannot be solved, 

even in principle, by using classical ArtificialNeural Networks (ANN).It was proposed to work out 

the correspondence between evolution of these maximally entangled states ( Singh-Rajput MES) of 

two-qubit system and representation of SU(2) group, and to investigate the evolution of MES under 

a rotating magnetic field. The investigation of the role of entanglement in QNN through these states 

was also proposed. It was also proposed to develop the appropriate operators, entangled states and 

quantum associative memory (Qu-AM) for pattern recognition, pattern classification, pattern 

association, pattern recall, pattern completion and competitive learning in QNN. It was proposed to 

achieve the amalgamation of intelligence calculation (soft calculation), evolution calculation and 

quantum calculation and the simulation on QNNs to determine theirarchitecture, function and 

enormous computational power over their classical counterparts (ANNs). 

We also proposed to extend our earlier work [10,11] on hybrid evolutionary neural network to 

develop a hybrid quantum neural network (HQNN) model based on quantum neurons and traditional 

neurons where network will include three layers: input layer composed of traditional neurons to 

receive input information; hidden layer composed of quantum neurons (qubits) to extract pattern 

feature of input information and transform them to output layer; and output layer composed of 

traditional neurons to export calculation results. In this model the weightings of output layer will be 

rectified by back propagation algorithm of Hopfield model and those of hidden layer will be rectified 

by a group of quantum gates. It was proposed to design a learning algorithm for this model and to 

illustrate the availability of the model and algorithm by applications in pattern recognition and 



functional approximation. We also proposed to develop quantum genetic algorithm (QGA) in QNN 

and to carry out the study of its application in blind source separation (BSS) by using the methods of 

qubit crossover and qubit rotation strategy. It has been proposed to apply this algorithm to 

combinational optimization problem of QNN, Pattern Recognition, Functional Approximation, and 

Pattern Storage and for efficient Pattern Recalling. 

It was also proposed to develop QNN with some speculative physical systems like quantum dots.  

Assembling XOR along with single qubit operations for the system of quantum dots, it was proposed 

to use these qubits to prepare the maximally entangled states by the method of inclusion, exclusion 

or phase inversion and to use these maximally entangled states in the theory of QNN. We also 

proposed to use Majorana fermions to encode quantum information in QNN in a way to solve the 

problems of dogging quantum computing (destruction of current carriers of quantum bits by small 

disturbance from local environment). It is also proposed to explore the Implementation of Universal 

quantum Perceptron model for generalize pattern classification. 

7. Achieved Objectives 

We have recently explored [12] the entanglement as one of the key resources required for quantum 

computation and quantum neural networks [QN], established the functional dependence of the 

entanglement measures on spin correlation functions, worked out the correspondence between 

evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) 

group, and investigated the evolution of MES under a rotating magnetic field. Necessary and 

sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have 

been obtained and a new set of MES (Singh-Rajput MES) [9]constituting a very powerful and 

reliable Eigen basis (Singh-Rajput Eigen Basis) (different from magic bases) [13] of two-qubit 

systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been 

generated and all the Q-bits of two-qubit system have been obtained.  It has been shown that such a 

MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory 

connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic 

field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional 

rotation in real space leading to the evolution of a MES.  We have also performed [14,15,16] the 

pattern association (quantum associative memory) and  pattern classifications [17, 18,19] by 

employing the method of Grover’s iteration [20]  on Bell’s MES and Singh-Rajput MES in two-

qubit system and demonstrated that for all the related processes (memorization, recalling, and pattern 

classification) in a two-qubit system Singh-Rajput MES provide the most suitable choice of 

memory states and the search states. Using Singh-Rajput MES as memory states in the evolutionary 

process [20]of pattern storage and the evolutionary as well as  non-evolutionary processes of pattern 



recall (the two fundamental constituents of QuAM) [21],  the suitability and superiority of these 

MES over Bell’s MES have been demonstrated [16,17] in both these processes.  The whole work 

carried out in the project period may be classified in the following sections. 

A) NECESSARY AND SUFFICIENT CONDITIONS FOR A TWO-QUBIT 

STATE   TO BE MAXIMALLY  ENTAINGHLED  STATES (MES) 

Starting with the theoretical basis of quantum computing, entanglement has been explored as one of 

the key resources required for quantum computation, the functional dependence of the entanglement 

measures on spin correlation functions has been established and the role of entanglement in 

implementation of QNN has been emphasized [12].  It has been shown that the degree of 

entanglement for a two-qubit state depends on the extent of fractionalization of its density matrix 

and that the entanglement is completely a quantum phenomenon without any classical analogue. A 

reliable measure of entanglement of two-qubit states has also been expressed in terms of concurrence 

[22,23] and it has been shown [12] that in a free two-qubit system the states with both combinations 

of parallel spins ( i.e. states with maximum Hamming spread) are definitely maximally entangled 

states (MES) while among the states with minimum Hamming spread, those with both anti-parallel 

combinations are MES and those with one combination of parallel spins and other with anti-parallel 

spins are not entangled at all. 

 It has been demonstrated [12] that the general two- qubit state 
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Thus we got the following two sets of MES: 
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 On Substituting (                                            , the 

following Bell states (i.e. magic bases) may readily be obtained from the state      of equation (2): 
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which are  well known maximally entangled orthonormal states constituting magic eigen basis 

[13].Other maximally entangled two-qubit states which form the orthonormal complete set (i.e. 

eigen basis) may be obtained as follows by putting              in state      of equation 

(2.16) and          in state      of equation (2); 
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The concurrence for each of these states is unity and these states constitute the orthonormal complete 

set since 

             

and∑         
 
      

Thus the set of Bell states is not the only eigen basis (magic eigen basis) of the space of two- qubit 

system but the set of MES given by eqns. (5) also constitute a very powerful and reliable eigen basis 

of two-qubit systems. This is the new eigen basis and to differentiate it from the already known 

Bell’s basis we have designated it as Singh-Rajput basis for its possible use in future in the literature. 

The MES constructed in the form given by eqns. (5) have been correspondingly labelled as Singh-

Rajput states. In this new eigen basis, various qubits of two-qubit states have been written as: 
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and accordingly the Bell states have beenconstructed as follows in this new basis; 
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It has been demonstrated that any of these new maximally entangled states (Singh-Rajput MES) 

corresponds to a point in the SO(3) sphere, an evolution of MES corresponds to a trajectory 

connecting two points, and the initial state            locates the centre of the SO(3) sphere.Thus 

entanglement has been explored as one of the key resources required for quantum computation, the 



functional dependence of the entanglement measures on spin correlation functions has been 

established, and  correspondence between evolution of MES of two-qubit system and representation 

of  SU(2) group has been worked out in the new eigen basis (Singh-Rajput eigen basis). Analysing 

the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating 

magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a 

MES.Analysing the role of entanglement in implementation of  quantum neural networks  (QNN)the 

correct computation of   XOR function has been carried [12]out in neural network and it has been 

shown that QNN requires the proper correlation between the input and output qubits and the 

presence of appropriate entanglement in the system guarantees this correlation.It has been 

emphasized that the newly constructed maximally entangled two-qubit states (Singh-Rajput MES), 

constituting new eigen basis,  may be the most appropriate choice for utilizing entanglement in 

quantum neural computation. It has been shown that in quantum approach to neural networks all 

patterns can be stored as a superposition, where each of the patterns can be considered as existing in 

a separate quantum universe .It has also been shown that in neural networks the integrity of a stored 

pattern (bases states) is due to entanglement and the quantum associate memory (Qu AM) is the 

realization of the extreme condition of many Hopfield networks each storing a single pattern in 

parallel quantum universes. 

B) PATTERN CLASSIFICATION IN TWO-QUBIT AND THREE- QUBIT 

SYSYEMS 

Pattern classifications have been performed [17,18] in the straight forward approach employing the 

method of Grover’s iterate [24 ] on Bell’s MES  [25] and Singh-Rajput MES in two-qubit system. It 

has been demonstrated that none of the maximally entangled Bell’s state is suitable for correct 

pattern classification of the point 0? ( where ? stands for 0 or 1) upon measurement  of two-qubit 

system on various iterations of Grover’s search  while the first two maximally entangled states of 

Singh-Rajput basis, given by eqns. (5), are the most suitable choice for the desired pattern 

classification. It has also been demonstrated that any of the other two maximally entangled states of 

Singh-Rajput basis (third and fourth MES) is the most suitable choice as search state for the desired 

pattern classification ‘1?’ based on Grover’s iterative search algorithm in two-qubit system while the 

probability of correct desired pattern classification in this case also never exceeds the limit of fifty 

percent when any of the Bell’s maximally entangled state is chosen as search state. Performing 

pattern classifications of points ‘00’ and ‘11’ respectively based on Grover’s iterative search 

algorithm, it has been demonstrated that for any pattern classification in a two-qubit system the 

maximally entangled states of Singh-Rajput Eigen basis provide the most suitable choice of search 

states and in no case any of  Bell’s states is suitable for such classifications.  



After constructing the maximally entangled states, the pattern classification has been performed in 

straight forward approach employing the method of Grover’s  iterate which is described  as a  

product of unitary operators  ̂ ̂ applied to quantum state iteratively and probability of desired result 

maximized by measuring the system after  appropriate number of iterations. Here the operator ̂ is 

phase inversion of the state(s) that we wish to observe upon measuring the system. It is represented 

by identity matrix I with diagonal elements corresponding to desired state(s) equal to -1 and the 

operator  ̂ descried as an inversion about average: 
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For a Two qubit system we have 
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Wehave  found the probability of observing the correct classification of the point ‘0?’, where ? 

denotes 0 or 1, upon measurement on each iteration of Grover’s search applied to given state. 

 For the given search point the involved qubits are      and      and therefore the phase 

inversion operator   ̂is given by 

 ̂=[

     
     
    
    

] 

Thus we have the following iteration operator 

 ̂    ̂  ̂=
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]                                                        (9) 

The first iteration of state       of eqns. (5) by operator  ̂ leads to the pure state      with the 

following probabilities of desired classification; 

                                  

where    and     are the probabilities of correct classification (00) and incorrect classification (01), 

respectively;P is  total probability of the classification ‘0?’,  

                ; 

   is the  probability of irrelevant classification ( other than that in which we are interested); 

and        is the conditional probability (if the desired pattern is classified then the probability that 

the classification will be the correct one)  



      
  

     
 

Second iteration of state       by operator  ̂  leads to the second MES       with reversed sign, 

of Singh-Rajput basis. It gives the following probabilities of desired classification; 

                                              

Third iteration leads to the pure state -     with the following probabilities of desired 

classification; 

                                  

Fourth iteration restores the state      and the same periodicity is repeated in further iterations. 

Thus on the third iteration the first state of Singh-Rajput basis gives the 100% probability of the 

correct pattern classification with the 0% probability of irrelevant classification (other than that in 

which we are interested).Though the probability of correct classification on first iteration is zero but 

the total probability of classification of the desired pattern ‘0?’,        is hundred percent and 

the probability of irrelevant classification is zero percent. 

The similar periodicity of probability of desired pattern is observed by choosing the second 

maximally entangled Singh-Rajput state      with the hundred percent probability of correct 

pattern classification after the first iteration and hundred percent total probability of classification of 

the desired pattern and zero percent probability of irrelevant classification after the first and third 

iterations.  

It shows that these states      and      of Singh-Rajput basis are most suitable choice for desired 

pattern classification     for a two-qubit system. 

On the other hand, if      and      of eqns. (5) are chosen as the search states then also the 

behaviour of probabilities after third iterations is repeated periodically but the probability of correct 

classification never exceeds beyond 25% and the total probability of desired classification does not 

exceed beyond 50% while the probability of irrelevant classifications never falls below 50%. Thus 

these states are not good choice as search state for the desired pattern classification ’0?’ in two-qubit 

system. The comparative periodic behaviours of probability    of correct pattern classification on 

different iterations of all the maximally entangled states of equation (5) are shown in figure-1 where 



red line is for     , blue for      and green and violet for     ,      respectively.

 

Figure-1: Probability of Correct Classification ‘0?’for Singh-Rajput States 

On the other hand, it has been shown that the probability of correct pattern classification based on 

any of Bell’s state does not exceed the limit of fifty percent on any number of iterations and hence 

these states (Bell’s states)are not the suitable choice as search state for the pattern classification 

based on the Grover’s iterative search algorithm for a two-qubit system. 

We have also classify the pattern ‘00’ i.e. the pure state, based on Grover’s iterative search algorithm 

by using Singh-Rajput MES. For this classification the following inversion operator and the iteration 

operators have been obtained as 

 ̂ =[
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]                                                                                 (10) 

respectively. It has been demonstrated that state      of eqns.(5) gives hundred percent probability 

of correct classification on second and fifth iterations by the operator of eqn. (10) and hence the 

choice of the  first state      of Singh-Rajput basis as the search state is most suitable for the 

desired classification of the pattern      . On the other hand the probability of the correct desired 

pattern classification is not better than 25% with any other state of Singh-Rajput basis. In our 

attempt to classify the point ‘00’ i.e. the pure state, based on Grover’s iterative search algorithm by 

using any of the Bell state constituting the so called magic basis, we find that the probability of 
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correct pattern classification does not exceed beyond fifty percent on any number of iterations and 

hence Bell states are not the suitable choice for the classification of this pattern also. 

We have also classified the pattern ‘1?’ (where ? is 0 or 1) based on Grover’s iterative search 

algorithm by using our  new maximally entangled states. The inversion operator and the iteration 

operator for this case have been respectively obtained as follows 

 ̂ =[
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and  
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The first iteration of this operator on the maximally entangled state      of eqn. (5) has been 

shown to give hundred percent probability of correct pattern classification ‘11’ and the zero percent 

probability of irrelevant classification while the third iteration gives the hundred percent total 

probability of the desired pattern classification. On the fourth iteration the state     is restored and 

the same periodic behaviour is repeated in the further iterations. 

 

Choosing the fourth maximally entangled state      of eqns. (5) as the search state,it has been 

shown that the first iteration by operator  ̂  gives the hundred percent total probability of the desired 

classification and the third iteration gives the hundred percent probability of correct pattern 

classification ‘11’ and the zero percent probability of irrelevant classification. 

Thus these two maximally entangled states     and      of Singh-Rajput MES are the most 

suitable choice as search state for the desired pattern classification ‘1?’  based on Grover’s iterative 

search algorithm in two-qubit system. It has also been shown that the probability of correct pattern 

classification never exceeds the limit of fifty percent when any of the Bell’s maximally entangled 

state is chosen as search state. It has also been shown that the most suitable choice for the desired 

pattern classification ‘11’, based on Grover’s iterative search algorithm, is the fourth maximally 

entangled state      of Singh-Rajput eigen basis for a two-qubit system. 

In an attempt to make the practical applications of our results of pattern classifications in two-qubit 

system based on our new maximally entangled states, we have very recently undertaken [26 ] the 

study of the classification of Apples and Oranges in a warehouse in the framework of quantum 

neural network (QNN) in a two- qubit system using the method of repeated iterations in Grover’s 

algorithm [20] and the algorithm of Ventura [27] and taking different superposition of two- pattern 

start state containing Orange and Apple both, one- pattern start state containing Apple as search state 



and another one- pattern start state containing Orange as search state.Basic idea of Grover’ algorithm 

is to invert the phase of the desired basis state and then to invert all the basis states about the average 

amplitude  of all the states. The number (r) of times the classification will have to be repeated in 

Grover’s method in a 2- qubit system is r= 
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, where   =4. It gives         

 On the other hand Ventura algorithm may be written for the present case in the following simplified 

manner; 

|      ̂   ̂  |   

                   Repeat 
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and  take | ̂     ̂  |   

for measuring the probability of desired classifications where |   is the search state ( stored data 

base),   inverts the sign of the pattern to be classified,     inverts the signs of all patterns in the 

stored data base and the operator  ̂ is given by eqn. (8).Applying Grover’s algorithm and Ventura’ 

method on all the possible superposition as the search states obtained for one-pattern start states 

consisting of the patterns corresponding to Apples and Orangs respectively, It has been  shown that 

the superposition of phase-invariance are the best choice as the respective search state in both 

Grover’s and Ventura’s methods of classifications of patterns. These states respectively are identical 

to the third and fourth states       and           of Singh- Rajput MES (maximally entangled 

states) Thus  it has been demonstrated that any of the maximally entangled states      and      of 

Singh-Rajput basis is the most suitable choice as search state for the desired pattern classification 

‘1?’ (Apples and Oranges ) based on both of  Grover’s iterative search algorithm and Ventura’s 

repeated search algorithm in two-qubit system. 

Based on our foregoing analysis of the pattern classifications in a two qubit system using Grover’s 

iterative search algorithm and Ventura’s repeated search algorithm separately, it has been concluded 

that: 

i) First two states      and       of our new MES (Singh-Rajput MES) are the most suitable 

choice as search state for the correct classification of the patterns      where the symbol ‘?’ 

denotes 0 or 1. 

ii) Last two states      and      of our new MES are the best choice as search state for the 

correct classification of the patterns      

iii) Our first MES      is the best choice as the search state for the correct classification of the 

pattern     and our second MES     is the most suitable choice of the search state for the 

correct classification of the pattern     



iv) Our fourth MES     is the best choice as search state for the correct classification of the 

pattern      while our third MES      is the most suitable choice of the search state for 

the classification of the pattern      

Applying the method of Grover’s iterate on three different superposition in three-qubit system, it has 

been shown [17 ] that the choice of  exclusive superposition, as the search state, is most suitable one 

for the desired pattern classifications based on Grover’s iterative search algorithm. Starting with the 

set  
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the superposition of inclusion, exclusion and phase invariance for a three-qubit system have been 

respectively constructed as 
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For the classification of the pattern      , where the symbol ‘?’ stands for 0 or1,the operator of 

phase inversion of the states that we wish to observe has been constructed as 

 ̂= [
     
    

],                                                                                                             (12) 

where    is unit matrix of order    ,     is unit matrix of order    ,   is null matrix of order   

  and   is the  null matrix of order 6    The operator  ̂ describing an inversion about average, has 

been obtained as:   
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where                            with i,j=1,2-----------8 

Then the operator for Grover’s iterations has been derived as 
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Iteratively applying this operator on all superposition given by eqns. (11) the probabilities of correct 

classification of pattern      , desired classification of pattern       and irrelevant 



classification (other than that in which we are interested) in all cases have been calculated and  the 

comparative probabilities  have been plotted as the graphs of probability versus number of iterations 

in the following form: 

 

 Fig. 2: Probability of Correct Classification ‘000’ for Three Different Superpositionwhere 

blue line is for the state │        red line for       and green line for│      

which shows the superiority of the search state |       for the desired pattern classification, 

 

Figure-3: Total Probability of Desired Classification ’00?’ for Three Different Superposition, 

This shows the highest total probability (83%) of desired pattern classification after first and fourth 

iterations of the superposition │       
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Figure-4: Probability of Irrelevant Classification for Three Different Superposition 

This is showing that the probability of irrelevant classification falls to the lowest value of 16.7% on 

first and fourth iterations of │     . All these graphs shows that  if the measurement is made after 

four iterations the choice of the superposition│       as the search state is most suitable for the 

desired pattern classification based on Grover’s iterative search algorithm. 

In our attempt of pattern classification of the point ’11?’, where the symbol ‘?’ denotes 0 or1 with 

the correct classification as ‘111’, we obtained the phase invariance operator and the iteration 

operator for Grover’s algorithm as  

 ̂= [
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and                       ̂  
 

 

[
 
 
 
 
 
 
 
          
           
           
           
           
           
         
         ]

 
 
 
 
 
 
 

                   (15) 

It has been interesting to note that results of different number of iterations of this operator on 

different superposition given by eqns. (11) are the same as those shown in figure-2 to figure-4 for the 

search of pattern ’00?’ and in this case also if the measurement is made after four iterations the 

choice of the superposition │       as the search state is most suitable for the desired pattern 

classification based on Grover’s iterative search algorithm for three-qubit systems. 
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 In our attempt to demonstrate the practical applications of our results of pattern classifications 

for three-qubit systems, the study of the classification of Apples and Oranges in a warehouse has 

been undertaken [ 19 ] using Grover’s method [24] of repeated iterations and Ventura’s algorithm 

[27] separately.  In this warehouse the dealer wants a machine with a set of sensors, which measures 

three properties (parameters) of the fruit: shape, texture and weight: 

         P= ⌊
     
       
      

⌋ 

 The sensor with output as the shape will give 1 if the fruit is round and 0 if it is elliptical. The 

texture sensor will give the output 1 if it is smooth and 0 if it is rough and the weight sensor will give 

the output 1 if weight of the fruit is greater than 1 pound and 0 if weight is less than 1 pound. 

Therefore, a prototype Orange would be represented by the pattern 

  =⌊
 
 
 
⌋ or |100> 

and a prototype Apple would be represented by the pattern 

  =⌊
 
 
 
⌋ or |110>.                                                                                    

Based on minimum Hamming distance the patterns |000>, |001>, |100> and |101> belong to the class 

   containing |100> (Orange) and other patterns of the usual three qubit system i.e. |010>, 

|011>,|110> and |111> belong to the class    containing  |110>(Apple). We have found the 

respective probabilities of classifications of Apples (pattern      and Oranges (pattern   ) separately 

by using Grover’s algorithm and Ventura’s respectively. 

 Operator describing an inversion about average has been constructed as the following  square matrix 

of order eight 
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The phase inversion operators and corresponding iteration operators for patterns separately 

representing Apples and Oranges have been derived and various possible superposition as the choice 

for search states for the classification of these patterns have been obtained for starting states 

consisting of two patterns and a single pattern respectively.  For the classification of pattern   , 

representing Apple, the phase inversion operator ̂has been obtained in terms of the following matrix 
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Using relations (15a) and (15b), we get the following iteration operator of the method of  Grover’s 

repeated iterations for classification of the state |110> (Apple): 
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For the starting states consisting of patterns    an     , the three possible superposition have been 

constructed as  
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Applying the iteration operator, given by eqn. (15.c), separately on these superposition repeatedly, 

the probabilities of correct classification of the pattern           , incorrect classification of  other 

patterns in class    of pattern    and irrelevant classification (other than that in which we are 

interested i.e. the patterns not belonging to class   ) respectively and the total  probability of desired 

classifications and the conditional probability of correct  classification of the pattern    have been 

evaluated and systematically tabulated.The comparative periodic behavior of probabilities of correct 

classification of pattern     (Apples)for all the three superposition|      ,  |       and 

|     respectivelyas the search state in the method of Grover’s repeated iterations is being  shown 

in the following Fig-5 



 

Figure-5: Probability of Correct Classification of ‘Apple’ for Three Different Superposition  

 

 It is observed that the probability of correct classification never exceed  the limit of 56% in case of 

inclusion│     and Phase inversion│     , whereas in the case of exclusion this probability 

reaches up to 84%  in second iteration. Thus the choice of inclusion superposition│      and phase 

inversion superposition │     as the search state for the desired pattern classification based on 

Grover’s iterative search algorithm are not suitable, whereas the choice of │     as search state 

for the desired pattern classification based on Grover’s iterative search algorithm is most suitable if 

the measurement is made  after second iteration. 

The comparative periodic behavior of probability of irrelevant classifications of pattern     for all 

the three superposition |      ,  |       and |     respectivelyas the search state in the 

method of Grover’s repeated iterations is  shown in following Fig-6.  
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Figure-6: Probability of Irrelevant Classification for Three Different Superposition 

It shows that the probability    of the irrelevant classifications is as high as 87% on first and ninth 

iterations if the superposition  |       is chosen as the search state in the method of Grover’s 

repeated iterations for pattern classification. In the case of superposition  |      this probability of 

irrelevant classifications is more than 87.5% on third and eleventh iterations. In view of such high 

possibilities of irrelevant classifications none of these superposition, |       or  |      is 

suitable as the search state for the requisite pattern classification. On the other hand, when the 

superposition |       is chosen as the search state in the process of pattern classification based on 

Grover’s algorithm, the probability of irrelevant classifications never exceeds 71% and it is lowest 

(negligibly small) on second iteration ( when the probability of correct pattern classification is 

maximum). Thus the superposition   |         is the most suitable choice as  a proper search state 

for the correct classification of the pattern      on second iteration in the method based on Grover’s 

algorithm.  

All these probabilities of classification of  Patten |    (corresponding to Apples) have  also been 

calculated for all the possible superposition with one-pattern start-states  consist of the patterns 

corresponding to Apples and Oranges respectively. Analyzing these results and also their graphical 

comparative behavior, it has been shown that the superposition of exclusion is the most suitable 

choice as the search state for classification of Apples by using the Grover’s algorithm of repeated 

iterations. All these probabilities have also been evaluated for the classification of pattern    

(Oranges)i.e. |    and it has been shown that on second iteration of the superposition of exclusion  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RES1 RES2 RES3 RES4 RES5 RES6 RES7 RES8 RES9

exclude

include

PHI



by the corresponding iteration operator the pattern              is  also most suitably classified  

using the Grover’s algorithm with two- patterns and one-pattern start states.  

The probabilities of classifications of pattern   (Apples), on using Ventura’s algorithm [27] for all 

the possible superposition as the search states, have been calculated and compared with those of  

Grover’s algorithm and it has been demonstrate that in general for classification of a given pattern 

(Apples) in 3-qubit system the Grover’s and Ventura’s algorithms are effective in the cases where 

the number of  patterns in the stored data base  are larger or smaller respectively. It has been shown 

that in a 3-qubit system the maximum probability in Ventura’s algorithm is not obtained in the case 

when the number of stored data    
 

 
      as claimed in an earlier paper [28].  It has also 

been shown that in Grover’s method with any superposition as the search state in a 3-qubit system 

the probability of classification of the desired pattern for the unknown process (when desired pattern 

does not belong to the stored data base) is always more than that for the known process (when the 

pattern to be classified belongs to the stored data base).   

Carrying out the classification of pattern in a two-qubit system by separately using Grover’s and 

Ventura’s algorithm on different possible superposition it has been shown that the exclusion 

superposition and the phase-invariance superposition are the most suitable search states obtained 

from two-pattern start-states and one-pattern start-states, respectively, for the simultaneously 

classifications of patterns. The higher effectiveness of Grover’s algorithm for large search states has 

been verified but the higher effectiveness of Ventura’s algorithm for smaller data base has been 

contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not 

present in the concerned database) are classified more effectively than the known ones (present in 

the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-

Rajput MES obtained from the corresponding self-single-pattern start states are the most suitable 

search states for the classification of patterns |00>, |01>, |10> and |11> respectively on the second 

iteration of Grover’s method of the first operation of Ventura’s algorithm   

C) PROCESSES OF QUANTUM ASSOCIATIVE MEMORY (QuAM) THROUGH NEW 

MAXIMALLY ENTANGLED STATES (SINGH-RAJPUT MES)  

Keeping in view that the Quantum Associative Memory (QuAM) is an important tool for pattern 

recognition, intelligent control and artificial intelligence, we have used our new maximally entangled 

states( Singh-Rajput MES) [9] as memory states in the evolutionary process of pattern storage [14,16] 

and the non-evolutionary as well as evolutionary processes of pattern recall [20] (the two fundamental 

constituents of quantum associative memory) and demonstrated the suitability and superiority of these 

MES over Bell’s MES. It has been shown that, under the operations of all the possible memorization 

operators for a two-qubit system, the first two states of Singh-Rajput MES are useful for storing the 



pattern      and the last two of these MES are useful in storing the pattern      while Bell’s MES are 

not much suitable as memory states in a valid memorization process. The recall operations have also 

been conducted by separately choosing Singh-Rajput MES and Bell’s MES as memory states for 

possible various queries and it has been shown that in each case the choices of Singh-Rajput MES as 

valid memory states are much more suitable than those of Bell’s MES. The brief account of this whole 

work, carried out on the processes of quantum associative memory by using our new maximally 

entangled states, is being given in the following subsections: 

i) Process ofPattern Memorization (Storage of Patterns): 

 The key operator in the Pattern Storage process (memorization operator) is  
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where                                      . 

It is obviously a unitary operator and hence the storage segment of QuAm through this operator is an 

evolutionary process. This evolutionary nature of storing process is necessary for  the system to  

maintain  coherent superposition that represents the stored patterns.  

    For different values of p this operator has been written as  
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Each iteration makes use of different  ̂  and results in another pattern being incorporated into the 

quantum system. Applying the operator  ̂  on our new MES given by eqns. (5), we got 
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where none of the  states    
      

  ,    
   and    

   is entangled at all. Thus themaximally 

entangled nature of Singh-Rajput MES are completely lost after the operation of the operator  ̂  and 

the magnitude of any pattern is not modified (except the phase change) as per requirement of the 

recalling process of QuAM in any state.These results show that the operator  ̂   is not suitable for 

storing ( i.e. memorizing) Singh-Rajput MES as valid memory states. 

With  memorising operator  ̂  we got 

 ̂                                            
     

 ̂                                           
     

 ̂                                          
     

 ̂                                           
                                        (18) 

We found that all the resulting states    
       

       
      and    

    are entangled (though 

not maximally entangled).  Here we observed that  the coefficient of pattern      is increased and 

that of pattern      vanishes by the operations of the memorization operator  ̂  on the first and 

second states,      and     ,  while its operation on the last two states     and      enhances 

the coefficient of pattern      and makes the coefficient of the pattern     vanishing. Thus with 

the memorization operator  ̂  the choice of states      and      of Singh-Rajput MES as memory 

states may be useful in storing the pattern      in QuAM while that of states      and      may 

be found useful in storing the  pattern     . 

Applying the memorising operator  ̂  on our new MES we got 

 ̂                                                         
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 We found that all the resulting states    
        

        
     and    

     are maximally 

entangled with enhanced coefficient of pattern       in memorised  states    
           

      

and the enhanced coefficient of pattern       in the memorised states    
     and    

    . Thus 

with the memorization operator  ̂  also the first two states of Singh-Rajput MES may be useful for 

storing the pattern       while the the last two states of these MES are useful for storing the 

pattern     .  

With memorising operator  ̂  we got 

 ̂                                                       
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     ,                                                            
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          (20) 

We found that the resulting memorized states    
       

       
    and    

    are all partially 

entangled with the enhanced value of coefficient of pattern      in the first two memorized states 

and the enhanced value of coefficient      in the last two memorized states. Thus with the 

memorization operator  ̂  also the first two states of Singh-Rajput MES are useful for storing the 

pattern       and the  last two states of these MES are suitable for storing the pattern    . 

On applying the memorization operators of eqns. (17) on Bell’s MES, given by eqns. (4), we got  
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where first two of eqns. (21) show that the memorization operator  ̂  transforms the first two states 

of Bell’ MES in to third and fourth states respectively without any modification in the coefficient of 

any of the patterns in the superposition but inducing the patterns which were not present in the 

original states. The last two of the eqns. (21) show that this memorization operator creates two new 

states    
      and    

      none of which is entangled at all and hence the operator  ̂  is not the 

suitable choice as memorization operator for Bell’ MES as memory states. Other sets of eqns. (22-

24) show that all the other memorization operators  ̂   ̂  and ̂  of eqns. (17) enhance the 

coefficients of the pattern      when first two of Bell’s MES are chosen as memory states while 



these operators enhance the coefficients of pattern      in the last two of Bell’s MES but in each of 

the modified states   
     

   and   
   for            a new pattern, not present in the initial memory 

state as any of Bell’s MES, is created as the spurious or fictitious memory and hence the Bell’s states 

are not suitable as memory states for memorization process (storage algorithm) of QuAM. 

Thus carrying out the storage element of QuAM by applying all possible memorizing operators for a 

two qubit system on Singh-Rajput MES one by one, the corresponding sets of modified memorized 

states have been obtained and it has been demonstrated that under the operations of all the possible 

memorization operators for a two-qubit system the first two states of Singh-Rajput MES are useful 

for storing the pattern      and the last two of these MES are useful in storing the pattern        It 

has also been demonstrated that Bell’s states are not suitable at all as memory states for 

memorization process (storage algorithm) of QuAM. 

 

ii) Process of Pattern Recall 

In the case of storage algorithm evolutionary processes are a necessity since the system must 

maintain a coherent superposition that represents the stored patterns. On the other hand requiring the 

recall mechanism to be evolutionary seems to limit the efficiency with which the recall may be 

accomplished, since the pattern recall mechanism in the QuAM requires the decoherence and 

collapse of the wave-function of the system. We have carried out [20] the process of pattern recall by 

using our new MES [9] in both approaches Evolutionary and Non-Evolutionary separately and our 

main results of these investigations are being mentioned in the following subsections: 

a) Evolutionary Approach of Pattern Recall 

We have s realised Grover’s search algorithm using Discrete Fourier transform (DFT) with the 

matrix elements given by[29]  

             

where                .  Thus we have constructed the matrix of DFT as  

  [

  
  

  
    

   
   

   
   

]                                                         (25) 

with transpose conjugate of  this DFT matrix given as  
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]                                                              (26) 

where the matrix   swapping the rows of the DFT    is given by 



  [

  
  

  
  

  
  

  
  

]                                                                                 (27) 

The matrices    and   are obviously unitary matrices and the process related with the operations of 

these matrices are evolutionary. When the matrix   operates on different memories in a two-qubit 

system, we have 

                                                         (28) 

which may also be written as 

          ;  where ?= 0, 1                                                  

and               ,                                                                      

where                                         

Applying the Swapping- operator of equation (27) on our new MES, given by eqns. (5), we have: 

                            

                                                                                                    (29) 

     showing that the first and third states,       and      respectively, of Singh-Rajput Basis are 

self- swapped states  while the second state      is relabelled as fourth state      and vice-versa,  

under swapping operator. Thus the maximally entangled nature and the orthonormal property of our 

new MESare fully retained under the operation of swapping operator of eqn. (27). In other words 

our new MES (Singh-Rajput MES) provide a suitable choice as memory states for the memory recall 

mechanism of QuAM. 

  On the other hand, if the swapping operator of eqn. (27) is operated upon the Bell’s MES given by 

eqns. (4), then we get following new states: 
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which are no more Bell’s states and no more MES. In other words Bell’s states lose their MES 

nature on being operated upon by the swapping operator of eqn. (27). Thus Bell’s states do not 

provide a suitable choice as memory states for memory recall mechanism of QuAM. 

We have also examined the suitability of a MES as memory state      for recalling the memory 

associated with a given partial pattern by the recall mechanism [29]: 

          ̅     
    ̅                                                                       (31) 



where the operator    inverts the phase of  the state    , operator    inverts the phase of any state 

representing  a valid memory (it minimizes the effects of spurious memories that develop during 

recall process), the operator F is represented by the matrix given by eqn. (25) for a two-qubit system 

and its inverse      is given by 
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]                                                       (32) 

In this recall process any patterns in the stored memory,  that match the query have their phases 

inverted. We started with the query  ‘0?’, where ? represents unknown that matches  either  0  or 1. 

In other words we have the desired outcome to recall the memory pattern whose first qubit is 0 in  a 

two-qubit system. Choosing the first of our new MES, given by eqns. ( 5) as the memory state  

     we wrote the given query as an operator    : 
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and performed the inversion effected by the operator sequence       ̅    where    ̅ inverts the 

phases of the memories representing the query. Thus we get 
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where no spurious memory pattern (which is not present in the given memory state) is   developed.  

Continuing with the operator sequence of eqn. (31) the phases of all valid memory states, involved in  

   
   , are inverted as 
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which gives  
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]                                            (36) 

    where      is  the first of our new MES given by eqns(5). Combining all eqns. (33)- (36), we 

may write the recall mechanism of eqn. (31) as  

     ̅     
    ̅                                                     (37) 

which shows that the first of Singh-Rajput  MES as memory state is simply rotated by   under the 

recall process with query ‘01’. 



In the similar manner we have 

     ̅     
    ̅                  ;                                      (38) 
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  where  eqn. (38) shows that with our second MES, given by (5), as valid memory state in the  recall 

procedure of eqn. (31)  with the query ‘0?’ the output is our first MES rotated by     in the similar 

manner as for the first MES as memory state. In other words the recall mechanism does not make 

any distinction between first two states of Singh –Rajput MES for the  query ‘0?’.  It is the most 

convenient and expected result for this query and hence any of these two states can be the suitable 

choice for the memory state in recall mechanism with the given query. Relations (39) and (40) show 

that our third and fourth MES given by eqns. (5) as the choice of valid memory states are 

interchanged under the recall mechanism of eqn. (31) with the given query. However these states 

consist of the common memory patterns (with only sign change of one pattern) and hence no 

spurious, corrupted or fictitious memory pattern is generated by  the given query under the recall 

procedure when the states of Singh-Rajput MES are used as the memory states. Thus all these states 

of Singh-Rajput MES are the suitable memory states for the evolutionary recall procedure with the 

given query ‘0?’.On the otherhand, applying the recall mechanism of eqn. (31) on Bell’s MES given 

by eqns. (4), we found that among the Bell’s MES only second state may be the valid choice as 

memory state with the given query. 

Making the query ‘1?’, represented by the operator     and choosing the first state of Singh-Rajput 

MES  in procedure of recall through this query, we have 

     ̅     
    ̅                                   (41) 

showing the generation of second of Singh-Rajput  MES in the recall procedure with the given query 

     when the memory state is the first state of Singh-Rajput MES. The memory patterns in both 

these states are similar with the change of signs in the first and second elements of the matrices 

representing these states. No spurious states or the corrupt states are generated in this recall 

procedure and hence the first of Singh-Rajput MES can be a suitable and valid memory state in the 

evolutionary recall process for the given query     . 

Similarly, for other states of our new MES we have  

     ̅     
    ̅                 ;  

     ̅     
    ̅                  ;                                         
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    ̅                                                             (42) 

 Equations (41) and (42) show that the recall mechanism with the given query ‘1?’ in QuAM with  

Singh-Rajput MES as valid memory states  generate second state      for the first memory state 

     and gives the state      for the memory state      while the memory states      and 



    are relabelled as inverted states (rotated by   )      and      respectively. No spurious or 

fictitious or corrupted state is generated in theevolutionary recall process with any of Singh-Rajput 

MES as the choice for memory state In the QuAM model for a two- qubit system. On the other hand 

choosing the Bell’s MES as the memory state in the recall process for the given query ‘1?’,we found 

that each recall process  generates the  state with the pattern different from that of the corresponding 

memory state. In other words the memory pattern of each output is not contained in the 

corresponding memory state and hence all the generated states in the recall process with Bell’s MES 

chosen as memory states are spurious and fictitious memory states. Thus, none of the Bell’s MES is 

suitable choice for the valid memory state in the evolutionary recall process with the given query 

‘1?’ in QuAM model. 

Applying the recall procedure with the query as point  ‘11’ or the pattern      with first of Singh-

Rajput MES, given by eqns. (5), as the search state we obtained the following result: 

     ̅     
    ̅                               (43) 

where the generated state in the recall process is the third of Singh-Rajput  MES with the similar 

memory patterns as contained in the chosen memory state     . In other words the recall procedure 

with the given query projects the first of Singh-Rajput MES  as  the third state       without 

affecting the chances of observations of  the given query         and without generating any 

spurious or fictitious state. Thus the first of the Singh-Rajput MES,         is the suitable choice as 

a  valid  memory state in the evolutionary recalling process with the given query    . 

  Applying the recall procedure with the given query       choosing others of Singh-Rajput MES as 

memory states one by one, we have   
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where all the generated states in recall process are non-entangled and do not constitute the complete 

orthonormal set. In other words all the memory states lose their maximally entangled character in the 

process of recall with the given query. Thus all these states are the corrupt and fictitious states and 

hence none of these three states     ,      and      of Singh-Rajput MES can be chosen as the 

valid memory state in the evolutionary recalling process with the given query       in QuAM 

model. 



Applying recall procedure for  the first of Singh-Rajput MES as memory states with the query of 

point ‘00’ representing the partial pattern     ,  we have 
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where the state generated in the recalling procedure is neither maximally entangled nor the element 

of an orthonormal set of states. Thus the generated state in the recall mechanism is the fictitious and 

corrupt state and hence the first state       of Singh-Rajput MES cannot be a choice as valid 

memory state in the recall procedure with the given query.Choosing the second and third states  

     and      of our new MES as the memory states in the recall mechanism with the given 

query, we have 
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where the same state generated in both  recall equations is corrupt state which is neither maximally 

entangled nor the element of an orthonormal set of states. Thus none of these states      and       

of Singh-Rajput MES can be a suitable choice as a valid memory state in the recall procedure with 

the given memory. On the other hand when we choose the fourth state      of this set of MES as 

the memory state then we get 
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where the recall procedure transforms the memory state      in to the first state      with the 

nature of  maximal entanglement and  orthonormal property left intact without affecting the chance 

of observation of the pattern represented in the given query. Thus the fourth state      of Singh-

Rajput MES is most suitable as a valid memory state in the evolutionary recall procedure with the 

given query     .  

b) Non-Evolutionary Approach of Pattern Recall 

Since the pattern recall mechanism in the QuAM requires the decoherence and collapse of the wave-

function of the system, it can be argued that the pattern recall may be a non-unitary process. With 

this motivation we have constructed a new set of non-unitary operators for the pattern recall phase of 

QuAM as  ̂  and represented them as matrices     indexed by column and row as the basis states  

and   of the system 
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                                     (48) 

where        etc are hamming functions and the character ‘?’ matches any thing.  



In two-qubit system to query the system with q= ‘11’ requires non-unitary operator; 
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We have applied this recall operator on Singh-Rajput MES, given by eqns. (5), chosen one by one as 

memory states. Choosing first of Singh –Rajput MESas memory state, we get  
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       which yields the requisite query without any spurious or corrupted state.Thus the state      of 

Singh-Rajput MES is the most suitable choice as the valid memory state in the non-evolutionary 

recall process with the given queryq= ‘11’. 

  Choosing other states of Singh –Rajput MES as memory states, we get 
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    ] ;                                                   
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Each of these equations gives spurious and undesired patterns accompanying the required query and 

hence none of the last three states           and       of Singh-Rajput MES is suitable choice 

as memory state in this non-evolutionary recall process with the given query. 

  On applying the recall operator  ̂   on the Bell’s MES, given by eqns. (4), chosen one by one as 

memory state with the given query ‘11’, we have 
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where last two recall equations do not yield the required query pattern while first two equations yield 

the query pattern along with the unwanted spurious patterns. Thus none of the Bell’s MES is suitable 

choice as valid memory state in this non-evolutionary recall process with the requisite query. 

We have also carried out the non-evolutionary recall process with the required query as  the point 

‘00’ or the pattern      .  The recall operator for this query has been obtained as follows by using 

eqn. (48); 
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Choosing first three states           and       of Singh-Rajput MES as memory states in this 

recall process with the given query, we get 
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[          ]                                                               (52) 

None of these recall equations yield the requisite pattern, represented by the given query, free from 

the unwanted spurious patterns and hence none of the first three states           and       of 

Singh-Rajput MES is suitable as valid memory state in this non-evolutionary recall process with the 

given query. 

On the other hand when this recall operator is applied on the fourth state     of Singh-Rajput 

MES, we get 
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[    ]                                                       (53) 

which gives the correct pattern represented by the given query ‘00’ without any spurious pattern. 

Thus the state      of Singh-Rajput MES is the most suitable choice as the valid memory state in 

this non-evolutionary recall process with the given query ‘00’. 

Applying this recall operator  ̂   on Bell’s MES one by one,  we have 
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where last two recall equations do not yield the pattern  required by the given query and the first two 

recall equations yield this pattern along with undesired spurious patterns. Thus none of the Bell’s 

MES is suitable as memory state in this recall procedure with the given query ‘00’ also.  

The recall operator for the query ‘?1’  with ? either 0 or 1 has been  obtained as follows by using 

eqn. (48); 
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]                                                  (55)  

 



Applying this recalling operator on the  states   of Singh- Rajput  MES one by one, we get 
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 Each of these recall equations yields the patterns     and    , represented by the given query, 

with equal probability. Thus all these states of Singh-Rajput MES are the most suitable choice as the 

valid memory in this non-evolutionary recall process also. 

  On the other hand, choosing the Bell’s MES one by one as the memory states in this recalling 

process with the given query, we get 
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None of these equations yield the complete required pattern consisting of        and      

represented by the given query. Thus none of the Bell’s MES is the good choice as the memory state 

in this recalling with this given query q=‘?1’ also. 

  Similarly for the query ‘0?’ eqn. (48) leads to the following recalling operator; 

 ̂   [

  
  

  
  

  
  

  
  

] 

which gives 

 ̂        
 

 
[             ];        

 ̂        
 

 
[           ]; 

 ̂        
 

 
[            ];   

 ̂        
 

 
[            ];    (58) 

showing that  all Singh-Rajput MES are suitable for the  choice of valid memory states in this non-

evolutionary recall operation with the given query. It has also been shown that none of the Bell’s 

MES is very suitable as the choice of valid memory states in this recalling operation.  

The similar results follow for the query ‘?0’ also where the recalling operator is obtained as  

 ̂   [

  
  

  
  

  
  

  
  

] 



which leads to the following  sets of recall equations for Singh-Rajput MES and Bell’ MES 

respectively; 

 ̂        
 

 
[             ];   

 ̂        
 

 
[           ]; 

 ̂        
 

 
[            ];   

 ̂        
 

 
[            ];       (59) 

and  

 ̂          
 

√ 
           ̂          

 

√ 
       

 ̂          
 

√ 
            ̂         

 

√ 
                                  (60) 

where the first set of  recall equations yields the full pattern represented by the given query and the 

second set in each case gives only the partial pattern. Thus in this non-evolutionary recall process 

also the choice of Singh-Rajput MES as valid memory states is most suitable with the given query 

while the Bell’s MES are not very suitable choice as the valid  memory. 

From the foregoing analysis of the work carried out on the  evolutionary and non-evolutionary recall 

operations it follows that these recall operations of quantum associative memory (QuAM) have been 

conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary 

and non- unitary operators respectively by separately choosing our recently derived maximally 

entangled states (Singh-Rajput MES) and Bell’s MES as memory states for various queries and it 

has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much 

more suitable than those of Bell’s MES.  It has been demonstrated that  in both the types of recall  

processes (evolutionary as well as non-evolutionary) the first and the fourth states of Singh-Rajput 

MES are most suitable choices as memory states for the queries ‘11’ and ‘00’ respectively while 

none of the Bell’s MES is a suitable choice as valid memory state in these recall processes. It has 

been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory 

states for the queries ‘1?’, ‘?1’, ‘?0’ and ‘0?’ while none of the Bell’s MES is suitable choice as the 

valid memory state for these queries also. 

All these results on the superiority and suitability of our new MEs (Singh-Rajput MES), given by 

eqns. (5), as the search states (data base) for correct pattern classification through both the standard 

processes (Grover’s algorithm and  Ventura’ algorithm), pattern memorisation through evolutionary 

process, and pattern recall through evolutionary as well as non-evolutionary processes confirm the 

following applicability of these new MES: 



i) First MES      of our new Eigen- Basis (Singh-Rajput Eigen-basis)  is the best choice as 

the search state for total desired classification of the patterns      , correct classification of 

the pattern     , memorisation (storage) of the pattern        and recall of the pattern 

     through both, evolutionary as well as non-evolutionary approaches. 

ii) Second MES       of our new Eigen –Basis is the best choice as the search state  for the 

total desired classification of the patterns     , correct classification of the pattern     ,  

and memorisation of the pattern      

iii) Third MES      of our new Eigen-Basis is the best choice as the search state for the total 

desired classification of the patterns     , correct classification of the pattern     , and 

memorisation of the pattern     . 

iv) Fourth MES     of our new Eigen-Basis is the best choice as the search state for the total 

desired classification of the patterns     , correct classification of the pattern     , 

memorisation of the pattern     . and recall of the pattern      through both, evolutionary 

as well as non-evolutionary approaches. 

v) All the four MES of our new Eigen-Basis are suitable for recalling the patterns          

       and       where the symbol ‘?’ denotes 0 or 1, through both evolutionary as well as 

non-evolutionary approaches. 

D) QUANTUM ENCODING AND ENTANGLEMENT IN TERMS OF PHASE 

OPERATORS ASSOCIATED WITH HARMONIC OSCILLATOR. 

Keeping in view that a major obstacle to universal quantum computing [30]  and the quantum 

information processing [31] is the limit on number of coupled qubits that can be achieved in a 

physical system [32]and use of d-dimensional system or qudit  in quantum computing enables a 

much more compact and efficient information encoding than for qubit computing, realization of 

qudit quantum computation has been presented [ 15] in terms of number operator and phase 

operators associated with one-dimensional harmonic oscillator and it has been demonstrated that 

the representations of generalized Pauli group, viewed in harmonic oscillator operators, allows 

the qudits to be explicitly encoded in such systems.The non-Hermitian  quantum phase operators 

contained in decomposition of the annihilation  and creation operators associated with harmonic 

oscillator have been analysed in terms of semi unitary  transformations (SUT)and it has been 

shown that the non-vanishing analytic index for harmonic oscillator leads to an alternative class 

of quantum anomalies. Choosing unitary transformation and the Hermitian phase operator free 

from quantum anomalies, the truncated annihilation and creation operators have been obtained 

for harmonic oscillator and it has been demonstrated that  any attempt of  removal of quantum 

anomalies leads to absence of minimum uncertainty.It has also been demonstrated that despite 

the issues involving d   phase operators, universal qudit quantum computation is well defined 



for the finite d and a criterion for existence of topological phases, satisfied by a wide class of 

states, follows immediately from the theory of polynomial invariants. 

To undertake the study of qudits in energy eigen space of harmonic oscillator, aqudit is realised 

as a state in a d-dimensional Hilbert space   , with a computational basis {       

               

A basis for unitary operator on    is given by the generalized Pauli operators [33]: 

    
      

                                                             (61) 

where                        

and              
    

 
                                                                          (62) 

generate the non-commutative generalized Pauli group. For qudits in the Eigen space of 

harmonic oscillator, weobtain a generalized Pauli group generated by the number operator  ̂  

and the phase operator   ̂ . Here the Pauli operators    and   have been realized as operators 

that act naturally on the space    of dimension d spanned by the  states of harmonic oscillator by 

using the computational basis to be the set of harmonic oscillator energy Eigen states of no more 

than       bosons: 

                                                        (63) 

where     ̂           

The generalized Pauli group ( the operators on this subspace of the harmonic oscillator) is 

realized as 

   ∑                  

   

   

 

                          
    

 
                                                                                  (64) 

which are unitary on      . The operator     may also be written as  

           ̂                                                                             (65) 

where the Hermitian operator  ̂  is the Pegg-Bernett phase operator [34]. The realization given 

by eqns. (64) and (65) enables us to achieve the     limit which yields continuous-variable 

quantum computation where the computational basis remains the harmonic oscillator energy 

eigen states followed by eqn. (63). It provides the necessary theoretical tools for developing the 

qudit quantum computation in terms of phase operators associated to harmonic oscillator, 

constructed in the following sub-sections. 

i) Phase Operators Associated with Harmonic Oscillator  



The quantum phase operator contained in polar decomposition of the annihilation and creation 

operators, and also the number operator, associated with harmonic oscillator has been 

exhaustively discussed and it has been shown that the Hermitian phase operator leading to 

vanishing index cannot be consistently defined.  We have examined this problem from the first 

principle using ladder method for one dimensional oscillator with its annihilation and creation 

operators, respectively, given by   

 ̂           √         √              √             (66) 

 ̂          √        √             √               (67) 

which give number operator as  

 ̂   ̂  ̂                                                 (68) 

From relations (66) and (67) we also have 

 ̂ ̂                                                    (69) 

From these equations it is obvious that only one basis vector (i.e.,      satisfy the condition 

 ̂  ̂                                                                                                    (70) 

and no basis vector satisfies the condition 

 ̂ ̂                                                                                                  (71) 

Thus if we designate         ̂   ̂  as the number of normalizable basis vectors     

satisfying the condition (70) and (dim ker ̂ ̂  as the number of basis vectors satisfying condition 

(71), then we have the index relation  

       ̂   ̂           ̂ ̂                                                            (72) 

for the harmonic oscillator. This index remains invariant under continuous deformations  and one 

cannot relate the representation spaces of annihilation operators with different indices by a 

unitary transformation. 

Dirac first proposed [35] the polar decomposition of the annihilation operator as  

 ̂     √ ̂    ̂ [ ̂   ̂]                                                        (73) 

where   ̂         and      is the phase operator. This relation gives 

 ̂    ̂     ̂                                                           (74) 

and hence     ̂    ̂       ̂  ̂     

which is possible only when  

 ̂  ̂   ̂                                                                             (75) 

 where ̂ is the identity operator. But the relations (73) and (74) also give 

 ̂ ̂   ̂  ̂ 
 

   ̂ 
 

  ̂   ̂ ̂ ̂   ̂  ̂   ̂  ̂                             (76) 



This relation denies the unitary property of operator  ̂ in view of index relation (72) since the 

operators   ̂ ̂  and  ̂   ̂ cannot be connected by unitary operator for the index relation (72) to 

hold good. Thus  

 ̂ ̂                                                                           (77) 

Operator satisfying conditions (75) and (77) is semi-unitary and not unitary and hence the phase 

operator introduced in eqn. (73) is not Hermitian: 

                                                                                (78) 

It shows the absence of the Hermitian phase operator for harmonic oscillator in the framework of 

index theory. To meet this requirement the phase operator suggested by Susskind and Glower 

[36] has been written as  

 ̂                                  

 ∑           
                                                                                          (79) 

which gives         

 ̂ ̂                            

                                          =∑         
                                                               (80) 

and                    ̂  ̂                     

            ̂                                                                     (81) 

 showing  that the operator  ̂ is semi-unitary and not unitary operator.  Accordingly, the 

transformation (73) is semi-unitary transformation. Eqn. (79) shows that the operator  ̂       

carries a unit index while  ̂  is empty and hence 

   dim ker ̂  ̂         ̂  ̂                                                                  (82 

which is equivalent to  index relation  (72). 

Equations (80) and (81) show that any transformation involving operator   ̂will be a semi-

unitary transformation (SUT). The operator  ̂ introduced in equation (81) satisfies the following 

conditions; 

 ̂   ̂   and        ̂   ̂                                                              (83) 

showing that  ̂   is projection operator with eigen values 0 and 1. It may readily be shown that 

the projection operator  ̂ introduced in eqn. (81) commutes with the Hamiltonian of harmonic 

oscillator and hence it has Eigen vectors common with harmonic oscillator. Thus we have 

 ̂         

and                      ̂                                                                                (84) 

showing that under the projection operator   ̂ the full Hilbert space  of  harmonic oscillator is 

projected into two subspaces: 



                                                                                        (85) 

where the subspace      is constituted by the state       and the subspace      is constituted 

by the states       . 

To find the general structure of the operator   ̂    in the above mentioned basis, we started with 

the complete set  n of harmonic oscillator (for n=0.1,2,…) and constructed 

       ̂
   n (86) 

 hich gives 

∑          
     ̂ ∑        

      ̂   ̂   ̂   ̂                  (87) 

showing that the states      do not form the complete set. 

We obviously have 

 ̂                                                                                                   (88) 

and hence we may write 

                                                                                                    (89) 

where p denotes the Eigen values of  ̂. The complete set of the Eigen states is formed by  the 

states            and      given by eqn. (89). Thus we have 

        ∑        

 

  ̂ 

or       ∑            ̂                                                                        (90) 

which  is the same result as eqn. (87). Thus the matrix of the operator  ̂ is diagonal with the 

general structure 

 ̂  [

   
   

  
  

   
   

  
  

]                                                                      (91) 

where    is unit matrix.  

From the SUT transformation, given by eqn. (86), we get 

             ̂ ̂                                                       (92) 

showing that the orthonormality of states     implies the orthonormality of states      . 

Equations (90) and (92) demonstrate that under the SUT given in eqn. (86),  the normalization of 

the states of harmonic oscillator is maintained while the completeness is violated.  

We have also considered the semi-unitary transformation: 

      ̂                                                                                 (93) 

to have 

∑             ∑  ̂          ̂   ̂ ̂   ̂                   (94) 



showing that completeness of the states     implies the completeness of the states     . 

But the SUT (93) also give 

             ̂  ̂         ̂                                     (95) 

Thus the SUT given by eqn. (93) maintains completeness relation but fails to maintain 

normalisation condition. Furthermore, under this SUT we have 

      ̂                                                                                            (96) 

showing that this SUT destroys the ground state    . 

The semi-unitary operator  ̂      with non-Hermitian phase operator  , introduced in eqn. 

(73), satisfies the following commutation relation with number operator  ̂ given by eqn. (68); 

                [ ̂  ̂]     ̂                                                                                              (97) 

which is compatible with the commutation relation 

[ ̂  ]                                                                                                         (98) 

Then the functions analogous of cosine and sine, defined as  

      
 

 
[ ̂   ̂ ] 

and                        
 

  
[ ̂   ̂ ]                                                                   (99) 

give the anomalous commutator 

                         [           ]   
 

  
                                                   (100) 

and the anomalous identity  

                        [    ]  [    ] = 1-                                                (101) 

These functions also satisfy the following anomalous commutation relations with number 

operator: 

                                   [ ̂     ]          

and                            [ ̂ S   ]                                                            (102) 

 

Thus we may regard the phase operator problem associated with non-vanishing analytic index 

for harmonic oscillator as alternative class of quantum anomalies.  Index relation (72), 

responsible for these anomalies, is satisfied in a manner analogous to chiral anomaly in quantum 

field theory [37]. This connection between the non-zero index and the chiral anomaly appears in 

the transparent manner in the Euclidean path integral formulation of anomalies [38]. 

ii) Phase  Operator  Free  From  Quantum  Anomalies 

    A possible choice of Hermitian phase operator, free from quantum anomalies, has been obtained 

from theinfinite dimensionaloperator 



                                 

                                             

                                                                                  (103) 

where          …   are  real constants and    is the Hermitian phase operator ( i.e.,     ) defined 

in the truncated (s+1) dimensional space as  

                                                     (104) 

where     is an arbitrary c-number constant. The phase operator     is obviously unitary in  (     

dimensions and the(     dimensional truncated creation and annihilation operators are defined as  

 ̂       ̂ 
 

         √        √          √          

and 

 ̂ 
        ̂ 

 

 =      √        √          √           (105) 

which give  

                    [ ̂   ̂ 
 ]   ̂              

and            ̂  ̂ 
       

Hence, with the phase operator of eqn. (104), we have 

       ̂ 
  ̂         ̂  ̂ 

 
 =0                                   (105a) 

which is the index relation required for the Hermitian nature of  phase operator. For this choice of 

phase operator relations (99) reduce to  

            and                                                                              (106) 

and the anomalies in the commutation relation (100) and the identity (101) are removed. These 

characteristics of phase operator of eqn. (104) are retained in the phase operator   defined by eqn. 

(103) and hence the operator     is unitary and phase operator    is Hermitian. 

 For any normalized state     of the number operator associated with harmonic oscillator, we have 

             

and the operator 

 ̂       ̂ 
 

                                                                                                             (107) 

satisfies the index relation 

       ̂ 
 
 ̂         ̂  ̂ 

 
                                                                           (108) 

which is equivalent to the index relation  (105a). 

In spite of the removal of quantum anomalies, natural modification in index relation and the 

Hermitian nature of phase operator  , the operator  ̂ , defined by eqn. (107), is not related with 

annihilation operator of  eqn. (66) by unitary transformation  for a finite value of     and the limit 

    becomes a singular point of equation (108). This fact leads to the absence of minimum 



uncertainty state for the operator     in the characteristically quantum domain [37].  If one uses an 

analogy between the phase operator and the chiral anomaly, the index relation corresponds to the 

quantum anomaly which is clearly recognised only when one carefully analyses the dependence of 

the matrix elements of various operators of harmonic oscillator on the cut off parameter   [37]. 

Despite the issues involving d   phase operators, universal qudit quantum computation is well 

defined for the finite d [39]. These requirements may be achieved in terms of optical realisation 

where harmonic oscillators are realised as modes in a cavity [40]. Quantum computation with 

multiple qudits may be performed by coupling several modes in a single cavity where each mode 

realizes a single qudit [40]. The representations  of the generalized Pauli group, viewed in terms of 

number and phase operators for harmonic oscillator, allows for qudits to be explicitly encoded  in 

terms of these factors. 
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